
Towards the Co-Evolution of Models and Artefacts
of Industrial Tools Through External Views

Timur Sağlam
KASTEL Institute of Information Security and Dependability

Karlsruhe Institute of Technology
Karlsruhe, Germany
timur.saglam@kit.edu

Thomas Kühn
KASTEL Institute of Information Security and Dependability

Karlsruhe Institute of Technology
Karlsruhe, Germany

thomas.kuehn@kit.edu

Abstract—Modern software systems comprise multiple models.
When these models are changed, interdependent models must
be evolved accordingly. Manually managing this co-evolution of
models is tedious and error-prone. Moreover, other interdepen-
dent artefacts, such as persisted states of industrial software
applications, must co-evolve accordingly. Automated consistency
preservation allows for efficiently managing the co-evolution
of models. However, while state-of-the-art approaches operate
delta-based, typical software applications persist changes state-
based without conforming to explicit metamodels. Additionally,
software applications may persist changes infrequently, even
though interdependent models might be concurrently modified.
As such, current approaches are insufficient for artefacts of
industrial tools. To address these issues, we propose an approach
for the co-evolution of models and artefacts of industrial tools
by treating these artefacts as external views on the models.

Index Terms—Co-Evolution, Consistency Preservation, Model-
View Consistency, View-Based Development, MDE Adoption

I. INTRODUCTION

Since modern software systems can become very complex
and large-scale, their development often involves multiple
models. Especially in agile development, these models change
often, and interdependent models must co-evolve accordingly.
Manually managing this co-evolution of models is tedious
and error-prone. Automated consistency preservation manages
the co-evolution of models and thus addresses this problem
[1], [2]. However, during the Co-Evolution of Models, we
additionally need to evolve other interdependent artefacts [3].
Specifically, these artefacts could be informal models persisted
by tools that do not operate in a model-driven way, such as
industrial (or commercial) software applications. They cannot
automatically evolve with models when they only have a
limited interface for publishing changes such as state-based
persistence through XML or JSON files. Often these artefacts
do not conform to an explicit metamodel and hide the changes
made by the applications. Even the persisted states only
provide an abstraction of the actual fine-grained changes. As
state-of-the-art consistency preservation approaches primarily
employ delta-based changes, i.e., they continuously observe
fine-grained changes to models and update the interdependent
models incrementally, these approaches are not applicable for
state-based artefacts of industrial tools. Vice versa, industrial
tools are often legacy software, which cannot be easily adapted
or replaced to be compatible with MDE approaches, such

as model-based consistency preservation, as they might be
closed-source or simply too complex. [4], [5]. Moreover, while
consistency preservation allows for immediately synchronizing
models upon change, industrial tools might synchronize their
state with a considerably lower frequency. Often the tool’s
internal state is only persisted when the user explicitly decides
to save their changes. This can be a matter of minutes,
but also a matter of hours. Interdependent models, however,
may change while the industrial tool is not synchronized.
Consequently, conflicts may arise when the industrial tool’s
state is later synchronized.

To address this issue, we propose an approach for the
co-evolution of models and artefacts of industrial tools. We
treat these artefacts as views on a model in the system,
thus breaking down the problem into two parts: First, the
model-view consistency between the industrial tool and the
interdependent model. Second, the co-evolution of all models
in the system. While the latter can be realized using existing
consistency preservation approaches, the former needs to be
supported by a definition of external views. An external view
is a view that encapsulates a black-box software system that
reads and persists its state in a specific format. The external
view acts as an adapter between the modeling system and the
industrial tools, thus bridging the gap between them. We aim
to enable the automated co-evolution of models and artefacts
of industrial tools. By leveraging external views, we want
to develop a partly automated approach independent of the
specific models or the industrial tools. Thus, we make the
following contributions with this paper:

Co-Evolution Approach (C1): We propose an approach for
the co-evolution of artefacts of tools with models leveraging
consistency preservation and external views.
Key Challenges (C2): We identify key challenges for the co-
evolution of artefacts of industrial tools with multiple models.

II. STATE OF THE ART AND RELATED WORK

To relate our approach to the state-of-the-art, we henceforth
discuss relevant research areas.

A. View-Based Development
We base our approach on model views. Views enable users

to see a system from a specific viewpoint. While a view might



represent (show) a model, it can be considered as a model
itself. However, a view is dynamically generated [6]. A view
type is a metamodel for a set of views and describes the
contained elements and relations [7]. We distinguish between
pre-defined views and flexible views, which can be defined on
the fly to accustom individual needs of a user [8]. While some
approaches materialize views as copies of the represented
models, others are based on virtual models [9].

The problem of updating the model of a view when the
view is changed is called the view-update problem. While
this problem originates from database engineering [10], Foster,
Greenwald, Moore, et al. [11], [12] introduce an application of
the view-update problem to model views. Views can be kept
consistent with their underlying models through bidirectional
transformations (BX), as proposed by the lenses framework
[12]. Delta-lenses [13] or incremental transformations [14],
[15] can be employed for model-view consistency to avoid
regenerating one of the other is changed. Finally, views can
be defined for modeling systems, for example, with single-
underlying models (SUMs) [16] or megamodels [17]. There is
a wide variety of model-view approaches [18] and multi-view
modeling approaches [19], [20]. We use VITRUVIUS [21],
which belongs in the latter category.

