1,402 research outputs found

    Off-line evaluations of noise reduction algorithms for fluoroscopy

    Get PDF

    Feature extraction for image quality prediction

    Get PDF

    QR-Factorization Algorithm for Computed Tomography (CT): Comparison With FDK and Conjugate Gradient (CG) Algorithms

    Full text link
    [EN] Even though QR-factorization of the system matrix for tomographic devices has been already used for medical imaging, to date, no satisfactory solution has been found for solving large linear systems, such as those used in computed tomography (CT) (in the order of 106 equations). In CT, the Feldkamp, Davis, and Kress back projection algorithm (FDK) and iterative methods like conjugate gradient (CG) are the standard methods used for image reconstruction. As the image reconstruction problem can be modeled by a large linear system of equations, QR-factorization of the system matrix could be used to solve this system. Current advances in computer science enable the use of direct methods for solving such a large linear system. The QR-factorization is a numerically stable direct method for solving linear systems of equations, which is beginning to emerge as an alternative to traditional methods, bringing together the best from traditional methods. QR-factorization was chosen because the core of the algorithm, from the computational cost point of view, is precalculated and stored only once for a given CT system, and from then on, each image reconstruction only involves a backward substitution process and the product of a vector by a matrix. Image quality assessment was performed comparing contrast to noise ratio and noise power spectrum; performances regarding sharpness were evaluated by the reconstruction of small structures using data measured from a small animal 3-D CT. Comparisons of QR-factorization with FDK and CG methods show that QR-factorization is able to reconstruct more detailed images for a fixed voxel size.This work was supported by the Spanish Government under Grant TEC2016-79884-C2 and Grant RTC-2016-5186-1.Rodríguez-Álvarez, M.; Sánchez, F.; Soriano Asensi, A.; Moliner Martínez, L.; Sánchez Góez, S.; Benlloch Baviera, JM. (2018). QR-Factorization Algorithm for Computed Tomography (CT): Comparison With FDK and Conjugate Gradient (CG) Algorithms. IEEE Transactions on Radiation and Plasma Medical Sciences. 2(5):459-469. https://doi.org/10.1109/TRPMS.2018.2843803S4594692

    Literature survey:perceived quality of fluoroscopic images

    Get PDF

    Three-dimensional Photoacoustic Tomography System Design Analysis and Optimization

    Get PDF
    Photoacoustic tomography (PAT) is an emerging imaging modality capable of mapping optical absorption in tissues. It is a hybrid technique that combines the high spatial resolution of ultrasound imaging with the high contrast of optical imaging, and has demonstrated much potential in biomedical applications. Conventional PAT systems employ raster scanning to capture a large number of projections, thus improving image reconstruction at the cost of temporal resolution. Arising from the desire for real-time 3D PA imaging, several groups have begun to design PAT systems with staring arrays, where image acquisition is only limited by the repetition rate of the laser. However, there has been little emphasis on staring array design analysis and optimization. We have developed objective figures of merit for PAT system performance and applied these metrics to improve system design. The results suggested that the developed approach could be used to objectively characterize and improve any PAT system design

    Potentials and caveats of AI in Hybrid Imaging

    Get PDF
    State-of-the-art patient management frequently mandates the investigation of both anatomy and physiology of the patients. Hybrid imaging modalities such as the PET/MRI, PET/CT and SPECT/CT have the ability to provide both structural and functional information of the investigated tissues in a single examination. With the introduction of such advanced hardware fusion, new problems arise such as the exceedingly large amount of multi-modality data that requires novel approaches of how to extract a maximum of clinical information from large sets of multi-dimensional imaging data. Artificial intelligence (AI) has emerged as one of the leading technologies that has shown promise in facilitating highly integrative analysis of multi-parametric data. Specifically, the usefulness of AI algorithms in the medical imaging field has been heavily investigated in the realms of (1) image acquisition and reconstruction, (2) post-processing and (3) data mining and modelling. Here, we aim to provide an overview of the challenges encountered in hybrid imaging and discuss how AI algorithms can facilitate potential solutions. In addition, we highlight the pitfalls and challenges in using advanced AI algorithms in the context of hybrid imaging and provide suggestions for building robust AI solutions that enable reproducible and transparent research

    Investigating the build-up of precedence effect using reflection masking

    Get PDF
    The auditory processing level involved in the build‐up of precedence [Freyman et al., J. Acoust. Soc. Am. 90, 874–884 (1991)] has been investigated here by employing reflection masked threshold (RMT) techniques. Given that RMT techniques are generally assumed to address lower levels of the auditory signal processing, such an approach represents a bottom‐up approach to the buildup of precedence. Three conditioner configurations measuring a possible buildup of reflection suppression were compared to the baseline RMT for four reflection delays ranging from 2.5–15 ms. No buildup of reflection suppression was observed for any of the conditioner configurations. Buildup of template (decrease in RMT for two of the conditioners), on the other hand, was found to be delay dependent. For five of six listeners, with reflection delay=2.5 and 15 ms, RMT decreased relative to the baseline. For 5‐ and 10‐ms delay, no change in threshold was observed. It is concluded that the low‐level auditory processing involved in RMT is not sufficient to realize a buildup of reflection suppression. This confirms suggestions that higher level processing is involved in PE buildup. The observed enhancement of reflection detection (RMT) may contribute to active suppression at higher processing levels
    corecore