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Introduction

Data-driven tools are all around us—they filter our email, they rec‐
ommend professional connections, they track our music preferen‐
ces, and they advise us when to tote umbrellas. The more ubiquitous
these tools become, the more data we as a culture produce, and the
more data there is to parse, store, and analyze for insight. During
a keynote talk at Strata + Hadoop World 2015 in New York, Dr.
Timothy Howes, chief technology officer at ClearStory Data, said
that we can expect to see a 4,300% increase in annual data generated
by 2020. But this striking observation isn’t necessarily new. 

What is new are the enhancements to data-processing frameworks
and tools—enhancements to increase speed, efficiency, and intelli‐
gence (in the case of machine learning) to pace the growing volume
and variety of data that is generated. And companies are increas‐
ingly eager to highlight data preparation and business insight capa‐
bilities in their products and services. 

What is also new is the rapidly growing user base for big data.
According to Forbes, 2014 saw a 123.60% increase in demand for
information technology project managers with big data expertise,
and an 89.8% increase for computer systems analysts. In addition,
we anticipate we’ll see more data analysis tools that non-
programmers can use. And businesses will maintain their sharp
focus on using data to generate insights, inform decisions, and kick‐
start innovation. Big data analytics is not the domain of a handful of
trailblazing companies; it’s a common business practice. Organiza‐
tions of all sizes, in all corners of the world, are asking the same fun‐
damental questions: How can we collect and use data successfully?
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Who can help us establish an effective working relationship with
data?

Big Data Now recaps the trends, tools, and applications we’ve been
talking about over the past year. This collection of O’Reilly blog
posts, authored by leading thinkers and professionals in the field,
has been grouped according to unique themes that garnered signifi‐
cant attention in 2015:

• Data-driven cultures (Chapter 1)
• Data science (Chapter 2)
• Data pipelines (Chapter 3)
• Big data architecture and infrastructure (Chapter 4)
• The Internet of Things and real time (Chapter 5)
• Applications of big data (Chapter 6)
• Security, ethics, and governance (Chapter 7)
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CHAPTER 1

Data-Driven Cultures

What does it mean to be a truly data-driven culture? What tools and
skills are needed to adopt such a mindset? DJ Patil and Hilary
Mason cover this topic in O’Reilly’s report “Data Driven,” and the
collection of posts in this chapter address the benefits and chal‐
lenges that data-driven cultures experience—from generating
invaluable insights to grappling with overloaded enterprise data
warehouses. 

First, Rachel Wolfson offers a solution to address the challenges of
data overload, rising costs, and the skills gap. Evangelos Simoudis
then discusses how data storage and management providers are
becoming key contributors for insight as a service. Q Ethan McCal‐
lum traces the trajectory of his career from software developer to
team leader, and shares the knowledge he gained along the way.
Alice Zheng explores the impostor syndrome, and the byproducts of
frequent self-doubt and a perfectionist mentality. Finally, Jerry
Overton examines the importance of agility in data science and pro‐
vides a real-world example of how a short delivery cycle fosters cre‐
ativity.

How an Enterprise Begins Its Data Journey
by Rachel Wolfson

You can read this post on oreilly.com here.

As the amount of data continues to double in size every two years,
organizations are struggling more than ever before to manage,
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ingest, store, process, transform, and analyze massive data sets. It
has become clear that getting started on the road to using data suc‐
cessfully can be a difficult task, especially with a growing number of
new data sources, demands for fresher data, and the need for
increased processing capacity. In order to advance operational effi‐
ciencies and drive business growth, however, organizations must
address and overcome these challenges.

In recent years, many organizations have heavily invested in the
development of enterprise data warehouses (EDW) to serve as the
central data system for reporting, extract/transform/load (ETL) pro‐
cesses, and ways to take in data (data ingestion) from diverse data‐
bases and other sources both inside and outside the enterprise. Yet,
as the volume, velocity, and variety of data continues to increase,
already expensive and cumbersome EDWs are becoming overloaded
with data. Furthermore, traditional ETL tools are unable to handle
all the data being generated, creating bottlenecks in the EDW that
result in major processing burdens.

As a result of this overload, organizations are now turning to open
source tools like Hadoop as cost-effective solutions to offloading
data warehouse processing functions from the EDW. While Hadoop
can help organizations lower costs and increase efficiency by being
used as a complement to data warehouse activities, most businesses
still lack the skill sets required to deploy Hadoop.

Where to Begin?
Organizations challenged with overburdened EDWs need solutions
that can offload the heavy lifting of ETL processing from the data
warehouse to an alternative environment that is capable of manag‐
ing today’s data sets. The first question is always How can this be
done in a simple, cost-effective manner that doesn’t require specialized
skill sets?

Let’s start with Hadoop. As previously mentioned, many organiza‐
tions deploy Hadoop to offload their data warehouse processing
functions. After all, Hadoop is a cost-effective, highly scalable plat‐
form that can store volumes of structured, semi-structured, and
unstructured data sets. Hadoop can also help accelerate the ETL
process, while significantly reducing costs in comparison to running
ETL jobs in a traditional data warehouse. However, while the bene‐
fits of Hadoop are appealing, the complexity of this platform contin‐
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ues to hinder adoption at many organizations. It has been our goal
to find a better solution.

Using Tools to Offload ETL Workloads
One option to solve this problem comes from a combined effort
between Dell, Intel, Cloudera, and Syncsort. Together they have
developed a preconfigured offloading solution that enables busi‐
nesses to capitalize on the technical and cost-effective features
offered by Hadoop. It is an ETL offload solution that delivers a use
case–driven Hadoop Reference Architecture that can augment the
traditional EDW, ultimately enabling customers to offload ETL
workloads to Hadoop, increasing performance, and optimizing
EDW utilization by freeing up cycles for analysis in the EDW.

The new solution combines the Hadoop distribution from Cloudera
with a framework and tool set for ETL offload from Syncsort. These
technologies are powered by Dell networking components and Dell
PowerEdge R series servers with Intel Xeon processors.

The technology behind the ETL offload solution simplifies data pro‐
cessing by providing an architecture to help users optimize an exist‐
ing data warehouse. So, how does the technology behind all of this
actually work?

The ETL offload solution provides the Hadoop environment
through Cloudera Enterprise software. The Cloudera Distribution
of Hadoop (CDH) delivers the core elements of Hadoop, such as
scalable storage and distributed computing, and together with the
software from Syncsort, allows users to reduce Hadoop deployment
to weeks, develop Hadoop ETL jobs in a matter of hours, and
become fully productive in days. Additionally, CDH ensures secu‐
rity, high availability, and integration with the large set of ecosystem
tools.

Syncsort DMX-h software is a key component in this reference
architecture solution. Designed from the ground up to run effi‐
ciently in Hadoop, Syncsort DMX-h removes barriers for main‐
stream Hadoop adoption by delivering an end-to-end approach for
shifting heavy ETL workloads into Hadoop, and provides the con‐
nectivity required to build an enterprise data hub. For even tighter
integration and accessibility, DMX-h has monitoring capabilities
integrated directly into Cloudera Manager.
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With Syncsort DMX-h, organizations no longer have to be equipped
with MapReduce skills and write mountains of code to take advan‐
tage of Hadoop. This is made possible through intelligent execution
that allows users to graphically design data transformations and
focus on business rules rather than underlying platforms or execu‐
tion frameworks. Furthermore, users no longer have to make appli‐
cation changes to deploy the same data flows on or off of Hadoop,
on premise, or in the cloud. This future-proofing concept provides a
consistent user experience during the process of collecting, blend‐
ing, transforming, and distributing data.

Additionally, Syncsort has developed SILQ, a tool that facilitates
understanding, documenting, and converting massive amounts of
SQL code to Hadoop. SILQ takes an SQL script as an input and pro‐
vides a detailed flow chart of the entire data stream, mitigating the
need for specialized skills and greatly accelerating the process,
thereby removing another roadblock to offloading the data ware‐
house into Hadoop.

Dell PowerEdge R730 servers are then used for infrastructure nodes,
and Dell PowerEdge R730xd servers are used for data nodes.

The Path Forward
Offloading massive data sets from an EDW can seem like a major
barrier to organizations looking for more effective ways to manage
their ever-increasing data sets. Fortunately, businesses can now capi‐
talize on ETL offload opportunities with the correct software and
hardware required to shift expensive workloads and associated data
from overloaded enterprise data warehouses to Hadoop.

By selecting the right tools, organizations can make better use of
existing EDW investments by reducing the costs and resource
requirements for ETL.

This post is part of a collaboration between O’Reilly, Dell, and
Intel. See our statement of editorial independence. 
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1 Full disclosure: Host Analytics is one of my portfolio companies.

Improving Corporate Planning Through
Insight Generation
by Evangelos Simoudis

You can read this post on oreilly.com here.

Contrary to what many believe, insights are difficult to identify and
effectively apply. As the difficulty of insight generation becomes
apparent, we are starting to see companies that offer insight genera‐
tion as a service.

Data storage, management, and analytics are maturing into commo‐
ditized services, and the companies that provide these services are
well positioned to provide insight on the basis not just of data, but
data access and other metadata patterns.

Companies like DataHero and Host Analytics are paving the way in
the insight-as-a-service (IaaS) space.1 Host Analytics’ initial product
offering was a cloud-based Enterprise Performance Management
(EPM) suite, but far more important is what it is now enabling for
the enterprise: It has moved from being an EPM company to being
an insight generation company. This post reviews a few of the trends
that have enabled IaaS and discusses the general case of using a
software-as-a-service (SaaS) EPM solution to corral data and deliver
IaaS as the next level of product.

Insight generation is the identification of novel, interesting, plausi‐
ble, and understandable relations among elements of a data set that
(a) lead to the formation of an action plan, and (b) result in an
improvement as measured by a set of key performance indicators
(KPIs). The evaluation of the set of identified relations to establish
an insight, and the creation of an action plan associated with a par‐
ticular insight or insights, needs to be done within a particular con‐
text and necessitates the use of domain knowledge.

IaaS refers to action-oriented, analytics-driven, cloud-based solu‐
tions that generate insights and associated action plans. IaaS is a dis‐
tinct layer of the cloud stack (I’ve previously discussed IaaS in
“Defining Insight” and “Insight Generation”). In the case of Host
Analytics, its EPM solution integrates a customer’s financial plan‐
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ning data with actuals from its Enterprise Resource Planning (ERP)
applications (e.g., SAP or NetSuite, and relevant syndicated and
open source data), creating an IaaS offering that complements their
existing solution. EPM, in other words, is not just a matter of
streamlining data provisions within the enterprise; it’s an opportu‐
nity to provide a true insight-generation solution.

EPM has evolved as a category much like the rest of the data indus‐
try: from in-house solutions for enterprises to off-the-shelf but
hard-to-maintain software to SaaS and cloud-based storage and
access. Throughout this evolution, improving the financial plan‐
ning, forecasting, closing, and reporting processes continues to be a
priority for corporations. EPM started, as many applications do, in
Excel but gave way to automated solutions starting about 20 years
ago with the rise of vendors like Hyperion Solutions. Hyperion’s Ess‐
base was the first to use OLAP technology to perform both tradi‐
tional financial analysis as well as line-of-business analysis. Like
many other strategic enterprise applications, EPM started moving to
the cloud a few years ago. As such, a corporation’s financial data is
now available to easily combine with other data sources, open
source and proprietary, and deliver insight-generating solutions.

The rise of big data—and the access and management of such data
by SaaS applications, in particular—is enabling the business user to
access internal and external data, including public data. As a result,
it has become possible to access the data that companies really care
about, everything from the internal financial numbers and sales
pipelines to external benchmarking data as well as data about best
practices. Analyzing this data to derive insights is critical for corpo‐
rations for two reasons. First, great companies require agility, and
want to use all the data that’s available to them. Second, company
leadership and corporate boards are now requiring more detailed
analysis.

Legacy EPM applications historically have been centralized in the
finance department. This led to several different operational “data
hubs” existing within each corporation. Because such EPM solutions
didn’t effectively reach all departments, critical corporate informa‐
tion was “siloed,” with critical information like CRM data housed
separately from the corporate financial plan. This has left the
departments to analyze, report, and deliver their data to corporate
using manually integrated Excel spreadsheets that are incredibly
inefficient to manage and usually require significant time to under‐
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stand the data’s source and how they were calculated rather than
what to do to drive better performance.

In most corporations, this data remains disconnected. Understand‐
ing the ramifications of this barrier to achieving true enterprise per‐
formance management, IaaS applications are now stretching EPM to
incorporate operational functions like marketing, sales, and services
into the planning process. IaaS applications are beginning to inte‐
grate data sets from those departments to produce a more compre‐
hensive corporate financial plan, improving the planning process
and helping companies better realize the benefits of IaaS. In this
way, the CFO, VP of sales, CMO, and VP of services can clearly see
the actions that will improve performance in their departments, and
by extension, elevate the performance of the entire corporation.

On Leadership
by Q Ethan McCallum

You can read this post on oreilly.com here.

Over a recent dinner with Toss Bhudvanbhen, our conversation
meandered into discussion of how much our jobs had changed since
we entered the workforce. We started during the dot-com era. Tech‐
nology was a relatively young field then (frankly, it still is), so there
wasn’t a well-trodden career path. We just went with the flow.

Over time, our titles changed from “software developer,” to “senior
developer,” to “application architect,” and so on, until one day we
realized that we were writing less code but sending more
emails; attending fewer code reviews but more meetings; and were
less worried about how to implement a solution, but more con‐
cerned with defining the problem and why it needed to be solved.
We had somehow taken on leadership roles.

We’ve stuck with it. Toss now works as a principal consultant at Par‐
iveda Solutions and my consulting work focuses on strategic matters
around data and technology.

The thing is, we were never formally trained as management. We
just learned along the way. What helped was that we’d worked with
some amazing leaders, people who set great examples for us and rec‐
ognized our ability to understand the bigger picture.
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Perhaps you’re in a similar position: Yesterday you were called
“senior developer” or “data scientist” and now you’ve assumed a
technical leadership role. You’re still sussing out what this battlefield
promotion really means—or, at least, you would do that if you had
the time. We hope the high points of our conversation will help you
on your way.

Bridging Two Worlds
You likely gravitated to a leadership role because you can live in two
worlds: You have the technical skills to write working code and the
domain knowledge to understand how the technology fits the big
picture. Your job now involves keeping a foot in each camp so you
can translate the needs of the business to your technical team, and
vice versa. Your value-add is knowing when a given technology sol‐
ution will really solve a business problem, so you can accelerate
decisions and smooth the relationship between the business and
technical teams.

Someone Else Will Handle the Details
You’re spending more time in meetings and defining strategy, so
you’ll have to delegate technical work to your team. Delegation is
not about giving orders; it’s about clearly communicating your goals
so that someone else can do the work when you’re not around.
Which is great, because you won’t often be around. (If you read
between the lines here, delegation is also about you caring more
about the high-level result than minutiae of implementation details.)
How you communicate your goals depends on the experience of the
person in question: You can offer high-level guidance to senior team
members, but you’ll likely provide more guidance to the junior staff.

Here to Serve
If your team is busy running analyses or writing code, what fills
your day? Your job is to do whatever it takes to make your team suc‐
cessful. That division of labor means you’re responsible for the
pieces that your direct reports can’t or don’t want to do, or perhaps
don’t even know about: sales calls, meetings with clients, defining
scope with the product team, and so on. In a larger company, that
may also mean leveraging your internal network or using your
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seniority to overcome or circumvent roadblocks. Your team reports
to you, but you work for them.

Thinking on Your Feet
Most of your job will involve making decisions: what to do, whether
to do it, when to do it. You will often have to make those decisions
based on imperfect information. As an added treat, you’ll have to
decide in a timely fashion: People can’t move until you’ve figured
out where to go. While you should definitely seek input from your
team—they’re doing the hands-on work, so they are closer to the
action than you are—the ultimate decision is yours. As is the
responsibility for a mistake. Don’t let that scare you, though. Bad
decisions are learning experiences. A bad decision beats indecision
any day of the week.

Showing the Way
The best part of leading a team is helping people understand and
meet their career goals. You can see when someone is hungry for
something new and provide them opportunities to learn and grow.
On a technical team, that may mean giving people greater exposure
to the business side of the house. Ask them to join you in meetings
with other company leaders, or take them on sales calls. When your
team succeeds, make sure that you credit them—by name!—so that
others may recognize their contribution. You can then start to dele‐
gate more of your work to team members who are hungry for more
responsibility.

The bonus? This helps you to develop your succession plan. You see,
leadership is also temporary. Sooner or later, you’ll have to move on,
and you will serve your team and your employer well by planning
for your exit early on.

Be the Leader You Would Follow
We’ll close this out with the most important lesson of all: Leadership
isn’t a title that you’re given, but a role that you assume and that oth‐
ers recognize. You have to earn your team’s respect by making your
best possible decisions and taking responsibility when things go
awry. Don’t worry about being lost in the chaos of this new role.
Look to great leaders with whom you’ve worked in the past, and
their lessons will guide you.

On Leadership | 9



Embracing Failure and Learning from the
Impostor Syndrome
by Alice Zheng

You can read this post on oreilly.com here.

Lately, there has been a slew of media coverage about the impostor
syndrome. Many columnists, bloggers, and public speakers have spo‐
ken or written about their own struggles with the impostor syn‐
drome. And original psychological research on the impostor syn‐
drome has found that out of every five successful people, two con‐
sider themselves a fraud.

I’m certainly no stranger to the sinking feeling of being out of place.
During college and graduate school, it often seemed like everyone
else around me was sailing through to the finish line, while I alone
lumbered with the weight of programming projects and mathemati‐
cal proofs. This led to an ongoing self-debate about my choice of a
major and profession. One day, I noticed myself reading the same
sentence over and over again in a textbook; my eyes were looking at
the text, but my mind was saying Why aren’t you getting this yet? It’s
so simple. Everybody else gets it. What’s wrong with you?

When I look back on those years, I have two thoughts: first, That
was hard, and second, What a waste of perfectly good brain cells! I
could have done so many cool things if I had not spent all that time
doubting myself.

But one can’t simply snap out of the impostor syndrome. It has a
variety of causes, and it’s sticky. I was brought up with the idea of
holding myself to a high standard, to measure my own progress
against others’ achievements. Falling short of expectations is sup‐
posed to be a great motivator for action…or is it?

In practice, measuring one’s own worth against someone else’s ach‐
ievements can hinder progress more than it helps. It is a flawed
method. I have a mathematical analogy for this: When we compare
our position against others, we are comparing the static value of
functions. But what determines the global optimum of a function
are its derivatives. The first derivative measures the speed of change,
the second derivative measures how much the speed picks up over
time, and so on. How much we can achieve tomorrow is not just
determined by where we are today, but how fast we are learning,
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changing, and adapting. The rate of change is much more important
than a static snapshot of the current position. And yet, we fall into
the trap of letting the static snapshots define us.

Computer science is a discipline where the rate of change is particu‐
larly important. For one thing, it’s a fast-moving and relatively
young field. New things are always being invented. Everyone in the
field is continually learning new skills in order to keep up. What’s
important today may become obsolete tomorrow. Those who stop
learning, stop being relevant.

Even more fundamentally, software programming is about tinker‐
ing, and tinkering involves failures. This is why the hacker mentality
is so prevalent. We learn by doing, and failing, and re-doing. We
learn about good designs by iterating over initial bad designs. We
work on pet projects where we have no idea what we are doing, but
that teach us new skills. Eventually, we take on bigger, real projects.

Perhaps this is the crux of my position: I’ve noticed a cautiousness
and an aversion to failure in myself and many others. I find myself
wanting to wrap my mind around a project and perfectly under‐
stand its ins and outs before I feel comfortable diving in. I want to
get it right the first time. Few things make me feel more powerless
and incompetent than a screen full of cryptic build errors and stack
traces, and part of me wants to avoid it as much as I can.

The thing is, everything about computers is imperfect, from soft‐
ware to hardware, from design to implementation. Everything up
and down the stack breaks. The ecosystem is complicated. Compo‐
nents interact with each other in weird ways. When something
breaks, fixing it sometimes requires knowing how different compo‐
nents interact with each other; other times it requires superior Goo‐
gling skills. The only way to learn the system is to break it and fix it.
It is impossible to wrap your mind around the stack in one day:
application, compiler, network, operating system, client, server,
hardware, and so on. And one certainly can’t grok it by standing on
the outside as an observer.

Further, many computer science programs try to teach their stu‐
dents computing concepts on the first go: recursion, references, data
structures, semaphores, locks, and so on. These are beautiful, impor‐
tant concepts. But they are also very abstract and inaccessible by
themselves. They also don’t instruct students on how to succeed in
real software engineering projects. In the courses I took, program‐
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ming projects constituted a large part, but they were included as a
way of illustrating abstract concepts. You still needed to parse
through the concepts to pass the course. In my view, the ordering
should be reversed, especially for beginners. Hands-on practice with
programming projects should be the primary mode of teach‐
ing; concepts and theory should play a secondary, supporting role. It
should be made clear to students that mastering all the concepts is
not a prerequisite for writing a kick-ass program.

In some ways, all of us in this field are impostors. No one knows
everything. The only way to progress is to dive in and start doing.
Let us not measure ourselves against others, or focus on how much
we don’t yet know. Let us measure ourselves by how much we’ve
learned since last week, and how far we’ve come. Let us learn
through playing and failing. The impostor syndrome can be a great
teacher. It teaches us to love our failures and keep going.

O’Reilly’s 2015 Edition of Women in Data reveals inspiring success sto‐
ries from four women working in data across the European Union, and
features interviews with 19 women who are central to data businesses.

The Key to Agile Data Science:
Experimentation
by Jerry Overton

You can read this post on oreilly.com here.

I lead a research team of data scientists responsible for discovering
insights that generate market and competitive intelligence for our
company, Computer Sciences Corporation (CSC). We are a busy
group. We get questions from all different areas of the company and
it’s important to be agile.

The nature of data science is experimental. You don’t know the
answer to the question asked of you—or even if an answer exists.
You don’t know how long it will take to produce a result or how
much data you need. The easiest approach is to just come up with an
idea and work on it until you have something. But for those of us
with deadlines and expectations, that approach doesn’t fly. Compa‐
nies that issue you regular paychecks usually want insight into your
progress.
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This is where being agile matters. An agile data scientist works in
small iterations, pivots based on results, and learns along the way.
Being agile doesn’t guarantee that an idea will succeed, but it does
decrease the amount of time it takes to spot a dead end. Agile data
science lets you deliver results on a regular basis and it keeps stake‐
holders engaged.

The key to agile data science is delivering data products in defined
time boxes—say, two- to three-week sprints. Short delivery cycles
force us to be creative and break our research into small chunks that
can be tested using minimum viable experiments. We deliver some‐
thing tangible after almost every sprint for our stakeholders to
review and give us feedback. Our stakeholders get better visibility
into our work, and we learn early on if we are on track.

This approach might sound obvious, but it isn’t always natural for
the team. We have to get used to working on just enough to meet
stakeholders’ needs and resist the urge to make solutions perfect
before moving on. After we make something work in one sprint, we
make it better in the next only if we can find a really good reason to
do so.

An Example Using the Stack Overflow Data Explorer
Being an agile data scientist sounds good, but it’s not always obvious
how to put the theory into everyday practice. In business, we are
used to thinking about things in terms of tasks, but the agile data
scientist has to be able to convert a task-oriented approach into an
experiment-oriented approach. Here’s a recent example from my
personal experience.

Our CTO is responsible for making sure the company has the next-
generation skills we need to stay competitive—that takes data. We
have to know what skills are hot and how difficult they are to attract
and retain. Our team was given the task of categorizing key skills by
how important they are, and by how rare they are (see Figure 1-1).
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Figure 1-1. Skill categorization (image courtesy of Jerry Overton)

We already developed the ability to categorize key skills as important
or not. By mining years of CIO survey results, social media sites, job
boards, and internal HR records, we could produce a list of the skills
most needed to support any of CSC’s IT priorities. For example, the
following is a list of programming language skills with the highest
utility across all areas of the company:

Programming language Importance (0–1 scale)

Java 1

SQL 0.4

Python 0.3

C# 0.2

C++ 0.1

Perl 0.1

Note that this is a composite score for all the different technology
domains we considered. The importance of Python, for exam‐
ple, varies a lot depending on whether or not you are hiring for a
data scientist or a mainframe specialist.

For our top skills, we had the “importance” dimension, but we still
needed the “abundance” dimension. We considered purchasing IT
survey data that could tell us how many IT professionals had a
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particular skill, but we couldn’t find a source with enough breadth
and detail. We considered conducting a survey of our own, but
that would be expensive and time consuming. Instead, we decided
to take a step back and perform an agile experiment.

Our goal was to find the relative number of technical professionals
with a certain skill. Perhaps we could estimate that number based on
activity within a technical community. It seemed reasonable to
assume that the more people who have a skill, the more you will see
helpful posts in communities like Stack Overflow. For example, if
there are twice as many Java programmers as Python programmers,
you should see about twice as many helpful Java programmer posts
as Python programmer posts. Which led us to a hypothesis: 

You can predict the relative number of technical professionals
with a certain IT skill based on the relative number of helpful
contributors in a technical community. 