B. Co-Evolution of Models
Our work builds upon the co-evolution of models. Hebig,

Khelladi, and Bendraou [22] give an overview of approaches
for the co-evolution of metamodels and models. Cicchetti,
Ruscio, Eramo, et al. [23] propose one of the earliest ap-
proaches to automate this co-evolution. Our approach is
designed for the automated co-evolution of interdependent
models and artefacts of industrial tools, thus not for the co-
evolution of metamodels. Di Ruscio, Iovino, and Pierantonio
[3] discuss the importance of co-evolving, among other things,
interdependent tools.

Consistency preservation [1] and model repair [2] can
be used for model co-evolution. Macedo, Jorge, and Cunha
[24] give an overview of such approaches. Single-underlying
models [16] combine multiple models into one single source
of truth, thus enabling both multi-model consistency preser-
vation and multi-view modeling. Meier, Werner, Klare, et al.
[20] compare different SUM-based approaches, examples are
VITRUVIUS [21] and NAOMI [25]. We use the former for
our approach. We also relate to model synchronization, and
concurrent editing [26], [27], as some of the challenges we
identify are also present in these research areas.

C. MDE Adoption
As we aim at enabling the use of legacy software with

model-driven consistency preservation to enable co-evolution
between models and tools we consider approaches investigat-
ing MDE adoption. Bucaioni, Dimic, Gålnander, et al. [28]
discuss how to transfer academic model-based methodology
to automotive processes. Whittle, Hutchinson, Rouncefield, et
al. [29], [30] discuss the industrial adoption of MDE and
tool-related issues affecting it. They conclude that MDE tools
should be designed to match the people and organizations and

not vice versa. Moreover, they argue for focusing more on
(improving) processes, less on (building) tools. Hence, our
approach is designed as a process that does not require altering
existing tools. Rather, it is designed as a non-intrusive way to
enable co-evolution for industrial tools. In contrast to research
enabling generic MDE-compatibility of legacy software, such
as Ecoreification [4] or the code-first approach by Boronat [5],
we focus on the artifacts of such software.
D. Model Transformations

Model transformations are a well-researched subject [31]–
[33] and are often used for model co-evolution [34]. Our
approach relies explicitly on incremental model transforma-
tions [13], [35], which updates a target model when a source
model is changed. Kusel, Etzlstorfer, Kapsammer, et al. [36]
provide a comprehensive overview of different incremental
approaches. For the co-evolution of multiple models, transfor-
mation networks [37] or multiary transformations [38]–[40]
can be employed. These approaches might be required for
complex industrial tools that have interdependencies with
multiple models.
E. Model Comparison

Model comparison [41], [42] matches model elements
across models and calculates the differences between the mod-
els [43]. Our approach uses model comparison to derive the
changes between two view states. One of the state-of-the-art
tools is EMFCompare [44], [45]. It matches model elements
leveraging similarity metrics and is customizable to specific
needs. There are also metamodel-independent approaches such
as DSMDiff [46]. Addazi, Cicchetti, Di Rocco, et al. [47]
extended EMFCompare with semantic matching.

III. APPROACH

To enable the co-evolution of models and artefacts of
industrial tools, we treat the artefacts of these tools as external
views on a model in the system.
Definition 1: An external tool is a black-box software system
that reads and persists its state in a specific format, as only
means of exposing its state. Consider, for instance, a legacy
software application that persists its state through XML files.
Industrial software applications are such external tools.
Definition 2: An external view is a view that encapsulates
an external tool. The external tool permits showing one or
multiple target models upon which the external view is defined
through the external view. An external view is predefined and
usually a partial view of the system. It acts as an adapter
between the models and the external tools, thus bridging the
gap between them.
Definition 3: Like an ordinary viewtype, an external viewtype
is the metamodel that specifies an external view. However, it
additionally includes a transformation that allows generating
views from the states of an external tool.

We divide the co-evolution problem into two parts: First,
the model-view consistency between the external tool and the
interdependent model. Second, the co-evolution of all models
in the system. The latter can be realized using existing con-
sistency preservation approaches, for instance, those based on



 
 

External ViewModeling System External Tool

Industrial
Tool

StateView

ΔΔ

Target Model'

Target Model

Model
Comparison

Derived
Viewtype

Target
Metamodel

(implicitly) 
defined by

Implicit Tool
Metamodel

instance of instance of instance of

Δ

Sequence
Derivation

State'

3

4

679

M2M1

M2M8
Δ

M2T2

T2M5

Δ

View'

Fig. 1. Approach for the integration of external tools through external views to allow the co-evolution of models with the persisted states of the external
tools.

model transformations, such as transformation networks [48]
or multiary transformations [38]. To realize model-view con-
sistency, we need explicit support for view definitions. There
are multiple view-based approaches for consistency preserva-
tion that thus both allow multi-model co-evolution and view
definition [20]. In the following, we propose our envisioned
approach for the integration of external tools through external
views.

