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Abstract 18 

State-of-the-art patient management frequently mandates the investigation of both 19 

anatomy and physiology of the patients. Hybrid imaging modalities such as the PET/MRI, 20 

PET/CT and SPECT/CT have the ability to provide both structural and functional information of 21 

the investigated tissues in a single examination. With the introduction of such advanced 22 

hardware fusion, new problems arise such as the exceedingly large amount of multi-modality 23 

data that requires novel approaches of how to extract a maximum of clinical information from 24 

large sets of multi-dimensional imaging data. Artificial intelligence (AI) has emerged as one of 25 

the leading technologies that has shown promise in facilitating highly integrative analysis of 26 

multi-parametric data. Specifically, the usefulness of AI algorithms in the medical imaging field 27 

has been heavily investigated in the realms of (1) image acquisition and reconstruction, (2) post-28 

processing and (3) data mining and modelling. Here, we aim to provide an overview of the 29 

challenges encountered in hybrid imaging and discuss how AI algorithms can facilitate potential 30 

solutions. In addition, we highlight the pitfalls and challenges in using advanced AI algorithms in 31 

the context of hybrid imaging and provide suggestions for building robust AI solutions that 32 

enable reproducible and transparent research. 33 

 34 

  35 
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1.  The Advent of Hybrid Imaging 36 

Cutting-edge patient management typically necessitates the use of non-invasive imaging 37 

methods to evaluate the morphology and physiology attributes of patients or study subjects. The 38 

employed imaging techniques can be singular, providing structural or functional information, or 39 

they can be integrative, thus, producing fully-integrated 'morpho-physiological' information. 40 

Hybrid imaging modalities represent the hardware combinations of complementary stand-alone 41 

imaging systems, such as PET/CT, PET/MR and SPECT/CT, which have demonstrated 42 

improved diagnostic accuracy and better patient comfort compared to single-modality imaging 43 

[1].  44 

The added value of these systems originates from the integration of diverse information 45 

streams that can be combined in novel and powerful ways. Such a combination results in 46 

potentiation of information content beyond an additive effect, as limitations of one modality can 47 

be offset by the strengths of a complementary data stream. Hybrid-imaging modalities like 48 

PET/CT and SPECT/CT have become indispensable tools in state-of-the-art patient 49 

management [2]. Although PET/MR has been relatively slow in clinical proliferation, this 50 

methodology has nevertheless found a mainstay in both the research [3] and the clinical 51 

communities.  52 

Without doubt, hybrid systems offer a lot of advantages when compared to their stand-53 

alone counterparts, yet these systems also bring forth their own set of challenges which need to 54 

be addressed in order to fully harness their potential in the context of precision medicine. Most 55 

prominently among these challenges is the sheer amount of data that is collected by hybrid 56 

imaging modalities, demanding inventive novel approaches of how to extract a maximum of 57 

clinical information from large sets of multi-dimensional imaging data. This is where the 58 

application of artificial intelligence (AI) methods is believed to provide a distinct advantage in the 59 

https://paperpile.com/c/t9OS70/iN9eD
https://paperpile.com/c/t9OS70/I6IIF
https://paperpile.com/c/t9OS70/p7uK8
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context of medical diagnostics. AI algorithms excel in the processing of multi-dimensional 60 

representations of complementing data streams. In particular, deep learning (DL) algorithms are 61 

able to process multi-parametric information through different channels, thus allowing the 62 

merging of this information so that fundamental features expressed in the data can be identified. 63 

This functionality allows vast improvements in the performance of image processing tasks such 64 

as classification, prediction and synthetic data generation. As such, there is a strong potential 65 

for AI to increase the impact of hybrid imaging on the clinical landscape. In fact, this 66 

methodology is likely to be central to fulfilling the promise of personalized medicine, by aiding 67 

the extraction of relevant clinical information from the ever-growing amount of multi-modality 68 

data streams. 69 

In the following sections of this review, we discuss the complex relationship between AI 70 

methodology and hybrid imaging by providing an overview of current applications and drawing 71 

attention to the various issues at hand. Our goal is to provide a birds-eye view of AI algorithms, 72 

including ML and DL, that are being used in the domain of hybrid imaging. Here, the term AI will 73 

be used interchangeably for ML and DL techniques throughout this manuscript. We also 74 

comment on the strengths and limitations of AI when migrating this methodology into clinical 75 

routine and suggest potential solutions that could maximize AI’s impact on patient care. 76 

Furthermore, we caution that there needs to be a healthy amount of critical thinking and 77 

cautiousness while developing and adopting AI-based strategies for medical imaging processing 78 

and analysis tasks, including stringent studies of robustness and limitations of this exciting 79 

technology. Finally, we present some of the possible roadblocks for adopting existing AI 80 

solutions into the clinical reals and suggest possible ways to overcome these bottlenecks. 81 

We divide our discussion into seven chapters. In chapter 2 we set the groundwork by 82 

clarifying the benefits and limitations of AI methodology, identifying challenges that need to be 83 
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considered when applying AI to tasks that constitute part of the hybrid imaging workflow (Figure 84 

1). These applications include three distinct areas of research: (i) data acquisition and 85 

reconstruction, (ii) image processing and (iii) data mining, which are discussed in the 86 

subsequent chapters 3-5. A critical appraisal of the current state of AI in hybrid imaging is then 87 

provided in chapter 6, which comments on the currently unsatisfactorily addressed issues of 88 

generalizability and interpretability of DL-based results. The final chapter 7 examines how 89 

improvements in code sharing could benefit the hybrid imaging community and concludes with a 90 

roadmap for fostering AI in hybrid imaging. 91 

2.  The Promise of Artificial Intelligence  92 

In recent years, Artificial intelligence (AI) algorithms have become widely available and 93 

have significantly contributed to the field of medical imaging, in particular to Radiology [4]. AI is 94 

a generic framework, with the objective of building intelligent systems that can creatively solve a 95 

given problem – similar to that of a human brain. Machine learning (ML) is a subset of AI, where 96 

the developed system autonomously learns to solve a problem by “learning” from an annotated 97 

training data set provided by external (human) input. The training data set provides examples of 98 

correct decisions which guide the subsequent inferences and decisions that the AI system 99 

carries out when operating on new data. ML often requires the definition of “hand-engineered” 100 

features (i.e. features that are defined by a human observer a priori) for optimization and model 101 

creation. The process of procuring hand-engineered features from medical imaging data has 102 

initially been encompassed under the newly termed umbrella concept of “radiomics”. Radiomics, 103 

together with ML, has furthered the field of image-based prognostics and image-driven clinical 104 

decision support systems [5].  105 

In contrast to radiomics, “Deep Learning” (DL) is a subset of ML that bypasses the 106 

requirement of manual feature engineering by extracting the pivotal features from the input data 107 

https://paperpile.com/c/t9OS70/kBYZY
https://paperpile.com/c/t9OS70/hbLG
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autonomously (i.e. without the need of human intervention). DL algorithms such as 108 

convolutional neural networks (CNN) are roughly designed to emulate the information 109 

processing models of the human brain and due to their robust nature, have already been 110 

applied to a wide variety of problems in medical imaging. The popularity of AI algorithms in 111 

medical imaging is evident in the number of related publications that has greatly risen in recent 112 

years (Figure 2). Some use-cases of medical AI include segmentation, denoising, artefact 113 

removal, image reconstruction, pathology detection and image classification. It should be noted 114 

that current medical-AI approaches belong to the domain of narrow-AI, where the implemented 115 

algorithms are trained to perform a well-defined (problem-specific) task with reasonable 116 

accuracy.  117 

In order to appreciate both the effectiveness as well as the limits of DL-based algorithms 118 

in image processing, it is useful to review the basic algorithms underlying AI as implemented in 119 

medical imaging. These algorithms are almost exclusively based on neural network (NN) 120 

architecture, inspired by the biological nervous system such as that of a human brain. These NN 121 

represent an information processing system which contains a large number of highly 122 

interconnected nodes, working together in a distributed manner to “learn” from the input 123 

information to coordinate internal processing and to optimize its final output. On its most basic 124 

level, a NN architecture has the capability of optimizing the relationship between an input and 125 

output (defined by a training data set) via distributed computing that is hierarchically structured. 126 

