513 research outputs found

    The State of the Art in Multilayer Network Visualization

    Get PDF
    Modelling relationships between entities in real-world systems with a simple graph is a standard approach. However, reality is better embraced as several interdependent subsystems (or layers). Recently the concept of a multilayer network model has emerged from the field of complex systems. This model can be applied to a wide range of real-world datasets. Examples of multilayer networks can be found in the domains of life sciences, sociology, digital humanities and more. Within the domain of graph visualization there are many systems which visualize datasets having many characteristics of multilayer graphs. This report provides a state of the art and a structured analysis of contemporary multilayer network visualization, not only for researchers in visualization, but also for those who aim to visualize multilayer networks in the domain of complex systems, as well as those developing systems across application domains. We have explored the visualization literature to survey visualization techniques suitable for multilayer graph visualization, as well as tools, tasks, and analytic techniques from within application domains. This report also identifies the outstanding challenges for multilayer graph visualization and suggests future research directions for addressing them

    The State of the Art in Multilayer Network Visualization

    Get PDF
    Modelling relationship between entities in real-world systems with a simple graph is a standard approach. However, realityis better embraced as several interdependent subsystems (or layers). Recently, the concept of a multilayer network model hasemerged from the field of complex systems. This model can be applied to a wide range of real-world data sets. Examples ofmultilayer networks can be found in the domains of life sciences, sociology, digital humanities and more. Within the domainof graph visualization, there are many systems which visualize data sets having many characteristics of multilayer graphs.This report provides a state of the art and a structured analysis of contemporary multilayer network visualization, not only forresearchers in visualization, but also for those who aim to visualize multilayer networks in the domain of complex systems, as wellas those developing systems across application domains. We have explored the visualization literature to survey visualizationtechniques suitable for multilayer graph visualization, as well as tools, tasks and analytic techniques from within applicationdomains. This report also identifies the outstanding challenges for multilayer graph visualization and suggests future researchdirections for addressing them

    Mixed coordinate Node link Visualization for Co_authorship Hypergraph Networks

    Full text link
    We present an algorithmic technique for visualizing the co-authorship networks and other networks modeled with hypergraphs (set systems). As more than two researchers can co-author a paper, a direct representation of the interaction of researchers through their joint works cannot be adequately modeled with direct links between the author-nodes. A hypergraph representation of a co-authorship network treats researchers/authors as nodes and papers as hyperedges (sets of authors). The visualization algorithm that we propose is based on one of the well-studied approaches representing both authors and papers as nodes of different classes. Our approach resembles some known ones like anchored maps but introduces some special techniques for optimizing the vertex positioning. The algorithm involves both continuous (force-directed) optimization and discrete optimization for determining the node coordinates. Moreover, one of the novelties of this work is classifying nodes and links using different colors. This usage has a meaningful purpose that helps the viewer to obtain valuable information from the visualization and increases the readability of the layout. The algorithm is tuned to enable the viewer to answer questions specific to co-authorship network studies.Comment: 10 pages, 3 figures, 1 tabl

    Analysis of Graph Layout Algorithms for Use in Command and Control Network Graphs

    Get PDF
    This research is intended to determine which styles of layout algorithm are well suited to Command and Control (C2) network graphs to replace current manual layout methods. Manual methods are time intensive and an automated layout algorithm should decrease the time spent creating network graphs. Simulations on realistic synthetically generated graphs provide information to help infer which algorithms perform better than others on this problem. Data is generated using statistics drawn from multiple real world C2 network graphs. The three algorithms tested against this data are the Spectral algorithm, the Dot algorithm, and the Fruchterman-Reingold algorithm. The results include a multiple objective statistics designed to inform on the algorithms performance in both aesthetic characteristics defined in literature, as well as some characteristics defined by the research sponsor. The results suggest that the Dot algorithm performs better with respect to the sponsor defined characteristics, whereas the Fruchterman-Reingold algorithm performs better on aesthetic characteristics

    Visualizing and Interacting with Geospatial Networks:A Survey and Design Space

    Get PDF
    This paper surveys visualization and interaction techniques for geospatial networks from a total of 95 papers. Geospatial networks are graphs where nodes and links can be associated with geographic locations. Examples can include social networks, trade and migration, as well as traffic and transport networks. Visualizing geospatial networks poses numerous challenges around the integration of both network and geographical information as well as additional information such as node and link attributes, time, and uncertainty. Our overview analyzes existing techniques along four dimensions: i) the representation of geographical information, ii) the representation of network information, iii) the visual integration of both, and iv) the use of interaction. These four dimensions allow us to discuss techniques with respect to the trade-offs they make between showing information across all these dimensions and how they solve the problem of showing as much information as necessary while maintaining readability of the visualization. https://geonetworks.github.io.Comment: To be published in the Computer Graphics Forum (CGF) journa

    Feature-rich networks: going beyond complex network topologies.

    Get PDF
    Abstract The growing availability of multirelational data gives rise to an opportunity for novel characterization of complex real-world relations, supporting the proliferation of diverse network models such as Attributed Graphs, Heterogeneous Networks, Multilayer Networks, Temporal Networks, Location-aware Networks, Knowledge Networks, Probabilistic Networks, and many other task-driven and data-driven models. In this paper, we propose an overview of these models and their main applications, described under the common denomination of Feature-rich Networks, i. e. models where the expressive power of the network topology is enhanced by exposing one or more peculiar features. The aim is also to sketch a scenario that can inspire the design of novel feature-rich network models, which in turn can support innovative methods able to exploit the full potential of mining complex network structures in domain-specific applications
    corecore