 

We looked for the fastest, cheapest way to test the hypothesis. We
took a handful of important programming skills and counted the
number of unique contributors with posts rated above a certain
threshold. We ran this query in the Stack Overflow Data Explorer:

 

1  SELECT
2  Count(DISTINCT Users.Id),
3  Tags.TagName as Tag_Name
4  FROM
5  Users, Posts, PostTags, Tags
6  WHERE
7  Posts.OwnerUserId = Users.Id AND
8  PostTags.PostId = Posts.Id AND
9  Tags.Id = PostTags.TagId AND
10 Posts.Score > 15 AND
11 Posts.CreationDate BETWEEN '1/1/2012' AND '1/1/2015' AND
12 Tags.TagName IN ('python', 'r', 'java', 'perl', 'sql', 
'c#', 'c++')
13 GROUP BY
14 Tags.TagName
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Which gave us these results:

Programming language Unique contributors Scaled value (0–1)

Java 2,276 1.00

C# 1,868 0.82

C++ 1,529 0.67

Python 1,380 0.61

SQL 314 0.14

Perl 70 0.03

We converted the scores according to a linear scale with the top
score mapped to 1 and the lowest score being 0. Considering a skill
to be “plentiful” is a relative thing. We decided to use the skill with
the highest population score as the standard. At first glance, these
results seemed to match our intuition, but we needed a simple,
objective way of cross-validating the results. We considered looking
for a targeted IT professional survey, but decided to perform a sim‐
ple LinkedIn people search instead. We went into LinkedIn, typed a
programming language into the search box, and recorded the num‐
ber of people with that skill:

Programming language LinkedIn population (M) Scaled value (0–1)

Java 5.2 1.00

C# 4.6 0.88

C++ 3 0.58

Python 1.7 0.33

SQL 1 0.19

Perl 0.5 0.10

Some of the experiment’s results matched the cross-validation, but
some were way off. The Java and C++ population scores predicted
by the experiment matched pretty closely with the validation. But
the experiment predicted that SQL would be one of the rarest skills,
while the LinkedIn search told us that it is the most plentiful. This
discrepancy makes sense. Foundational skills, such as SQL, that have
been around a while will have a lot of practitioners, but are unlikely
to be a hot topic of discussion. By the way, adjusting the allowable
post creation dates made little difference to the relative outcome.
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We couldn’t confirm the hypothesis, but we learned something val‐
uable. Why not just use the number of people that show up in the
LinkedIn search as the measure of our population with the particu‐
lar skill? We have to build the population list by hand, but that kind
of grunt work is the cost of doing business in data science. Combin‐
ing the results of LinkedIn searches with our previous analysis of
skills importance, we can categorize programming language skills
for the company, as shown in Figure 1-2.

Figure 1-2. Programming language skill categorization (image courtesy
of Jerry Overton)

Lessons Learned from a Minimum Viable Experiment
The entire experiment, from hypothesis to conclusion, took just
three hours to complete. Along the way, there were concerns about
which Stack Overflow contributors to include, how to define a help‐
ful post, and the allowable sizes of technical communities—the list
of possible pitfalls went on and on. But we were able to slice through
the noise and stay focused on what mattered by sticking to a basic
hypothesis and a minimum viable experiment.

Using simple tests and minimum viable experiments, we learned
enough to deliver real value to our stakeholders in a very short
amount of time. No one is getting hired or fired based on these
results, but we can now recommend to our stakeholders strategies
for getting the most out of our skills. We can recommend targets for
recruiting and strategies for prioritizing talent development efforts.
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Best of all, I think, we can tell our stakeholders how these priorities
should change depending on the technology domain.
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CHAPTER 2

Data Science

The term “data science” connotes opportunity and excitement.
Organizations across the globe are rushing to build data science
teams. The 2015 version of the Data Science Salary Survey reveals
that usage of Spark and Scala has skyrocketed since 2014, and their
users tend to earn more. Similarly, organizations are investing heav‐
ily in a variety of tools for their data science toolkit, including
Hadoop, Spark, Kafka, Cassandra, D3, and Tableau—and the list
keeps growing. Machine learning is also an area of tremendous
innovation in data science—see Alice Zheng’s report “Evaluating
Machine Learning Models,” which outlines the basics of model eval‐
uation, and also dives into evaluation metrics and A/B testing.

So, where are we going? In a keynote talk at Strata + Hadoop World
San Jose, US Chief Data Scientist DJ Patil provides a unique perspec‐
tive of the future of data science in terms of the federal government’s
three areas of immediate focus: using medical and genomic data to
accelerate discovery and improve treatments, building “game chang‐
ing” data products on top of thousands of open data sets, and work‐
ing in an ethical manner to ensure data science protects privacy.

This chapter’s collection of blog posts reflects some hot topics
related to the present and the future of data science. First, Jerry
Overton takes a look at what it means to be a professional data sci‐
ence programmer, and explores best practices and commonly used
tools. Russell Jurney then surveys a series of networks, including
LinkedIn InMaps, and discusses what can be inferred when visualiz‐
ing data in networks. Finally, Ben Lorica observes the reasons why
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tensors are generating interest—speed, accuracy, scalability—and
details recent improvements in parallel and distributed computing
systems. 

What It Means to “Go Pro” in Data Science
by Jerry Overton

You can read this post on oreilly.com here.

My experience of being a data scientist is not at all like what I’ve
read in books and blogs. I’ve read about data scientists working for
digital superstar companies. They sound like heroes writing auto‐
mated (near sentient) algorithms constantly churning out insights.
I’ve read about MacGyver-like data scientist hackers who save the
day by cobbling together data products from whatever raw material
they have around.

The data products my team creates are not important enough to jus‐
tify huge enterprise-wide infrastructures. It’s just not worth it to
invest in hyper-efficient automation and production control. On the
other hand, our data products influence important decisions in the
enterprise, and it’s important that our efforts scale. We can’t afford to
do things manually all the time, and we need efficient ways of shar‐
ing results with tens of thousands of people.

There are a lot of us out there—the “regular” data scientists; we’re
more organized than hackers but with no need for a superhero-style
data science lair. A group of us met and held a speed ideation event,
where we brainstormed on the best practices we need to write solid
code. This article is a summary of the conversation and an attempt
to collect our knowledge, distill it, and present it in one place.

Going Pro
Data scientists need software engineering skills—just not all the
skills a professional software engineer needs. I call data scientists
with essential data product engineering skills “professional” data sci‐
ence programmers. Professionalism isn’t a possession like a certifi‐
cation or hours of experience; I’m talking about professionalism as
an approach. Professional data science programmers are self-
correcting in their creation of data products. They have general
strategies for recognizing where their work sucks and correcting the
problem.
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The professional data science programmer has to turn a hypothesis
into software capable of testing that hypothesis. Data science pro‐
gramming is unique in software engineering because of the types of
problems data scientists tackle. The big challenge is that the nature
of data science is experimental. The challenges are often difficult,
and the data is messy. For many of these problems, there is no
known solution strategy, the path toward a solution is not known
ahead of time, and possible solutions are best explored in small
steps. In what follows, I describe general strategies for a disciplined,
productive trial and error: breaking problems into small steps, try‐
ing solutions, and making corrections along the way.

Think Like a Pro
To be a professional data science programmer, you have to know
more than how the systems are structured. You have to know how to
design a solution, you have to be able to recognize when you have a
solution, and you have to be able to recognize when you don’t fully
understand your solution. That last point is essential to being self-
correcting. When you recognize the conceptual gaps in your
approach, you can fill them in yourself. To design a data science sol‐
ution in a way that you can be self-correcting, I’ve found it useful to
follow the basic process of look, see, imagine, and show:

Step 1: Look
Start by scanning the environment. Do background research
and become aware of all the pieces that might be related to the
problem you are trying to solve. Look at your problem in as
much breadth as you can. Get visibility to as much of your sit‐
uation as you can and collect disparate pieces of information.

Step 2: See
Take the disparate pieces you discovered and chunk them into
abstractions that correspond to elements of the blackboard pat‐
tern. At this stage, you are casting elements of the problem into
meaningful, technical concepts. Seeing the problem is a critical
step for laying the groundwork for creating a viable design.

Step 3: Imagine
Given the technical concepts you see, imagine some implemen‐
tation that moves you from the present to your target state. If
you can’t imagine an implementation, then you probably missed
something when you looked at the problem.
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Step 4: Show
Explain your solution first to yourself, then to a peer, then to
your boss, and finally to a target user. Each of these explanations
need only be just formal enough to get your point across: a
water-cooler conversation, an email, a 15-minute walk-
through. This is the most important regular practice in becoming
a self-correcting professional data science programmer. If there
are any holes in your approach, they’ll most likely come to light
when you try to explain it. Take the time to fill in the gaps and
make sure you can properly explain the problem and its solu‐
tion.

Design Like a Pro
The activities of creating and releasing a data product are varied and
complex, but, typically, what you do will fall somewhere in
what Alistair Croll describes as the big data supply chain (see Figure
2-1).

Figure 2-1. The big data supply chain (image courtesy of Jerry Over‐
ton)

Because data products execute according to a paradigm (real time,
batch mode, or some hybrid of the two), you will likely find yourself
participating in a combination of data supply chain activity and a
data-product paradigm: ingesting and cleaning batch-updated data,
building an algorithm to analyze real-time data, sharing the results
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of a batch process, and so on. Fortunately, the blackboard architec‐
tural pattern gives us a basic blueprint for good software engineer‐
ing in any of these scenarios (see Figure 2-2).

Figure 2-2. The blackboard architectural pattern (image courtesy of
Jerry Overton)

The blackboard pattern tells us to solve problems by dividing the
overall task of finding a solution into a set of smaller, self-contained
subtasks. Each subtask transforms your hypothesis into one that’s
easier to solve or a hypothesis whose solution is already known.
Each task gradually improves the solution and leads, hopefully, to a
viable resolution.

Data science is awash in tools, each with its own unique virtues.
Productivity is a big deal, and I like letting my team choose whatever
tools they are most familiar with. Using the blackboard pattern
makes it OK to build data products from a collection of different
technologies. Cooperation between algorithms happens through a
shared repository. Each algorithm can access data, process it as
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input, and deliver the results back to the repository for some other
algorithm to use as input.

Last, the algorithms are all coordinated using a single control com‐
ponent that represents the heuristic used to solve the problem. The
control is the implementation of the strategy you’ve chosen to solve
the problem. This is the highest level of abstraction and understand‐
ing of the problem, and it’s implemented by a technology that can
interface with and determine the order of all the other algorithms.
The control can be something automated (e.g., a cron job, script), or
it can be manual (e.g., a person that executes the different steps in
the proper order). But overall, it’s the total strategy for solving the
problem. It’s the one place you can go to see the solution to the
problem from start to finish.

This basic approach has proven useful in constructing software sys‐
tems that have to solve uncertain, hypothetical problems using
incomplete data. The best part is that it lets us make progress to an
uncertain problem using certain, deterministic pieces. Unfortu‐
nately, there is no guarantee that your efforts will actually solve the
problem. It’s better to know sooner rather than later if you are going
down a path that won’t work. You do this using the order in which
you implement the system.

Build Like a Pro
You don’t have to build the elements of a data product in a set order
(i.e., build the repository first, then the algorithms, then the control‐
ler; see Figure 2-3). The professional approach is to build in the
order of highest technical risk. Start with the riskiest element first,
and go from there. An element can be technically risky for a lot of
reasons. The riskiest part may be the one that has the highest work‐
load or the part you understand the least.

You can build out components in any order by focusing on a single
element and stubbing out the rest (see Figure 2-4). If you decide, for
example, to start by building an algorithm, dummy up the input
data and define a temporary spot to write the algorithm’s output.
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Figure 2-3. Sample 1 approach to building a data product (image cour‐
tesy of Jerry Overton)

Figure 2-4. Sample 2 approach to building a data product (image cour‐
tesy of Jerry Overton)
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Then, implement a data product in the order of technical risk,
putting the riskiest elements first. Focus on a particular element,
stub out the rest, replace the stubs later.

The key is to build and run in small pieces: write algorithms in small
steps that you understand, build the repository one data source at a
time, and build your control one algorithm execution step at a time.
The goal is to have a working data product at all times—it just won’t
be fully functioning until the end.

Tools of the Pro
Every pro needs quality tools. There are a lot of choices available.
These are some of the most commonly used tools, organized by
topic:

Visualization

D3.js
D3.js (or just D3, for data-driven documents) is a JavaScript
library for producing dynamic, interactive data visualiza‐
tions in web browsers. It makes use of the widely imple‐
mented SVG, HTML5, and CSS standards.

Version control

GitHub
GitHub is a web-based Git repository hosting service that
offers all of the distributed revision control and source code
management (SCM) functionality of Git as well as adding
its own features. GitHub provides a web-based graphical
interface and desktop as well as mobile integration.

Programming languages

R
R is a programming language and software environment for
statistical computing and graphics. The R language is
widely used among statisticians and data miners for devel‐
oping statistical software and data analysis.

Python
Python is a widely used general-purpose, high-level pro‐
gramming language. Its design philosophy emphasizes code
readability, and its syntax allows programmers to express
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concepts in fewer lines of code than would be possible in
languages such as C++ or Java.

Scala
Scala is an object-functional programming language for
general software applications. Scala has full support for
functional programming and a very strong static type sys‐
tem. This allows programs written in Scala to be very con‐
cise and thus smaller in size than other general-purpose
programming languages.

Java
Java is a general-purpose computer programming language
that is concurrent, class-based, object-oriented, and specifi‐
cally designed to have as few implementation dependencies
as possible. It is intended to let application developers
“write once, run anywhere” (WORA).

The Hadoop ecosystem

Hadoop
Hadoop is an open source software framework written in
Java for distributed storage and distributed processing of
very large data sets on computer clusters built from com‐
modity hardware.

Pig
Pig is a high-level platform for creating MapReduce pro‐
grams used with Hadoop.

Hive
Hive is a data warehouse infrastructure built on top of
Hadoop for providing data summarization, query, and anal‐
ysis.

Spark
Spark’s in-memory primitives provide performance up to
100 times faster for certain applications.

Epilogue: How This Article Came About
This article started out as a discussion of occasional productivity
problems we were having on my team. We eventually traced the
issues back to the technical platform and our software engineering
knowledge. We needed to plug holes in our software engineering
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practices, but every available course was either too abstract or too
detailed (meant for professional software developers). I’m a big fan
of the outside-in approach to data science and decided to hold an
open CrowdChat discussion on the matter.

We got great participation: 179 posts in 30 minutes; 600 views, and
28K+ reached. I took the discussion and summarized the findings
based on the most influential answers, then I took the summary and
used it as the basis for this article. I want to thank all those who par‐
ticipated in the process and take the time to acknowledge their con‐
tributions.

The O’Reilly Data Show Podcast
Topic Models: Past, Present, and Future
An interview with David Blei

“My understanding when I speak to people at different startup
companies and other more established companies is that a lot of
technology companies are using topic modeling to generate this
representation of documents in terms of the discovered topics,
and then using that representation in other algorithms for things
like classification or other things.”

—David Blei, Columbia Uni‐
versity

Listen to the full interview with David Blei here.

Graphs in the World: Modeling Systems as
Networks
by Russell Jurney

You can read this post on oreilly.com here.

Networks of all kinds drive the modern world. You can build a net‐
work from nearly any kind of data set, which is probably why net‐
work structures characterize some aspects of most phenomena. And
yet, many people can’t see the networks underlying different sys‐
tems. In this post, we’re going to survey a series of networks that
model different systems in order to understand various ways net‐
works help us understand the world around us.
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We’ll explore how to see, extract, and create value with networks.
We’ll look at four examples where I used networks to model differ‐
ent phenomena, starting with startup ecosystems and ending in
network-driven marketing.

Networks and Markets
Commerce is one person or company selling to another, which is
inherently a network phenomenon. Analyzing networks in markets
can help us understand how market economies operate.

Strength of weak ties
Mark Granovetter famously researched job hunting and discovered
the strength of weak ties, illustrated in Figure 2-5.

Figure 2-5. The strength of weak ties (image via Wikimedia Com‐
mons)

Granovetter’s paper is one of the most influential in social network
analysis, and it says something counterintuitive: Loosely connected
professionals (weak ties) tend to be the best sources of job tips
because they have access to more novel and different information
than closer connections (strong ties). The weak tie hypothesis has
been applied to understanding numerous areas.

In Granovetter’s day, social network analysis was limited in that data
collection usually involved a clipboard and good walking shoes. The
modern Web contains numerous social networking websites and
apps, and the Web itself can be understood as a large graph of web
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pages with links between them. In light of this, a backlog of techni‐
ques from social network analysis are available to us to understand
networks that we collect and analyze with software, rather than pen
and paper. Social network analysis is driving innovation on the
social web.

Networks of success
There are other ways to use networks to understand markets. Figure
2-6 shows a map of the security sector of the startup ecosystem in
Atlanta as of 2010.

Figure 2-6. The Atlanta security startup map (image courtesy of Rus‐
sell Jurney, used with permission); click here for larger version

I created this map with the help of the startup community in
Atlanta, and LinkedIn and Google. Each node (circle) is a company.
Each link between nodes represents a founder who worked at the
originating company and went on to found the destination com‐
pany. Look carefully and you will see that Internet Security Systems
(ISS) and SecureIT (which sold the Internet Scanner by ISS)
spawned most of the other companies in the cluster.

This simple chart illustrates the network-centric process underlying
the emergence of startup ecosystems. Groups of companies emerge
together via “networks of success”—groups of individuals who work
together and develop an abundance of skills, social capital, and cash.
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This network is similar to others that are better known, like the Pay‐
Pal Mafia or the Fairchildren.

This was my first venture into social network research—a domain
typically limited to social scientists and Ph.D. candidates. And when
I say social network, I don’t mean Facebook; I mean social network as
in social network analysis.

The Atlanta security startup map shows the importance of appren‐
ticeship in building startups and ecosystems. Participating in a solid
IPO is equivalent to seed funding for every early employee. This is
what is missing from startup ecosystems in provincial places: Col‐
lectively, there isn’t enough success and capital for the employees of
successful companies to have enough skills and capital to start their
own ventures.

Once that tipping point occurs, though, where startups beget start‐
ups, startup ecosystems self-sustain—they grow on their own. Older
generations of entrepreneurs invest in and mentor younger entre‐
preneurs, with each cohort becoming increasingly wealthy and well
connected. Atlanta has a cycle of wealth occurring in the security
sector, making it a great place to start a security company.

My hope with this map was to affect policy—to encourage the state
of Georgia to redirect stimulus money toward economic clusters
that work as this one does. The return on this investment would
dwarf others the state makes because the market wants Atlanta to be
a security startup mecca. This remains a hope.

In any case, that’s a lot to learn from a simple map, but that’s the
kind of insight you can obtain from collecting and analyzing social
networks.

LinkedIn InMaps
Ali Imam invented LinkedIn’s InMaps as a side project. InMaps were
a hit: People went crazy for them. Ali was backlogged using a step-
by-step, manual process to create the maps. I was called in to turn
the one-off process into a product. The product was cool, but more
than that, we wanted to prove that anyone at LinkedIn could come
up with a good idea and we could take it from an idea to a produc‐
tion application (which we did).
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Snowball sampling and 1.5-hop networks
InMaps was a great example of the utility of snowball samples and
1.5-hop networks. A snowball sample is a sample that starts with
one or more persons, and grows like a snowball as we recruit their
friends, and then their friend’s friends, until we get a large enough
sample to make inferences. 1.5-hop networks are local neighbor‐
hoods centered on one entity or ego. They let us look at a limited
section of larger graphs, making even massive graphs browsable.

With InMaps, we started with one person, and then added their
connections, and finally added the connections between them. This
is a “1.5-hop network.” If we only looked at a person and their
friends, we would have a “1-hop network.” If we included the per‐
son, their friends, as well as all connections of the friends, as
opposed to just connections between friends, we would have a “2-
hop network.”

Viral visualization
My favorite thing about InMaps is a bug that became a feature. We
hadn’t completed the part of the project where we would determine
the name of each cluster of LinkedIn users. At the same time, we
weren’t able to get placement for the application on the site. So how
would users learn about InMaps?

We had several large-scale printers, so I printed my brother’s InMap
as a test case. We met so I could give him his map, and we ended up
labeling the clusters by hand right there in the coffee shop. He was
excited by his map, but once he labeled it, he was ecstatic. It was
“his” art, and it represented his entire career. He had to have it. Ali
created my brother’s InMap, shown in Figure 2-7, and I hand labeled
it in Photoshop.

So, we’d found our distribution: virality. Users would create their
own InMaps, label the clusters, and then share their personalized
InMap via social media. Others would see the InMap, and want one
of their own—creating a viral loop that would get the app in front of
users.
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Figure 2-7. Chris Jurney’s InMap (photo courtesy of Ali Imam and
Russell Jurney, used with permission)

Inbox Networks
After I left LinkedIn, I missed its data. I needed a new data set to
play with, and Chris Diehl told me about his work on the Enron
data set.

About half a gigabyte of emails that surfaced during the investiga‐
tion into the collapse of Enron have become a standard data set
against which researchers discover and develop a variety of statisti‐
cal software and systems.

After playing with the Enron data set, I wanted something more
personal. I wrote a script that downloads your Gmail inbox into
Avro format. After all, if it’s your data, then you can really gauge
insight.

Taking a cue from InMaps, I rendered maps of my inbox and labeled
the clusters (see Figure 2-8).
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Figure 2-8. Map of Russell Jurney’s Gmail inbox showing labeled clus‐
ters (image courtesy of Russell Jurney, used with permission)

Inbox ego networks
These maps showed the different groups I belonged to, mailing lists,
etc. From there, it was possible to create an ego network of senders
of emails, and to map users to groups and organizations. Inbox ego
networks are a big deal: This is the technology behind RelateIQ,
which was acquired in 2014 for $392 million. RelateIQ’s killer fea‐
ture is that it reduces the amount of data entry required, as it auto‐
matically identifies companies you’re emailing by their domain and
creates customer relationship management (CRM) entries for each
email you send or receive.

Agile data science
I founded Kontexa to create a collaborative, semantic inbox. I used
graph visualization to inspect the results of my data processing and
created my own simple graph database on top of Voldemort to allow
the combination of different inboxes at a semantic level. Figure 2-9
shows a visualization of my inbox unioned with my brother’s.
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Figure 2-9. Graphical representation of inbox combining Russell Jurney
and Chris Jurney’s data (image courtesy of Russell Jurney, used with
permission)

This work became the foundation for my first book, Agile Data Sci‐
ence. In the book, users download their own inboxes and then we
analyze these Avro records in Apache Pig and Python.

Customer Relationship Management Analytics
During a nine-month stint as data scientist in residence at The Hive,
I helped launch the startup E8 Security, acting as the first engineer
on the team (E8 went on to raise a $10 million series A). As my time
at E8 came to a close, I once again found myself needing a new data
set to analyze.

Former Hiver Karl Rumelhart introduced me to CRM data. CRM
databases can be worth many millions of dollars, so it’s a great type
of data to work with. Karl posed a challenge: Could I cluster CRM
databases into groups that we could then use to target different sec‐
tors in marketing automation?

We wanted to know if segmenting markets was possible before we
asked any prospective customers for their CRM databases. So, as a
test case, we decided to look at the big data market. Specifically, we
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focused on the four major Hadoop vendors: Cloudera, Horton‐
works, MapR, and Pivotal.

In the absence of a CRM database, how would I link one company
to another? The answer: partnership pages. Most companies in the
big data space have partnership pages, which list other companies a
given company works with in providing its products or services. I
created a hybrid machine/turk system that gathered the partnerships
of the four Hadoop vendors. Then I gathered the partnerships of
these partners to create a “second degree network” of partnerships.

Once clustered, the initial data looked like Figure 2-10.

Figure 2-10. Graphical representation of corporate partnerships among
four Hadoop vendors (image courtesy of Russell Jurney, used with per‐
mission)

Taking a cue from InMaps once again, I hand labeled the clusters.
We were pleased to find that they corresponded roughly with sectors
in the big data market—new/old data platforms, and hardware and
analytic software companies. An idea we’ve been playing with is to
create these clusters, then classify new leads into its cluster, and use
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this cluster field in marketing automation. This would allow better
targeting with cluster-specific content.

Market reports
At this point, I really thought I was onto something. Something
worth exploring fully. What if we mapped entire markets, indeed the
entire economy, in terms of relationships between companies? What
could we do with this data? I believe that with a scope into how the
economy works, we could make markets more efficient.

Early in 2015, I founded Relato with this goal in mind: improve sales,
marketing, and strategy by mapping the economy. Working on the
company full time since January, we’ve partnered with O’Reilly to
extend the initial work on the big data space to create an in-depth
report: “Mapping Big Data: A Data-Driven Market Report.” The
report includes an analysis of data we’ve collected about companies
in the big data space, along with expert commentary. This is a new
kind of market report that you’ll be seeing more of in the future.

Conclusion
We’ve shown how networks are the structure behind many different
phenomena. When you next encounter a new data set, you should
ask yourself: Is this a network? What would understanding this data
as a network allow me to do?

Let’s Build Open Source Tensor Libraries for
Data Science
by Ben Lorica

You can read this post on oreilly.com here.

Data scientists frequently find themselves dealing with high-
dimensional feature spaces. As an example, text mining usually
involves vocabularies comprised of 10,000+ different words. Many
analytic problems involve linear algebra, particularly 2D matrix fac‐
torization techniques, for which several open source implementa‐
tions are available. Anyone working on implementing machine
learning algorithms ends up needing a good library for matrix anal‐
ysis and operations.
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But why stop at 2D representations? In a Strata + Hadoop World
San Jose presentation, UC Irvine professor Anima Anandku‐
mar described how techniques developed for higher-dimensional
arrays can be applied to machine learning. Tensors are generaliza‐
tions of matrices that let you look beyond pairwise relationships to
higher-dimensional models (a matrix is a second-order tensor). For
instance, one can examine patterns between any three (or more)
dimensions in data sets. In a text mining application, this leads to
models that incorporate the co-occurrence of three or more words,
and in social networks, you can use tensors to encode arbitrary
degrees of influence (e.g., “friend of friend of friend” of a user).

Being able to capture higher-order relationships proves to be quite
useful. In her talk, Anandkumar described applications to latent
variable models, including text mining (topic models), information
science (social network analysis), recommender systems, and deep
neural networks. A natural entry point for applications is to look at
generalizations of matrix (2D) techniques to higher-dimensional
arrays. For example, Figure 2-11 illustrates one form of eigen
decomposition.

Figure 2-11. Spectral decomposition of tensors (image courtesy
of Anima Anandkumar, used with permission)
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Tensor Methods Are Accurate and Embarrassingly
Parallel
Latent variable models and deep neural networks can be solved
using other methods, including maximum likelihood and local
search techniques (gradient descent, variational inference, EM). So,
why use tensors at all? Unlike variational inference and EM, tensor
methods produce global and not local optima, under reasonable
conditions. In her talk, Anandkumar described some recent exam‐
ples—topic models and social network analysis—where tensor
methods proved to be faster and more accurate than other methods
(see Figure 2-12).

