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Chapter 1

Introduction

1.1 Image Quality

In today’s information age, images are widely used as an effective means of
communicating information. Images produced by TVs, satellites and medical
imaging systems are fypical examples. In these imaging systems, the image
quality as perceived by the human observer is often the deciding factor of the
overall quality of the system. The perceptual quality of the images produced
by such systems depends to a large extent on the choices made while designing
them. To obtain the desired image quality and to have a cost-effective design
cycle, such decisions must be based on a knowledge of image quality and the
factors which influence it. These demands have made a systematic study of
perceptual image quality essential.

1.1.1 Definition

Every person has a notion of image quality. This notion may however depend
on the context. It is difficult to find a general definition of image quality that
is applicable in all contexts. Roufs & Bouma (1980) defined perceptual image
quality as “the degree of excellence of the image”. The term ‘subjective image
quality’ is often used instead of ‘perceptual image quality’. Although both
terms aim at the same concept, use of the word ‘subjective’ may sometimes
lead to confusion (Roufs, 1992). The term subjective quality may imply that
the impressions are personal and may differ widely across subjects. However, it
is known that subjects are able to make consistent judgements of image quality
and that judgements of different subjects coincide to a considerable extent. The
term ‘subjective image quality’ may also mean that aesthetic components play

arole. To avoid such confusion, the term ‘perceptual image quality’ is preferred
(Roufs, 1992).

Perceptual image quality expresses the overall impression of an observer and
hence is a global psychological attribute of an image. In addition to perceiving
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the global attribute image quality, human observers of images also perceive
several other (basic) perceptual attributes of images: sharpness, brightness,
brightness contrast, noisiness, etc. These basic attributes affect the overall
impression of image quality. In general, it is relatively easier to study and
understand the factors influencing these basic attributes than to directly study
those affecting perceived quality. For example, the decrease in sharpness of an
image may be mainly due to blurring. Similarly, an increase in the noisiness of
an image may be directly related to a increase in noise variance. In addition to
sharpness, noisiness and brightness contrast, we will also come across another
related basic perceptual attribute, unsharpness, in this thesis. The perceived
lack of sharpness of an image is referred to as unsharpness or perceived blur.
Thus, unsharpness is an attribute that implies a meaning that is opposite to
that of the attribute sharpness. Another concept often used in image quality
research, similarly to the global attribute perceptual image quality, is (global or
overall) perceptual impairment. Perceived global impairment implies a concept
that is opposite to that of perceptual quality (de Ridder, 1992; Nijenhuis, 1993).
It therefore means the ’perceived degree of degradation of the image’. The
perceptual quality of an image can decrease due to many reasons, for example
due to noise in the image or blurring of the image. The physical processes, such
as blur and noise, that lead to a decrease in the perceptual quality of images
by causing physical damage to images are called (physical) impairments or
degradations.

Since a strict definition of image quality is not available, operational defi-
nitions are often used. The operational definitions may vary depending on the
context. At this point, it is important to introduce a distinction between two

- types of contexts in which image quality is used. First, there is the quality

related to performing a task based on an image. Examples are: reading from a
video display unit (VDU), detection of a target from an image, such as a tumor
in a CT image or a tapk in an aerial photograph. The image quality in such
environments is called the performance-oriented quality (Hunt & Sera, 1978).
This is different from the quality of an image in an entertainment environment
such as TV or film. In the case of TV or film, the quality is mainly concerned
with appreciation or involvement, hence the name appreciation-oriented qual-
ity is used. These two kinds of qualities may also influence each other (Roufs &
Boschman, 1991). In this thesis, we are concerned with appreciation-oriented
quality, although the feature extraction methods developed here could also be
used in applications involving performance-oriented quality.

1.1.2 Measurement

To be useful, image quality has to be measurable. The measurements must be
reliable and reproducible. Traditionally, image quality has been measured us-
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ing psychophysical methods, where humans (subjects) participate as observers
and judges of the images (stimuli). Such experiments involve four main com-
ponents: stimuli, viewing conditions, methodology (instructions) and subjects.
The stimulus generates a sensation in the subject. The strength of that sen-
sation is expressed as a response by the subject according to the instruction
(Roufs, 1992). For example, the instruction may be to judge an attribute of
the stimulus, for instance sharpness, using a scale from 1 to 10. The reliability
and reproducibility of the data depend on the chosen scenes and subjects, as
well as on the viewing conditions and instructions. Recommendations on these
were made by the CCIR (1986).

To ensure the validity and generality of the experimental results, special
attention has to be paid to the following issues. The scenes have to be care-
fully chosen, bearing in mind that the variability of data between scenes may
be considerably higher than that between subjects (Roufs, 1992; Roufs et al,
1994). Although the problem of scene selection is largely unsolved, it can be
circumvented by using many scenes of different types. The number and type
of subjects have to be chosen in light of the fact that differences exist be-
tween experienced and naive subjects. Using subjects who are very familiar
with either the scene or the kind of distortions may cause misleading results
(Westerink, 1989). The methodology depends on the type of environment:
performance-oriented or appreciation-oriented. Scaling according to categories
using adjectives or numbers is one of the faster and more reliable methods to
express the sensation. For example, for appreciation-oriented quality, the CCIR
recommends the use of a category scale with adjectives: Excellent, Good, Fair,
Poor, Bad. A numerical category scale has also been shown to be very reli-
able for scaling quality and its attributes (Roufs et al, 1990; Ridder & Majoor,
1990).

Inter-laboratory tests performed by international organizations such as the
CCIR have shown that the results of scaling image quality are reliable and
reproducible. An excellent example is the COST scaling experiment, where four
video coding algorithms were compared on a category scale, using adjectives in
five European languages (Allnatt et al, 1983). The results for the five countries
were strikingly similar.

1.1.83 Scope

The notion of image quality is at least as old as photography. Its importance
increased with the advent of television. The perceived quality of an image is
influenced by several factors. The physical parameters of the imaging system
that is used to produce an image are among the most important factors that
influence the perceptual image quality. Because of this, an important task of
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imaging system designers is to make the choices regarding the physical param-
eters of the system in such a way that the perceived quality of the images
produced by the system is maximum. These choices have to be made within
the given constraints on the system, such as constraints on maximum band-
width, bit rate or display size. To make these choices, the designer must be
aware of the relations between the physical parameters and the perceived image
quality. For example, in image display system design, it is important to know
the relation between perceived quality and physical parameters: bandwidth,
resolution, display size, screen luminance, sampling lattice, etc., in order to
make an optimal choice of parameters. In recent years, there has been a grow-
ing need to communicate or store large amounts of image data using limited
bandwidth or bits. These bit-rate reductions are attained using image-coding
or compression algorithms. The designers of image-compression algorithms aim
at attaining bit rate reduction with no apparent loss of quality or with mini-
mum loss. Therefore it is important to know which physical properties of the
image influence quality the most. All these and many other problems regarding
imaging system design require a thorough understanding of image quality and
its relation to the physical parameters that influence it.