A. Integrating External Tools

To enable model-view consistency, three steps are required:
First, integrating the external tool through the creation of
an external view. Second, initially synchronizing the external
view with the interdependent model if initial artefacts or
models exist. Third, keeping the external view consistent with
the interdependent model whenever one is changed. In our
approach, we distinguish three subsystems:

1) The modeling system contains all (formal and thus MDE-
conforming) models. This can either be a single (mega-)
model or multiple models.

2) The external tool contains the industrial tool and its
artefact that are interdependent with (parts of) the mod-
eling system. These artefacts conform to an implicit
metamodel, which is inherently defined by the tool itself.

3) The external view describes a view on one or more
models in the modeling system. The external view also
contains a transformation for the persisted states of the
external tool.

In a multi-model scenario, a specific tool might require an
external view based on multiple models, as the artefacts of
that tool might be interdependent with multiple models. For
the sake of simplicity, we assume the single-model case in
the remainder of this section, while the multi-model case is
discussed in subsection IV-E. We also assume the external tool
persists its state in a semi-structured file format such as XML.
However, the approach can be adapted to support different
ways of tool persistence.

B. Constructing External Views
In order to integrate the external tool into the modeling

system, the external view acts as an adapter and ensures two
properties: First, the view is provided in an MDE-conforming
format, meaning instances of an explicit viewtype instead of a
legacy format such as semi-structured files (without an explicit
and formal metamodel). Second, external changes to the view
are published to the modeling system as sequences of atomic
changes instead of state-based differences.

To construct external views for a tool, we first need an
external viewtype. This either be (semi-)automatically derived
from the tool or built manually. It is an explicit metamodel
for the tool. Then, we need a text-to-model transformation
to instantiate views from our viewtype for persisted states
of the external tool. Vice versa, we need a model-to-text
transformation to generate states from views. Thus, we fulfill
the first property. Last, we need incremental model-to-model
transformations to transform between the external view and the
target model to fulfills the second property. These transforma-
tions can either be manually constructed or derived (semi-)
automatically.

Figure 1 illustrates our approach to integrate an external
tool as an external view on the modeling system. It shows
the three subsystems and how to keep them consistent. The
external view forms a bridge between the modeling system
and the external tool. The transformations (steps 1, 2, 5, and
8) connect to the external model and the external tool.

C. Model-View Consistency
Figure 1 shows both how changes can be propagated to the

external tool and vice versa. When the target model is changed
(either by a user or automatically by a consistency preservation
mechanism), the external view is updated accordingly. Next,
the tool state is regenerated from the external view. The user
can then read the state with the external tool and make manual
changes. When the user then saves these changes, the external
view is regenerated from the tool. Then, the target model is
updated from the external view. In detail, our approach realizes



this as follows:
Target Model to External View: When the target model is
modified, the changes are propagated to the external view with
an incremental model-to-model transformation (see step 1 in
Figure 1). If the target metamodel and the derived viewtype
are identical, this is trivial. However, if they differ, the changes
need to be transformed accordingly. This transformation needs
to be incremental to avoid overriding changes in the external
view.
External View to External Tool: When the view is updated,
the persisted state of the external tool is regenerated utilizing
a model-to-text transformation (step 2). This state can be read
by the tool (step 3) to display its information within the tool.
We do not require an incremental transformation for this step,
as the external view is always kept up to date with the tool.
External Tool to External View: Changes made with the tool
need to be persisted (step 4) to regenerate the view. This
is done with a text-to-model transformation which uses the
changed persisted state to regenerate the external view (step
5). As the external tool does not publish atomic changes, this
transformation cannot be incremental.
External View to Target Model: To update the target model,
two view states are used. The regenerated view (View’) as
well as the previous view from before the regeneration (View).
We then use model comparison (e.g. EMFCompare [45]) to
calculate the state-based difference between these states (step
6). However, to support delta-based model-view consistency,
we need a sequence of atomic changes that describe the
difference between the two view states. As the real change
sequence is not published by the external tool, we need
to derive an estimated sequence (step 7). Last, we use an
incremental model-to-model transformation (step 8) to update
the target model from the changed view. The transformation
being incremental enables updating the target model without
overwriting concurrent changes in the modeling system.
Note that that we can use a single bidirectional transformation
to both step (step 1) and (step 8), and another single bidirec-
tional transformation for both step (step 3) and (step 4).

IV. CHALLENGES

We identify the following fundamental challenges of the
co-evolution of models with artefacts of industrial tools:
A. Viewtype Construction

To transform between the external view and the modeling
system, an explicit viewtype is required. This viewtype needs
to be derived from the external tool. While most industrial
software applications do not use an explicit metamodel, they
use some specification to persist their internal states. These
implicit tool metamodels allow deriving the viewtype. In the
best case, this is an XSD schema or a similar specification
that allows deriving a viewtype automatically. However, in
the worst case, the persistence rules are implicitly encoded
in the code of the external tool and thus not accessible. In
that case, the viewtype needs to be constructed based on
indirect accounts, such as user documentation or tool experts.
Essentially, the challenge is to find a generic process for

deriving adequate viewtypes depending on the implicit tool
metamodel. This could be done either manually or semi-
automated.
B. Change Sequence Derivation