Figure 2-12. Error rates and recovery ratios from recent community
detection experiments  (running time measured in seconds; image
courtesy of Anima Anandkumar, used with permission)

Scalability is another important reason why tensors are generating
interest. Tensor decomposition algorithms have been parallelized
using GPUs, and more recently using Apache REEF (a dis‐
tributed framework originally developed by Microsoft). To summa‐
rize, early results are promising (in terms of speed and accuracy),
and implementations in distributed systems lead to algorithms that
scale to extremely large data sets (see Figure 2-13).
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Figure 2-13. General framework (image courtesy of Anima Anandku‐
mar, used with permission)

Hierarchical Decomposition Models
Their ability to model multiway relationships makes tensor methods
particularly useful for uncovering hierarchical structures in high-
dimensional data sets. In a recent paper, Anandkumar and her col‐
laborators automatically found patterns and “concepts reflecting co-
occurrences of particular diagnoses in patients in outpatient and
intensive care settings.”

Why Aren’t Tensors More Popular?
If they’re faster, more accurate, and embarrassingly parallel, why
haven’t tensor methods become more common? It comes down to
libraries. Just as matrix libraries are needed to implement many
machine learning algorithms, open source libraries for tensor analy‐
sis need to become more common. While it’s true that tensor com‐
putations are more demanding than matrix algorithms, recent
improvements in parallel and distributed computing systems have
made tensor techniques feasible.

There are some early libraries for tensor analysis in MATLAB,
Python, TH++ from Facebook, and many others from the scientific
computing community. For applications to machine learning, soft‐
ware tools that include tensor decomposition methods are essential.
As a first step, Anandkumar and her UC Irvine colleagues have
released code for tensor methods for topic modeling and social net‐
work modeling that run on single servers.
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But for data scientists to embrace these techniques, we’ll need well-
developed libraries accessible from the languages (Python, R, Java,
Scala) and frameworks (Apache Spark) we’re already familiar with.
(Coincidentally, Spark developers just recently introduced dis‐
tributed matrices.)

It’s fun to see a tool that I first encountered in math and physics
courses having an impact in machine learning. But the primary rea‐
son I’m writing this post is to get readers excited enough to build
open source tensor (decomposition) libraries. Once these basic
libraries are in place, tensor-based algorithms become easier to
implement. Anandkumar and her collaborators are in the early
stages of porting some of their code to Apache Spark, and I’m hop‐
ing other groups will jump into the fray.

The O’Reilly Data Show Podcast
The Tensor Renaissance in Data Science
An interview with Anima Anandkumar 

“The latest set of results we have been looking at is the use of ten‐
sors for feature learning as a general concept. The idea of feature
learning is to look at transformations of the input data that can
be classified more accurately using simpler classifiers. This is
now an emerging area in machine learning that has seen a lot of
interest, and our latest analysis is to ask how can tensors be
employed for such feature learning. What we established is you
can learn recursively better features by employing tensor decom‐
positions repeatedly, mimicking deep learning that’s being seen.”

—Anima Anandkumar, UC
Irvine

Listen to the full interview with Anima Anandkumar here.
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CHAPTER 3

Data Pipelines

Engineering and optimizing data pipelines continues to be an area
of particular interest, as researchers attempt to improve efficiency so
they can scale to very large data sets. Workflow tools that enable
users to build pipelines have also become more common—these
days, such tools exist for data engineers, data scientists, and even
business analysts. In this chapter, we present a collection of blog
posts and podcasts that cover the latest thinking in the realm of data
pipelines.

First, Ben Lorica explains why interactions between parts of a pipe‐
line are an area of active research, and why we need tools to enable
users to build certifiable machine learning pipelines. Michael Li
then explores three best practices for building successful pipelines—
reproducibility, consistency, and productionizability. Next, Kiyoto
Tamura explores the ideal frameworks for collecting, parsing, and
archiving logs, and also outlines the value of JSON as a unifying for‐
mat. Finally, Gwen Shapira discusses how to simplify backend A/B
testing using Kafka.

Building and Deploying Large-Scale Machine
Learning Pipelines
by Ben Lorica

You can read this post on oreilly.com here.
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There are many algorithms with implementations that scale to large
data sets (this list includes matrix factorization, SVM, logistic
regression, LASSO, and many others). In fact, machine learning
experts are fond of pointing out: If you can pose your problem as a
simple optimization problem then you’re almost done.

Of course, in practice, most machine learning projects can’t be
reduced to simple optimization problems. Data scientists have
to manage and maintain complex data projects, and the analytic
problems they need to tackle usually involve specialized machine
learning pipelines. Decisions at one stage affect things that happen
downstream, so interactions between parts of a pipeline are an area
of active research (see Figure 3-1).

Figure 3-1. Some common machine learning pipelines (image courtesy
of Ben Recht, used with permission)

In his 2014 Strata + Hadoop World New York presentation, UC
Berkeley professor Ben Recht described new UC Berkeley
AMPLab projects for building and managing large-scale machine
learning pipelines. Given AMPLab’s ties to the Spark community,
some of the ideas from their projects are starting to appear in
Apache Spark.
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Identify and Build Primitives
The first step is to create building blocks. A pipeline is typically rep‐
resented by a graph, and AMPLab researchers have been focused on
scaling and optimizing nodes (primitives) that can scale to very large
data sets (see Figure 3-2). Some of these primitives might be specific
to particular domains and data types (text, images, video, audio, spa‐
tiotemporal) or more general purpose (statistics, machine learning).
A recent example would be ml-matrix, a distributed matrix library
that runs on top of Apache Spark.

Figure 3-2. AMPLab advanced analytics stack (image courtesy
of Evan Sparks, used with permission)
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Casting machine learning models in terms of primitives makes these
systems more accessible. To the extent that the nodes of your pipe‐
line are “interpretable,” resulting machine learning systems are more
transparent and explainable than methods relying on black boxes.

Make Machine Learning Modular: Simplifying Pipeline
Synthesis
While primitives can serve as building blocks, we still need tools
that enable users to build pipelines. Workflow tools have become
more common, and these days, such tools exist for data engineers,
data scientists, and even business analysts (Alteryx, Rapid‐
Miner, Alpine Data, Dataiku).

As I noted in a recent post, we’ll see more data analysis tools that
combine an elegant interface with a simple DSL that non-
programmers can edit. At some point, DSLs to encode graphs that
represent these pipelines will become common. The latest release of
Apache Spark (version 1.2) comes with an API for building machine
learning pipelines (if you squint hard enough, it has the makings
of a DSL for pipelines).

Do Some Error Analysis
Figure 3-3 supports Ben Recht’s following statement:

We’re trying to put (machine learning systems) in self-driving cars,
power networks … If we want machine learning models to actually
have an impact in everyday experience, we’d better come out with
the same guarantees as one of these complicated airplane designs.

—Ben Recht
 

Can we bound approximation errors and convergence rates for lay‐
ered pipelines? Assuming we can compute error bars for nodes, the
next step would be to have a mechanism for extracting error bars for
these pipelines. In practical terms, what we need are tools to cer‐
tify that a pipeline will work (when deployed in production) and
that can provide some measure of the size of errors to expect.
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Figure 3-3. ML pipelines are beginning to resemble the intricacy of
block diagrams from airplanes (image courtesy of Ben Recht, used
with permission); click for a larger view

To that end, Laurent Lessard, Ben Recht, and Andrew Packard have
been using techniques from control theory to automatically generate
verification certificates for machine learning pipelines. Their meth‐
ods can analyze many of the most popular techniques for machine
learning on large data sets. And their longer term goal is to be able
to derive performance characteristics and analyze the robustness of
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complex, distributed software systems directly from pseudocode. (A
related AMPLab project Velox provides a framework for managing
models in production.)

As algorithms become even more pervasive, we need better tools for
building complex yet robust and stable machine learning systems.
While other systems like scikit-learn and GraphLab support pipe‐
lines, a popular distributed framework like Apache Spark takes these
ideas to extremely large data sets and a wider audience. Early results
look promising: AMPLab researchers have built large-scale pipelines
that match some state-of-the-art results in vision, speech, and text
processing.

The O’Reilly Data Show Podcast
6 Reasons Why I love KeystoneML
An interview with Ben Recht

“The other thing that we’re hoping to be able to do are systems
optimizations: meaning that we don’t want you to load a
thousand-node cluster because you made an incorrect decision
in caching. We’d like to be able to actually make these things
where we can smartly allocate memory and other resources to be
able to run to more compact clusters.”

—Ben Recht, UC Berkeley

Listen to the full interview with Ben Recht here.

Three Best Practices for Building Successful
Data Pipelines
by Michael Li

You can read this post on oreilly.com here.

Building a good data pipeline can be technically tricky. As a data sci‐
entist who has worked at Foursquare and Google, I can honestly say
that one of our biggest headaches was locking down our Extract,
Transform, and Load (ETL) process.

At The Data Incubator, our team has trained more than 100 talented
Ph.D. data science fellows who are now data scientists at a wide
range of companies, including Capital One, The New York Times,
AIG, and Palantir. We commonly hear from Data Incubator alumni
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and hiring managers that one of their biggest challenges is also
implementing their own ETL pipelines.

Drawn from their experiences and my own, I’ve identified three key
areas that are often overlooked in data pipelines. These include
ensuring your analysis is:

• Reproducible
• Consistent
• Productionizable

While these areas alone cannot guarantee good data science, getting
these three technical aspects of your data pipeline right helps ensure
that your data and research results are both reliable and useful to an
organization.

Ensuring Reproducibility by Providing a Reliable Audit
Trail
To ensure the reproducibility of your data analysis, there are three
dependencies that need to be locked down: analysis code, data sour‐
ces, and algorithmic randomness (see Figure 3-4).

Figure 3-4. Three dependencies that ensure reproducible data analysis
(image courtesy of Michael Li)

Science that cannot be reproduced by an external third party is just
not science—and this does apply to data science. One of the benefits
of working in data science is the ability to apply the existing tools
from software engineering. These tools let you isolate all the depen‐
dencies of your analyses and make them reproducible.

Dependencies fall into three categories:
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Analysis code
All analysis code should be checked into source control. Every
analysis consists of innumerable assumptions made during both
ETL and modeling. These are impossible to document exhaus‐
tively, and the rapid iteration cycles enabled by faster tools
means the results and documented processes are often out of
sync. Like with soft engineering, what was run is what was in
code, and having that timestamped and recorded in a version
control system makes analysis much more reproducible.

Data sources
While the analysis code needs to be locked down, so does the
data source. (You’ve likely encountered analyses that open up a
mysterious sales.dat file that no one can find.) Even if
you can locate your data files, you might find a version that’s
encoded differently than the one originally used (e.g., using
JSON rather than XML), thus making your otherwise carefully
source-controlled analysis code much less useful. Locking down
the exact file is the first step in data consistency.

Algorithmic randomness
Is your data being randomly sub-sampled? Even seemingly
deterministic analyses can have hidden randomness. For exam‐
ple, check whether your gradient descent starts at a random ini‐
tial condition. These techniques all depend on a random num‐
ber generator. The problem with algorithmic randomness is that
even if we freeze the input data and analysis code, the outputs
will still vary randomly. This eliminates reproducibility because
another person trying to reproduce the result can never answer
the question Is the new answer different because I did something
wrong or because of algorithmic randomness? To promote repro‐
ducibility, set the random number generator’s “seed” to an arbi‐
trary, but fixed, value (that’s checked into source control) before
running the analysis so that results are consistent and discrep‐
ancies can be attributed to code or data.

By locking down analysis code, data sources, and algorithmic ran‐
domness, we can ensure that the entire analysis can be re-run by
anyone. The benefits, however, go beyond scientific reproducibility;
making the analysis fully documented provides a reliable audit trail,
which is critical for data-driven decision making.
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Establishing Consistency in Data
How we establish the consistency of data sources is a bit trickier
than establishing reproducibility. Establishing consistency is of fun‐
damental importance because data science obeys the maxim
“garbage in, garbage out,” and as we have discussed, access to the
correctly formatted data is just as important as access to the right
analysis code. 

There are generally two ways of establishing the consistency of data
sources. The first is by checking all code and data into a single revi‐
sion control repository. The second method is to reserve source
control for code and build a pipeline that explicitly depends on
external data being in a stable, consistent format and location.

Checking data into version control is generally considered verboten
for production software engineers, but it has a place in data analysis.
For one thing, it makes your analysis very portable by isolating all
dependencies into source control. Here are some conditions under
which it makes sense to have both code and data in source control:

Small data sets
A lot of data analysis either fully or partially depends on a few
small data sets. Even if you are performing an analysis on a large
amount of data, sub-sampling to a smaller data set can be suffi‐
cient. In this case, it may make sense to keep your data checked
into source control rather than building an expensive pipeline
to manage it. Obviously, if your data set is large, it becomes
impractical to check it into source control.

Regular analytics
A lot of data analytics are simply one-off reporting, and it may
not make much sense to set up a pipeline simply for the sake of
reproducibility. On the other hand, if this is an analysis that
needs to occur daily, it doesn’t make sense to check in each day’s
data to an ever-growing version control repository.

Fixed source
If you control the data source or know that it will likely remain
fixed, this might be a good candidate for setting up a full pipe‐
line. On the other hand, if your data source is managed by an
external party and subject to frequent changes, it may not be
worth setting up and maintaining a consistent pipeline. For
example, if your data includes files that need to be downloaded

Three Best Practices for Building Successful Data Pipelines | 51



from a government website, it may make sense to check those
into source control, rather than maintaining a custom script
that downloads the files each time.

While source-control systems are considered forbidden on the pro‐
duction end, source-control systems like Git can easily handle tens
of megabytes of data without significant performance lag. Services
like GitHub’s large file storage system promise to make handling
large data in source control even easier in the future. Whether you
choose to check all code and data into a single revision control
repository or just put your code under source control and lock
down your data sources in an external pipeline, securing your data
sources is the key to consistent data and reproducible analysis.

Productionizability: Developing a Common ETL
Of course data science that isn’t deployed is useless, and the ability
to productionize results is always a central concern of good data sci‐
entists. From a data pipelining perspective, one of the key concerns
is the development of a common ETL process shared by production
and research.

As a simple example, we may want to join-in user data and purchase
data to feed into a recommender model for a website. This join
would need to happen in two environments: in research (where we
need the data for training), and in production (where we need the
data for predictions and recommendations). Ideally, the ETL code
that joins these two chunks of data (and the myriad of data normal‐
ization decisions embedded in this code) would be shared between
the two environments. In practice, this faces two major challenges:

Common data format
In practice, there are a number of constraints to establishing a
common data format. You’ll have to select a data format that
plays well with production and Hadoop (or whatever backend
data store you use). Being able to use the same data formats
reduces the number of unnecessary data transformations, and
helps prevent introducing bugs that contaminate data purity.
Using the same data formats also reduces the number of data
schemas and formats that your data team has to learn and
maintain.
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Isolating library dependencies
You will want to isolate library dependencies used by your ETL
in production. On most research environments, library depen‐
dencies are either packaged with the ETL code (e.g., Hadoop) or
provisioned on each cluster node (e.g., mrjob). Reducing these
dependencies reduces the overhead of running an ETL pipeline.
However, production code typically supports a much larger set
of functionality (HTML templating, web frameworks, task
queues) that are not used in research, and vice versa. Data engi‐
neers and scientists need to be careful about isolating the ETL
production code from the rest of the codebase to keep the
dependencies isolated so that the code can be run efficiently on
both the frontend and backend.

While sharing ETL code between production and research introdu‐
ces some complexities, it also greatly reduces the potential for errors,
by helping guarantee that the transformed data used for model
training is the same as the transformed data the models will use in
production. Even after locking down your data sources and ensur‐
ing data consistency, having separate ETL code can lead to differ‐
ences in modeling input data that renders the outputs of models
completely useless. Common ETL code can go a long way to ensur‐
ing reproducible results in your analysis (see Figure 3-5).
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Figure 3-5. Backend and production sharing data formats and ETL
code make research rapidly productionizable (image courtesy of
Michael Li)

Focusing on the Science
With the high cost of data science, managers need to ensure that
their data analytics are both sound and useful. Ultimately, achieving
this depends on external factors, including the quality of the team
and the quality of the underlying data, which may be outside of the
manager’s control. Data analysis is hard enough without having to
worry about the correctness of your underlying data or its future
ability to be productionizable. By employing these engineering best
practices of making your data analysis reproducible, consistent, and
productionizable, data scientists can focus on science, instead of
worrying about data management.
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The Log: The Lifeblood of Your Data Pipeline
by Kiyoto Tamura

You can read this post on oreilly.com here.

The value of log data for business is unimpeachable. On every level
of the organization, the question How are we doing? is answered,
ultimately, by log data. Error logs tell developers what went wrong in
their applications. User event logs give product managers insights
on usage. If the CEO has a question about the next quarter’s revenue
forecast, the answer ultimately comes from payment/CRM logs. In
this post, I explore the ideal frameworks for collecting and parsing
logs.

Apache Kafka architect Jay Kreps wrote a wonderfully crisp sur‐
vey on log data. He begins with the simple question of What is the
log? and elucidates its key role in thinking about data pipelines. Jay’s
piece focuses mostly on storing and processing log data. Here, I
focus on the steps before storing and processing.

Changing the Way We Think About Log Data
Over the past decade, the primary consumer of log data shifted from
humans to machines (see Figure 3-6).
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Figure 3-6. The old paradigm, machines to humans, compared to the
new paradigm, machines to machines (image courtesy of Kiyoto
Tamura)

Software engineers still read logs, especially when their software
behaves in an unexpected manner. However, in terms of “bytes pro‐
cessed,” humans account for a tiny fraction of the total consump‐
tion. Much of today’s “big data” is some form of log data, and busi‐
nesses run tens of thousands of servers to parse and mine these logs
to gain competitive edge.
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This shift brought about three fundamental changes in how we
ought to think about collecting log data. Specifically, we need to do
the following:

Make logs consumable for machines first, humans second
Humans are good at parsing unstructured text, but they read
very slowly, whereas machines are the exact opposite—they are
terrible at guessing the hidden structure of unstructured text
but read structured data very, very quickly. The log format of
today must serve machines’ needs first and humans’ second.

Several formats are strong candidates (Protocol Buffer, Messa‐
gePack, Thrift, etc.). However, JSON seems to be the clear win‐
ner for one critical reason: It is human readable. At the end of
the day, humans also need to read the logs occasionally to per‐
form sanity checks, and JSON is easy to read for both machines
and humans. This is one decided advantage that JSON has over
binary alternatives like Protocol Buffer. While human reading is
secondary to machine intelligibility, it is, after all is said and
done, still a requirement for quality logging.

Transport logs reliably
The amount of log data produced today is staggering. It’s not
unheard of for a young startup to amass millions of users, who
in turn produce millions of user events and billions of lines of
logs. Product managers and engineers revel at the opportunity
to analyze all these logs to understand their customers and
make their software better.

But doing so presents a challenge: Logs need to be transported
from where they are produced (mobile devices, sensors, or plain
old web servers) to where they can be archived cost-effectively
(HDFS, Amazon S3, Google Cloud Storage, etc.).

Transporting terabytes and petabytes of logs over a network cre‐
ates an interesting technical challenge. At minimum, the trans‐
port mechanism must be able to cope with network failures and
not lose any data. Ideally, it should be able to prevent data dupli‐
cation. Achieving both—or the “exactly once” semantics in data
infrastructure parlance—is the holy grail of distributed comput‐
ing (see Figure 3-7).

The Log: The Lifeblood of Your Data Pipeline | 57



Figure 3-7. Errors in log transporting over networks (image cour‐
tesy of Kiyoto Tamura)

Support many data inputs and outputs
Today, collecting and storing logs is more complex than ever.
On the data input side, we have more devices producing logs in
a wide range of formats. On the data output side, it looks like
there is a new database or storage engine coming out every
month (see Figure 3-8). How can one hope to maintain logging
pipelines with so many data inputs and outputs?

Figure 3-8. Many-to-many log routing (image courtesy of Kiyoto
Tamura)
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The Need for the Unified Logging Layer
The answer is pluggable architecture. Every single platform that has
managed to address a growing set of use cases, from WordPress
through jQuery to Chrome, has a mechanism that allows individual
users to extend the core functionality by contributing and sharing
their work with other users as a plug-in.

This means the user should be able to add his or her own data
inputs and outputs as plug-ins. If a new data input plug-in is cre‐
ated, it should be compatible with all existing output plug-ins and
vice versa.

I’ve been calling the software system that meets the three criteria
just discussed the Unified Logging Layer (ULL). The ULL should be
part of any modern logging infrastructure, as it helps the organiza‐
tion to collect more logs faster, more reliably, and scalably.

Fluentd
Fluentd is an open source log collector that implements the ULL and
addresses each of its three requirements:

JSON as the unifying format
Fluentd embraces JSON as the data exchange format. When
logs come into Fluentd, it parses them as a sequence of JSON
objects. Because JSON has become the de facto standard for
data exchange while remaining human readable, it’s a great can‐
didate to satisfy the “make logs consumable machine-first,
human-second” requirement of the ULL.

Reliability through file-based buffering and failover
Fluentd ensures reliable transport by implementing a configura‐
ble buffering mechanism. Fluentd buffers log data by persisting
it to disk and keeps retrying until the payload is successfully
sent to the desired output system. It also implements failover so
that the user can send data to a safe secondary output until the
connection to the primary output is recovered.

Pluggable inputs, outputs, and more
Fluentd implements all inputs and outputs as plug-ins. Today,
the ecosystem boasts hundreds of input and output plug-ins
contributed by the community, making it easy to send data from
anywhere to anywhere.
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Figure 3-9 illustrates these points.

Figure 3-9. Fluentd: The Unified Logging Layer (image courtesy of
Kiyoto Tamura)

What’s more, Fluentd’s parser (parsing incoming logs), filter (filter‐
ing parsed logs), buffer (how data is buffered), and formatter (for‐
matting outgoing logs) are all pluggable, making it very easy to cre‐
ate and manage flexible and reliable logging pipelines.

You can learn more about the ULL and Fluentd on our website as
well as via our GitHub repository.

Appendix: The Duality of Kafka and Fluentd
Over the last few years, I have given several talks on Fluentd, and
many people have asked me how Fluentd is different from Apache
Kafka. The difference is quite clear, actually. Fluentd is one of the
data inputs or outputs for Kafka, and Kafka is one of the data inputs
or outputs for Fluentd (see Figure 3-10).

Figure 3-10. Kafka and Fluentd complement each other (image cour‐
tesy of Kiyoto Tamura)

Kafka is primarily related to holding log data rather than moving log
data. Thus, Kafka producers need to write the code to put data in
Kafka, and Kafka consumers need to write the code to pull data out
of Kafka. Fluentd has both input and output plug-ins for Kafka so
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that data engineers can write less code to get data in and out of
Kafka. We have many users that use Fluentd as a Kafka producer
and/or consumer.

Validating Data Models with Kafka-Based
Pipelines
by Gwen Shapira

You can read this post on oreilly.com here.

A/B testing is a popular method of using business intelligence data
to assess possible changes to websites. In the past, when a business
wanted to update its website in an attempt to drive more sales, deci‐
sions on the specific changes to make were driven by guesses; intu‐
ition; focus groups; and ultimately, which executive yelled louder.
These days, the data-driven solution is to set up multiple copies of
the website, direct users randomly to the different variations, and
measure which design improves sales the most. There are a lot of
details to get right, but this is the gist of things.

When it comes to backend systems, however, we are still living in
the stone age. Suppose your business grows significantly and you
notice that your existing MySQL database is becoming less respon‐
sive as the load increases. You might consider moving to a NoSQL
system, but you’ll need to decide which NoSQL solution to select—
there are a lot of options: Cassandra, MongoDB, Couchbase, or even
Hadoop. There are also many possible data models: normalized,
wide tables, narrow tables, nested data structures, and so on.

A/B Testing Multiple Data Stores and Data Models in
Parallel
It is surprising how often companies choose solutions based on
intuition or even which architect yelled louder. Rather than making
a decision based on facts and numbers regarding capacity, scale,
throughput, and data-processing patterns, the backend architecture
decisions are made with fuzzy reasoning. In that scenario, what usu‐
ally happens is that a data store and a data model are somehow
chosen, and the entire development team will dive into a six-month
project to move their entire backend system to the new thing. This
project will inevitably take 12 months, and about 9 months in,
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everyone will suspect that this was a bad idea, but it’s way too late to
do anything about it.

Note how this approach is anti-agile. Even though the effort is often
done by scrum teams with stories, points, sprints, and all the other
agile trappings, a methodology in which you are taking on a project
without knowing if early design decisions were correct or not for six
months is inherently a waterfall methodology. You can’t correct
course based on data because by the time you have data, you’ve
invested too much in the project already. This model is far too
inflexible and too risky compared to a model of choosing few rea‐
sonable options, testing them out for few weeks, collecting data, and
proceeding based on the results.

The reason smart companies that should know better still develop
data backends using this waterfall model is that the backend system
is useless without data in it. Migrating data and the associated data
pipelines is by far the most challenging component in testing out a
new backend system. Companies do six-month backend migration
projects because they have no way of testing a backend system in a
two-week spike.

But what if you could? What if you could easily “split” all of your
data pipelines to go through two backends instead of one? This will
allow you to kick the new system a bit with your real data and check
out how to generate reports, how to integrate existing software, and
to find out how stable the new database is under various failure con‐
ditions. For a growing number of organizations, this is not just an
interesting possibility; this is a reality.

Kafka’s Place in the “Which Data Store Do We Choose”
Debate
Data bus is a central component of all modern data architectures: in
both Lambda or Kappa architectures, the first step in the data-
processing pipeline is collecting all events in Apache Kafka. From
Kafka, data can be processed in streams or batches, and because
Kafka scales so well when you store more data or add more brokers,
most organizations store months of data within Kafka.

If you follow the principles of agile data architectures, you will have
most of your critical data organized in different topics in Kafka—
not just the raw input data, but data in different stages of processing
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—cleaned, validated, aggregated, and enriched. Populating a new
backend with the data for a proof of concept is no longer a question
of connecting many existing systems to the new backend and re-
creating huge number of pipelines. With Kafka, populating a back‐
end system is a relatively simple matter of choosing which topics
should be used and writing a consumer that reads data from these
topics and inserts them into the new backend.

