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Abstract: This paper considers linear programming problems (LPPs) where the objective functions
involve discrete fuzzy random variables (fuzzy set-valued discrete random variables). New decision
making models, which are useful in fuzzy stochastic environments, are proposed based on both
possibility theory and probability theory. In multi-objective cases, Pareto optimal solutions of the
proposed models are newly defined. Computational algorithms for obtaining the Pareto optimal
solutions of the proposed models are provided. It is shown that problems involving discrete fuzzy
random variables can be transformed into deterministic nonlinear mathematical programming
problems which can be solved through a conventional mathematical programming solver under
practically reasonable assumptions. A numerical example of agriculture production problems is
given to demonstrate the applicability of the proposed models to real-world problems in fuzzy
stochastic environments.
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1. Introduction

One of the traditional tools for taking into consideration uncertainty of parameters involved
in mathematical programming problems is stochastic programming [1,2]. Stochastic programming
approaches implicitly assume that uncertain parameters involved in problems can be expressed as
random variables. For example, demanding amounts of products are often mathematically modeled
as random variables. In this case, realized values of random parameters under event occurrence are
assumed to be represented with deterministic values such as real values.

On the other hand, random variables are not always suitable to estimate parameters of problems,
when human judgments and/or knowledge have to be mathematically handled. It is worth utilizing
not only historical or past data but also experts’ knowledge or judgments involving ambiguity or
vagueness which are often represented as fuzzy sets.

Simultaneous consideration of fuzziness and randomness is highly important in modeling
decision making problems, because decision making by humans in stochastic environments is
intrinsically based not only on randomness but also on fuzziness. In the last decade, mathematical
models which take into consideration both fuzziness and randomness have considerably drawn
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attentions in the research field of decision making such as linear programming [3–12], integer
programming [13], inventory [14,15], transportation [16], facility layout [17], flood management [18]
and network optimization [19,20].

In this paper, we focus on mathematical optimization models in fuzzy stochastic decision making
situations where possible realized values of random parameters in linear programming problems
(LPPs) are ambiguously estimated by experts as fuzzy sets or fuzzy numbers. Such fuzzy set-valued
random variables, namely, random parameters whose realized values are represented with fuzzy sets,
can be expressed as fuzzy random variables [21–26].

Previous studies on fuzzy random LPPs have mainly focused on the case where the coefficients
of the objective function and the constraints are expressed by continuous fuzzy random variables,
which is an extended concept of continuous random variables. Fuzzy random optimization models
were firstly developed by Luhandjula and his colleagues [27,28] as LPPs with fuzzy random variable
coefficients, and further studied by Liu [29,30], Katagiri et al. [4,6] and Yano [11] and so on. A brief
survey of major fuzzy stochastic programming models including mathematical programming models
using fuzzy random variables was found in the paper by Luhandjula [8].

On the other hand, there are a few studies [13,31,32] on LPPs with discrete fuzzy random
variables. As will be discussed later in more details, it is quite important to propose more general
fuzzy random LPP models in order to widen the range of application of fuzzy stochastic programming,
which motivates this article to provide new generalized mathematical programming models with
discrete fuzzy random variables.

This paper is organized as follows: In Section 2, the definitions of fuzzy random variables
are introduced. Some types of fuzzy random variables are newly defined. Section 3 focuses on
discrete fuzzy random variables and defines some types of discrete fuzzy random variables. Section 4
formulates a single/multiple objective LPP where the coefficients of the objective function(s) are
discrete fuzzy random variables. In Section 5, we construct new optimization criteria for optimization
problems with discrete fuzzy random variables, which are based both on possibility theory and
on probability theory. Section 6 proposes decision making models using optimization criteria
introduced in Section 5, and defines (weak) Pareto optimal solutions of the proposed models in
the multi-objective case. Section 7 discusses how the proposed model can be solved and construct an
algorithm for obtaining a Pareto optimal solution of the proposed models. In Section 8, we execute a
numerical experiment with an example of agriculture production problems in order to demonstrate
the applicability of the proposed model to real-world decision making problems. It is shown that the
R [33] language can be used to solve the problems with hundreds of decision variables in a practical
computational time. Finally, Section 9 summarizes this paper and discusses future research works.

2. Preliminaries

In this section, we review some mathematical concepts related to discrete fuzzy random variables,
such as convex fuzzy sets and fuzzy numbers. Definitions of fuzzy random variables are also provided.

2.1. Fuzzy Set and Fuzzy Number

As a preparation for the introduction of fuzzy random variables, we firstly introduce the definition
of fuzzy sets.

Definition 1. (Normal convex fuzzy set)
A normal convex fuzzy set is characterized by a membership function µÃ : R→ [0, 1], that is, µÃ(x) ∈ [0, 1],
for all x ∈ R, such that Aα is a nonempty compact interval

Aα =

{
{x ∈ R| µÃ(x) ≥ α} if α ∈ (0, 1]
cl(supp µÃ) if α = 0,
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where cl(supp µÃ) denotes the closure of set supp µÃ, and supp µÃ denotes a support of membership
function µÃ.

An L-R fuzzy number was introduced by Dubois and Prade [34] and is defined based on a normal
convex fuzzy set.

Definition 2. (L-R fuzzy number)
A normal convex fuzzy set F̃ is said to be an L-R fuzzy number, denoted by (d, β, γ)LR, if its membership

function µF̃ is defined as follows:

µF̃(τ) =


L
(

d− τ

β

)
if τ ≤ d

R
(

τ − d
γ

)
if τ > d,

(1)

where L and R are reference functions satisfying the following conditions:

1. L(t) and R(t) are nonincreasing for any t > 0.
2. L(0) = R(0) = 1.
3. L(t) = L(−t) and R(t) = R(−t) for any t ∈ R.
4. There exists a tL

0 > 0 such that L(t) = 0 holds for any t larger than tL
0 . Similarly, there exists a tR

0 > 0
such that R(t) = 0 holds for any t larger than tR

0 .

Fuzzy numbers are regarded as extended concepts of real numbers because F̃ is reduced to a real
number d if β = γ = 0 in Definition 2. Fuzzy numbers are a useful tool for representing human
knowledge and/or estimation. Figure 1 shows a typical membership function of an L-R fuzzy number.
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L R
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β γ
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Figure 1. L-R fuzzy number.

In Definition 2, if L = R and β = γ, we call such an L-R fuzzy number an L fuzzy number. In
other words, L fuzzy numbers are symmetric fuzzy numbers defined as follows:

Definition 3. (L fuzzy number)
A normal convex fuzzy set F̃ is said to be an L fuzzy number if its membership function µF̃ is defined as follows:

µF̃(τ) = L
(

d− τ

β

)
, (2)

where L is a reference function satisfying the following conditions:

1. L(t) is nonincreasing for any t > 0.
2. L(0) = 1.
3. L(t) = L(−t) for any t ∈ R.
4. There exists a tL

0 > 0 such that L(t) = 0 holds for any t larger than tL
0 .
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Figure 2 shows a typical membership function of an L fuzzy number.
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Figure 2. L fuzzy number.

In Definition 2, if L(t) = R(t) = max{0, 1− |t|}, we call such an L-R fuzzy number a triangular
fuzzy number.

Definition 4. (Triangular fuzzy number)
An L-R fuzzy number F̃ is said to be a triangular fuzzy number, denoted by (d, β, γ)tri, if the reference functions
L and R of an L-R fuzzy number are given as L(t) = R(t) = max(1− |t|, 0). In other words, a triangular
fuzzy number F̃ is characterized by the following piece-wise linear membership function:

µF̃(τ) =


max

{
1− |d− τ|

β
, 0
}

if τ ≤ d

max
{

1− |τ − d|
γ

, 0
}

if τ > d.
(3)

Figure 3 shows a typical membership function of a triangular fuzzy number.
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Figure 3. Triangular fuzzy number.

2.2. Fuzzy Random Variable

In this section, we review and define some important concepts underlying fuzzy random
programming problems. There are mainly two definitions of fuzzy random variables. A fuzzy
random variable was firstly defined by Kwakernaak [24] as an extended concept of random variables
in the sense that the realized values for given events or scenarios are not real but fuzzy numbers. Kruse
and Meyer [35] provided some concepts similar to the model by Kwakernaak. Puri and Ralescu [25]
defined fuzzy random variables as random fuzzy sets and developed a mathematical basis of fuzzy
random variables with Klemment [23]. Overviews of fuzzy random variables have been provided by
Gil et al. [22] and Shapiro [26].

We introduce a general definition of fuzzy random variables, which is based on the works of
Kwakernaak [24], Kruse and Meyer [35] and Gil et al. [21]:
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Definition 5. (Fuzzy random variable)
Let (Ω,F , P) be a probability space and F(R) denote the set of all fuzzy numbers in R, where F(R) denotes
a class of normal convex fuzzy subsets of R having compact α level set for α ∈ [0, 1]. A fuzzy random variable is
a mapping ˜̄A : Ω→ F(R) such that for any α ∈ [0, 1] and all ω ∈ Ω, the real-valued mapping

inf ˜̄Aα : Ω→ R, satisfying inf Ãα(ω) = inf(Ã(ω))α

and
sup ˜̄Aα : Ω→ R, satisfying sup Ãα(ω) = sup(Ã(ω))α

are real-valued random variables, that is, Borel measurable real-valued functions. (Ã(ω))α is a nonempty
compact interval defined by

(Ã(ω))α =

{
{x ∈ R| µÃ(ω)(x) ≥ α} if α ∈ (0, 1]
cl(supp µÃ(ω)) if α = 0,

where µÃ(ω) is the membership function of a fuzzy set Ã(ω), cl(supp µÃ(ω)) denotes the closure of set
supp µÃ(ω), and supp µÃ(ω) denotes a support of function µÃ(ω).

