170 research outputs found

    Multifunctional diffractive optics for optoelectronic system packaging

    Get PDF
    Novel diffractive optical elements (DOE) with multifunctionality in polarization or color are reviewed. We review three technological approaches for construction of such DOEs with multifunctionality in polarization: the two- substrate birefringent computer generated hologram (BCGH), the multiple order delay BCGH, and the form birefringent computer generated hologram approaches. We also discuss the accurate design of such DOEs enabled by our modeling tools based on rigorous coupled wave analysis. Microfabrication techniques developed for realization of these three types of polarization selective DOEs are described. The developed DOEs with multifunctionality in polarization or color are used to package a 3D optoelectronic VLSI chip, a transparent optical multistage interconnection network, and a wavelength division demultiplexer, providing mechanical and thermal stability, light efficiency, reduced volume, weight, and cost, and increased reliability

    The Design, modeling and simulation of switching fabrics: For an ATM network switch

    Get PDF
    The requirements of today\u27s telecommunication systems to support high bandwidth and added flexibility brought about the expansion of (Asynchronous Transfer Mode) ATM as a new method of high-speed data transmission. Various analytical and simulation methods may be used to estimate the performance of ATM switches. Analytical methods considerably limit the range of parameters to be evaluated due to extensive formulae used and time consuming iterations. They are not as effective for large networks because of excessive computations that do not scale linearly with network size. One the other hand, simulation-based methods allow determining a bigger range of performance parameters in a shorter amount of time even for large networks. A simulation model, however, is more elaborate in terms of implementation. Instead of using formulae to obtain results, it has to operate software or hardware modules requiring a certain amount of effort to create. In this work simulation is accomplished by utilizing the ATM library - an object oriented software tool, which uses software chips for building ATM switches. The distinguishing feature of this approach is cut-through routing realized on the bit level abstraction treating ATM protocol data units, called cells, as groups of 424 bits. The arrival events of cells to the system are not instantaneous contrary to commonly used methods of simulation that consider cells as instant messages. The simulation was run for basic multistage interconnection network types with varying source arrival rate and buffer sizes producing a set of graphs of cell delays, throughput, cell loss probability, and queue sizes. The techniques of rearranging and sorting were considered in the simulation. The results indicate that better performance is always achieved by bringing additional stages of elements to the switching system

    Photonic Integrated Circuits for Communication Systems

    Get PDF
    Photonic Integrated Circuits allow to meet the increasing demand of communication systems for internet which is growing at about 40% per year. This growth is driven mainly by increasing video traffic in the internet network. This growth is now further accelerated by mobile access, with video clients shipping on an all smart phones and tablets, enabling video to be consumed more conveniently via network connections anywhere and anytime. This paper reviews several material platform of photonic integrated circuits a compares their performance. This paper also describes the new approaches in the design and fabrication of optical transceivers based on photonic integrated circuits for next terabit era

    Advances in Optical Amplifiers

    Get PDF
    Optical amplifiers play a central role in all categories of fibre communications systems and networks. By compensating for the losses exerted by the transmission medium and the components through which the signals pass, they reduce the need for expensive and slow optical-electrical-optical conversion. The photonic gain media, which are normally based on glass- or semiconductor-based waveguides, can amplify many high speed wavelength division multiplexed channels simultaneously. Recent research has also concentrated on wavelength conversion, switching, demultiplexing in the time domain and other enhanced functions. Advances in Optical Amplifiers presents up to date results on amplifier performance, along with explanations of their relevance, from leading researchers in the field. Its chapters cover amplifiers based on rare earth doped fibres and waveguides, stimulated Raman scattering, nonlinear parametric processes and semiconductor media. Wavelength conversion and other enhanced signal processing functions are also considered in depth. This book is targeted at research, development and design engineers from teams in manufacturing industry, academia and telecommunications service operators

    On-board B-ISDN fast packet switching architectures. Phase 1: Study

    Get PDF
    The broadband integrate services digital network (B-ISDN) is an emerging telecommunications technology that will meet most of the telecommunications networking needs in the mid-1990's to early next century. The satellite-based system is well positioned for providing B-ISDN service with its inherent capabilities of point-to-multipoint and broadcast transmission, virtually unlimited connectivity between any two points within a beam coverage, short deployment time of communications facility, flexible and dynamic reallocation of space segment capacity, and distance insensitive cost. On-board processing satellites, particularly in a multiple spot beam environment, will provide enhanced connectivity, better performance, optimized access and transmission link design, and lower user service cost. The following are described: the user and network aspects of broadband services; the current development status in broadband services; various satellite network architectures including system design issues; and various fast packet switch architectures and their detail designs