This means the new backend will receive data without changing a
single thing about the existing systems. The data sources and the old
backends simply continue on from the existing pipeline, unaware
that there is a new consumer somewhere populating a new backend
data store. The data architecture is truly decoupled in a way that
allows you to experiment without risking existing systems.

Once the new data store and its data model is populated, you can
validate things like throughput, performance, ease of querying, and
anything else that will come up in the “which data store do we
choose?” debate. You can even A/B test multiple data stores and
multiple data models in parallel, so the whole decision process can
take less time.

Next time your team debates between three different data models,
there will still be opinions, intuition, and possibly even yelling, but
there will also be data to help guide the decision.
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CHAPTER 4

Big Data Architecture and
Infrastructure

As noted in O’Reilly’s 2015 Data Science Salary Survey, the same
four tools—SQL, Excel, R, and Python—continue to be the most
widely used in data science for the third year in a row. Spark also
continues to be one of the most active projects in big data, seeing a
17% increase in users over the past 12 months. Matei Zaharia, crea‐
tor of Spark, outlined in his keynote at Strata + Hadoop San Jose
two new goals Spark was pursuing in 2015. The first goal was to
make distributed processing tools accessible to a wide range of
users, beyond big data engineers. An example of this is seen in the
new DataFrames API, inspired by R and Python data frames. The
second goal was to enhance integration—to allow Spark to interact
efficiently in different environments, from NoSQL stores to tradi‐
tional data warehouses.  

In many ways, the two goals for Spark in 2015—greater accessibility
for a wider user base and greater integration of tools/environments
—are consistent with the changes we’re seeing in architecture and
infrastructure across the entire big data landscape. In this chapter,
we present a collection of blog posts that reflect these changes. 

Ben Lorica documents what startups like Tamr and Trifacta have
learned about opening up data analysis to non-
programmers. Benjamin Hindman laments the fact that we still
don’t have an operating system that abstracts and manages hardware
resources in the data center. Jim Scott discusses his use of Myriad to
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enable Mesos and YARN to work better together (but notes
improvements are still needed). Yanpei Chen chronicles what hap‐
pened when his team at Cloudera used SSDs instead of HDDs to
assess their impact on big data (sneak preview: SSDs again offer up
to 40% shorter job duration, and 70% higher performance).
Finally, Shaoshan Liu discusses how to use Baidu and Tachyon with
Spark SQL to increase data processing speed 30-fold.

Lessons from Next-Generation Data-
Wrangling Tools
by Ben Lorica

You can read this post on oreilly.com here.

One of the trends we’re following is the rise of applications that
combine big data, algorithms, and efficient user interfaces. As I
noted in “Big Data’s Big Ideas,” our interest stems from both con‐
sumer apps as well as tools that democratize data analysis. It’s no
surprise that one of the areas where “cognitive augmentation” is
playing out is in data preparation and curation. Data scientists con‐
tinue to spend a lot of their time on data wrangling, and the increas‐
ing number of (public and internal) data sources paves the way for
tools that can increase productivity in this critical area.

At Strata + Hadoop World New York, two presentations from aca‐
demic spinoff startups focused on data preparation and curation:

• Tamr: Mike Stonebraker’s “Three Approaches to Scalable Data
Curation” 

• Trifacta: Joe Hellerstein and Sean Kandel’s “Advantages of a
Domain-Specific Language Approach to Data Transformation”

While data wrangling is just one component of a data science pipe‐
line, and granted we’re still in the early days of productivity tools in
data science, some of the lessons these companies have learned
extend beyond data preparation.

Scalability ~ Data Variety and Size
Not only are enterprises faced with many data stores and spread‐
sheets, data scientists have many more (public and internal) data
sources they want to incorporate. The absence of a global data
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model means integrating data silos, and data sources require tools
for consolidating schemas.

Random samples are great for working through the initial phases,
particularly while you’re still familiarizing yourself with a new data
set. Trifacta lets users work with samples while they’re developing
data-wrangling “scripts” that can be used on full data sets.

Empower Domain Experts
In many instances, you need subject area experts to explain specific
data sets that you’re not familiar with. These experts can place data
in context and are usually critical in helping you clean and consoli‐
date variables. Trifacta has tools that enable non-programmers to
take on data-wrangling tasks that previously required a fair amount
of scripting.

Consider DSLs and Visual Interfaces
Programs written in a [domain specific language] (DSL) also have
one other important characteristic: they can often be written by
non-programmers…a user immersed in a domain already knows
the domain semantics. All the DSL designer needs to do is provide
a notation to express that semantics.

—Paul Hudak, 1997

I’ve often used regular expressions for data wrangling, only to come
back later unable to read the code I wrote (Joe Hellerstein describes
regex as “meant for writing and never reading again”). Programs
written in DSLs are concise, easier to maintain, and can often be
written by non-programmers.

Trifacta designed a “readable” DSL for data wrangling but goes one
step further: Its users “live in visualizations, not code.” Its elegant
visual interface is designed to accomplish most data-wrangling
tasks, but it also lets users access and modify accompanying scripts
written in Trifacta’s DSL (power users can also use regular expres‐
sions).

These ideas go beyond data wrangling. Combining DSLs with visual
interfaces can open up other aspects of data analysis to non-
programmers.
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Intelligence and Automation
If you’re dealing with thousands of data sources, then you’ll need
tools that can automate routine steps. Tamr’s next-generation
extract, transform, load (ETL) platform uses machine learning in a
variety of ways, including schema consolidation and expert (crowd)
sourcing.

Many data analysis tasks involve a handful of data sources that
require painstaking data wrangling along the way. Scripts to auto‐
mate data preparation are needed for replication and maintenance.
Trifacta looks at user behavior and context to produce “utterances”
of its DSL, which users can then edit or modify.

Don’t Forget About Replication
If you believe the adage that data wrangling consumes a lot of time
and resources, then it goes without saying that tools like Tamr and
Trifacta should produce reusable scripts and track lineage. Other
aspects of data science—for example, model building, deployment,
and maintenance—need tools with similar capabilities.

Why the Data Center Needs an Operating
System
by Benjamin Hindman

You can read this post on oreilly.com here.

Developers today are building a new class of applications. These
applications no longer fit on a single server, but instead run across a
fleet of servers in a data center. Examples include analytics frame‐
works like Apache Hadoop and Apache Spark, message brokers like
Apache Kafka, key/value stores like Apache Cassandra, as well as
customer-facing applications such as those run by Twitter and Net‐
flix.

These new applications are more than applications—they are dis‐
tributed systems. Just as it became commonplace for developers to
build multithreaded applications for single machines, it’s now
becoming commonplace for developers to build distributed systems
for data centers.
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But it’s difficult for developers to build distributed systems, and it’s
difficult for operators to run distributed systems. Why? Because we
expose the wrong level of abstraction to both developers and opera‐
tors: machines.

Machines Are the Wrong Abstraction
Machines are the wrong level of abstraction for building and run‐
ning distributed applications. Exposing machines as the abstraction
to developers unnecessarily complicates the engineering, causing
developers to build software constrained by machine-specific char‐
acteristics, like IP addresses and local storage. This makes moving
and resizing applications difficult if not impossible, forcing mainte‐
nance in data centers to be a highly involved and painful procedure.

With machines as the abstraction, operators deploy applications in
anticipation of machine loss, usually by taking the easiest and most
conservative approach of deploying one application per machine.
This almost always means machines go underutilized, as we rarely
buy our machines (virtual or physical) to exactly fit our applications,
or size our applications to exactly fit our machines.

By running only one application per machine, we end up dividing
our data center into highly static, highly inflexible partitions of
machines, one for each distributed application. We end up with a
partition that runs analytics, another that runs the databases,
another that runs the web servers, another that runs the message
queues, and so on. And the number of partitions is only bound to
increase as companies replace monolithic architectures with service-
oriented architectures and build more software based on microser‐
vices.

What happens when a machine dies in one of these static partitions?
Let’s hope we over-provisioned sufficiently (wasting money), or can
re-provision another machine quickly (wasting effort). What about
when the web traffic dips to its daily low? With static partitions, we
allocate for peak capacity, which means when traffic is at its lowest,
all of that excess capacity is wasted. This is why a typical data center
runs at only 8%–15% efficiency. And don’t be fooled just because
you’re running in the cloud: You’re still being charged for the
resources your application is not using on each virtual machine
(someone is benefiting—it’s just your cloud provider, not you).
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And finally, with machines as the abstraction, organizations must
employ armies of people to manually configure and maintain each
individual application on each individual machine. People become
the bottleneck for trying to run new applications, even when there
are ample resources already provisioned that are not being utilized.

If My Laptop Were a Data Center
Imagine if we ran applications on our laptops the same way we run
applications in our data centers. Each time we launched a web
browser or text editor, we’d have to specify which CPU to use, which
memory modules are addressable, which caches are available, and so
on. Thankfully, our laptops have an operating system that abstracts
us away from the complexities of manual resource management.

In fact, we have operating systems for our workstations, servers,
mainframes, supercomputers, and mobile devices, each optimized
for their unique capabilities and form factors.

We’ve already started treating the data center itself as one massive
warehouse-scale computer. Yet, we still don’t have an operating sys‐
tem that abstracts and manages the hardware resources in the data
center just like an operating system does on our laptops.

It’s Time for the Data Center OS
What would an operating system for the data center look like?

From an operator’s perspective, it would span all of the machines in
a data center (or cloud) and aggregate them into one giant pool of
resources on which applications would be run. You would no longer
configure specific machines for specific applications; all applications
would be capable of running on any available resources from any
machine, even if there are other applications already running on
those machines.

From a developer’s perspective, the data center operating system
would act as an intermediary between applications and machines,
providing common primitives to facilitate and simplify building dis‐
tributed applications.

The data center operating system would not need to replace Linux
or any other host operating systems we use in our data centers today.
The data center operating system would provide a software stack on
top of the host operating system. Continuing to use the host operat‐
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ing system to provide standard execution environments is critical to
immediately supporting existing applications.

The data center operating system would provide functionality for
the data center that is analogous to what a host operating system
provides on a single machine today: namely, resource management
and process isolation. Just like with a host operating system, a data
center operating system would enable multiple users to execute mul‐
tiple applications (made up of multiple processes) concurrently,
across a shared collection of resources, with explicit isolation
between those applications.

An API for the Data Center
Perhaps the defining characteristic of a data center operating system
is that it provides a software interface for building distributed appli‐
cations. Analogous to the system call interface for a host operating
system, the data center operating system API would enable dis‐
tributed applications to allocate and deallocate resources, launch,
monitor, and destroy processes, and more. The API would provide
primitives that implement common functionality that all distributed
systems need. Thus, developers would no longer need to independ‐
ently re-implement fundamental distributed systems primitives (and
inevitably, independently suffer from the same bugs and perfor‐
mance issues).

Centralizing common functionality within the API primitives would
enable developers to build new distributed applications more easily,
more safely, and more quickly. This is reminiscent of when virtual
memory was added to host operating systems. In fact, one of the vir‐
tual memory pioneers wrote that “it was pretty obvious to the
designers of operating systems in the early 1960s that automatic
storage allocation could significantly simplify programming.”

Example Primitives
Two primitives specific to a data center operating system that would
immediately simplify building distributed applications are service
discovery and coordination. Unlike on a single host where very few
applications need to discover other applications running on the
same host, discovery is the norm for distributed applications. Like‐
wise, most distributed applications achieve high availability and
fault tolerance through some means of coordination and/or consen‐
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sus, which is notoriously hard to implement correctly and effi‐
ciently.

Developers today are forced to choose between existing tools for
service discovery and coordination, such as Apache Zoo‐
Keeper and CoreOS’ etcd. This forces organizations to deploy multi‐
ple tools for different applications, significantly increasing opera‐
tional complexity and maintainability.

Having the data center operating system provide primitives for dis‐
covery and coordination not only simplifies development, it also
enables application portability. Organizations can change the under‐
lying implementations without rewriting the applications, much like
you can choose between different filesystem implementations on a
host operating system today.

A New Way to Deploy Applications
With a data center operating system, a software interface replaces
the human interface that developers typically interact with when
trying to deploy their applications today; rather than a developer
asking a person to provision and configure machines to run their
applications, developers launch their applications using the data
center operating system (e.g., via a CLI or GUI), and the application
executes using the data center operating system’s API.

This supports a clean separation of concerns between operators and
users: Operators specify the amount of resources allocatable to each
user, and users launch whatever applications they want, using what‐
ever resources are available to them. Because an operator now speci‐
fies how much of any type of resource is available, but not which spe‐
cific resource, a data center operating system, and the distributed
applications running on top, can be more intelligent about which
resources to use in order to execute more efficiently and better han‐
dle failures. Because most distributed applications have complex
scheduling requirements (think Apache Hadoop) and specific needs
for failure recovery (think of a database), empowering software to
make decisions instead of humans is critical for operating efficiently
at data-center scale.
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The “Cloud” Is Not an Operating System
Why do we need a new operating system? Didn’t Infrastructure as a
Service (IaaS) and Platform as a Service (PaaS) already solve these
problems?

IaaS doesn’t solve our problems because it’s still focused on
machines. It isn’t designed with a software interface intended for
applications to use in order to execute. IaaS is designed for humans
to consume, in order to provision virtual machines that other
humans can use to deploy applications; IaaS turns machines into
more (virtual) machines, but does not provide any primitives that
make it easier for a developer to build distributed applications on
top of those machines.

PaaS, on the other hand, abstracts away the machines, but is still
designed first and foremost to be consumed by a human. Many PaaS
solutions do include numerous tangential services and integrations
that make building a distributed application easier, but not in a way
that’s portable across other PaaS solutions.

Apache Mesos: The Distributed Systems Kernel
Distributed computing is now the norm, not the exception, and we
need a data center operating system that delivers a layer of abstrac‐
tion and a portable API for distributed applications. Not having one
is hindering our industry. Developers should be able to build dis‐
tributed applications without having to reimplement common func‐
tionality. Distributed applications built in one organization should
be capable of being run in another organization easily.

Existing cloud computing solutions and APIs are not sufficient.
Moreover, the data center operating system API must be built, like
Linux, in an open and collaborative manner. Proprietary APIs force
lock-in, deterring a healthy and innovative ecosystem from growing.
It’s time we created the POSIX for distributed computing: a portable
API for distributed systems running in a data center or on a cloud.

The open source Apache Mesos project, of which I am one of the co-
creators and the project chair, is a step in that direction. Apache
Mesos aims to be a distributed systems kernel that provides a
portable API upon which distributed applications can be built and
run.
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Many popular distributed systems have already been built directly
on top of Mesos, including Apache Spark, Apache Aurora, Airbnb’s
Chronos, and Mesosphere’s Marathon. Other popular distributed
systems have been ported to run on top of Mesos, including Apache
Hadoop, Apache Storm, and Google’s Kubernetes, to list a few.

Chronos is a compelling example of the value of building on top of
Mesos. Chronos, a distributed system that provides highly available
and fault-tolerant cron, was built on top of Mesos in only a few
thousand lines of code and without having to do any explicit socket
programming for network communication.

Companies like Twitter and Airbnb are already using Mesos to help
run their data centers, while companies like Google have been using
in-house solutions they built almost a decade ago. In fact, just like
Google’s MapReduce spurred an industry around Apache Hadoop,
Google’s in-house data center solutions have had close ties with the
evolution of Mesos.

While not a complete data center operating system, Mesos, along
with some of the distributed applications running on top, provide
some of the essential building blocks from which a full data center
operating system can be built: the kernel (Mesos), a distributed
init.d (Marathon/Aurora), cron (Chronos), and more.

A Tale of Two Clusters: Mesos and YARN
by Jim Scott

You can read this post on oreilly.com here.

This is a tale of two siloed clusters. The first cluster is an Apache
Hadoop cluster. This is an island whose resources are completely
isolated to Hadoop and its processes. The second cluster is the
description I give to all resources that are not a part of the Hadoop
cluster. I break them up this way because Hadoop manages its own
resources with Apache YARN (Yet Another Resource Negotiator).
Although this is nice for Hadoop, all too often those resources are
underutilized when there are no big data workloads in the queue.
And then when a big data job comes in, those resources are
stretched to the limit, and they are likely in need of more resources.
That can be tough when you are on an island.
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Hadoop was meant to tear down walls—albeit, data silo walls—but
walls, nonetheless. What has happened is that while tearing some
walls down, other types of walls have gone up in their place.

Another technology, Apache Mesos, is also meant to tear down walls
—but Mesos has often been positioned to manage the “second clus‐
ter,” which are all of those other, non-Hadoop workloads.

This is where the story really starts, with these two silos of Mesos
and YARN (see Figure 4-1). They are often pitted against each other,
as if they were incompatible. It turns out they work together, and
therein lies my tale.

Figure 4-1. Isolated clusters (image courtesy of Mesosphere and MapR,
used with permission)

Brief Explanation of Mesos and YARN
The primary difference between Mesos and YARN is around their
design priorities and how they approach scheduling work. Mesos
was built to be a scalable global resource manager for the entire data
center. It was designed at UC Berkeley in 2007 and hardened in pro‐
duction at companies like Twitter and Airbnb. YARN was created
out of the necessity to scale Hadoop. Prior to YARN, resource man‐
agement was embedded in Hadoop MapReduce V1, and it had to be
removed in order to help MapReduce scale. The MapReduce 1 Job‐
Tracker wouldn’t practically scale beyond a couple thousand
machines. The creation of YARN was essential to the next iteration
of Hadoop’s lifecycle, primarily around scaling.
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Mesos Scheduling
Mesos determines which resources are available, and it makes offers
back to an application scheduler (the application scheduler and its
executor is called a “framework”). Those offers can be accepted or
rejected by the framework. This model is considered a non-
monolithic model because it is a “two-level” scheduler, where sched‐
uling algorithms are pluggable. Mesos allows an infinite number of
schedule algorithms to be developed, each with its own strategy for
which offers to accept or decline, and can accommodate thousands
of these schedulers running multitenant on the same cluster.

The two-level scheduling model of Mesos allows each framework to
decide which algorithms it wants to use for scheduling the jobs that
it needs to run. Mesos plays the arbiter, allocating resources across
multiple schedulers, resolving conflicts, and making sure resources
are fairly distributed based on business strategy. Offers come in, and
the framework can then execute a task that consumes those offered
resources. Or the framework has the option to decline the offer and
wait for another offer to come in. This model is very similar to how
multiple apps all run simultaneously on a laptop or smartphone, in
that they spawn new threads or request more memory as they need
it, and the operating system arbitrates among all of the requests.
One of the nice things about this model is that it is based on years of
operating system and distributed systems research and is very scala‐
ble. This is a model that Google and Twitter have proven at scale.

YARN Scheduling
Now, let’s look at what happens over on the YARN side. When a job
request comes into the YARN resource manager, YARN evaluates all
the resources available, and it places the job. It’s the one making the
decision where jobs should go; thus, it is modeled in a monolithic
way. It is important to reiterate that YARN was created as a necessity
for the evolutionary step of the MapReduce framework. YARN took
the resource-management model out of the MapReduce 1 Job‐
Tracker, generalized it, and moved it into its own separate Resource‐
Manager component, largely motivated by the need to scale Hadoop
jobs.

YARN is optimized for scheduling Hadoop jobs, which are histori‐
cally (and still typically) batch jobs with long run times. This means
that YARN was not designed for long-running services, nor for
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short-lived interactive queries (like small and fast Spark jobs), and
while it’s possible to have it schedule other kinds of workloads, this
is not an ideal model. The resource demands, execution model, and
architectural demands of MapReduce are very different from those
of long-running services, such as web servers or SOA applications,
or real-time workloads like those of Spark or Storm. Also, YARN
was designed for stateless batch jobs that can be restarted easily if
they fail. It does not handle running stateful services like distributed
filesystems or databases. While YARN’s monolithic scheduler could
theoretically evolve to handle different types of workloads (by merg‐
ing new algorithms upstream into the scheduling code), this is not a
lightweight model to support a growing number of current and
future scheduling algorithms.

Is It YARN Versus Mesos?
When comparing YARN and Mesos, it is important to understand
the general scaling capabilities and why someone might choose one
technology over the other. While some might argue that YARN and
Mesos are competing for the same space, they really are not. The
people who put these models in place had different intentions from
the start, and that’s OK. There is nothing explicitly wrong with
either model, but each approach will yield different long-term
results. I believe this is the key between when to use one, the other,
or both. Mesos was built at the same time as Google’s Omega. Ben
Hindman and the Berkeley AMPlab team worked closely with the
team at Google designing Omega so that they both could learn from
the lessons of Google’s Borg and build a better nonmonolithic
scheduler.

When you evaluate how to manage your data center as a whole, on
one side you’ve got Mesos (which can manage all the resources in
your data center), and on the other, you have YARN (which can
safely manage Hadoop jobs, but is not capable of managing your
entire data center). Data center operators tend to solve for these two
use cases by partitioning their clusters into Hadoop and non-
Hadoop worlds.

Using Mesos and YARN in the same data center, to benefit from
both resource managers, currently requires that you create two static
partitions. Using both would mean that certain resources would be
dedicated to Hadoop for YARN to manage and Mesos would get the
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rest. It might be oversimplifying it, but that is effectively what we are
talking about here. Fundamentally, this is the issue we want to avoid.

Introducing Project Myriad
This leads us to the question: Can we make YARN and Mesos work
together? Can we make them work harmoniously for the benefit of
the enterprise and the data center? The answer is “yes.” A few well-
known companies—eBay, MapR, and Mesosphere—collaborated
on a project called Myriad.

This open source software project is both a Mesos framework and a
YARN scheduler that enables Mesos to manage YARN resource
requests. When a job comes into YARN, it will schedule it via the
Myriad Scheduler, which will match the request to incoming Mesos
resource offers. Mesos, in turn, will pass it on to the Mesos worker
nodes. The Mesos nodes will then communicate the request to a
Myriad executor which is running the YARN node manager. Myriad
launches YARN node managers on Mesos resources, which then
communicate to the YARN resource manager what resources are
available to them. YARN can then consume the resources as it sees
fit. As shown in Figure 4-2, Myriad provides a seamless bridge from
the pool of resources available in Mesos to the YARN tasks that want
those resources.

Figure 4-2. How Myriad works (image courtesy of Mesosphere and
MapR, used with permission)

The beauty of this approach is that not only does it allow you to
elastically run YARN workloads on a shared cluster, but it actually
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makes YARN more dynamic and elastic than it was originally
designed to be. This approach also makes it easy for a data center
operations team to expand resources given to YARN (or, take them
away, as the case might be) without ever having to reconfigure the
YARN cluster. It becomes very easy to dynamically control your
entire data center. This model also provides an easy way to run and
manage multiple YARN implementations, even different versions of
YARN on the same cluster.

Myriad blends the best of both the YARN and Mesos worlds. By uti‐
lizing Myriad, Mesos and YARN can collaborate, and you can ach‐
ieve an as-it-happens business. Data analytics can be performed in-
place on the same hardware that runs your production services. No
longer will you face the resource constraints (and low utilization)
caused by static partitions. Resources can be elastically reconfigured
to meet the demands of the business as it happens (see Figure 4-3).

Figure 4-3. Resource sharing (image courtesy of Mesosphere and
MapR, used with permission)

Final Thoughts
To make sure people understand where I am coming from here, I
feel that both Mesos and YARN are very good at what they were
built to achieve, yet both have room for improvement. Both
resource managers can improve in the area of security; security sup‐
port is paramount to enterprise adoption.
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Mesos needs an end-to-end security architecture, and I personally
would not draw the line at Kerberos for security support, as my per‐
sonal experience with it is not what I would call “fun.” The other
area for improvement in Mesos—which can be extremely compli‐
cated to get right—is what I will characterize as resource revocation
and preemption. Imagine the use case where all resources in a busi‐
ness are allocated and then the need arises to have the single most
important “thing” that your business depends on run—even if this
task only requires minutes of time to complete, you are out of luck if
the resources are not available. Resource preemption and/or revoca‐
tion could solve that problem. There are currently ways around this
in Mesos today, but I look forward to the work the Mesos commit‐
ters are doing to solve this problem with Dynamic Reserva‐
tions and Optimistic (Revocable) Resources Offers.

Myriad is an enabling technology that can be used to take advantage
of leveraging all of the resources in a data center or cloud as a single
pool of resources. Myriad enables businesses to tear down the walls
between isolated clusters, just as Hadoop enabled businesses to tear
down the walls between data silos. With Myriad, developers will be
able to focus on the data and applications on which the business
depends, while operations will be able to manage compute resources
for maximum agility. This opens the door to being able to focus on
data instead of constantly worrying about infrastructure. With
Myriad, the constraints on the storage network and coordination
between compute and data access are the last-mile concern to ach‐
ieve full flexibility, agility, and scale.

Project Myriad is hosted on GitHub and is available for download.
There’s documentation there that provides more in-depth explana‐
tions of how it works. You’ll even see some nice diagrams. Go out,
explore, and give it a try.
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The Truth About MapReduce Performance on
SSDs
by Yanpei Chen (with Karthik Kambatla)

You can read this post on oreilly.com here.

It is a well-known fact that solid-state drives (SSDs) are fast and
expensive. But exactly how much faster—and more expensive—are
they than the hard disk drives (HDDs) they’re supposed to replace?
And does anything change for big data?

I work on the performance engineering team at Cloudera, a data
management vendor. It is my job to understand performance impli‐
cations across customers and across evolving technology trends.
The convergence of SSDs and big data does have the potential to
broadly impact future data center architectures. When one of our
hardware partners loaned us a number of SSDs with the mandate to
“find something interesting,” we jumped on the opportunity. This
post shares our findings.

As a starting point, we decided to focus on MapReduce. We chose
MapReduce because it enjoys wide deployment across many indus‐
try verticals—even as other big data frameworks such as SQL-on-
Hadoop, free text search, machine learning, and NoSQL gain promi‐
nence.

We considered two scenarios: first, when setting up a new cluster,
we explored whether SSDs or HDDs, of equal aggregate bandwidth,
are superior; second, we explored how cluster operators should con‐
figure SSDs, when upgrading an HDDs-only cluster.