We regenerate the external view from the persisted state
since the external tool does not expose changes in a delta-
based manner. Consequently, the external view needs to
provide fine-grained changes to be compatible with delta-
based consistency preservation. It thus derives the state-based
difference through model comparison (see step 6 in Figure 1).
However, the external view then needs to derive a valid
change sequence that reflects the hidden changes made with
the external tools. While the change sequence does not need
to be identical to the original change sequence, it needs to
be admissible, meaning it has the same effect on the target
models as the original changes would have [49]. Moreover, to
understand the intent of the external changes, atomic changes
should be grouped semantically, meaning atomic changes
belonging to the same semantic change made in the external
tool by a user should be grouped.
C. Tool Synchronization Frequency and Modality

For traditional software applications, there is a wide range
in how and how often internal states are persisted and thus
exposed. While some tools may save changes instantly, some
may only save periodically, while others may only save
when the user explicitly decides to do so. This limits how
often changes in the external view are synchronized with the
modeling system. Furthermore, not every persisted state might
be valid or well-formed and thus meant to be synchronized.
Thus, this leads to challenges: First, the external view needs
to derive change sequences based on large state differences.
Second, the external view needs to decide if a persisted state
even should be synchronized, which can require user input.
D. Concurrent Editing

When both the external view and one or more models are
concurrently modified, conflicting changes must be resolved.
While concurrent modification is also a challenge in model
synchronization itself [27], [50]–[52], it is amplified for ex-
ternal views due to the synchronization frequency. Between
the infrequent synchronization of changes to the view, the
modeling system can be modified. While the modeling system
will synchronize internally, the state of the external tool cannot
be regenerated whenever a user is using the tool since that
would override changes made by the user. Later, when the tool
persists the internal state (see step 4 in Figure 1), the external
view will be regenerated (see step 5). All the changes in the
modeling system since the last model-view synchronization are
now potentially conflicting. This poses the challenge of dealing
with conflicting changes. While some atomic changes can
be synchronized, others might need to be rejected, requiring
the user to solve the conflicts manually or redo the changes
altogether. Especially when the modeling system contains
multiple models, internal changes might need to be prioritized
over the external changes made in the tool to avoid interfering
with the consistency preservation in the modeling system.



E. Multi-Model Interdependency
As discussed previously, the modeling system can contain

multiple interdependent models. The artefacts of an external
tool can be interdependent with multiple models as well.
Especially when a single model in the system cannot entirely
represent information persisted by an external tool, the external
view needs to be based on multiple models. Thus, we require
multi-model-view consistency. This can be achieved with
multiple incremental transformations but may lead to complex
compatibility issues as observed in transformation networks
[53]. In a multi-model scenario, a specific tool might require an
external view that is based on multiple models, as the artefacts
of that tool might be interdependent with multiple models. For
the sake of simplicity, we assume the single-model case in the
remainder of this section, meaning the external view is based
on a single target model as the external is interdependent with
exactly one model in the modeling system. The multi-model
case is discussed later.
F. Lack of Unique Identifiers

Unique identifiers are used in models to distinguish model
elements during their lifetime. Thus, they are essential for
consistency preservation approaches. However, many external
tools might not use unique identifiers in their persisted states.
Thus, an external view needs to ensure compatibility with
states without unique identifiers. Since similarity-based model
comparison strategies perform significantly worse than identi-
fies based strategies [49], domain-specialized post-processing
needs to be applied during the change sequence derivation (see
step 7 in Figure 1). Another solution could be enriching the
views with unique identifiers after regenerating them from the
states (see step 5). However, this needs to be deterministic
across all possible persisted states.
G. Private Data

Private data is a subset of the information persisted by
the external tool that cannot be represented in the modeling
system, as it is not interdependent with the modeling system.
Tool-specific layout information for the graphical representa-
tion is such private data. It is essential for the external tool
but cannot be transferred in the modeling system. However,
this information must be preserved, which means it cannot be
overwritten when updating the external view. Moreover, this
information might need to be explicitly generated for newly
created model elements if the tool expects such information
for all model elements.

V. PLANNED EVALUATION

We plan on evaluating our approach with the Ecore-based
VITRUVIUS framework [21]. VITRUVIUS combines models
into a virtual single-underlying model (V-SUM) employing
transformation networks. In the V-SUM, consistency is pre-
served in a delta-based way, meaning incremental model
transformations transform fine-grained sequences of atomic
changes to the source model to the resulting change sequence
for the target model. These transformations are written in
the Reactions language [54], an imperative, domain-specific
language for consistency preservation. VITRUVIUS enables

view-based development, as views can be defined upon the
V-SUM. Thus, the V-SUM is the modeling system from our
approach, and external views are integrated by connecting
them to one or more target models in the V-SUM with
VITRUVIUS we want to evaluate the approach in two domains:
Software Engineering Models and Tools: UML models, ar-
chitecture models, and code share interdependent information.
With VITRUVIUS we can keep these models persistent. How-
ever, many of the common tools and editors are not compatible
with the respective metamodels. Thus, we want to conduct a
case study based on models and external tools used in software
development. We plan on integrating an external tool into our
modeling systems leveraging external views. Potential tools
are, for example, proprietary UML editor tools for software
architecture design.
Automotive Models and Tools: During the development of
automotive systems, a plethora of heterogeneous models is
used. This includes, but is not limited to, CAD models,
AUTOSAR architecture models, hardware network topology
models, hardware component architectures, models for electric
circuits, and models for the wiring topology. These models
are developed in different ways with different tools. These
tools are often long-living and have limited compatibility
with other tools. These automotive systems are large-scale,
which is where model-driven approaches excel. We thus plan
a comprehensive case study based on multiple models and
multiple industrial legacy tools from the automotive domain
to evaluate our co-evolution approach based on external views.