The individual layers of this hierarchy are believed to encode specific “features” of the input data 127 

which increase in complexity with the number of layers. Conceptually, inclusion of more layers 128 

in the NN (making the NN deeper thus the name “deep learning”) allows more complex features 129 

to be extracted from the input. The extracted features are then used to perform a discriminatory 130 

function (i.e. classifying the input into preselected categories). Although the NNs are able to 131 

process multidimensional into latent space, possibly highlighting the unique signature of the 132 
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higher dimensional dataset - It is important to note that features are implicit. Therefore, it is 133 

challenging to understand how a particular decision was reached by the DL algorithm. In section 134 

6, we highlight why explainable AI is of utmost importance in healthcare.  135 

Deep learning also has a special class of generative algorithms known as Generative 136 

adversarial networks (GANs) [6]. GANs have the ability to create synthetic data from a random 137 

input noise vector. GANs are trained in an adversarial setting of two opposing DL networks (a 138 

generator and a discriminator sub-network), which interact to minimize the difference between 139 

simulated and measured data distributions. Once trained using a training data set, GANs are 140 

able to guess the correct local distribution of measured data based on a statistically insufficient 141 

sample. Put differently, the algorithm extracts the most likely relationships between sparse data 142 

sets (where the underlying distribution is still ambiguous) and the true local distributions from 143 

the training data pairs and applies the extracted relationships to new data sets. This process is 144 

analogous to a human observer who can easily fit a Gaussian distribution to a data set even 145 

when very few data points have been measured (<20) based on prior knowledge that the 146 

process under study follows a Gaussian distribution. In practice, the application of the extracted 147 

relationship to sparse data comes down to filling in hypothesized missing data (referred to as in-148 

painting) and removing outliers (de-noising) in order to reproduce the expected final local 149 

distribution.  150 

In light of the above, one can expect this methodology to perform well if the input data 151 

contains sufficient information, allowing unique identification of the true underlying distribution. 152 

Moreover, it is obvious that the performance of a GAN is completely defined by the entirety of 153 

the training data set and as a result only features that are predominantly represented in the 154 

training data can be recognized. This is an important point, as the prevalence of features 155 

represented in both the training and data sets will define their usefulness when applied to an 156 

https://paperpile.com/c/t9OS70/JDyvX
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unknown data set. Thus, generic features (such as organ contours or orientation) that are 157 

similar across subjects/patients are likely to be correctly reproduced in the simulated 158 

distribution, whereas patient-specific features (abnormalities) will not. As a consequence, the 159 

more specific a feature is to a single case, the less suited the GAN approach will be. This 160 

fundamental characteristic of GANs needs to be kept in mind when attempting to use this 161 

methodology in the context of abnormal patient data. 162 

Deep learning is an exciting subset of the AI domain, providing both discriminative and 163 

generative capabilities. Nevertheless, the choice of the DL algorithm should be driven by the 164 

nature of the task at hand. Like every other technique, the boundary conditions of the algorithm 165 

must be clearly investigated, before adopting a DL based solution. We also highlight in section 166 

6, that in certain scenarios, legacy solutions are much more stable than the DL based 167 

methodologies. 168 

3. Role of AI in data acquisition 169 

In general, the data acquisition paradigm consists of two parts: (a) measurement of the 170 

raw signal, and (b) reconstructing the measurements into a visual, tangible image. Extensive 171 

research has been carried out in both these sub-parts. For example, improving the detection 172 

and accuracy of the raw signal can result in augmented sensitivity and bias reduction in 173 

quantitative imaging (e.g., PET, SPECT)  [7]. In contrast, AI-driven image reconstruction 174 

focuses on obtaining high-quality diagnostic images from as few measurements as possible. 175 

The goal is to decrease the acquisition time, the amount of ionizing radiation from CT, PET, or 176 

SPECT for a given diagnostic image quality, and to reduce motion artifacts. Reduced acquisition 177 

time significantly increases patient comfort, minimizes motion artefacts and lowers overall 178 

healthcare costs.  As such, appropriate AI techniques are likely to improve the quantitative and 179 

qualitative nature of the final diagnostic images. In this section, we focus on how AI approaches 180 

https://paperpile.com/c/t9OS70/GAoSg
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that have been adopted in improving the data-acquisition paradigm of the individual imaging 181 

modalities can be used for improving hybrid-imaging workflows (Figure 3). 182 

3.1 AI-driven image reconstruction  183 

At the photon detection level, novel applications include the use of convolutional neural 184 

networks (CNNs) to improve PET image resolution and enhance the noise characteristics of 185 

PET systems with large pixelated crystals [8]. Other applications include estimation of time-of-186 

flight directly from pairs of coincident digitized detector waveforms [9]. Besides, there have been 187 

attempts at integrating a deep neural network into the iterative image reconstruction process 188 

itself to improve the quality of final reconstructed images [10,11]. A more elaborate review on 189 

applications of AI algorithms in PET and SPECT reconstructions is presented by Gong et al [7].   190 

3.1.1 AI and low-dose hybrid imaging 191 

PET/CT and SPECT/CT provide means to present the functional processes of the 192 

human body with the aid of radiotracers in an anatomical context. However, this comes at the 193 

cost of additional radiation burden on the patients. In PET and SPECT, reduction of injected 194 

radiotracer or shortening of scan-time comes with the cost of increased noise in the final 195 

reconstructed image, thus, diminishing their diagnostic quality significantly [12]. Likewise, for 196 

CT, reduction in dose can be achieved by reducing the X-ray flux or by using sparse-angles 197 

[13]; however, these approaches introduce noise and streak artefacts [14] .  198 

Deep-learning approaches have shown early success in the commercial realms with 199 

regards to denoising [15]  and super-resolution [16,17]. As a logical extension, the deep learning 200 

approaches have been evaluated in the field of medical imaging with early promising results. 201 

Typically, the training process involves the establishment of a high-quality (non-corrupted) and a 202 

low-quality (corrupted) image pair. The low-quality image is fed as the input, while the high-203 

https://paperpile.com/c/t9OS70/Z0pQD
https://paperpile.com/c/t9OS70/bGd9o
https://paperpile.com/c/t9OS70/Q5ORw+Xznyg
https://paperpile.com/c/t9OS70/GAoSg
https://paperpile.com/c/t9OS70/CP42
https://paperpile.com/c/t9OS70/Utpac
https://paperpile.com/c/t9OS70/6HRvG
https://paperpile.com/c/t9OS70/u8XaF
https://paperpile.com/c/t9OS70/2DKDa+axZHm
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quality counterpart serves as the label. The deep-learning algorithm 'learns' autonomously the 204 

mapping function that converts the low-quality noise corrupted image to high-quality noise-free 205 

image, thus effectively performing denoising. Since it is not practical to perform dual low-206 

dose/high-dose scans on subjects, the low-dose images are often derived from the high-dose 207 

data to carry out the training. In the case of PET and SPECT, generation of low-dose data 208 

involves randomly removing the counts from the standard-dose data [12,18]. For CT, it consists 209 

of the introduction of Poisson noise into the sinograms obtained from standard-dose CT [19]. 210 

However, more sophisticated approaches have been proposed to simulate an accurate low-211 

dose CT from standard dose CT [20]. 212 

Numerous studies have been carried out in PET, for producing diagnostic-quality images 213 

from the low-dose PET data [10,21–37]. These approaches can be broadly categorized into 214 

