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Foreword

In this paper, assuming cooperative behavior of the decision makers, we consider solution
methods for decision making problems in hierarchical organizations under fuzzy random
environments. To deal with the formulated two-level linear programming problems in-
volving fuzzy random variables,α-level sets of fuzzy random variables are introduced
and anα-stochastic two-level linear programming problem is defined for guaranteeing
the degree of realization of the problem. Taking into account vagueness of judgments
of decision makers, fuzzy goals are introduced and theα-stochastic two-level linear pro-
gramming problem is transformed into the problem to maximize the satisfaction degree
for each fuzzy goal. Through the use of the fractile criterion optimization model, the
transformed stochastic two-level programming problem can be reduced to a determinis-
tic one. Interactive fuzzy programming to obtain a satisfactory solution for the decision
maker at the upper level in consideration of the cooperative relation between decision
makers is presented. It is significant to note here that all of the problems to be solved in
the proposed interactive fuzzy programming can be easily solved by the simplex method,
the sequential quadratic programming or the combined use of the bisection method and
the sequential quadratic programming. An illustrative numerical example is provided to
demonstrate the feasibility and efficiency of the proposed method.
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Abstract

This paper considers two-level linear programming problems involving fuzzy random
variables. Having introduced level sets of fuzzy random variables and fuzzy goals of de-
cision makers, following fractile criterion optimization, fuzzy random two-level program-
ming problems are transformed into deterministic ones. Interactive fuzzy programming
is presented for deriving a satisfactory solution efficiently with considerations of overall
satisfactory balance.

Keywords: Fuzzy programming; fuzzy random variables; interactive decision making;
two-level linear programming problems; fractile criterion optimization; level sets.
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Interactive Fuzzy Random Two-level Linear
Programming Through Fractile Criterion Optimization

Masatoshi Sakawa (sakawa@hiroshima-u.ac.jp) * **

Kosuke Kato(kosuke-kato@hiroshima-u.ac.jp)*

1 Introduction

Fuzzy random variables, first introduced by Kwakernaak [16], have been developing in
various ways [15, 27, 21]. An overview of the developments of fuzzy random variables
was found in the article of Gil, Lopez-Diaz and Ralescu [7]. Studies on linear program-
ming problems with fuzzy random variable coefficients, called fuzzy random linear pro-
gramming problems, were initiated by Wang and Qiao [45], Qaio, Zhang and Wang [28]
as seeking the probability distribution of the optimal solution and optimal value. Opti-
mization models for fuzzy random linear programming problems were first considered by
Luhandjula et al. [22, 24] and further developed by Liu [19, 20] and Rommelfanger [30].
A brief survey of major fuzzy stochastic programming models was found in the paper
by Luhandjula [23]. As we look at recent developments in the fields of fuzzy random
programming, we can see continuing advances [9, 12, 10, 11, 14, 30, 13, 2, 47].

However, decision making problems in hierarchical managerial or public organiza-
tions are often formulated as two-level mathematical programming problems [34]. In the
context of two-level programming, the decision maker at the upper level first specifies a
strategy, and then the decision maker at the lower level specifies a strategy so as to opti-
mize the objective with full knowledge of the action of the decision maker at the upper
level. In conventional multi-level mathematical programming models employing the so-
lution concept of Stackelberg equilibrium, it is assumed that there is no communication
among decision makers, or they do not make any binding agreement even if there exists
such communication [41, 3, 40, 25] . Compared with this, for decision making problems
in such as decentralized large firms with divisional independence, it is quite natural to
suppose that there exists communication and some cooperative relationship among the
decision makers [34].

Lai [17] and Shih et al. [39] proposed solution concepts for two-level linear program-
ming problems or multi-level ones such that decisions of decision makers in all levels are
sequential and all of the decision makers essentially cooperate with each other. In their
methods, the decision makers identify membership functions of the fuzzy goals for their
objective functions, and in particular, the decision maker at the upper level also speci-
fies those of the fuzzy goals for the decision variables. The decision maker at the lower

* Graduate School of Engineering, Hiroshima University.
** Corresponding author.
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level solves a fuzzy programming problem with a constraint with respect to a satisfactory
degree of the decision maker at the upper level. Unfortunately, there is a possibility that
their method leads a final solution to an undesirable one because of inconsistency between
the fuzzy goals of the objective function and those of the decision variables. In order to
overcome the problem in their methods, by eliminating the fuzzy goals for the decision
variables, Sakawa et al. have proposed interactive fuzzy programming for two-level or
multi-level linear programming problems to obtain a satisfactory solution for decision
makers [35, 36]. The subsequent works on two-level or multi-level programming have
been appearing [18, 32, 33, 37, 38, 42, 26, 1, 29, 34].

Under these circumstances, in this paper, assuming cooperative behavior of the deci-
sion makers, we consider solution methods for decision making problems in hierarchical
organizations under fuzzy random environments. To deal with the formulated two-level
linear programming problems involving fuzzy random variables,α-level sets of fuzzy
random variables are introduced and anα-stochastic two-level linear programming prob-
lem is defined for guaranteeing the degree of realization of the problem. Taking into
account vagueness of judgments of decision makers, fuzzy goals are introduced and the
α-stochastic two-level linear programming problem is transformed into the problem to
maximize the satisfaction degree for each fuzzy goal. Following the fractile criterion op-
timization model [8], the transformed stochastic two-level programming problem can be
reduced to a deterministic one. Interactive fuzzy programming to obtain a satisfactory so-
lution for the decision maker at the upper level in consideration of the cooperative relation
between decision makers is presented. It is shown that all of the problems to be solved in
the proposed interactive fuzzy programming can be easily solved by the simplex method,
the sequential quadratic programming or the combined use of the bisection method and
the sequential quadratic programming. An illustrative numerical example is provided to
demonstrate the feasibility and efficiency of the proposed method.