2.3. Special Types of Fuzzy Random Variables Used in Decision Making

For the purpose of applying fuzzy random variables to decision making problems,
Katagiri et al. [4,6,20,36,37] introduced some special types of fuzzy random variables where the
realized values of random variables for given events or scenarios are L-R fuzzy numbers or triangular
fuzzy numbers. Since these fuzzy random variables are useful for modeling various decision making
problems, we categorize these fuzzy random variables into several types such as L-R fuzzy random
variable, L fuzzy random variable and triangular fuzzy random variable, together with their examples
which were originally introduced in the previous papers.

First, we define L-R fuzzy random variable as follows:

Definition 6. (L-R fuzzy random variable)
Let d̄, β̄ and γ̄ be random variables whose realization for a given event ω ∈ Ω are d(ω), β(ω) and γ(ω),

respectively, where Ω is a sample space, and β(ω) and γ(ω) are positive constants for any ω ∈ Ω. Then,
a fuzzy random variable ˜̄F is said to be an L-R fuzzy random variable, denoted by (d̄, β̄, γ̄)LR, if its realized
values F̃(ω) = (d(ω), β(ω), γ(ω))LR for any event ω ∈ Ω are L-R fuzzy numbers defined as

µF̃(ω)(τ) =


L
(

d(ω)− τ

β(ω)

)
if τ ≤ d(ω)

R
(

τ − d(ω)

γ(ω)

)
if τ > d(ω).

(4)

L-R fuzzy random variables were introduced to decision making problems such as a portfolio
selection problem [38], an LPP [36] and a multi-objective programming problem [4]. In these studies,
the coefficients of objective functions are represented as a special type of L-R fuzzy random variables
in which the spread parameters β and γ are constants, not random variables, as shown in the
following example:
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Example 1. In Definition 6, let ḡ be a Gaussian (normal) random variable N(m, σ2) where m is the mean and
σ is the standard deviation. Also, let β̄ and γ̄ be positive constants, not random variables. Then, ˜̄F is a kind of
L-R fuzzy random variables if the membership function of the realization of ˜̄F is defined as

µF̃(ω)(τ) =


L
(

g(ω)− τ

β

)
if τ ≤ g(ω)

R
(

τ − g(ω)

γ

)
if τ > g(ω),

(5)

where g(ω) is a realized value of ḡ for a given event ω ∈ Ω, and Ω is a sample space.

Another example of L-R fuzzy random variables is shown in the study on a multi-objective
LPP [6] as follows:

Example 2. Let d̄, β̄ and γ̄ be random variables expressed as

d̄ = d1 · t̄ + d2, β̄ = β1 · t̄ + β2, γ̄ = γ1 t̄ + γ2,

where t̄ is a random variable whose mean and variance are m and σ2, respectively, and d1, d2, β1, β2, γ1 and
γ2 are constant values. Then, ˜̄A is a kind of L-R fuzzy random variables if the membership function of the
realization of ˜̄A is defined as

µÃ(ω)(τ) =


L
(

d1 · t(ω) + d2 − τ

β1 · t(ω) + β2

)
if τ ≤ d1 · t(ω) + d2

R
(

τ − d1 · t(ω) + d2

γ1 · t(ω) + γ2

)
if τ > d1 · t(ω) + d2,

(6)

where t(ω) is a realized value of t̄ for a given event ω ∈ Ω, and Ω is a sample space.

When the reference functions of left-hand and right-hand sides are the same in Definition 6,
namely, if it holds L = R, we call such an L-R fuzzy random variable an L fuzzy random variable
defined as follows:

Definition 7. (L fuzzy random variable)
Let d̄ and β̄ be random variables whose realization for a given event ω ∈ Ω are d(ω) and β(ω), respectively,
where Ω is a sample space, and β(ω) is a positive constant for any ω ∈ Ω. Then, a fuzzy random variable
˜̄F is said to be an L fuzzy random variable if its realized values for any event ω ∈ Ω are L-R fuzzy numbers
defined as

µF̃(ω)(τ) = L
(

d(ω)− τ

β(ω)

)
. (7)

L fuzzy random variables were introduced in network optimization problems such as bottleneck
minimum spanning tree problems [20,39]. In these studies, the cost for constructing each edge in
an optimal network construction problem was expressed as an L fuzzy random variable shown in the
following example:

Example 3. In Definition 7, let ḡ be a Gaussian (normal) random variable N(m, σ2) where m is the mean and
σ is the standard deviation. Also, let β be a positive constant, not a random variable. Then, ˜̄F is a kind of L fuzzy
random variables if the membership function of the realization of ˜̄F is defined as

µF̃(ω)(τ) = L
(

g(ω)− τ

β

)
, (8)
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where g(ω) is a realized value of ḡ for a given event ω ∈ Ω, and Ω is a sample space.

The L fuzzy random variable shown in Example 3 can be interpreted as a “hybrid number.”
The hybrid number, which was originally introduced by Kaufman and Gupta [40], is composed
of a series of fuzzy numbers, and is obtained by shifting fuzzy numbers in a random way along
the abscissa.

Especially if L(t) = R(t) = max{0, 1− |t|} in Definition 6, we call such an L-R fuzzy random
variable a triangular fuzzy random variable.

Definition 8. (Triangular fuzzy random variable)
An L-R fuzzy random variable ˜̄F is said to be a triangular fuzzy random variable, denoted by (d̄, β̄, γ̄)tri,

if the realization F̃(ω) for each ωk ∈ Ω is represented by a triangular fuzzy number (d(ω), β(ω), γ(ω))tri,
where Ω is a sample space. In other words, a discrete triangular fuzzy random variable ˜̄F is a discrete fuzzy
random variable whose realization for each event ω is a triangular fuzzy number characterized by the following
membership function:

µF̃(ω)(τ) =


max

{
1− |d(ω)− τ|

β(ω)
, 0
}

if τ ≤ d(ω)

max
{

1− |τ − d(ω)|
γ(ω)

, 0
}

if τ > d(ω).
(9)

Triangular fuzzy random variables were introduced in the study on a multi-objective LPP [37].
In this study, spread parameters β̄ and γ̄ are not random variables but constant values as shown in the
following example:

Example 4. In Definition 8, let β̄ and γ̄ be positive constants, not random variables. Then, ˜̄F is a kind of
triangular fuzzy random variables if the membership function of the realization of ˜̄F is defined as

µF̃(ω)(τ) =


max

{
1− |d(ω)− τ|

β
, 0
}

if τ ≤ d(ω)

max
{

1− |τ − d(ω)|
γ

, 0
}

if τ > d(ω),
(10)

where d(ω) is a realized value of d̄ for a given event ω ∈ Ω, and Ω is a sample space.

3. Discrete Fuzzy Random Variable

In this section, we discuss discrete fuzzy random variable as for a preparation for proposing
a new framework of LPPs with discrete fuzzy random variables.

Firstly, we review the definition of discrete fuzzy random variable given by Kawakernaak [41].
Secondly, we provide the definition of discrete L-R fuzzy random variable and that of discrete
triangular fuzzy random variable which was applied to a network optimization problem [31],
an LPP [32] and a multi-objective 0-1 programming problem [13].

Definitions of Discrete Fuzzy Random Variables

In the 1970s, Kwakernaak [41] originally proposed a concept of discrete fuzzy random variable.
In this paper, we provide the definition of discrete fuzzy random variable as follows:

Definition 9. (Discrete fuzzy random variable)
Let Ω be a set of events such that the occurrence probability of each event ωk ∈ Ω is pk and that ∑k pk = 1.

Let F̃k be a fuzzy set characterized by a membership function µF̃k
, and let F be a set of Fk, ∀k ∈ K, where K is
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an index set of k. Let ˜̄F be a mapping from Ω to F such that ˜̄F(ωk)
4
= F̃k. Then, a mapping ˜̄F is said to be a

discrete fuzzy random variable.

Considering the applicability of the discrete fuzzy random variables in real-world decision making,
we define discrete L-R fuzzy random variables as a special type of discrete fuzzy random variables.

Definition 10. (Discrete L-R fuzzy random variable)
A discrete fuzzy random variable ˜̄F is said to be a discrete L-R fuzzy random variable, denoted by (d̄, β̄, γ̄)LR,

if the realization of ˜̄F = (d̄, β̄, γ̄)LR for any event ωk ∈ Ω is an L-R fuzzy number F̃k = (dk, βk, γk)LR, where
dk, βk and γk are the realized values of d̄, β̄, and γ̄ for a given event ωk ∈ Ω, respectively, and Ω is a sample
space. Then, ˜̄F is an L-R fuzzy random variable in which the membership function of the realization F̃k for each
event ωk ∈ Ω is defined as

µF̃k
(τ) =


L
(

dk − τ

βk

)
if τ ≤ dk

R
(

τ − dk
γk

)
if τ > dk.

(11)

The following is an example of discrete L-R fuzzy random variables:

Example 5. Consider βk and γk vary dependent on events or scenarios. Then, ˜̄F is a discrete L-R fuzzy random
variable in which the membership functions of the realized fuzzy numbers of F̃k, k = 1, 2, 3 are defined as follows:

µF̃1
(τ) =


L
(

300− τ

35

)
if τ ≤ 300

R
(

τ − 300
20

)
if τ > 300,

µF̃2
(τ) =


L
(

200− τ

25

)
if τ ≤ 200

R
(

τ − 200
10

)
if τ > 200,

(12)

µF̃3
(τ) =


L
(

100− τ

30

)
if τ ≤ 100

R
(

τ − 100
15

)
if τ > 100.

Figure 4 shows a typical membership function of a discrete L-R fuzzy random variable.

Figure 4. Discrete L-R fuzzy random variable.
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In particular, if L(t) = R(t) = max{0, 1− |t|} in Definition 10, we call such a discrete L-R fuzzy
random variable a discrete triangular fuzzy random variable.

