379 research outputs found

    Big Data Now, 2015 Edition

    Get PDF
    Now in its fifth year, O’Reilly’s annual Big Data Now report recaps the trends, tools, applications, and forecasts we’ve talked about over the past year. For 2015, we’ve included a collection of blog posts, authored by leading thinkers and experts in the field, that reflect a unique set of themes we’ve identified as gaining significant attention and traction. Our list of 2015 topics include: Data-driven cultures Data science Data pipelines Big data architecture and infrastructure The Internet of Things and real time Applications of big data Security, ethics, and governance Is your organization on the right track? Get a hold of this free report now and stay in tune with the latest significant developments in big data

    Towards the Co-Evolution of Models and Artefacts of Industrial Tools Through External Views

    Get PDF
    Modern software systems comprise multiple models. When these models are changed, interdependent models must be evolved accordingly. Manually managing this co-evolution of models is tedious and error-prone. Moreover, other interdependent artefacts, such as persisted states of industrial software applications, must co-evolve accordingly. Automated consistency preservation allows for efficiently managing the co-evolution of models. However, while state-of-the-art approaches operate delta-based, typical software applications persist changes state-based without conforming to explicit metamodels. Additionally, software applications may persist changes infrequently, even though interdependent models might be concurrently modified. As such, current approaches are insufficient for artefacts of industrial tools. To address these issues, we propose an approach for the co-evolution of models and artefacts of industrial tools by treating these artefacts as external views on the models

    BIM Integrated and Reference Process-based Simulation Method for Construction Project Planning