SSDs Versus HDDs of Equal Aggregate Bandwidth
For our measurements, we used the storage configuration in the fol‐
lowing table (the machines were Intel Xeon 2-socket, 8-core, 16-
thread systems, with 10 GBps Ethernet and 48 GB RA):

Setup Storage Capacity Sequential R/W bandwidth Price

HDD 11 HDDs 22 TB 1300 MBps $4,400

SSD 1 SSD 1.3 TB 1300 MBps $14,000
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By their physical design, SSDs avoid the large seek overhead of
small, random I/O for HDDs. SSDs do perform much better for
shuffle-heavy MapReduce jobs. In the graph shown in Figure 4-4,
“terasort” is a common benchmark with 1:1:1 ratio between
input:shuffle:output sizes; “shuffle” is a shuffle-only job that we
wrote in-house to purposefully stress only the shuffle part of Map‐
Reduce. SSDs offer as much as 40% lower job duration, which
translates to 70% higher performance. A common but incomplete
mental model assumes that MapReduce contains only large, sequen‐
tial read and writes. MapReduce does exhibit large, sequential I/O
when reading input from and writing output to HDFS. The inter‐
mediate shuffle stage, in contrast, involves smaller read and writes.
The output of each map task is partitioned across many reducers in
the job, and each reduce task fetches only its own data. In our cus‐
tomer workloads, this led to each reduce task accessing as little as a
few MBs from each map task.

Figure 4-4. Terasort and shuffle job durations, using HDDs and SSDs
(graph courtesy of Yanpei Chen)

To our initial surprise, we learned that SSDs also benefit MapReduce
jobs that involve only HDFS reads and writes, despite HDDs having
the same aggregate sequential bandwidth according to hardware
specs. In the graph shown in Figure 4-5, “teragen” writes data to
HDFS with three-fold replication, “teravalidate” reads the output of
terasort and checks if they are in sorted order, and “hdfs data write”
is a job we wrote in-house and writes data to HDFS with single-fold
replication. SSDs again offer up to 40% lower job duration, equating
to 70% higher performance.
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Figure 4-5. Teragen, teravalidate, and HDFS data write job durations
using HDDs and SSDs (graph courtesy of Yanpei Chen)

It turns out that our SSDs have an advantage for sequential work‐
loads because they deliver higher sequential I/O size—2x larger than
the HDDs in our test setup. To write the same amount of data, SSDs
incur half the number of I/Os. This difference may be a vendor-
specific characteristic, as other SSDs or HDDs likely offer different
default configurations for sequential I/O sizes.

There is another kind of MapReduce job—one that is dominated by
compute rather than I/O. When the resource bottleneck is not the
I/O subsystem, the choice of storage media makes no difference. In
the graph shown in Figure 4-6, “wordcount” is a job that involves
high CPU load parsing text and counting word frequencies; “shuffle
compressed” is the shuffle-only job from earlier, except with Map‐
Reduce shuffle compression enabled. Enabling this configuration
shifts load from I/O to CPU. The advantage from SSDs decreases
considerably compared with the uncompressed “shuffle” from ear‐
lier.
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Figure 4-6. Wordcount and shuffle compressed job durations using
HDDs and SSDs (graph courtesy of Yanpei Chen)

Ultimately, we learned that SSDs offer considerable performance
benefit for some workloads, and at worst do no harm. The decision
on whether to use SSDs would then depend on any premium cost to
obtain higher performance. We’ll return to that discussion later.

Configuring a Hybrid HDD-SSD Cluster
Almost all existing MapReduce clusters use HDDs. There are two
ways to introduce SSDs: (1) buy a new SSD-only cluster, or (2) add
SSDs to existing HDD-only machines (some customers may prefer
the latter option for cost and logistical reasons). Therefore, we
found it meaningful to figure out a good way to configure a hybrid
HDD-SSD cluster.

We set up clusters with the following storage configurations:

Setup Storage Capacity Sequential R/W bandwidth Price

HDD-baseline 6 HDDs 12 TB 720 MBps $2,400

HDD-11 11 HDDs 22 TB 1300 MBps $4,400

Hybrid 6 HDDs + 1 SSD 13.3 TB 2020 MBps $16,400

We started with a low-I/O-bandwidth cluster of six HDDs. With
default configurations, adding a single SSD leads to higher perfor‐
mance, about the same improvement we get by adding five HDDs.
This is an undesirable result, because the single additional SSD has
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double the bandwidth than the additional five HDDs (see Figure
4-7).

Figure 4-7. Job durations across six HDD clusters (graph courtesy of
Yanpei Chen)

A closer look at HDFS and MapReduce implementations reveals a
critical insight: Both the HDFS DataNode and the MapReduce
NodeManager write to local directories in a round-robin fashion. A
typical setup would mount each piece of storage hardware as a sepa‐
rate directory—for example, /mnt/disk-1, /mnt/disk-2, /mnt/ssd-1.
With each of these directories mounted as an HDFS and MapRe‐
duce local directory, they each receive the same amount of data.
Faster progress on the SSD does not accelerate slower progress on
the HDDs.

So, to fully utilize the SSD, we need to split the SSD into multiple
directories to maintain equal bandwidth per local directory. In our
case, SSDs should be split into 10 directories. The SSDs would then
receive 10x the data directed at each HDD, written at 10x the speed,
and complete in the same amount of time. When the SSD capacity
accommodates the 10x data size written, performance is much bet‐
ter than the default setup (see Figure 4-8).
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Figure 4-8. Job durations across six hybrid clusters (graph courtesy of
Yanpei Chen)

Price Per Performance Versus Price Per Capacity
We found that for our tests and hardware, SSDs delivered up to
70% higher performance, for 2.5x higher $-per-performance (aver‐
age performance divided by cost). Each customer can decide
whether the higher performance is worth the premium cost. This
decision employs the $-per-performance metric, which differs from
the $-per-capacity metric that storage vendors more frequently
track. The SSDs we used hold a 50x premium for $-per-capacity—a
gap far larger than the 2.5x premium for $-per-performance.

The primary benefit of SSD is high performance, rather than high
capacity. Storage vendors and customers should also consider $-per-
performance, and develop architectures to work around capacity
constraints.

The following table compares the $-per-performance and $-per-
capacity between HDDs and SSDs (we also include some updated
data we received from different hardware partners earlier this year;
the $-per-performance gap is approaching parity even as the $-per-
capacity gap remains wide).
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Setup Unit cost Capacity Unit BW US$ per TB US$ per MBps

HDD circa
2013

$400 2 TB 120 MBps 200 (2013 baseline) 3.3 (2013 baseline)

SSD circa 2013 $14,000 1.3 TB 1300 MBps 10,769 (54x 2013
baseline)

10.8 (2.5x 2013
baseline)

HDD circa
2015

$250 4 TB 120 MBps 62.5 (2015 baseline) 2.1 (2015 baseline)

SSD circa 2015 $6,400 2 TB 2000 MBps 3,200 (51x 2015
baseline)

3.2 (1.5x 2015
baseline)

SSD Economics—Exploring the Trade-Offs
Overall, SSD economics involve the interplay between ever-
improving software and hardware as well as ever-evolving customer
workloads. The precise trade-off between SSDs, HDDs, and mem‐
ory deserves regular reexamination over time.

We encourage members of the community to extend our work and
explore how SSDs benefit SQL-on-Hadoop, free text search,
machine learning, NoSQL, and other big data frameworks.

More extended versions of this work appeared on the Cloudera
Engineering Blog and at the Large Installation System Administra‐
tion Conference (LISA) 2014.

Accelerating Big Data Analytics Workloads
with Tachyon
by Shaoshan Liu

You can read this post on oreilly.com here.

As an early adopter of Tachyon, I can testify that it lives up to its
description as “a memory-centric distributed storage system, ena‐
bling reliable data sharing at memory-speed, across cluster frame‐
works.” Besides being reliable and having memory-speed, Tachyon
also provides a means to expand beyond memory to provide enough
storage capacity.

As a senior architect at Baidu USA, I’ve spent the past nine months
incorporating Tachyon into Baidu’s big data infrastructure. Since
then, we’ve seen a 30-fold increase in speed in our big data analytics
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workloads. In this post, I’ll share our experiences and the lessons
we’ve learned during our journey of adopting and scaling Tachyon.

Creating an Ad-Hoc Query Engine
Baidu is the biggest search engine in China, and the second biggest
search engine in the world. Put simply, we have a lot of data. How to
manage the scale of this data, and quickly extract meaningful infor‐
mation, has always been a challenge.

To give you an example, product managers at Baidu need to track
top queries that are submitted to Baidu daily. They take the top 10
queries, and drill down to find out which province of China contrib‐
utes the most information to the top queries. Product managers
then analyze the resulting data to extract meaningful business intel‐
ligence.

Due to the sheer volume of data, however, each query would take
tens of minutes, to hours, just to finish—leaving product managers
waiting hours before they could enter the next query. Even more
frustrating was that modifying a query would require running the
whole process all over again. About a year ago, we realized the need
for an ad-hoc query engine. To get started, we came up with a high
level of specification: The query engine would need to manage peta‐
bytes of data and finish 95% of queries within 30 seconds.

From Hive, to Spark SQL, to Tachyon
With this specification in mind, we took a close look at our original
query system, which ran on Hive (a query engine on top of
Hadoop). Hive was able to handle a large amount of data and pro‐
vided very high throughput. The problem was that Hive is a batch
system and is not suitable for interactive queries.

So, why not just change the engine?

We switched to Spark SQL as our query engine (many use cases
have demonstrated its superiority over Hadoop Map Reduce in
terms of latency). We were excited and expected Spark SQL to drop
the average query time to within a few minutes. Still, it did not quite
get us all the way. While Spark SQL did help us achieve a 4-fold
increase in the speed of our average query, each query still took
around 10 minutes to complete.
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So, we took a second look and dug into more details. It turned out
that the issue was not CPU—rather, the queries were stressing
the network. Since the data was distributed over multiple data cen‐
ters, there was a high probability that a query would hit a remote
data center in order to pull data over to the compute center—this is
what caused the biggest delay when a user ran a query. With differ‐
ent hardware specifications for the storage nodes and the compute
nodes, the answer was not as simple as moving the compute nodes
to the data center. We decided we could solve the problem with a
cache layer that buffered the frequently used data, so that most of
the queries would hit the cache layer without leaving the data center.

A High-Performance, Reliable Cache Layer
We needed a cache layer that could provide high performance and
reliability, and manage a petabyte-scale of data. We developed a
query system that used Spark SQL as its compute engine, and
Tachyon as a cache layer, and we stress tested for a month. For our
test, we used a standard query within Baidu, which pulled 6 TB of
data from a remote data center, and then we ran additional analysis
on top of the data.

The performance was amazing. With Spark SQL alone, it took 100–
150 seconds to finish a query; using Tachyon, where data may hit
local or remote Tachyon nodes, it took 10–15 seconds. And if all of
the data was stored in Tachyon local nodes, it took about 5 seconds,
flat—a 30-fold increase in speed. Based on these results, and the sys‐
tem’s reliability, we built a full system around Tachyon and Spark
SQL.

Tachyon and Spark SQL
The anatomy of the system, as shown in Figure 4-9:

Operation manager
A persistent Spark application that wraps Spark SQL. It accepts
queries from query UI, and performs query parsing and optimi‐
zation.

View manager
Manages cache metadata and handles query requests from the
operation manager.

Accelerating Big Data Analytics Workloads with Tachyon | 89



Tachyon
Serves as a cache layer in the system and buffers the frequently
used data.

Data warehouse
The remote data center that stores the data in HDFS-based sys‐
tems.

Figure 4-9. Overview of the Tachyon and Spark SQL system (courtesy
of Shaoshan Liu)

Now, let’s discuss the physiology of the system:

1. A query gets submitted. The operation manager analyzes the
query and asks the view manager if the data is already in
Tachyon.

2. If the data is already in Tachyon, the operation manager grabs
the data from Tachyon and performs the analysis on it.

3. If data is not in Tachyon, then it is a cache miss, and the opera‐
tion manager requests data directly from the data warehouse.
Meanwhile, the view manager initiates another job to request
the same data from the data warehouse and stores the data in
Tachyon. This way, the next time the same query gets submit‐
ted, the data is already in Tachyon.
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How to Get Data from Tachyon
After the Spark SQL query analyzer (Catalyst) performs analysis on
the query, it sends a physical plan, which contains HiveTableScan
statements (see Figure 4-10). These statements specify the address of
the requested data in the data warehouse. The HiveTableScan state‐
ments identify the table name, attribute names, and partition keys.
Note that the cache metadata is a key/value store, the <table name,
partition keys, attribute names> tuple is the key to the cache meta‐
data, and the value is the name of the Tachyon file. So, if the reques‐
ted <table name, partition keys, attribute names> combination is
already in cache, we can simply replace these values in the HiveTa‐
bleScan with a Tachyon filename, and then the query statement
knows to pull data from Tachyon instead of the data warehouse.

Figure 4-10. Physical plan showing HiveTableScan statements (cour‐
tesy of Shaoshan Liu)

Performance and Deployment
With the system deployed, we also measured its performance using
a typical Baidu query. Using the original Hive system, it took more
than 1,000 seconds to finish a typical query (see Figure 4-11). With
the Spark SQL-only system, it took 150, and using our new Tachyon
+ Spark SQL system, it took about 20 seconds. We achieved a 50-
fold increase in speed and met the interactive query requirements
we set out for the project.
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Figure 4-11. Query performance times using Hive, Spark SQL, and
Tachyon + Spark SQL systems (image courtesy of Shaoshan Liu)

Today, the system is deployed in a cluster with more than 100 nodes,
providing more than two petabytes of cache space, using an
advanced feature (tiered storage) in Tachyon. This feature allows us
to use memory as the top-level cache, SSD as the second-level cache,
and HDD as the last-level cache; with all of these storage mediums
combined, we are able to provide two petabytes of storage space.

Problems Encountered in Practice
Cache
The first time we used Tachyon, we were shocked—it was not able to
cache anything! What we discovered was that Tachyon would only
cache a block if the whole block was read into Tachyon. For exam‐
ple, if the block size was 512 MB, and you read 511 MB, the block
would not cache. Once we understood the mechanism, we devel‐
oped a workaround. The Tachyon community is also developing a
page-based solution so that the cache granularity is 4 KB instead of
the block size.

Locality
The second problem we encountered was when we launched a Spark
job, the Spark UI told us that the data was node-local, meaning that
we should not have to pull data from remote Tachyon nodes. How‐
ever, when we ran the query, it fetched a lot of data from remote
nodes. We expected the local cache hit rate to be 100%, but when the
actual hit rate was about 33%, we were puzzled.

92 | Chapter 4: Big Data Architecture and Infrastructure



Digging into the raw data, we found it was because we used an out‐
dated HDFS InputFormat, meaning that if we requested block 2 for
the computation, it would pull a line from block 1 and a line from
block 3, even though you didn’t need any data from block 1 or 3. So,
if block 2 was in the local Tachyon node, then blocks 1 and 3 may be
in remote Tachyon nodes—leading to a local cache hit rate of 33%
instead of 100%. Once we updated our InputFormat, this problem
was resolved.

SIGBUS
Sometimes we would get a SIGBUS error, and the Tachyon process
would crash. Not only Tachyon, but Spark had the same problem,
too. The Spark community actually has a workaround for this prob‐
lem that uses fewer memory-mapped files, but that was not the real
solution. The root cause of the problem was that we were using Java
6 with the CompressedOOP feature, which compressed 64-bit
pointers to 32-bit pointers, to reduce memory usage. However, there
was a bug in Java 6 that allowed the compressed pointer to point to
an invalid location, leading to a SIGBUS error. We solved this prob‐
lem by either not using CompressedOOP in Java 6, or simply updat‐
ing to Java 7.

Time-to-Live Feature and What’s Next for Tachyon
In our next stage of development, we plan to expand Tachyon’s func‐
tionalities and performance. For instance, we recently developed a
Time-to-Live (TTL) feature in Tachyon. This feature helps us reduce
Tachyon cache space usage automatically.

For the cache layer, we only want to keep data for two weeks (since
people rarely query data beyond this point). With the TTL feature,
Tachyon is able to keep track of the data and delete it once it expires
—leaving enough space for fresh data. Also, there are efforts to use
Tachyon as a parameter server for deep learning (Adatao is leading
the effort in this direction). As memory becomes cheaper, I expect
to see the universal usage of Tachyon in the near future.
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CHAPTER 5

The Internet of Things and
Real Time

The Internet of Things (IoT) is hot, and as Alistair Croll predicts
in "The Internet of Things Has Four Big Data Problems,” it’s here to
stay. The abundance of smart devices on the market is generating
new questions about how to handle the real-time event data pro‐
duced downstream. Apache Kafka has emerged as a leader among
stream-processing frameworks, with its high throughput, built-in
partitioning, replication, and fault tolerance. Numerous other
Apache projects, such as Flume and Cassandra, have cropped up
and are being used alongside Kafka to effectively collect and store
real-time data. Stream processing and data management continues
to be an area of intense activity and interest. In this chapter, we
recap some of the most exciting advancements in IoT and real time
over the past year.

Ben Lorica reviews a few of the more popular components in
stream-processing stacks and combinations that are on the rise for
collecting, storing, and analyzing event data. John Piekos explores
some of the challenges with lambda architecture, and offers an alter‐
native architecture using a fast in-memory scalable relational data‐
base that can simplify and extend the capabilities of lambda. Ben
Lorica explores how intelligent data platforms are powering smart
cities, specifically in Singapore, and highlights the intersection of
communities and technologies that power our future cities. Alistair
Croll explains why the IoT needs more practical data, less specializa‐
tion, and more context.
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A Real-Time Processing Revival
by Ben Lorica

You can read this post on oreilly.com here.

Editor’s note: Ben Lorica is an advisor to Databricks and Graphistry.

There’s renewed interest in stream processing and analytics. I write
this based on some data points (attendance in webcasts and confer‐
ence sessions; a recent meetup), and many conversations with tech‐
nologists, startup founders, and investors. Certainly, applications are
driving this recent resurgence. I’ve written previously about systems
that come from IT operations as well as how the rise of cheap sen‐
sors are producing stream mining solutions from wearables (mostly
health-related apps) and the IoT (consumer, industrial, and munici‐
pal settings). In this post, I’ll provide a short update on some of the
systems that are being built to handle large amounts of event data.

Apache projects (Kafka, Storm, Spark Streaming, Flume) continue
to be popular components in stream processing-stacks (I’m not yet
hearing much about Samza). Over the past year, many more engi‐
neers started deploying Kafka alongside one of the two leading dis‐
tributed stream-processing frameworks (Storm or Spark Stream‐
ing). Among the major Hadoop vendors, Hortonworks has been
promoting Storm, Cloudera supports Spark Streaming, and MapR
supports both. Kafka is a high-throughput distributed pub/sub sys‐
tem that provides a layer of indirection between “producers” that
write to it and “consumers” that take data out of it. A new startup
(Confluent) founded by the creators of Kafka should further acceler‐
ate the development of this already very popular system. Apache
Flume is used to collect, aggregate, and move large amounts of
streaming data, and is frequently used with Kafka (Flafka or Flume
+ Kafka). Spark Streaming continues to be one of the more popular
components within the Spark ecosystem, and its creators have been
adding features at a rapid pace (most recently Kafka integration,
a Python API, and zero data loss).

Apache HBase, Apache Cassandra, and Elasticsearch are popular
open source options for storing event data (the Team Apache stack of
Cassandra, Kafka, Spark Streaming is an increasingly common com‐
bination). Time-series databases built on top of open source NoSQL
data stores—OpenTSDB (HBase) and Kairos—continue to have
their share of users. The organizers of HBaseCon recently told me
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that OpenTSDB remains popular in their community. Advanced
technical sessions on the ELK stack (Elasticsearch, Logstash,
Kibana) were among the best-attended presentations at the
recent Elasticon conference.

Database software vendors have taken note of the growing interest
in systems for handling large amounts of real-time event data. The
use of memory and SSDs have given Aerospike, memsql, VoltDB,
and other vendors interesting products in this space.

At the end of the day, companies are interested in using these soft‐
ware components to build data products or improve their decision
making. Various combinations of the components I’ve just listed
appear in the stream-processing platforms of many companies. Big
Internet firms such as Netflix, Twitter, and LinkedIn describe their
homegrown (streaming) data platforms to packed audiences at con‐
ferences such as Strata + Hadoop World.

Designing and deploying data platforms based on distributed, open
source software components requires data engineers who know how
to evaluate and administer many pieces of technology. I have been
noticing that small- to medium-sized companies are becoming
much more receptive to working with cloud providers: Ama‐
zon and Google have components that mirror popular open source
projects used for stream processing and analysis, Databricks
Cloud is an option that quite a few startups that use Spark are turn‐
ing to.

As far as focused solutions, I’ve always felt that some of the best sys‐
tems will emerge from IT operations and data centers. There are
many solutions for collecting, storing, and analyzing event data
(“logs”) from IT operations. Some companies piece together popular
open source components and add proprietary technologies that
address various elements of the streaming pipeline (move, refine,
store, analyze, visualize, reprocess, streaming “joins”).

Companies such as Splunk, SumoLogic, ScalingData, and Cloud‐
Physics use some of these open source software components in their
IT monitoring products. Some users of Graphite have turned to
startups such as Anodot or SignalFx because they need to scale to
larger data sizes. Another set of startups such as New Relic provide
SaaS for monitoring software app performance (“software analyt‐
ics”).
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While IT operations and data centers are the areas I’m most familiar
with, note that there are interesting stream processing and analysis
software systems that power solutions in other domains (we devoted
a whole day to them at Strata + Hadoop World in NYC in 2014). As
an example, GE’s Predix is used in industrial settings, and I’ve seen
presentations on similar systems for smart cities, agriculture, health
care, transportation, and logistics.

One topic that I’ve been hearing more about lately is the use of
graph mining techniques. Companies such as Graphistry, Sumo‐
Logic, and Anodot have exploited the fact that log file entries are
related to one another, and these relationships can be represented as
network graphs. Thus network visualization and analysis tools can
be brought to bear on some types of event data (“from time-series to
graphs”).

Stream processing and data management continues to be an area of
intense activity and interest. Over the next year, I’ll be monitoring
progress on the stream mining and analytics front. Most of the tools
and solutions remain focused on simple (approximate) counting
algorithms (such as identifying heavy hitters). Companies such
as Numenta are tackling real-time pattern recognition and machine
learning. I’d like to see similar efforts built on top of the popular dis‐
tributed, open source frameworks data engineers have come to
embrace. The good news is the leaders of key open source stream
processing projects plan to tack on more analytic capabilities.

Improving on the Lambda Architecture for
Streaming Analysis
by John Piekos

You can read this post on oreilly.com here.

Modern organizations have started pushing their big data initiatives
beyond historical analysis. Fast data creates big data, and applica‐
tions are being developed that capture value, specifically real-time
analytics, the moment fast data arrives. The need for real-time anal‐
ysis of streaming data for real-time analytics, alerting, customer
engagement, or other on-the-spot decision making, is converging on
a layered software setup called the Lambda Architecture.
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The Lambda Architecture, a collection of both big and fast data soft‐
ware components, is a software paradigm designed to capture value,
specifically analytics, from not only historical data, but also from
data that is streaming into the system.

In this article, I’ll explain the challenges that this architecture cur‐
rently presents and explore some of the weaknesses. I’ll also discuss
an alternative architecture using an in-memory database that can
simplify and extend the capabilities of Lambda. Some of the
enhancements to the Lambda Architecture that will be discussed
are:

• The ability to return real-time, low-latency responses back to
the originating system for immediate actions, such as customer-
tailored responses. Data doesn’t have to only flow one way, into
the system.

• The addition of a transactional, consistent (ACID) data store.
Data entering the system can be transactional and operated
upon in a consistent manner.

• The addition of SQL support to the speed layer, providing sup‐
port for ad hoc analytics as well as support for standard SQL
report tooling.

What Is Lambda?
The Lambda Architecture is an emerging big data architecture
designed to ingest, process, and compute analytics on both fresh
(real-time) and historical (batch) data together. In his book Big Data
—Principles and Best Practices of Scalable Realtime Data Systems,
Nathan Marz introduces the Lambda Architecture and states that:

The Lambda Architecture…provides a general-purpose approach
to implementing an arbitrary function on an arbitrary data set and
having the function return its results with low latency.

Marz further defines three key layers in the Lambda Architecture:

Batch layer
This is the historical archive used to hold all of the data ever
collected. This is usually a “data lake” system, such as Hadoop,
though it could also be an online analytical processing (OLAP)
data warehouse like Vertica or Netezza. The batch layer sup‐
ports batch queries, which compute historical predefined
and ad hoc analytics.
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Speed layer
The speed layer supports computing real-time analytics on fast-
moving data as it enters the system. This layer is a combination
of queuing, streaming, and operational data stores.

Like the batch layer, the speed layer computes analytics—except
that the speed layer runs computations in real time, on fresh
data, as the data enters the system. Its purpose is to compute
these analytics quickly, at low latency. The analytics the batch
layer calculates, for example, are performed over a larger,
slightly older data set and take significantly longer to compute.
If you relied solely on the batch layer to ingest and compute
analytics, the speed at which the batch layer computes the
results would mean that the results would likely be minutes to
an hour old. It is the speed layer’s responsibility to calculate
real-time analytics based on fast-moving data, such as data that
is zero to one hour old. Thus, when you query the system, you
can get a complete view of analytics across the most recent data
and all historical data.

Serving layer
This layer caches results from batch-layer computations so they
are immediately available to answer queries. Computing batch
layer queries can take time. Periodically, these analytics are re-
computed and the cached results are refreshed in the serving
layer.

To summarize, Lambda defines a big data architecture that allows
predefined and arbitrary queries and computations on both fast-
moving data and historical data.

Common Lambda Applications
New applications for the Lambda Architecture are emerging seem‐
ingly weekly. Some of the more common use cases of Lambda-based
applications revolve around log ingestion and analytics on those log
messages. “Logs” in this context could be general server log mes‐
sages, website clickstream logging, VPN access logs, or the popular
practice of collecting analytics on Twitter streams.

