
 
 

Symmetry2018, 10, 51; doi:10.3390/sym10020051 www.mdpi.com/journal/symmetry 

Article 

Social Group Optimization Supported Segmentation 

and Evaluation of Skin Melanoma Images 

Nilanjan Dey 1, Venkatesan Rajinikanth 2, Amira S. Ashour 3 and João Manuel R. S. Tavares 4,* 

1 Department of Information Technology, Techno India College of Technology, Kolkata 700156,  

West Bengal, India; neelanjan.dey@gmail.com 
2 Department of Electronics and Instrumentation Engineering, St. Joseph’s College of Engineering,  

Chennai 600119, Tamilnadu, India; rajinikanthv@st.josephs.ac.in 
3 Department of Electronics and Electrical Communications Engineering, Faculty of Engineering,  

Tanta University, Tanta 31527, Egypt; amirasashour@yahoo.com 
4 Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Departamento de 

Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto, Porto, Rua Dr. Roberto Frias s/n, 

4200-465 Porto, Portugal 

* Correspondence: tavares@fe.up.pt; Tel.: +351-22-508-1487 

Received: 8 January 2018; Accepted: 15 February 2018; Published: 22 February 2018 

Abstract: The segmentation of medical images by computational methods has been claimed by the 

medical community, which has promoted the development of several algorithms regarding 

different tissues, organs and imaging modalities. Nowadays, skin melanoma is one of the most 

common serious malignancies in the human community. Consequently, automated and robust 

approaches have become an emerging need for accurate and fast clinical detection and diagnosis of 

skin cancer. Digital dermatoscopy is a clinically accepted device to register and to investigate 

suspicious regions in the skin. During the skin melanoma examination, mining the suspicious 

regions from dermoscopy images is generally demanded in order to make a clear diagnosis about 

skin diseases, mainly based on features of the region under analysis like border symmetry and 

regularity. Predominantly, the successful estimation of the skin cancer depends on the used 

computational techniques of image segmentation and analysis. In the current work, a social group 

optimization (SGO) supported automated tool was developed to examine skin melanoma in 

dermoscopy images. The proposed tool has two main steps, mainly the image pre-processing step 

using the Otsu/Kapur based thresholding technique and the image post-processing step using the 

level set/active contour based segmentation technique. The experimental work was conducted using 

three well-known dermoscopy image datasets. Similarity metrics were used to evaluate the clinical 

significance of the proposed tool such as Jaccard’s coefficient, Dice’s coefficient, false 

positive/negative rate, accuracy, sensitivity and specificity. The experimental findings suggest that 

the proposed tool achieved superior performance relatively to the ground truth images provided 

by a skin cancer physician. Generally, the proposed SGO based Kapur’s thresholding technique 

combined with the level set based segmentation technique is very effective for identifying 

melanoma dermoscopy digital images with high sensitivity, specificity and accuracy. 
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1. Introduction 

Skin melanoma is one of the most critical widespread diseases that can affect people despite 

their race, gender and age, causing high mortality rates. Premature stage detection of melanoma can 

diminish these rates [1]. The skin melanoma commences in the interior regions as well as in associated 

skin segments. The accessibility of the latest therapeutic technologies will lead to early detection and 
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inspection of melanomas during routine pre-/post-screening processes. Once the dimension and the 

stage of melanoma are known, then physicians can plan the most suitable treatment procedure [2–5]. 

Typically, the melanoma screening practice involves the (i) visual examination of skin regions by a 

physician and the (ii) visual/computational evaluation by an experienced dermatologist. Most of the 

dermatologists examine the suspicious skin regions using the well-known ABCD (Asymmetry, 

Border, Color and Diameter) rule [6]. After confirming the skin cancer by visual inspection, the 

cancerous regions of skin are imaged by digital dermatoscopy for further investigation and definition 

of the treatment planning process. Digital dermoscopy images are generally colored RGB (red, green, 

blue) images that have been extensively adopted for automatic detection, boundary extraction and 

skin cancer investigation [7,8]. 

The automated analysis of skin cancer in dermoscopy images has inspired researchers to 

develop accurate computational techniques for such goal [9–17]. Xu et al. [18] proposed a boundary 

based segmentation of skin lesions for RGB skin images. Amelard et al. [9] discussed the intuitive 

feature mining from the Dermquest and Dermis image datasets. Silveira et al. [19] presented a 

detailed comparative analysis on various segmentation approaches for dermoscopy images of skin 

melanoma. This study suggests that the adaptive snake based segmentation combined with the 

expectation–maximization level set technique enhanced the segmentation results compared to the 

adaptive thresholding, gradient vector flow, level set method and fuzzy-based split-and-merge 

techniques. However, the analysis of melanoma in images is a very challenging task, particularly 

when the skin regions are disturbed by hair. The hair removal requires special image pre-processing 

approaches, which is time-consuming and may affect the quality of the original dermoscopic image. 