    Get PDF
    Die Verwendung von Simulationen zur Unterstützung traditioneller Planungsverfahren für Bauprojekte hat viele Vorteile, die in verschiedenen akademischen Forschungen vorgestellt wurden. Viele Anwendungen haben erfolgreich das Potenzial der Simulationsmethode zur Verbesserung der Qualität der Projektplanung demonstriert. Doch eine breite Anwendung der Simulationsmethoden zur Unterstützung der Planung von Bauprojekten konnte sich in der Praxis bis zum jetzigen Zeitpunkt nicht durchsetzen. Aufgrund einiger großer Hindernisse und Herausforderungen ist der Einsatz im Vergleich zu anderen Branchen noch sehr begrenzt. Die Komplexität sowie die dynamischen Wechselprozesse der unterschiedlichen Bauvorhaben stellen die erste Herausforderung dar.Die Anforderungen machen es sehr schwierig die verschieden Situationen realistisch zu modellieren und das Verhalten von Bauprozessen und die Interaktion mit den zugehörigen Ressourcen für reale Bauvorhaben darzustellen. Das ist einer der Gründe für den Mangel an speziellen Simulationswerkzeugen in der Bauprojektplanung. Die zweite Herausforderung besteht in der großen Menge an Projektinformationen, die in das Simulationsmodell integriert und während des gesamten Lebenszyklus des Projekts angepasst werden müssen. Die Erstellung von Simulationsmodellen, Simulationsszenarien sowie die Analyse und Verifizierung der Simulationsergebnisse ist langwierig. Ad-hoc Simulation sind daher nicht möglich. Zur Erstellung zuverlässiger Simulationsmodelle sind daher umfangreiche Ressourcen und Mitarbeiter mit speziellen Fachwissen erforderlich. Die vorgestellten Herausforderungen verhindern die breite Anwendung der Simulationsmethode zur Unterstützung der Bauprojektplanung und das Einsetzen der Software als wesentlicher Bestandteil des Arbeitsablaufes für die Bauplanung in der Praxis. Die Forschungsarbeit in dieser Arbeit befasst sich mit diesen Herausforderungen durch die Entwicklung eines Ansatzes sowie einer Plattform für die schnelle Aufstellung von Simulationsmodellen für Bauprojekte. Das Hauptziel dieser Forschung ist die Entwicklung eines integrierten und referenzmodellbasierten BIM Simulationsansatz zur Unterstützung der Planung von Bauprojekten und die Möglichkeit der Zusammenarbeit aller am Planungs- und Simulationsprozess beteiligten Akteure. Die erste Herausforderung wird durch die Einführung eines RPM-Konzepts (Reference Process Model) durch die Modellierung von Konstruktionsprozessen unter Verwendung von Business Process Modeling and Notation (BPMN) angegangen. Der Vorteil der RPM Modelle ist das sie bearbeitet und modifiziert können und dass sie automatisch als einsatzbereite Module in Simulationsmodelle umgewandelt werden können. Die RPM-Modelle enthalten auch Informationen zu Ressourcenanforderungen und andere verwandte Informationen für verschiedene Baubereiche mit unterschiedlichen Detaillierungsgraden. Die Verwendung von BPMN hat den Vorteil, dass die Simulationsmodellierung für das Projektteam, einschließlich derjenigen, die sich nicht mit der Simulation auskennen, flexibler, interoperabler und verständlicher ist. Bei diesem Ansatz ist die Modellierung von Referenzprozessmodellen vollständig von den Simulationskernkomponenten getrennt, um das Simulations-Toolkit generisch und erweiterbar für verschiedenste Konstruktionsbereiche wie Gebäude und Brücken. Der vorgestellte Forschungsansatz unterstützt die kontinuierliche Anwendung von Simulationsmodellen während des gesamten Projektlebenszyklus. Die Simulationsmodelle, die zur Unterstützung der Planung in der frühen Entwurfsphase erstellt werden, können von Simulationsexperten während der gesamten Planungs- und Bauphase weiter ausgebaut und aktualisiert werden. Die zweite Herausforderung wird durch die direkte Integration der Building Information Modeling (BIM) -Methode in die Simulationsmodellierung auf der Grundlage des Industry Foundation Classes-IFC (ISO 16739) , dem am häufigsten verwendeten BIM-Austauschformat, angegangen. Da die BIM-Modelle einen wichtigen Teil der Eingabeinformationen von Simulationsmodellen enthalten, können sie als Grundlage für die Visualisierung von Ergebnissen in Form von 4D-BIM-Modellen verwendet werden. Diese Integration ermöglicht die schnelle und automatische Filterung und Extraktion sowie die Umwandlung notwendiger Informationen aus BIM Entwurf-Modellen. Um die Erstellung detaillierter Projektmodelle zu beschleunigen, wurde eine spezielle Methode für die halbautomatische Top-Down-Detaillierung von Projektstammmodelle entwickelt, die notwendige Eingangsdaten für die Simulationsmodelle sind. Diese Methode bietet den Vorteil, dass Konstruktionsalternativen mit minimalen Änderungen am Simulationsmodell untersucht werden können. Der entwickelte Ansatz wurde als Software- Prototyp in Form eines modularen Construction Simulation Toolkit (CST) basierend auf der Discrete Event Simulation (DES)- Methode und eines Collaboration- Webportals (ProSIM) zum Verwalten von Simulationsmodellen implementiert. Die so eingebettete Simulation ermöglicht mit minimalen Änderungen die Bewertung von Entwurfsalternativen und Konstruktionsmethoden auf den Bauablauf. Produktions- und Logistiksvorgänge können gleichzeitig in einer einheitlichen Umgebung simuliert werden und berücksichtigen die gemeinsam genutzten Ressourcen und die Interaktion zwischen Produktions- und Logistikaktivitäten. Es berücksichtigt auch die Änderungen im Baustellenlayout während der Konstruktionsphase. Die Verifizierung und Validierung des vorgeschlagenen Ansatzes wird durch verschiedene hypothetische und reale Bauprojekten durchgeführt.:1 Introduction: motivation, problem statement and objectives 1.1 Motivation 1.2 Problem statement 