49 research outputs found

    Cancer diagnosis using deep learning: A bibliographic review

    Get PDF
    In this paper, we first describe the basics of the field of cancer diagnosis, which includes steps of cancer diagnosis followed by the typical classification methods used by doctors, providing a historical idea of cancer classification techniques to the readers. These methods include Asymmetry, Border, Color and Diameter (ABCD) method, seven-point detection method, Menzies method, and pattern analysis. They are used regularly by doctors for cancer diagnosis, although they are not considered very efficient for obtaining better performance. Moreover, considering all types of audience, the basic evaluation criteria are also discussed. The criteria include the receiver operating characteristic curve (ROC curve), Area under the ROC curve (AUC), F1 score, accuracy, specificity, sensitivity, precision, dice-coefficient, average accuracy, and Jaccard index. Previously used methods are considered inefficient, asking for better and smarter methods for cancer diagnosis. Artificial intelligence and cancer diagnosis are gaining attention as a way to define better diagnostic tools. In particular, deep neural networks can be successfully used for intelligent image analysis. The basic framework of how this machine learning works on medical imaging is provided in this study, i.e., pre-processing, image segmentation and post-processing. The second part of this manuscript describes the different deep learning techniques, such as convolutional neural networks (CNNs), generative adversarial models (GANs), deep autoencoders (DANs), restricted Boltzmann’s machine (RBM), stacked autoencoders (SAE), convolutional autoencoders (CAE), recurrent neural networks (RNNs), long short-term memory (LTSM), multi-scale convolutional neural network (M-CNN), multi-instance learning convolutional neural network (MIL-CNN). For each technique, we provide Python codes, to allow interested readers to experiment with the cited algorithms on their own diagnostic problems. The third part of this manuscript compiles the successfully applied deep learning models for different types of cancers. Considering the length of the manuscript, we restrict ourselves to the discussion of breast cancer, lung cancer, brain cancer, and skin cancer. The purpose of this bibliographic review is to provide researchers opting to work in implementing deep learning and artificial neural networks for cancer diagnosis a knowledge from scratch of the state-of-the-art achievements

    An automatic feature extraction technique from the images of granular parakeratosis disease

    Get PDF
    The largest and most vital part of the human body is skin and any change in the features of skin is termed as a skin lesion. The paper considers granular parakeratosis lesion that is an epidermal reaction occurring due to the disorder of keratinization, and mainly seen in intertriginous areas. The manual inspection of the lesion features is a bit cumbersome due to which an automated system is proposed in this paper. The main goal is to determine the size and depth of granular parakeratosis lesions using the proposed ensemble algorithm, partition clustering and region properties method. As a flow of the proposed model, segmentation is done using U-net with binary cross entropy, features are extracted using partition clustering and region properties method, and classification is done using SVM 10-fold model. The proposed feature extraction method estimates the depth and absolute size of K lesions in each image by predicting the absolute height and width of the lesion in terms of pixel square. After extracting the features, classification is done, thereby obtaining an accuracy of 95%, sensitivity and specificity of 100%. The proposed model provides better performance compared to state-of-the-art models. The main application of this automated system is in dermatology field where some skin lesions have same features which makes the experts to diagnose the disease incorrectly. If the proposed system is incorporated, diagnosis can be done in an effective manner considering all the relevant features

    Approximate Lesion Localization in Dermoscopy Images

    Full text link
    Background: Dermoscopy is one of the major imaging modalities used in the diagnosis of melanoma and other pigmented skin lesions. Due to the difficulty and subjectivity of human interpretation, automated analysis of dermoscopy images has become an important research area. Border detection is often the first step in this analysis. Methods: In this article, we present an approximate lesion localization method that serves as a preprocessing step for detecting borders in dermoscopy images. In this method, first the black frame around the image is removed using an iterative algorithm. The approximate location of the lesion is then determined using an ensemble of thresholding algorithms. Results: The method is tested on a set of 428 dermoscopy images. The localization error is quantified by a metric that uses dermatologist determined borders as the ground truth. Conclusion: The results demonstrate that the method presented here achieves both fast and accurate localization of lesions in dermoscopy images

    A Review on Skin Disease Classification and Detection Using Deep Learning Techniques

    Get PDF
    Skin cancer ranks among the most dangerous cancers. Skin cancers are commonly referred to as Melanoma. Melanoma is brought on by genetic faults or mutations on the skin, which are caused by Unrepaired Deoxyribonucleic Acid (DNA) in skin cells. It is essential to detect skin cancer in its infancy phase since it is more curable in its initial phases. Skin cancer typically progresses to other regions of the body. Owing to the disease's increased frequency, high mortality rate, and prohibitively high cost of medical treatments, early diagnosis of skin cancer signs is crucial. Due to the fact that how hazardous these disorders are, scholars have developed a number of early-detection techniques for melanoma. Lesion characteristics such as symmetry, colour, size, shape, and others are often utilised to detect skin cancer and distinguish benign skin cancer from melanoma. An in-depth investigation of deep learning techniques for melanoma's early detection is provided in this study. This study discusses the traditional feature extraction-based machine learning approaches for the segmentation and classification of skin lesions. Comparison-oriented research has been conducted to demonstrate the significance of various deep learning-based segmentation and classification approaches