PET-only methods [26,27,30–32,36–38] and hybrid-imaging methods, where anatomical 215 

information from CT or MR are also used [27,28,33,35]. In the PET only approaches, the 216 

pseudo-standard-dose images are predicted from low-dose PET images. However, in hybrid-217 

approaches, the pseudo-standard-dose images are derived from both low-dose PET and 218 

supplemental anatomical priors (CT or MR). The anatomical priors can be a single image (CT 219 

[33] or T1-MR [28]), or it can be a multi-channel anatomical prior with various MR sequences 220 

(T1, T2 and T2 FLAIR) [27]. Studies have shown that including the anatomical information in the 221 

deep-learning construct improves the structural details and reduces blurring in the final network 222 

output [27,33,39]. Due to its innate ability to autonomously calculate features, the deep-learning 223 

algorithms can perform denoising on sinogram space [25] or image space [31]. It should be 224 

noted that a significant chunk of the low-dose PET imaging is targeted towards neurological 225 

applications with estimated dose reductions by a factor of up to 200 [28].  Most of these 226 

algorithms predominantly perform denoising and inpainting. The generated pseudo-standard-227 

dose PET images from DL methods can be considered as an output of a smart image-228 

https://paperpile.com/c/t9OS70/CP42+c9Q8
https://paperpile.com/c/t9OS70/Lj9CV
https://paperpile.com/c/t9OS70/pc9n
https://paperpile.com/c/t9OS70/Q5ORw+t3hoO+yNRrQ+XoXmE+7899u+GWOV1+WnNWa+KYBMK+7bF71+gi2HF+XlEtc+6wTg0+6tjxj+jshlw+SzloG+ZghR3+ODZnT+VUHn9
https://paperpile.com/c/t9OS70/WnNWa+6wTg0+6tjxj+KYBMK+A8K7f+XlEtc+ODZnT+VUHn9
https://paperpile.com/c/t9OS70/7bF71+KYBMK+jshlw+ZghR3
https://paperpile.com/c/t9OS70/jshlw
https://paperpile.com/c/t9OS70/7bF71
https://paperpile.com/c/t9OS70/KYBMK
https://paperpile.com/c/t9OS70/KYBMK+jshlw+M2mpB
https://paperpile.com/c/t9OS70/GWOV1
https://paperpile.com/c/t9OS70/6wTg0
https://paperpile.com/c/t9OS70/7bF71
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restoration framework. Although the pseudo-derived images mimic the shape and pattern of the 229 

reference standard, the quantitative accuracy of the pseudo-PET images is still a matter of 230 

debate.  231 

In low-dose CT imaging, the goal is to remove the streaks and noise from the low-dose 232 

CT images. Here, for training purposes, the low-dose CT images calculated from the regular-233 

dose CT images serve as the input, while the regular-dose CT images serve as labels. Most of 234 

the convolutional neural network (CNN) training takes place in the image space [19,40–42]  or 235 

the sinogram space [43], where the low-dose CT is given as input, and the model learns a 236 

mapping to predict the corresponding regular-dose CT. However, there are studies where the 237 

deep learning construct is implemented in the wavelet domain as well [44].  238 

In comparison to PET and CT low-dose imaging, SPECT AI-driven low-dose imaging 239 

studies have been sparse [45–48]. Dietze et al. used a CNN to convert the streaky filtered back-240 

projection SPECT images to high-quality SPECT images, with an image quality comparable to 241 

that of the Monte-Carlo based reconstructions. Myocardial perfusion imaging (MPI) using 242 

SPECT plays a crucial role in identifying cardiovascular pathologies. To reduce patient motion 243 

and improve patient comfort, there is a pressing need to reduce the scan time. As discussed 244 

earlier, reducing acquisition time, augments noise, therefore tarnishing the diagnostic quality. 245 

SPECT-MPI studies have reported that with the help of 3D convolutional auto-encoders, it is 246 

possible to produce high-quality SPECT images from 1/4, 1/8 and 1/16th of original dose levels 247 

[45].  248 

In our recent inhouse pilot study, we evaluated the quantitative accuracy of the pseudo-249 

standard-dose PET images derived using conditional GANs with the corresponding reference 250 

standard [49]. We identified that in general the pseudo-standard-dose PET structurally 251 

resembles close to the reference standard (similar histogram shape). But the histogram of the 252 

https://paperpile.com/c/t9OS70/kXjGZ+Lj9CV+qp00u+opYpe
https://paperpile.com/c/t9OS70/8zaDx
https://paperpile.com/c/t9OS70/Bv5NH
https://paperpile.com/c/t9OS70/MRcj7+1XMdm+1mA5A+97iZP
https://paperpile.com/c/t9OS70/MRcj7
https://paperpile.com/c/t9OS70/bmhO
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Pseudo-PET was often scaled or shifted to the right, indicating that values in pseudo-PET are 253 

often higher than the reference standard. Therefore, we believe that DL-based pseudo-images, 254 

particularly for PET and SPECT should not be used for quantitative analysis.  255 

By harnessing the deep-learning driven advancements in low-dose imaging in individual 256 

modalities, one could ideally combine them to reduce the overall dose in hybrid imaging. For 257 

example, using deep-learning constructs to convert ultra-low-dose CT to regular CT, which in 258 

turn could serve as an anatomical prior for low-dose PET denoising as discussed before. 259 

Nevertheless, strict control of image quality and accuracy needs to be ensured. 260 

3.1.2. Enabling high-throughput imaging through AI 261 

Reduction of scan time is one of the active areas of research in many medical imaging 262 

modalities. Shortened scan time results in increased patient comfort and compliance and 263 

reduced motion artefacts. However, the reduction in scan-time typically results in increased 264 

noise in PET and SPECT imaging, thus deteriorating the diagnostic quality of the images. In the 265 

previous section, we have discussed how AI could facilitate the recovery of high-quality 266 

information from low-quality information. MR imaging, while providing excellent soft-tissue 267 

contrast along with structural and functional imaging capabilities, is hampered by lengthy 268 

examination times, which may increase patient discomfort and introduce motion artefacts. 269 

Considerable efforts have been made to reduce the MR acquisition time and maintain the 270 

diagnostic quality of the reconstructed MR image. Traditional approaches such as compressed 271 

sensing [50]  and dictionary learning [51] have achieved reasonable results in generating high 272 

quality MR images from undersampled k-space data (sampling rate < Nyquist rate). However, 273 

due to their iterative nature they suffer from computational complexity and hyperparameter 274 

optimisation [52].  Deep learning approaches have been recently employed either to augment 275 

the traditional compressed sensing approaches [53,54] or to replace them altogether. Recurrent 276 

https://paperpile.com/c/t9OS70/HgBTU
https://paperpile.com/c/t9OS70/XcCFq
https://paperpile.com/c/t9OS70/ZmiaC
https://paperpile.com/c/t9OS70/pjp7R+LfRVL
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neural networks [55] and convolutional neural networks [56] have found success in significantly 277 

accelerating dynamic MR image reconstruction. Variational-networks have been used to enable 278 

real-time image reconstruction (200 ms/section) in case of single-shot fast spin-echo MRI with 279 

variable density sampling, which surpasses traditional parallel imaging and compressed-sensing 280 

(PICS) reconstructions [57]. Generative adversarial networks [6] have also been investigated in 281 

creating an augmented compressed sensing framework that produces on-the-fly diagnostic 282 

quality reconstructions from sparsely sampled k-space [58,59]. All these approaches aim at 283 

delivering high-quality diagnostic MR images without artefacts from undersampled k-space.  284 

High-throughput PET/MR imaging can be enabled by adopting the advances mentioned 285 

above. Most of the architectures that allow high-speed MR imaging can be utilized for PET 286 

imaging as well. For example, the network of GANs has shown success in accelerating both 287 

