1,052 research outputs found

    Effects of Virtual Reality-Based Multimodal Audio-Tactile Cueing in Patients With Spatial Attention Deficits: Pilot Usability Study.

    Get PDF
    BACKGROUND Virtual reality (VR) devices are increasingly being used in medicine and other areas for a broad spectrum of applications. One of the possible applications of VR involves the creation of an environment manipulated in a way that helps patients with disturbances in the spatial allocation of visual attention (so-called hemispatial neglect). One approach to ameliorate neglect is to apply cross-modal cues (ie, cues in sensory modalities other than the visual one, eg, auditory and tactile) to guide visual attention toward the neglected space. So far, no study has investigated the effects of audio-tactile cues in VR on the spatial deployment of visual attention in neglect patients. OBJECTIVE This pilot study aimed to investigate the feasibility and usability of multimodal (audio-tactile) cueing, as implemented in a 3D VR setting, in patients with neglect, and obtain preliminary results concerning the effects of different types of cues on visual attention allocation compared with noncued conditions. METHODS Patients were placed in a virtual environment using a head-mounted display (HMD). The inlay of the HMD was equipped to deliver tactile feedback to the forehead. The task was to find and flag appearing birds. The birds could appear at 4 different presentation angles (lateral and paracentral on the left and right sides), and with (auditory, tactile, or audio-tactile cue) or without (no cue) a spatially meaningful cue. The task usability and feasibility, and 2 simple in-task measures (performance and early orientation) were assessed in 12 right-hemispheric stroke patients with neglect (5 with and 7 without additional somatosensory impairment). RESULTS The new VR setup showed high usability (mean score 10.2, SD 1.85; maximum score 12) and no relevant side effects (mean score 0.833, SD 0.834; maximum score 21). A repeated measures ANOVA on task performance data, with presentation angle, cue type, and group as factors, revealed a significant main effect of cue type (F30,3=9.863; P<.001) and a significant 3-way interaction (F90,9=2.057; P=.04). Post-hoc analyses revealed that among patients without somatosensory impairment, any cue led to better performance compared with no cue, for targets on the left side, and audio-tactile cues did not seem to have additive effects. Among patients with somatosensory impairment, performance was better with both auditory and audio-tactile cueing than with no cue, at every presentation angle; conversely, tactile cueing alone had no significant effect at any presentation angle. Analysis of early orientation data showed that any type of cue triggered better orientation in both groups for lateral presentation angles, possibly reflecting an early alerting effect. CONCLUSIONS Overall, audio-tactile cueing seems to be a promising method to guide patient attention. For instance, in the future, it could be used as an add-on method that supports attentional orientation during established therapeutic approaches

    Multisensory Stimulation in Stroke Rehabilitation

    Get PDF
    The brain has a large capacity for automatic simultaneous processing and integration of sensory information. Combining information from different sensory modalities facilitates our ability to detect, discriminate, and recognize sensory stimuli, and learning is often optimal in a multisensory environment. Currently used multisensory stimulation methods in stroke rehabilitation include motor imagery, action observation, training with a mirror or in a virtual environment, and various kinds of music therapy. Non-invasive brain stimulation has showed promising preliminary results in aphasia and neglect. Patient heterogeneity and the interaction of age, gender, genes, and environment are discussed. Randomized controlled longitudinal trials starting earlier post-stroke are needed. The advance in brain network science and neuroimaging enabling longitudinal studies of structural and functional networks are likely to have an important impact on patient selection for specific interventions in future stroke rehabilitation. It is proposed that we should pay more attention to age, gender, and laterality in clinical studies

    New techniques for neuro-rehabilitation: Transcranial Electric Stimulation and Virtual Reality

    Get PDF
    Recovery of motor and cognitive performances after a neurological illness remains a significant challenge for rehabilitation specialists. The traditional rehabilitative interventions are usually delivered using a multidisciplinary approach, whose results are not always satisfactory. These limitations in functional recovery have led researchers to consider alternative approaches. The hypothesis of providing new therapeutic possibilities in the different patients treated is, as a rehabilitator, very rewarding and represents a challenge for the future. The application of simple and low-cost techniques, defined by the literature as "unconventional" or “novel”, can provide new ideas not only in the field of research but above all of application in clinical reality.A suitable approach to improve the rehabilitation outcome is to utilize these novel rehabilitation techniques that act as a substitute or an addition to the traditional ones. In this context, some recent approaches have been proposed that might increase the effectiveness of a traditional treatment. Among them, two techniques have been demonstrated to be very promising, namely non-invasive brain stimulation (NIBS) and Virtual Reality (VR).In light of the foregoing, my thesis has been divided into two main lines of research, namely: a) the study of the effects of transcranial direct current stimulation (tDCS) in different neurological conditions; b) the application of VR (used alone or combined with tDCS) in the treatment of some neurocognitive disorders. A semi-immersive VR tool (ReMOVES system) has been used as a user-friendly platform providing activities based on exergames

    Assessing the immediate impact of a movement tracking-based intervention for unilateral spatial neglect experienced by stroke survivors

    Get PDF
    Includes bibliographical references.2015 Summer.To view the abstract, please see the full text of the document