VI. CONCLUSION

As modern software systems development comprises mul-
tiple interdependent models that change throughout devel-
opment, there is a need for managing the co-evolution of
these interdependent models. Although this is challenging
in its own right, the continued use of legacy or industrial
tools for software development limits current approaches for
model consistency preservation. To cope with the integration
of legacy industrial tools, we propose external views to encap-
sulate external tools and their state-based persistence in files.
In particular, we propose an approach for the co-evolution of
artefacts of tools with models leveraging consistency preser-
vation and a general architecture and a development process
for external views. Moreover, we identified, among others,
the change sequence derivation, the synchronization frequency
and modality, concurrent editing, and private data as key
challenges for the co-evolution of artefacts of industrial tools
with multiple models. Besides that, we outlined our approach’s
planned implementation and evaluation based on the existing
model consistency preservation framework–VITRUVIUS and
legacy tools from the software engineering and the automo-
tive domain. With this research, we not only approach the
integration of external tools into model co-evolution but also
aim to improve the adoption of MDE beyond the software
engineering domain.



REFERENCES
[1] W. Torres, M. G. J. van den Brand, and A. Serebrenik, “A sys-

tematic literature review of cross-domain model consistency
checking by model management tools,” Softw. Syst. Model.,
vol. 20, no. 3, pp. 897–916, 2021. DOI: 10.1007/s10270-020-
00834-1.

[2] P. Stünkel, H. König, A. Rutle, and Y. Lamo, “Multi-model
evolution through model repair,” Journal of Object Technology,
vol. 20, no. 1, 1:1–25, 2021, Workshop on Models and
Evolution (ME 2020). DOI: 10.5381/jot.2021.20.1.a2.

[3] D. Di Ruscio, L. Iovino, and A. Pierantonio, “What is needed
for managing co-evolution in mde?” In Proceedings of the 2nd
International Workshop on Model Comparison in Practice,
2011, pp. 30–38. DOI: 10.1145/2000410.2000416.

[4] H. Klare, E. Burger, M. E. Kramer, M. Langhammer, T.
Sağlam, and R. Reussner, “Ecoreification: Making arbitrary
java code accessible to metamodel-based tools,” in Proceed-
ings of the ACM/IEEE 20th International Conference on Model
Driven Engineering Languages and Systems (MODELS 2017),
2017. DOI: 10.1109/MODELS.2017.30.

[5] A. Boronat, “Code-first model-driven engineering: On the
agile adoption of mde tooling,” in 2019 34th IEEE/ACM
International Conference on Automated Software Engineering
(ASE), 2019, pp. 874–886. DOI: 10.1109/ASE.2019.00086.

[6] C. Atkinson, D. Stoll, and P. Bostan, “Orthographic Soft-
ware Modeling: A Practical Approach to View-Based De-
velopment,” in Evaluation of Novel Approaches to Software
Engineering, vol. 69, 2010, pp. 206–219. DOI: 10.1007/978-
3-642-14819-4 15.

[7] T. Goldschmidt, S. Becker, and E. Burger, “Towards a tool-
oriented taxonomy of view-based modelling,” in Proceedings
of the Modellierung 2012, vol. P-201, 2012, pp. 59–74.

[8] E. Burger, “Flexible Views for View-Based Model-Driven De-
velopment,” in Proceedings of the 18th international doctoral
symposium on Components and architecture, 2013, pp. 25–30.
DOI: 10.1145/2465498.2465501.

[9] H. Brunelière, J. Garcia Perez, M. Wimmer, and J. Cabot,
“EMF Views: A View Mechanism for Integrating Heteroge-
neous Models,” in 34th International Conference on Concep-
tual Modeling (ER 2015), 2015.

[10] F. Bancilhon and N. Spyratos, “Update semantics of relational
views,” ACM Trans. Database Syst., vol. 6, no. 4, pp. 557–575,
1981. DOI: 10.1145/319628.319634.

[11] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce,
and A. Schmitt, “Combinators for bi-directional tree transfor-
mations: A linguistic approach to the view update problem,”
SIGPLAN Not., vol. 40, no. 1, pp. 233–246, 2005. DOI: 10.
1145/1047659.1040325.

[12] ——, “Combinators for bidirectional tree transformations: A
linguistic approach to the view-update problem,” ACM Trans.
Program. Lang. Syst., vol. 29, no. 3, 17–es, 2007. DOI: 10.
1145/1232420.1232424.