Hence, it is always recommended to have a simple and efficient automated procedure to analyze the 

acquired digital dermoscopy images with robustness against phase, dimension, color and orientation 

of the skin regions under analysis. Hence, in order to accomplish this goal, several image pre-

processing procedures have been developed. For example, Lee et al. [20,21] proposed a computer 

based tool known as DullRazor to remove hair regions from skin cancer images. Wighton et al. [22] 

carried out an alternative approach for the DullRazor to eliminate the hair regions based on the 

inpainting technique. Mirzaalian et al. [23] proposed a filter to eliminate the same regions, and 

Satheesha et al. [24] suggested a pixel interpolation technique for the same purpose. Detailed surveys 

of existing hair regions removal and melanoma detection procedures are presented in [1,25]. 

Consequently, the main contribution of the present work is to propose an automated tool to 

mine cancerous regions from dermoscopy images. A two step (pre-processing and post-processing) 

approach was developed to mine the skin lesions. The pre-processing step is applied to enhance the 

melanoma region based on social group optimization (SGO) to support the Otsu’s or Kapur’s multi-

level thresholding and image morphological operations. The post-processing step segments the 

enhanced melanoma using the level set or active contour approach. The Matlab software (Version 7, 

Release 14, License number 285705 with perpetual term, St. Joseph’s College of Engineering, Chennai, 

India) was employed to implement the proposed tool. Well known melanoma image datasets, such 

as Dermis [26], Dermquest [26] and ISBI2016 challenge (hairy images) [27], were used. In order to 

evaluate the proposed tool, the mined image regions were compared against the ground truth (GT) 

provided by a physician. Consequently, the efficiency of the proposed melanoma image processing 

tool was confirmed using well-known similarity measures, including the Jaccard’s index, Dice’s 

coefficient, false negative rate and false positive rate. Statistical parameters, namely precision, F-

measure, sensitivity, specificity, balanced classification rate, balanced error rate and accuracy, were 

also computed. Finally, the severity level of the detected skin melanoma was measured using the 

SkinCAD tool developed by Chang et al. [28]. 

2. Materials and Methods 

The current work was devoted to the development of an automated tool for extracting infected 

skin regions from RGB dermoscopy images. The proposed tool integrates two main steps: the pre-

processing and post-processing steps, described in the following. 
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2.1. Pre-Processing 

The overall accuracy of the proposed tool depends mainly on the pre-processing step, which 

includes the SGO and Otsu or Kapur based multi-level thresholding that is followed by the 

application of the morphological procedure to improve the thresholded image. 

2.1.1. Multi-Level Thresholding 

Traditional and soft computing based multi-level thresholding techniques have great impact in 

engineering and medical fields [29–32]. In multi-level thresholding, a gray or RGB image is divided 

into different parts by relating similar pixels in order to trace and scrutinize significant information 

in the input image. The implementation of the thresholding process is essential to pre-process a raw 

image [33–35]. The Otsu and Kapur based image thresholding techniques have been extensively 

adopted by the researchers to threshold traditional and clinical images [36]. The Otsu based 

thresholding technique can provide the best threshold level for a given image by the maximization 

of the between-class variance function [37]. Several optimization techniques can be employed to 

support the multi-level thresholding. One of these optimization methods is the recently developed 

SGO algorithm. Since several studies have confirmed that the SGO algorithm achieved superior 

results compared to other existing meta-heuristic approaches [38,39], the current work carried out 

the SGO algorithm to optimize the levels of the applied multi-level thresholding. 

2.1.2. Social Group Optimization 

SGO is a soft computing procedure recently developed by Satapathy and Naik [38]. It has been 

developed by mimicking the behavior and knowledge transfer practice in human groups. The SGO 

algorithm includes two main steps, namely the (i) improving step, which synchronizes the positions 

of people (agents) based on the objective function, and the (ii) acquiring step that allows the agents 

to discover the best potential solution for the problem under concern. The mathematical model for 

the SGO is as follows [39]. 

Let us consider Xi as the initial knowledge of people in a group and i = 1, 2, 3,…, N, with N as 

the total number of people in the group. If the optimization task needs a D-dimensional search space, 

then the knowledge term can be expressed as Xi = (xi1, xi2,xi3, ... xiD). For any problem, the fitness value 

can be defined as fj, with j = 1, 2, ..., N. Thus, for the maximization problem, the fitness value can be 

written as: 

Gbestj = max {f(Xi) for i = 1,2,…N} (1) 

In order to update the position (knowledge) of every individual in the group, the improving 

phase considers the following relation: 

)XoldGbest(*RXold*cXnew j,ijj,ij,i 
,
 (2) 

where Xnew is the new knowledge, Xold is the old knowledge, Gbest is the global best knowledge, R 

is a random numeral [0,1], and c represents the self-introspection parameter [0,1]. The value of c is 

chosen as 0.2 in [38,39], while, in the current work, the value of c was defined as 0.5 based on the trial 

and error approach. 