PET (low-dose to standard-dose) and MR imaging (high-resolution MR images from under-288 

sampled k-space) reconstructions. However, these techniques need to be thoroughly evaluated 289 

in multiple scenarios (quantitative accuracy, multiple tracers, pathologies, multicenter and multi 290 

scanner setting) before translating them into clinics.  291 

3.2 Improving quantification of hybrid images using AI 292 

3.2.1 AI-driven attenuation correction of SPECT and PET 293 

The annihilated photons (PET) undergo attenuation as they traverse through the patient 294 

tissue. As a result, there is a reduction in the number of detected photons in each line-of-295 

response. Attenuation correction for annihilation photons is essential for accurate estimation of 296 

radiotracer concentration. In PET/CT and SPECT/CT, the most widely used method for 297 

attenuation correction is the segmentation-bilinear scaling method [60–62]. Since the CT image 298 

represents the tissue-dependent attenuation profile of the investigated object, the PET 299 

https://paperpile.com/c/t9OS70/vJK15
https://paperpile.com/c/t9OS70/fp7dq
https://paperpile.com/c/t9OS70/aCRJQ
https://paperpile.com/c/t9OS70/JDyvX
https://paperpile.com/c/t9OS70/5bEXg+zywhv
https://paperpile.com/c/t9OS70/Kquxe+UZ6Rd+XUsFH
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attenuation map is determined by separating the bone component from the non-bone part via 300 

thresholding and then assigning tissue-specific scaling factors to each element. 301 

However, in PET/MR systems, correction for attenuation is a non-trivial task, as there 302 

exists no direct relationship between the MR signal and attenuation properties of the tissue [63]. 303 

The final goal is to allocate tissue-specific attenuation coefficients to the MR images. Two 304 

approaches are commonly used to generate pseudo-CT images from : (1) an atlas, here a 305 

pseudo-CT is generated by non-rigidly registering the atlas to the patient MR image and (2) MR-306 

image segmentation, here MR images are segmented to different tissue classes and 307 

corresponding attenuation coefficients are assigned to each tissue class [64]. Of note, the atlas-308 

based approach cannot account for patient abnormality and is extremely challenging in whole-309 

body imaging, while the segmentation-based approach suffers from differentiating the bone and 310 

air regions as they have similar intensities in most MR sequences but vastly different 311 

attenuation properties [64–66]. 312 

Most of the MR-based attenuation correction methodologies have limitations as they are 313 

tailored for a particular patient cohort [67]. Deep learning algorithms with their ability to 314 

autonomously calculate features from the training datasets have shown promising results in the 315 

field of synthetic data generation. Various studies involving convolutional neural networks (CNN) 316 

have been proposed for generating pseudo-CT images directly from MR images, and they have 317 

shown to surpass state-of-the-art MR-AC approaches in terms of quantitative accuracy in brain 318 

[67–72], pelvis [73,74] and whole-body regions [75,76]. The advantage of deep learning 319 

algorithms is that a single algorithm can be used for training different patient cohorts with 320 

minimal modifications. 321 

Most of the CNN-based approaches involve training the neural network with a database 322 

of MR-CT image pairs. The MR images correspond to the input, while the CT images are the 323 

https://paperpile.com/c/t9OS70/zawMu
https://paperpile.com/c/t9OS70/Ymikj
https://paperpile.com/c/t9OS70/Ymikj+uscqz+FcDMP
https://paperpile.com/c/t9OS70/DAHmf
https://paperpile.com/c/t9OS70/KPqRc+EtSAb+eeoGJ+ebjSV+DAHmf+juQbg
https://paperpile.com/c/t9OS70/z9StP+xzT4E
https://paperpile.com/c/t9OS70/NUVQd+W8av
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label counterpart. The generic goal of the neural network is to reduce the voxel-wise disparity 324 

between the generated pseudo-CT and the reference-standard CT images. U-net is the most 325 

common neural network architecture for pseudo-CT synthesis as they have exhibited excellent 326 

performance for synthetic image generation. In other studies, the process of generating an 327 

attenuation map via deep learning was reformulated as an MR-tissue segmentation task, where 328 

multiple MR sequences such as DIXON and UTE were used to derive an attenuation map [71]. 329 

Recently Generative adversarial networks (GANs) have shown promise in brain MR-AC [77–330 

79]. In particular, conditional GANs [80] due to their voxel-to-voxel (MR to CT) conversion 331 

capabilities, have been able to produce accurate pseudo-CT images [77,78]. A major roadblock 332 

for translating the conditional GANs based pseudo-CT approach to whole-body is the 333 

requirement for exact spatial correspondence between the MR and CT image pairs [76]. Since 334 

accurate registration is challenging in whole-body scenarios, conditional GANs may not be 335 

suitable for generating accurate whole-body attenuation maps. Nevertheless, alternative 336 

variants such as cycleGANs [81], which do not require spatial correspondence have the 337 

potential for supporting the derivation of more accurate whole-body MR-AC maps.  338 

3.2.1 AI driven scatter correction 339 

  The annihilated photons can undergo scatter in the patient tissues or in the 340 

detector itself, thereby experiencing a change in their original trajectory. Subsequently, the line-341 

of-response of a scattered event will no longer be in alignment with the emission point. Monte-342 

Carlo scatter simulation is considered to be the gold standard for scatter correction. 343 

Nevertheless, Monte-Carlo based scatter correction is not performed in routine clinical systems 344 

as it is extremely time-consuming. The most commonly used approach for scatter correction in 345 

PET hybrid systems (PET/CT and PET/MR) is the single scatter Simulation (SSS) method due 346 

https://paperpile.com/c/t9OS70/ebjSV
https://paperpile.com/c/t9OS70/J5OXH+OYC8x+yYHa0
https://paperpile.com/c/t9OS70/J5OXH+OYC8x+yYHa0
https://paperpile.com/c/t9OS70/SGnPY
https://paperpile.com/c/t9OS70/J5OXH+OYC8x
https://paperpile.com/c/t9OS70/W8av
https://paperpile.com/c/t9OS70/orKJN


16 

to its accelerated computational time [82,83]. Here, only a single scatter event is considered and 347 

multiple or out of the FoV scatter contributions are merely included as scaling factors. 348 

Deep learning algorithms have recently been investigated for scatter-estimation directly 349 

from the emission and attenuation correction factors. Berker et al. used a U-net architecture with 350 

emission sinogram, attenuation factors and the logarithm of attenuation correction factors as 351 

inputs, with scatter estimation from SSS as the label [84,85]. The trained network was able to 352 

produce acceptable scatter estimation (<5%) in comparison to the SSS methodology. The 353 

advantage of this approach was the significantly fast computation time in comparison to the 354 

SSS method. One could potentially replace the SSS label with Monte-Carlo based scatter 355 

estimation to produce scatter estimates closer to the reference standard. The number of studies 356 

[84,85] using deep learning in scatter-correction is sparse, and further evaluation is necessary 357 

to understand the actual contribution of artificial intelligence.  358 

Similarly, for estimating scatter in SPECT/CT, Monte Carlo estimations are the reference 359 

standard. Xiang et al. investigated a deep learning-based SPECT scatter estimation technique 360 

in comparison to the Monte-Carlo scatter modelling [86]. They trained a deep convolutional 361 

neural network to estimate scatter-projection from emission and attenuation data. The input was 362 

the emission and attenuation data, while the label was the scatter distribution estimated from 363 

Monte-Carlo simulations. The CNN-based scatter estimation showed promise for real-time 364 

clinical use because of the shorter processing time, while maintaining high accuracy compared 365 

to that of the time-consuming Monte-Carlo scatter estimation. 366 

4. Role of AI in hybrid image-processing  367 

Artificial intelligence algorithms, due to their robustness, have become the de-facto 368 

standard for a wide variety of computer vision tasks. In medical imaging, AI algorithms have 369 

https://paperpile.com/c/t9OS70/sA8x9+VbZm7
https://paperpile.com/c/t9OS70/pEpC9+70kds
https://paperpile.com/c/t9OS70/pEpC9+70kds
https://paperpile.com/c/t9OS70/Ga486