[13] Z. Diskin, Y. Xiong, K. Czarnecki, H. Ehrig, F. Hermann,
and F. Orejas, “From state- to delta-based bidirectional model
transformations: The symmetric case,” in Model Driven Engi-
neering Languages and Systems, vol. 6981, 2011, pp. 304–318.
DOI: 10.1007/978-3-642-24485-8 22.

[14] H. Giese and R. Wagner, “Incremental model synchronization
with triple graph grammars,” in Model Driven Engineering
Languages and Systems, 2006, pp. 543–557.

[15] ——, “From model transformation to incremental bidirectional
model synchronization,” Software & Systems Modeling, vol. 8,
no. 1, pp. 21–43, 2009. DOI: 10.1007/s10270-008-0089-9.

[16] C. Atkinson and D. Stoll, “Orthographic modeling environ-
ment,” in Fundamental Approaches to Software Engineering,
2008, pp. 93–96. DOI: 10.1145/2489861.2489862.

[17] C. Tunjic and C. Atkinson, “Synchronization of projective
views on a single-underlying-model,” in Proceedings of the
2015 Joint MORSE/VAO Workshop on Model-Driven Robot
Software Engineering and View-based Software-Engineering,
2015, pp. 55–58. DOI: 10.1145/2802059.2802066.

[18] H. Brunelière, E. Burger, J. Cabot, and M. Wimmer, “A
Feature-based Survey of Model View Approaches,” Software
& Systems Modeling, 2017. DOI: 10.1007/s10270-017-0622-9.

[19] A. Cicchetti, F. Ciccozzi, and A. Pierantonio, “Multi-view
approaches for software and system modelling: A systematic
literature review,” Software & Systems Modeling, vol. 18,
pp. 3207–3233, 2019. DOI: 10.1007/s10270-018-00713-w.

[20] J. Meier et al., “Classifying approaches for constructing single
underlying models,” in Model-Driven Engineering and Soft-
ware Development, 2020, pp. 350–375. DOI: 10.1007/978-3-
030-37873-8 15.

[21] H. Klare, M. E. Kramer, M. Langhammer, D. Werle, E. Burger,
and R. Reussner, “Enabling consistency in view-based system
development — the vitruvius approach,” Journal of Systems
and Software, vol. 171, p. 110 815, 2021. DOI: 10.1016/j.jss.
2020.110815.

[22] R. Hebig, D. E. Khelladi, and R. Bendraou, “Approaches to co-
evolution of metamodels and models: A survey,” IEEE Trans-
actions on Software Engineering, vol. 43, no. 5, pp. 396–414,
2017. DOI: 10.1109/TSE.2016.2610424.

[23] A. Cicchetti, D. D. Ruscio, R. Eramo, and A. Pierantonio,
“Automating co-evolution in model-driven engineering,” in
2008 12th International IEEE Enterprise Distributed Object
Computing Conference, 2008, pp. 222–231. DOI: 10 . 1109 /
EDOC.2008.44.

[24] N. Macedo, T. Jorge, and A. Cunha, “A Feature-based Classi-
fication of Model Repair Approaches,” IEEE Transactions on
Software Engineering, vol. 43, no. 7, pp. 615–640, 2017. DOI:
10.1109/TSE.2016.2620145.

[25] T. Denton, E. Jones, S. Srinivasan, K. Owens, and R. W.
Buskens, “Naomi – an experimental platform for multi-
modeling,” in Model Driven Engineering Languages and Sys-
tems, 2008, pp. 143–157.

[26] F. Orejas, E. Pino, and M. Navarro, “Incremental concur-
rent model synchronization using triple graph grammars,”
in Fundamental Approaches to Software Engineering, 2020,
pp. 273–293. DOI: 10.1007/978-3-030-45234-6 14.

[27] Y. Xiong, H. Song, Z. Hu, and M. Takeichi, “Synchronizing
concurrent model updates based on bidirectional transfor-
mation,” Software and Systems Modeling, vol. 12, no. 1,
pp. 89–104, 2013. DOI: 10.1007/s10270-010-0187-3.

[28] A. Bucaioni, V. Dimic, M. Gålnander, H. Lönn, and J.
Lundbäck, “Transferring a model-based development method-
ology to the automotive industry,” in 2021 22nd IEEE Inter-
national Conference on Industrial Technology (ICIT), vol. 1,
2021, pp. 762–767. DOI: 10.1109/ICIT46573.2021.9453680.

[29] J. Whittle, J. Hutchinson, M. Rouncefield, H. Burden, and R.
Heldal, “Industrial adoption of model-driven engineering: Are
the tools really the problem?” In Model-Driven Engineering
Languages and Systems, 2013, pp. 1–17. DOI: 10.1007/978-
3-642-41533-3 1.

[30] ——, “A taxonomy of tool-related issues affecting the adop-
tion of model-driven engineering,” Softw. Syst. Model., vol. 16,
no. 2, pp. 313–331, 2017. DOI: 10.1007/s10270-015-0487-8.

[31] P. Stevens, “A landscape of bidirectional model transfor-
mations,” in Generative and Transformational Techniques in
Software Engineering II: International Summer School, 2007,
Braga, Portugal. Revised Papers. 2008, pp. 408–424. DOI:
10.1007/978-3-540-88643-3 10.