The scope of a good understanding of image quality is large. Decisions
on physical parameters that influence the design of an imaging system (with
a specified quality and cost) can be simplified, which means a much shorter
and cost-effective design process. Existing systems can be made to offer better
image quality at comparable cost. New imaging systems can be visualized and
realized faster and at lower design cost.

1.2 Image Quality Prediction

Although the results of the psychophysical methods of measuring image quality
are reliable, the experiments are very time-consuming and expensive. Special
skills and experience as well as expensive equipments are needed to carry out
such experiments. Because of these limitations, it is difficult to incorporate
subjective tests in the design of imaging systems. This is especially true in a fast
design cycle, where the designer would like to know, almost immediately, the
quality of the image produced using a system or an algorithm. Such difficulties
have created a demand for objective measures of image quality. ‘

An objective measure for image quality must satisfy two important con-
straints. Firstly, it must correlate well with the perceived quality of the image.
Therefore, equal intervals in the objective measure must correspond to ap-
proximately equal perceived differences in image quality. Secondly, it must be
estimated from the image or from the physical parameters of the imaging sys-
tem. The estimates may be given by simple equations or complicated models
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implemented as computer programs or algorithms.

Several image quality measures are available in literature. Most of the
early work on image quality metrics attempted to obtain objective measures
for image display sharpness. The most successful among them are based
on the Modulation Transfer Function (MTF). Examples of such approaches
are Granger & Cupery (1972), Higgins (1977), Carlson & Cohen (1980), and
Barten (1989,1990,1991,1993). These measures essentially compute a weighted
sum of the product or the ratio of the MTF of the display and the modulation
threshold function of the eye. Hultgren (1990) showed that many of these objec-
tive sharpness measures can be unified into one general framework. Although
these MTF-based methods provide reliable estimates of display sharpness or
quality, they cannot be successfully applied to images with multiple impair-
ments, such as those encountered in coded images. This is mainly because the
distortions in digitally coded images cannot be easily described using MTFs.

In applications such as image coding, image fidelity is often used as a
quality criterion. The measures assume the existence of an ‘original’ ! image
and a ‘degraded’ or ‘processed’ image of the same scene. A distance function
between the two images is used to estimate quality. Such situations occur
typically in image coding or transmission, where one would like to estimate the
quality of the decoded picture, using the original image as a reference. Such an
estimate may be used, for example, to pick the best coding scheme out of many
competing schemes or to rank them in terms of their output image quality.
Early attempts towards this goal were based purely on physical measures like
root-mean-square error (Pratt, 1991). Although these measures perform well
for certain distortions and scenes, in general they correlate poorly with the
perceived quality of the image (Marmolin, 1986). This is especially true when
images contain multiple impairments.

Image quality and its attributes are determined by the physical parameters
of the image as well as by the properties of the human visual system. There-
fore, knowledge about the human visual system plays an important role in
understanding as well as predicting image quality. Most of the later methods
for image-quality-prediction make use of knowledge about the human visual
system. Limb (1979) incorporated the threshold and masking properties of the
visual system in the quality metric. Lukas & Budrikis (1982) proposed a quality
measure based on a spatio-terporal model of threshold vision that incorporates
filtering and masking. Zetzsche & Hauske (1989) proposed a multiple channel
model for quality prediction based on a ‘ratio of Gaussians’ pyramid and ori-
entation selective filtering. Daly (1992, 1993) proposed a method to predict

1By original image, we mean, the image of a scene from which all other images (of the
same scene} are generated. Note that an original image of a scene, obtained using an imaging
process is itself impaired (see Fig. 1.1.)
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the visible difference between the original and processed image and uses it ag
image fidelity. A brief review of image quality metrics based on image fidelity
is given by Ahumada (1993).

Knowledge about the human visual system also helps in designing better
imaging systems (Lubin, 1993). For example, knowledge about invisibility
of certain distortions can save many bits while coding images (Daly, 1992,
1993; Girod, 1992, 1993). The properties of the human visual system have
been widely applied to design better image processing or coding algorithms
(Anderson & Netravali, 1976; Budrikis, 1972; Mannos & Sakrison, 1974; Gray
et al, 1993). Many models of the human visual system have emerged to help
build better imaging systems (Pearlman, 1978; Stockham Jr., 1972; Hall &
Hall, 1977; Granrath, 1981; Watson & Ahumada, 1989).

Many models of image quality have been developed for specific applications
in image coding. Many of these exploit the spatial or temporal masking prop-
erties of the human visual system (Girod, 1992; Watson et al, 1986). Netravali
& Prasada (1977) used the spatial masking property of the visual system in
amplitude quantization of digitized pictures. Safranek & Johnston (1989) and
Safranek et al (1990) used an empirically derived masking model to optimize
a sub-band image coder. Girod (1989) proposed a non-linear spatio-temporal
model of human threshold vision and used it to predict the coding gain that
can be achievec{ by incorporating masking effects in video coding.

A comparison of some early measures of image quality can be found in
(Beaton, 1983). However, a comparison of recent measures with respect to
their predictive power is not available. Hence, the value of most of the above-
mentioned models remains to be established. An assumption common to most
models is that the image quality is a uni-dimensional attribute shared by all
subjects. This point of view is questionable. In our view, a better understand-
ing and prediction of image quality can be attained by acknowledging that
image quality is a multi-dimensional percept that is influenced by several ba-
sic perceptual attributes such as sharpness, noisiness, brightness contrast, etc.,
(Roufs & Bouma, 1980; Roufs, 1989). Marmolin & Nyberg (1975) identified
some underlying dimensions of image quality using multi-dimensional scaling
(MDS) techniques. They found that sharpness, noisiness and contrast were the
three most important dimensions of image quality in their experiment. Other
studies have also found similar dimensions, both for natural images (Good-
man & Pearson, 1979) and for processed medical images (Escalante et al, 1994;
Escalante, 1992).