The architecture improves on present-day architectures by being
able to capture analytics on fast-moving data as it enters the system.
This data, which is immutable, is ingested by both Lambda’s speed
layer and batch layer, usually in parallel, by way of message queues
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and streaming systems, such as Kafka and Storm. The ingestion of
each log message does not require a response to the entity that deliv‐
ered the data—it is a one-way data pipeline.

A log message’s final resting place is the data lake, where batch met‐
rics are (re)computed. The speed layer computes similar results for
the most recent “window,” staying ahead of the Hadoop/batch layer.
Thus, the Lambda Architecture allows applications to take recent
data into account but supports the same basic applications as batch
analytics—not real-time decision making, such as determining
which ad or promotion to serve to a visitor.

Analytics at the speed and batch layer can be predefined or ad hoc.
Should new analytics be desired in the Lambda Architecture, the
application could rerun the entire data set, from the data lake or
from the original log files, to recompute the new metrics. For exam‐
ple, analytics for website click logs could count page hits and page
popularity. For Tweet streams, it could compute trending topics.

Limitations of the Lambda Architecture
Although it represents an advance in data analysis and exploits
many modern tools well, Lambda falls short in a few ways:

One-way data flow
In Lambda, immutable data flows in one direction: into the sys‐
tem. The architecture’s main goal is to execute OLAP-type pro‐
cessing faster—in essence, reducing the time required to consult
column-stored data from a couple of seconds to about 100 ms.

Therefore, the Lambda Architecture doesn’t achieve some of the
potentially valuable applications of real-time analytics, such as
user segmentation and scoring, fraud detection, detecting denial
of service attacks, and calculating consumer policies and billing.
Lambda doesn’t transact and make per-event decisions on the
streaming data, nor does it respond immediately to the events
coming in.

Eventual consistency
Although adequate for popular consumer applications such as
displaying status messages, the eventual consistency that solves
the well-known CAP dilemma is less robust than the transac‐
tions offered by relational databases and some NoSQL products.
More important, reliance on eventual consistency makes it
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impossible to feed data quickly back into the batch layer and
alter analytics on the fly.

NoSQL
Most tools require custom coding to their unique APIs instead
of allowing well-understood SQL queries or the use of common
tools, such as business intelligence.

Complexity
The Lambda Architecture is currently composed of many dispa‐
rate components passing messages from one to the next. This
complexity gets in the way of making instant decisions on real-
time data. An oft-cited blog posting from last year explains this
weakness.

One company attempted to solve a streaming data problem by
implementing the Lambda Architecture as follows:

• The speed layer enlisted Kafka for ingestion, Storm for process‐
ing, Cassandra for state, and Zookeeper for distributed coordi‐
nation.

• The batch layer loaded tuples in batches into S3, then processed
the data with Cascading and Amazon Elastic MapReduce.

• The serving layer employed a key/value store such as Ele‐
phantDB.

Each component required at least three nodes; the speed layer alone
needed 12 nodes. For a situation requiring high speed and accuracy,
the company implemented a fragile, complex infrastructure.

In-memory databases can be designed to fill the gaps left by the
Lambda Architecture. I’ll finish this article by looking at a solution
involving in-memory databases, using VoltDB as a model.

Simplifying the Lambda Architecture
The Lambda Architecture can be simplified, preserving its key vir‐
tues while enabling missing functionality by replacing the complex
speed layer and part of the batch layer with a suitable distributed in-
memory database.

VoltDB, for instance, is a clustered, in-memory, relational database
that supports the fast ingest of data, real-time ad hoc analytics, and
the rapid export of data to downstream systems such as Hadoop and
OLAP offerings. A fast relational database fits squarely and solidly
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in the Lambda Architecture’s speed layer—provided the database is
fast enough. Like popular streaming systems, VoltDB is horizontally
scalable, highly available, and fault tolerant, all while sustaining
transactional ingestion speeds of hundreds of thousands to millions
of events per second. In the standard Lambda Architecture, the
inclusion of this single component greatly simplifies the speed layer
by replacing both its streaming and operational data store portions.

In this revised architecture, a queuing system such as Kafka feeds
both VoltDB and Hadoop, or the database directly, which would
then in turn immediately export the event to the data lake.

Applications That Make Use of In-Memory Capabilities
As defined today, the Lambda Architecture is very focused on fast
data collection and read-only queries on both fast and historical
data. In Lambda, data is immutable. External systems make use of
the Lambda-based environment to query the computed analytics.
These analytics are then used for alerts (should metric thresholds be
crossed), or harvested, for example in the case of Twitter trending
topics.

When considering improvements to the Lambda Architecture, what
if you could react, per event, to the incoming data stream? In
essence, you’d have the ability to take action based on the incoming
feed, in addition to performing analytics.

Many developers are building streaming, fast data applications using
the clustered, in-memory, relational database approach suggested by
VoltDB. These systems ingest events from sources such as log files,
the Internet of Things (IoT), user clickstreams, online game play,
and financial applications. While some of these applications pas‐
sively ingest events and provide real-time analytics and alerting on
the data streams (in typical Lambda style), many have begun inter‐
acting with the stream, adding per-event decision making and trans‐
actions in addition to real-time analytics.

Additionally, in these systems, the speed layer’s analytics can differ
from the batch layer’s analytics. Often, the data lake is used to mine
intelligence via exploratory queries. This intelligence, when identi‐
fied, is then fed to the speed layer as input to the per-event deci‐
sions. In this revised architecture:
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• Data arrives at a high rate and is ingested. It is immediately
exported to the batch layer.

• Historical intelligence can be mined from the batch layer and
the aggregate “intelligence” can be delivered to the speed layer
for per-event real-time decision making (e.g., to determine
which ad to display for a segmented/categorized web browser/
user).

• Fast data is either passively ingested, or a response can be com‐
puted by the new decision-making layer, using both real-time
data and historical “mined” intelligence.

A blog posting from VoltDB offers an overview and example of this
fully interactive Lambda-like approach. Another VoltDB
resource offers code for a working speed layer.

Conclusion
The Lambda Architecture is a powerful big data analytics frame‐
work that serves queries from both fast and historical data. How‐
ever, the architecture emerged from a need to execute OLAP-type
processing faster, without considering a new class of applications
that require real-time, per-event decision making. In its current
form, Lambda is limited: Immutable data flows in one direction,
into the system, for analytics harvesting.

Using a fast in-memory scalable relational database in the Lambda
Architecture greatly simplifies the speed layer by reducing the num‐
ber of components needed.

Lambda’s shortcoming is the inability to build responsive, event-
oriented applications. In addition to simplifying the architecture, an
in-memory, scale-out relational database lets organizations execute
transactions and per-event decisions on fast data as it arrives. In
contrast to the one-way streaming system feeding events into the
speed layer, using a fast database as an ingestion engine provides
developers with the ability to place applications in front of the event
stream. This lets applications capture value the moment the
event arrives, rather than capturing value at some point after
the event arrives on an aggregate-basis.

This approach improves the Lambda Architecture by:

• Reducing the number of moving pieces—the products and
components. Specifically, major components of the speed layer
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can be replaced by a single component. Further, the database
can be used as a data store for the serving layer.

• Letting an application make per-event decision making and
transactional behavior.

• Providing the traditional relational database interaction model,
with both ad hoc SQL capabilities and Java on fast data. Applica‐
tions can use familiar standard SQL, providing agility to their
query needs without requiring complex programming logic.
Applications can also use standard analytics tooling, such as
Tableau, MicroStrategy, and Actuate BIRT, on top of fast data.

This post is part of a collaboration between O’Reilly and VoltDB. See
our statement of editorial independence.

How Intelligent Data Platforms Are Powering
Smart Cities
by Ben Lorica

You can read this post on oreilly.com here.

According to a 2014 UN report, 54% of the world’s population
resides in urban areas, with further urbanization projected to push
that share up to 66% by the year 2050. This projected surge in popu‐
lation has encouraged local and national leaders throughout the
world to rally around “smart cities”—a collection of digital and
information technology initiatives designed to make urban areas
more livable, agile, and sustainable.

Smart cities depend on a collection of enabling technologies that
we’ve been highlighting at Strata + Hadoop World and in our publi‐
cations: sensors, mobile computing, social media, high-speed com‐
munication networks, and intelligent data platforms. Early applica‐
tions of smart city technologies are seen in transportation and logis‐
tics, local government services, utilities, health care, and education.
Previous Strata + Hadoop World sessions have outlined the use of
machine learning and big data technologies to understand and pre‐
dict vehicular traffic and congestion patterns, as well the use of
wearables in large-scale healthcare data platforms.

As we put together the program for the upcoming Strata + Hadoop
World in Singapore, we have been cognizant of the growing interest
in our host country’s Smart Nation program. And more generally,
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we are mindful that large infrastructure investments throughout the
Asia-Pacific region have engaged local leaders in smart city initia‐
tives. For readers comfortable with large-scale streaming platforms,
many of the key technologies for enabling smart cities will already
be familiar.

Data Collection and Transport
In smart cities, Internet of Things and industrial Internet applica‐
tions, proper instrumentation, and data collection depend on sen‐
sors, mobile devices, and high-speed communication networks.
Much of the private infrastructure belongs to and is operated by
large telecommunication companies, and many of the interesting
early applications and platforms are originating from telcos and net‐
work equipment providers.

Data Processing, Storage, and Real-Time Reports
As I noted in an earlier article, recent advances in distributed com‐
puting and hardware have produced high-throughput engines capa‐
ble of handling bounded and unbounded data-processing work‐
loads. Examples of this include cloud computing platforms
(e.g., AWS, Google, Microsoft) and homegrown data platforms com‐
prised of popular open source components. At the most basic level,
these data platforms provide near real-time reports (business intelli‐
gence) on massive data streams, as shown in Figure 5-1:

Figure 5-1. Basic function of data streams, leading to real-time deci‐
sions (image courtesy of Ben Lorica)

Intelligent Data Applications
Beyond simple counts and anomaly detection, the use of advanced
techniques in machine learning and statistics opens up novel real-
time applications (machine-to-machine) with no humans in the
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loop. Popular examples of such applications include systems that
power environments like data centers, buildings and public spaces,
and manufacturing (industrial Internet). Recognizing that future
smart city applications will rely on disparate data—including event
data (metrics from logs and time-series), unstructured data (images,
audio, text), and geospatial data sources—we have planned sessions
at Strata + Hadoop World Singapore that will cover advanced ana‐
lytic techniques targeting these data types.

Smart city platforms represent some of the more exciting and
impactful applications of real-time, intelligent big data systems.
These platforms will confront many of the same challenges faced by
applications in the commercial sector, including security, ethics, and
governance. 

The Internet of Things Has Four Big Data
Problems
by Alistair Croll

You can read this post on oreilly.com here.

The Internet of Things (IoT) has a data problem. Well, four data
problems. Walking the halls of the 2015 CES in Las Vegas, it’s abun‐
dantly clear that the IoT is hot. Everyone is claiming to be the
world’s smartest something. But that sprawl of devices, lacking con‐
text, with fragmented user groups, is a huge challenge for the bur‐
geoning industry.

What the IoT needs is data. Big data and the IoT are two sides of the
same coin. The IoT collects data from myriad sensors; that data is
classified, organized, and used to make automated decisions; and
the IoT, in turn, acts on it. It’s precisely this ever-accelerating feed‐
back loop that makes the coin as a whole so compelling.

Nowhere are the IoT’s data problems more obvious than with that
darling of the connected tomorrow known as the wearable. Yet, few
people seem to want to discuss these problems.

Problem #1: Nobody Will Wear 50 Devices
If there’s one lesson today’s IoT startups have learned from their
failed science project predecessors, it’s that things need to be simple
and turnkey. As a result, devices are designed to do one thing really
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well. A corollary of this is that there’s far too much specialization
happening—a device specifically, narrowly designed to measure
sleep, or eating speed, or knee health.

Unfortunately, nobody’s going to charge, manage, and wear 50 devi‐
ces, looking like a demented garage-sale cyborg. VentureBeat’s Har‐
rison Weber managed to try on 56 different wearables at CES.

With this many competitors, the industry will crash. Wearables
today are a digital quilt, a strange patchwork of point solutions try‐
ing to blanket a human life. To achieve simplicity, companies have
over-focused on a single problem, or a single use case, deluding
themselves that their beach-head is actually a sustainable market.
The aisles of CES were littered with digital yoga mats, smart sun
sensors, epilepsy detectors, and instrumented snowboard bindings.

Problem #2: More Inference, Less Sensing
Consider the aforementioned sun sensor. Do you really need a
wristband that senses how much sunlight you’ve been exposed to?
Or can your smartphone instead measure light levels periodically
(which it does to determine screen brightness anyway), decide
whether you’re outside, and check the UV index? The latter is infer‐
ence, rather than sensing, and it’s probably good enough.

When the IoT sprawl finally triggers a mass extinction, only a few
companies will survive. Many of the survivors will be the ones that
can discover more information by inference, and that means teams
that have a data science background.

Early versions of Jawbone’s wearable, for example, asked wearers to
log their activity manually. More recent versions are smarter: The
device notices a period of activity, guesses at what that activity was
by comparing it to known patterns—were you playing basketball for
a half hour?—and uses your response to either reinforce its guess, or
to update its collective understanding of what basketball feels like.

Problem #3: Datamandering
This sprawl of devices also means a sprawl of data. Unless you’re one
of the big wearable players—Jawbone, Fitbit, Withings, and a hand‐
ful of others—you probably don’t have enough user data to make
significant breakthrough discoveries about your users’ lives. This
gives the big players a strong first-mover advantage.
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When the wearables sector inevitably consolidates, all the data that
failed companies collected will be lost. There’s little sharing of infor‐
mation across product lines, and export is seldom more than a
comma-separated file.

Consider that one of the strongest reasons people don’t switch from
Apple to Android is the familiarity of the user experience and the
content in iTunes. Similarly, in the IoT world, interfaces and data
discourage switching. Unfortunately, this means constant wars over
data formats in a strange kind of digital jerrymandering—call it
datamandering—as each vendor jockeys for position, trying to be
the central hub of our health, parenting, home, or finances.

As Samsung CEO BK Yoon said in his CES keynote, “I’ve heard peo‐
ple say they want to create a single operating system for the Internet
of Things, but these people only work with their own devices.”

Walking CES, you see hundreds of manufacturers from Shenzhen
promoting the building blocks of the IoT. Technologies like fabric
sensors—which only a short time ago were freshly released from
secret university labs and lauded on tech blogs—can now be had at
scale from China. Barriers to entry crumble fast. What remains for
IoT companies are attention, adoption, and data.

When technical advances erode quickly, companies have little rea‐
son to cooperate on the data they collect. There’s no data lake in
wearables, just myriad jealously guarded streams.

Problem #4: Context Is Everything
If data doesn’t change your behavior, why bother collecting it? Per‐
haps the biggest data problem the IoT faces is correlating the data it
collects with actions you can take. Consider V1bes, which calls itself
a “mind app.” It measures stress levels and brain activity. Sociomet‐
ric Solutions does the same thing by listening to the tone of the
user’s voice, and can predict my stress levels accurately.

That sounds useful: It’d be great to see how stressed I was at a partic‐
ular time, or when my brain was most active. But unless I can see
the person to whom I was talking, or hear the words I was thinking
about, at that time, it’s hard to do anything about it. The data tells
me I’m stressed; it doesn’t tell me who’s triggering my chronic
depression or who makes my eyes light up.
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There might be hope here. If I had a photostream of every day, and
with it a voice recorder, I might be able to see who I was with (and
whom to avoid). Startups such as Narrative Clip, which constantly
logs my life by taking a photo every 30 seconds and using algo‐
rithms to decide which of those photos are interesting, might give
me a clue about what triggered my stress. And portable recorders
like Kapture can record conversations with timestamps; their tran‐
scripts, analyzed, could help me understand how I react to certain
topics.

Ultimately, it’s clear that the Internet of Things is here to stay. We’re
in the midst of an explosion of ideas, but many of them are stillborn,
either too specific or too disconnected from the context of our lives
to have true meaning. The Internet of Things and big data are two
sides of the same coin, and building one without considering the
other is a recipe for doom.
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CHAPTER 6

Applications of Big Data

Because the big data space stretches across many industries, organi‐
zations, and users, there are a wide wide variety of use cases and
applications. Mike Hadley, senior director of emerging products and
technology at Autodesk, delivered a keynote at Strata + Hadoop
World London that described his company’s use of an unsupervised
machine learning system that operates against 3D models to dis‐
cover patterns and identify taxonomies among various hardware
products. The goal is to create a “living catalog” of each user’s crea‐
tions that will inform future designs. During her Strata + Hadoop
World London keynote, Cait O’Riordan, VP of product, music, and
platforms at Shazam, discussed how her company is using big data
to predict Billboard music hits. This chapter’s collection of blog
posts conveys big data’s utility and power through current, real-
world applications. 

First, Gerhard Kress discusses how railways are at the intersection of
Internet and industry. Max Neunhöffer then discusses multimodel
databases and describes one area where the flexibility of a multi-
model database is extremely well suited—the management of large
amounts of hierarchical data, such as in an aircraft fleet. Liza Kin‐
dred then explains how the fashion industry is embracing algo‐
rithms, natural language processing, and visual search. Finally,
Timothy McGovern summarizes how oil and gas exploration have
long been at the forefront of data collection and analysis. 
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How Trains Are Becoming Data Driven
by Gerhard Kress

You can read this post on oreilly.com here.

Trains and public transport are, for many of us, a vital part of our
daily lives. Large cities are particularly dependent on an efficient
public transport system, and if disruption occurs, it usually affects
many passengers while spreading across the transport network. But
our requirements as passengers are growing and maturing. Safety is
paramount, but we also care about timeliness, comfort, Internet
access, and other amenities. With strong competition for regional
and long-distance trains, providing an attractive service has become
critical for many rail operators today.

The railway industry is an old industry. For the past 150 years, this
industry was built around mechanical systems maintained through‐
out a lifetime of 30 years, mostly through reactive or preventive
maintenance. But this is not enough anymore to deliver the type of
service we all want and expect to experience.

Deriving Insight from the Data of Trains
Over the past few years, the rail industry has been transforming
itself, embracing IT, digitalization, big data, and the related changes
in business models. This change is driven both by the railway oper‐
ating companies demanding higher vehicle and infrastructure avail‐
ability, and, increasingly, wanting to transition their operational risk
to suppliers. In parallel, the thought leaders among maintenance
providers have embraced the technology opportunities to radically
improve their offerings and help their customers deliver better
value.

At the core of all these changes is the ability to derive insights and
value from the data of trains, rail infrastructure, and operations. In
essence, this means automatically gathering and transmitting data
from rail vehicles and rail infrastructure, providing the rail operator
with an up-to-date view of the fleet, and using data to improve
maintenance processes and predict upcoming failures. When data is
used to its full extent, the availability of rail assets can be substan‐
tially improved, while the costs of maintenance are reduced signifi‐
cantly. This can allow rail operators to create new offerings for cus‐
tomers.
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A good example is Spain’s high-speed train from Madrid to Barce‐
lona. The rail operating company, Renfe, is successfully competing
with airline flight services on this route. The train service brings
passengers from city center to city center in 2.5 hours, compared to
a pure flight time of 1 hour 20 minutes. Part of what makes this ser‐
vice so competitive is the reliability of the trains. Renfe actually
promises passengers a full refund for a delay of more than 15
minutes. This performance is ensured by a highly professional ser‐
vice organization between Siemens and Renfe (in a joint venture
called Nertus), which uses sophisticated data analytics to detect
upcoming failures and prevent any disruptions to the scheduled ser‐
vice (full disclosure: I’m the director of mobility data services at Sie‐
mens).

Requirements of Industrial Data
In my role on the mobility data services team, I focus on creating the
elements of a viable data-enabled business. Since the summer of
2014, we have built a dedicated team for data-driven services, a
functioning remote diagnostic platform, and a set of analytical mod‐
els. The team consists of 10 data scientists, supported by platform
architects, software developers, and implementation managers.

The architecture of the remote diagnostic platform is derived from
the popular Lambda Architecture, but adapted to the requirements
of industrial data that needs to be stored for long periods of time.
This platform connects to vehicles and infrastructure in the field,
displays the current status to customers, and stores the lifetime data
in a data lake built on a Teradata system and a large Hadoop instal‐
lation. On top of the data lake, there are a variety of analytics work‐
benches to help our data scientists identify patterns and derive pre‐
dictive models for operational deployment. The data volumes might
not be as large as the click streams from popular websites, for exam‐
ple, but they still require a sophisticated platform for analysis. A typ‐
ical fleet of regional trains would generate a few terabytes of data
and around 100 billion data points per year. And now, imagine that
such data needs to be stored and accessed for 10–15 years and you
see the challenge.

The target of a large set of the analytical models is the prediction of
upcoming component failures. However, such a prediction is not an
easy task to perform if you only rely on classical data mining
approaches. First of all, rail assets are usually very reliable and do
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not fail very often. Preventive maintenance strategies make sure that
failures are avoided, and safety for the passengers is secured. This all
leads to a skewed distribution in the data set. Furthermore, the data
usually contains significantly more possible features than failures,
making it a challenge to avoid overfitting. Also, vehicle fleets are
often rather small, with anything from 20 to 100 vehicles per fleet.
But to create usable prediction models, a high prediction accuracy is
required, and especially, a very low ratio of false failure predictions.

We have worked extensively on these topics in my team and were
able to create a first set of robust predictive models that are now
being introduced to the market. Understanding the data provided by
rail vehicles lies fully at the core of these prediction models. Such
data can be in the form of error messages, log files, sensor data snap‐
shots, or true time-series sensor data. The semantics of this data
needs to be well understood, and the interpretation of the data often
depends on the situation of the vehicle at that time. Elements that
need to be considered include: whether multiple vehicles were cou‐
pled together, if the vehicle was loaded, the topography of the track,
and which direction the vehicle was heading. All of these aspects
may have visible influence on the interpretation of the data and help
to separate the signal from the noise.

Many of the models we have developed also take into account physi‐
cal processes in the assets we are examining. When it comes to pre‐
dicting the failure of an air conditioning system, for example, some
type of failure mode analysis is required, together with an analysis of
how the physical system should behave (i.e., in terms of air pressure,
air flow, temperatures, etc.).

How Machine Learning Fits In
All of the approaches mentioned here rely heavily on deep interac‐
tions with rail engineering departments. Engineering models are
often assessed in order to better separate normal from noteworthy
behavior of the system under observation. These insights are used to
define the structure of the machine learning system that is trying to
predict an upcoming failure. This can be done by supplementing the
defined features that describe the system or by providing additional
boundary conditions for a support vector machine, for example.
Very often, all of this cannot be mapped into a single model, but
results in an ensemble of models working together to predict a fail‐
ure and to avoid false failure predictions.
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Our mobility data services team is still a young one, but we have
been able to create and successfully apply some models already. We
see strong interest from our customers, who are pushing to get ever
more insights from the data coming from their vehicles or infra‐
structure. The value this data can provide is, of course, not only
limited to failure prediction—many of them are now trying to iden‐
tify how they can use this data to improve their own processes, their
operations, or how they can change business models for improving
their relations with passengers or freight customers. These develop‐
ments are only the beginning, and there is so much more to come—
using data to improve mobility services is at the forefront of mobi‐
lity technology.

Multimodel Database Case Study: Aircraft
Fleet Maintenance
by Max Neunhöffer

You can read this post on oreilly.com here.

Editor’s note: Full disclosure—the author is a developer and software
architect at ArangoDB GmbH, which leads the development of the
open source multimodel database ArangoDB.

In recent years, the idea of “polyglot persistence” has emerged and
become popular—for example, see Martin Fowler’s excellent blog
post. Fowler’s basic idea is that it is beneficial to use a variety of
appropriate data models for different parts of the persistence layer of
larger software architectures. According to this, one would, for
example, use a relational database to persist structured, tabular data;
a document store for unstructured, object-like data; a key/value
store for a hash table; and a graph database for highly linked refer‐
ential data. Traditionally, this means that one has to use multiple
databases in the same project (as shown in Figure 6-1), which leads
to some operational friction (more complicated deployment, more
frequent upgrades) as well as data consistency and duplication
issues.
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Figure 6-1. Tables, documents, graphs, and key/value pairs: different
data models (image courtesy of Max Neunhöffer)

This is the calamity that a multimodel database addresses. You can
solve this problem by using a multimodel database that consists of a
document store (JSON documents), a key/value store, and a graph
database, all in one database engine and with a unifying query lan‐
guage and API that cover all three data models and even allow for
mixing them in a single query. Without getting into too much tech‐
nical detail, these three data models are specially chosen because an
architecture like this can successfully compete with more specialized
solutions on their own turf, both with respect to query performance
and memory usage. The column-oriented data model has, for exam‐
ple, been left out intentionally. Nevertheless, this combination
allows you—to a certain extent—to follow the polyglot persistence
approach without the need for multiple data stores.

At first glance, the concept of a multimodel database might be a bit
hard to swallow, so let me explain this idea briefly. Documents in a
document collection usually have a unique primary key that encodes
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document identity, which makes a document store naturally into a
key/value store, in which the keys are strings and the values are
JSON documents. In the absence of secondary indexes, the fact that
the values are JSON does not really impose a performance penalty
and offers a good amount of flexibility. The graph data model can be
implemented by storing a JSON document for each vertex and a
JSON document for each edge. The edges are kept in special edge
collections that ensure that every edge has “from” and “to” attributes
that reference the starting and ending vertices of the edge, respec‐
tively. Having unified the data for the three data models in this way,
it only remains to devise and implement a common query language
that allows users to express document queries, key/value lookups,
“graphy queries,” and arbitrary mixtures of these. By “graphy quer‐
ies,” I mean queries that involve the particular connectivity features
coming from the edges—for example, “ShortestPath,” “GraphTraver‐
sal,” and “Neighbors.”

Aircraft Fleet Maintenance: A Case Study
One area where the flexibility of a multimodel database is extremely
well suited is the management of large amounts of hierarchical data,
such as in an aircraft fleet. Aircraft fleets consists of several aircraft,
and a typical aircraft consists of several million parts, which form
subcomponents, larger and smaller components, such that we get a
whole hierarchy of “items.” To organize the maintenance of such a
fleet, one has to store a multitude of data at different levels of this
hierarchy. There are names of parts or components, serial numbers,
manufacturer information, maintenance intervals, maintenance
dates, information about subcontractors, links to manuals and docu‐
mentation, contact persons, warranty and service contract informa‐
tion, to name but a few. Every single piece of data is usually attached
to a specific item in this hierarchy.