    Deep learning techniques applied to skin lesion classification: a review

    Get PDF
    Skin cancer is one of the most common cancers in the world. The most dangerous type of skin cancer is melanoma, which can be lethal if not treated early. However, diagnosing skin lesions can be a difficult task. Therefore, deep learning techniques applied to the diagnosis of skin lesions have been explored by researchers, given their effectiveness in extracting features and classifying input data. In this work, we present a review of latest approaches that apply deep learning techniques to skin lesion classification task. In addition, some datasets used for training and validating the models are introduced, informing their characteristics and specificities, as well as popular pre-processing steps and skin lesion segmentation approaches. Finally, we comment the effectiveness of the proposed models.info:eu-repo/semantics/publishedVersio

    Segmentation of Melanoma Skin Lesion Using Perceptual Color Difference Saliency with Morphological Analysis

    Get PDF
    The prevalence of melanoma skin cancer disease is rapidly increasing as recorded death cases of its patients continue to annually escalate. Reliable segmentation of skin lesion is one essential requirement of an efficient noninvasive computer aided diagnosis tool for accelerating the identification process of melanoma. This paper presents a new algorithm based on perceptual color difference saliency along with binary morphological analysis for segmentation of melanoma skin lesion in dermoscopic images. The new algorithm is compared with existing image segmentation algorithms on benchmark dermoscopic images acquired from public corpora. Results of both qualitative and quantitative evaluations of the new algorithm are encouraging as the algorithm performs excellently in comparison with the existing image segmentation algorithms

    A survey, review, and future trends of skin lesion segmentation and classification

    Get PDF
    The Computer-aided Diagnosis or Detection (CAD) approach for skin lesion analysis is an emerging field of research that has the potential to alleviate the burden and cost of skin cancer screening. Researchers have recently indicated increasing interest in developing such CAD systems, with the intention of providing a user-friendly tool to dermatologists to reduce the challenges encountered or associated with manual inspection. This article aims to provide a comprehensive literature survey and review of a total of 594 publications (356 for skin lesion segmentation and 238 for skin lesion classification) published between 2011 and 2022. These articles are analyzed and summarized in a number of different ways to contribute vital information regarding the methods for the development of CAD systems. These ways include: relevant and essential definitions and theories, input data (dataset utilization, preprocessing, augmentations, and fixing imbalance problems), method configuration (techniques, architectures, module frameworks, and losses), training tactics (hyperparameter settings), and evaluation criteria. We intend to investigate a variety of performance-enhancing approaches, including ensemble and post-processing. We also discuss these dimensions to reveal their current trends based on utilization frequencies. In addition, we highlight the primary difficulties associated with evaluating skin lesion segmentation and classification systems using minimal datasets, as well as the potential solutions to these difficulties. Findings, recommendations, and trends are disclosed to inform future research on developing an automated and robust CAD system for skin lesion analysis

    Social Group Optimization Supported Segmentation and Evaluation of Skin Melanoma Images

    Get PDF
    The segmentation of medical images by computational methods has been claimed by the medical community, which has promoted the development of several algorithms regarding different tissues, organs and imaging modalities. Nowadays, skin melanoma is one of the most common serious malignancies in the human community. Consequently, automated and robust approaches have become an emerging need for accurate and fast clinical detection and diagnosis of skin cancer. Digital dermatoscopy is a clinically accepted device to register and to investigate suspicious regions in the skin. During the skin melanoma examination, mining the suspicious regions from dermoscopy images is generally demanded in order to make a clear diagnosis about skin diseases, mainly based on features of the region under analysis like border symmetry and regularity. Predominantly, the successful estimation of the skin cancer depends on the used computational techniques of image segmentation and analysis. In the current work, a social group optimization (SGO) supported automated tool was developed to examine skin melanoma in dermoscopy images. The proposed tool has two main steps, mainly the image pre-processing step using the Otsu/Kapur based thresholding technique and the image post-processing step using the level set/active contour based segmentation technique. The experimental work was conducted using three well-known dermoscopy image datasets. Similarity metrics were used to evaluate the clinical significance of the proposed tool such as Jaccard's coefficient, Dice's coefficient, false positive/negative rate, accuracy, sensitivity and specificity. The experimental findings suggest that the proposed tool achieved superior performance relatively to the ground truth images provided by a skin cancer physician. Generally, the proposed SGO based Kapur's thresholding technique combined with the level set based segmentation technique is very effective for identifying melanoma dermoscopy digital images with high sensitivity, specificity and accuracy

    Using adaptive thresholding and skewness correction to detect gray areas in melanoma \u3ci\u3ein situ\u3c/i\u3e images

    Get PDF
    The incidence of melanoma in situ (MIS) is growing significantly. Detection at the MIS stage provides the highest cure rate for melanoma, but reliable detection of MIS with dermoscopy alone is not yet possible. Adjunct dermoscopic instrumentation using digital image analysis may allow more accurate detection of MIS. Gray areas are a critical component of MIS diagnosis, but automatic detection of these areas remains difficult because similar gray areas are also found in benign lesions. This paper proposes a novel adaptive thresholding technique for automatically detecting gray areas specific to MIS. The proposed model uses only MIS dermoscopic images to precisely determine gray area characteristics specific to MIS. To this aim, statistical histogram analysis is employed in multiple color spaces. It is demonstrated that skew deviation due to an asymmetric histogram distorts the color detection process. We introduce a skew estimation technique that enables histogram asymmetry correction facilitating improved adaptive thresholding results. These histogram statistical methods may be extended to detect any local image area defined by histograms --Abstract, page iv
    corecore