Definition 11. (Discrete triangular fuzzy random variable)
A discrete L-R fuzzy random variable ˜̄F is said to be a discrete triangular fuzzy random variable, denoted by
(d̄, β̄, γ̄)tri, if the realization F̃k for each ωk ∈ Ω is represented by a triangular fuzzy number (dk, βk, γk)tri,
where Ω is a sample space. In other words, a discrete triangular fuzzy random variable ˜̄F is a discrete fuzzy
random variable whose realization for each event ωk is a triangular fuzzy number characterized by the following
membership function:

µF̃k
(τ) =


max

{
1− |dk − τ|

βk
, 0
}

if τ ≤ dk

max
{

1− |τ − dk|
γk

, 0
}

if τ > dk.
(13)

Example 6. When it holds that L(t) = R(t) = max{0, 1− |t|} in Example 5, ˜̄F is a discrete triangular fuzzy
random variable whose realized values F̃k, k = 1, 2, 3 are characterized by the following membership function:

µF̃1
(τ) =


max

{
1− |300− τ|

35
, 0
}

if τ ≤ 300

max
{

1− |τ − 300|
20

, 0
}

if τ > 300,

µF̃2
(τ) =


max

{
1− |200− τ|

25
, 0
}

if τ ≤ 200

max
{

1− |τ − 200|
10

, 0
}

if τ > 200,
(14)

µF̃3
(τ) =


max

{
1− |100− τ|

30
, 0
}

if τ ≤ 100

max
{

1− |τ − 100|
15

, 0
}

if τ > 100.

Figure 5 shows a typical membership function of a discrete triangular fuzzy random variable.

Figure 5. Discrete triangular fuzzy random variable.

Discrete triangular fuzzy random variables were firstly introduced in some of previous studies on
a network optimization problem [31], an LPP [32] and a multi-objective 0-1 programming problem [13].

In these studies, the spread parameters βk and γk do not vary with events ωk but they are fixed
as constants for any events. To the author’s best knowledge, there has been no study on linear
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programming model where the spread parameters βk and γk of discrete fuzzy random variables vary
with different events ωk ∈ Ω.

In the next section we shall propose new linear programming models with discrete fuzzy random
variables in which spread parameters vary with stochastic events.

4. Problem Formulation

Assuming that the coefficients of the objective functions are given as discrete fuzzy random
variables, we consider the following fuzzy random programming problem:

minimize ˜̄Cl x, l = 1, 2, . . . , q
subject to Ax ≤ b, x ≥ 0,

}
(15)

where ˜̄Cl = ( ˜̄Cl1, . . . , ˜̄Cln), l = 1, 2, . . . , q are n dimensional coefficient row vectors whose elements are
discrete fuzzy random variables, x is an n dimensional decision variable column vector, A is an m× n
coefficient matrix, and b is an m dimensional column vector. When the number of objective functions is
equal to 1 (q = 1), then problem (15) becomes a single-objective fuzzy random programming problem;
otherwise, when q ≥ 2, (15) is a multi-objective fuzzy random programming problem. In problem (15),
all the objective functions are to be minimized. Without loss of generality, this paper considers
minimization problems, because any maximization problems can be transformed into minimization
problems by multiplying the original objective function in the maximization problem by −1.

4.1. Model Using Discrete L-R Fuzzy Random Variables

In problem (15), we firstly consider the case where each element ˜̄Cl j of the coefficient vectors
˜̄Cl = ( ˜̄Cl1, . . . , ˜̄Cln), l = 1, 2, . . . , q in (15) is a discrete L-R fuzzy random variable (d̄l j, β̄l j, γ̄l j)LR whose

realization for a given event ωlk ∈ Ωl is an L-R fuzzy number C̃l jk
4
= (dl jk, βl jk, γl jk)LR, l = 1, 2, . . . , q,

j = 1, 2, . . . , n, k = 1, 2, . . . , rl with the membership function defined as

µC̃l jk
(τ) =


L

(
dl jk − τ

βl jk

)
if τ ≤ dl jk

R

(
τ − dl jk

γl jk

)
if τ > dl jk,

(16)

where Ωl
4
= {ωl1, ωl2, . . . , ωlrl

} denotes a set of events related to the lth objective function. In (16),
the values of dl jk, βl jk and γl jk are constant, and βl jk and γl jk are positive. The probability that each
event ωlk occurs is given as plk, where ∑rl

k=1 plk = 1, ∀l ∈ {1, 2, . . . , q}. Figure 6 shows that a typical
membership function of an L-R fuzzy number defined by (16).

Figure 6. Realized values C̃l jk for the kth event of a discrete L-R fuzzy random variable ˜̄Cl j.
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Through the extended sum of fuzzy numbers [42] based on the Zadeh’s extension principle [43],
the objective function ˜̄Cl x is represented by a single fuzzy random variable whose realized value
for an event or scenario ωlk is an L-R fuzzy number C̃lkx = (dlkx, βlkx, γlkx)LR characterized by the
membership function

µC̃lkx(υ) =


L
(

dlkx− υ

βlkx

)
if υ ≤ dlkx

R
(

υ− dlkx
γlkx

)
if υ > dlkx,

(17)

where dlk, βlk and γlk are n dimensional column vectors whose values vary dependent on events
ωlk ∈ Ωl , l ∈ {1, 2, . . . , q}. Figure 7 shows that the membership function of an L-R fuzzy number
defined by (17).

Figure 7. Realized values C̃l jk for the kth event of a discrete L-R fuzzy random variable ˜̄Cl j.

4.2. Model Using Discrete Triangular Fuzzy Random Variables

As a special type of discrete L-R fuzzy random variable defined in (17), we also consider the
case where ˜̄Cl j is a discrete triangular fuzzy random variable in which its realized values for events
or scenarios are triangular fuzzy numbers C̃l jk = (dl jk, βl jk, γl jk)tri for ωkl ∈ Ωl , l = 1, 2, . . . , q,
j = 1, 2, . . . , n, k = 1, 2, . . . , rl with the following membership function:

µC̃l jk
(τ) =


max

{
1−
|dl jk − τ|

βl jk
, 0

}
if τ ≤ dl jk

max

{
1−
|τ − dl jk|

γl jk
, 0

}
if τ > dl jk.

(18)

Then, through the Zadeh’s extension principle, the realized value of each objective function ˜̄Cl x
for a given event ωlk is represented by a single triangular fuzzy number (dlkx, βlkx, γlkx)tri which is
characterized by

µC̃lkx(υ) =


max

{
1− |dlkx− υ|

βlkx
, 0
}

if υ ≤ dlkx

max
{

1− |υ− dlkx|
γlkx

, 0
}

if υ > dlkx.
(19)

Figures 8 and 9 show the membership functions of C̃l jk and C̃lkx.
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Figure 8. Realized value C̃l jk for the kth event of a discrete triangular fuzzy random variable ˜̄Cl j.

Figure 9. Realized value C̃lkx for the kth event of a discrete triangular fuzzy random variable ˜̄Cl x.

5. Possibility/Necessity-Based Probabilistic Expectation

This section is devoted to discussing optimization criteria to solve problem (15) with discrete
fuzzy random variables whose realized values are given as L-R fuzzy numbers defined by (17) or
triangular fuzzy numbers defined by (19).

It should be noted here that problem (15) is not a well-defined mathematical programming
problem because, even when a decision vector x is determined, the objective function value C̃lkx is
not determined as a constant due to both randomness and fuzziness of C̃lk. In other words, a certain
optimization criterion is needed to compare the value of fuzzy random objective function.

In this section, we propose some useful optimization criteria based on both possibility and
probability measures, called a possibility/necessity-based probabilistic expectation.

5.1. Preliminary: Possibility and Necessity Measures

As a preparation for optimization criteria in fuzzy stochastic decision making environments, we
review the definition of possibility and necessity measures, and discuss how the measures are applied
to our problems with discrete fuzzy random variables.

5.1.1. Possibility Measure

Considering that membership functions of fuzzy sets can be regarded as possibilistic distributions
of possibilistic variables [44], a definition of possibility measure is given [34,44] as follows:

Definition 12. (Possibility measure)
Let Ã and B̃ be fuzzy sets characterized by membership functions µÃ and µB̃, respectively. Then, under

a possibilistic distribution of µÃ of a possibilistic variable α, possibility measure of the event that α is in a fuzzy
set B̃ is defined as follows:

ΠÃ(B̃)
4
= sup

v
min (µÃ(v), µB̃(v)) . (20)
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In decision making situations where the objective function is to be minimized, decision makers
(DMs) often have a fuzzy goal such as “the objective function value C̃lkx is substantially less than or
equal to a certain value fl ,” which is expressed by ˜̄Clkx <∼ fl , where <∼ denotes “substantially less than
or equal to” defined in (12). Let µG̃l

be a membership function of fuzzy set G̃l such that the degree of y
being substantially less than or equal to a certain value fl is represented with µG̃l

(y).
Assume that a certain event ωlk has occurred, on the basis of possibility theory and notations (20).

Then, the degree of possibility that C̃lkx satisfies fuzzy goal G̃ (namely, the degree of possibility that
the objective function value ˜̄Clkx for any event ωlk ∈ Ωl is substantially less than or equal to a certain
aspiration level fl) is defined as

Π
(

C̃lkx <∼ fl

) 4
= ΠC̃lkx(G̃l)

= sup
y

min
{

µC̃lkx(y), µG̃l
(y)
}

, l = 1, 2, . . . , q, k = 1, 2, . . . , rl .
(21)

Figure 10 illustrates the degree of possibility defined by (21) for a fixed event ωlk, which is the
ordinate of the crossing point between the membership functions of fuzzy goal G̃l and the objective
function C̃lkx.

Figure 10. Degree of possibility Π
(

C̃lkx <∼ fl

)
.