The multi-dimensional nature of image quality has to be taken into account
while estimating quality. So far, very few quality measures have made use of
the multi-dimensional nature of image quality. Nakayama et al (1980) use the
multi-dimensional nature of image quality in their model. According to their
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Imaging

System Image

Viewer

Figure 1.1: An image communication system

model, the overall image quality is given as a weighted sum of the underlying
quality dimensions, and each underlying dimension, such as sharpness, is esti-
mated separately. The multi-dimensional nature of image quality has also been
used by Ridder, (1992) and Nijenhuis, (1993), to find metrics for image quality
in terms of its attributes.

1.3 Aim of this Thesis

A schematic diagram of an image communication system is shown in Fig. 1.1.
The imaging system captures the scene and produces an image which is viewed
by a human observer. The imaging system may be simple, consisting of just a
camera and a display or a printer, or may also contain additional components
such as a processor, encoder-decoder, transmitter-receiver, etc. The imaging
system is characterized by several physical parameters: band-width, resolu-
tion, display size, contrast parameter gamma, maximum luminance, minimum
luminance, etc. It also introduces physical distortions such as blur, noise, etc.,
which can also be described using physical parameters such as the spread of
the blurring kernel, the noise variance, etc. The human observer perceives
several basic attributes of the image, such as sharpness, brightness contrast,
overall brightness, noisiness, etc. All these basic attributes combine to form
the overall impression of image quality. The image quality and its attributes
are perceived notions and hence are described in a psychological or a perceptual
domain. The aim of this thesis is to contribute towards estimating the
perceived quality of an image from the image itself.

The approach used in this thesis is based on the multi-dimensional nature
of image quality. It is based on the notion that the images are located in
a perceptual space spanned by the important basic image attributes such as
sharpness, noisiness, brightness contrast, etc. Quality is obtained by combining
these basic attributes. The combination rules can be derived from the percep-
tual space. The perceptual image quality can therefore be estimated by first
estimating the image attributes and then combining them. In this thesis we
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consider three important basic attributes of image quality: sharpness, noisiness
and global brightness contrast.

Each perceptual attribute is predominantly influenced by one physical pa-
rameter, although second-order influences from secondary parameters may also
exist. For example, sharpness is mainly influenced by the spread of the blur-
ring kernel (Westerink & Roufs, 1989; Westerink, 1991) and noisiness is mainly
determined by the noise standard deviation. The sensitivity of these percep-
tual attributes to changes in the physical parameters is measurable (Watt &
Morgan, 1983). Based on these sensitivity measurements, objective measures
for the perceptual attributes can be derived from the physical parameters (Nij-
enhuis, 1993). Therefore, by estimating the perceptually relevant physical pa-
rameters from the image, the objective measures for the basic attributes of
image quality can be estimated. For objective measures derived in this way
(by taking the sensitivity of the visual system into account), equal intervals
in the objective measure correspond to approximately equal perceived differ-
ences in the attribute. The objective measures derived in this way are thus
psychometric measures (Hunt, 1978).

The physical parameters that predominantly influence the attributes are
estimated from the image using computational algorithms. The computa-
tional algorithms are based on image features that are perceptually
relevant. First we consider the basic attribute sharpness (Chapter 2). The
computational algorithm to estimate the physical parameter influencing sharp-
ness, the spread of the blurring kernel, is based on the edges in the image.
Then we consider the basic attribute noisiness (Chapter 3). The algorithm to
estimate the physical parameters influencing noisiness, the standard deviation
of noise and the noise correlation length, are based on the uniform regions in
the image. The relevant information from these features is extracted using local
operators that have many properties in common with the human visual system.
We use local derivative operators to estimate the blur and noise parameters.

Since our aim is to develop computational algorithms to estimate parame-
ters influencing perceived image quality, it is compelling for us to use a trans-
form that performs operations similar to those performed by the visual system.
The local operators we use in the computational algorithms belong to an image
description technique motivated by the properties of the human visual system
called the Hermite transform (Martens, 1990a, 1990b). The Hermite trans-
form performs a local image decomposition, where the image is localized by
multiplying with a Gaussian window. The local image is decomposed in terms
of many basic functions which satisfy certain properties such as orthogonality
with respect to the window function. The Hermite transform facilitates detec-
tion as well as analysis of the perceptually relevant features in the image, such
as uniform regions, edges, lines and corners. This is attained by local analysis
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which makes the relevant information of the features explicit. An important
property of the operators that are used to compute the Hermite transform of an
image is that they are equal to the derivatives of a Gaussian. The human visual
system is known to perform operations similar to the Gaussian derivative oper-
ations (Young, 1985). The Hermite transform is also in agreement with other
image representations models such as the theory of scale-space representation
(Koenderink, 1984, 1990; Witkin, 1984; Marr & Hildreth, 1980; Marr, 1982)
and is related to the wavelet representation (Mallat, 1989; Mallat & Zhong
1992).

The parameter estimation algorithms presented in this thesis have wider
application than just image-quality prediction. For example, estimates of the
spread of the blurring kernel can be used to deblur the image (Demoment,
1989), or to estimate the depth in a scene (Pentland, 1987). Similarly, noise
variance estimates can be used in segmentation or restoration of images (Ro-
selfeld & Kak, 1982).

The multi-dimensional perceptual space of images degraded by blur and
noise is constructed using data collected in psychophysical experiments (Chap-
ter 4). Using this perceptual space, the important basic attributes are iden-
tified, and the relations between them, such as dimensional orthogonality, are
established (Roufs, 1989; Ashby & Townsend, 1986). The relation between the
quality and its attributes is also established in the perceptual space. The num-
ber of variables involved in a psychophysical experiment are limited. Hence,
the space obtained using the experimental data will only be a subspace of the
entire perceptual space. This has to be borne in mind while comparing spaces
obtained from different experiments involving different variables. The objective
measures for the basic attributes sharpness and noisiness are estimated using
the algorithms developed in Chapters 2 and 3. Based on these estimates, a no-
tion of a psychometric space spanned by the objective (psychometric) measures
for perceptual attributes is introduced (Chapter 5). The relation between the
perceptual space and the psychometric space is established and by using that
relation quality as well as other attributes of images are predicted.

Similar to sharpness and noisiness, global brightness contrast is an impor-
tant attribute of image quality, and an objective measure for it is very useful
for optimizing the perceived quality of images produced by imaging systems.
A simple computational algorithm to estimate an objective measure for global
brightness contrast is presented in Chapter 6.