[32] L. Samimi-Dehkordi, B. Zamani, and S. Kolahdouz-Rahimi,
“Bidirectional model transformation approaches a comparative
study,” in 2016 6th International Conference on Computer and

https://doi.org/10.1007/s10270-020-00834-1
https://doi.org/10.1007/s10270-020-00834-1
https://doi.org/10.5381/jot.2021.20.1.a2
https://doi.org/10.1145/2000410.2000416
https://doi.org/10.1109/MODELS.2017.30
https://doi.org/10.1109/ASE.2019.00086
https://doi.org/10.1007/978-3-642-14819-4_15
https://doi.org/10.1007/978-3-642-14819-4_15
https://doi.org/10.1145/2465498.2465501
https://doi.org/10.1145/319628.319634
https://doi.org/10.1145/1047659.1040325
https://doi.org/10.1145/1047659.1040325
https://doi.org/10.1145/1232420.1232424
https://doi.org/10.1145/1232420.1232424
https://doi.org/10.1007/978-3-642-24485-8_22
https://doi.org/10.1007/s10270-008-0089-9
https://doi.org/10.1145/2489861.2489862
https://doi.org/10.1145/2802059.2802066
https://doi.org/10.1007/s10270-017-0622-9
https://doi.org/10.1007/s10270-018-00713-w
https://doi.org/10.1007/978-3-030-37873-8_15
https://doi.org/10.1007/978-3-030-37873-8_15
https://doi.org/10.1016/j.jss.2020.110815
https://doi.org/10.1016/j.jss.2020.110815
https://doi.org/10.1109/TSE.2016.2610424
https://doi.org/10.1109/EDOC.2008.44
https://doi.org/10.1109/EDOC.2008.44
https://doi.org/10.1109/TSE.2016.2620145
https://doi.org/10.1007/978-3-030-45234-6_14
https://doi.org/10.1007/s10270-010-0187-3
https://doi.org/10.1109/ICIT46573.2021.9453680
https://doi.org/10.1007/978-3-642-41533-3_1
https://doi.org/10.1007/978-3-642-41533-3_1
https://doi.org/10.1007/s10270-015-0487-8
https://doi.org/10.1007/978-3-540-88643-3_10


Knowledge Engineering (ICCKE), 2016, pp. 314–320. DOI:
10.1109/ICCKE.2016.7802159.

[33] S. Hidaka, M. Tisi, J. Cabot, and Z. Hu, “Feature-based classi-
fication of bidirectional transformation approaches,” Software
& Systems Modeling, vol. 15, no. 3, pp. 907–928, 2016. DOI:
10.1007/s10270-014-0450-0.

[34] N. Kahani, M. Bagherzadeh, J. R. Cordy, J. Dingel, and
D. Varró, “Survey and classification of model transformation
tools,” Software & Systems Modeling, vol. 18, no. 4, pp. 2361–
2397, 2018. DOI: 10.1007/s10270-018-0665-6.

[35] H. Giese and R. Wagner, “From model transformation to
incremental bidirectional model synchronization,” Software &
Systems Modeling, vol. 8, no. 1, pp. 21–43, 2008. DOI: 10.
1007/s10270-008-0089-9.

[36] A. Kusel et al., “A survey on incremental model transfor-
mation approaches,” in ME 2013 – Models and Evolution
Workshop Proceedings, 2013, pp. 4–13.

[37] P. Stevens, “Maintaining consistency in networks of models:
Bidirectional transformations in the large,” Software and Sys-
tems Modeling, vol. 19, no. 1, pp. 39–65, 2020. DOI: 10.1007/
s10270-019-00736-x.

[38] A. Cleve, E. Kindler, P. Stevens, and V. Zaytsev, “Multi-
directional Transformations and Synchronisations (Dagstuhl
Seminar 18491),” Dagstuhl Reports, vol. 8, no. 12, pp. 1–48,
2019. DOI: 10.4230/DagRep.8.12.1.

[39] P. Stünkel, H. König, Y. Lamo, and A. Rutle, “Multimodel
Correspondence Through Inter-model Constraints,” in Confer-
ence Companion of the 2nd International Conference on Art,
Science, and Engineering of Programming, 2018, pp. 9–17.
DOI: 10.1145/3191697.3191715.

[40] Z. Diskin, H. König, and M. Lawford, “Multiple Model
Synchronization with Multiary Delta Lenses,” in Fundamental
Approaches to Software Engineering, 2018, pp. 21–37. DOI:
10.1007/978-3-319-89363-1 2.

[41] D. S. Kolovos, D. D. Ruscio, A. Pierantonio, and R. F.
Paige, “Different models for model matching: An analysis
of approaches to support model differencing,” in 2009 ICSE
Workshop on Comparison and Versioning of Software Models,
2009, pp. 1–6. DOI: 10.1109/CVSM.2009.5071714.

[42] M. Stephan and J. R. Cordy, “A survey of model comparison
approaches and applications,” in Proceedings of the 1st Inter-
national Conference on Model-Driven Engineering and Soft-
ware Development - Volume 1: MODELSWARD,, INSTICC,
2013, pp. 265–277. DOI: 10.5220/0004311102650277.

