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Abstract—In this paper, we focus on multiobjective 0-1 pro-
gramming problems under the situation where stochastic uncer-
tainty and vagueness exist at the same time. We formulate them as
fuzzy random multiobjective 0-1 programming problems where
coefficients of objective functions are fuzzy random variables.
For the formulated problem, we propose an interactive fuzzy
satisficing method through probability maximization using of
possibility.

I. I NTRODUCTION

In the contemporary society, the case that we have to make a
decision based on uncertain data or information is increasing.
The stochastic programming [5], [2], [4], [21] and the fuzzy
programming [24], [14], [20], [19], [18] have developed so
far.

In these researches, the randomness and fuzziness have
been treated separately. But, in the real decision making
problem, there are many situations including two kinds of
uncertainty at the same time. For example, we can think
the situation that the parameters included in a formulated
problem are given by uncertain numbers. As a concept to
express such a situation, the concept of fuzzy random variables
was proposed [12], [17], [11], [13] and its application to
the mathematical programming have been done, e.g., linear
programming involving fuzzy random variable coefficients by
Wang and Qiao [22], interactive fuzzy random multiobjective
mathematical programming by Katagiri et al. [7], [6], [8], [9],
[10], fuzzy random multiobjective quadratic programming in
portfolio problem by Ammar [1], multi-objective inventory
problems under fuzzy random environment by Xu and Liu
[23] and the survey of fuzzy stochastic linear programming
by Luhandjula [15].

In particular, for multiobjective 0-1 programming problems
including fuzzy random variables in the coefficients of ob-
jective functions, Katagiri et al. [9] proposed an interactive
method based on the expectation optimization model and the
variance minimization model using possibility and necessity.
In this paper, for fuzzy random multiobjective 0-1 program-
ming problems, we propose an interactive fuzzy satisficing
method based on the probability maximization model using
possibility.

In section II, we formulate fuzzy random multiobjective 0-
1 programming problems. In section III, we introduce fuzzy
goals to objective functions in the problems. In section IV, we
discuss the formulation through the probability maximization
model using possibility and propose an interactive fuzzy sat-
isficing method. In section V, to demonstrate the usefulness of
the proposed method, we apply it into an illustrative numerical
example. Finally, in section VI, we conclude this paper and
refer to further research.

II. FUZZY RANDOM MULTIOBJECTIVE 0-1
PROGRAMMING PROBLEMS

Fuzzy random variables have been mathematically defined
in various ways before now [12], [17], [11], [13]. For example,
Kruse and Meyer [11] defined a fuzzy random variable as
follows.

Definition 1 (Fuzzy random variable):Let (Ω, B, P ) be a
probability space,F (R) the set of fuzzy numbers with com-
pact supports andX a measurable mappingX → F (R). Then
X is a fuzzy random variable if and only if givenω ∈ Ω,
Xα(ω) is a random interval for anyα ∈ (0, 1], whereXα(ω)
is anα-level set of the fuzzy setX(ω).
Although there exist some minor differences in several defini-
tions of fuzzy random variables, fuzzy random variables could
be roughly understood to be a random variable whose observed
values are fuzzy sets. In this paper, we consider the following
fuzzy random multiobjective 0-1 programming problem:

minimize ˜̄Clx, l = 1, 2, . . . , k
subject to Ax ≤ b

x ∈ {0, 1}n

 , (1)

where x is an n dimensional 0-1 decision variable column
vector,A is anm×n coefficient matrix,b is anm dimensional
constant column vector. Each element˜̄Clj of vector ˜̄Cl, l =
1, 2, . . . , k is a fuzzy random variable characterized by the
following membership function:

µ ˜̄Clj
(τ) =


L

(
d̄lj − τ

β̄lj

)
, if τ ≤ d̄lj

R

(
τ − d̄lj

γ̄lj

)
, otherwise,

(2)
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Fig. 1. An example of the membership functionµ ˜̄Clj
(·) of a fuzzy random

variable ˜̄Clj .