Finally, the main conclusions of this thesis are listed in Chapter 7. Some
issues that are closely related to the research reported here, but not addressed in
this thesis, have been pointed out. Some areas that will require more research
when the computational approach is extended to estimate other attributes,
have also been identified.
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As stated earlier, the main aims of this thesis are to find objective mea-
sures for perceptual attributes of image quality and to develop computational
algorithms to estimate those objective measures. We also develop methods to
estimate perceptual image quality using the estimates of the objective mea-
sures. Using these computational algorithms and methods, we intend to show
how the objective measures for perceptual attributes can be derived from the
image itself and show how the quality of the image can be estimated from
the objective measures. We have chosen three important attributes, sharp-
ness, noisiness and global brightness contrast, for this purpose, although the
approach presented here can also be extended to other attributes. The main
emphasis of this thesis is thus on computational methods for image quality. It
is, however, not the intention of this thesis to explain the perceptual signif-
icance of the objective measures proposed, nor is it the intention to provide
an explanation for the performance of a certain objective measure, although
knowledge about these will help in building better computational models for
image quality in future.

We have chosen to demonstrate the computational algorithms and methods
for image quality estimation developed in this thesis using the simplest situ-
ation, the still, black and white images. Although, to be of greater practical
merit, the objective measures and image quality estimation methods must also
be applicable to moving colour images, no explicit attempts have been made
here to extend the methods developed here to colour or moving images. This
is mainly because of the following reasons. Firstly, it is our intention to test
how well the approach used here performs with the simplest of the situations
before attempting to extend it to more complex situations of colour and mov-
ing images. Secondly, it is beyond the scope of this thesis to extend and test
the methods developed here to more complex situations of colour and video.
In our view, the methods and framework presented here are general in nature
and can be extended to more complex situations of colour and video.



Chapter 2

Estimation of Edge Parameters, Image Blur, and
an Objective Measure for Perceived Blur Using
Local Derivatives

Abstract

A method is presented for detecting blurred edges in images and
for estimating the following edge parameters: position, orientation,
amplitude, mean value and edge slope. The method is based on a
local image-decomposition technique called a polynomial transform.
The information that is made explicit by the polynomial transform
is well suited for detecting image features such as edges and for es-
timating feature parameters. By using the relationship between the
polynomial coefficients of a blurred feature and those of the a pri-
ori assumed (unblurred) feature in the scene, the parameters of the
blurred feature can be estimated. The performance of the proposed
edge-parameter estimation method in the presence of image noise
has been analysed. An algorithm is presented for estimating the
spread of a position-invariant Gaussian blurring kernel, using esti-
mates at different edge locations over the image. First a single-scale
algorithm is developed where one polynomial transform is used. A
critical parameter of the single-scale algorithm is the window size,
which has to be chosen a priori. Since the reliability of the esti-
mate for the spread of the blurring kernel depends on the ratio of
this spread to the window size, it is difficult to choose a window of
appropriate size a priori. The problem is overcome by a multiscale
blur-estimation algorithm where several polynomial transforms at

1A substantial part of this chapter has been published in a paper in CVGIP Graphical
Models and Image Processing {Kayargadde & Martens, 1994a)

2Some results of the blur estimation algorithm were presented at the International Work-
shop on Image Processing, Budapest (Kayargadde & Martens, 1894b), and the results of a
comparison with psychophysical data were reported at ECVP-94 (Kayargadde & Martens,
1994c)
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different scales are applied, and the appropriate scale for analysis
is chosen @ posteriori. By applying the blur estimation algorithm
to natural and synthetic images with different amounts of blur and
noise, it is shown that the algorithm gives reliable estimates for the
spread of the blurring kernel even at low signal-to-noise ratios.

2.1 Introduction

Blur is a widespread and important degrading factor in images. In the
case of images of natural scenes on television or in print, blur degrades the
appreciation-oriented quality. In the case of medical or astronomical images,
blur often affects the performance-oriented quality of the images, because it
makes detection, classification or diagnosis more difficult. Image blur can have
many causes: camera defocus, low-pass filtering performed to obtain reduced
data rates while coding, pre-filtering before sampling, etc. Blurring is an in-
herent property of image formation systems and cannot be avoided. In certain
operations such as sampling, some blurring may even be desirable to reduce
sampling artifacts such as aliasing (Nijenhuis, 1993). Image blur can often
be approximated by a convolution between the original scene and a blurring
kernel.

There are many applications that need a quantitative description of the
amount of blur. The prediction of image quality is one such application. By
identifying the subjective dimensions of image quality (Marmolin & Nyberg,
1975) and estimating the degradation parameters such as the spread of the
blurring kernel, the noise variance etc. that influence these dimensions, the
quality can be predicted (Nakayama, Kurosu, Honjyo & Nishimoto, 1980).
Because sharpness is an important quality dimension, which is heavily influ-
enced by physical blur (Westerink & Roufs, 1989), blur estimation is one of
the first steps in automatic image quality prediction. lmage deblurring is an-
other application that needs an estimate of the blurring kernel (Demoment,
1989; Hummel, Kimia & Zucker, 1987). In many deblurring applications, the
nature of the blurring kernel is modelled and the parameters involved have
to be estimated. For instance, in this chapter a Gaussian blurring kernel will
be assumed. Image deblurring must be preceded by an estimation of the blur
parameters. Depth estimation is another application where blur estimates are
used (Pentland, 1987). By measuring the size of the blurring kernel (caused
by camera defocus) at different positions in the image, a depth map can be
drawn for the entire scene. Depth maps are very useful in tasks such as object
recognition and scene interpretation in computer vision (Horn, 1986). The dis-
tance between a point in the scene and the lens, i.e., the depth, is related to
the size of the blurring kernel and to the parameters of the lens system. Since
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the parameters of the lens system are known, the problem of depth estimation
is essentially reduced to one of estimating blur. It has been shown that the
human visual system can also estimate the (relative) size of a blurring kernel
with high accuracy (Hamerly & Dvorak, 1981; Watt & Morgan, 1983).

Gaussian blur is one of the most commonly encountered descriptions of
blur. It has been shown that small amounts of blur due to camera defocus can
be well approximated by a two-dimensional (2-D) Gaussian kernel (Pentland,
1987). In systems involving many blurring operations, the net effect, in light
of the central limit theorem, can be described by a Gaussian kernel. Gaussian
blur also underlies the process of generating image representations such as the
scale-space representation (Koenderink, 1984; Witkin, 1984) and the Gaussian
pyramid representation (Burt & Adelson, 1983). In the scale-space representa-
tion, images are parameterized by the scale parameter which is equal to the size
of the Gaussian blurring kernel. Hence, estimating the spread of the blurring
kernel is equivalent to locating the image in the scale space. In view of the
above reasons, we have chosen to concentrate on Gaussian blur in our present
work. An additional reason to those stated above is that the case of Gaussian
blur is easy to tackle mathematically.