During the acquiring phase, the agents will find the global solution based on knowledge 

updating process by randomly select one person from the group (Xr) based on i ≠ r. Once the fitness 

value becomes f(Xi) < f(Xr), then the following knowledge procedure is executed: 

)XGbest(*R)XX(*RXoldXnew j,ijbj,rj,iaj,ij,i 
,
 (3) 

where Ra and Rb are random numbers having the range [0,1] and Xr,j is the knowledge (position) value 

of the chosen individual. From Equations (2) and (3), it can be observed that the implementation of 

the SGO algorithm is simple compared to other algorithms existing in the image processing domain 

[40–48]. The steps of the standard SGO algorithm can be described as in Algorithm 1. 
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Algorithm 1: Standard Social Group Optimization Algorithm 

Start 

Assume five agents (i = 1,2,3,4,5) 

Assign these agents to find the Gbestj in a D-dimensional search space 

Randomly distribute the entire agents in the group throughout the search space 

during initialization process  

Computethe fitness value based on the problem under concern  

Updatethe orientation of agents using Gbestj = max {f(Xi)}  

Initiatethe improving phase to update the knowledge of other agents in order to 

reach the Gbestj 

Initiatethe acquiring phase to further update the knowledge of agents by randomly 

choosing the agents with best fitness value 

Repeatthe procedure till the entire agents move toward the best possible position in 

the D-dimensional search space 

If all the agents have approximately similar fitness values (Gbestj) 

Then 

Terminate the search and display the optimized result for the chosen problem 

Else 

Repeat the previous steps 

End 

Stop 

The working principle of the SGO algorithm is illustrated in the flow diagram presented in 

Figure 1, where the blue agents are agents with Gbestj. 

In the present work, the SGO algorithm is considered to pre-process the input dermascopic 

image based on the Otsu’s/Kapur’s thresholding technique. The initial SGO parameters were 

assigned as follows: N was chosen as 20, i.e., the total number of people in the group was 20, D was 

assigned as three-dimensional space, c was fixed as equal to 0.5 denoting the self-introspection 

parameter and the number of iteration was set as 500.This optimization algorithm is used to find the 

optimal threshold value when using the Otsu/Kapur based thresholding technique during the 

segmentation process. 

During the optimization search, the SGO algorithm adjusts randomly the thresholds of the input 

image and computes the Jmax value of the Otsu/Kapur threholding technique. When Jmax is reached, 

the SGO stops the search and provides the output image of the pre-processing step. 
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Figure 1. The working principle of the social group optimization (SGO) algorithm. 

2.1.3. Otsu Based Thresholding 

The Otsu based thresholding can provide the best threshold for a given image by maximizing 

the between-class variance function. Here, it is adopted for RGB image thresholding using the RGB 

histogram of the input image, which has a complex data size of [0, L-1]3, where each color R, G and B 

has the range of [0, L-1]. Additionally, the SGO meta-heuristic algorithm is employed to formalize 

the meta-heuristic based segmentation procedure as follows [30,31]. 

In the range [0,1,2,…, L-1], assume L intensity levels with probability distribution 
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oP , which is 

given by: 
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where I is a precise intensity level of range { 1Lo0  } for the color component E = {R,G,B}, M is 

the total number of image pixels, and 
E

oh  is the number of pixels for the analogous intensity level O 

in the component C. For each component, the total mean of the image is given by: 
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The m-level thresholding procedure requires m-1 threshold levels 
E

pt , where p = 1,2,…,m-1, for 

a single color component R/G/B, and a similar process is repeated for other color components. 

The image thresholding operation for a single color component is performed as: 
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wherein h and w represent the height and width of the image with size H × W. The probabilities of 

occurrence 
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pw  of classes 
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For each class, 
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p  can be calculated using the following expression: 
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Finally, the Otsu’s between-class variance components are obtained as: 

 2E

T

E

p

m

1p

E

p

2E

B w       
 ,

 (9) 

where 
E

pw  is the occurrence probability. The m-level thresholding is summarized to an optimization 

problem in order to find the optimal threshold value that maximizes the fitness (Jmax) of each image 

component E = {R,G,B} defined as: 

)t(maxJ E

p

2E

B
1L,,E

ot1
max 




 .

 (10) 

Here, a tri-level image thresholding procedure was implemented to pre-process the image under 

analysis based on the recent work by Rajinikanth et al. [8]. The tri-level approach enhances the input 

image effectively and the pre-processed image is then considered for the segmentation task. 

2.1.4. Kapur Based Thresholding 

The Kapur based segmentation technique has been initially proposed for segmenting gray scale 

images using the histogram entropy [49]. The proposed technique determines the optimal Th that 

maximizes the overall entropy [50–53]. Thus, for the image thresholds vector Th = [t1, t2, ...,tk-1], the 

Kapur’s entropy is given by: 




k

1p

C

jKapurmax H)Th(fJ
,
 (11) 
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where C = {R,G,B}, for the three components. Typically, the entropy of each component is calculated 
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where 
E

pPh  is the intensity levels’ probability distribution and 
E

1k

E

1

E

0 ,...,   the occurrence 

probability for k levels. Detailed descriptions about the Kapur based thresholding technique are 

presented in [52,53], and an implementation is described in [51]. 

2.1.5. Image Morphology 

In image processing, morphological operations are generally used to improve the visual 

appearance of input images. Usually, the quality and the appearance of skin melanoma images are 

poor due to several factors such as multiple colors, irregular shapes and associated hair regions. 

Hence, in this work, morphological operations, such as line based structuring element (strel) and 

image fill (imfill), were used to enhance the edges and appearance of the pre-processed skin 

melanoma images. This morphological procedure enhances the suspicious regions of the thresholded 

images and guarantees faster segmentations during the post-processing step. 

