5,009 research outputs found

    Highly efficient multilayer organic pure-blue-light emitting diodes with substituted carbazoles compounds in the emitting layer

    Get PDF
    Bright blue organic light-emitting diodes (OLEDs) based on 1,4,5,8,N-pentamethylcarbazole (PMC) and on dimer of N-ethylcarbazole (N,N'-diethyl-3,3'-bicarbazyl) (DEC) as emitting layers or as dopants in a 4,4'-bis(2,2'-diphenylvinyl)-1,1'-biphenyl (DPVBi) matrix are described. Pure blue-light with the C.I.E. coordinates x = 0.153 y = 0.100, electroluminescence efficiency \eta_{EL} of 0.4 cd/A, external quantum efficiency \eta_{ext.} of 0.6% and luminance L of 236 cd/m2 (at 60 mA/cm2) were obtained with PMC as an emitter and the 2,9-dimethyl-4,7-diphenyl-1,10-phenantroline (BCP) as a hole-blocking material in five-layer emitting devices. The highest efficiencies \eta_{EL.} of 4.7 cd/A, and \eta_{ext} = 3.3% were obtained with a four-layer structure and a DPVBi DEC-doped active layer (CIE coordinates x = 0.158, y=0.169, \lambda_{peak} = 456 nm). The \eta_{ext.} value is one the highest reported at this wavelength for blue OLEDs and is related to an internal quantum efficiency up to 20%

    Cathodic and Anodic Material Diffusion in Polymer/Semiconductor-Nanocrystal Composite Devices

    Get PDF
    In the present day, the information technologies and telecommunications sector continually increase their demand for low cost, low power consumption, high performance electroluminescent devices for display applications. Furthermore, general lighting applications, such as white light and large array colour displays, would also benefit from an increase in the overall efficiency. Several technologies are being investigated to fulfill these needs, such as organic light emitting diodes (OLED), polymeric light emitting diodes (PLED) and field effect emission devices. A new and promising technology is light emitting devices (LEDs) based on nanostructured materials. With organic LEDs (OLEDs) already making an impact on the market in an increasingly large number of applications, hybrid technologies based on organic/inorganic nano-composites are a potential the next step. The incorporation of highefficiency fluorescent semiconductor nanoparticles has been shown to have a beneficial effect on device performance, [1] modify the colour output from the device 2 and provide a simplified route to generation of LED type devices. [3

    High-Contrast OLEDs with High-Efficiency

    Get PDF
    Peer reviewed: YesNRC publication: Ye

    Field Emission Organic Light Emitting Diode

    Get PDF

    Synthesis and optoelectronic properties of new ethynylated pyrazine derivatives

    Get PDF
    Several diaryleneethynylpyrazine derivatives, in which the pyrazine unit is electron-deficient, have been synthesised using Sonogashira palladium-catalysed cross-coupling reactions. Compound 32, an important intermediate in the synthesis of diaryleneethynylpyrazine derivatives was made by a modified literature procedure which improved the yield. Examination of optical absorption and photoluminescence spectra of compound 37 shows that the pyrazine unit does not change the behaviour significantly compared to analogue 42, while compound 38 shows pyridine substituents have a profound effect on the photophysics of these pyrazine systems. The redox properties of representative compound 37 were studied by cyclic voltammetry, which shows that reduction of 37 to its radical anion occurs as a reversible process at high negative potentials of ca. -1.87 V. The X-ray crystal structure of 37 is also presented. Quantum mechanical calculations of the geometry and electronic structure were performed for compound 37; the known phenylene analogue 42 was calculated at the same level for comparison. The results show that the energies of both HOMO and LUMO orbitals of 37 are decreased compared to 42. The calculated value of the HOMO-LUMO gap of 37 (3.56 eV) is close to that estimated from the red edge of the longest wavelength absorption (382 nm = 3.25 eV)
    corecore