Fig. 2. An example of the membership functionµ ˜̄Clx
(·) of the lth objective

function.

where the functionL(t) = max{0, λ(t)} is a real-valued
continuous function from[0,∞) to [0, 1], and λ(t) is a
strictly decreasing continuous function satisfyingλ(0) = 1.
Also, R(t) = max{0, ρ(t)} satisfies the same conditions.
Furthermore,̄dl, β̄l and γ̄l, l = 1, 2, . . . , k aren dimensional
random variable row vectors defined asd̄l = d1

l + t̄ld
2
l ,

β̄l = β1
l + t̄lβ

2
l and γ̄l = γ1

l + t̄lγ
2
l by a random variablētl

whose mean isMl.
Since each coefficient of objective functions is a fuzzy

random variable whose observed values areL-R fuzzy num-
bers, each objective function becomes a fuzzy random variable
characterized by the following membership function by the
calculation of L-R fuzzy numbers based on the extension
principle:

µ ˜̄Clx
(υ) =


L

(
d̄lx − υ

β̄lx

)
, if υ ≤ d̄lx

R

(
υ − d̄lx

γ̄lx

)
, otherwise.

(3)

II I. I NTRODUCTION OFFUZZY GOALS

Now, in order to consider the vagueness of the decision
maker’s judgments as human, we introduce fuzzy goalsG̃l,
l = 1, 2, . . . , k such as “̃̄Clx should be substantially less than

y

1

0

Fig. 3. An example of the membership functionµG̃l
(y) of a fuzzy goalG̃l.

Fig. 4. The degree of possibilityΠ ˜̄Clx
(G̃l).

or equal to a certain value” characterized by the following
membership function for each objective function:

µG̃l
(y) =

 1, if y < g1
l

gl(y), if g1
l ≤ y ≤ g0

l

0, if y > g0
l ,

(4)

wheregl(·) is a strictly decreasing function.

IV. PROBABILITY MAXIMIZATION MODEL USING

POSSIBILITY

If we regardµ ˜̄Clx
(·) as a possibility distribution, the degree

Π ˜̄Clx
(G̃l) of the possibility satisfying the fuzzy goal̃Gl under

the distribution is given by the follows using the possibility:

Π ˜̄Clx
(G̃l) = sup

υ
min

{
µ ˜̄Clx

(υ), µG̃l
(υ)
}

. (5)

In this research, we consider the following problem to
maximize the degree of possibility that each fuzzy goal is
fulfilled in place of (1):

maximize Π ˜̄Clx
(G̃l), l = 1, 2, . . . , k

subject to Ax ≤ b
x ∈ {0, 1}n

 . (6)

Since possibilitiesΠ ˜̄Clx
(G̃l) in (6) vary at random because

of the randomness of̄dl, β̄l andγ̄l, problem (6) is a stochastic
multiobjective 0-1 programming problem. Here, the maximiza-
tion of Π ˜̄Clx

(G̃l) in (6) is replaced with the maximization of
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Pr
[
Π ˜̄Clx

(G̃l) ≥ hl

]
based onthe probability maximization

model to maximize the probability thatΠ ˜̄Clx
(G̃l) is greater

than or equal to a certain permissible levelhl:

maximize Pr
[
Π ˜̄Clx

(G̃l) ≥ hl

]
, l = 1, 2, . . . , k

subject to Ax ≤ b
x ∈ {0, 1}n

 .

(7)
For any elementary event, inequalitiesΠ ˜̄Clx

(G̃l) ≥ hl, l =
1, 2, . . . , k can be transformed as:

Π ˜̄Clx
(G̃l) ≥ hl

⇔ sup
υ

min
{

µ ˜̄Clx
(υ), µG̃l

(υ)
}
≥ hl

⇔ ∃υ : µ ˜̄Clx
(υ) ≥ hl, µG̃l

(υ) ≥ hl

⇔ ∃υ : L

(
d̄lx − υ

β̄lx

)
≥ hl, R

(
υ − d̄lx

γ̄lx

)
≥ hl,

µG̃l
(υ) ≥ hl

⇔ ∃υ : {d̄l − L∗(hl)β̄l}x ≤ υ ≤ {d̄l + R∗(hl)γ̄l}x,

υ ≤ µ∗
G̃l

(hl)

⇔ {d̄l − L∗(hl)β̄l}x ≤ µ∗
G̃l

(hl)

where L∗(·), R∗(·) and µ∗
G̃l

(·) are pseudo-inverse functions
defined asL∗(hl) = sup{r | L(r) ≥ hl}, R∗(hl) = sup{r |
R(r) ≥ hl}, µ∗

G̃l
(hl) = sup{r | µG̃l

(r) ≥ hl}, 0 < hl ≤ 1.