2.2. Post-Processing 

The post-processing step is implemented to extract the abnormal regions from the pre-processed 

dermoscopy images. In the current work, the well-known level set and active contour segmentation 

approaches were independently studied and their results compared in terms of segmentation 

accuracy, speed and complexity. 

2.2.1. Level Set 

Level set (LS) approach has been broadly used in image segmentation problems as, for example, 

in the ones described in [54,55]. Here, the advantage of the LS technique was taken into account to 

enhance the active contour approach, since the LS technique can produce contours of complex 

topology able to handle split and merge operations that can occurduring the image segmentation 

process. The recent version of the LS technique suggested in [56] was implemented in the proposed 

tool, the curve evolution being given by: 

t

)t,s(
BZ








,
 (13) 

with ε denoting the curve vector with spatial parameter s and temporal variable t, B the speed 

function and Z the inmost curve normal vector ε. The curve evolution given by Equation (13) can be 

converted into the LS technique using the dynamic contour )t,s(  as the zero of a time charged level 

set function  (x,y,t). The LS function is then used to track the similar pixel group in a pre-processed 

image based on its boundary. The function   generates positive values outside the zero level 

contour and negative values inside. The inner most normal vector Z can be given as: 








Z

,
 (14) 

where  represents the gradient operator. Thus, the LS evolution can be expressed as: 
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More details regarding the used LS function can be found in [57]. 

2.2.2. Active Contour 

Active contour (AC) is an essential segmentation procedure to extract suspicious region from a 

pre-processed image. Here, the deformable snake based global active contour (GAC) [58] and the 

localized active contour (LAC) [59] were used to extract the suspicious region from the pre-processed 

image. This procedure has two essential steps, namely the initialization, and the boundary detection 

and extraction based on energy minimization. This approach tracks the similar pixel groups existing 

in a pre-processed input image based on an energy minimization concept [60].The energy function 

of the active contour can be described as: 

ds U(s))Ig((U)
L(U)

0 0GAC  
,
 (16) 

where ds is the Euclidean component of the contour length and L(U) is the length of curve U, which 

satisfies 
L(U)

0
ds  L(U) . The parameter g is an edge indicator, which can be defined as: 

2

0

0

I1

1
)Ig(





,

 
(17) 

where β is an arbitrary constant andI0 represents the input image. The energy value decreases rapidly 

based on the edge value, which is based on the gradient descent criterion. This procedure is 

mathematically represented as: 

Q)Q,kg(U gt 
,
 (18) 

where tUUt   represents the deformation in the snake model and t is the iteration time. The 

normal and curvature of the snake U are Q and k, respectively. In this procedure, the snake silhouette 

is continuously corrected until the minimal value of the energy θGAC is reached. 

During the post-processing operation, the level set and the active contour segmentation 

techniques were separately used to extract the abnormal skin region from the SGO assisted 

Otsu/Kapur based pre-processed image. In order to confirm the segmentation accuracy, a 

comparative evaluation between the level set and the active contour based segmentation results was 

performed.  

2.3. Implementation of the Proposed Tool 

The implementation of the proposed pre-processing and post-processing approach is presented 

here. Initially, the Otsu based thresholding technique combined with the level set segmentation 

technique is discussed. Then, considerations are presented concerning the Kapur based thresholding 

technique. 

The implementation of the Otsu based thresholding technique combined with the level set 

segmentation technique can be summarized as: 

Step 1: Initialize the SGO algorithm with the initial algorithm parameters and using the Otsu tri-

level pre-processing based approach; 

Step 2: Arbitrarily, adjust the R, G, and B channel threshold values until the between class 

variance is maximized (Jmax). When the optimal thresholds are reached, finish the heuristic search and 

record the pre-processed image; 

Step 3: Perform morphological operations in order to improve the pre-processed image; 
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Step 4: Initiate the post-processing technique in order to extract the abnormal skin region using 

the level set based segmentation technique; 

Step 5: After extracting the region of interest, a comparative analysis is performed between the 

ground truth and the extracted skin region using well known image quality and similarity measures; 

Step 6: By considering the segmented region, the severity of the skin cancer is further examined 

with the SkinCAD tool and the performance value is recorder. 

A similar procedure was adopted concerning the Kapur based thresholding technique combined 

with the other segmentation procedures considered in this article: the active contour segmentation 

technique. Finally, a detailed comparative analysis between the results obtained by the level set and 

the active contour based approaches was performed in order to choose the appropriate image 

processing approaches to examine the skin cancer dataset. 

2.4. Image Quality Assessment 

During the extracted lesion and ground truth comparison process, the image similarity 

measurements, like Jaccard Index (JI), Dice Coefficient (DC), false negative rate (FNR) and false 

positive rate (FPR) were calculated [61] using the following mathematical expressions: 

tgttgttgt IIII)I ,I(JI 
,
 (19) 

  tgttgttgt IIII2)I ,I(DC 
,
 (20) 

  )II(II)I ,I(FPR tgttgttgt 
,
 (21) 

  )II(II)I ,I(FNR tgtgtttgt 
,
 (22) 

where Igt represents the corresponding ground truth, It stands for the extracted lesion,  is the union 

operation and  is the intersection operation. Furthermore, the image statistical metrics precision 

(PRE), F-measure (FM), sensitivity (SEN), specificity (SPE), balanced classification rate (BCR), 

balanced error rate (BER) and accuracy (ACC), were also computed [62–66] using the following 

mathematical expressions: 

PRE TP TP FP

FM TP TP FP FN

SEN TP TP FN

SPE TN TN FP

BCR TP TP FN TN TN FP

ACC TP TN TP TN FP FN

BER BCR

( ) ,

2 (2 ) ,

( ) ,

( ) ,

1 / 2 ( / ( ) / ( )),

( ) / (

1  ,

),

 

  

 

 

   

  









 
(23) 

where TP, TN, FP and FN denote the true positive, true negative, false positive and false negative, 

respectively. 