The spread of the blurring kernel has been shown to be an important de-
~ terminant of the perceived sharpness in images (Westerink & Roufs, 1989).
The sensitivity of the perceived blur to changes in the spread of the blurring
kernel has been measured by Watt and Morgan (1983). Based on their data on
just noticeable differences (JND) of blur, Nijenhuis (1993) derived an empirical
relation for an objective measure for blur based on the spread of the blurring
kernel. The objective measure for blur derived in this way has been shown
to be a good correlate of perceived (un)sharpness, over a large range of blur
spread (Nijenhuis, 1993). Thus, an objective measure for blur in an image can
be estimated from the estimate of the spread of the blurring kernel.

When an image is blurred, the regions of sharp transition in the image
such as edges and lines undergo a relatively large change, while uniform regions
remain essentially unchanged. Hence, these features are the best candidates for
estimating blur. Accordingly, edges are used in the present study to estimate
the spread of a Gaussian blurring kernel.

As mentioned before, reliable estimates of edge parameters are essential
for many applications in computer vision. Estimates of edge parameters also
have applications in image coding, such as coding using oriented edges (Kunt,
Ikonomopoulos & Kocher, 1985; Kunt, 1988) and coding using the local di-
mensionality of the image (Martens, 1990b). Many authors have developed
methods to estimate the parameters of step edges (Lyvers & Mitchell, 1988;
Lyvers, Mitchell, Akey & Reeves, 1989; Tabatabai & Mitchell, 1984; Chen &
Medioni, 1989; Huertas & Medioni, 1986). Special attention has been paid to
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the estimation of edge location (Tabatabai & Mitchell, 1984; Chen & Medioni,
1989; Huertas & Medioni, 1986). Lyvers et al. (1989) and Tabatabai & Mitchell
(1984) used moment-based edge operators to estimate the parameters of a step
edge. However, edges that occur in real images are blurred (Nalwa & Binford,
1986; Petrou & Kittler, 1991). Lyvers et al. (1989) used look-up tables to cor-
rect for the errors in the estimates caused by such deviations from the step
edge model. Previous work on the estimation of edge blur has been mainly
aimed at depth estimation (Pentland, 1987; Lai, Fu & Chang, 1993). The al-
gorithm of Pentland (1987) is based on the observation that the Laplacian of
an image in the vicinity of an edge is a linear function of the distance from
edge and hence the slope can be estimated by linear regression. Although the
details of the algorithm are somewhat obscure, it appears that an accurate and
separate estimate of the edge orientation is required before this regression can
be performed. The algorithm of Lai et al. (1993) fits an edge profile with three
parameters to the image. An accurate and separate estimate of edge position
is required for their algorithm.

We present a method for simultaneously estimating all parameters of an
edge that is blurred by a Gaussian kernel. Our approach is inspired by the
knowledge of the early stages of the human visual system. The visual system is
thought to extract relevant information, mainly the location, orientation and
contrast of luminance transitions, for further image analysis. This so-called
primal sketch (Marr & Hildreth, 1980) is constructed by local processing with
receptive fields of different form and size (Koenderink, 1984). To interpret the
form of these receptive fields, a new image decomposition technique called a
polynomial transform was developed by Martens (1990a). Polynomial trans-
forms have been applied to image coding (Martens, 1990b), image deblurring
(Martens, 1990c) and recently to noise reduction in images (Escalante Ramirez
& Martens, 1992). Polynomial transforms have also been applied to detect
and classify one-dimensional (1-D) patterns such as edges and lines (Martens,
1990b). The algorithm for estimating edge parameters that we present in this
chapter is also based on the polynomial transform. Recent psychophysical ex-
periments (Georgeson & Freeman, 1993; Georgeson & Freeman, 1994) indicate
that the human visual system possibly uses an approach that is very similar to
the algorithm for estimating blur proposed in this chapter.

The blur estimation algorithm presented in this chapter consists of .two
steps. Firstly, the regions of locally one-dimensional (1-D) edges in the image
are detected. Secondly, the edge parameters are estimated at those locations.
Both edge detection and estimation are carried out using polynomial trans-
forms. An ¢mportant assumption made here is that there exist at least some
locations in the imaged scene where the luminance distribution is locally an
ideal step edge. Scene refers to the viewer or camera centered (monocular) 2-D
view of the luminance distribution of the 3-D scene. Note that the computa-
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tional assumption made relates to the scene and not the image. An image is the
result of a imaging process that inherently contains blurring. The above com-
putational assumption is true for most natural scenes, although exceptions to
this could be found. We assume that the blurring kernel is circularly symmetric,
but using the theory we develop here, we can verify whether this assumption
holds. Indeed, by pooling the estimates of edge blur for different orientations,
we can check the circular symmetry of the blurring kernel. Similarly, by com-
paring the estimates of the edge blur at different positions in the image, the
uniformity of blur over the image can be checked.

The scale of the polynomial transform has to be chosen a priori when
using a single-scale algorithm where one polynomial transform is used. When
an image contains edges with different amounts of blur, a single scale will not
be optimal for estimating the edge parameters of all edges in the image. In
order to avoid this a priori choice, a multiscale algorithm is presented, in which
the image is analysed by polynomial transforms of different window sizes.

In applications such as image quality prediction and image deblurring, it is
useful to have an estimate for the spread of the Gaussian blurring kernel over
the entire image. When the blur is uniform over the entire image, image blur
can be estimated by statistically combining the estimates of blur parameters
at different edge locations over the image. If the blurring is due to a space-
invariant operation such as camera defocus or low-pass filtering, then the blur
is uniform over the image. In natural images, the assumption of uniform blur
will be satisfied only in a loose sense, since in general all points in the scene
will not be focused to the same extent. However, when the depth-of-field of
the lens system used in the imaging device is large compared to the range of
distances involved in the scene, it can be assumed that the blur is uniform over
the entire image for most scenes.