17 

been successfully used in a variety of research areas ranging from image-segmentation, image-370 

registration, super-resolution, image-translation and artefact removal.  But there is an additional 371 

potential for AI-driven solutions to expanded computer vision and data extraction from hybrid 372 

images. 373 

4.1 AI facilitated segmentation of hybrid images 374 

Hybrid imaging modalities offer dense data comprising both anatomical and 375 

physiological information. With the aid of a simple automated segmentation, a joint hybrid-data 376 

exploration can be performed, where the diagnostic value from the sum of the modalities can be 377 

more meaningful than its parts. The spatial resolution of the functional component (PET or 378 

SPECT) of the hybrid imaging modalities is limited due to the fundamental physics of the 379 

imaging system; this results in augmented partial volume effects. Nevertheless, these modalities 380 

possess increased sensitivity and can provide absolute measures of the function of the 381 

investigated tissue. Delineating regions and quantifying values solely on the functional images is 382 

a challenge. MR and CT imaging, with their high-resolution imaging and increased spatial 383 

resolution, can provide excellent anatomical information with decreased partial volume effects, 384 

thus rendering them suitable for delineation tasks. Although seemingly simple, automated 385 

medical image-segmentation is one of the most active areas of research, as manual 386 

segmentation is time-consuming, labour-intensive and subject to operator-variability. The 387 

applications of medical image-segmentation can range from a simple organ-of-interest 388 

quantification to sophisticated applications such as regional partial-volume correction, non-389 

invasive input function calculation and characterization of inter-organ communication in the 390 

context of system medicine.  391 

Multi-modal segmentation is a growing research area, where the segmentation is guided 392 

by using both the functional (PET or SPECT) and structural information (CT or MR). The main 393 
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goal is to use the complementary information to improve the segmentation performance. The 394 

main challenge is to account for the potential mismatch (either genuine or due to motion) 395 

between the functional and structural information. Specifically, differences between normal and 396 

functionally pathological tissue is an unsolved problem, as such differences are not represented 397 

in structural images (MRI and CT), but are clearly present in the functional modalities (PET or 398 

SPECT). At present it is unclear how this issue of functional (but not structural) defects that are 399 

not present in the training data can be addressed. Nevertheless, simultaneous PET/CT and 400 

PET/MR information have been used for improving the segmentation of lung tumors, non-small-401 

cell lung carcinoma [87] and soft-tissue sarcoma [88]. For example, MR imaging has been used 402 

for automated labelling of different brain regions [89], tumours [90–95] and ischemic lesions 403 

[96–101]. Since hybrid PET/MRI offers simultaneous acquisition of physiological data, the 404 

derived segmentation from MR images could be ideally used to quantify the parametric values 405 

in the PET images. For example, BraTs (Multi-modal brain tumour segmentation) challenge has 406 

focused on evaluating the state-of-the-art methods for segmentation of glioblastoma brain 407 

tumours from multi-modal MRI scans (Native T1, T1 Gadolinium-enhanced, T2 Flair and T2 MR) 408 

[102,103]. Each tumour is further partitioned into the enhancing tumour, peritumoral oedema, 409 

necrotic and non-enhancing tumour core. These labels could be used to investigate the 410 

corresponding uptake (FET, MET or DOPA) in the PET images. The calculated values could 411 

then be used for advanced multi-modal radiomics paradigms for characterising the glioblastoma 412 

tumours.  413 

Similarly, numerous AI approaches have focused on vessel segmentation from MR and 414 

CT images [104–107]. High-quality vessel segmentation has several interesting applications in 415 

the context of hybrid imaging. Arterial vessel segmentation from the MR angiography images 416 

has been used for accurate estimation of the vessel tracer activity concentration in the PET 417 

images for extracting the image-derived input function [108–112]. Another exciting application of 418 
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arterial segmentation in PET hybrid systems is in the field of cardiovascular imaging. 419 

Accumulation of FDG in the arterial wall is thought to reflect increased inflammation in 420 

atherosclerotic plaques. By using the aorta segmentation from the anatomical images (CT or 421 

MR), one can quantify the aortic wall FDG uptake leading to the identification of diseased 422 

segments [113]. Similarly, segmentation of carotid plaques from the MR or CT images could be 423 

used to perform partial volume correction in their respective PET counterpart [114,115]. By 424 

doing so, the quantitative accuracy of radiotracer accumulation estimate in atherosclerotic 425 

plaques could be significantly improved. The same procedure could be extended to any region-426 

of-interest, high-resolution segmentations can be derived from the structural component of the 427 

hybrid modality and can be used to perform regional partial volume correction in the functional 428 

counterpart [116]. 429 

Recently efforts have been focused towards 3D semantic medical image segmentation, 430 

which is the process of autonomously partitioning a given medical image into different tissue 431 

classes. MR imaging, with its excellent soft-tissue contrast in the brain region, has served as a 432 

playground for autonomously parcellating the brain into multiple subregions. Similarly, CT 433 

imaging, due to its wide prevalence and acquisition speed, has been the modality of interest for 434 

segmenting organs beyond the skull [117–123] . These advancements in 3D semantic 435 

segmentation are pivotal in bringing forth new concepts such as whole-body network imaging. 436 

With the introduction of extended field-of-view PET/CT systems such as the uEXPLORER [124–437 

126], one could finally investigate inter-organ communication over time. In particular, the 438 

uEXPLORER consortium has developed a  framework to enable ultrahigh (100 ms) temporal 439 

resolution dynamic PET imaging by utilising advanced dynamic image reconstruction paradigms 440 

[127]. With the aid of a genuinely 3D-semantic segmentation algorithm that segments both the 441 

cranial and the organs beyond the skull from a CT volume, one could theoretically use the organ 442 

segmentations to quantify the PET uptake over time. Such a joint data analysis with sub-second 443 
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PET reconstructions, in turn, could be used for kinetic modelling [125] or network analysis which 444 

could be pivotal in understanding inter-organ communication in the context of system medicine 445 

(Figure 4). 446 

4.2 AI-based metal artifact removal  447 

Combination of imaging modalities opened the gateways for integrated imaging; 448 

however, such an advancement brought forth its own set of artefacts. Artefacts in one imaging 449 

modality can propagate to the other during the data correction processes. For example, 450 

artefacts arising due to the presence of metal implants (dental implants, hip implants, 451 

chemotherapy ports, pacemakers, etc.) can significantly decrease the quality of the CT images. 452 

Dental implants are often made of gold or silver, causing beam-hardening effects on CT images 453 

[128]. Since CT images are used for attenuation correction in PET/CT and SPECT/CT, these 454 

artefacts are propagated to the PET or SPECT counterparts through overestimations of the 455 

attenuation coefficients caused by incorrect transformation of CT attenuation values into linear 456 

attenuation coefficients during the bilinear segmentation scaling approach [129,130] .  457 

Various metal artefact reduction (MAR)  approaches have been proposed, and 458 

traditionally they are fragile solutions [131–140] as a single MAR approach could not be used to 459 

produce satisfactory results in cases comprising various metals, proportions and locations [141].  460 

As discussed in the previous sections, artificial intelligence methodologies have achieved 461 

success in low-dose reconstructions and noise reductions. Similarly, various AI approaches 462 

have been proposed for metal artefact reduction [42,141–146]. The purpose of the AI-driven 463 

strategies is to generate 'clean' images from images with metal artefacts. Most of these AI 464 

methods usually consist of an encoder-decoder setup, where the training-pairs typically 465 

comprise of metal-artefact free data and metal-artefact simulated data (images or projection 466 

data). With the aid of such MAR approaches, a clean attenuation map can be generated from 467 
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the metal-artefact imposed CT data, which in turn results in improved quantification of PET or 468 