2.5. Proposed Tool 

The aforementioned methodologies were used in the current work to segment and analyze 

dermoscopy images as depicted in Figure 2. 

Figure 2 depicted that initially the SGO assisted Otsu/Kapur based tri-level thresholding is 

performed on the RGB input image in order to group the similar pixels as healthy skin, lightly spread 

lesion and acutely spread lesion. In order to group the pixels of the light and deep lesions, the 

thresholded RGB image is transformed into a gray scale image and a morphological procedure is 
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applied to smooth the separated skin regions. Later, the grouped area of light and deep lesions is 

extracted using the level set/active contour based segmentation approach. Finally, the extracted 

melanoma region is compared against the corresponding ground truth to validate the ability of the 

proposed computational tool. 

 

Figure 2. The proposed computational tool to examine skin abnormality in dermoscopy images. 

In addition, analysis using the SkinCAD tool, which is a computer aided diagnosis tool for 

digital dermoscopy images developed by Chang et al. [28], was performed. This tool supports inbuilt 

facilities to analyze both melanocytic and non-melanocytic skin lesions based on shape, texture and 

color features. By using this tool, it is easy to extract the complete information of RGB skin melanoma 

images in order to analyze the probability and risk of lesion malignancy based on the Asymmetry 

(A), Border (B), Color (C) and Diameter (D) criteria, which are defined by the well-known ABCD rule. 

This tool initially extracts the suspicious region of the input dermoscopy image based on a pattern 

matching concept. During this process, the input image is compared against a mask image. The mask 

can be manually generated using the skinCAD or obtained using another image processing 

technique. Chang et al. reported better values of sensitivity (85.63%), specificity (87.65%) and 

accuracy (90.64%) using manually generated masks. These values can be enhanced by using masks 

obtained using the most recent image segmentation procedures. Consequently, the current proposed 

approach was compared to the solution developed by Chang et al. in order to prove its efficiency. 

The Matlab 7 software was used to implement the proposed approach. In order to test the 

developed tool, melanoma images existing in Dermis (44 images), Dermquest (76 images) and 

ISBI2016 challenge (20 images) were used. All these melanoma image datasets are provided with the 

corresponding ground truth images provided by an expert. Initially, the test images as well as the 

ground truth images of Dermis and Dermquest image databases were resized to 256 × 256 pixels. 

From the ISBI2016 challenge dataset, the most complex images, i.e., the dermoscopy images with hair, 

were used in their original size. 

3. Results and Discussion 

In the present work, the SGO algorithm is employed to select the optimal threshold values of 

the Otsu/Kapur based multi-level thresholding technique. Compared with other existing algorithms 

in the literature, the SGO algorithm is very simple in terms of implementation, since it only requires 

few initial parameters, namely the iteration value, the number of agents and the self-introspection 

value ‘c’. In the previous works regarding the SGO algorithm, a value of 0.2 for the parameter c [29,30] 

was suggested, but, here, a trial and error procedure was performed and the value that offered the 

best convergence rate along with the optimized result was found to be 0.5. The experimental study 

also confirmed that the proposed SGO algorithm offered better execution time compared to other 

well-known heuristic algorithms such as PSO [52], FA [42,47] and BA [41] based thresholding 

procedures. Examples of the used RGB images are presented in Figure 3 along with the 

corresponding histogram of the three channels (i.e., R, G and B components) and the associated 

ground truth. 
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Figure 3. Sample test images from the chosen skin cancer image dataset: (a) test images; (b) RGB 

histograms (x- axis represents the threshold distribution and y-axis denotes the pixel distribution) 

and (c) corresponding ground truths of the images. 

Previous works from the literature confirm that finding the optimal threshold value for a RGB 

input image is more complex comparatively to the corresponding gray scale image due to its complex 

and nonlinear histograms. In order to find the optimal threshold for a color image, it is necessary to 

examine the R, G, and B channels separately by a suitable pre-processing approach. Here, the SGO 

algorithm combined with the Otsu based thresholding technique is used to identify the optimal 

threshold for the image under analysis and the corresponding outputs are recorded. Then, a similar 

pre-processing procedure is repeated with the SGO algorithm combined with the Kapur based 

thresholding technique and the outcomes are recorded. The overall quality of the proposed image 

processing tool relies on the pre-processing approach. Hence, an attempt was made to examine the 

performance of the Otsu and Kapur based thresholding techniques widely used in the image 

processing community to pre-process input images [47–53]. 