1.3 Objectives 1.4 Thesis Structure 2 Definitions, Related work and background information 2.1 Simulation definition 2.2 Simulation system definition 2.3 Discrete Event Simulation 2.5 How simulation works 2.6 Workflow of simulation study 2.7 Related work 2.8 Traditional construction planning methods 2.8.1 Gantt chart 2.8.2 Critical Path Method (CPM) 2.8.3 Linear scheduling method/Location-based scheduling 2.9 Business Process Model and Notation 2.10Workflow patterns 2.10.1 Supported Control Flow Patterns 3 Reference Process-based Simulation Approach 3.1 Reference Process-based simulation approach 3.2 Reference Process Models 3.3 Reference process model for single task 3.4 Reference process models for complex activities 3.5 Process Pool 3.6 Top-down automatic detailing of project schedules 3.7 Simulation model formalism 3.8 Fundamental design concepts and application scope 4 Data Integration between simulation and construction Project models 4.1 Data integration between BIM models and simulation models 4.1.1 Transformation of IFC models to Graph models 4.1.2 Checking BIM model quality 4.1.3 Filtering of BIM models 4.1.4 Semantic enrichment of BIM models 4.1.5 Reference process models and BIM models 4.2 Reference Process Models and resources models 4.3 Process models and productivity factors 5 Construction Simulation Toolkit 5.1 System architecture and implementation 5.2 Basic steps to create a CST simulation model 5.3 CST Simulation components 5.3.1 Input components 5.3.2 Process components 5.3.3 Output components 5.3.4 Logistic components 5.3.5 Collaboration platform ProSIM 6 Case Studies and Validation 6.1 Verification and Validation of Simulation Models 6.2 Verification and validation techniques for simulation models 6.3 Case study 1: generic planning model 6.4 Case study 2: high rise building 6.4.1 Scenario I: effect of changing number of workers on structural work duration 6.4.2 Scenario II: simulation of structural work on operation level 6.4.3 Scenario III: automatic generation of detailed project schedule 6.5 Case study 3: airport terminal building 6.5.1 Multimodel Container 6.5.2 Scenario I: automatic generation of detailed project schedule 6.5.3 Scenario II: Find the minimal project duration 6.5.4 Scenario III: construction work for a single floor 7 Conclusions and Future Research 7.1 Conclusions 7.2 Outlook of the possible future research topics 7.2.1 Integration with real data collecting 7.2.2 Multi-criteria optimisation 7.2.3 Extend the control-flow and resource patterns 7.2.4 Consideration of further structure domains 7.2.5 Considering of space allocation and space conflicts 8 Appendix - Scripts 9 Appendix B - Reference Process Models 9.1 Reference Process Models for structural work 9.1.1 Wall 9.1.2 Roof 9.1.3 Foundations 9.1.4 Concrete work 9.1.5 Top-Down RPMs for structural work in a work section 10 Appendix E 10.1 Basic elements of simulation models in Plant Simulation 10.2 Material Flow Objects 11 ReferencesUsing simulation to support construction project planning has many advantages, which have been presented in various academic researches. Many applications have successfully demonstrated the potential of using simulation to improve the quality of construction project planning. However, the wide adoption of simulation has not been achieved in practice yet. It still has very limited use compared with other industries due to some major obstacles and challenges. The first challenge is the complexity of construction processes and projects planning methods, which make it very difficult to develop realistic simulation models of construction processes and represent their dynamic behavior and the interaction with project resources. This led to lack of special simulation tools for construction project planning. The second challenge is the huge amount of project information that has to be integrated into the simulation model and to be maintained throughout the design, planning and construction phases. The preparation of ad-hoc simulation models and setting up different scenarios and verification of simulation results usually takes a long time. Therefore, creating reliable simulation models requires extensive resources with advanced skills. The presented challenges prevent the wide application of simulation techniques to support and improve construction project planning and adopt it as an essential part of the construction planning workflow in practice. The research work in this thesis addresses these challenges by developing an approach and platform for rapid development of simulation models for construction projects. The main objective of this research is to develop a BIM integrated and reference process-based simulation approach to support planning of construction projects and to enable collaboration among all actors involved in the planning and simulation process. The first challenge has been addressed through the development of a construction simulation toolkit and the Reference Process Model (RPM) method for modelling construction processes for production and logistics using Business Process Modelling and Notation (BPMN). The RPM models are easy to understood also by non-experts and they can be transformed automatically into simulation models as ready-to-use modules. They describe the workflow and logic of construction processes and include information about duration, resource requirements and other related information for different construction domains with different levels of details. The use of BPMN has many advantages. It enables the understanding of how simulation models work by project teams, including those who are not experts in simulation. In this approach, the modelling of Reference