This data is tracked in order to provide information and answer
questions. Questions can include but are not limited to the follow‐
ing examples:

• What are all the parts in a given component?
• Given a (broken) part, what is the smallest component of the

aircraft that contains the part and for which there is a mainte‐
nance procedure?

• Which parts of this aircraft need maintenance next week?
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A data model for an aircraft fleet
So, how do we model the data about our aircraft fleet if we have a
multimodel database at our disposal?

There are probably several possibilities, but one good option here is
the following (because it allows us to execute all required queries
quickly): There is a JSON document for each item in our hierarchy.
Due to the flexibility and recursive nature of JSON, we can store
nearly arbitrary information about each item, and since the docu‐
ment store is schemaless, it is no problem that the data about an air‐
craft is completely different from the data about an engine or a small
screw. Furthermore, we store containment as a graph structure. That
is, the fleet vertex has an edge to every single aircraft vertex, an air‐
craft vertex has an edge to every top-level component it consists of,
component vertices have edges to the subcomponents they are made
of, and so on, until a small component has edges to every single
individual part it contains. The graph that is formed in this way is in
fact a directed tree (see Figure 6-2).

We can either put all items in a single (vertex) collection or sort
them into different ones—for example, grouping aircraft, compo‐
nents, and individual parts, respectively. For the graph, this does not
matter, but when it comes to defining secondary indexes, multiple
collections are probably better. We can ask the database for exactly
those secondary indexes we need, such that the particular queries
for our application are efficient.
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Figure 6-2. A tree of items (image courtesy of Max Neunhöffer)

Queries for Aircraft Fleet Maintenance
We now come back to the typical questions we might ask of the data,
and discuss which kinds of queries they might require. We will also
look at concrete code examples for these queries using the Ara‐
ngoDB Query Language (AQL).

What are all the parts in a given component?
This involves starting at a particular vertex in the graph and
finding all vertices “below”—that is, all vertices that can be
reached by following edges in the forward directions (see Figure
6-3). This is a graph traversal, which is a typical graphy query.
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Figure 6-3. Finding all parts in a component (image courtesy of
Max Neunhöffer)

Here is an example of this type of query, which finds all vertices
that can be reached from "components/Engine765" by doing a
graph traversal:

1 RETURN GRAPH_TRAVERSAL("FleetGraph",
2 "components/Engine765",
3 "outbound")

In ArangoDB, one can define graphs by giving them a name
and by specifying which document collections contain the verti‐
ces and which edge collections contain the edges. Documents,
regardless of whether they are vertices or edges, are uniquely
identified by their _id attribute, which is a string that consists of
the collection name, a slash character (/), and then the primary
key. The call to GRAPH_TRAVERSAL thus only needs the graph
name "FleetGraph", the starting vertex, and "outbound" for the
direction of the edges to be followed. You can specify further
options, but that is not relevant here. AQL directly supports this
type of graphy query.

Given a (broken) part, what is the smallest component of the aircraft
that contains the part and for which there is a maintenance procedure?

This involves starting at a leaf vertex and searching upward in
the tree until a component is found for which there is a mainte‐
nance procedure, which can be read off the corresponding
JSON document. This is again a typical graphy query since the
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number of steps to go is not known a priori. This particular case
is relatively easy, as there is always a unique edge going upward
(see Figure 6-4).

Figure 6-4. Finding the smallest maintainable component (image
courtesy of Max Neunhöffer)

For example, the following is an AQL query that finds the short‐
est path from "parts/Screw56744" to a vertex whose isMain
tainable attribute has the boolean value true, following the
edges in the "inbound" direction:

1 RETURN GRAPH_SHORTEST_PATH("FleetGraph",
2 "parts/Screw56744",
3 {isMaintainable: true},
4 {direction: "inbound",
5 stopAtFirstMatch: true})

Note that here, we specify the graph name, the _id of the start
vertex, and a pattern for the target vertex. We could have given a
concrete _id instead, or could have given further options in
addition to the direction of travel in the last argument. We see
again that AQL directly supports this type of graphy query.

Which parts of this aircraft need maintenance next week?
This is a query that does not involve the graph structure at all:
rather, the result tends to be nearly orthogonal to the graph
structure (see Figure 6-5). Nevertheless, the document data
model with the right secondary index is a perfect fit for this
query.
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Figure 6-5. Query whose result is orthogonal to the graph struc‐
ture (image courtesy of Max Neunhöffer)

With a pure graph database, we would be in trouble rather
quickly for such a query. That is because we cannot use the
graph structure in any sensible way, so we have to rely on secon‐
dary indexes—here, for example, on the attribute storing the
date of the next maintenance. Obviously, a graph database could
implement secondary indexes on its vertex data, but then it
would essentially become a multimodel database.

To get our answer, we turn to a document query, which does not
consider the graph structure. Here is one that finds the compo‐
nents that are due for maintenance:

1 FOR c IN components
2  FILTER c.nextMaintenance <= "2015-05-15"
3  RETURN {id: c._id,
4     nextMaintenance: c.nextMaintenance}

What looks like a loop is AQL’s way of describing an iteration
over the components collection. The query optimizer recog‐
nizes the presence of a secondary index for the nextMainte
nance attribute such that the execution engine does not have to
perform a full collection scan to satisfy the FILTER condition.
Note AQL’s way of specifying projections by simply forming a
new JSON document in the RETURN statement from known data.
We see that the very same language supports queries usually
found in a document store.
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Using multimodel querying
To illustrate the potential of the multimodel approach, I’ll finally
present an AQL query that mixes the three data models. The follow‐
ing query starts by finding parts with maintenance due, runs the
preceding shortest path computation for each of them, and then
performs a join operation with the contacts collection to add con‐
crete contact information to the result:

1 FOR p IN parts
2 FILTER p.nextMaintenance <= "2015-05-15"
3 LET path = GRAPH_SHORTEST_PATH("FleetGraph", p._id,
4 {isMaintainable: true},
5 {direction: "inbound",
6 stopAtFirstMatch: true})
7 LET pathverts = path[0].vertices
8 LET c = DOCUMENT(pathverts[LENGTH(pathverts)-1])
9 FOR person IN contacts
10  FILTER person._key == c.contact
11 RETURN {part: p._id, component: c, contact: person}

In AQL, the DOCUMENT function call performs a key/value lookup via
the provided _id attribute; this is done for each vertex found as a
target of the shortest path computation. Finally, we can see AQL’s
formulation for a join. The second FOR statement brings the con
tacts collection into play, and the query optimizer recognizes that
the FILTER statement can be satisfied best by doing a join, which in
turn is very efficient because it can use the primary index of the con
tacts collection for a fast hash lookup.

This is a prime example for the potential of the multimodel
approach. The query needs all three data models: documents with
secondary indexes, graphy queries, and a join powered by fast key/
value lookup. Imagine the hoops through which we would have to
jump if the three data models would not reside in the same database
engine, or if it would not be possible to mix them in the same query.

Even more importantly, this case study shows that the three different
data models were indeed necessary to achieve good performance for
all queries arising from the application. Without a graph database,
the queries of a graphy nature with path lengths, which are not a pri‐
ori known, notoriously lead to nasty, inefficient multiple join opera‐
tions. However, a pure graph database cannot satisfy our needs for
the document queries that we got efficiently by using the right sec‐
ondary indexes. The efficient key/value lookups complement the
picture by allowing interesting join operations that give us further
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flexibility in the data modeling. For example, in the preceding situa‐
tion, we did not have to embed the whole contact information with
every single path, simply because we could perform the join opera‐
tion in the last query.

Lessons Learned for Data Modeling
The case study of aircraft fleet maintenance reveals several impor‐
tant points about data modeling and multimodel databases:

JSON is very versatile for unstructured and structured data
The recursive nature of JSON allows embedding of subdocu‐
ments and variable length lists. Additionally, you can even store
the rows of a table as JSON documents, and modern datastores
are so good at compressing data that there is essentially no
memory overhead in comparison to relational databases. For
structured data, schema validation can be implemented as
needed using an extensible HTTP API.

Graphs are a good data model for relations
In many real-world cases, a graph is a very natural data model.
It captures relations and can hold label information with each
edge and with each vertex. JSON documents are a natural fit to
store this type of vertex and edge data.

A graph database is particularly good for graphy queries
The crucial thing here is that the query language must imple‐
ment routines like “shortest path” and “graph traversal,” and the
fundamental capability for these is to access the list of all outgo‐
ing or incoming edges of a vertex rapidly.

A multimodel database can compete with specialized solutions
The particular choice of the three data models—documents,
key/value, and graph—allows us to combine them in a coherent
engine. This combination is no compromise. It can, as a docu‐
ment store, be as efficient as a specialized solution; and it can, as
a graph database, be as efficient as a specialized solution
(see this blog post for some benchmarks).

A multimodel database allows you to choose different data models
with less operational overhead

Having multiple data models available in a single database
engine alleviates some of the challenges of using different data
models at the same time, because it means less operational over‐
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head and less data synchronization, and therefore allows for a
huge leap in data modeling flexibility. You suddenly have the
option to keep related data together in the same data store, even
if it needs different data models. Being able to mix the different
data models within a single query increases the options for
application design and performance optimizations. And if you
choose to split the persistence layer into several different data‐
base instances (even if they use the same data model), you still
have the benefit of only having to deploy a single technology.
Furthermore, a data model lock-in is prevented.

Multimodel has a larger solution space than relational
Considering all these possibilities for queries, the additional
flexibility in data modeling and the benefits of polyglot persis‐
tence without the usually ensuing friction, the multimodel
approach covers a solution space that is even larger than that of
the relational model. This is all-the-more astonishing, as the
relational model has dominated the database market as well as
the database research for decades.

Additional Use Cases for Multimodel Databases
Here are a few more use cases for which multimodel is well suited or
even outright necessary:

• Workflow management software often models the dependen‐
cies between tasks with a graph; some queries need these depen‐
dencies, others ignore them and only look at the remaining
data.

• Knowledge graphs are enormous data collections; most queries
from expert systems use only the edges and graphy queries, but
you often need “orthogonal” queries that only consider the ver‐
tex data.

• E-commerce systems need to store customer and product data
(JSON), shopping carts (key/value), orders and sales (JSON or
graph), and data for recommendations (graph), and need a mul‐
titude of queries featuring all of these data items.

• Enterprise hierarchies come naturally as graph data and rights
management typically needs a mixture of graphy and document
queries.

• Social networks are the prime example for large, highly con‐
nected graphs and typical queries are graphy; nevertheless,
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actual applications need additional queries which totally ignore
the social relationship and thus need secondary indexes and
possibly joins with key lookups.

• Version management applications usually work with a direc‐
ted acyclic graph, but also need graphy queries and others.

• Any application that deals with complex, user-defined data
structures benefits dramatically from the flexibility of a docu‐
ment store and has often good applications for graph data as
well.

The Future of Multimodel Databases
Currently there are only two products that are multimodel in the
sense used here, making use of JSON, key/value, and graphs: Ara‐
ngoDB and OrientDB. A few others are marketed under the term
“multimodel” (for a complete overview, see the ranking at DB-
engines), which support multiple data models, but none of them has
graphs and targets the operational domain.

Other players, like MongoDB or Datastax, who have traditionally
concentrated on a single data model, show signs of broadening their
scope. MongoDB, which is a pure document store, made its storage
engine pluggable with the 3.0 release in March 2015. Datastax, a
company that produces a commercial product based on the column-
based store Apache Cassandra, has recently acquired Aurelius, the
company behind the distributed graph database TitanDB. Apple just
acquired FoundationDB, a distributed key/value store with multiple
“personalities” for different data models layered on top.

The arrival of the new players, as well as the moves of the more
established ones, constitute a rather recent trend toward support for
multiple data models. At the same time, more and more NoSQL sol‐
utions are appearing that rediscover the traditional virtues of rela‐
tional databases, such as ACID transactions, joins, and relatively
strong consistency guarantees.

These are golden times for data modelers and software architects.
Stay tuned—watch the exciting new developments in the database
market and enjoy the benefits of an unprecedented amount of
choice.
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Big Data Is Changing the Face of Fashion
by Liza Kindred

You can read this post on oreilly.com here.

Fashion is an industry that struggles for respect—despite its enor‐
mous size globally, it is often viewed as frivolous or unnecessary.

And it’s true—fashion can be spectacularly silly and wildly extrane‐
ous. But somewhere between the glitzy, million-dollar runway
shows and the ever-shifting hemlines, a very big business can be
found. One industry profile of the global textiles, apparel, and
luxury goods market reported that fashion had total revenues of
$3.05 trillion in 2011, and is projected to create $3.75 trillion in rev‐
enues in 2016.

Solutions for a Unique Business Problem
The majority of clothing purchases are made not out of necessity,
but out of a desire for self-expression and identity—two remarkably
difficult things to quantify and define. Yet, established brands and
startups throughout the industry are finding clever ways to use big
data to turn fashion into “bits and bytes,” as much as threads and
buttons.

In the updated O’Reilly report Fashioning Data: A 2015 Update,
Data Innovations from the Fashion Industry, we explore applications
of big data that carry lessons for industries of all types. Topics range
from predictive algorithms to visual search—capturing structured
data from photographs—to natural language processing, with spe‐
cific examples from complex lifecycles and new startups; this report
reveals how different companies are merging human input with
machine learning.

Using Data to Drive Big Sales
Don’t like to shop? Don’t worry. The report encompasses the essence
of how fashion brands and startups are using data to drive big sales
—and how their techniques relate to what businesses in other indus‐
tries can do as well.

As we found in our research for the report, one of the things that
fashion has always done well is to have two-way conversations with
customers. In the report, we interview Eric Colson, who spent six

Big Data Is Changing the Face of Fashion | 127

http://radar.oreilly.com/lizak
http://radar.oreilly.com/2015/09/big-data-is-changing-the-face-of-fashion.html
http://www.reportlinker.com/p016087-summary/Global-Textiles-Apparel-Luxury-Goods.html
http://www.oreilly.com/data/free/fashioning-data.csp?intcmp=il-data-free-lp-lgen_20150916_radar_liza_kindred_fashioning_data_report_link_article_body
http://www.oreilly.com/data/free/fashioning-data.csp?intcmp=il-data-free-lp-lgen_20150916_radar_liza_kindred_fashioning_data_report_link_article_body
https://twitter.com/ericcolson


years at Netflix before becoming the chief algorithms officer
at Stitch Fix, a personalized online shopping and styling service for
women. Colson explains a unique model from the fashion industry:

Most companies—Google, Yahoo!, Netflix—use what they call
“inferred attributes:” they guess. We don’t guess; we ask.

The Original Big Data Industry
by Timothy McGovern

You can read this post on oreilly.com here.

Petroleum extraction is an industry marked by price volatility and
high capital exposure in new ventures. Big data is reducing risk, not
just to capital, but to workers and the environment as well, as Dan
Cowles explores in the free report Oil, Gas, and Data.

At the Global Petroleum Show in Calgary, exhibiting alongside mas‐
sive drill heads, chemical analysts, and the latest in valves and pipes
are companies with a decidedly more virtual product: data. IBM’s
Aspera, Abacus Datagraphics, Fujitsu, and Oracle’s Front Porch Dig‐
ital are pitching data intake, analysis, and storage services to the oil
industry, and industry stalwarts such as Halliburton, Lockheed Mar‐
tin, and BP have been developing these capacities in-house.

The primary benefits of big data occur at the upstream end of petro‐
leum production: exploration, discovery, and drilling. Better analy‐
sis of seismic and other geological data allows for drilling in more
productive locations, and continual monitoring of equipment
results in more uptime and better safety for both workers and envi‐
ronment. These marginal gains can be enough to keep an entire
region competitive: The trio of cheap sensors, fast networks, and
distributed computation that we’ve so often seen in other industries
is the difference-maker keeping the North Sea oilfields productive in
a sub-$100/barrel market.

Beyond productivity (though intimately tied up with safety), is the
role of data in petroleum security. While automation and monitor‐
ing can detect leaks, threats, and potential points of failure, it can
also introduce a new weak point for malicious actors, such as the
perpetrators of the Shamoon virus, or plausibly, nongovernmental
organizations like those responsible for Stuxnet.

128 | Chapter 6: Applications of Big Data

https://www.stitchfix.com/
http://radar.oreilly.com/timm
http://radar.oreilly.com/2015/07/the-original-big-data-industry.html
http://www.oreilly.com/data/free/oil-gas-data.csp?intcmp=il-data-free-lp-lgen_20150630_radar_oil_gas_and_data_report_announcement_post_top_body_link
http://globalpetroleumshow.com/
http://www-01.ibm.com/software/info/aspera/
http://www-01.ibm.com/software/info/aspera/
http://www.abacusdatagraphics.com/
http://www.fujitsu.com/us/
http://www.fpdigital.com/
http://www.fpdigital.com/
http://www.halliburton.com/
http://www.lockheedmartin.com/us/what-we-do/information-technology/cyber-security/oil-gas.html
http://www.lockheedmartin.com/us/what-we-do/information-technology/cyber-security/oil-gas.html
https://www.bp.com/
http://www.nytimes.com/2015/06/03/business/international/chevron-and-north-sea-rivals-race-to-keep-an-oil-region-relevant.html?ref=topics
http://en.wikipedia.org/wiki/Shamoon
https://en.wikipedia.org/wiki/Stuxnet


The petroleum industry may be unique in the scale of investment
that needs to be committed to a new venture ($10 million or more
for a new well), but it provides a model for using data for more effi‐
ciency, safety, and security in a well-established industry.
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CHAPTER 7

Security, Ethics, and Governance

Conversations around big data, and particularly, the Internet of
Things, often steer quickly in the direction of security, ethics, and
data governance. At this year’s Strata + Hadoop World London, Pro‐
Publica journalist and author Julia Angwin delivered a key‐
note where she speculated whether privacy is becoming a luxury
good. The ethical and responsible handling of personal data has
been, and will continue to be, an important topic of discussion in
the big data space. There’s much to discuss: What kinds of policies
are organizations implementing to ensure data privacy and restrict
user access?  How can organizations use data to develop data gover‐
nance policies? Will the “data for good movement” gain speed and
traction? The collection of blog posts in this chapter address these,
and other, questions.

Andy Oram first discusses building access policies into data stores
and how security by design can work in a Hadoop environment.
Ben Lorica then explains how comprehensive metadata collection
and analysis can pave the way for many interesting applications. Cit‐
ing a use case from the healthcare industry, Andy Oram returns to
explain how federal authentication and authorization could provide
security solutions for the Internet of Things. Gilad Rosner suggests
the best of European and American data privacy initiatives—such as
the US Privacy Principles for Vehicle Technology & Services and the
European Data Protection Directive—can come together for the bet‐
terment of all. Finally, Jake Porway details how to go from well-
intentioned efforts to lasting impact with five principles for applying
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data science for social good—a topic he focused on during his key‐
note at Strata + Hadoop World New York.

The Security Infusion
by Andy Oram

You can read this post on oreilly.com here.

Hadoop jobs reflect the same security demands as other program‐
ming tasks. Corporate and regulatory requirements create complex
rules concerning who has access to different fields in data sets; sensi‐
tive fields must be protected from internal users as well as external
threats, and multiple applications run on the same data and must
treat different users with different access rights. The modern world
of virtualization and containers adds security at the software level,
but tears away the hardware protection formerly offered by network
segments, firewalls, and DMZs.

Furthermore, security involves more than saying “yes” or “no” to a
user running a Hadoop job. There are rules for archiving or backing
up data on the one hand, and expiring or deleting it on the other.
Audit logs are a must, both to track down possible breaches and to
conform to regulation.

Best practices for managing data in these complex, sensitive envi‐
ronments implement the well-known principle of security by design.
According to this principle, you can’t design a database or applica‐
tion in a totally open manner and then layer security on top if you
expect it to be robust. Instead, security must be infused throughout
the system and built in from the start. Defense in depth is a related
principle that urges the use of many layers of security, so that an
intruder breaking through one layer may be frustrated by the next.

In this article, I’ll describe how security by design can work in a
Hadoop environment. I interviewed the staff of PHEMI for the arti‐
cle and will refer to their product PHEMI Central to illustrate many
of the concepts. But the principles are general ones with long-
standing roots in computer security.

The core of a security-by-design approach is a policy enforcement
engine that intervenes and checks access rights before any data
enters or leaves the data store. The use of such an engine makes it
easier for an organization to guarantee consistent and robust restric‐
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tions on its data, while simplifying application development by tak‐
ing policy enforcement off the shoulders of the developers.

Combining Metadata into Policies
Security is a cross between two sets of criteria: the traits that make
data sensitive and the traits of the people who can have access to it.

Sometimes you can simply label a column as sensitive because it
contains private data (an address, a salary, a Social Security num‐
ber). So, column names in databases, tags in XML, and keys in JSON
represent the first level of metadata on which you can filter access.
But you might want to take several other criteria into account, par‐
ticularly when you add data retention and archiving to the mix.
Thus, you can add any metadata you can extract during data inges‐
tion, such as filenames, timestamps, and network addresses. Your
users may also add other keywords or tags to the system.

Each user, group, or department to which you grant access must be
associated with some combination of metadata. For instance, a bill‐
ing department might get access to a customer’s address field and to
billing data that’s less than one year old.

Storing Policies with the Data
Additional security is provided by storing policies right with the raw
data instead of leaving the policies in a separate database that might
become detached from the system or out of sync with changing
data. It’s worth noting, in this regard, that several tools in the
Hadoop family—Ranger, Falcon, and Knox—can check data against
ACLs and enforce security, but they represent the older model of
security as an afterthought. PHEMI Central exemplifies the newer
security-by-design approach.

PHEMI Central stores a reference to each policy with the data in
an Accumulo index. A policy can be applied to a row, a column, a
field in XML or JSON, or even a particular cell. Multiple references
to policies can be included without a performance problem, so that
different users can have different access rights to the same data item.
Performance hits are minimized through Accumulo’s caching and
through the use of locality groups. These cluster data according to
the initial characters of the assigned keys and ensure that data with
related keys are put on the same server. An administrator can also
set up commonly used filters and aggregations such as min, max,
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and average in advance, which gives a performance boost to users
who need such filters.

The Policy Enforcement Engine
So far, we have treated data passively and talked only about its struc‐
ture. Now we can turn to the active element of security: the software
that stands between the user’s query or job request and the data.

The policy enforcement engine retrieves the policy for each reques‐
ted column, cell, or other data item and determines whether the user
should be granted access. If access is granted, the data is sent to the
user application. If access is denied, the effect on the user is just as if
no such data existed at all. However, a sophisticated policy enforce‐
ment engine can also offer different types or levels of access. Sup‐
pose, for instance, that privacy rules prohibit researchers from see‐
ing a client’s birthdate, but that it’s permissible to mask the birthdate
and present the researcher with the year of birth. A policy enforce‐
ment engine can do this transformation. In other words, different
users get different amounts of information based on access rights.

Note that many organizations duplicate data in order to grant quick
access to users. For instance, they may remove data needed by ana‐
lysts from the Hadoop environment and provide a data mart dedica‐
ted to those analysts. This requires extra servers and disk space, and
leads to the risk of giving analysts outdated information. It truly
undermines some of the reasons organizations moved to Hadoop in
the first place.

In contrast, a system like PHEMI Central can provide each user with
a view suited to his or her needs, without moving any data. The pro‐
cess is similar to views in relational databases, but more flexible.

Take as an example medical patient data, which is highly regulated,
treated with great concern by the patients, and prized by the health‐
care industry. A patient and the physicians treating the patient may
have access to all data, including personal information, diagnosis,
etc. A researcher with whom the data has been shared for research
purposes must have access only to specific data items (e.g., blood
glucose level) or the outcome of analyses performed on the data. A
policy enforcement engine can offer these different views in a secure
manner without making copies. Instead, the content is filtered based
on access policies in force at the time of query.
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Fraud detection is another common use case for filtering. For exam‐
ple, a financial institution has access to personal financial informa‐
tion for individuals. Certain patterns indicate fraud, such as access
to a particular account from two countries at the same time. The
institution could create a view containing only coarse-grained geo‐
graphic information—such as state and country, along with date of
access—and share that with an application run by a business partner
to check for fraud.

Benefits of Centralizing Policy
In organizations without policy engines, each application developer
has to build policies into the application. These are easy to get
wrong, and take up precious developer time that should be focused
on the business needs of the organization.

A policy enforcement engine can enforce flexible and sophisticated
rules. For instance, HIPAA’s privacy rules guard against the use or
disclosure of an individual’s identifying health information. These
rules provide extensive guidelines on how individual data items
must be de-identified for privacy purposes and can come into play,
for example, when sharing patient data for research purposes. By
capturing them as metadata associated with each data item, rules
can be enforced at query time by the policy engine.

Another benefit of this type of system, as mentioned earlier, is that
data can be massaged before being presented to the user. Thus, dif‐
ferent users or applications see different views, but the underlying
data is kept in a single place with no need to copy and store altered
versions.

At the same time, the engine can enforce retention policies and
automatically track data’s provenance when the data enters the sys‐
tem. The engine logs all accesses to meet regulatory requirements
and provides an audit trail when things go wrong.

Security by design is strongest when the metadata used for access is
built right into the system. Applications, databases, and the policy
enforcement engine can work together seamlessly to give users all
the data they need while upholding organizational and regulatory
requirements.

This post is a collaboration between O’Reilly and PHEMI. See our
statement of editorial independence.
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We Need Open and Vendor-Neutral Metadata
Services
by Ben Lorica

You can read this post on oreilly.com here.

As I spoke with friends leading up to Strata + Hadoop World NYC,
one topic continued to come up: metadata. It’s a topic that data engi‐
neers and data management researchers have long thought about
because it has significant effects on the systems they maintain and
the services they offer. I’ve also been having more and more conver‐
sations about applications made possible by metadata collection and
analysis.