Figure 4 illustrates the obtained results of the proposed optimized Otsu and level set based 

segmentation approach when applied to the test images. Initially, the proposed SGO based Otsu 

based tri-level thresholding procedure is performed on the sample images; results of these steps were 
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presented in the second column of Figure 4. Considering the obtained results for image NM3, it can 

be reported that at the end of the SGO based Otsu search, the SGO continuously explores the RGB 

histograms until the between class values is maximized. At the end, the search offers the optimized 

thresholds, such as R [52, 187, 224], G [74, 147, 206] and B [39, 170, 231]. This search also offered a 

maximized Otsu’s between class variance value of 2107.85 [47]. From a visual assessment of the 

original NM3 test image and the thresholded image, it is observed that the thresholding process 

enhance the melanoma region based on pixel grouping concept. This image is then further processed 

using the morphological procedure discussed in Section 2. After completing the pre-processing task, 

the well-known segmentation procedures based on level set, global active contour and local active 

contour were applied to mine the region of interest from the dermoscopy image and their results 

compared. 

With the intention of evaluating the proposed approach superiority, complex dermoscopic 

images, mainly images with hair, such as SSM21, 229 and 9953, were studied. The results in Figure 4 

suggest that the proposed pre-processing approach is very efficient in eliminating the hair regions 

from the input images and can be used as an interesting alternative to the existing hair removing 

procedures [20,22–25]. 
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Figure 4. Results obtained with Otsu and level set based segmentation approaches: (a) Pseudo name 

of image as in database; (b) output of the tri-level thresholding technique; (c) output of the 

morphological procedure; (d) initial contour of the level set segmentation; (e) final contour of the level 

set segmentation; and (f) extracted region. 

Afterwards, the performance of well-known active contour approaches, such as the GAC and 

LAC, were tested on the SGO based Otsu pre-processed images, Figure 5. 

Initial contour Final contour
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(a) GAC 

 
(b) Extracted region 

 
(c) LAC 

 
(d) Extracted region 

Figure 5. Active contour based segmentation results for the sample image with pseudo name NM3: 

(a,b) are the results of the (global active contour) GAC, while (c,d) are the results of the (localized 

active contour) LAC. 

Along with Figure 5, the results demonstrated that the total required run time by the LAC is 

quite large compared to the GAC. Moreover, these active contour approaches require a seed 

initialization procedure in order to begin the segmentation task, whereas the level set is an automated 

approach that does not require any initialization. Afterwards, image similarity metrics and statistical 

metrics were computed to evaluate the LS, GAC and LAC performance by comparing the extracted 

melanoma regions with the corresponding found truths existing in the test datasets. Tables 1 and 2 

report the image similarity indices and image statistical measures, respectively, which were 

computed from the segmentation results obtained using the proposed SGO based Otsu and the 

LS/GAC/LAC. 

The results in Tables 1 and 2 indicated that the proposed approach is very efficient in analyzing 

the melanomas from the dermoscopic image datasets. It can be established that, for most of the image 

cases, the LS based segmentation procedure offered better results than the GAC and LAC. 

Afterwards, the proposed segmentation approach was then repeated for the used image datasets with 

SGO based Kapur based threshold, Figure 6. 

Figure 6 suggests that the LS and GAC provides superior results compared to LAC. This finding 

is confirmed by the values indicated in Table 3. 

Table 1. Image similarity measure of SGO based Otsu pre-processing procedure. JI: Jaccard Index; 

DC: Dice Coefficient; FPR: false positive rate; FNR: false negative rate; LS: level set. 

Image Segmentation Approach JI DC FPR FNR 

NM3 

LS 0.8794 0.9305 0.1285 0.0101 

GAC 0.8728 0.9310 0.1004 0.0073 

LAC 0.8744 0.9311 0.1026 0.0193 

NM5 

LS 0.8395 0.9004 0.0885 0.0064 

GAC 0.8226 0.8917 0.1743 0.0110 

LAC 0.8106 0.8853 0.1006 0.0097 

SSM31 

LS 0.8652 0.9106 0.0713 0.0093 

GAC 0.8408 0.9274 0.0945 0.0115 

LAC 0.8511 0.9037 0.0836 0.0284 

SSM21 

LS 0.8316 0.8925 0.0814 0.0377 

GAC 0.8014 0.8818 0.1004 0.0604 

LAC 0.8028 0.8674 0.0560 0.0840 

229 

LS 0.8284 0.8911 0.0106 0.0947 

GAC 0.8004 0.8972 0.0219 0.0956 

LAC 0.8084 0.8779 0.0724 0.0821 

9953 

LS 0.7827 0.8922 0.0084 0.0726 

GAC 0.8173 0.9105 0.0202 0.0622 

LAC 0.8091 0.9007 0.0115 0.0519 

  

Final zero level contour, 1410 iterations

1500 Iterations
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Table 2. Image statistical values of SGO based Otsu pre-processing procedure.PRE: precision; FM: F-

measure; SEN: sensitivity; SPE: specificity; BCR: balanced classification rate; BER: balanced error rate; 

ACC: accuracy. 