Process Models is totally separated from the simulation core components. In this way, the simulation toolkit is generic and extendable for various construction types such as buildings, bridges and different construction domains such as structural work and indoor operations. The presented approach supports continuous adoption of simulation models throughout the whole project life cycle. The simulation model which supports project planning in the early design phase can be continuously extended with more detailed RPMs and updated information through the planning and construction phases. The second challenge has been addressed by supporting direct integration of Building Information Modelling (BIM) method with the simulation modelling based on the Industry Foundation Classes IFC (ISO 16739) standard, which is the most common and only ISO standard used for exchanging BIM models. As the BIM models contain the biggest part of the input information of simulation models and they can be used for effective visualization of results in the form of animated 4D BIM models. The integration between BIM and simulation enables fast and semi-automatic filtering, extraction and transformation of the necessary information from BIM models for both design and construction site models. In addition, a special top-down semi-automatic detailing method was developed in order to accelerate the process of preparing detailed project schedules, which are essential input data for the simulation models and hence reduce the time and efforts needed to create simulation models. The developed approach has been implemented as a software prototype in the form of a modular Construction Simulation Toolkit (CST) based on the Discrete Event Simulation (DES) method and an online collaboration web portal 'ProSIM' for managing simulation models. The collaboration portal helps to overcome the problem of huge information and make simulation models accessible for non simulation experts. Simulation models created by CST toolkit facilitate the evaluation of design alternatives and construction methods with minimal changes in the simulation model. Both production and logistic operations can be simulated at the same time in a unified environment and take into account the shared resources and the interaction between production and logistic activities. It also takes into account the dynamic nature of construction projects and hence the changes in the construction site layout during the construction phase. The verification and validation of the proposed approach is carried out through various academic and real construction project case studies.:1 Introduction: motivation, problem statement and objectives 1.1 Motivation 1.2 Problem statement 1.3 Objectives 1.4 Thesis Structure 2 Definitions, Related work and background information 2.1 Simulation definition 2.2 Simulation system definition 2.3 Discrete Event Simulation 2.5 How simulation works 2.6 Workflow of simulation study 2.7 Related work 2.8 Traditional construction planning methods 2.8.1 Gantt chart 2.8.2 Critical Path Method (CPM) 2.8.3 Linear scheduling method/Location-based scheduling 2.9 Business Process Model and Notation 2.10Workflow patterns 2.10.1 Supported Control Flow Patterns 3 Reference Process-based Simulation Approach 3.1 Reference Process-based simulation approach 3.2 Reference Process Models 3.3 Reference process model for single task 3.4 Reference process models for complex activities 3.5 Process Pool 3.6 Top-down automatic detailing of project schedules 3.7 Simulation model formalism 3.8 Fundamental design concepts and application scope 4 Data Integration between simulation and construction Project models 4.1 Data integration between BIM models and simulation models 4.1.1 Transformation of IFC models to Graph models 4.1.2 Checking BIM model quality 4.1.3 Filtering of BIM models 4.1.4 Semantic enrichment of BIM models 4.1.5 Reference process models and BIM models 4.2 Reference Process Models and resources models 4.3 Process models and productivity factors 5 Construction Simulation Toolkit 5.1 System architecture and implementation 5.2 Basic steps to create a CST simulation model 5.3 CST Simulation components 5.3.1 Input components 5.3.2 Process components 5.3.3 Output components 5.3.4 Logistic components 5.3.5 Collaboration platform ProSIM 6 Case Studies and Validation 6.1 Verification and Validation of Simulation Models 6.2 Verification and validation techniques for simulation models 6.3 Case study 1: generic planning model 6.4 Case study 2: high rise building 6.4.1 Scenario I: effect of changing number of workers on structural work duration 6.4.2 Scenario II: simulation of structural work on operation level 6.4.3 Scenario III: automatic generation of detailed project schedule 6.5 Case study 3: airport terminal building 6.5.1 Multimodel Container 6.5.2 Scenario I: automatic generation of detailed project schedule 6.5.3 Scenario II: Find the minimal project duration 6.5.4 Scenario III: construction work for a single floor 7 Conclusions and Future Research 7.1 Conclusions 7.2 Outlook of the possible future research topics 7.2.1 Integration with real data collecting 7.2.2 Multi-criteria optimisation 7.2.3 Extend the control-flow and resource patterns 7.2.4 Consideration of further structure domains 7.2.5 Considering of space allocation and space conflicts 8 Appendix - Scripts 9 Appendix B - Reference Process Models 9.1 Reference Process Models for structural work 9.1.1 Wall 9.1.2 Roof 9.1.3 Foundations 9.1.4 Concrete work 9.1.5 Top-Down RPMs for structural work in a work section 10 Appendix E 10.1 Basic elements of simulation models in Plant Simulation 10.2 Material Flow Objects 11 Reference