SPECT/CT data.  469 

Metal implants have a non-negligible effect in MR imaging as well. Most of the metal 470 

implants, in general, are MRI safe; nevertheless, they actively interfere with the MRI signal 471 

acquisition and thus affect the final MR image quality [147]. The accuracy of MR-based 472 

attenuation correction in PET/MRI depends mostly on the ability of the MR sequence to 473 

differentiate the tissue types. Metal implants introduce signal voids, which extend beyond the 474 

actual geometry of the implants itself [147]. These signal voids, in turn, result in inaccurate 475 

attenuation correction maps, which finally affects the quantitative accuracy of the PET datasets 476 

[147]. Several methods have been proposed, but usually, these approaches are tailor-made for 477 

a specific cohort. Deep-learning methodologies have shown to excel in noise reduction and 478 

MAR in CT; however, AI studies for MAR have been sparse when it comes to MR [67,148]. 479 

Ladefoged et al. [67] presented a deep-learning-based MR-AC method for pediatric patients 480 

with metal clip implanted into the skull; the performance of their MR-AC technique was on par 481 

with CT-AC. Similar to AI-based MAR in CT, there is potential for AI to alleviate metal artefacts 482 

in MR. However, further studies are needed to verify if AI-based methods can aid in MAR in MR 483 

imaging. 484 

4.3 Miscellaneous AI-driven image-processing applications 485 

Deep-learning algorithms such as GANs and their variants such as cGANS and 486 

cyclicGANs have found a mainstay in the medical image analysis due to their contribution in 487 

low-dose/sparse reconstructions, artefact removal and attenuation correction (MR to CT). Apart 488 

from the traditional applications as discussed earlier, cGANs can be used for facilitating data-489 

analysis in PET/CT, SPECT/CT and PET/MR.  PET brain motion correction in a PET/MR is 490 

feasible with the aid of simultaneously acquired MR navigators [149]. However, PET/CT and 491 
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SPECT/CT do not have natural ways of tracking motion. Traditional mutual information-based 492 

motion correction approaches fail due to the dynamically changing activity concentration. In our 493 

recent inhouse pilot studies, cGANs was used to facilitate dynamic 18F-FDG PET brain motion 494 

correction. The idea was to use cGANs to generate PET navigators from original dynamic PET 495 

images, whose activity distribution is spatiotemporally invariant (Figure 5). The derived PET 496 

navigators performed on par with MR-navigators when it comes to capturing patient motion. The 497 

advantage of such data-driven PET navigators is that they can be used to perform motion 498 

correction in PET/CT as well as PET/MR.  499 

Another exciting application of image-transformation is intra-modal conversion. MR 500 

images have been converted to CT for attenuation correction in PET/MR. Similarly, there have 501 

been studies which generate MR images from CT as well [79,150,151]. CT, due to its sub-502 

optimal soft-tissue contrast, has been sparingly used in neurological applications. By converting 503 

the acquired CT to MR, the derived pseudo-MR could serve as a superior anatomical frame for 504 

performing accurate VOI analysis in hybrid PET and SPECT/CT images. It is worth noting that 505 

this approach is only applicable if one is only interested in extracting generic features (such as a 506 

whole brain volume for the purpose of creating a transmission map) from the simulated images. 507 

Necessarily, the more specific a feature is for a particular data set, the less accurate a pseudo-508 

image will represent the true distribution.   509 

5. AI driven image-mining 510 

Consistent with its ability to expose hidden relationships among multi-parametric data 511 

sets that are difficult to describe analytically, DL-based methodology represents a powerful 512 

discovery tool, ideally suited for data mining and hypothesis generation. In particular, applied to 513 

hybrid imaging modalities with their innate ability to offer dense multi-dimensional data can 514 

serve as an image-mining ground for high-dimensional image-analysis, which can be then 515 
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combined with conventional radiomics approaches to discover novel dependencies between 516 

structural and functional information.  517 

Although the ultimate objective of AI-driven data mining is to gain a better understanding 518 

of disease mechanisms based on the discovery of hidden relationships and trends in data, this 519 

capability of AI is currently in its infancy and requires significant additional development. As 520 

such, there have been very few attempts yet to generate novel hypotheses inspired by data 521 

mining techniques and this methodology is at present mostly used to predict therapy outcomes 522 

[152] and for the detection of tissue malignancies in oncological cases [153–162]. Currently 523 

used data mining techniques are an extension of established radiomics methodology that was 524 

used prior to the adoption of AI algorithms in medical imaging.  525 

A typical radiomics workflow consists of the following steps: (1) image-acquisition and 526 

reconstruction, (2) segmentation, (3) feature extraction and (4) statistical modelling or ML 527 

(Figure 6) [163].  Most of the initial radiomics studies were based on radiology and 528 

radiotherapy, but the number of studies utilizing radiomics in PET and SPECT has been steadily 529 

rising. With the advent of hybrid imaging, combined radiomics analysis has been performed on 530 

synergistic data from PET/CT [157–160,164–170], SPECT/CT [171] and PET/MR [161,172–531 

177] to advance multi-modal joint analysis. Synergistic use of multi-modal features has shown to 532 

be superior in comparison to single-modality based prognosis [176]. Most of the PET/CT 533 

radiomics studies have focused on oncology, while PET/MR and SPECT/CT radiomics studies 534 

have focused on neurological applications. Although multi-modal radiomics appear to perform 535 

better in comparison to single-modality radiomics, multi-modal radiomics studies are relatively 536 

scanty [176,177]. Therefore, the potential of hybrid imaging is not yet fully explored in terms of 537 

multi-modal radiomics. 538 
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The proliferation of radiomics techniques to clinics has been limited due to reproducibility 539 

and validation issues [178]. The different nodes of the radiomics workflow (e.g. segmentation, 540 

image discretization etc.,) influence the quality, accuracy, reproducibility, and consistency of the 541 

extracted features, which in turn affects the results obtained in various studies [178]. Therefore, 542 

efforts have been in place for harmonizing the radiomics analysis and promoting the 543 

reproducibility and validation of radiomics techniques [179,180]. 544 

As initially stated, due to the intrinsic ability of DL algorithms to calculate optimized high-545 

level features, these algorithms have been considered as a logical extension to the manual 546 

feature-engineered radiomics [163]. DL algorithms do not require feature engineering and 547 

modelling, as single or multiple neural networks can perform all these tasks mentioned above 548 

[163,181]. Nevertheless, a minimal number of studies have genuinely harnessed the potential of 549 

DL as an end-to-end approach for prediction, and most of them were based on CT or MR 550 

imaging with only a limited number of studies addressing Nuclear Medicine modalities such as 551 

PET [182] and SPECT [171]. It should be noted that deep-learning algorithms suffer similar 552 

reproducibility and validation issues as radiomics and careful investigation is mandated while 553 

applying DL algorithms to image interpretation tasks . 554 

Similar to other AI techniques, DL algorithms can process multi-modal information 555 

through multiple input channels [183]. Therefore, there is a high potential for using hybrid 556 

imaging data in the realms of DL-driven radiomics. However, translating DL-driven prediction 557 

methodologies into the clinical realm will be a non-trivial task as these methodologies tend to 558 

require very large data sets and results are often difficult to interpret. Ideally, DL solution should 559 

be able to produce a report that provides an explanatory reasoning, describing based on what 560 

information a decision was reached so that it can be checked by a human observer. 561 

Unfortunately, explainable AI is still at its infancy, although significant efforts have been invested 562 
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by both industrial and academic sectors to transform this black box to a human-understandable 563 