Image Approach PRE FM SEN SPE BCR BER% ACC 

NM3 

LS 0.9981 0.9813 0.9652 0.9939 0.9793 2.0606 0.9792 

GAC 0.9941 0.9852 0.9765 0.9799 0.9782 2.1781 0.9782 

LAC 0.9930 0.9843 0.9758 0.9759 0.9759 2.4114 0.9759 

NM5 

LS 0.9980 0.9911 0.9844 0.9888 0.9866 1.3403 0.9866 

GAC 0.9998 0.9774 0.9561 0.9990 0.9775 2.2420 0.9773 

LAC 0.9998 0.9789 0.9589 0.9992 0.9791 2.0882 0.9789 

SSM31 

LS 0.9988 0.9847 0.9709 0.9964 0.9837 1.6268 0.9836 

GAC 0.9986 0.9822 0.9663 0.9957 0.9810 1.8980 0.9809 

LAC 0.9993 0.9825 0.9662 0.9980 0.9821 1.7858 0.9820 

SSM21 

LS 0.9975 0.9983 0.9990 0.8585 0.9288 7.1187 0.9261 

GAC 0.9966 0.9978 0.9990 0.8087 0.9038 9.6129 0.8988 

LAC 0.9968 0.9979 0.9991 0.8194 0.9092 9.0752 0.9048 

229 

LS 0.8629 0.9261 0.9993 0.7867 0.8930 10.6964 0.8866 

GAC 0.9641 0.9703 0.9767 0.9511 0.9639 3.6049 0.9638 

LAC 0.9646 0.9723 0.9802 0.9517 0.9659 3.4019 0.9658 

9953 

LS 0.8465 0.8967 0.9531 0.7139 0.8335 16.6418 0.8249 

GAC 0.8946 0.9436 0.9982 0.8053 0.9018 9.8166 0.8966 

LAC 0.8919 0.9424 0.9990 0.7996 0.8993 10.0619 0.8938 
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Figure 6. Outcomes of the Kapur based thresholding approach: (a) tri-level thresholding; (b) 

morphological procedure; (c) extracted region using LS; (d) extracted region using GAC; and (e) 

extracted region using LAC. 
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The values in Table 3 indicate that the JI, DC, FPR and FNR values obtained with the SGO based 

Kapur and LS are better than the ones obtained with the SGO based Kapur and GAC or SGO based 

Kapur and LAC. Additionally, the overall average results for all the (44 + 76 + 20) 140 test images are 

reported in Tables 4 and 5 regarding the average values of the image similarity indexes, including JI, 

DC, FPR and FNR, and the statistical indexes, such as PRE, FM, SEN, SPE, BCR, NER and ACC. 

Table 3. Image similarity measures concerning the Kapur based pre-processing procedure. 

Image Segmentation Approach JI DC FPR FNR 

NM3 

LS 0.8852 0.9391 0.1225 0.0064 

GAC 0.8669 0.9287 0.1174 0.0312 

LAC 0.8401 0.9131 0.1079 0.0692 

NM5 

LS 0.8111 0.8957 0.2320 7.10 × 10−4 

GAC 0.8004 0.8891 0.2482 9.13 × 10−4 

LAC 0.6695 0.8020 0.2226 0.1815 

SSM31 

LS 0.9102 0.9530 0.0948 0.0035 

GAC 0.8971 0.9458 0.1099 0.0043 

LAC 0.8989 0.9468 0.1102 0.0020 

SSM21 

LS 0.8157 0.8985 0.0525 0.1415 

GAC 0.7792 0.8759 0.0516 0.1806 

LAC 0.7658 0.8674 0.0560 0.1913 

229 

LS 0.8031 0.8908 0.0029 0.1946 

GAC 0.7985 0.8879 0.0015 0.2003 

LAC 0.7355 0.8476 0.0908 0.1977 

9953 

LS 0.7253 0.8408 0.0000 0.2747 

GAC 0.9271 0.9622 0.0266 0.0483 

LAC 0.9223 0.9596 0.0313 0.0488 

Table 4. Overall results for the image similarity metrics with the proposed approach. 

Approach Value JI DC FPR FNR 

Otsu based threshold 

LS 

Min 0.6924 0.7216 0.0048 0.0035 

Max 0.8917 0.9506 0.1281 0.1016 

Average 0.8217 0.8812 0.0725 0.0883 

GAC 

Min 0.5729 0.7104 0.0051 0.0052 

Max 0.8611 0.9422 0.1316 0.1218 

Average 0.8016 0.8961 0.0857 0.0829 

LAC 

Min 0.5748 0.7048 0.0033 0.0029 

Max 0.8573 0.9518 0.1725 0.1314 

Average 0.8005 0.8873 0.0815 0.0528 

Kapur based threshold 

LS 

Min 0.6284 0.6826 0.0051 3.41 × 10−4 

Max 0.9165 0.9517 0.1177 0.2818 

Average 0.8296 0.8832 0.0615 0.0726 

GAC 

Min 0.5477 0.7062 0.0038 5.72 × 10−4 

Max 0.8917 0.9415 0.1226 0.2661 

Average 0.8188 0.9004 0.0744 0.0779 

LAC 

Min 0.5385 0.6863 0.0028 4.08 × 10−4 

Max 0.8618 0.9571 0.1534 0.2514 

Average 0.8192 0.8916 0.0795 0.0528 
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Table 5. Overall results for the image statistical metrics with the proposed approach. 