    Software process improvement assesment for multimodel environment: tool to diagnose an organization

    Get PDF
    Las organizaciones que implementan procesos de mejora para el desarrollo de software de calidad, en la mayoría de los casos buscan métodos de evaluación tipo SCAMPI para diagnosticarse, planificarse o certificarse. Sin embargo, actualmente existe una necesidad que va más allá de una evaluación y es el diagnóstico de la madurez cuando se utiliza más de un modelo o estándar para mejorar los procesos o implementar buenas prácticas asociadas a la mejora, es decir un entorno multi-modelo. La implementación y definición de un entorno multi-modelo no es una tarea fácil porque exige la armonización de modelos o estándares de mejora con enfoques y estructuras diferentes. Por tal motivo, el diagnóstico de la madurez de una organización que defina e implemente un entorno multi-modelo tampoco es una tarea fácil. En este trabajo se pretende mostrar una herramienta de software que facilite el diagnóstico de una organización que utilice o pretenda definir un entorno multi-modelo para mejora de procesos incluyendo estándares y modelos ágiles y tradicionales. Con el diseño de esta herramienta se pretende ofrecer un diagnóstico de la madurez de los procesos de la organización, a la luz de diferentes estándares y modelos, buscando evolucionar hacia una metodología que permita recomendar prácticas y herramientas para mejora de procesosOrganizations that implement improvement processes to develop quality software usually appeal to SCAMPI-like evaluation methods in order to diagnose, plan and certify themselves. However, nowadays there is a need that goes beyond the evaluation, and it is the need to diagnose the processes maturity of the software development organizations that use more than one process improvement model or standard, i.e. a multi-model environment. Implementing a multi-model environment for software process improvement is not an easy task since it demands the harmonization of models or standards with dissimilar structures, hence diagnosing the maturity of an organization that defines and implements a multi-model environment it not an easy task either. This work depicts a software tool to accomplish a diagnostic of an organization that uses or pretends to define a software process improvement multi-model environment that includes both traditional and agile models and standards. Such diagnostic determines the processes maturity level of an organization and allows us to define a methodology for recommending tools and techniques for software process improvemen