In addition, if we assume{d2
l − L∗(hl)β2

l }x > 0, l =
1, 2, . . . , k for all x ∈ {x ∈ {0, 1}n | Ax ≤ b} and we
denote the distribution function of the random variablet̄l by
Tl(·), we obtain

Pr
[
Π ˜̄Clx

(G̃l) ≥ hl

]
= Pr

[
{d̄l − L∗(hl)β̄l}x ≤ µ∗

G̃l
(hl)

]
= Pr

[
{(d1

l + t̄ld
2
l ) − L∗(hl)(β1

l + t̄lβ
2
l )}x ≤ µ∗

G̃l
(hl)

]
= Pr

[
t̄l ≤

{L∗(hl)β1
l − d1

l }x + µ∗
G̃l

(hl)

{d2
l − L∗(hl)β2

l }x

]

= Tl

(
{L∗(hl)β1

l − d1
l }x + µ∗

G̃l
(hl)

{d2
l − L∗(hl)β2

l }x

)
.

Then, problem(7) is transformed into the following equiv-
alent deterministic multiobjective 0-1 programming problem:

maximize pl(x) =

Tl

(
{L∗(hl)β1

l − d1
l }x + µ∗

G̃l
(hl)

{d2
l − L∗(hl)β2

l }x

)
,

l = 1, 2, . . . , k
subject to Ax ≤ b

x ∈ {0, 1}n


.

(8)
We introduce fuzzy goals like “pl(x) should be substantially

greater than or equal to a certain value” to consider the
vagueness of the decision maker’s judgments onpl(x) in (8).

Then, problem (8) is reformulated as the following problem:

maximize (µ1(p1(x)), . . . , µk(pk(x)))
subject to Ax ≤ b

x ∈ {0, 1}n

 . (9)

In order to derive a satisficing solution to (9), we develop
an interactive fuzzy satisficing method that the decision maker
interactively updates the reference membership levelsµ̄l,
l = 1, 2, . . . , k reflecting his aspiration level to each fuzzy
goal considering the optimal solution to the following minimax
problem

minimize max
l=1,...,k

{µ̄l − µl(pl(x))}

subject to Ax ≤ b
x ∈ {0, 1}n

 . (10)

Introducing an auxiliary variablev, (10) is rewritten as:

minimize v
subject to µ̄l − µl(pl(x)) ≤ v, l = 1, 2, . . . , k

Ax ≤ b
x ∈ {0, 1}n

 , (11)

equivalently,

minimize v
subject to pl(x) ≥ µ∗

l (µ̄l − v), l = 1, 2, . . . , k
Ax ≤ b
x ∈ {0, 1}n

 (12)

whereµ∗
l (·) is a pseudo-inverse function defined asµ∗

l (s) =
inf{r | µl(r) ≥ s}, 0 < s ≤ 1.

Then, problem (12) can be rewritten as:

minimize v

subject to
{L∗(hl)β1

l − d1
l }x + µ∗

G̃l
(hl)

{d2
l − L∗(hl)β2

l }x
≥ T ∗

l (µ∗
l (µ̄l − v)),

l = 1, 2, . . . , k
Ax ≤ b
x ∈ {0, 1}n


(13)

whereT ∗
l (·) is a pseudo-inverse function defined asT ∗

l (s) =
inf{r | Tl(r) ≥ s}, 0 < s ≤ 1.