5.1.2. Necessity Measure

For DMs who make decisions from pessimistic view points, a necessity measure is recommended.
The necessity measure defined by Zadeh [44] and Dubois and Prade [34] is as follows:

Definition 13. (Necessity measure)
Let Ã and B̃ be fuzzy sets characterized by membership functions µÃ and µB̃, respectively. Then, under

a possibilistic distribution of µÃ of a possibilistic variable α, the necessity measure of the event that α is in a fuzzy
set B̃ is defined as follows:

NÃ(B̃)
4
= inf

v
max (1− µÃ(v), µB̃(v)) . (22)

Then, in view of (22), the degree of necessity that the objective function value ˜̄Clkx for any event
ωlk ∈ Ωl satisfies the fuzzy goal G̃l is defined as

N
(

C̃lkx <∼ fl

) 4
= NC̃lkx(G̃l)

= inf
y

max
{

1− µC̃lkx(y), µG̃l
(y)
}

, l = 1, 2, . . . , q.
(23)

Figure 11 illustrates the degree of necessity defined by (23), which is the ordinate of the crossing
point between the membership functions of fuzzy goal G̃l and the upside-down of the membership
function of the objective function C̃lkx.
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Figure 11. Degree of necessity N
(

C̃lkx <∼ fl

)
.

Possibilistic programming [45,46] is one of the most promising tools for handling mathematical
optimization problems with ambiguous parameters.

5.2. Optimization Criteria in Fuzzy Random Environments

Possibilistic programming approaches cannot directly be applied to solving problems with discrete
fuzzy random variables. This is because the degrees of possibility or necessity defined in (21) or (23)
are not constants but vary dependent on events ωlk.

In this section, taking into consideration both fuzziness and randomness involved in the
coefficients of the problems, we newly propose some useful optimization criteria for problems
with discrete fuzzy random variables. As novel optimization criteria, we provide possibility-based
probabilistic expectation (PPE) and necessity-based probabilistic expectation (NPE) as follows:

Definition 14. (Possibility-based probabilistic expectation (PPE))
Let ˜̄Cl = ( ˜̄Cl1, . . . , ˜̄Cln), l = 1, 2, . . . , q be n dimensional coefficient row vectors of fuzzy random variables in

(multi-objective) LPP (15). Suppose that the realized value of ˜̄Cl j is a fuzzy set (or fuzzy number as a special

case) ˜̄Cl jk. Let Π
(

C̃lkx <∼ fl

)
be the degree of possibility for a fixed event ωlk defined in (21). By using plk

which is the probability that an event or scenario wlk occurs, the optimization criterion called a possibility-based
probabilistic expectation (PPE) is defined and calculated as follows:

E
[
Π
(

˜̄Cl x
<∼ fl

)] 4
=

rl

∑
k=1

plk ·Π
(

C̃lkx <∼ fl

)
=

rl

∑
k=1

plk ·ΠC̃lkx(G̃l) (24)

=
rl

∑
k=1

plk · sup
y

min
{

µC̃lkx(y), µG̃l
(y)
}

, l = 1, 2, . . . , q,

where E[·] denotes a probabilistic expectation.

Possibility measures are recommended to optimistic DMs. On the other hand, since DMs are not
always optimistic in general, we introduce the following new optimization criterion based on necessity
measures in order to construct an optimization criterion for pessimistic DMs:

Definition 15. (Necessity-based probabilistic expectation (NPE))
Let ˜̄Cl = ( ˜̄Cl1, . . . , ˜̄Cln), l = 1, 2, . . . , q be n dimensional coefficient row vectors of fuzzy random variables in
(multi-objective) LPP (15). Suppose that the realized value of ˜̄Cl j is a fuzzy set (or fuzzy number as a special
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case) ˜̄Cl jk. Let N
(

C̃lkx <∼ fl

)
be the degree of necessity for a fixed event ωlk defined in (21). Then, the following

optimization criterion is said to be necessity-based probabilistic expectation (NPE):

E
[

N
(

˜̄Cl x
<∼ fl

)] 4
=

rl

∑
k=1

plk · N
(

C̃lkx <∼ fl

)

=
rl

∑
k=1

plk · NC̃lkx(G̃l) (25)

=
rl

∑
k=1

plk · inf
y

max
{

1− µC̃lkx(y), µG̃l
(y)
}

, l = 1, 2, . . . , q.

6. Discrete Fuzzy Random Linear Programming Models Using Possibility/Necessity-Based
Probabilistic Expectation

On the basis of the new optimization criteria defined as (24) or (25) in the previous section, we
propose new linear programming-based decision making models in fuzzy stochastic environments.

6.1. Possibility-Based Probabilistic Expectation (PPE) Model

When the DM is optimistic, it is reasonable to use the model based on PPE. Then, we consider the
following problem to maximize the probabilistic expectation of the degree of possibility:

[Possibility-based probabilistic expectation model (PPE model)]

maximize E
[
Π
(

˜̄Cl x
<∼ fl

)]
, l = 1, 2, . . . , q

subject to x ∈ X,

 (26)

where the objective functions of problem (26) are given as (24).

In general, problem (26) is a multi-objective programming problem. Especially in the case of
q = 1, (26) becomes a single-objective programming problem, and the optimal solution is a feasible
solution which maximizes the objective function. On the other hand, when q 6= 1, the problem to
be solved has multiple objective functions, which means there does not generally exist a complete
solution that simultaneously maximizes all the objective functions. In such multi-objective cases, one
of reasonable solution approaches to (26) is to seek a solution satisfying Pareto optimality, called a
Pareto optimal solution. We define Pareto optimal solutions of (26). Firstly, we introduce the concepts
of weak Pareto optimal solution as follows:

Definition 16. (Weak Pareto optimal solution of PPE model)
x∗ ∈ X is said to be a weak Pareto optimal solution of the possibility-based probabilistic expectation model if and
only if there is no x ∈ X such that
E
[
Π
(

˜̄Cl x
<∼ fl

)]
> E

[
Π
(

˜̄Cl x∗
<∼ fl

)]
for all l ∈ {1, 2, . . . , q}.

As a stronger concept than a weak Pareto optimal solution, a (strong) Pareto optimal solution of
(26) is defined as follows:

Definition 17. ((Strong) Pareto optimal solution of PPE model)
x∗ ∈ X is said to be a (strong) Pareto optimal solution of the possibility-based probabilistic expectation model
if and only if there is no x ∈ X such that E

[
Π
(

˜̄Cl x
<∼ fl

)]
≥ E

[
Π
(

˜̄Cl x∗
<∼ fl

)]
for all l ∈ {1, 2, . . . , q},

and that E
[
Π
(

˜̄Cl x
<∼ fl

)]
> E

[
Π
(

˜̄Cl x∗
<∼ fl

)]
for at least one l ∈ {1, 2, . . . , q}.
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In order to obtain a (weak/strong) Pareto optimal solution of PPE model, we consider the
following maximin problem, which is one of scalarization methods for obtaining a (weak/strong)
Pareto optimal solution of multi-objective programming problems [47]:

[Maximin problem for PPE model]

maximize min
l∈{1,2,...,q}

E
[
Π
(

˜̄Cl x
<∼ fl

)]
subject to x ∈ X.

 (27)

In the theory of multi-objective optimization, it is known that an optimal solution of the maximin
problem assures at least weak Pareto optimality. Then, we show the following proposition:

Proposition 1. (Weak Pareto optimality of the maximin problem for PPE model)
Let x∗ be an optimal solution of problem (27). Then, x∗ is a weak Pareto optimal solution of problem (26), namely,
a weak Pareto optimal solution for PPE model.

Proof. Assume that an optimal solution x∗ of (27) is not a weak Pareto optimal solution of PPE
model defined in Definition 16. Then, there exists a feasible solution x̂ ∈ X of (27) such that
E
[
Π
(

˜̄Cl x̂
<∼ fl

)]
> E

[
Π
(

˜̄Cl x∗
<∼ fl

)]
for all l ∈ {1, 2, . . . , q}. Then, it follows

min
l

E
[
Π
(

˜̄Cl x̂
<∼ fl

)]
> min

l
E
[
Π
(

˜̄Cl x
∗ <∼ fl

)]
.

This contradicts the fact that x∗ is an optimal solution of (27). 2

Since an optimal solution of (27) is not always a (strong) Pareto optimal solution but only a weak
Pareto optimal solution in general, we consider the following augmented maximin problems in order
to find a solution satisfying strong Pareto optimality instead of weak Pareto optimality.

[Augmented maximin problem for PPE model]

maximize zΠ(x)
4
= min

l∈{1,2,...,q}
E
[
Π
(

˜̄Cl x
<∼ fl

)]
+ ρ

q

∑
l=1

E
[
Π
(

˜̄Cl x
<∼ fl

)]
subject to x ∈ X,

 (28)

where ρ is a sufficiently small positive constant, say 10−6.
In the theory of multi-objective optimization [47], it is known that an optimal solution of the

augmented maximin problem assures (strong) Pareto optimality. Then, we obtain the following
proposition:

Proposition 2. ((Strong) Pareto optimality of augmented maximin problem for PPE model)
Let x∗ be an optimal solution of problem (28). Then, x∗ is a (strong) Pareto optimal solution of (26), namely,
a (strong) Pareto optimal solution for PPE model.

Proof. Assume that an optimal solution of (28), denoted by x∗, is not (strong) Pareto optimal solution
of PPE model. Then, there exists x̂ such that
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E
[
Π
(

˜̄Cl x
<∼ fl

)]
≥ E

[
Π
(

˜̄Cl x∗
<∼ fl

)]
for all l ∈ {1, 2, . . . , q}, and that E

[
Π
(

˜̄Cl x
<∼ fl

)]
>

E
[
Π
(

˜̄Cl x∗
<∼ fl

)]
for at least one l ∈ {1, 2, . . . , q}. Then, it follows

min
l∈{1,2,...,q}

E
[
Π
(

˜̄Cl x̂
<∼ fl

)]
≥ min

l∈{1,2,...,q}
E
[
Π
(

˜̄Cl x
∗ <∼ fl

)]
ρ

q

∑
l=1

E
[
Π
(

˜̄Cl x̂
<∼ fl

)]
> ρ

q

∑
l=1

E
[
Π
(

˜̄Cl x
∗ <∼ fl

)]
.

Therefore, it holds that

min
l∈{1,2,...,q}

E
[
Π
(

˜̄Cl x̂
<∼ fl

)]
+ ρ

q

∑
l=1

E
[
Π
(

˜̄Cl x̂
<∼ fl

)]
> min

l∈{1,2,...,q}
E
[
Π
(

˜̄Cl x
∗ <∼ fl

)]
+ ρ

q

∑
l=1

E
[
Π
(

˜̄Cl x
∗ <∼ fl

)]
.