2 Fuzzy random two-level linear programming problems

Fuzzy random variables, first introduced by Kwakernaak [16], have been defined in vari-
ous ways [16, 27, 15, 21]. For example, as a special case of fuzzy random variables given
by Kwakernaak, Kruse and Meyer [15] defined a fuzzy random variable as follows.

Definition 1 (Fuzzy random variable) Let (Ω, B, P ) be a probability space, F (R) the
set of fuzzy numbers with compact supports and X a measurable mapping Ω → F (R).
ThenX is a fuzzy random variable if and only if given ω ∈ Ω,Xα(ω) is a random interval
for any α ∈ (0, 1], where Xα(ω) is an α-level set of the fuzzy set X(ω).

Although there exist some minor differences in several definitions of fuzzy random vari-
ables, fuzzy random variables are considered to be random variables whose observed
values are fuzzy sets.
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In this paper, we deal with two-level linear programming problems involving fuzzy
random variable coefficients in objective functions formulated as:

minimize
for DM1

z1(x1,x2) =
˜̄C11x1 +

˜̄C12x2

minimize
for DM2

z2(x1,x2) =
˜̄C21x1 +

˜̄C22x2

subject toA1x1 +A2x2 ≤ b
x1 ≥ 0 , x2 ≥ 0































. (1)

It should be emphasized here that randomness and fuzziness of the coefficients are
denoted by the “dash above” and “wave above” i.e.,“¯” and“˜ ”, respectively. In (1),
x1 is ann1 dimensional decision variable column vector for the decision maker at the
upper level (DM1), x2 is ann2 dimensional decision variable column vector for the de-
cision maker at the lower level (DM2), z1(x1,x2) is the objective function for DM1 and
z2(x1,x2) is the objective function for DM2. Elements˜̄Cljk, k = 1, 2, . . . , nj of coef-

ficient vectors˜̄Clj , l = 1, 2, j = 1, 2 are fuzzy random variables characterized by the
membership function

µ ˜̄Cljk(τ ) =































L

(

d̄ljk − τ
βljk

)

, if τ ≤ d̄ljk

R

(

τ − d̄ljk
γljk

)

, otherwise,

where the functionL(t) = max{0, λ(t)} is a real-valued continuous function from[0, ∞)
to [0, 1], andλ(t) is a strictly decreasing continuous function satisfyingλ(0) = 1. Also,
R(t) = max{0, ρ(t)} satisfies the same conditions. The parametersβljk andγljk, repre-
senting left and right spreads ofµ ˜̄Cljk(·), are positive numbers. The parameterd̄ljk is a

mean value of̃C̄ljk. Introducing a random variablētl, Katagiri et al. [12, 13] defined a
random variablēdljk as d̄ljk = d1ljk + t̄ld

2
ljk. This definition of random variables is one

of the simplest randomization modeling of coefficients using dilation and translation of
random variables, as discussed by Stancu-Minasian [44]. Using this definition, all fuzzy
random variable coefficients of thel th objective function are strongly correlated with
each other since they are affected by the common random variablet̄l.

In this paper, in order to consider more general situations, random variables are de-
fined as distinct random variables. In view of ability to represent a wide class of random
phenomena together with tractability, we adopt Gaussian random variables asd̄ljk. To be
more specific,̄dl = (d̄l1, d̄l2), l = 1, 2 are assumed to be(n1+n2) dimensional Gaussian
random variable row vectors with mean vectorM l and positive-definite covariance ma-
trix Vl, whered̄1 andd̄2 are mutually independent. Figure 1 illustrates an example of the
membership function of a fuzzy random variable˜̄C ljk.

Since each coefficient̄̃Cljk is a fuzzy random variable defined as a random variable

whose realizations areL-R fuzzy numbers, each objective function˜̄Clx = ˜̄Cl1x1+ ˜̄Cl2x2
is also a fuzzy random variable whose realizations are fuzzy numbers characterized by the
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Figure 1: An example of the membership functionµ ˜̄Cljk(·) of a fuzzy random variable
˜̄C ljk.

membership function

µ ˜̄
C lx
(υ) =































L

(

d̄lx− υ
βlx

)

, if υ ≤ d̄lx

R

(

υ − d̄lx
γ lx

)

, otherwise.

An example of the membership function of the objective function of DMl is shown in
Figure 2.

Figure 2: An example of the membership functionµ ˜̄
Clx

(·) of the objective function of
DMl.

3 Level Sets and fuzzy goals

Observing that (1) involves fuzzy random variables in the objective functions, we first in-
troduce theα-level set of the fuzzy random variables. Theα-level set of the fuzzy random
variables˜̄Cljk is defined as a random interval for which the degree of their membership
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functions exceeds the levelα:

˜̄C ljkα = {τ | µ ˜̄Cljk(τ ) ≥ α, τ ∈ R}, j = 1, 2, k = 1, 2, . . . , nj.

For notational convenience, in the following, let˜̄Clα = ( ˜̄C l1α, ˜̄Cl2α), l = 1, 2 be anα-
level set defined as the Cartesian product ofα-level sets˜̄Cljkα of fuzzy random variables
˜̄C ljk, j = 1, 2, k = 1, 2, . . . , nj.