[43] P. Brosch, G. Kappel, P. Langer, M. Seidl, K. Wieland,
and M. Wimmer, An Introduction to Model Versioning, M.
Bernardo, V. Cortellessa, and A. Pierantonio, Eds. Springer
Berlin Heidelberg, 2012, pp. 336–398. DOI: 10.1007/978-3-
642-30982-3 10.

[44] C. Brun and A. Pierantonio, “Model differences in the eclipse
modeling framework,” UPGRADE, The European Journal for
the Informatics Professional, vol. 9, no. 2, pp. 29–34, 2008.

[45] E. Foundation, EMF Compare. [Online]. Available: https : / /
www.eclipse.org/emf/compare (visited on 07/22/2021).

[46] Y. Lin, J. Gray, and F. Jouault, “Dsmdiff: A differentiation tool
for domain-specific models,” European Journal of Information
Systems - EUR J INFOR SYST, vol. 16, pp. 349–361, 2007.
DOI: 10.1057/palgrave.ejis.3000685.

[47] L. Addazi, A. Cicchetti, J. Di Rocco, D. Di Ruscio, L. Iovino,
and A. Pierantonio, “Semantic-based model matching with
emfcompare,” in 10th Workshop on Models and Evolution,
2016, pp. 40–49. DOI: 10.1145/3417990.3421999.

[48] P. Stevens, “Bidirectional Transformations in the Large,” in
ACM/IEEE 20th International Conference on Model Driven
Engineering Languages and Systems (MODELS), 2017, pp. 1–
11. DOI: 10.1109/MODELS.2017.8.

[49] J. W. Wittler, “Derivation of Change Sequences from State-
Based File Differences for Delta-Based Model Consistency,”
to appear, Master’s Thesis, Karlsruhe Institute of Technology
(KIT), 2021, 73 pp.

[50] F. Hermann, H. Ehrig, C. Ermel, and F. Orejas, “Concurrent
model synchronization with conflict resolution based on triple
graph grammars,” in Fundamental Approaches to Software
Engineering, 2012, pp. 178–193. DOI: 10.1007/978- 3- 642-
28872-2 13.

[51] N. Weidmann and G. Engels, “Concurrent model synchronisa-
tion with multiple objectives,” in Proceedings of the Genetic
and Evolutionary Computation Conference, 2021, pp. 1097–
1105. DOI: 10.1145/3449639.3459283.

[52] S. Ebert, T. Kluge, and S. Götz, “Resolving synchroniza-
tion conflicts in role-based multimodel-synchronization en-
vironments,” in Proceedings of the 13th ACM International
Workshop on Context-Oriented Programming and Advanced
Modularity, 2021, pp. 1–8. DOI: 10.1145/3464970.3468412.

[53] T. Sağlam and H. Klare, “Classifying and avoiding compati-
bility issues in networks of bidirectional transformations,” in
STAF 2021 Workshop Proceedings: 9th International Work-
shop on Bidirectional Transformations, accepted, to appear,
2021.

[54] H. Klare, “Designing a Change-Driven Language for Model
Consistency Repair Routines,” Master’s Thesis, Karlsruhe
Institute of Technology (KIT), 2016. DOI: 10 . 5445 / IR /
1000080138.

https://doi.org/10.1109/ICCKE.2016.7802159
https://doi.org/10.1007/s10270-014-0450-0
https://doi.org/10.1007/s10270-018-0665-6
https://doi.org/10.1007/s10270-008-0089-9
https://doi.org/10.1007/s10270-008-0089-9
https://doi.org/10.1007/s10270-019-00736-x
https://doi.org/10.1007/s10270-019-00736-x
https://doi.org/10.4230/DagRep.8.12.1
https://doi.org/10.1145/3191697.3191715
https://doi.org/10.1007/978-3-319-89363-1_2
https://doi.org/10.1109/CVSM.2009.5071714
https://doi.org/10.5220/0004311102650277
https://doi.org/10.1007/978-3-642-30982-3_10
https://doi.org/10.1007/978-3-642-30982-3_10
https://www.eclipse.org/emf/compare
https://www.eclipse.org/emf/compare
https://doi.org/10.1057/palgrave.ejis.3000685
https://doi.org/10.1145/3417990.3421999
https://doi.org/10.1109/MODELS.2017.8
https://doi.org/10.1007/978-3-642-28872-2_13
https://doi.org/10.1007/978-3-642-28872-2_13
https://doi.org/10.1145/3449639.3459283
https://doi.org/10.1145/3464970.3468412
https://doi.org/10.5445/IR/1000080138
https://doi.org/10.5445/IR/1000080138

	Introduction
	State of the Art and Related Work
	View-Based Development
	Co-Evolution of Models
	MDE Adoption
	Model Transformations
	Model Comparison

	Approach
	Integrating External Tools
	Constructing External Views
	Model-View Consistency

	Challenges
	Viewtype Construction
	Change Sequence Derivation
	Tool Synchronization Frequency and Modality
	Concurrent Editing
	Multi-Model Interdependency
	Lack of Unique Identifiers
	Private Data

	Planned Evaluation
	Conclusion