This contradicts the fact that x∗ is an optimal solution of the augmented minimax problem. 2

6.2. Necessity-Based Probabilistic Expectation Model (NPE Model)

Unlike the case discussed in the previous section, when the DM is pessimistic, the NPE
model is recommended, instead of the PPE model. This section is devoted to addressing how the
necessity-based probabilistic expectation (NPE) model based on (25) can be solved in the case of linear
membership functions.

Using the necessity-based probabilistic mean defined in (25), we consider another new decision
making model called NPE model and formulate the mathematical programming problem as follows:

[Necessity-based probabilistic expectation model (NPE model)]

maximize E
[

N
(

˜̄Cl x
<∼ fl

)]
, l = 1, 2, . . . , q

subject to x ∈ X.

 (29)

When q = 1, (29) is a single-objective problem. Otherwise, namely, when q ≥ 2, (29) is
a multi-objective problem in which a solution satisfying (strong) Pareto optimality, called a (strong)
Pareto optimal solution, is considered to be a reasonable optimal solution. We define (strong) Pareto
optimal solutions of (29). The concept of weak Pareto optimal solution for NPE model is defined
as follows:

Definition 18. (Weak Pareto optimal solution of NPE model)
x∗ ∈ X is said to be a weak Pareto optimal solution of the necessity-based probabilistic expectation model if and
only if there is no x ∈ X such that
E
[

N
(

˜̄Cl x
<∼ fl

)]
> E

[
N
(

˜̄Cl x∗
<∼ fl

)]
for all l ∈ {1, 2, . . . , q}.

As a stronger concept than weak Pareto optimal solutions, (strong) Pareto optimal solutions of (29)
is defined as follows:

Definition 19. ((Strong) Pareto optimal solution of NPE model)
x∗ ∈ X is said to be a (strong) Pareto optimal solution of the necessity-based probabilistic expectation model
if and only if there is no x ∈ X such that E

[
N
(

˜̄Cl x
<∼ fl

)]
≥ E

[
N
(

˜̄Cl x∗
<∼ fl

)]
for all l ∈ {1, 2, . . . , q},

and that E
[

N
(

˜̄Cl x
<∼ fl

)]
> E

[
N
(

˜̄Cl x∗
<∼ fl

)]
for at least one l ∈ {1, 2, . . . , q}.
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Scalarization-Based Problems for Obtaining a Pareto Optimal Solution

In order to obtain a (weak) Pareto optimal solution of NPE model, we consider the following
maximin problem, which is one of well-known scalarization methods for solving multi-objective
optimization problems:

[Maximin problem for NPE model]

maximize min
l∈{1,2,...,q}

E
[

N
(

˜̄Cl x
<∼ fl

)]
subject to x ∈ X.

 (30)

Similar to the case of PPE model discussed in the previous section, we obtain the following
proposition:

Proposition 3. (Weak Pareto optimality of the maximin problem for NPE model)
Let x∗ be an optimal solution of problem (30). Then, x∗ is a weak Pareto optimal solution of (29), namely, a weak
Pareto optimal solution for NPE model.

Since the proof of Proposition 3 is very similar to that of Proposition 1, we omit its proof. Similar
to the property of the optimal solution of problem (29), an optimal solution of (30) is not always
a (strong) Pareto optimal solution but only a weak Pareto optimal solution in general.

To find a solution satisfying (strong) Pareto optimality instead of weak Pareto optimality,
we consider the following augmented maximin problem.

[Augmented maximin problem for NPE model]

maximize min
l∈{1,2,...,q}

E
[

N
(

˜̄Cl x
<∼ fl

)]
+ ρ

q

∑
l=1

E
[

N
(

˜̄Cl x
<∼ fl

)]
subject to x ∈ X,

 (31)

where ρ is a sufficiently small positive constant, say 10−6.
Then, we obtain the following proposition:

Proposition 4. ((Strong) Pareto optimality of augmented maximin problem for NPE model)
Let x∗ be an optimal solution of problem (31). Then, x∗ is a (strong) Pareto optimal solution of (29), namely,
a (strong) Pareto optimal solution for NPE model.

We omit the proof of Proposition 4 because it is similar to that of Proposition 2.

7. Solution Algorithms

7.1. Solution Algorithm for the PPE Model

Now we discuss how to solve problem (28) in order to obtain a (strong) Pareto optimal solution for
the PPE model. Here, we focus on the case where all the membership functions of fuzzy numbers and
fuzzy goals are represented by linear membership functions. To be more specific, we restrict ourselves
to considering the case that the coefficients of objective function in (15) are triangular fuzzy random
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variables defined in (11), and that the membership function of the fuzzy goal G̃l for the lth objective
function is the following piecewise linear membership function, called a linear membership function:

µG̃l
(y) =


1 if y < f 1

l , l = 1, 2, . . . , q
y− f 0

l
f 1
l − f 0

l
if f 1

l ≤ y ≤ f 0
l

0 if y > f 0
l ,

(32)

where f 0
l and f 1

l are parameters whose values are determined by a DM. Figure 12 shows the
membership of fuzzy goal G̃l which is expressed by a linear membership function.

Figure 12. Linear membership function µG̃l
of a fuzzy goal G̃l .

From a practical aspect, it is important to show how to determine the values of parameters f 0
l and

f 1
l in the linear membership functions (32) of fuzzy goals G̃l , l = 1, 2, . . . , q. When a DM can easily set

the values of f 0
l and f 1

l , l = 1, 2, . . . , q, these values should be determined by the DM’s own idea or
choice. On the other hand, when it is difficult for a DM to determine the parameter values of fuzzy
goals, we recommend that the values of f 1

l and f 0
l are determined as follows:

f 1
l =

n

∑
j=1

rl

∑
k=1

plkdl jk x̂l∗
j

f 0
l = max

r∈{1,2,...,q}

n

∑
j=1

rl

∑
k=1

plkdl jk x̂r∗
j

 for l = 1, 2, . . . , q, (33)

where x̂l∗ denotes an optimal solution of the following lth optimization problem which has a single
objective function:

minimize
n

∑
j=1

rl

∑
k=1

plkdl jkxj

subject to x ∈ X

 for l = 1, 2, . . . , q. (34)

The above calculation method is similar to the Zimmermann’s method [48] which was originally
introduced for fuzzy (non-stochastic) linear programming.

We consider the case where the coefficients of the objective function are given as discrete triangular
fuzzy random variables. Assuming that µC̃l jk

and µG̃l
are given by (18) and (32), respectively, we can

show that the following theorem holds:
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Theorem 1. Assume that ˜̄Cl j is a discrete triangular fuzzy random variable whose realized values for events
are triangular fuzzy numbers characterized by (18), and that the membership function of each fuzzy goal G̃l is
characterized by (32) and (33). Then, the possibility-based probabilistic expectation (PPE) is calculated as

E
[
Π
(

˜̄Cl x
<∼ fl

)]
=

rl

∑
k=1

plk ·min
[
1, max

{
0, gΠ

lk (x)
}]

, l = 1, 2, . . . , q, (35)

where

gΠ
lk (x)

4
=

n

∑
j=1

(βl jk − dl jk)xj + f 0
l

n

∑
j=1

βl jkxj − f 1
l + f 0

l

, l = 1, 2, . . . , q, k = 1, 2, . . . , rl . (36)

Proof. The calculation of Π
(

C̃lkx <∼ fl

)
is done by dividing into three cases, namely, 1) Case 1:

If dlkx < f 1
l , 2) Case 2: If f 1

l ≤ dlkx ≤ f 0
l + γlkx, 3) Case 3: If dlkx > f 0

l + γlkx.

1. Case 1: If dlkx < f 1
l the value of Π

(
C̃lkx <∼ fl

)
is equal to 1, as shown in Figure 13.

2. Case 2: If f 1
l ≤ dlkx ≤ f 0

l + γlkx, the value of Π
(

C̃lkx <∼ fl

)
is calculated as the ordinate of the

crossing point between the membership function of fuzzy goal G̃l and the objective function Clkx,
as shown in Figure 14. The abscissa of the crossing point of two functions (µC̃lkx and µG̃l

) is
obtained by solving the equation

1− dlkx− y
βlkx

=
y− f 0

l
f 1
l − f 0

l
, l = 1, 2, . . . , q, k = 1, 2, . . . , rl . (37)

Then, the solution yΠ∗
lk of (37) is

yΠ∗
lk =

f 1
l

n

∑
j=1

βl jkxj + ( f 0
l − f 1

l )
n

∑
j=1

dl jkxj

n

∑
j=1

βl jkxj − f 1
l + f 0

l

, l = 1, 2, . . . , q, k = 1, 2, . . . , rl .

Consequently, the ordinate of the crossing point is calculated as

µG̃l

(
yΠ∗

lk

)
= µC̃lkx(y

Π∗
lk ) =

n

∑
j=1

(βl jk − dl jk)xj + f 0
l

n

∑
j=1

βl jkxj − f 1
l + f 0

l

(
4
= gΠ

lk (x)
)

for l = 1, 2, . . . , q, k = 1, 2, . . . , rl .

3. Case 3: If dlkx > f 0
l + γlk, the value of Π

(
C̃lkx <∼ fl

)
is equal to 0, as shown in Figure 15.
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Therefore, the computational results of the above three cases can be integrated and represented as
a single form

Π
(

C̃lkx <∼ fl

) 4
= ΠC̃lkx(G̃l)

=


1 if dlkx < f 1

l

gΠ
lk (x) if f 1

l ≤ dlkx ≤ f 0
l + γlkx

0 if dlkx > f 0
l + γlkx

= min
[
1, max

{
0, gΠ

lk (x)
}]

.