Now suppose that DM1 decides that the degree of all of the membership functions
of the fuzzy random variables involved in (1) should be greater than or equal to some
valueα. Then for such a degreeα, (1) can be interpreted as the following stochastic two-
level linear programming problem which depends on the coefficient vectors(C̄11, C̄12) ∈
( ˜̄C11α,

˜̄C12α) and(C̄21, C̄22) ∈ ( ˜̄C21α, ˜̄C22α):

minimize
for DM1

z1(x1,x2) = C̄11x1 + C̄12x2

minimize
for DM2

z2(x1,x2) = C̄21x1 + C̄22x2

subject toA1x1 +A2x2 ≤ b
x1 ≥ 0, x2 ≥ 0



























. (2)

Observe that there exists an infinite number of such problems depending on the coeffi-
cient vector(C̄11, C̄12) ∈ ( ˜̄C11α, ˜̄C12α) and (C̄21, C̄22) ∈ ( ˜̄C21α, ˜̄C22α), and the val-
ues of(C̄11, C̄12) and(C̄21, C̄22) are arbitrary for any(C̄11, C̄12) ∈ ( ˜̄C11α, ˜̄C12α) and

(C̄21, C̄22) ∈ ( ˜̄C21α, ˜̄C22α) in the sense that the degree of all of the membership functions
for the fuzzy random variables in (2) exceeds the levelα. However, if possible, it would be
desirable for DM1 to choose(C̄11, C̄12) ∈ ( ˜̄C11α, ˜̄C12α) and(C̄21, C̄22) ∈ ( ˜̄C21α, ˜̄C22α)
in (2) to minimize the objective functions under the constraints. From such a point of
view, for a certain degreeα, it seems to be quite natural to have (2) reformulated as the
following α-stochastic two-level linear programming problem:

minimize
for DM1

z1(x1,x2) = C̄11x1 + C̄12x2

minimize
for DM2

z2(x1,x2) = C̄21x1 + C̄22x2

subject toA1x1 +A2x2 ≤ b
x1 ≥ 0, x2 ≥ 0
C̄1 = (C̄11, C̄12) ∈ ˜̄C1α, C̄2 = (C̄21, C̄22) ∈ ˜̄C2α







































. (3)

Considering vague natures of the decision makers’ judgment, it is natural to assume
that decision makers may have vague or fuzzy goals for each of the objective functions in
theα-stochastic two-level linear programming problem (3). In a minimization problem, a
goal stated by decision makers may be to achieve “substantially less than or equal to some
value.” This type of statement can be quantified by eliciting a corresponding membership
function. Figure 3 illustrates a possible shape of a monotone decreasing membership
function.

Having elicited the membership functionsµl(C̄lx), l = 1, 2 which well represent the
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Figure 3: An example of a membership functionµl(·) of a fuzzy goal.

fuzzy goals of the decision makers at both levels, problem (3) can be transformed as:

maximize
for DM1

µ1(C̄1x)

maximize
for DM2

µ2(C̄2x)

subject toA1x1 +A2x2 ≤ b
x1 ≥ 0, x2 ≥ 0
C̄1 ∈ ˜̄C1α, C̄2 ∈ ˜̄C2α







































. (4)

ObservingC̄lx andµl(C̄lx) involve random variables, it is significant to note here (4) is
a stochastic programming problem.

4 Fractile criterion optimization

Since (4) contains random variable coefficients, solution methods for ordinary determin-
istic two-level linear programming problems cannot be directly applied. In stochastic
programming, expectation optimization, variance minimization, probability maximiza-
tion and fractile criterion optimization [5, 6, 8, 43, 46, 4] are typical optimization models
for objective functions involving random variables. For instance, let the objective function
represent a profit. If the decision maker wishes to simply maximize the expected profit
without caring about the fluctuation of the profit, the expectation optimization model [6]
to optimize the expectation of the objective function is appropriate. On the other hand,
if the decision maker hopes to decrease the fluctuation of the profit as little as possible
from the viewpoint of the stability of the profit, the variance minimization model [6] to
minimize the variance of the objective function is useful. In contrast to these two types
of optimizing approaches, as satisficing approaches, the probability maximization model
[6] and the fractile criterion optimization model or Kataoka’s model [8] have been pro-
posed. When the decision maker wants to maximize the probability that the profit is
greater than or equal to a certain permissible level, probability maximization model [6] is
recommended. In contrast, when the decision maker wishes to optimize such a permissi-
ble level as the probability that the profit is greater than or equal to the permissible level is
greater than or equal to a certain threshold, the fractile criterion optimization model will
be appropriate.

In this paper, assuming that the decision makers are interested in the probability that
each objective function attains a goal value rather than the expectation or variance of each
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membership function, we adopt the fractile criterion optimization model [8] as a decision
making model. Through fractile criterion optimization, problem (4) can be rewritten as:

maximize
for DM1

h1

maximize
for DM2

h2

subject to Pr
{

µ1(C̄1x) ≥ h1
}

≥ θ1
Pr
{

µ2(C̄2x) ≥ h2
}

≥ θ2
A1x1 +A2x2 ≤ b
x1 ≥ 0, x2 ≥ 0
C̄1 ∈ ˜̄C1α, C̄2 ∈ ˜̄C2α































































(5)

wherehl is regarded as a goal value for the membership functionµl(·) andθl is a proba-
bility level.

Now, let C̄Lljkα andC̄Rljkα beτ andτ ′ satisfyingL((d̄ljk − τ )/βljk) = α andR((τ ′ −
d̄ljk)/γljk) = α, respectively. Then, theα-level set of ˜̄C ljk becomes a closed interval
[C̄Lljkα, C̄

R
ljkα] which varies randomly, as shown in Figure 4.

Figure 4: An example of theα-level set of a fuzzy random variablē̃Cljk.

Hence, (5) can be rewritten as:

maximize
for DM1

h1

maximize
for DM2

h2

subject to Pr
{

µ1(C̄
L

1αx) ≥ h1
}

≥ θ1
Pr
{

µ2(C̄
L

2αx) ≥ h2
}

≥ θ2
A1x1 +A2x2 ≤ b
x1 ≥ 0, x2 ≥ 0



















































. (6)

Sinceµl(·), l = 1, 2 are monotone decreasing, (6) can be rewritten as:

maximize
for DM1

h1

maximize
for DM2

h2

subject to Pr
{

C̄
L

1αx ≤ µ∗1(h1)
}

≥ θ1
Pr
{

C̄
L

2αx ≤ µ∗2(h2)
}

≥ θ2
A1x1 +A2x2 ≤ b
x1 ≥ 0, x2 ≥ 0



















































(7)
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whereµ∗l (·) is a pseudo-inverse function ofµl(·) defined byµ∗l (hl) = sup{y | µl(y) ≥
hl}.

