27 research outputs found

    Macromolecular proton fraction as a myelin biomarker: principles, validation, and applications

    Get PDF
    Macromolecular proton fraction (MPF) is a quantitative MRI parameter describing the magnetization transfer (MT) effect and defined as a relative amount of protons bound to biological macromolecules with restricted molecular motion, which participate in magnetic cross-relaxation with water protons. MPF attracted significant interest during past decade as a biomarker of myelin. The purpose of this mini review is to provide a brief but comprehensive summary of MPF mapping methods, histological validation studies, and MPF applications in neuroscience. Technically, MPF maps can be obtained using a variety of quantitative MT methods. Some of them enable clinically reasonable scan time and resolution. Recent studies demonstrated the feasibility of MPF mapping using standard clinical MRI pulse sequences, thus substantially enhancing the method availability. A number of studies in animal models demonstrated strong correlations between MPF and histological markers of myelin with a minor influence of potential confounders. Histological studies validated the capability of MPF to monitor both demyelination and re-myelination. Clinical applications of MPF have been mainly focused on multiple sclerosis where this method provided new insights into both white and gray matter pathology. Besides, several studies used MPF to investigate myelin role in other neurological and psychiatric conditions. Another promising area of MPF applications is the brain development studies. MPF demonstrated the capabilities to quantitatively characterize the earliest stage of myelination during prenatal brain maturation and protracted myelin development in adolescence. In summary, MPF mapping provides a technically mature and comprehensively validated myelin imaging technology for various preclinical and clinical neuroscience applications

    An interactive meta-analysis of MRI biomarkers of myelin

    Get PDF
    Several MRI measures have been proposed as in vivo biomarkers of myelin, each with applications ranging from plasticity to pathology. Despite the availability of these myelin-sensitive modalities, specificity and sensitivity have been a matter of discussion. Debate about which MRI measure is the most suitable for quantifying myelin is still ongoing. In this study, we performed a systematic review of published quantitative validation studies to clarify how different these measures are when compared to the underlying histology. We analysed the results from 43 studies applying meta-analysis tools, controlling for study sample size and using interactive visualization (https://neurolibre.github.io/myelin-meta-analysis). We report the overall estimates and the prediction intervals for the coefficient of determination and find that MT and relaxometry-based measures exhibit the highest correlations with myelin content. We also show which measures are, and which measures are not statistically different regarding their relationship with histology

    Magnetic resonance microimaging of the spinal cord in the SOD1 mouse model of amyotrophic lateral sclerosis detects motor nerve root degeneration

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is characterized by selective degeneration of motor neurons. Current imaging studies have concentrated on areas of the brain and spinal cord that contain mixed populations of sensory and motor neurons. In this study, ex vivo magnetic resonance microimaging (MRM) was used to separate motor and sensory components by visualizing individual dorsal and ventral roots in fixed spinal cords. MRM at 15 pm in plane resolution enabled the axons of pure populations of sensory and motor neurons to be measured in the lumbar region of the SOD1 mouse model of ALS. MRM signal intensity increased by 38.3% (p < 0.05) exclusively in the ventral motor nerve roots of the lumbar spinal cord of ALS-affected SOD1 mice compared to wildtype littermates. The hyperintensity was therefore limited to white matter tracts arising from the motor neurons, whereas sensory white matter fibers were unchanged. Significant decreases in ventral nerve root volume were also detected in the SOD1 mice, which correlated with the axonal degeneration observed by microscopy. These results demonstrate the usefulness of MRM in visualizing the ultrastructure of the mouse spinal cord. The detailed 3D anatomy allowed the processes of pure populations of sensory and motor neurons to be compared. (C) 2011 Elsevier Inc. All rights reserved

    Myelin quantification with MRI:A systematic review of accuracy and reproducibility