This chapter is organized as follows. In Section 2.2, we briefly review poly-
nomial transforms and introduce the relevant notation. The relation between
the polynomial coefficients of a blurred signal and the unblurred signal is de-
rived in Section 2.3. In Section 2.4, we first derive the polynomial coefficients
of a step edge and later derive those of a blurred edge. In Section 2.5, we show
how the parameters of a blurred edge can be estimated from its polynomial
coefficients. In Section 2.6, we give a description of the single-scale blur es-
timation algorithm. The multiscale blur estimation algorithm is described in
Section 2.7. The results of the blur estimation algorithm on different images
are given in Section 2.8. A psychophysical experiment to scale unsharpness of
natural images is described in Section 2.9. In Section 2.10, we present an algo-
rithm to estimate a measure for perceived blur, called blur-index, and correlate
the results of the algorithm with scaled unsharpness of images. Finally, the
conclusions are summarized in Section 2.11.
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2.2 Polynomial Transforms

Image analysis using polynomial transforms involves two steps. In the first step,
the image is localized by multiplying with a window function. This windowing
takes place at several positions over the entire image. The window positions
constitute a sampling lattice S. In the second step, the image within every win-
dow is described as a sum of weighted polynomials. The polynomials that are
orthogonal with respect to the square of the window function are used as the
basis functions for the polynomial expansion (Martens, 1990a). For example,
when the Gaussian window is used, the Hermite polynomials are used for the
expansion. The mapping from the input image to the coefficients of the poly-
nomials, referred to as polynomial coefficients, is called a forward polynomial
transform. By interpolating the polynomial coefficients with windowed poly-
nomials, the original image can be recovered. This mapping of the polynomial
coeflicients to an output image is called the inverse polynomial transform.

We first give a description of local image decompositions (Martens, 1993)
and later discuss the specific case of polynomial transforms.

Given a window function w(z,y), the input image f(z,y) is decomposed
into a sum of windowed images f(z,y) - w(z — p,y — q), i.e.,

fl@,y) = (x ) Y f@y)wEz-py-q,  (21)

(»9)€S

where the periodic weighting function

h(z,g) = Y wlz-p,y—gq) (2.2)

(p.9)ES

is assumed to be different from zero for all (z,y). We choose a set of basis
functions such that they are orthonormal with respect to w?(z, ), i.e.,

+o0  pto0
/ / W (2, Y)Pmn—m (2, ¥)PLi—1(2, y)dzdy = 6,8m1, (2.3)
—00 J—00

for n,k=0,...,00,m =0,...,n and I =0, ..., k (Szegd, 1959; Martens, 1990a),
We now compute a set of coefficients: ’

+oo  ptoo )
fm,n—m(pa Q) = [- /; f(l?, y)a"m,n*m(a: DY — q)da:dy, (24)

at all positions (p,q) in the sampling lattice S, for n = 0,1,...,00 and m =
0, ...,n. The functions

am,n—m(x: y) = ‘Pm,n—m(x: y) : w2(m, y) (25)



2.2 Polynomial Transforms 17

are referred to as the analysis functions of order m along « and order n — m
along y. Expanding f(z,y) in the basis functions ¢, n—m(z — p,¥ — q) and
using the coefficients in Eq. (2.4) leads to a series expansion that converges in
a weighted (by w?(z — p,¥ — ¢)) quadratic sense, i.e.,

lim +o°/+oo w?(z - p,y — Q)[f(x y)-

N—oo

N =n

2
Y3 Frn-m(®:@Pma-m(@—py - Q)] dzdy = 0, (2.6)

n=0 m=0

for all sampling positions (p,q) in S. This result may also be expressed by
saying that the image part within each window f(x,y) - w(z — p,y — ¢q) is
decomposed into a sum of orthonormal (unweighted) functions w(z — p,y —
Q)(pm,nwm(m - P,y Q)

The mapping from the image f(z,y) to the coefficients f,, n—m(p,q) for
all orders m,n — m and positions (p,q) € S specifies the analysis stage or the
forward transform. The inverse operation of synthesizing the image from these
coefficients can also be performed and is called the inverse transform (Martens,
1990a).

In the particular case of polynomial transforms, the basis functions
Pmn-m(T,y) are polynomials, chosen so that they are orthonormal with re-
spect to w(z,y), as given by Eq. (2.3).

Several choices have to be made in selecting a specific polynomial trans-
form. Firstly, the type of window function has to be selected. Based on psy-
chophysical insights formulated in the scale-space theory (Koenderink, 1984;
Witkin, 1984) and the evidence that the early stages of the human visual sys-
tem use receptive fields that can be modelled as Gaussian derivatives (Young,
1985; Young, 1987), the Gaussian window is one of the best candidates for the
window function. Additional motivation for using a Gaussian window in our
application has been discussed in Chapter 1. In the case of estimating Gaussian
blur, using a Gaussian analysis window also makes the problem mathematically
tractable. Secondly, the size of the window function, also referred to as the spa-
tial scale of the polynomial transform, has to be chosen. For example, when
a Gaussian window is used, the spread of the window ¢ has to be set. In our
application, we have adopted two approaches: a single-scale algorithm and a
multiscale algorithm. In the single-scale algorithm, a polynomial transform of
fixed window size is used. Hence, the size of the window has to be chosen a
priori. A window that is small compared to the size of the blurring kernel
will not contain a sufficiently large region of the blurred edge to make a re-
liable estimate. However, a window that is very large compared to the size
of the blurring kernel will not be able to detect and locate edges accurately,
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thus reducing the accuracy of the estimates. Moreover, increasing the window
size also reduces the probability of detecting isolated edges. In the multiscale
algorithm, polynomial transforms with windows of different sizes are applied,
and the appropriate size of the window is selected a posteriori. Thirdly, the
sampling lattice S has to be chosen so that the entire image is covered. This is
attained by ensuring that the weighting function h(z,y) does not reach values
close to zero. We choose a rectangular sampling grid with a spacing that is a
multiple of the sampling distance. Finally, we should also choose the highest
order of the polynomial coefficients that have to be explicitly computed for the
application at hand. It will be clear from our analysis that we need coefficients
only up to order » = 3 in our application.

We use the Gaussian window for reasons discussed above. A useful prop-
erty of 2-D Gaussian windows is that they are separable, ie., w(z,y) =
w(z)w(y). The analysis functions are then also separable, i.e., am n—m(z,y) =
am(2)an—m(y) and can be implemented efficiently. The orthonormal polyno-
mials that are associated with the Gaussian window function '

1 —(2? +?)
2 _
w (xa?})_?ro,g exP[ o2

(2.7)

are the Hermite polynomials. The resulting polynomial transform is called the
Hermite transform (Martens, 1990a). The analysis functions associated with
the Hermite transform are

am,n-m(x,y; o) = \/2nm!:(ln == m)!Hm (%) Hyom (g) wz(m, 3}), (2'8)

where H,(z) is the Hermite polynomial of degree n in z. It is worth noting
that the functions am, n—m(—2, —y; o) are equal to derivatives of a Gaussian
(Martens, 1990a). Gaussian derivatives are used for detecting local features
in images such as edges and lines (Bevington & Mersereau, 1987) and in psy-
chophysical modelling of the human visual system (Marr & Hildreth, 1980).