In view of α = L((d̄ljk − C̄Lljkα)/βljk) in (7), it holds that

C̄Lljkα = d̄ljk − L∗(α) · βljk
whereL∗(·) is a pseudo-inverse function ofL(·) defined byL∗(α) = sup{τ | L(τ ) ≥ α}.
From this result, the left side of the first and second constraint in (7) can be expressed as:

Pr
{

C̄
L

lαx ≤ µ∗l (hl)
}

= Pr
{

(d̄l − L∗(α) · βl)x ≤ µ∗l (hl)
}

.

Recalling the assumption thatd̄l is an(n1+n2) dimensional Gaussian random variable
row vector with mean vectorM l and positive-definite covariance matrixVl, it holds that

Pr
{

(d̄l − L∗(α) · βl)x ≤ µ∗l (hl)
}

= Pr
{

d̄lx ≤ L∗(α) · βlx+ µ∗l (hl)
}

= Pr

{

d̄lx−M lx√
xTVlx

≤ L
∗(α) · βlx−M lx+ µ∗l (hl)√

xTVlx

}

= Φ

(

(L∗(α) · βl −M l)x+ µ∗l (hl)√
xTVlx

)

whereΦ(·) is the probability distribution of a standard Gaussian distribution with mean 0
and variance 1. From the above results it can be shown that

Φ

(

(L∗(α) · βl −M l)x+ µ∗l (hl)√
xTVlx

)

≥ θl

⇔ (L∗(α) · βl −M l)x+ µ∗l (hl)√
xTVlx

≥ Φ−1l (θl)

⇔ µ∗l (hl) ≥ (M l − L∗(α) · βl)x+Φ−1l (θl)
√

xTVlx

⇔ hl ≤ µl
(

(M l − L∗(α) · βl)x+Φ−1l (θl)
√

xTVlx
)

whereΦ−1l (·) is the inverse function ofΦl(·).
In this way, (7) can be transformed as:

maximize
for DM1

h1

maximize
for DM2

h2

subject to µ1
(

ZF1α(x)
)

≥ h1
µ2
(

ZF2α(x)
)

≥ h2
A1x1 +A2x2 ≤ b
x1 ≥ 0, x2 ≥ 0



















































(8)

equivalently,
maximize

for DM1
µ1
(

ZF1α(x)
)

maximize
for DM2

µ2
(

ZF2α(x)
)

subject toA1x1 +A2x2 ≤ b
x1 ≥ 0, x2 ≥ 0



























(9)



– 9 –

where
ZFlα(x) = (M l − L∗(α) · βl)x+Φ−1l (θl)

√

xTVlx. (10)

In this equation, recalling that the covariance matrix is assumed to be positive-definite, It
is evident that

√
xTVlx is convex andZFlα(x) is also convex ifΦ−1l (θl) > 0, i.e.,θl > 0.5,

l = 1, 2.

5 Interactive fuzzy programming

Observing the transformed problem (9) is a deterministic two-level programming prob-
lem, we can now construct the interactive algorithm to derive a satisfactory solution for
the decision maker at the upper level in consideration of the cooperative relationships
between DM1 and DM2,

Interactive fuzzy programming

Step 1 In order to calculate the individual minimum and maximum of E{zl(x1,x2)} =
M lx, solve the following problems:

minimize M lx

subject toA1x1 +A2x2 ≤ b
x1 ≥ 0, x2 ≥ 0











, l = 1, 2, (11)

maximizeM lx

subject toA1x1 +A2x2 ≤ b
x1 ≥ 0, x2 ≥ 0











, l = 1, 2. (12)

Let zEl,min andzEl,max be the the minimal objective function value to (11) and the
maximal objective function value to (12), respectively. Observing that (11) and
(12) are linear programming problems, they can be easily solved by some linear
programming technique like the simplex method.

Step 2 Ask the decision makers to determine the membership functionsµl(·), l = 1, 2 by
considering the obtained values ofzEl,min andzEl,max, l = 1, 2.

Step 3 Ask DM1 to specify the initial value of the degree of realizationα ∈ (0, 1) and
that of the probability levelθl(> 0.5), l = 1, 2.

Step 4 For the specified values ofα andθl, l = 1, 2, the following problem is solved for
obtaining a solution which maximizes the smaller degree of satisfaction between
those of the two decision makers:

maximize min{µ1
(

ZF1α(x)
)

, µ2
(

ZF2α(x)
)

}
subject toA1x1 +A2x2 ≤ b

x1 ≥ 0, x2 ≥ 0















(13)

equivalently,
maximize v
subject to µ1

(

ZF1α(x)
)

≥ v
µ2
(

ZF2α(x)
)

≥ v
A1x1 +A2x2 ≤ b
x1 ≥ 0, x2 ≥ 0



































. (14)
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In view of (10), this problem is rewritten as:

maximize v
subject to µ1

(

(M 1 − L∗(α) · β1)x+Φ−11 (θ1)
√
xTV1x

)

≥ v
µ2
(

(M 2 − L∗(α) · β2)x+Φ−12 (θ2)
√
xTV2x

)

≥ v
A1x1 +A2x2 ≤ b
x1 ≥ 0, x2 ≥ 0



































(15)

equivalently,

maximize v
subject to (M1 − L∗(α) · β1)x+Φ−11 (θ1)

√
xTV1x ≤ µ∗1(v)

(M2 − L∗(α) · β2)x+Φ−12 (θ2)
√
xTV2x ≤ µ∗2(v)

A1x1 +A2x2 ≤ b
x1 ≥ 0, x2 ≥ 0































. (16)

Obtaining the optimal value ofv to this problem is equivalent to finding the max-
imum of v so that the set of feasible solutions to (16) is not empty. Although this
problem is a nonlinear programming problem, we can easily find the maximum of
v by the following algorithm on the basis of the bisection method and some con-
vex programming technique like the sequential quadratic programming since the
constraints of (16) are convex ifv is fixed.