    Advanced devices based on fibers, integrated optics and liquid crystals for WDM networks

    Get PDF
    The increment of bandwidth required for new services offered to users make necessary the use of optical fibres in data transmission. Glass optical fibres are widely used in long distance communications, and there are many devices implemented for using in these networks, but these technologies are sometimes expensive for their used in local loops. Different systems implemented over the established technology are used for increasing local loops bandwidth, but more services are demanded at home. Those applications require more bandwidth than the offered by the usual twisted copper pair. Multimode fibres (both silica and polymer) with larger core diameters and numerical aperture, allows for large tolerance on axial misalignments, which results in cheaper connectors as well as associated equipment, but with a bandwidth penalty with regards to their singlemode counterparts, mainly due to the introduction of modal dispersion. On the other hand, polymer optical fibre (POF) offers several advantages over conventional multimode optical fibre over short distances (ranging from 100m to 1000m) such as the even potential lower cost associated with its easiness of installation, splicing and connecting. This is due to the fact that POF is more flexible and ductile, making it easier to handle. Consequently, POF termination can be realized faster and cheaper than in the case of multimode silica fibre. Therefore, the number of applications that use POF is quickly increasing. POF is being used in video transmission in medical equipment, or in multimedia applications for civil aviation and high range cars, in-home and access networks, wireless LAN backbone or office LAN, and in intrinsic optical sensor networks among others. Even greater channel capacity can be available using a specific type of POF, perfluorinated Graded-Index POF (PF GIPOF), having low attenuation and large bandwidth from 650nm to 1300nm. Link lengths for in-building/home scenarios are short (less than 1 km), and thus the loss per unit length is of less importance. Transmission of 10Gbps data over 100m and transmission of 1.25Gbps Ethernet over 1 km have been experimentally demonstrated with PF GIPOF. On the other hand, combiners and multiplexers are basic elements in POF networks using Wavelength Division Multiplexing (WDM) and there are not that many already developed. It is important to have low losses devices and reconfiguration can be an additional feature in those networks. On the other hand, reconfigurable optical networks in critical applications demand devices able to have different functionalities, including switching. This work has focused in the development of different optical switches for a wide range of optical networks. Different switching technologies are available. Liquid crystals are widely used as displays, but they are also employed in telecommunications. Other common technology used in data routing is integrated optics. In this case, light propagates by means of a waveguide and the modification of its parameters makes possible switching operation. Micro-Electromechanical Mechanisms, MEMs, based in small mobile mirrors that can change the direction of the incident light when required are an important optical switching technology. The objective of the present work is the proposal of several optical switches using different technologies depending on the final application. Some of these structures have been experimentally tested whereas others have been simulated. Most of the presented switches use liquid crystals, having different functionalities and broadband operation range, so allowing wavelength division multiplexing. To these respect it has been developed an optical multiplexer/combiner and an advanced multifunctional optical switch (AMOS), both implemented with Nematic Liquid Crystal technology. It has also been developed a multiplexer/combiner based on Polymer Dispersed Liquid Crystals. The third kind of switches proposed are micro ring-resonators combined with liquid crystals. Micro ring-resonators consist of a circular waveguide attached to one or two straight waveguides acting like input and output ports. Light that passes through the structure can be filtered according to the ring resonator characteristics: ring length, coupling ratio, losses… The use of liquid crystal makes possible the tuning of the ring resonator filtering properties. The last proposed switch is made of a passive splitter and a Mach-Zehnder Interferometer. This kind of devices makes use of integrated optics and interference for switching purposes. The variation of the optical properties influencing the two light beam interference can be done in different ways: thermally, electrically… Finally, an automated optical characterization bench has been implemented in order to make easy the measurements. It is composed by a three axis translation stage with three actuators, several linear translation stages that allows the user to modify the bench structure for adapting it to his experiment, and different machinery for mounting the optics.The present research work has been supported by the following Spanish projects: TIC2003-038783 (DISFOTON), TEC2006-13273-C03-03-MIC (FOTOCOMIN) and TEC2009-14718-C03-03-MCI (DEDOS) of the Spanish Interministerial Commission on Science and Technology (CICYT), FACTOTEM-CM: S-005/ESP/000417, and FACTOTEM-II-CM: S2009/ESP-1781 and FENIS-CCG06-UC3M/TIC-619 of Comunidad Autónoma de Madrid. Additional financial support has been obtained form European Thematic Network SAMPA: Synclinic and Anticlinic Mesophases for Photonic Applications (HPRNCT- 2002-00202), carried out during the V Framework Program of the European Union, COST Action 299 FIDES: Optical Fibres Dedicated to Society, and from the European Network of Excellence: ePhoton/ONe+ (FP6-IST-027497), both carried out during the VI Framework Program of the European Union, and BONE: Building the Future Optical Network in Europe (FP7-ICT-216863) carried out during the VII Framework Program of the European Union