‘glass box’. 564 

6. AI and hybrid imaging: A Critical perspective 565 

Following the ‘AI-winter’ (a period of reduced funding due to several hype cycles 566 

followed by disappointment), artificial intelligence has made a significant revival with the 567 

advancements in computing hardware and more robust neural network architectures. Major 568 

industries have now adopted an AI-first approach, making it likely that AI is not just a temporary 569 

hot-button trend but a technology that is here to stay and evolve in the foreseeable future. 570 

Furthermore, AI algorithms have demonstrated a substantial impact in the field of medical image 571 

analysis for a wide variety of medical applications, ranging from image acquisition, 572 

reconstruction, processing and analysis to the generation of synthetic data sets. However, 573 

despite the unquestionable contribution of AI-based methods to the medical imaging field, it is 574 

important not to lose sight of the various limitations inherent to this methodology when applied 575 

to diagnostic hybrid imaging. Accordingly, careful evaluation and validation of AI algorithms 576 

need to be performed prior to developing and translating any new related paradigm into clinical 577 

routine. 578 

In section 3, we have described the utility of DL algorithms for image acquisition, 579 

reconstruction and denoising. Due to the ability of DL algorithms to solve the inverse 580 

reconstruction problem directly, this technique has emerged as a new tool in morphological and 581 

functional image reconstruction [184]. Despite some interesting results, it is important to recall 582 

that related improvements in the perceived quality of reconstructed low-count images are based 583 

on the prediction of the regional tracer concentration distribution, as derived from the training 584 

datasets. As we argued earlier in chapter 2, such a prediction will decrease in accuracy in the 585 

presence of abnormalities that might be expressed in the real data/patient data (and should thus 586 
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be present in the to-be reconstructed images) but not necessarily in the training sets. Again, it is 587 

important to be aware of the fact that only those features that are prevalent in both the training 588 

set and the patient image will be correctly reproduced, whereas patient-specific details 589 

(abnormalities) will be suppressed. This bias problem was recently demonstrated by Antun et al. 590 

[185], who showed that minor perturbations in the image or sampling domain (akin to the 591 

presence of true patient abnormalities) can cause a large number of artefacts in the DL-based 592 

reconstructed images. In contrast, state-of-the-art traditional reconstruction algorithms were 593 

stable against the same small perturbations, therefore achieving superior results in comparison 594 

to the DL-based reconstruction counterparts. Based on these results, the authors concluded 595 

that currently applied DL- and AI-based image reconstruction algorithms lack stability, thus 596 

seriously limiting their applicability in clinical routine. Unfortunately, solving the instability issues 597 

of DL-based algorithms is a non-trivial problem [185], which poses a serious challenge to the 598 

adoption of AI-based reconstruction methods in the clinic. Although Antun et al. [185] only 599 

investigated the results of DL-based reconstruction in the context of CT and MR modalities, 600 

such problems might be even more prominent for PET data, given the quantitative nature of this 601 

modality (i.e. the problem of predicting not only an image pattern but also the absolute scale 602 

and dynamic/functional underpinning). At a minimum, quantitative accuracy of the final 603 

reconstructed functional images needs to be carefully validated and qualified prior to 604 

implementing these methods in clinical or research applications. The reproducibility issue of DL-605 

based results might be also impacted by methodological parameters such as the order in which 606 

the data is presented to the CNN during training, resulting in different patient classification [186]. 607 

Thus, results of classifications derived from CNNs need to be confirmed by other means before 608 

they can be deployed clinically. 609 

Another problem besetting DL-based algorithms is the 'curse of hyperparameters' [187], 610 

a term referring to a set of arbitrarily chosen constants that exert a highly significant influence 611 

https://paperpile.com/c/t9OS70/TuGaL
https://paperpile.com/c/t9OS70/TuGaL
https://paperpile.com/c/t9OS70/TuGaL
https://paperpile.com/c/t9OS70/kKpt
https://paperpile.com/c/t9OS70/wRb4Y


27 

over DL-based performance. These constants (such as learning rate, number of epochs, 612 

activation functions, etc.) are heuristically determined and yield optimal results only under very 613 

specific conditions, which might not be met in some/all clinical applications. Consequently, the 614 

performance of a DL-based reconstruction algorithm is heavily impacted by the specific 615 

characteristics of the underlying tracer distribution to be reconstructed, a considerable drawback 616 

that adds even more instability to an already computationally brittle approach, although recent 617 

studies promote “ensemble learning” as a potential solution [188]. Nevertheless, for well-618 

conditioned problems (i.e. under conditions where the underlying tracer distribution exhibits low 619 

variability across subjects), useful results can still be obtained for organ-segmentation even with 620 

a small number of training sets [39,189]. In addition, data-inflation tricks such as data-621 

augmentation have proven beneficial in improving training results of segmentation-based DL-622 

algorithms [189].  Specifically, few-shot [190–192] and one-shot learning approaches [193–197] 623 

have been adopted by the industrial sector to minimize the need for a prohibitively large number 624 

of training sets they might have a hard time gathering. Still, the effectiveness of such strategies 625 

in medical image analysis requires further evaluation [198,199], highlighted by the insight that 626 

training data needs to be large and diverse enough to accurately capture the underlying 627 

variability of clinical data [39,179]. 628 

Finally, one of the major issues that prevents the rapid translation of AI-algorithms into 629 

the clinical arena is the lack of explanatory power associated with a particular AI-based 630 

decision. Although interpretability might not be an issue for certain applications (e.g. denoising), 631 

it is difficult to blindly trust an AI-based algorithm without being able to (not even conceptually) 632 

independently verify – or even be able to have an understanding about what piece of 633 

information was causally responsible for - a particular decision. Such characteristic opens the 634 

door to adopting strategies primarily driven by spurious relationships in the data unrelated to the 635 

physiological mechanisms actually involved in a disease process, which is sometimes referred 636 
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to as a 'Clever Hans' strategy [200]. 'Clever Hans' was a famous horse that was assumed to 637 

perform arithmetic calculations demanded by its trainer. Later on, it was found out that the horse 638 

was basing its consistently correct predictions not on solving the actual mathematical 639 

calculation, but by reacting to the gestures of its trainer [200]. Similar behaviors have been 640 

observed in state-of-the-art AI systems as well. For example, in the PASCAL VOC competition, 641 

the winning algorithm was not detecting the object of interest, but relied upon unrelated 642 

correlations in the data to classify an image accurately. It identified boats through the presence 643 

of water, trains through the presence of rails, and horses through the presence of the copyright 644 

symbol [201,202]. Many other examples of ‘Clever Hans’ predictors have been described in the 645 

literature [201–204]. It remains challenging to unmask such factitious relationships, even though 646 

a few attempts to accomplish a better interpretability of AI-based results have already been 647 

made [202,205,206]. A promising approach that might significantly enhance the adoption of DL-648 

based methods in the clinical arena is the integration of connectionist (NN-based) with symbolist 649 

(rule-based) AI. Symbolic AI involves the explicit embedding of contextual knowledge and 650 

generalizable rules into the software. The practice of rule-based AI showed a lot of promise in 651 

the early decades of AI research, but was later superseded by NN approaches that could much 652 

better process unstructured (i.e. messy real-world) data, especially as it relates to image feature 653 

detection and natural language processing. Conceptually, these two approaches express 654 

complementary strong points: NN-based AI excels in extracting features from image data which, 655 

when converted into symbolic representations, allow compositional relationships in the image to 656 

be identified which can subsequently be formulated by explicit rules. In exchange, rules that 657 

have been previously extracted can be used to predict features in new images, thus biasing the 658 

NN to actively search for them. The consequence of this feedback process is that it increases 659 

overall efficiency by decreasing the amount of training data required and stabilizing the solution. 660 

More importantly, once image features and rules are represented in symbolic space, a narrative 661 
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can be generated (similar to natural language comprehension) that provides insight how a 662 

particular decision was reached. As a result, decisions by the AI system can be audited by a 663 

human observer (e.g. a clinician), building confidence in as well as acceptability of the 664 

developed algorithm. There are now several efforts to combine neural networks and symbolic 665 