The combined use of the bisection method and the sequential quadratic
programming

4-1 Set l := 0 and v := 0. Test whether the set of feasible solutions to (16)
for v = 0 is empty or not using the sequential quadratic programming. If it
is empty, the decision makers must reassess membership functions,α or θl.
Otherwise, letvfeasible:= v and go to 4-2

4-2 Setv := 1. Test whether the set of feasible solutions to (16) forv = 1 is empty
or not using the sequential quadratic programming . If it is not empty,v = 1
is the optimal valuev∗ to (16) and the algorithm is terminated. Otherwise, the
maximum ofv so that the set of feasible solutions to (16) is not empty exists
between0 and1. Let vinfeasible:= v and go to 4-3.

4-3 Setv := (vfeasible+ vinfeasible)/2, l := l + 1 and go to 4-4.

4-4 Test whether the set of feasible solutions to (16) forv determined in 4-3 is
empty or not using the sequential quadratic programming. If it is not empty
and(1/2)l ≤ ε, the current value ofv is regarded as the optimal valuev∗ to
(16) and the algorithm is terminated. If it is not empty and(1/2)l > ε, let
vfeasible:= v and return to 4-3. On the other hand, if it is empty, letvinfeasible:=
v and return to 4-3.

Then, for the obtained optimal valuev∗, we can determine the corresponding opti-
mal valuex∗ by solving the following convex programming problem:

minimize (M1 − L∗(α) · β1)x+Φ−11 (θ1)
√
xTV1x

subject to (M2 − L∗(α) · β2)x+Φ−12 (θ2)
√
xTV2x ≤ µ∗2(v∗)

A1x1 +A2x2 ≤ b
x1 ≥ 0, x2 ≥ 0



















. (17)
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Step 5 The DM1 is supplied with the current values ofµ1
(

ZF1α(x
∗)
)

andµ2
(

ZF2α(x
∗)
)

for the optimal solutionx∗ calculated in step 4. If DM1 is satisfied with the current
membership function values, the interaction process is terminated. If DM1 is not
satisfied and desires to updateα and/orθl, l = 1, 2, ask DM1 to updateα and/orθl
and return to step 4. Otherwise, ask DM1 to specify the minimal satisfactory levelδ̂
for µ1

(

ZF1α(x)
)

and the permissible range[∆min,∆max] of the ratio of membership

functions∆ = µ2
(

ZF2α(x)
)

/µ1
(

ZF1α(x)
)

.

Observe that the larger the minimal satisfactory level is assessed, the smaller the
DM2’s satisfactory degree becomes. Consequently, in order to take account of the
overall satisfactory balance between both decision makers, DM1 needs to compro-
mise with DM2 on DM1’s own minimal satisfactory level. To do so, the permissible
range of the ratio of the satisfactory degree of DM2 to that of DM1 is helpful.

Step 6 For the specified value of̂δ, solve the following problem to maximize the DM2’s
membership functionµ2

(

ZF2α(x)
)

considering the constraint that the DM1’s mem-

bership functionµ1
(

ZF1α(x)
)

must be greater than or equal toδ̂:

maximize µ2
(

ZF2α(x)
)

subject to µ1
(

ZF1α(x)
)

≥ δ̂
A1x1 +A2x2 ≤ b
x1 ≥ 0, x2 ≥ 0























. (18)

This problem can be rewritten as:

maximize µ2
(

(M 2 − L∗(α) · β2)x+Φ−12 (θ2)
√
xTV2x

)

subject to µ1
(

(M 1 − L∗(α) · β1)x+Φ−11 (θ1)
√
xTV1x

)

≥ δ̂
A1x1 +A2x2 ≤ b
x1 ≥ 0, x2 ≥ 0























(19)

equivalently,

minimize (M 2 − L∗(α) · β2)x+Φ−12 (θ2)
√
xTV2x

subject to (M 1 − L∗(α) · β1)x+Φ−11 (θ1)
√
xTV1x ≤ µ∗1(δ̂)

A1x1 +A2x2 ≤ b
x1 ≥ 0, x2 ≥ 0























. (20)

Observing that problem (20) is a convex programming problem, it can be solved by
some convex programming technique like the sequential quadratic programming.
For the optimal solutionx∗ to (18), calculateµ1

(

ZF1α(x
∗)
)

, µ2
(

ZF2α(x
∗)
)

and∆.

Step 7 The DM1 is supplied with the current values ofµ1
(

ZF1α(x
∗)
)

, µ2
(

ZF2α(x
∗)
)

and
∆ calculated in step 6. If∆ ∈ [∆min,∆max] and DM1 is satisfied with the current
membership function values for the optimal solutionx∗, the interaction process is
terminated. Otherwise, ask DM1 to update the degree of realizationα, the proba-
bility level θl, l = 1, 2 or the minimal satisfactory level̂δ, and return to step 6.
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In the proposed algorithm,∆min and∆max are usually set to be less than1 since
µ1
(

ZF1α(x
∗)
)

should be greater thanµ2
(

ZF2α(x
∗)
)

because of the priority of DM1. In step

6, if∆ < ∆min, i.e.,µ1
(

ZF1α(x
∗)
)

is much greater thanµ2
(

ZF2α(x
∗)
)

, DM1will decrease

δ̂ to improveµ2
(

ZF2α(x
∗)
)

and increase∆. Otherwise, if∆max < ∆, i.e.,µ1
(

ZF1α(x
∗)
)

is

slightly greater or less thanµ2
(

ZF2α(x
∗)
)

, DM1 will increaseδ̂ to improveµ1
(

ZF1α(x
∗)
)

and decrease∆. On the other hand, if DM1 decreases (increases)α and/orθl, l = 1, 2,
bothµ1

(

ZF1α(x
∗)
)

andµ2
(

ZF2α(x
∗)
)

would increase (decrease). With this observation,

it can be expected that desirable values ofµ1
(

ZF1α(x
∗)
)

, µ2
(

ZF2α(x
∗)
)

and∆ will be

obtained through a series of update procedures ofδ̂, α and/orθl, l = 1, 2 with DM1.