    Get PDF
    Objectives: Currently, multiple sclerosis is treated with anti-inflammatory therapies, but these treatments lack efficacy in progressive disease. New treatment strategies aim to repair myelin damage and efficacy evaluation of such new therapies would benefit from validated myelin imaging techniques. Several MRI methods for quantification of myelin density are available now. This systematic review aims to analyse the performance of these MRI methods. Methods: Studies comparing myelin quantification by MRI with histology, the current gold standard, or assessing reproducibility were retrieved from PubMed/MEDLINE and Embase (until December 2019). Included studies assessed both myelin histology and MRI quantitatively. Correlation or variance measurements were extracted from the studies. Non-parametric tests were used to analyse differences in study methodologies. Results: The search yielded 1348 unique articles. Twenty-two animal studies and 13 human studies correlated myelin MRI with histology. Eighteen clinical studies analysed the reproducibility. Overall bias risk was low or unclear. All MRI methods performed comparably, with a mean correlation between MRI and histology of R-2 = 0.54 (SD = 0.30) for animal studies, and R-2 = 0.54 (SD = 0.18) for human studies. Reproducibility for the MRI methods was good (ICC = 0.75-0.93, R-2 = 0.90-0.98, COV = 1.3-27%), except for MTR (ICC= 0.05-0.51). Conclusions: Overall, MRI-based myelin imaging methods show a fairly good correlation with histology and a good reproducibility. However, the amount of validation data is too limited and the variability in performance between studies is too large to select the optimal MRI method for myelin quantification yet

    Myelin imaging and characterization by magnetic resonance imaging

    Get PDF
    280 p.Los axones neuronales están recubiertos de una membrana lipídica llamada mielina, que protege a los axones y posibilita una transmisión rápida y eficiente del impulso eléctrico. En ciertas patologías como la lesión cerebral traumática, la isquemia o principalmente, en la esclerosis múltiple, la pérdida de mielina o desmielinización da lugar a la muerte neuronal y por consiguiente a la pérdida de capacidades cognitivas. Este estado puede ser revertido por medio de la remielinización, en la que los oligodendrocitos mielinizantes del sistema nervioso central regeneran la vaina de mielina, evitando la degeneración de las neuronas. En los últimos años se ha realizado un esfuerzo considerable en el desarrollo de terapias remielinizantes. Para ello, es imprescindible el desarrollo de técnicas para la evaluación no-invasiva de estas terapias y una caracterización profunda de los procesos de desmielinización y remielinización. En este contexto, la imagen por resonancia magnética (IRM) juega un papel fundamental por su carácter no-invasivo, alta resolución y versatilidad.Los principales objetivos de esta tesis han sido el desarrollo de protocolos de IRM para la cuantificación de mielina y la caracterización de los procesos de remielinización y desmielinización a través de resonancia magnética funcional en reposo. Para ello se ha utilizado como base el modelo murinocuprizona, en la que la administración del tóxico da lugar a la desmielinización en el cerebro, seguido por la remielinización. Los datos y conclusiones obtenidas se han contrastado en otros modelos de ratón, como en modelos de Alzheimer o en ratones sanos envejecidos.A grandes rasgos, hemos podido concluir que la imagen ponderada en peso T2 es la más específica y sensible para la cuantificación de mielina en el modelo cuprizona. Por ello, en este trabajo se propone la utilización de la imagen ponderada en peso T2 para la evaluación de terapias remielinizantes en el modelo cuprizona. Sin embargo, el interés de realizar imagen multiparamétríca ha quedado al descubierto al realizar imagen de modelos de ratón de Alzheimer, pudiendo detectar patología no relacionada con pérdida de mielina en zonas de materia blanca.Así mismo, hemos podido comprobar como la desmielinización conlleva la pérdida de la conectividad y función cerebral y la remielinización posibilita la recuperación por medio de la resonancia magnética funcional en reposo. Además, el potencial agente remielinizante clemastina, ha demostrado su capacidad de promover la remielinización a nivel anatómico y funcional tras 2 semanas de tratamiento. Finalmente, se ha realizado un estudio para determinar el efecto del envejecimiento en la conectividad del cerebro. Hemos podido observar que en ratones sanos, se ha observado un incremento de la conectividad cerebral hasta el mes 8, seguido de un descenso hasta el mes 13, probablemente debido a la neurodegeneración.En este trabajo hemos contribuido al desarrollo de terapias remielinizantes, por un lado, desarrollando protocolos de imagen para la cuantificación de mielina en modelos animales y por otro lado, caracterizando la desmielinización y remielinización a nivel funcional y anatómico