Consequently, E
[
Π
(

˜̄Cl x
<∼ fl

)]
is calculated based on Definition 14 as follows:

E
[
Π
(

˜̄Cl x
<∼ fl

)] 4
=

rl

∑
k=1

plk ·Π
(

C̃lkx <∼ fl

)

=
rl

∑
k=1

plk ·ΠC̃lkx(G̃l)

=
rl

∑
k=1

plk ·min
[
1, max

{
0, gΠ

lk (x)
}]

, l = 1, 2, . . . , q.

2

Figures 13–15 illustrate the degrees of possibility that the fuzzy goal G̃l is fulfilled under the
possibility distribution µC̃lkx, each of which is corresponding to Case 1, Case 2 and Case 3, respectively.

In each figure, the bold line expresses the value of min
{

µC̃lkx(y), µG̃l
(y)
}

. In Figure 13, the maximum
of the bold line is 1. In Figure 14, the maximum of the bold line is between 0 and 1. In Figure 15,
the maximum of the bold line is 0.

Figure 13. Case 1 in the proof of Theorem 1.

Figure 14. Case 2 in the proof of Theorem 1.
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Figure 15. Case 3 in the proof of Theorem 1.

From Proposition 2, the optimal solution of augmented maximin problem (28) is a (strong) Pareto
optimal solution. In the case of linear membership functions, the augmented maximin problem (28)
for the PPE model is formulated using (35) and (36) as follows:

[Augmented maximin problem for PPE model (linear membership function case)]

maximize zΠ(x)
4
= min

l∈{1,2,...,q}

rl

∑
k=1

plk ·min
[
1, max

{
0, gΠ

lk (x)
}]

+ρ
q

∑
l=1

rl

∑
k=1

plk ·min
[
1, max

{
0, gΠ

lk (x)
}]

subject to x ∈ X,


(38)

where gΠ
lk is given by (36), namely,

gΠ
lk (x)

4
=

n

∑
j=1

(βl jk − dl jk)xj + f 0
l

n

∑
j=1

βl jkxj − f 1
l + f 0

l

, l = 1, 2, . . . , q, k = 1, 2, . . . , rl ,

and ρ is a sufficiently small positive constant.
Now we summarize an algorithm for obtaining a (strong) Pareto optimal solution of

possibility-based probabilistic expectation model (PPE model) in the multi-objective case.

[An algorithm for obtaining a (strong) Pareto optimal solution of PPE model (linear membership
function case)]

Step 1: (Calculation of possible objective function values)
Using a linear programming technique, solve individual minimization problems (34) for
l = 1, 2, . . . , q, namely

minimize
n

∑
j=1

rl

∑
k=1

plkdl jkxj

subject to x ∈ X

 for l = 1, 2, . . . , q,

and obtain optimal solutions xl∗ of the lth minimization problems for l = 1, 2, . . . , q.
Step 2: (Setting of membership functions of fuzzy goals)

Ask the DM to specify the values of f 0
l and f 1

l , l = 1, 2, . . . , q. If the DM has no idea of how f 0
l
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and f 1
l , l = 1, 2, . . . , q are determined, then the DM can set the following values calculated by

(33) as

f 1
l =

n

∑
j=1

rl

∑
k=1

plkdl jk x̂l∗
j

f 0
l = max

r∈{1,2,...,q}

n

∑
j=1

rl

∑
k=1

plkdl jk x̂r∗
j

 for l = 1, 2, . . . , q,

using the optimal solutions xl∗ obtained in Step 1.
Step 3: (Derivation of a strong Pareto optimal solution of PPE model)

Using a nonlinear programming technique, solve the following augmented maximin
problem (38):

maximize min
l∈{1,2,...,q}

rl

∑
k=1

plk ·min
[
1, max

{
0, gΠ

lk (x)
}]

+ρ
q

∑
l=1

rl

∑
k=1

plk ·min
[
1, max

{
0, gΠ

lk (x)
}]

subject to x ∈ X,

where

gΠ
lk (x)

4
=

n

∑
j=1

(βl jk − dl jk)xj + f 0
l

n

∑
j=1

βl jkxj − f 1
l + f 0

l

, l = 1, 2, . . . , q, k = 1, 2, . . . , rl ,

and ρ is a sufficiently small positive constant.

It should be noted here that (38) is a nonlinear programming problem (NLPP) with linear
constraints in which the objective function has points at which the gradient is not calculated. In such
a case, a certain heuristic or metaheuristic algorithm can be used to solve the problem. Another
applicable solution method is the Nelder-Mead method [49] which can solve a linear-constrained
NLPPs without any information on the derivative of the objective function and constraints.

7.2. Solution Algorithm for the NPE Model

When a DM is pessimistic for the attained objective function values, a necessity-based probabilistic
expectation (NPE) model is recommended. In a manner similar to Theorem 1 which holds for the PPE
model, we obtain the following theorem with respect to the NPE model:

Theorem 2. Assume that ˜̄Cl j is a discrete triangular fuzzy random variable whose realized values for events
are triangular fuzzy numbers characterized by (18), and that the membership function of each fuzzy goal G̃l is
characterized by (32) and (33). Then, the necessity-based probabilistic expectation defined in (25) is calculated as

E
[

N
(

˜̄Cl x
<∼ fl

)]
=

rl

∑
k=1

plk ·min
[
1, max

{
0, gN

lk (x)
}]

, l = 1, 2, . . . , q, (39)

where

gN
lk (x)

4
=

−
n

∑
j=1

dl jkxj + f 0
l

n

∑
j=1

γl jkxj − f 1
l + f 0

l

, l = 1, 2, . . . , q, k = 1, 2, . . . , rl . (40)
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Proof. From the definition of necessity measure, the calculation of N
(

C̃lkx <∼ fl

)
is done by dividing

by three cases, namely, 1) Case 1: If dlkx < f 1
l , 2) Case 2: If f 1

l ≤ dlkx ≤ f 0
l + γlkx, 3) Case 3:

If dlkx > f 0
l + γlkx.

1. Case 1: If (dlk + γlk)x < f 1
l , the value of N

(
C̃lkx <∼ fl

)
is equal to 1, as shown in Figure 16.

2. Case 2: If f 1
l − γlkx ≤ dlkx ≤ f 0

l + γlkx, the value of N
(

C̃lkx <∼ fl

)
is calculated as the ordinate of

the crossing point between the membership functions of fuzzy goal G̃l and the objective function
Clkx, as shown in Figure 17. The abscissa of the crossing point of two functions (µC̃lkx and µG̃l

) is
obtained by solving the equation

y− dlkx
γlkx

=
y− f 0

l
f 1
l − f 0

l
, l = 1, 2, . . . , q, k = 1, 2, . . . , rl . (41)

Then, the solution of (41) is

yN∗
lk =

f 0
l

n

∑
j=1

γl jkxj + ( f 0
l − f 1

l )
n

∑
j=1

dl jkxj

n

∑
j=1

γl jkxj − f 1
l + f 0

l

, l = 1, 2, . . . , q, k = 1, 2, . . . , rl .

Consequently, the ordinate of the crossing point is calculated as

µG̃l

(
yN∗

lk

)
= 1− µC̃lkx(y

N∗
lk ) =

−
n

∑
j=1

dl jkxj + f 0
l

n

∑
j=1

γl jkxj − f 1
l + f 0

l

(
4
= gN

lk (x)
)

for l = 1, 2, . . . , q, k = 1, 2, . . . , rl .

3. Case 3: If dlkx > f 0
l , the value of N

(
C̃lkx <∼ fl

)
is equal to 0, as shown in Figure 18.

The computational results of the three cases above can be integrated and expressed as a single form

N
(

C̃lkx <∼ fl

) 4
= NC̃lkx(G̃l)

=


1 if dlkx < f 1

l − γlkx

gN
lk (x) if f 1

l − γlkx ≤ dlkx ≤ f 0
l + γlkx

0 if dlkx > f 0
l

= min
[
1, max

{
0, gN

lk (x)
}]

.

Consequently, the necessity-based probabilistic expectation defined in (25) is calculated as

E
[

N
(

˜̄Cl x
<∼ fl

)] 4
=

rl

∑
k=1

plk · N
(

˜̄Clkx <∼ fl

)
=

rl

∑
k=1

plk · NC̃lkx(G̃l)

=
rl

∑
k=1

plk ·min
[
1, max

{
0, gN

lk (x)
}]

, l = 1, 2, . . . , q.

2
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Figures 16–18 illustrate the degrees of necessity that the fuzzy goal G̃l is fulfilled under the
possibility distribution µC̃lkx, each of which is corresponding to Case 1, Case 2 and Case 3, respectively.

In each figure, the bold line expresses the values of max{1 − µC̃lkx(yl), µG̃l
(yl)}. In Figure 16,

the minimum of the bold line is 1. In Figure 17, the minimum of the bold line is between 0 and 1.
In Figure 18, the minimum of the bold line is 0.

Figure 16. Case 1 in the proof of Theorem 2.

Figure 17. Case 2 in the proof of Theorem 2.

Figure 18. Case 3 in the proof of Theorem 2.

From Proposition 4, the optimal solution of augmented maximin problem (31) is a (strong) Pareto
optimal solution of NPE model. In the case of linear membership functions, the augmented maximin
problem (42) for NPE model is formulated using (39) and (40) as follows:
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[Augmented maximin problem for the NPE model (linear membership function case)]

maximize zN(x)
4
= min

l∈{1,2,...,q}

rl

∑
k=1

plk ·min
[
1, max

{
0, gN

lk (x)
}]

+ρ
q

∑
l=1

rl

∑
k=1

plk ·min
[
1, max

{
0, gN

lk (x)
}]

subject to x ∈ X,


(42)

where gN
lk (x) is given by (40), namely,

gN
lk (x)

4
=

−
n

∑
j=1

dl jkxj + f 0
l

n

∑
j=1

γl jkxj − f 1
l + f 0

l

, l = 1, 2, . . . , q, k = 1, 2, . . . , rl ,

and ρ is a sufficiently small positive constant.
Now we summarize an algorithm for obtaining a (strong) Pareto optimal solution of the

necessity-based probabilistic expectation model (NPE model) in the multi-objective case.