We consider the method to obtain the solution for the
problem (13) using branch-and-bound method. When we solve
by branch-and-bound method, we consider the following con-
tinuous relaxed problem:

minimize v

subject to
{L∗(hl)β1

l − d1
l }x + µ∗

G̃l
(hl)

{d2
l − L∗(hl)β2

l }x
≥ T ∗

l (µ∗
l (µ̄l − v)),

l = 1, 2, . . . , k
Ax ≤ b
0 ≤ xj ≤ 1, j = 1, 2, . . . , n
x ∈ Rn


(14)

Here, it is equivalent to obtaining minimumv existing
feasible solutions to obtain minimumv of the problem. It
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is equivalent to obtaining minimumv where an executable
solution exists to obtain minimumv of problem(14). Note that
the following inequalities hold

µ̄max − 1 ≤ v ≤ µ̄max

whereµ̄max is the maximal value of all̄µl, l = 1, 2, . . . , k.
Obtaining the optimal value ofv to problem (14) is equiv-

alent to finding the minimum ofv so that the set of feasible
solutions to (14) is not empty. Although (14) is a nonlinear
programming problem, we can easily find the minimum of
v by the algorithm based on the bisection method and the
simplex method since the constraints of (14) are linear ifv is
fixed.

After the minimum valuev∗ of v is obtained, in order to
determinex∗ corresponding tov∗ uniquely, we substitutev∗

for the constrains of problem (14) and solve the following
linear fractional programming problem:

minimize
−{L∗(h1)β1

1 − d1
1}x − µ∗

G̃1
(h1)

{d2
1 − L∗(h1)β2

1}x

subject to
{L∗(hl)β1

l − d1
l }x + µ∗

G̃l
(hl)

{d2
l − L∗(hl)β2

l }x
≥ T ∗

l (µ∗
l (µ̄l − v∗)),

l = 1, . . . , k
Ax ≤ b
0 ≤ xj ≤ 1, j = 1, 2, . . . , n
x ∈ Rn


.

(15)
Since (15) is a linear fractional programming problem, using

the variable transformation by Charnes and Cooper [3]

t =
1

{d2
1 − L∗(h1)β2

1}x
, y = t · x, t > 0

and lettingτl = T ∗
l (µ∗

l (µ̄l − v∗)), (15) is transformed into the
following equivalent linear programming problem:

minimize −{L∗(h1)β1
1 − d1

1}y − µ∗
G̃1

(h1) · t
subject to [τl{d2

l − L∗(hl)β2
l }

+{d1
l − L∗(hl)β1

l }]y
−µ∗

G̃l
(hl) · t ≤ 0,

l = 1, . . . , k

{d2
1 − L∗(h1)β2

1}y = 1
Ay − t · b ≤ 0
0 ≤ yj ≤ t, j = 1, 2, . . . , n
t ≥ 0


. (16)

[Interactive Fuzzy Satisficing Method]

Step 1: In order to specify membership functionsµG̃l
(·) of

fuzzy goalsGl for objective functions, the following
optimization problems to minimize and maximize the
expectation of each objective function are solved.

minimize (d1
l + Ml · d2

l )x
subject to Ax ≤ b

x ∈ {0, 1}n

 , l = 1, 2, . . . , k

(17)

maximize (d1
l + Ml · d2

l )x
subject to Ax ≤ b

x ∈ {0, 1}n

 , l = 1, 2, . . . , k

(18)
Since these problems are linear 0-1 programming
problems, they can be solved by the branch and
bound method using linear programming. On the
basis of optimal values to these problems, ask the de-
cision maker to determine the membership functions
µG̃l

(·) and permissible levelshl, l = 1, 2, . . . , k.
Step 2: In order to specify membership functionsµl(·)

of fuzzy goals forpl(·), the following optimization
problems to minimize and maximize each ofpl(·)
are solved.

minimize pl(x)
subject to Ax ≤ b

x ∈ {0, 1}n

 , l = 1, 2, . . . , k (19)

maximize pl(x)
subject to Ax ≤ b

x ∈ {0, 1}n

 , l = 1, 2, . . . , k (20)

Since these problems are reduced to linear fractional
0-1 programming problems, they can be solved by
the branch and bound method using the variable
transformation by Charnes and Cooper [3] and linear
programming. On the basis of optimal values to these
problems, ask the decision maker to determine the
membership functionsµl(·), l = 1, 2, . . . , k.

Step 3: Set the initial reference membership levelsµ̄l, l =
1, 2, . . . , k to 1.0.