AI, most prominently the Neuro-Symbolic Concept Learner (NSCL) which is a hybrid AI system 666 

developed by the MIT-IBM Watson AI Lab [207] or the neural-symbolic approach for visual 667 

question answering (NS-VQA) project that fully disentangles vision and language understanding 668 

from reasoning [208]. It is to be hoped that maturation of this new technology will provide an 669 

intuitive measure of confidence associated with AI-based results and will lead to a broad 670 

adoption of AI-based decision systems in the context of clinical hybrid imaging. 671 

7. Roadmap for fostering AI in hybrid imaging 672 

Commercial AI has grown exponentially in a seemingly short amount of time. This rise is 673 

mainly due to the enormous industrial backup, hardware advancements (GPU) and the 674 

establishment of strong ML open-source software frameworks (TensorFlow [209], PyTorch 675 

[210], Caffe [211], Theano [212], etc.). Most of the commercial AI publications host their code-676 

implementations on GitHub (GitHub Inc. Microsoft, USA) which allows for easy testing and 677 

validation. Such an open-source and transparent approach has aided in advancing the 678 

commercial AI field significantly. Hybrid imaging community is considerably smaller when 679 

compared to the commercial AI world. Despite the disparity in size, there has been a steady rise 680 

in AI-based studies. However, most of the hybrid imaging AI approaches are not easily 681 

replicable due to two main reasons: (1) limited public repositories and (2) closed nature of their 682 

implemented codebase. Creating a centralized database is non-trivial as it has several legal, 683 

technical and logistical issues. However, one could open-source their developed codebase 684 

associated with their respective study. It should be noted that mere curation of codes is 685 
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insufficient. A proper documentation explaining the usage, expected outcomes along with the 686 

limitations of the program are extremely important for replicability. Also, one of the most 687 

overlooked factors is code maintenance. It is clear that robust maintenance of a codebase is not 688 

possible in an academic environment, however a minimum amount of code maintenance should 689 

be guaranteed by the research group.  Although seemingly exhaustive, going this extra-mile 690 

would enhance transparency, improve collaboration, foster trust, promote reproducibility and 691 

accelerate development by preventing the reinvention of the wheel.   692 

The radiology community is at the forefront of the medical AI revolution. Recently, 693 

radiology driven AI studies have started open-sourcing their developed algorithms to promote 694 

transparency and reproducibility. Medical imaging AI frameworks are also being established by 695 

industrial and academic institutions to adopt best practices in AI and to support rapid prototyping 696 

of AI algorithms [213,214]. Unfortunately, nuclear medicine studies have been comparatively 697 

conservative when it comes to open-sourcing its implemented algorithms or executables. To 698 

truly embrace AI in hybrid imaging, conscious efforts need to be carried out by both the 699 

communities (Figure 7). 700 

 First, sharing code implementations for AI-based studies in medical imaging should be 701 

made mandatory by the editors during the peer-review process. Jupyter notebooks [215] offer 702 

an excellent way of sharing and explaining codes along with text and images; the native AI and 703 

open science community has already adopted such approaches to increase transparency [216]. 704 

Many journals offer statistical review with the aid of an extra reviewer, whose sole purpose is to 705 

verify the statistics of the reviewed work. Similarly, one could go for a reproducibility review, 706 

where an IT expert can run the Jupyter notebook to reproduce the results. In short, we would 707 

further the field significantly, if we could operate on the principle - 'If you cannot replicate it, then 708 

it does not exist!' [217].   709 
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An open-source approach would also minimize the need for centralized data 710 

repositories, as the codes could be shared across the private data-silos to facilitate onsite deep 711 

learning approaches such as federated or distributed learning [218]. Multicentric studies should 712 

be strongly encouraged compared to single-centre studies, especially in challenging areas such 713 

as radiomics and deep learning [219], as they can evaluate the robustness of the algorithm 714 

better. Federated learning is an exciting approach, as the      training process is carried out on 715 

data onsite, and only the trained models are exported to a centralised server for multicentric 716 

model optimisation, thus, removing the complexity of data-sharing in multicentric studies [218]. 717 

Federated learning or deep learning approaches in medical imaging in general mandate a high-718 

performance computing environment. GPUs can significantly accelerate the training process by 719 

10-30 times in comparison to CPU-based training [220]. Current AI frameworks mainly depend 720 

on the CUDA framework from Nvidia for accelerating the training process. And the number of 721 

GPUs required depends on the volume and dimensionality of the trained dataset. Medical 722 

images are often 3D datasets and can also extend to 4D in case of a dynamic study. And hybrid 723 

imaging modalities can significantly increase the dimensionality of the training datasets. 724 

Therefore, it is worthwhile to invest in a flexible high-performance computing environment for 725 

facilitating deep-learning endeavours.  726 

Finally, deliberate efforts should be focused on building explainable AI for identifying 727 

'Clever Hans' predictors and also to encourage trust between the clinician and the AI system 728 

[202,221]. In the end, the clinicians need to explain to the patient why the AI chose a specific 729 

therapy and why they think it is a trustworthy option. Development of novel visualisation 730 

methods are of utmost importance for making the black box transparent and to identify how the 731 

AI algorithm learns (e.g. heat maps) [202,221]. Such visualisation strategies might bring forth 732 

unexpected findings in hybrid imaging datasets. 733 
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In summary, medical-AI has the potential to change the clinical landscape of hybrid 734 

imaging. Nevertheless, careful and thorough investigation of the AI algorithms is necessary prior 735 

to clinical deployment, as the algorithms might have a direct or indirect impact in patient 736 

management. To support reproducibility, quick development cycles and generally further AI in 737 

the hybrid imaging community, collaborative open-source approaches need to be encouraged 738 

by the community as a whole, rather than closed private proof-of-concepts. 739 
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Figures 745 

746 
Figure 1. Depiction of a typical imaging workflow and the areas where artificial intelligence 747 

algorithms are used are highlighted in colored boxes. On top of each colored box, we highlight 748 

the technology (DL, ML or Radiomics) that is used predominantly for tackling them. 749 

 750 

 751 

 752 
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 753 

Figure 2. Graph depicting the steep rise in number of Pubmed publications over the years, 754 

through the keywords machine learning, deep learning and artificial intelligence in combination 755 

with medical imaging (metrics till August 2020) 756 

 757 



35 

Figure 3. Conceptual research areas in image-reconstruction where AI algorithms have been 758 

used. 759 
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Figure 4. A 3D semantic segmentation of the total-body from the CT images along with high-761 

speed reconstructions (100 ms) could facilitate the probing of inter-organ communication. 762 

Therefore, opening up the era of total-body network imaging. 763 
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Figure 5. The conditional GAN workflow for generating PET navigators from the original dataset 770 

is depicted here. cGANs are used for converting early-frame noisy images to pseudo late-frame 771 

images, therefore generating PET navigators (PANDA: PET navigators using deep learning) 772 

with temporally non-varying activity. 773 
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Figure. 6 Typical radiomics pipeline (connected by red lines) and a deep-learning based 774 

prediction pipeline (grey lines). It can be seen that the deep-learning based approach can 775 

streamline the process of VOI definition, feature extraction and modelling using a single neural 776 

network or a series of neural networks. 777 

 778 
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Figure 7. Areas where hybrid imaging communities need to make a conscious effort in fostering 779 

AI proliferation to the clinical arena. 780 
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Highlights 1500 
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needed for improved clinical management. 1504 

 1505 

 AI has the inherent ability to process extensive multiplexed hybrid imaging data. 1506 

 1507 

 AI has the potential to solve the existing open challenges in Hybrid imaging. 1508 
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 Established AI algorithms need to be rigorously evaluated before clinical adoption. 1510 
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