[An algorithm for obtaining a (strong) Pareto optimal solution of NPE model (linear membership
function case)]

Step 1: (Calculation of possible objective function values)
By using a linear programming technique, solve individual minimization problems (34) for
l = 1, 2, . . . , q, namely

minimize
n

∑
j=1

rl

∑
k=1

plkdl jkxj

subject to x ∈ X

 for l = 1, 2, . . . , q,

and obtain optimal solutions xl∗ of the lth minimization problems for l = 1, 2, . . . , q.
Step 2: (Setting of membership functions of fuzzy goals)

Ask the DM to specify the values of f 0
l and f 1

l , l = 1, 2, . . . , q. If the decision has no idea of how
f 0
l and f 1

l , l = 1, 2, . . . , q are determined, the DM could set the values calculated by (33) as

f 1
l =

n

∑
j=1

rl

∑
k=1

plkdl jk x̂l∗
j

f 0
l = max

r∈{1,2,...,q}

n

∑
j=1

rl

∑
k=1

plkdl jk x̂r∗
j

 for l = 1, 2, . . . , q,

using the optimal solutions xl∗ obtained in Step 1.
Step 3: (Derivation of a (strong) Pareto optimal solution of the NPE model)

Solve the following augmented maximin problem (42) using a nonlinear programming technique:

maximize min
l∈{1,2,...,q}

rl

∑
k=1

plk ·min
[
1, max

{
0, gN

lk (x)
}]

+ρ
q

∑
l=1

rl

∑
k=1

plk ·min
[
1, max

{
0, gN

lk (x)
}]

subject to x ∈ X,
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where gN
lk (x) is given by (40), namely,

gN
lk (x)

4
=

−
n

∑
j=1

dl jkxj + f 0
l

n

∑
j=1

γl jkxj − f 1
l + f 0

l

, l = 1, 2, . . . , q, k = 1, 2, . . . , rl ,

and ρ is a sufficiently small positive constant.

Similar to the case of PPE model in the previous section, (42) is a nonlinear programming problem
with linear constraints, which can be solved by a certain nonlinear programming technique.

8. Numerical Experiments

In order to demonstrate feasibility and efficiency of the proposed model, we consider an example
of agriculture production problems. One of classical approaches to crop planning problems is stochastic
programming [1] using several stochastic events or scenarios related to climate and/or economic
conditions. However, it is sometimes difficult to definitely estimate the exact values of the profit and
the working time in crop planning problems because of lack of data and/or some factors such as
human skills. Zeng et al. [50] considered a fuzzy multi-objective programming approach to a crop
planning problem. In this section, we apply the proposed model to solve a crop planning problem in
a fuzzy stochastic environment where the profit and the working times are given as discrete fuzzy
random variables.

In order to solve the problem, we employ ‘constrOptim’ function which is prepared as a standard
function in the R language [33] and is often used as a solver for NLPPs with linear constraints. It should
be stressed here that some state-of-the-art algorithms based on heuristics or metaheuristics [51] may
solve problems more efficiently. Nonetheless, we do not propose a specific solution algorithm for the
proposed model in this article, because the proposal of a specific solution algorithm is not a purpose of
this paper. The R language is easy to use for many researchers and practical persons, even if they are
not good at writing their own programming codes.

8.1. Crop Area Planning Problem Under a Fuzzy Random Environment

Assume that an agricultural company (DM) produces 5 kinds of summer vegetables (bell pepper,
cucumber, eggplant, tomato and watermelon). We consider the following fuzzy random LPP with
bi-objective functions (q = 2), 5 decision variables (n = 5) and 5 constraints (m = 5):

maximize ˜̄C11x1 +
˜̄C12x2 +

˜̄C13x3 +
˜̄C14x4 +

˜̄C15x5

minimize ˜̄C21x1 +
˜̄C22x2 +

˜̄C23x3 +
˜̄C24x4 +

˜̄C25x5

subject to a11x1 + a12x2 + a13x3 + a14x4 + a15x5 ≤ b1

a21x1 + a22x2 + a23x3 + a24x4 + a25x5 ≤ b2

a31x1 + a32x2 + a33x3 + a34x4 + a35x5 ≤ b3

a41x1 + a42x2 + a43x3 + a44x4 + a45x5 ≤ b4

a51x1 + a52x2 + a53x3 + a54x4 + a55x5 ≤ b5

xj ≥ 0, j = 1, 2, . . . , 5,


(43)

where the first objective function represents the profit (×10 thousand yen) earned by producing and
selling vegetables, and the second one expresses the total working time (×8 h). Let xj, j = 1, 2, . . . , 5
denote the growing area (×103 m2) of vegetables j = 1 (bell pepper), j = 2 (cucumber), j = 3 (eggplant),
j = 4 (tomato) and j = 5 (watermelon), respectively.

In the objective function, let ˜̄C1j and ˜̄C2j be the profit and the working time per unit of vegetables
j = 1, 2, . . . , 5, respectively. Assume that ˜̄C1j and ˜̄C2j, j = 1, 2, . . . , 5 are estimated as discrete triangular
fuzzy random variables. On the basis of the research results on relationships between vegetable
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diseases and humidity [52], we assume that the number of events (scenarios) related to the 1st objective
function and the second one are 5 (r1 = r2 = 5). To be more specific, the set of events are given as
Ω1 = {ω11, ω12, . . . , ω15} and Ω2 = {ω21, ω22, . . . , ω25} as shown in Table 1.

Table 1. Events related to the 1st and 2nd objective functions.

Event Probability Situation

ω11 p11 = 0.50 average annual temperature is normal.
ω12 p12 = 0.25 average annual temperature is high.
ω13 p13 = 0.15 average annual temperature is low.
ω14 p14 = 0.06 it happens an epidemic disease for cucurbitaceous vegetables such

as cucumber and watermelon, due to a very high-temperature.
ω15 p15 = 0.04 it happens an epidemic disease for solanaceae vegetables

such as bell pepper, eggplant and tomato, due to a very low-temperature.

ω21 p21 = 0.50 average annual humidity is normal.
ω22 p22 = 0.20 average annual humidity is high.
ω23 p23 = 0.16 average annual humidity is low.
ω24 p24 = 0.08 it happens an epidemic disease for cucurbitaceous vegetables such

as cucumber and watermelon, caused by very low-humidity.
ω25 p25 = 0.06 it happens an epidemic disease for solanaceae vegetables such

as bell pepper, eggplant and tomato, due to a very low-temperature.

Tables 2 and 3 show the parameter values of the realized fuzzy numbers C̃1jk =(d1jk, β1jk, γ1jk)tri
and C̃2jk =(d2jk, β2jk, γ2jk)tri, j = 1, 2, . . . , 5, k = 1, 2, . . . , 5, which characterize fuzzy random variables
˜̄C1j and ˜̄C2j, j = 1, 2, . . . , 5, respectively. The values of d1jk are given in Table 2, each of which is based on

the statistical data in 2007 by the Japanese Ministry of Agriculture, Forestry and Fisheries (JMAFF) [53].
The values of d2jk are given in Table 3, each of which is based on the report of Mekonnen et al. [54].
By taking into consideration the degree of risk of producing different vegetables, it is assumed that the
parameter values of βl jk and γl jk for j = 1, 2, 5 are larger than those for j = 3, 4.

Table 2. Parameters of C̃1jk in the 1st objective function.

Parameter k = 1 k = 2 k = 3 k = 4 k = 5
d11k 89.50 95.10 83.80 97.50 61.80
d12k 118.50 118.80 117.90 79.60 117.00
d13k 122.60 123.60 125.60 113.30 83.40
d14k 90.30 82.60 93.10 85.10 66.10
d15k 25.80 28.90 24.40 21.50 23.70
γ11k 8.20 8.60 7.40 10.20 5.70
γ12k 10.70 10.90 10.60 8.50 11.20
γ13k 9.00 8.70 8.80 8.70 5.90
γ14k 8.10 7.60 8.40 7.30 5.80
γ15k 2.60 3.20 2.50 2.10 2.20
β11k 11.40 11.80 11.30 12.20 8.60
β12k 10.70 10.30 10.20 7.10 9.70
β13k 9.70 9.10 9.80 8.60 5.10
β14k 6.40 6.20 6.40 5.90 5.00
β15k 3.90 4.20 3.60 3.30 3.60
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Table 3. Parameters of C̃2jk in the 2nd objective function.

Parameter k = 1 k = 2 k = 3 k = 4 k = 5
d21k 97.00 100.20 90.30 102.50 124.50
d22k 116.50 114.60 119.50 172.50 121.90
d23k 131.10 133.80 128.10 146.40 172.50
d24k 88.60 86.10 93.50 89.90 139.70
d25k 27.60 23.10 28.10 31.40 29.50
β21k 18.40 18.80 16.90 20.20 23.60
β22k 11.70 11.40 12.20 17.90 13.20
β23k 14.70 15.60 12.90 15.90 21.80
β24k 5.40 5.20 5.80 5.30 7.20
β25k 5.10 4.80 5.40 6.30 5.70
γ21k 6.80 7.10 6.80 8.10 11.70
γ22k 19.10 19.20 19.90 27.80 20.50
γ23k 6.60 7.20 6.60 7.00 8.80
γ24k 12.30 12.70 12.10 12.60 26.70
γ25k 3.30 2.90 3.70 3.80 3.50

As shown in problem (43), there are five constraints in the crop planning problem. Tables 4 and 5
shows the coefficients of these constraints. The 1st constraint reflects that there is the upper limit of the
total cost of cropping, sales, etc. The unit of a1j and b1 in the 1st constraint is converted from a unit area
to 10 thousand yen, based on the statistical data in 2007 by JMAFF [53]. The 2nd constraint and the 3rd
one represents the upper limit and the lower limit of the total growing area of vegetables, respectively.
The 4th and 5th constraints represent that the agricultural company signs contracts with two major
customers for selling certain amounts of specific vegetables. In these two constraints, the unit for these
constraints is converted from area to kilo gram, based on the statistical data in 2007 by JMAFF [53].