The following energy measures derived from the polynomial coefficients will
prove useful in our analysis. The n-th order local energy measure is defined as

n ‘ .
A .
E, = E :f-rzn,n—m : (29)
m=0

forn=1,2,...,00. We will use these energy measures to estimate the parame-
ters of a blurred edge.

The first-order energy F is of particular interest in Chapter 3. The energy
E, given by Ey = f§;+ 1, can be derived using two derivative filters: ag 1(z,y)
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and a1,0(z,y). The first-order energy E; is the square of the local gradient, i.e.
E; = f7, where the local gradient magnitude |f,| = /f3, + f2,.

Another measure that will be of interest in Chapter 3 is the overall local-
energy measure

Epr é ZE = Z Z frzn,n—m e f()z,()t (210)

sl n=0m=0

i.e., is the sum of local energies of all orders (except zero). This is also called
the residual energy (Martens, 1994), because it is the residual of signal energy
minus the square of the local mean. The residual energy Er can be derived by
making use of the generalized Parseval’s theorem for polynomial coefficients,
without explicitly computing the polynomial coeflicients (Martens, 1990a). It
follows directly from the theorem that

400 pt00 ’ A
Er = f 2z, y)w?(z — p,y — q)dzdy

-0 —

+oo  ptoo ‘ 2
- [/ flz, p)w?(x — p,y — q)dzdy| , (2.11)

-0 —oo

which is a more efficient way of determining Er (Martens, 1994).

2.3 Polynomial Coefficients of a Blurred Image

Let the image f(z,y) be the result of blurring the scene f'(z,y) by a blurring
kernel b(z,y). This blurring operation is denoted by the following convolution
expression,

flz,y) = f'(z,y) * b=, y). (2.12)

The forward polynomial transform of the blurred image can be interpreted as
a multi-rate filter-bank with filters a,, n—m(—x,—y) (Martens, 1990a). The
polynomial coefficients of the blurred image are therefore given by

fm,n~m(pv Q) - [(fl(x, y) * b(xa y)) * am,n-m(—x, —y)](p,q)
= [f’(x'l y) * a"m,n—m("ms -y)] (p9)°
where
a;n,n—m(m’ '9') = am,n-—m(x; 3}) * b(x, '.'/) (2.13)

is the blurred analysis function. In other words, the polynomial coefficients
of an image blurred by a kernel b(z,y), obtained using analysis functions
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@ n—m(®,y), are the same as the polynomial coefficients of the unblurred
image obtained using blurred analysis functions a;,, ,_,,,(z,9)-

The above result is very useful in solving many problems involving blur.
In this chapter we show how the above property can be used to derive the
relationship between the Hermite coefficients of blurred and unblurred signals.
We also exploit this relation to estimate the parameters of a blurred edge and
the parameters of the image blurring kernel.

In our application, we are specifically interested in Gaussian blur for reasons
discussed in the Introduction to this chapter. Hence, in the remainder, we will
concentrate on the relation between the Hermite coefficients of a Gaussian
blurred signal and those of the unblurred signal.

Specifically, if b(x,y) is a-Gaussian blurring kernel given by
—(= + y"’)]

1
b(z,y) = gg—exp [ =

(2.14)

then, by using the expression for the Fourier transform of am n—m(z,y;0)
(Martens, 1990a), it can be easily shown that

a:n,n—m(m$ v 0) = (m) am,n-—m(x3 70V 1+ (05/6)2)' : (215)

where am n-m(Z,y;0) is defined by Eq. (2.8). It follows from the equation
above and from Eq. (2.4) that the Hermite coefficients of the blurred signal

fmm—m(p,q;0) are given by

1

fmn-m(pgi0) = (m) fron-m® GoV1+(0/0)?). (2.16)

In other words, the Hermite coefficients of an image after blurring with a Gaus-
sian kernel with parameter oy, obtained using a window of spread o, are the
same as the Hermite coefficients of the unblurred image obtained using a win-

dow of spread o+/1 + (0p/0)?, weighted by a factor (1/4/1 + (0s/0)%)".

2.4 Polynomial Coefficients of an Edge

In the previous section, we derived the relation between the polynomial coeffi-
cients of a blurred image and those of the unblurred image. In this section, we
first derive the polynomial coeflicients of a step edge. By using the relations
derived in the previous section, we later derive the polynomial coefficients of a
blurred edge.
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We use the following Gaussian edge model

edge(z, y; Vo, AV, 04,d,0) = V, + A—zverf z cosf +Uy sinf—d| - 517)
b

for a blurred edge with mean signal value V., height AV, blur parameter o3,
distance from the origin d, and orientation 8. The above edge model is the
result of a step edge with parameters V,, AV, d, and 6 blurred by a Gaussian
blurring kernel of spread op. In the limit o — 0, the above model reduces to
a step edge. A schematic diagram of a step edge in (z,y) is shown in Fig. 2.1.
Figure 2.2 shows the cross-section of a blurred edge along with the step edge
by blurring of which the blurred edge was obtained.

2.4.1 Hermite Coefficients of a Step Edge

The polynomial coefficients of a step edge for a window w(x,y) centered at the
origin are given by (Martens, 1990b)

n!

Fronem = fn m cos™ @sin” "4, (2.18)
where
fso= Vet 2@ (219)
i = S0 (2:20)
with
+00 d
Qp(d) = /; onlz)w?(z)dx — /_ on(x)w? (z)dz, (2.21)

for n =0,1,....,00,m = 0,...,n, where ¢,(z) is the orthonormal polynomial of
degree n over w?(z). From Eq. (2.18) and Eq. (2.9), the n-th order energy of
a step edge is given by

B, =1fl’ (222)
or equivalently, |f}| = /E.,.

Specifically, for a Gaussian window of spread o, centered at the origin, it
can be shown that

, AV.o

fn \/é—'f.l.- an—l(d; a)a (223)
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Figure 2.2: The cross-section of a blurred edge along the direction
of the edge (drawn curve), for an edge with height AV = 100, mean
value V., = 75, located at a distance d = 3 from the origin and blurred
with a Gaussian blurring kernel with o, = 1. The cross-section of the
step edge by blurring of which the blurred edge was obtained is also
shown (dotted curve).