    An Overview of Self-Adaptive Technologies Within Virtual Reality Training

    Get PDF
    This overview presents the current state-of-the-art of self-adaptive technologies within virtual reality (VR) training. Virtual reality training and assessment is increasingly used for five key areas: medical, industrial & commercial training, serious games, rehabilitation and remote training such as Massive Open Online Courses (MOOCs). Adaptation can be applied to five core technologies of VR including haptic devices, stereo graphics, adaptive content, assessment and autonomous agents. Automation of VR training can contribute to automation of actual procedures including remote and robotic assisted surgery which reduces injury and improves accuracy of the procedure. Automated haptic interaction can enable tele-presence and virtual artefact tactile interaction from either remote or simulated environments. Automation, machine learning and data driven features play an important role in providing trainee-specific individual adaptive training content. Data from trainee assessment can form an input to autonomous systems for customised training and automated difficulty levels to match individual requirements. Self-adaptive technology has been developed previously within individual technologies of VR training. One of the conclusions of this research is that while it does not exist, an enhanced portable framework is needed and it would be beneficial to combine automation of core technologies, producing a reusable automation framework for VR training

    Unilateral spatial neglect after stroke: Current insights

    Get PDF
    INTRODUCTION: Unilateral spatial neglect (USN) is a disorder of contralesional space awareness which often follows unilateral brain lesion. Since USN impairs awareness of contralesional space/body and often of concomitant motor disorders, its presence represents a negative prognostic factor of functional recovery. Thus, the disorder needs to be carefully diagnosed and treated. Here, we attempted to present a clear and concise picture of current insights in the comprehension and rehabilitation of USN. METHODS: We first provided an updated overview of USN clinical and neuroanatomical features and then highlighted recent progresses in the diagnosis and rehabilitation of the disease. In relation to USN rehabilitation, we conducted a MEDLINE literature research on three of the most promising interventions for USN rehabilitation: prismatic adaptation (PA), non-invasive brain stimulation (NIBS), and virtual reality (VR). The identified studies were classified according to the strength of their methods. RESULTS: The last years have witnessed a relative decrement of interest in the study of neuropsychological disorders of spatial awareness in USN, but a relative increase in the study of potential interventions for its rehabilitation. Although optimal protocols still need to be defined, high-quality studies have demonstrated the efficacy of PA, TMS and tDCS interventions for the treatment of USN. In addition, preliminary investigations are suggesting the potentials of GVS and VR approaches for USN rehabilitation. CONCLUSION: Advancing neuropsychological and neuroscience tools to investigate USN pathophysiology is a necessary step to identify effective rehabilitation treatments and to foster our understanding of neurofunctional bases of spatial cognition in the healthy brain

    Rehabilitative devices for a top-down approach

    Get PDF
    In recent years, neurorehabilitation has moved from a "bottom-up" to a "top down" approach. This change has also involved the technological devices developed for motor and cognitive rehabilitation. It implies that during a task or during therapeutic exercises, new "top-down" approaches are being used to stimulate the brain in a more direct way to elicit plasticity-mediated motor re-learning. This is opposed to "Bottom up" approaches, which act at the physical level and attempt to bring about changes at the level of the central neural system. Areas covered: In the present unsystematic review, we present the most promising innovative technological devices that can effectively support rehabilitation based on a top-down approach, according to the most recent neuroscientific and neurocognitive findings. In particular, we explore if and how the use of new technological devices comprising serious exergames, virtual reality, robots, brain computer interfaces, rhythmic music and biofeedback devices might provide a top-down based approach. Expert commentary: Motor and cognitive systems are strongly harnessed in humans and thus cannot be separated in neurorehabilitation. Recently developed technologies in motor-cognitive rehabilitation might have a greater positive effect than conventional therapies

    Efficacy of Multisensory Technology in Post-Stroke Cognitive Rehabilitation: A Systematic Review

    Get PDF
    Post-stroke, in addition to sensorimotor signs and symptoms, could lead to cognitive deficits. Theories of embodiment stress the role of sensorimotor system and multisensory integration in sustaining high-order cognitive domains. Despite conventional post-stroke cognitive rehabilitation being effective, innovative technologies could overcome some limitations of standard interventions and exploit bodily information during cognitive rehabilitation. This systematic review aims to investigate whether ‘multisensory technologies’ compared to usual care treatment can be a viable alternative for cognitive rehabilitation. By applying PRISMA guidelines, we extracted data and assessed the bias of 10 studies that met the required criteria. We found that multisensory technologies were at least comparable to standard treatment but particularly effective for attention, spatial cognition, global cognition, and memory. Multisensory technologies consisted principally of virtual reality alone or combined with a motion tracking system. Multisensory technologies without motion tracking were more effective than standard procedures, whereas those with motion tracking showed balanced results for the two treatments. Limitations of the included studies regarded the population (e.g., no study on acute stroke), assessment (e.g., lack of multimodal/multisensory pre-post evaluation), and methodology (e.g., sample size, blinding bias). Recent advancements in technological development and metaverse open new opportunities to design embodied rehabilitative programs

    Physically real and virtual reality exposed line bisection response patterns: visuospatial attention allocation in virtual reality

    Get PDF
    IntroductionTo understand the nature of hemispatial attention allocation in virtual reality (VR), a line bisection task (LBT) was administered both in a real environment and a virtual environment to assess the rate of pseudoneglect. The mental construction of real and virtual environments was assumed to increase visuospatial activity in right hemisphere-related cognitive processes; an alteration in the activity that manifests in the direction and rate of line bisection lateral error.MethodsIn the present study, fifty-one right-handed healthy college students were recruited. They performed a line bisection task in real and virtual environments.ResultsThe obtained data showed that LBT errors in real and VR environments were correlated and individually consistent. Furthermore, a leftward LBT error was found in the physically real environment, however, in a VR the line bisection bias drifted towards the right hemispace. Participants with a lower right-handedness score showed a lower rate of left LBT bias in a real environment, but in VR, their LBT error showed a stronger rightwards error.DiscussionParticipants showed an individually consistent pattern in both real and VR environments, but VR-induced visuospatial reality construction was associated with rightward LBT bias in a virtual environment
    corecore