    Region-specific impairment of the cervical spinal cord (SC) in amyotrophic lateral sclerosis: A preliminary study using SC templates and quantitative MRI (diffusion tensor imaging/inhomogeneous magnetization transfer)

    Get PDF
    International audienceIn this preliminary study, our objective was to investigate the potential of high-resolution anatomical imaging, diffusion tensor imaging (DTI) and conventional/inhomogeneous magnetization transfer imaging [magnetization transfer (MT)/inhomogeneous magnetization transfer (ihMT)] at 3 T, analyzed with template-extracted regions of interest, to measure the atrophy and structural changes of white (WM) and gray (GM) matter spinal cord (SC) occurring in patients with amyotrophic lateral sclerosis (ALS). Ten patients with ALS and 20 age-matched healthy controls were recruited. SC GM and WM areas were automatically segmented using dedicated templates. Atrophy indices were evaluated from T2 *-weighted images at each vertebral level from cervical C1 to C6. DTI and ihMT metrics were quantified within the corticospinal tract (CST), posterior sensory tract (PST) and anterior GM (aGM) horns at the C2 and C5 levels. Clinical disabilities of patients with ALS were evaluated using the Revised ALS Functional Rating Scale, upper motor neuron (UMN) and Medical Research Council scorings, and correlated with MR metrics. Compared with healthy controls, GM and WM atrophy was observed in patients with ALS, especially at lower cervical levels, where a strong correlation was also observed between GM atrophy and the UMN score (R = -0.75, p = 0.05 at C6). Interestingly, a significant decrease in ihMT ratio was found in all regions of interest (p \textless 0.0008), fractional anisotropy (FA) and MT ratios decreased significantly in CST, especially at C5 (p \textless 0.005), and λ// (axial diffusivity) decreased significantly in CST (p = 0.0004) and PST (p = 0.003) at C2. Strong correlations between MRI metrics and clinical scores were also found (0.47 \textless \textbarR\textbar \textless 0.87, p \textless 0.05). Altogether, these preliminary results suggest that high-resolution anatomical imaging and ihMT imaging, in addition to DTI, are valuable for the characterization of SC tissue impairment in ALS. In this study, in addition to an important SC WM demyelination, we also observed, for the first time in ALS, impairments of cervical aGM

    MRI Analysis of White Matter Myelin Water Content in Multiple Sclerosis: A Novel Approach Applied to Finding Correlates of Cortical Thinning

    Get PDF
    A novel lesion-mask free method based on a gamma mixture model was applied to myelin water fraction (MWF) maps to estimate the association between cortical thickness and myelin content, and how it differs between relapsing-remitting (RRMS) and secondary-progressive multiple sclerosis (SPMS) groups (135 and 23 patients, respectively). It was compared to an approach based on lesion masks. The gamma mixture distribution of whole brain, white matter (WM) MWF was characterized with three variables: the mode (most frequent value) m1 of the gamma component shown to relate to lesion, the mode m2 of the component shown to be associated with normal appearing (NA) WM, and the mixing ratio (λ) between the two distributions. The lesion-mask approach relied on the mean MWF within lesion and within NAWM. A multivariate regression analysis was carried out to find the best predictors of cortical thickness for each group and for each approach. The gamma-mixture method was shown to outperform the lesion-mask approach in terms of adjusted R2, both for the RRMS and SPMS groups. The predictors of the final gamma-mixture models were found to be m1 (β = 1.56, p \u3c 0.005), λ (β = −0.30, p \u3c 0.0005) and age (β = −0.0031, p \u3c 0.005) for the RRMS group (adjusted R2 = 0.16), and m2 (β = 4.72, p \u3c 0.0005) for the SPMS group (adjusted R2 = 0.45). Further, a DICE coefficient analysis demonstrated that the lesion mask had more overlap to an ROI associated with m1, than to an ROI associated with m2 (p \u3c 0.00001), and vice versa for the NAWM mask (p \u3c 0.00001). These results suggest that during the relapsing phase, focal WM damage is associated with cortical thinning, yet in SPMS patients, global WM deterioration has a much stronger influence on secondary degeneration. Through these findings, we demonstrate the potential contribution of myelin loss on neuronal degeneration at different disease stages and the usefulness of our statistical reduction technique which is not affected by the typical bias associated with approaches based on lesion masks
    corecore