6 Numerical example

To demonstrate the feasibility and efficiency of the proposed method, consider the fuzzy
random two-level linear programming problem formulated as:

minimize
for DM1

z1(x1,x2) =
˜̄C11x1 +

˜̄C12x2

minimize
for DM2

z2(x1,x2) =
˜̄C21x1 +

˜̄C22x2

subject to a11x1 + a12x2 ≤ 100
a21x1 + a22x2 ≤ 115
a31x1 + a32x2 ≤ 155
a41x1 + a42x2 ≤ 110
x1 = (x11, x12, x13, x14)T ≥ 0
x2 = (x21, x22, x23, x24)T ≥ 0



































































, (21)

whereλ(·) andρ(·) are defined asλ(t) = ρ(t) = 1− t, d̄l, l = 1, 2 are Gaussian random
variable vectors with expectationM l and positive-definite covariance matrixVl.

Table 1 shows values of parameter vectors of fuzzy random variablesM l, βl, γ l
l = 1, 2, and Table 2 shows values of coefficients of constraintsai, i = 1, 2, 3, 4.

Table 1: Value of each element ofd1l , d
2
l , βl, γl, l = 1, 2.

x11 x12 x13 x14 x21 x22 x23 x24
M1 −18.0 −6.0 −7.0 −15.0 −20.0 −14.0 −5.0 −16.0
M2 −7.0 −14.0 −16.0 −4.0 −15.0 −8.0 −18.0 −14.0
β1 2.2 3.2 2.0 4.8 1.6 0.8 3.0 1.2
β2 3.0 2.0 3.5 1.4 5.2 2.8 3.0 4.2
γ1 3.4 1.5 2.0 2.4 2.0 0.6 3.0 0.6
γ2 2.5 1.2 3.5 0.8 4.8 1.6 3.0 3.2
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Table 2: Value of each element ofai, i = 1, 2, 3, 4.

x11 x12 x13 x14 x21 x22 x23 x24
a1 3.0 2.0 1.0 4.0 5.0 3.0 2.0 6.0
a2 2.0 1.0 2.0 3.0 5.0 2.0 4.0 4.0
a3 3.0 4.0 3.0 5.0 2.0 4.0 1.0 3.0
a4 1.0 3.0 2.0 2.0 5.0 1.0 3.0 2.0

Covariance matrices of Gaussian random variable vectors are:

V1 =































9.00 3.00 2.80 −1.50 1.30 −3.00 2.00 1.40
3.00 4.00 −1.20 0.20 −1.50 2.40 −0.50 2.00
2.80 −1.20 4.00 −2.00 0.50 −1.80 1.20 −2.10
1.50 0.20 −2.00 16.00 −2.00 2.10 −2.20 2.80
1.30 −1.50 0.50 −2.00 25.00 −0.70 0.80 −2.00
3.00 2.40 −1.80 2.10 −0.70 16.00 −1.50 0.60
2.00 −0.50 1.20 −2.20 0.80 −1.50 4.00 −3.30
1.40 2.00 −2.10 2.80 −2.00 0.60 −3.30 25.00































,

V2 =































4.00 −1.40 0.80 0.20 1.60 1.00 1.20 2.00
1.40 4.00 0.20 −1.00 −2.20 0.80 0.90 1.80
0.80 0.20 9.00 0.20 −1.50 1.50 1.00 0.60
0.20 −1.00 0.20 1.00 0.80 0.40 −1.50 0.70
1.60 −2.20 −1.50 0.80 25.00 1.20 −0.20 2.00
1.00 0.80 1.50 0.40 1.20 4.00 0.50 1.40
1.20 0.90 1.00 −1.50 −0.20 0.50 9.00 0.80
2.00 1.80 0.60 0.70 2.00 1.40 0.80 16.00































.

Through the use of this numerical example, it is now appropriate to illustrate the
proposed interactive fuzzy programming.

Expectation optimization problems (11) and (12) are solved by the simplex method
and the individual minimumzE1,min = −627.501, zE2,min = −862.857 and maximum
zE1,max = 0.000, z

E
2,max = 0.000 are obtained. Here, in view of the linearity of the formu-

lated problems, assume that the decision makers identify the linear membership function

µl(y) =



















1 , if y ≤ y1l
y − y0l
y1l − y0l

, if y1l < y ≤ y0l
0 , if y > y0l

whose parameter values are determined by the Zimmermann method [48]. Then, the
parameter values characterizing membership functions become asy11 = −627.501, y01 =
−369.286, y12 = −862.857 andy02 = −609.167.

Initial values of the degree of realization of the problemα and probability levelsθl,
l = 1, 2 are set asα = 0.8, θ1 = 0.7 andθ2 = 0.6. For these initial values, (16) is solved
by the combined use of the bisection method and the sequential quadratic programming.
The obtained result is shown at the column labeled “1st” in Table 3. Considering that
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both of the membership function values are a little low, DM1 updatesα from 0.8 to 0.7.
For the updated value ofα, the corresponding problem (16) is solved, and the obtained
result is shown at the column labeled “2nd” in Table 3. DM1 is not satisfied with this
solution, but he does not desire to updateα, θ1 or θ2 since the membership function
values are improved. Thus, DM1 determines the minimal satisfactory levelδ̂ = 0.70 to
improveµ1 (the satisfactory degree of DM1) at the expense ofµ2 (the satisfactory degree
of DM2). Furthermore, DM1 specifies the upper bound∆max = 0.85 and the lower bound
∆min = 0.75 for the ratio of membership functions∆ = µ2/µ1. For the updated value of
δ̂ = 0.70 , (20) is solved by the sequential quadratic programming. The obtained result is
shown at the column labeled “3rd” in Table 3.