At the recent Strata + Hadoop World, U.C. Berkeley profes‐
sor and Trifacta co-founder Joe Hellerstein outlined the reasons why
the broader data industry should rally to develop open and vendor-
neutral metadata services. He made the case that improvements in
metadata collection and sharing can lead to interesting applications
and capabilities within the industry.

The following sections outline some of the reasons why Hellerstein
believes the data industry should start focusing more on metadata.

Improved Data Analysis: Metadata on Use
You will never know your data better than when you are wran‐
gling and analyzing it.

—Joe Hellerstein

A few years ago, I observed that context-switching—due to using
multiple frameworks—created a lag in productivity. Today’s tools
have improved to the point that someone using a single framework
like Apache Spark can get many of their data tasks done without
having to employ other programming environments. But outside of
tracking in detail the actions and choices analysts make, as well as
the rationales behind them, today’s tools still do a poor job of cap‐
turing how people interact and work with data.

Enhanced Interoperability: Standards on Use
If you’ve read the recent O’Reilly report “Mapping Big Data” or
played with the accompanying demo, then you’ve seen the breadth
of tools and platforms that data professionals have to contend with.

136 | Chapter 7: Security, Ethics, and Governance

https://www.oreilly.com/people/4e7ad-ben-lorica
https://www.oreilly.com/ideas/we-need-open-and-vendor-neutral-metadata-services
https://en.wikipedia.org/wiki/Metadata
http://db.cs.berkeley.edu/jmh/
http://db.cs.berkeley.edu/jmh/
https://www.trifacta.com/about-us/leadership/
http://strataconf.com/big-data-conference-ny-2015/public/schedule/detail/43506
http://strataconf.com/big-data-conference-ny-2015/public/schedule/detail/43506
http://radar.oreilly.com/2013/03/data-science-tools-all-in-or-mix-and-match.html
http://spark.apache.org/
http://www.oreilly.com/data/free/mapping-big-data.csp
http://demo.relato.io/oreilly


Re-creating a complex data pipeline means knowing the details (e.g.,
version, configuration parameters) of each component involved in a
project. With a view to reproducibility, metadata in a persistent
(stored) protocol that cuts across vendors and frameworks would
come in handy.

Comprehensive Interpretation of Results
Behind every report and model (whether physical or quantitative)
are assumptions, code, and parameters. The types of models used in
a project determine what data will be gathered, and conversely,
models depend heavily on the data that is used to build them. So,
proper interpretation of results needs to be accompanied by meta‐
data that focuses on factors that inform data collection and model
building.

Reproducibility
As I noted earlier, the settings (version, configuration parameters) of
each tool involved in a project are essential to the reproducibility of
complex data pipelines. This usually means only documenting
projects that yield a desired outcome. Using scientific research as an
example, Hellerstein noted that having a comprehensive picture is
often just as important. This entails gathering metadata for settings
and actions in projects that succeeded as well as projects that failed.

Data Governance Policies by the People, for the People
Governance usually refers to policies that govern important items
including the access, availability, and security of data. Rather than
adhering to policies that are dictated from above, metadata can be
used to develop a governance policy that is based on consensus and
collective intelligence. A “sandbox” where users can explore and
annotate data could be used to develop a governance policy that is
“fueled by observing, learning, and iterating.”

Time Travel and Simulations
Comprehensive metadata services lead to capabilities that many
organizations aspire to have: The ability to quickly reproduce data
pipelines opens the door to “what-if ” scenarios. If the right meta‐
data is collected and stored, then models and simulations can fill in
any gaps where data was not captured, perform realistic re-
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creations, and even conduct “alternate” histories (re-creations that
use different settings).

What the IoT Can Learn from the Healthcare
Industry
by Andy Oram (with Adrian Gropper)

You can read this post on oreilly.com here.

After a short period of excitement and rosy prospects in the move‐
ment we’ve come to call the Internet of Things (IoT), designers are
coming to realize that it will survive or implode around the twin
issues of security and user control: A few electrical failures could
scare people away for decades, while a nagging sense that someone
is exploiting our data without our consent could sour our enthusi‐
asm. Early indicators already point to a heightened level of scrutiny
—Senator Ed Markey’s office, for example, recently put the automo‐
bile industry under the microscope for computer and network secu‐
rity.

In this context, what can the IoT draw from well-established tech‐
nologies in federated trust? Federated trust in technologies as
diverse as the Kerberos and SAML has allowed large groups of users
to collaborate securely, never having to share passwords with people
they don’t trust. OpenID was probably the first truly mass-market
application of federated trust.

OpenID and OAuth, which have proven their value on the Web,
have an equally vital role in the exchange of data in health care. This
task—often cast as the interoperability of electronic health records—
can reasonably be described as the primary challenge facing the
healthcare industry today, at least in the IT space. Reformers across
the healthcare industry (and even Congress) have pressured the fed‐
eral government to make data exchange the top priority, and the
Office of the National Coordinator for Health Information Technol‐
ogy has declared it the centerpiece of upcoming regulations.

Furthermore, other industries can learn from health care. The Inter‐
net of Things deals not only with distributed data, but with dis‐
tributed responsibility for maintaining the quality of that data and
authorizing the sharing of data. The use case we’ll discuss in this
article, where an individual allows her medical device data to be
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shared with a provider, can show a way forward for many other
industries. For instance, it can steer a path toward better security
and user control for the auto industry.

Health care, like other vertical industries, does best by exploiting
general technologies that cross industries. When it depends on
localized solutions designed for a single industry, the results usually
cost a lot more, lock the users into proprietary vendors, and suffer
from lower quality. In pursuit of a standard solution, a working
group of the OpenID Foundation called Health Relationship Trust
(HEART) is putting together a set of technologies that would:

• Keep patient control over data and allow her to determine pre‐
cisely which providers have access.

• Cut out middlemen, such as expensive health information
exchanges that have trouble identifying patients and keeping
information up to date.

• Avoid the need for a patient and provider to share secrets. Each
maintains their credentials with their own trusted service, and
connect with each other without having to reveal passwords.

• Allow data transfers directly (or through a patient-controlled
proxy app) from fitness or medical devices to the provider’s
electronic record, as specified by the patient.

Standard technologies used by HEART include the OpenID OAuth
and OpenID Connect standards, and the Kantara Initiative’s User-
Managed Access (UMA) open standard.

A sophisticated use case developed by the HEART team describes
two healthcare providers that are geographically remote from each
other and do not know each other. The patient gets her routine care
from one but needs treatment from the other during a trip. OAuth
and OpenID Connect work here the way they do on countless popu‐
lar websites: They extend the trust that a user invested in one site to
cover another site with which the user wants to do business. The
user has a password or credential with just a single trusted site; dedi‐
cated tokens (sometimes temporary) grant limited access to other
sites.

Devices can also support OAuth and related technologies. The
HEART use case suggests two hypothetical devices: one a consumer
product and the other a more expensive, dedicated medical device.
These become key links between the patient and her physicians. The
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patient can authorize the device to send her vital signs independ‐
ently to the physician of her choice.

OpenID Connect can relieve the patient of the need to enter a pass‐
word every time she wants access to her records. For instance, the
patient might want to use her cell phone to verify her identity. This
is sometimes called multisig technology and is designed to avoid a
catastrophic loss of control over data and avoid a single point of fail‐
ure.

One could think of identity federation via OpenID Connect as pro‐
moting cybersecurity.

UMA extends the possibilities for secure data sharing. It can allow a
single authorization server to control access to data on many
resource servers. UMA can also enforce any policy set up by the
authorization server on behalf of the patient. If the patient wants to
release surgical records without releasing mental health records, or
wants records released only during business hours as a security
measure, UMA enables the authorization server to design arbitrarily
defined rules to support such practices. One could think of identity
federation via OpenID Connect as promoting cybersecurity by
replacing many weak passwords with one strong credential. On top
of that, UMA promotes privacy by replacing many consent portals
with one patient-selected authorization agent.

For instance, the patient can tell her devices to release data in the
future without requiring another request to the patient, and can
specify what data is available to each provider, and even when it’s
available—if the patient is traveling, for example, and needs to see a
doctor, she can tell the authentication server to shut off access to her
data by that doctor on the day after she takes her flight back home.
The patient could also require that anyone viewing her data submit
credentials that demonstrate they have a certain medical degree.

Thus, low-cost services already in widespread use can cut the Gor‐
dian knot of information siloing in health care. There’s no duplica‐
tion of data, either—the patient maintains it in her records, and the
provider has access to the data released to them by the patient.
Gropper, who initiated work on the HEART use case cited earlier,
calls this “an HIE of One.” Federated authentication and authoriza‐
tion, with provision for direct user control over data sharing, pro‐
vides the best security we currently know without the need to com‐
promise private keys or share secrets, such as passwords.

140 | Chapter 7: Security, Ethics, and Governance

http://www.coindesk.com/2014-became-year-multisig/


There Is Room for Global Thinking in IoT Data
Privacy Matters
by Gilad Rosner

You can read this post on oreilly.com here.

As devices become more intelligent and networked, the makers and
vendors of those devices gain access to greater amounts of personal
data. In the extreme case of the washing machine, the kind of data—
for example, who uses cold versus warm water—is of little impor‐
tance. But when the device collects biophysical information, location
data, movement patterns, and other sensitive information, data col‐
lectors have both greater risk and responsibility in safeguarding it.
The advantages of every company becoming a software company—
enhanced customer analytics, streamlined processes, improved view
of resources and impact—will be accompanied by new privacy chal‐
lenges.

A key question emerges from the increasing intelligence of and
monitoring by devices: Will the commercial practices that evolved
in the Web be transferred to the Internet of Things? The amount of
control users have over data about them is limited. The ubiquitous
end-user license agreement tells people what will and won’t happen
to their data, but there is little choice. In most situations, you can
either consent to have your data used or you can take a hike. We do
not get to pick and choose how our data is used, except in some
blunt cases where you can opt out of certain activities (which is
often a condition forced by regulators). If you don’t like how your
data will be used, you can simply elect not to use the service. But
what of the emerging world of ubiquitous sensors and physical devi‐
ces? Will such a take-it-or-leave it attitude prevail?

In November 2014, the Alliance of Automobile Manufacturers and
the Association of Global Automakers released a set of Privacy Prin‐
ciples for Vehicle Technologies and Services. Modeled largely on the
White House’s Consumer Privacy Bill of Rights, the automaker’s pri‐
vacy principles are certainly a step in the right direction, calling for
transparency, choice, respect for context, data minimization, and
accountability. Members of the two organizations that adopt the
principles (which are by no means mandatory) commit to obtaining
affirmative consent to use or share geolocation, biometrics, or driver
behavior information. Such consent is not required, though, for
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internal research or product development, nor is consent needed to
collect the information in the first place. A cynical view of such an
arrangement is that it perpetuates the existing power inequity
between data collectors and users. One could reasonably argue that
location, biometrics, and driver behavior are not necessary to the
basic functioning of a car, so there should be an option to disable
most or all of these monitoring functions. The automakers’ princi‐
ples do not include such a provision.

For many years, there have been three core security objectives for
information systems: confidentiality, integrity, and availability—
sometimes called the CIA triad. Confidentiality relates to preventing
unauthorized access, integrity deals with authenticity and preventing
improper modification, and availability is concerned with timely
and reliable system access. These goals have been enshrined in mul‐
tiple national and international standards, such as the US Federal
Information Processing Standards Publication 199, the Common
Criteria, and ISO 27002. More recently, we have seen the emergence
of “Privacy by Design” (PbD) movements—quite simply the idea
that privacy should be “baked in, not bolted on.” And while the con‐
fidentiality part of the CIA triad implies privacy, the PbD discourse
amplifies and extends privacy goals toward the maximum protec‐
tion of personal data by default. European data protection
experts have been seeking to complement the CIA triad with three
additional goals:

• Transparency helps people understand who knows what about
them—it’s about awareness and comprehension. It explains
whom data is shared with; how long it is held; how it is audited;
and, importantly, defines the privacy risks.

• Unlinkability is about the separation of informational contexts,
such as work, personal, family, citizen, and social. It’s about
breaking the links of one’s online activity. Simply put, every
website doesn’t need to know every other website you’ve visited.

• Intervenability is the ability for users to intervene: the right to
access, change, correct, block, revoke consent, and delete their
personal data. The controversial “right to be forgotten” is a form
of intervenability—a belief that people should have some con‐
trol over the longevity of their data.

The majority of discussions of these goals happen in the field of
identity management, but there is clear application within the
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domain of connected devices and the Internet of Things. Transpar‐
ency is specifically cited in the automakers’ privacy principles, but
the weakness of its consent principle can be seen as a failure to fully
embrace intervenability. Unlinkability can be applied generally to
the use of electronic services, irrespective of whether the interface is
a screen or a device—for example, your Fitbit need not know where
you drive. Indeed, the Article 29 Working Party, a European data
protection watchdog, recently observed, “Full development of IoT
capabilities might put a strain on the current possibilities of anony‐
mous use of services and generally limit the possibility of remaining
unnoticed.”

The goals of transparency, unlinkability, and intervenability are
ways to operationalize Privacy by Design principles and aid in user
empowerment. While PbD is part of the forthcoming update to
European data protection law, it’s unlikely that these three goals will
become mandatory or part of a regulatory regime. However, from
the perspective of self-regulation, and in service of embedding a pri‐
vacy ethos in the design of connected devices, makers and manufac‐
turers have an opportunity to be proactive by embracing these goals.
Some research points out that people are uncomfortable with the
degree of surveillance and data gathering that the IoT portends. The
three goals are a set of tools to address such discomfort and get
ahead of regulator concerns, a way to lead the conversation on pri‐
vacy.

Discussions about IoT and personal data are happening at the
national level. The FTC just released a report on its inquiry into
concerns and best practices for privacy and security in the IoT. The
inquiry and its findings are predicated mainly on the Fair Informa‐
tion Practice Principles (FIPPs), the guiding principles that under‐
pin American data protection rules in their various guises. The
aforementioned White House Consumer Privacy Bill of Rights and
the automakers’ privacy principles draw heavily upon the FIPPs, and
there is close kinship between them and the existing European Data
Protection Directive.

Unlinkability and intervenability, however, are more modern goals
that reflect a European sense of privacy protection. The FTC report,
while drawing upon the Article 29 Working Party, has an arguably
(and unsurprisingly) American flavor, relying on the “fairness” goals
of the FIPPs rather than emphasizing an expanded set of privacy
goals. There is some discussion of Privacy by Design principles, in
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particular the de-identifying of data and the prevention of re-
identification, as well as data minimization, which are both cousin
to unlinkability.

Certainly, the FTC and the automakers’ associations are to be
applauded for taking privacy seriously as qualitative and quantita‐
tive changes occur in the software and hardware landscapes. Given
the IoT’s global character, there is room for global thinking on these
matters. The best of European and American thought can be
brought into the same conversation for the betterment of all. As
hardware companies become software companies, they can delve
into a broader set of privacy discussions to select design strategies
that reflect a range of corporate goals, customer preference, regula‐
tory imperative, and commercial priorities.

Five Principles for Applying Data Science for
Social Good
by Jake Porway

You can read this post on oreilly.com here.

“We’re making the world a better place.” That line echoes from
the parody of the Disrupt conference in the opening episode of
HBO’s Silicon Valley. It’s a satirical take on our sector’s occasional
tendency to equate narrow tech solutions like “software-designed
data centers for cloud computing” with historical improvements to
the human condition.

Whether you take it as parody or not, there is a very real swell in
organizations hoping to use “data for good.” Every week, a data or
technology company declares that it wants to “do good” and there
are countless workshops hosted by major foundations musing on
what “big data can do for society.” Add to that a growing number of
data-for-good programs from Data Science for Social Good’s fantas‐
tic summer program to Bayes Impact’s data science fellowships
to DrivenData’s data-science-for-good competitions, and you can
see how quickly this idea of “data for good” is growing.

Yes, it’s an exciting time to be exploring the ways new data sets, new
techniques, and new scientists could be deployed to “make the
world a better place.” We’ve already seen deep learning applied to
ocean health, satellite imagery used to estimate poverty levels,
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and cellphone data used to elucidate Nairobi’s hidden public trans‐
portation routes. And yet, for all this excitement about the potential
of this “data for good movement,” we are still desperately far from
creating lasting impact. Many efforts will not only fall short of last‐
ing impact—they will make no change at all.

At DataKind, we’ve spent the last three years teaming data scientists
with social change organizations, to bring the same algorithms that
companies use to boost profits to mission-driven organizations in
order to boost their impact. It has become clear that using data sci‐
ence in the service of humanity requires much more than free soft‐
ware, free labor, and good intentions.

So how can these well-intentioned efforts reach their full potential
for real impact? Embracing the following five principles can drasti‐
cally accelerate a world in which we truly use data to serve human‐
ity.

“Statistics” Is So Much More Than “Percentages”
We must convey what constitutes data, what it can be used for, and
why it’s valuable.

There was a packed house for the March 2015 release of the No Ceil‐
ings Full Participation Report. Hillary Clinton, Melinda Gates, and
Chelsea Clinton stood on stage and lauded the report, the culmina‐
tion of a year-long effort to aggregate and analyze new and existing
global data, as the biggest, most comprehensive data collection effort
about women and gender ever attempted. One of the most trumpe‐
ted parts of the effort was the release of the data in an open and
easily accessible way.

I ran home and excitedly pulled up the data from the No Ceilings
GitHub, giddy to use it for our DataKind projects. As I downloaded
each file, my heart sunk. The 6 MB size of the entire global data set
told me what I would find inside before I even opened the first file.
Like a familiar ache, the first row of the spreadsheet said it all: “USA,
2009, 84.4%.”

What I’d encountered was a common situation when it comes to
data in the social sector: the prevalence of inert, aggregate data.
Huge tomes of indicators, averages, and percentages fill the land‐
scape of international development data. These data sets are some‐
times cutely referred to as “massive passive” data, because they are
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large, backward-looking, exceedingly coarse, and nearly impossible
to make decisions from, much less actually perform any real statisti‐
cal analysis upon.

The promise of a data-driven society lies in the sudden availability
of more real-time, granular data, accessible as a resource for looking
forward, not just a fossil record to look back upon. Mobile phone
data, satellite data, even simple social media data or digitized docu‐
ments can yield mountains of rich, insightful data from which we
can build statistical models, create smarter systems, and adjust
course to provide the most successful social interventions.

To affect social change, we must spread the idea beyond technolo‐
gists that data is more than “spreadsheets” or “indicators.” We must
consider any digital information, of any kind, as a potential data
source that could yield new information.

Finding Problems Can Be Harder Than Finding Solutions
We must scale the process of problem discovery through deeper collab‐
oration between the problem holders, the data holders, and the skills
holders.

In the immortal words of Henry Ford, “If I’d asked people what they
wanted, they would have said a faster horse.” Right now, the field of
data science is in a similar position. Framing data solutions for
organizations that don’t realize how much is now possible can be a
frustrating search for faster horses. If data cleaning is 80% of the
hard work in data science, then problem discovery makes up nearly
the remaining 20% when doing data science for good.

The plague here is one of education. Without a clear understanding
that it is even possible to predict something from data, how can we
expect someone to be able to articulate that need? Moreover, know‐
ing what to optimize for is a crucial first step before even addressing
how prediction could help you optimize it. This means that the
organizations that can most easily take advantage of the data science
fellowship programs and project-based work are those that are
already fairly data savvy—they already understand what is possible,
but may not have the skill set or resources to do the work on their
own. As Nancy Lublin, founder of the very data savvy DoSometh‐
ing.org and Crisis Text Line, put it so well at Data on Purpose—
“data science is not overhead.”
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But there are many organizations doing tremendous work that still
think of data science as overhead or don’t think of it at all, yet their
expertise is critical to moving the entire field forward. As data scien‐
tists, we need to find ways of illustrating the power and potential of
data science to address social sector issues, so that organizations and
their funders see this untapped powerful resource for what it is.
Similarly, social actors need to find ways to expose themselves to
this new technology so that they can become familiar with it.

We also need to create more opportunities for good old-fashioned
conversation between issue area and data experts. It’s in the very
human process of rubbing elbows and getting to know one another
that our individual expertise and skills can collide, uncovering the
data challenges with the potential to create real impact in the world.

Communication Is More Important Than Technology
We must foster environments in which people can speak openly, hon‐
estly, and without judgment. We must be constantly curious about one
another.

At the conclusion of one of our recent DataKind events, one of our
partner nonprofit organizations lined up to hear the results from
their volunteer team of data scientists. Everyone was all smiles—the
nonprofit leaders had loved the project experience, the data scien‐
tists were excited with their results. The presentations began. “We
used Amazon RedShift to store the data, which allowed us to quickly
build a multinomial regression. The p-value of 0.002 shows ...” Eyes
glazed over. The nonprofit leaders furrowed their brows in tele‐
graphed concentration. The jargon was standing in the way of under‐
standing the true utility of the project’s findings. It was clear that, like
so many other well-intentioned efforts, the project was at risk of
gathering dust on a shelf if the team of volunteers couldn’t help the
organization understand what they had learned and how it could be
integrated into the organization’s ongoing work.

In many of our projects, we’ve seen telltale signs that people are talk‐
ing past one another. Social change representatives may be afraid to
speak up if they don’t understand something, either because they
feel intimidated by the volunteers or because they don’t feel com‐
fortable asking for things of volunteers who are so generously
donating their time. Similarly, we often find volunteers who are
excited to try out the most cutting-edge algorithms they can on
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these new data sets, either because they’ve fallen in love with a cer‐
tain model of Recurrent Neural Nets or because they want a data set
to learn them with. This excitement can cloud their efforts and get
lost in translation. It may be that a simple bar chart is all that is
needed to spur action.

Lastly, some volunteers assume nonprofits have the resources to
operate like the for-profit sector. Nonprofits are, more often than
not, resource-constrained, understaffed, under appreciated, and try‐
ing to tackle the world’s problems on a shoestring budget. Moreover,
“free” technology and “pro bono” services often require an immense
time investment on the nonprofit professionals’ part to manage and
be responsive to these projects. They may not have a monetary cost,
but they are hardly free.

Socially minded data science competitions and fellowship models
will continue to thrive, but we must build empathy—strong commu‐
nication through which diverse parties gain a greater understanding
of and respect for each other—into those frameworks. Otherwise
we’ll forever be “hacking” social change problems, creating tools that
are “fun,” but not “functional.”

We Need Diverse Viewpoints
To tackle sector-wide challenges, we need a range of voices involved.

One of the most challenging aspects to making change at the sector
level is the range of diverse viewpoints necessary to understand a
problem in its entirety. In the business world, profit, revenue, or
output can be valid metrics of success. Rarely, if ever, are metrics for
social change so cleanly defined.

Moreover, any substantial social, political, or environmental prob‐
lem quickly expands beyond its bounds. Take, for example, a seem‐
ingly innocuous challenge like “providing healthier school lunches.”
What initially appears to be a straightforward opportunity to
improve the nutritional offerings available to schools quickly
involves the complex educational budgeting system, which in turn is
determined through even more politically fraught processes. As with
most major humanitarian challenges, the central issue is like a string
in a hairball wound around a nest of other related problems, and no
single strand can be removed without tightening the whole mess.
Oh, and halfway through you find out that the strings are actually
snakes.
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Challenging this paradigm requires diverse, or “collective impact,”
approaches to problem solving. The idea has been around for a
while (h/t Chris Diehl), but has not yet been widely implemented
due to the challenges in successful collective impact. Moreover,
while there are many diverse collectives committed to social change,
few have the voice of expert data scientists involved. DataKind is
piloting a collective impact model called DataKind Labs, that seeks
to bring together diverse problem holders, data holders, and data
science experts to co-create solutions that can be applied across an
entire sector-wide challenge. We just launched our first project with
Microsoft to increase traffic safety and are hopeful that this effort
will demonstrate how vital a role data science can play in a collective
impact approach.

We Must Design for People
Data is not truth, and tech is not an answer in and of itself. Without
designing for the humans on the other end, our work is in vain.

So many of the data projects making headlines—a new app for find‐
ing public services, a new probabilistic model for predicting weather
patterns for subsistence farmers, a visualization of government
spending—are great and interesting accomplishments, but don’t
seem to have an end user in mind. The current approach appears to
be “get the tech geeks to hack on this problem, and we’ll have cool
new solutions!” I’ve opined that, though there are many benefits to
hackathons, you can’t just hack your way to social change.

A big part of that argument centers on the fact that the “data for
good” solutions we build must be co-created with the people at the
other end. We need to embrace human-centered design, to begin
with the questions, not the data. We have to build with the end in
mind. When we tap into the social issue expertise that already exists
in many mission-driven organizations, there is a powerful opportu‐
nity to create solutions to make real change. However, we must
make sure those solutions are sustainable given resource and data
literacy constraints that social sector organizations face.

That means that we must design with people in mind, accounting
for their habits, their data literacy level, and, most importantly, for
what drives them. At DataKind, we start with the questions before
we ever touch the data and strive to use human-centered design to
create solutions that we feel confident our partners are going to use
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before we even begin. In addition, we build all of our projects off of
deep collaboration that takes the organization’s needs into account,
first and foremost.

These problems are daunting, but not insurmountable. Data science
is new, exciting, and largely misunderstood, but we have an oppor‐
tunity to align our efforts and proceed forward together. If we incor‐
porate these five principles into our efforts, I believe data science
will truly play a key role in making the world a better place for all of
humanity.

What’s Next
Almost three years ago, DataKind launched on the stage of Strata +
Hadoop World NYC as Data Without Borders. True to its motto to
“work on stuff that matters,” O’Reilly has not only been a huge sup‐
porter of our work, but arguably one of the main reasons that our
organization can carry on its mission today.

That’s why we could think of no place more fitting to make our
announcement that DataKind and O’Reilly are formally partnering
to expand the ways we use data science in the service of humanity.
Under this media partnership, we will be regularly contributing our
findings to O’Reilly, bringing new and inspirational examples of data
science across the social sector to our community, and giving you
new opportunities to get involved with the cause, from volunteering
on world-changing projects to simply lending your voice. We
couldn’t be more excited to be sharing this partnership with an orga‐
nization that so closely embodies our values of community, social
change, and ethical uses of technology.

We’ll see you on the front lines!
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