Approach PRE FM SEN SPE BCR BER% ACC 

Otsu based threshold 

LS 0.9812 0.9795 0.9827 0.9014 0.9331 5.7715 0.9517 

GAC 0.9796 0.9727 0.9803 0.8958 0.9186 6.0843 0.9416 

LAC 0.9685 0.9736 0.9774 0.8971 0.9158 5.8025 0.9481 

Kapur based threshold 

LS 0.9826 0.9805 0.9841 0.9116 0.9284 4.9963 0.9619 

GAC 0.9803 0.9772 0.9825 0.9028 0.9188 5.8670 0.9571 

LAC 0.9715 0.9758 0.9781 0.8987 0.9172 5.7016 0.9486 

The overall average results reported in Tables 4 and 5prove that the average values of the image 

similarity indexes and of the statistical indexes, respectively, are better by using the SGO based Kapur 

and LS approach compared to the other procedures considered in this study. Generally, the proposed 

approach using SGO based Kapur supports the image pre-processing and LS segmentation more 

efficiently in order to extract the skin lesions both from simple and complex dermoscopic images 

comparatively to the other studied alternatives. The results of Table 5 indicate that this approach 

offers superior sensitivity of98.41%, specificity of91.16% and accuracy of 96.19% on the used image 

datasets. Furthermore, the classification and detection accuracy of the SGO based Otsu and LS as well 

as SGO based Kapur and LS were tested using the skinCAD tool [28]. The corresponding results are 

illustrated in Figure 7 and indicated in Table 6.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7. Prediction of melanoma severity in image NM3 using SkinCAD: (a) test image; (b) extracted 

melanoma region; (c) initial trace; and (d) final trace. 

Table 6. Results obtained with SkinCAD tool. 

Image Segmentation Approach 

Lesion Malignancy 

Otsu Kapur 

Probability Risk Probability Risk 

NM3 

LS 0.8363 

High 

0.8784 

High 

GAC 0.7947 0.8216 

LAC 0.8144 0.8027 

NM5 

LS 0.8153 0.8639 

GAC 0.8271 0.8406 

LAC 0.8026 0.8013 

SSM31 

LS 0.8246 0.8815 

GAC 0.8116 0.8217 

LAC 0.8075 0.8015 

SSM21 

LS 0.7260 0.8037 

GAC 0.7826 0.8110 

LAC 0.7624 0.8046 

229 

LS 0.8016 0.8218 

GAC 0.8261 0.8639 

LAC 0.8136 0.7915 

9953 

LS 0.7940 0.8125 

GAC 0.8003 0.8016 

LAC 0.8117 0.7918 

The skinCAD tool compares the input test image (Figure 7a) and the mask (Figure 7b) to create 

the initial and final trace as shown in Figure7c,d. After creating the final trace, the skinCAD tool 

considers the inner region of the trace and applies the ABCD rule as discussed previously. The tool 
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analyzes the traced region with various features along with image similarity measures and statistical 

measures and provides the probability of lesion malignancy and the risk rate. Based on the 

probability as well as the risk rates, the suitable treatment procedure can be planned during routine 

clinical examination.  

Consequently, it can be suggested that if the proposed approach is combined with the skinCAD 

tool, then the sensitivity, specificity and accuracy of the skin melanoma discovery practice can be 

improved and skin lesions can be efficiently diagnosed irrespective of the image complexities. Thus, 

the proposed approach can be considered to analyze routine clinical skin melanoma images based on 

the comparative analysis that is carried out between the Otsu and Kapur threshold techniques based 

on the SGO algorithm. 

4. Conclusions 

In the current work, a novel tool was proposed to extract suspicious region from RGB 

dermoscopic images. This tool included a two steps procedure with SGO based Otsu/Kspur tri-level 

based thresholding as the pre-processing stage and level set/active contour based segmentation as 

the post-processing stage. In order to test the proposed computational tool, three well-known skin 

melanoma datasets, namely Dermis (44 images), Dermquest (76 images) and ISBI2016 challenge (20 

images), were used. Initially, the SGO based Otsu and LS approach was implemented and then the 

proposed approach was also used with the prominent active contour approaches, namely GAC and 

LAC. Similar experiments were performed with the SGO based Kapur. 

The performances of Otsu/Kapur as well as LS/GAC/LAC were assessed using well-known 

image similarity metrics and images statistical metrics. The results confirmed that the proposed tool 

is very effective in extracting lesion sections from hairy skin images. The comparative study 

performed between the extracted melanoma regions and the corresponding ground truths confirmed 

that the SGO based Kapur and LS based approach achieved superior results compared to the 

alternatives studied in the present study. Finally, the detection accuracy of the proposed tool was 

validated using the skinCAD tool and the probabilities of the lesion malignancy and the risk factors 

were obtained. 

From the experimental results, it could be established that the proposed SGO based Kapur and 

LS based approach is very efficient in extracting melanoma regions from digital dermoscopic images 

with high values of sensitivity, specificity and accuracy. 

In the near future, the proposed tool should be further evaluated using larger image datasets, 

including dermoscopic images acquired in real medical scenarios. On the other hand, additionally to 

the ABCD rule, other assessment rules, like the 7-point checklist and Menzies’ method, should be 

studied. 
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