Table 4. Left-hand side coefficients in constraints.

LHS Value j = 1 j = 2 j = 3 j = 4 j = 5
a1j 53.20 58.80 57.70 63.70 33.00
a2j 1.00 1.00 1.00 1.00 1.00
a3j −1.00 −1.00 −1.00 −1.00 −1.00
a4j −53.90 −80.50 −75.30 0.00 0.00
a5j 0.00 0.00 0.00 −75.00 −48.40

Table 5. Right-hand side values in constraints.

RHS Value i = 1 i = 2 i = 3 i = 4 i = 5
bi 30,000.00 500.00 −300.00 −10,500.00 −7000.00

In problem (43), the 1st objective function is the profit to be maximized. Since the algorithm
proposed in Section 5 is valid for minimization problems, we transform the maximization problem
into a minimization problem by multiplying the original 1st objective function by −1 as follows:

minimize − ˜̄C11x1 − ˜̄C12x2 − ˜̄C13x3 − ˜̄C14x4 − ˜̄C15x5

minimize ˜̄C21x1 +
˜̄C22x2 +

˜̄C23x3 +
˜̄C24x4 +

˜̄C25x5

subject to a11x1 + a12x2 + a13x3 + a14x4 + a15x5 ≤ b1

a21x1 + a22x2 + a23x3 + a24x4 + a25x5 ≤ b2

a31x1 + a32x2 + a33x3 + a34x4 + a35x5 ≤ b3

a41x1 + a42x2 + a43x3 + a44x4 + a45x5 ≤ b4

a51x1 + a52x2 + a53x3 + a54x4 + a55x5 ≤ b5

xj ≥ 0, j = 1, 2, . . . , 5.


(44)



Symmetry 2017, 9, 254 30 of 34

In order to utilize the results obtained in the previous sections, we transform maximization into

minimization of the 1st objective function by setting ˜̄C
′
ij
4
= − ˜̄Cij as follows:

minimize ˜̄C
′
11x1 +

˜̄C
′
12x2 +

˜̄C
′
13x3 +

˜̄C
′
14x4 +

˜̄C
′
15x5

minimize ˜̄C21x1 +
˜̄C22x2 +

˜̄C23x3 +
˜̄C24x4 +

˜̄C25x5

subject to a11x1 + a12x2 + a13x3 + a14x4 + a15x5 ≤ b1

a21x1 + a22x2 + a23x3 + a24x4 + a25x5 ≤ b2

a31x1 + a32x2 + a33x3 + a34x4 + a35x5 ≤ b3

a41x1 + a42x2 + a43x3 + a44x4 + a45x5 ≤ b4

a51x1 + a52x2 + a53x3 + a54x4 + a55x5 ≤ b5

xj ≥ 0, j = 1, 2, . . . , 5,


(45)

where ˜̄C
′
ij are discrete triangular fuzzy random variables expressed as C̃

′
ijk = (d

′
ijk, β

′
ijk, γ

′
ijk)tri. Then,

the following remark should be noted:

Remark 1. Let ˜̄C and ˜̄C
′
ij be L-R fuzzy random variables expressed as C̃ijk = (dijk, βijk, γijk)tri and C̃

′
ijk =

(d
′
ijk, β

′
ijk, γ

′
ijk)tri. If ˜̄C

′
ij = − ˜̄Cij, it holds that

d
′
ijk = −dijk, β

′
ijk = γijk, γ

′
ijk = βijk.

Then, the values of parameters in the 1st objective function as shown in Table 2 can be replaced
by Table 6, where we use the property of triangular fuzzy random variables described in Remark 1.

Based on the algorithm proposed in the previous section, a Pareto optimal solution in the crop
planning problem is obtained. Firstly, the fuzzy goals for each objective function are given, by solving
LPPs in Step 1 and computing f 1

l and f 0
l for l = 1, 2 in Step 2, as ( f 1

1 , f 0
1 ) = (−57026.56,−19396.41)

and ( f 1
2 , f 0

2 ) = (20447.14, 63438.03). In Step 3, based on the DM’s preference, the augmented
maximin problems (38) and/or (42) are solved, which corresponds to the possibility-based probabilistic
expectation model (PPE model) and the necessity-based probabilistic expectation model (NPE model),
respectively. Since the obtained solutions through the function in the R language do not always
satisfy global optimality but local optimality, we apply this function to 100 initial solutions that are
randomly generated, and select the best solution among 100 local optimal solutions. Thus, we obtain
the following optimal solutions for PPE model and NPE model:

xΠ = (65.74, 240.25, 0.00, 4.87, 189.10), zΠ(xΠ) = 0.5693,

xN = (0.13, 163.08, 50.35, 114.48, 134.89), zN(xN) = 0.4668,

where xΠ and xN are optimal solutions of (38) and (42), respectively, and zΠ(xΠ) and zN(xN) are
their objective function values, respectively. From the computational results, the possibility-based
probabilistic expectation model (PPE model) tends to crop high-risk high-return vegetables such as
bell pepper, cucumber and watermelon, and few areas are assigned to other vegetables. On the other
hand, the necessity-based probabilistic expectation model (NPE model) has a tendency to increase the
cropping areas of low-risk low-return vegetables such as tomato and to decrease those of high-risk
low-return vegetables such as bell pepper.
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Table 6. Parameters of C̃
′

1jk(
4
= −C̃1jk) in the 1st objective function.

Parameter k = 1 k = 2 k = 3 k = 4 k = 5
d
′

11k −89.50 −95.10 −83.80 −97.50 −61.80
d
′

12k −118.50 −118.80 −117.90 −79.60 −117.00
d
′

13k −122.60 −123.60 −125.60 −113.30 −83.40
d
′

14k −90.30 −82.60 −93.10 −85.10 −66.10
d
′

15k −25.80 −28.90 −24.40 −21.50 −23.70
β
′

11k 11.40 11.80 11.30 12.20 8.60
β
′

12k 10.70 10.30 10.20 7.10 9.70
β
′

13k 9.70 9.10 9.80 8.60 5.10
β
′

14k 6.40 6.20 6.40 5.90 5.00
β
′

15k 3.90 4.20 3.60 3.30 3.60
γ
′

11k 8.20 8.60 7.40 10.20 5.70
γ
′

12k 10.70 10.90 10.60 8.50 11.20
γ
′

13k 9.00 8.70 8.80 8.70 5.90
γ
′

14k 8.10 7.60 8.40 7.30 5.80
γ
′

15k 2.60 3.20 2.50 2.10 2.20

8.2. Computational Times for Different Size Problems

As we mentioned before, we do not propose a specific solution algorithm for the proposed model,
because it may take much time and efforts for researchers or practical persons to write programming
codes even if we propose new solution algorithms.

Instead of proposing a specific solution algorithm, we use the R language and show the R language
can solve problems with hundreds of decision variables in a practical computational time. We expect
that the use of the R language can promote the use of our model for solving real-world problems in
fuzzy stochastic environments.

In order to show the applicability of the R language to our model in terms of computational time,
we conduct additional experiments using 5 numerical examples in which the number of decision
variables and that of constraint are different. To be more precise, the numbers of decision variables in
7 examples are 10, 30, 60, 100, 150, 200, 250, respectively. The number of constraints in each example is
set to be the half number of decision variables.

To focus on the effect of the number of decision variables and that of constraints, the number of the
objective functions and that of events (scenarios) are fixed. To be more specific, we fix the number of the
objective functions and that of events (scenarios) as 5 (q = 5) and 10 (rl = 10, l = 1, 2, . . . , 5), respectively.

The values of parameters dl jk are randomly chosen in {−5,−4, . . . , 5}, βl jk and γl jk are the absolute
values of the products of dl jk and values randomly chosen in [0.1, 0.2] for l = 1, 2, . . . , 5, j = 1, 2, . . . , n,
k = 1, 2, . . . , 10. As for the constraints, the values of aij in matrix A are randomly chosen in {1, 2, . . . , 10},
and the values of bi are given as the sum of elements in ai for any i = 1, 2, . . . , m, j = 1, 2, . . . , n. Similar
to the experiment in Section 8.1, we used constrOptim function in the R language and conducted 30
runs in which initial solutions are randomly generated. We conducted this numerical experiment
using R version 3.2.0 on iMac (OS X Yosemite version 10.10.3, CPU: 3.4 GHz Intel Core i7, RAM: 32 GB
1600 MHz DDR3). Table 7 shows computational times for solving 7 problem instances.

Table 7. Computational times for different size problems.

No. of Decision Variable 10 30 60 100 150 200 250
CPU Times (s) 34.08 106.26 116.95 309.49 515.94 741.12 769.94

Figure 19 shows the relationship between the number of decision variables and computational
times obtained in Table 7. It is shown from this graph that the computational time linearly increases as
the numbers of decision variables and constraints increase.
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Figure 19. Relationship between the number of decision variables and computational times.

9. Conclusions

In this paper, we have considered LPPs in which the coefficients of the objective functions are
discrete fuzzy random variables. Incorporating possibility and necessity measures into a probability
measure, we have proposed new decision making models in fuzzy stochastic environments, called
possibility/necessity-based probabilistic expectation model (PPE/NPE model), which is to maximize
the expectation of the degree of possibility or necessity that the objective function values satisfy the
given fuzzy goals. It has been shown that the formulated problems based on the proposed models
can be transformed into deterministic nonlinear (multi-objective) programming problems, especially,
into more simple problems when linear membership functions are used. In addition, we have defined
(strong) Pareto optimal solutions of the proposed models in the multi-objective case, and proposed
an algorithm for obtaining a solution satisfying (strong) Pareto optimality. In order to show how the
proposed model can be applied to real-world problems, we have conducted a numerical experiment
with an agriculture production problem. We also have demonstrated that a standard function in the
R language is applicable to solve the problems with hundreds of decision variables in a practical
computational time.

In the near future, we will show a generalized variance minimization model which is an extended
version discussed in the previous study [32]. Furthermore, some applications of the proposed models
to real-world problems will be discussed elsewhere.
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