Step 4: For the reference membership levelsµ̄l, l =
1, 2, . . . , k, solve the corresponding minimax prob-
lem:

minimize max
l=1,...,k

{µ̄l − µl(pl(x))}

subject to Ax ≤ b
x ∈ {0, 1}n

 . (21)

This problem can be solved by the branch and bound
method using the bisection method, the variable
transformation by Charnes and Cooper [3] and linear
programming.

Step 5: If the decision maker is satisfied with the current
solution obtained in step 4, the algorithm is termi-
nated. Otherwise, update the reference membership
levels µ̄l, l = 1, 2, . . . , k and return to Step 4.

In Step 4, we can use a branch-and-bound method based on
bisection method and simplex method to solve the minimax
problem (13).

V. NUMERICAL EXAMPLE

To demonstrate the effectiveness of the proposed interactive
satisficing method for fuzzy random multiobjective 0-1 pro-
gramming problem, we consider the following problem (22)
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as anumerical example:

minimize ˜̄C11x1 + ˜̄C12x2 + ˜̄C13x3 + ˜̄C14x4

+ ˜̄C15x5 + ˜̄C16x6 + ˜̄C17x7

+ ˜̄C18x8 + ˜̄C19x9

+ ˜̄C110x10,

minimize ˜̄C21x1 + ˜̄C22x2 + ˜̄C23x3 + ˜̄C24x4

+ ˜̄C25x5 + ˜̄C26x6 + ˜̄C27x7

+ ˜̄C28x8 + ˜̄C29x9

+ ˜̄C210x10,

minimize ˜̄C31x1 + ˜̄C32x2 + ˜̄C33x3 + ˜̄C34x4

+ ˜̄C35x5 + ˜̄C36x6 + ˜̄C37x7

+ ˜̄C38x8 + ˜̄C39x9

+ ˜̄C310x10,
subject to x1 + x2 + x3 + 0.3x4 + 0.3x5 + x6

+2x7 + x8 + 0.1x9 + 1.5x10

≤ 5,
200x1 + 600x2 + 300x3 + 200x4

+200x5 + 2000x6 + 1000x7

+700x8 + 100x9

+700x10 ≤ 2500,
x1 + x2 + x3 + x4 + x5 + x6 + x7

+x8 + x9 + x10 ≤ 6,
x1 + x2 + x3 + x4 + x5 + x6 + x7

+x8 + x9 + x10 ≥ 1,
xj ∈ {0, 1}, j = 1, . . . , 10



(22)

In the problem (22), each parameters for each objective
function is given as the following numbers:

d1
1 = (−2,−3,−2,−1,−1.5,−2.5,−4,−3,−0.5,−3),

d1
2 = (6, 5, 3, 2, 4, 8, 12,−5,−3,−5),

d1
3 = (5, 6, 4, 3, 3, 6, 10, 6, 1, 7),

d2
1 = (0.3, 0.5, 0.2, 0.1, 0.2, 0.5, 0.8, 0.7, 0.05, 0.8),

d2
2 = (0.4, 0.5, 0.2, 0.2, 0.3, 0.6, 1.1, 0.4, 0.2, 0.4),

d2
3 = (0.6, 0.7, 0.2, 0.3, 0.1, 0.5, 1.0, 0.5, 0.01, 0.3),

β1
1 = (0.1, 0.2, 0.1, 0.1, 0.1, 0.2, 0.3, 0.2, 0.1, 0.1),

β1
2 = (0.1, 0.2, 0.1, 0.2, 0.2, 0.3, 0.4, 0.2, 0.2, 0.2),

β1
3 = (0.2, 0.2, 0.1, 0.1, 0.1, 0.2, 0.1, 0.1, 0.1, 0.1),

β2
1 = (0.01, 0.02, 0.01, 0.01, 0.01, 0.02, 0.03, 0.02, 0.01,

0.01),
β2

2 = (0.01, 0.02, 0.01, 0.02, 0.02, 0.03, 0.04, 0.02, 0.02,
0.02),

β2
3 = (0.02, 0.02, 0.01, 0.01, 0.01, 0.02, 0.01, 0.01, 0.01,

0.01),
γ1

1 = (0.2, 0.4, 0.2, 0.2, 0.2, 0.4, 0.6, 0.4, 0.2, 0.2),
γ1

2 = (0.2, 0.4, 0.2, 0.4, 0.4, 0.6, 0.8, 0.4, 0.4, 0.4),
γ1

3 = (0.4, 0.4, 0.2, 0.2, 0.2, 0.4, 0.2, 0.2, 0.2, 0.2),
γ2

1 = (0.02, 0.04, 0.02, 0.02, 0.02, 0.04, 0.06, 0.04, 0.02,
0.02),

γ2
2 = (0.02, 0.04, 0.02, 0.04, 0.04, 0.06, 0.08, 0.04, 0.04,

0.04),
γ2

3 = (0.04, 0.04, 0.02, 0.02, 0.02, 0.04, 0.02, 0.02, 0.02,
0.02),

and random variables̄tl, l = 1, 2, 3 are assumed to be Gaussian
random variables with mean0 and variance52.

TABLE I
PROCESS OF INTERACTION

1st 2nd 3rd
µ̄1 1.0 1.0 1.0
µ̄2 1.0 1.0 0.8
µ̄3 1.0 0.7 0.7

µ1(p1(x)) 0.506 0.664 0.608
µ2(p2(x)) 0.575 0.618 0.417
µ3(p3(x)) 0.539 0.298 0.329

x1 0 0 1
x2 1 1 0
x3 0 0 0
x4 0 1 0
x5 0 0 1
x6 0 0 0
x7 0 0 0
x8 1 1 1
x9 0 1 1
x10 0 0 0

For this numerical example, we apply the interactive fuzzy
satisficing method proposed in the previous section and the
result is summarized in Table I.

After solving all of (17) and (18) by the branch and
bound method using and linear programming, ask the decision
maker to determine the membership functionµG̃l

(·) for each

objective function˜̄Clx in (1) and permissible levelsh1 = 0.6,
h2 = 0.6, h3 = 0.6.

For these permissible levels, all of (19) and (20) are solved
by the branch and bound method using the variable transfor-
mation [3] and linear programming, ask the decision maker
to determine the membership functionµl(·) for each objective
function pl(·) in (8).

Then, the initial reference membership levelsµ̄l, l = 1, 2, 3
are set to1.0 and the corresponding minimax problem (21) is
solved. The result is shown in the second column of Table I.
Since the decision maker prefers to improveµ1(p1(x)) at the
sacrifice ofµ3(p3(x)), he updates the reference membership
levels toµ̄1 = 1.0, µ̄2 = 1.0, µ̄3 = 0.7.

Again the minimax problem for the updated reference
membership levels is solved and the result is shown in the
third column of Table I. Since the decision maker feels that
µ3(p3(x)) is too low, he updates the reference membership
levels toµ̄1 = 1.0, µ̄2 = 0.8, µ̄3 = 0.7 to enlargeµ3(p3(x))
even if µ2(p2(x)) decreases.

After the corresponding minimax problem is solved, the
result is obtained shown in the fourth column of Table I. Since
the decision maker is satisfied with the result, the algorithm
is terminated.

VI. CONCLUSION

In this paper, we focused on multiobjective 0-1 program-
ming problems whose coefficients of objective functions are
fuzzy random variables. After introducing fuzzy goals for
objective functions to reflect the vagueness of the decision
maker’s judgment as human, we regarded the minimization
of objective functions as the maximization the degree of
possibility that each objective function fulfills the correspond-
ing fuzzy goal. Since the degree of possibility is a random
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variable,we adopted the probability maximization model as a
decision making model. Then, we reduced the fuzzy random
multiobjective 0-1 programming problem to a deterministic
multiobjective 0-1 programming problem and discussed an
interactive fuzzy satisficing method to derive a satisficing
solution for the decision maker. In the discussion, we showed
that all problems in the proposed interactive method can be
solved by the branch and bound based on linear programming.
In the future, we will discuss the case based on the degree
of necessity and other stochastic programming models, and
consider fuzzy random multiobjective integer programming
problems.
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