    An introduction to InP-based generic integration technology

    Get PDF
    Photonic integrated circuits (PICs) are considered as the way to make photonic systems or subsystems cheap and ubiquitous. PICs still are several orders of magnitude more expensive than their microelectronic counterparts, which has restricted their application to a few niche markets. Recently, a novel approach in photonic integration is emerging which will reduce the R&D and prototyping costs and the throughput time of PICs by more than an order of magnitude. It will bring the application of PICs that integrate complex and advanced photonic functionality on a single chip within reach for a large number of small and larger companies and initiate a breakthrough in the application of Photonic ICs. The paper explains the concept of generic photonic integration technology using the technology developed by the COBRA research institute of TU Eindhoven as an example, and it describes the current status and prospects of generic InP-based integration technology

    An introduction to InP-based generic integration technology

    Get PDF
    Photonic integrated circuits (PICs) are considered as the way to make photonic systems or subsystems cheap and ubiquitous. PICs still are several orders of magnitude more expensive than their microelectronic counterparts, which has restricted their application to a few niche markets.Recently, a novel approach in photonic integration is emerging which will reduce the R&D and prototyping costs and the throughput time of PICs by more than an order of magnitude. It will bring the application of PICs that integrate complex and advanced photonic functionality on a single chip within reach for a large number of small and larger companies and initiate a breakthrough in the application of Photonic ICs. The paper explains the concept of generic photonic integration technology using the technology developed by the COBRA research institute of TU Eindhoven as an example, and it describes the current status and prospects of generic InP-based integration technology.Funding is acknowledged by the EU-projects ePIXnet, EuroPIC and PARADIGM and the Dutch projects NRC Photonics, MEMPHIS, IOP Photonic Devices and STW GTIP. Many others have contributed and the authors would like to thank other PARADIGM and EuroPIC partners for their help in discussions, particularly Michael Robertson (CIP).This is the final published version distributed under a Creative Commons Attribution License. It can also be viewed on the publisher's website at: http://iopscience.iop.org/0268-1242/29/8/08300

    Switching techniques for broadband ISDN

    Get PDF
    The properties of switching techniques suitable for use in broadband networks have been investigated. Methods for evaluating the performance of such switches have been reviewed. A notation has been introduced to describe a class of binary self-routing networks. Hence a technique has been developed for determining the nature of the equivalence between two networks drawn from this class. The necessary and sufficient condition for two packets not to collide in a binary self-routing network has been obtained. This has been used to prove the non-blocking property of the Batcher-banyan switch. A condition for a three-stage network with channel grouping and link speed-up to be nonblocking has been obtained, of which previous conditions are special cases. A new three-stage switch architecture has been proposed, based upon a novel cell-level algorithm for path allocation in the intermediate stage of the switch. The algorithm is suited to hardware implementation using parallelism to achieve a very short execution time. An array of processors is required to implement the algorithm The processor has been shown to be of simple design. It must be initialised with a count representing the number of cells requesting a given output module. A fast method has been described for performing the request counting using a non-blocking binary self-routing network. Hardware is also required to forward routing tags from the processors to the appropriate data cells, when they have been allocated a path through the intermediate stage. A method of distributing these routing tags by means of a non-blocking copy network has been presented. The performance of the new path allocation algorithm has been determined by simulation. The rate of cell loss can increase substantially in a three-stage switch when the output modules are non-uniformly loaded. It has been shown that the appropriate use of channel grouping in the intermediate stage of the switch can reduce the effect of non-uniform loading on performance
    corecore