For the current values ofµ1, µ2 and∆, DM1 considers thatµ1 is improved butµ2
is too bad, and∆ is less than∆min. Hence, DM1 is not satisfied with this solution and
updates the minimal satisfactory levelδ̂ from 0.70 to 0.60. For the updated value of̂δ,
(20) is solved and the obtained result is shown at the column labeled “4th” in Table 3.
Sinceµ2 is improved but∆ is greater than∆max, DM1 is not satisfied with this solution
and updates the minimal satisfactory levelδ̂ from 0.60 to 0.65. For the updated value of
δ̂, (20) is solved and the obtained result is shown at the column labeled “5th” in Table
3. In this example, since∆ exists in the interval[∆min,∆max] and DM1 is satisfied with
the overall satisfactory balance betweenµ1 andµ2, at the 5th iteration, the interactive
algorithm is terminated.

Table 3: Interaction process.

Interaction 1st 2nd 3rd 4th 5th
α 0.800 0.700 0.700 0.700 0.700
θ1 0.700 0.700 0.700 0.700 0.700
θ2 0.600 0.600 0.600 0.600 0.600
δ̂ — — 0.700 0.600 0.650

µ1
(

ZF1α(x)
)

0.525 0.579 0.700 0.600 0.650

µ2
(

ZF2α(x)
)

0.525 0.579 0.459 0.579 0.531
∆ 1.000 1.000 0.698 0.965 0.816

In the proposed interactive fuzzy programming, through a series of update procedures
of the minimal satisfactory level̂δ, the degree of realizationα and the probability levelθl,
l = 1, 2, it can be possible to obtain a satisfactory solution where the satisfactory degree
of DM1 is guaranteed to be greater than or equal to the minimal satisfactory levelδ̂ and
is well balanced with that of DM2.

7 Conclusions

In this paper, assuming cooperative behavior of the decision makers, interactive decision
making methods in hierarchical organizations under fuzzy random environments were
considered. For the formulated fuzzy random two-level linear programming problems,
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α-level sets of fuzzy random variables were introduced and anα-stochastic two-level lin-
ear programming problem was defined for guaranteeing the degree of realization of the
problem. Considering the vague natures of decision makers’ judgments, fuzzy goals were
introduced and theα-stochastic two-level linear programming problem was transformed
into the problem to maximize the satisfaction degree for each fuzzy goal. Through the
fractile criterion optimization model, the transformed stochastic two-level programming
problem was reduced to a deterministic one. Interactive fuzzy programming to obtain a
satisfactory solution for the decision maker at the upper level in consideration of the co-
operative relation between decision makers was presented. It should be emphasized here
that all problems to be solved in the proposed interactive fuzzy programming can be eas-
ily solved by the simplex method, the sequential quadratic programming or the combined
use of the bisection method and the sequential quadratic programming. An illustrative
numerical example demonstrated the feasibility and efficiency of the proposed method.
Extensions to other stochastic programming models will be considered elsewhere. Also
extensions to fuzzy random two-level linear programming problems with two decision
makers under noncooperative environments will be required in the near future.

References

[1] M.A. Abo-Sinna, I.A. Baky, Interactive balance space approach for solving multi-
level multi-objective programming problems, Information Sciences 177 (2007)
3397–3410.

[2] E.E. Ammar, On solutions of fuzzy random multiobjective quadratic programming
with applications in portfolio problem, Information Sciences 178 (2008) 468–484.

[3] W.F. Bialas, M.H. Karwan, Two-level linear programming, Management Science 30
(1984) 1004–1020.

[4] J.R. Birge, F. Louveaux, Introduction to Stochastic Programming, Springer, London,
1997.

[5] A. Charnes, W.W. Cooper, Chance constrained programming, Management Science
6 (1959) 73–79.

[6] A. Charnes, W.W. Cooper, Deterministic equivalents for optimizing and satisficing
under chance constraints, Operations Research 11 (1963) 18–39.

[7] M.A. Gil, M. Lopez-Diaz, D.A. Ralescu, Overview on the development of fuzzy
random variables, Fuzzy Sets and Systems 157 (2006) 2546–2557.

[8] S. Kataoka, A stochastic programming model, Econometorica 31 (1963) 181–196.

[9] H. Katagiri, H. Ishii and M. Sakawa, On fuzzy random linear knapsack problems,
Central European Journal of Operations Research 12 (2004) 59–70.

[10] H. Katagiri, E.B. Mermri, M. Sakawa, K. Kato, I. Nishizaki, A possibilistic and
stochastic programming approach to fuzzy random MST problems, IEICE Transac-
tion on Information and Systems E88-D (2005) 1912–1919.



– 16 –

[11] H. Katagiri, M. Sakawa, H. Ishii, A study on fuzzy random portfolio selection prob-
lems using possibility and necessity measures, Scientiae Mathematicae Japonicae
61 (2005) 361–369.

[12] H. Katagiri, M. Sakawa, K. Kato, I. Nishizaki, A fuzzy random multiobjective 0-
1 programming based on the expectation optimization model using possibility and
necessity measures, Mathematical and Computer Modelling 40 (2004) 411–421.

[13] H. Katagiri, M. Sakawa, K. Kato, I. Nishizaki, Interactive multiobjective fuzzy ran-
dom linear programming: maximization of possibility and probability, European
Journal of Operational Research 188 (2008) 530–539.

[14] H. Katagiri, M. Sakawa, I. Nishizaki, Interactive decision making using possibility
and necessity measures for a fuzzy random multiobjective 0-1 programming prob-
lem, Cybernetics and Systems 37 (2006) 59–74.

[15] R. Kruse, K.D. Meyer, Statistics with Vague Data, D. Riedel Publishing Company,
1987.