    Transformación de modelos dirigida por atributos de calidad

    Full text link
    González Huerta, J. (2010). Transformación de modelos dirigida por atributos de calidad. http://hdl.handle.net/10251/8627.Archivo delegad

    Configurable nD-visualization for complex Building Information Models

    Get PDF
    With the ongoing development of building information modelling (BIM) towards a comprehensive coverage of all construction project information in a semantically explicit way, visual representations became decoupled from the building information models. While traditional construction drawings implicitly contained the visual representation besides the information, nowadays they are generated on the fly, hard-coded in software applications dedicated to other tasks such as analysis, simulation, structural design or communication. Due to the abstract nature of information models and the increasing amount of digital information captured during construction projects, visual representations are essential for humans in order to access the information, to understand it, and to engage with it. At the same time digital media open up the new field of interactive visualizations. The full potential of BIM can only be unlocked with customized task-specific visualizations, with engineers and architects actively involved in the design and development process of these visualizations. The visualizations must be reusable and reliably reproducible during communication processes. Further, to support creative problem solving, it must be possible to modify and refine them. This thesis aims at reconnecting building information models and their visual representations: on a theoretic level, on the level of methods and in terms of tool support. First, the research seeks to improve the knowledge about visualization generation in conjunction with current BIM developments such as the multimodel. The approach is based on the reference model of the visualization pipeline and addresses structural as well as quantitative aspects of the visualization generation. Second, based on the theoretic foundation, a method is derived to construct visual representations from given visualization specifications. To this end, the idea of a domain-specific language (DSL) is employed. Finally, a software prototype proofs the concept. Using the visualization framework, visual representations can be generated from a specific building information model and a specific visualization description.Mit der fortschreitenden Entwicklung des Building Information Modelling (BIM) hin zu einer umfassenden Erfassung aller Bauprojektinformationen in einer semantisch expliziten Weise werden Visualisierungen von den Gebäudeinformationen entkoppelt. Während traditionelle Architektur- und Bauzeichnungen die visuellen Reprä̈sentationen implizit als Träger der Informationen enthalten, werden sie heute on-the-fly generiert. Die Details ihrer Generierung sind festgeschrieben in Softwareanwendungen, welche eigentlich für andere Aufgaben wie Analyse, Simulation, Entwurf oder Kommunikation ausgelegt sind. Angesichts der abstrakten Natur von Informationsmodellen und der steigenden Menge digitaler Informationen, die im Verlauf von Bauprojekten erfasst werden, sind visuelle Repräsentationen essentiell, um sich die Information erschließen, sie verstehen, durchdringen und mit ihnen arbeiten zu können. Gleichzeitig entwickelt sich durch die digitalen Medien eine neues Feld der interaktiven Visualisierungen. Das volle Potential von BIM kann nur mit angepassten aufgabenspezifischen Visualisierungen erschlossen werden, bei denen Ingenieur*innen und Architekt*innen aktiv in den Entwurf und die Entwicklung dieser Visualisierungen einbezogen werden. Die Visualisierungen müssen wiederverwendbar sein und in Kommunikationsprozessen zuverlässig reproduziert werden können. Außerdem muss es möglich sein, Visualisierungen zu modifizieren und neu zu definieren, um das kreative Problemlösen zu unterstützen. Die vorliegende Arbeit zielt darauf ab, Gebäudemodelle und ihre visuellen Repräsentationen wieder zu verbinden: auf der theoretischen Ebene, auf der Ebene der Methoden und hinsichtlich der unterstützenden Werkzeuge. Auf der theoretischen Ebene trägt die Arbeit zunächst dazu bei, das Wissen um die Erstellung von Visualisierungen im Kontext von Bauprojekten zu erweitern. Der verfolgte Ansatz basiert auf dem Referenzmodell der Visualisierungspipeline und geht dabei sowohl auf strukturelle als auch auf quantitative Aspekte des Visualisierungsprozesses ein. Zweitens wird eine Methode entwickelt, die visuelle Repräsentationen auf Basis gegebener Visualisierungsspezifikationen generieren kann. Schließlich belegt ein Softwareprototyp die Realisierbarkeit des Konzepts. Mit dem entwickelten Framework können visuelle Repräsentationen aus jeweils einem spezifischen Gebäudemodell und einer spezifischen Visualisierungsbeschreibung generiert werden

    Considerations for a design and operations knowledge support system for Space Station Freedom

    Get PDF
    Engineering and operations of modern engineered systems depend critically upon detailed design and operations knowledge that is accurate and authoritative. A design and operations knowledge support system (DOKSS) is a modern computer-based information system providing knowledge about the creation, evolution, and growth of an engineered system. The purpose of a DOKSS is to provide convenient and effective access to this multifaceted information. The complexity of Space Station Freedom's (SSF's) systems, elements, interfaces, and organizations makes convenient access to design knowledge especially important, when compared to simpler systems. The life cycle length, being 30 or more years, adds a new dimension to space operations, maintenance, and evolution. Provided here is a review and discussion of design knowledge support systems to be delivered and operated as a critical part of the engineered system. A concept of a DOKSS for Space Station Freedom (SSF) is presented. This is followed by a detailed discussion of a DOKSS for the Lyndon B. Johnson Space Center and Work Package-2 portions of SSF
    corecore