[16] H. Kwakernaak, Fuzzy random variables - I. definitions and theorems, Information
Sciences 15 (1978) 1–29.

[17] Y.J. Lai, Hierarchical optimization: a satisfactory solution, Fuzzy Sets and Systems
77 (1996) 321–325.

[18] E.S. Lee, Fuzzy multiple level programming, Applied Mathematics and Computa-
tion 120 (2001) 79–90.

[19] B. Liu, Fuzzy random chance-constrained programming, IEEE Transaction on
Fuzzy Systems 9 (2001) 713–720.

[20] B. Liu, Fuzzy random dependent-chance programming, IEEE Transaction on Fuzzy
Systems 9 (2001) 721–726.

[21] Y.-K. Liu, B. Liu, Fuzzy Random Variables: A Scalar Expected Value Operator,
Fuzzy Optimization and Decision Making 2 (2003) 143–160.

[22] M.K. Luhandjula, Fuzziness and randomness in an optimization framework, Fuzzy
Sets and Systems 77 (1996) 291–297.

[23] M.K. Luhandjula, Fuzzy stochastic linear programming: survey and future research
directions, European Journal of Operational Research 174 (2006) 1353–1367.

[24] M.K. Luhandjula, M.M. Gupta, On fuzzy stochastic optimization, Fuzzy Sets and
Systems 81 (1996) 47–55.

[25] I. Nishizaki, M. Sakawa, Computational methods through genetic algorithms for ob-
taining Stackelberg solutions to two-level mixed zero-one programming problems,
Cybernetics and Systems: An International Journal 31 (2000) 203–221.

[26] S. Pramanik, T.K. Roy, Fuzzy goal programming approach to multilevel program-
ming problems, European Journal of Operational Research 176 (2007) 1151–1166.



– 17 –

[27] M.L. Puri, D.A. Ralescu, Fuzzy random variables, Journal of Mathematical Analysis
and Applications 114 (1986) 409–422.

[28] Z. Qaio, Y. Zhang, G.-Y. Wang, On fuzzy random linear programming, Fuzzy Sets
and Systems 65 (1994) 31–49.

[29] E. Roghanian, S.J. Sadjadi, M.B. Aryanezhad, A probabilistic bi-level linear multi-
objective programming problem to supply chain planning, Applied Mathematics and
Computation 188 (2007) 786–800.

[30] H. Rommelfanger, A general concept for solving linear multicriteria programming
problems with crisp, fuzzy or stochastic values, Fuzzy Sets and Systems 156 (2007)
1892–1904.

[31] M. Sakawa, Fuzzy Sets and Interactive Multiobjective Optimization, Plenum Press,
New York, 1993.

[32] M. Sakawa, I. Nishizaki, Interactive fuzzy programming for decentralized two-level
linear programming problems, Fuzzy Sets and Systems 125 (2002) 301–315.

[33] M. Sakawa, I. Nishizaki, Interactive fuzzy programming for two-level nonconvex
programming problems with fuzzy parameters through genetic algorithms, Fuzzy
Sets and Systems 127 (2002) 185–197.

[34] M. Sakawa, I. Nishizaki, Cooperative and Noncooperative Multi-Level Program-
ming, Springer, Norwell (in press).

[35] M. Sakawa, I. Nishizaki, Y. Uemura, Interactive fuzzy programming for multi-level
linear programming problems, Computers & Mathematics with Applications 36
(1998) 71–86.

[36] M. Sakawa, I. Nishizaki, Y. Uemura, Interactive fuzzy programming for two-level
linear fractional programming problems with fuzzy parameters, Fuzzy Sets and Sys-
tems 115 (2000) 93–103.

[37] M. Sakawa, I. Nishizaki, Y. Uemura, Interactive fuzzy programming for two-level
linear and linear fractional production and assignment problems: a case study, Eu-
ropean Journal of Operational Research 135 (2001) 142–157.

[38] M. Sakawa, I. Nishizaki, Y. Uemura, A decentralized two-level transportation prob-
lem in a housing material manufacturer –Interactive fuzzy programming approach–,
European Journal of Operational Research 141 (2002) 167–185.

[39] H.S. Shih, Y.J. Lai, E.S. Lee, Fuzzy approach for multi-level programming prob-
lems, Computers and Operations Research 23 (1996) 73–91.

[40] K. Shimizu, Y. Ishizuka, J.F. Bard, Nondifferentiable and Two-Level Mathematical
Programming, Kluwer Academic Publishers, Boston, 1997.

[41] M. Simaan, J.B. Cruz Jr., On the Stackelberg strategy in nonzero-sum games, Journal
of Optimization Theory and Applications 11 (1973) 533–555.



– 18 –

[42] S. Sinha, Fuzzy programming approach to multi-level programming problems,
Fuzzy Sets and Systems 136 (2003) 189–202.

[43] I.M. Stancu-Minasian, Stochastic Programming with Multiple Objective Functions,
D. Reidel Publishing Company, Dordrecht, 1984.

[44] I.M. Stancu-Minasian, Overview of different approaches for solving stochas-
tic programming problems with multiple objective functions, R. Slowinski and
J. Teghem (eds.):Stochastic Versus Fuzzy Approaches to Multiobjective Math-
ematical Programming under Uncertainty, Kluwer Academic Publishers, Dor-
drecht/Boston/London, pp. 71–101, 1990.

[45] G.-Y. Wang, Z. Qiao, Linear programming with fuzzy random variable coefficients,
Fuzzy Sets and Systems 57 (1993) 295–311.

[46] R.J.B. Wets, Challenges in stochastic programming, Mathematical Programming 75
(1996) 115–135.

[47] J. Xu, Y. Liu, Multi-objective decision making model under fuzzy random environ-
ment and its application to inventory problems, Information Sciences 178 (2008)
2899–2914.

[48] H.-J. Zimmermann, Fuzzy programming and linear programming with several ob-
jective functions, Fuzzy Sets and Systems 1 (1978) 45–55.