2.4.2 Hermite Coefficients of a Blurred Edge

In this subsection we make use of the results derived in section 2.3 to obtain
the Hermite coeflicients of a blurred edge from those of a step edge. Using
Eq. (2.16), Eq. (2.18) and Eq. (2.23) we obtain the Hermite coefficients of -
a Gaussian blurred edge, where the blurring kernel is given by Eq. (2.14).
Hermite coefficients of a blurred edge can also be written in the form of Eq.
(2.18), i.e.,

n!

fm’n_m = f’n m cos™ fsin 6. (225)

Specifically, up to order three, we obtain

_y _AV | _dlo
fo=V, 2erf \/i-f-(T/U)z]

TG (2.26)

4 = ( 1 ) AV (d/o)?
' V1+ (op/0)2 ) Vor P
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Figure 2.3: Coeflicients f;1, f2 and f3 of an edge, as a function of
d/o. The edge parameters are o5 /0 = 1/2 and AV = 100 (arbitrary

units).
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The coeflicients of higher orders can also be derived, but are not needed here.
The resulting energies are given by E,, = |f,|?. Note that, when o, = 0, Eq.
(2.26) reduces to Eq. (2.24). Figure 2.3 shows fi, f2 and f3 of a blurred edge
of height AV = 100 (in arbitrary units) and o;/0 = 1/2 as a function of d/o.
Note that when f; is maximum, f3 equals zero. This can also be seen by solving
the equation

Ofa _
22 =0 (2.27)

to obtain (d/o)? = (1 + (0»/0)2)/2, which corresponds to the positions d =
to/+/[1 + (ob/0)?]/2 where f3 =0.
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2.5.1 Noiseless Case

The edge model is completely defined by five parameters : mean value V,, height
AV, distance from the window centre d, orientation ¢ and blur parameter o}.
Using the relationships derived in the previous section, we can estimate the
parameters of an edge from the polynomial coefficients. We need at least five
independent equations to determine all five edge parameters. The mean value
V. appears only in the equation for f;q, hence this equation is needed for
estimating V.. In choosing the rest of the equations, we make use of the fact
that the signal-to-noise ratio of the coeflicients decreases with increasing order
of the polynomial coefficients (Martens, 1990c). We choose the other four
equations so that they involve coefficients of the lowest order possible. It is
easy to see that we need coefficients up to order three to solve for all the five
edge parameters. From Eq. (2.26) we derive the following relationships

f2 1 d

i T 1+ (@/oPs (2.28)
s _ 1 1 [ 20d/o)*
Ao 1'*‘(be0)2\/5(1+(05/0)2 1)’ (2:29)

between the polynomial coeflicients of an edge. By solving the above set of

equations we obtain

. = 1/2

o _ |25 _v6fz) _

= = (f? 7, ) 1 (2.30)
d _ ff2p_ VEHY

s = T ( 7 ) : (2.31)

By substituting the above two results in the expression for fi, we obtain

—(1/2) -1
AV = fiv2r (3&2 \/gfs) exp ﬁ (2—'}‘22- - \/f—ifs) . (2.32)

7 h 2P\ A

The mean value V; is obtained by substituting the above parameter values in
fo,0 = fo. All edge parameters except the orientation 8 can be estimated just
from the coefficients up to order three. The edge orientation # can be obtained
from the ratio fo1/f1,0 = tanf. The signs of d and AV are determined from
the signs of the first and the second order coefficients.
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To use Eq. (2.30) for blur estimation, we need fi, fo and f3. We first
compute their magnitudes from energies Ey, E; and Es computed using Eq.
(2.9) and Eq. (2.22). The signs of fi, f2 and f3 are obtained using the relation
between the signs of the horizontal and the vertical coefficients of order 1, 2,
and 3: fo1,f1,0, fo,2, 2,0, fo,3 and fzp. From Eq. (2.25), fip = ficosf and
Joa1 = f2sin8. Hence, the signs of first order coefficients f 9 and fo; depend
on the sign of AV as well as that of cos§ and sin 8 respectively, whereas the
sign of fi is given by the sign of AV alone. Therefore, the sign of f; can be
determined by finding the signs of cos 8 and sin 8, which is equivalent to finding
to which quadrant the # belongs. Based on these facts, the following steps are
used to determine the sign of fi:

if foq-fi0>0 then if fo1+ fio>0 then f; positive
_else f1 negative

else if f(},l — f 1,0 > 0 then f1 positive

else f1 negative

(2.33)

From Eq. (2.25), fao = f2c0s?0 and fo2 = fasin? 0. Hence, the sign of f; is
given by the sign of fa¢ + fo2. From Eq. (2.29), the sign of f3 is opposite to
that of fi when |d| < o/+/[1 + (0b/0)?]/2 and the same as that of f; otherwise.
The sign of the ratio fo3/fo,1 or fo,3/fo,1 can be used to decide this. We use
the most reliable ratio of the two, as follows:

if |f1,0l > |fo,1| them if f3,o/f1,o >0 then f3/f1 positive
else f3/ f1 negative
else if fo,3/fo,n >0 then  f3/fy positive
else fa/f1 negative
(2.34)
Having obtained the coefficients fi, f2, and f3, the edge parameters can be
computed using Eq. (2.30), Eq. (2.31) and Eq. (2.32).

2.5.2 Effect of Independent Errors in Polynomial Coefficients on Estimates

The independent errors in the measured energies occur mainly due to the quan-
tization of filter coefficients and the quantization of polynomial coefficients.. For
small independent errors in the energies it is possible to express the error in the
estimates of edge parameters in terms of the partial derivatives. For example,
the error in the estimate of o} can be expressed as

30‘;, 30‘{, 30’{,
A = = Afy + =—Afy + —A 2.35
oy o f1 o, fa 75 f3 (2.35)

= 8 (0‘, 05, d, AVIAf; + 52(0', Oy, d, AV)Afz + 33(0', oy, d, AV)Afs
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where S, (0, 0p,d, AV), So(0, 03, d, AV) and S3(0, 04, d, AV) are sensitivity fac-
tors expressed in terms of edge parameters and window spread. Similarly, esti-
mation errors in other edge parameters can also be expressed in terms of their
partial derivatives.

Figure 2.4 shows the error in o) as a function of different parameters for
the case of Af; = Af; = Afs = 0.5. These figures are obtained by plotting
the analytical expressions for Aoy given by Eq. 2.35 against its parameters.
Figure 2.4a plots the error in the estimate of ¢}, as a function of o (for fixed oy,
d and AV). The error is minimum when the window spread o is approximately
equal to the blur parameter g;. Figure 2.4b plots the error in the estimate of
op as a function of the distance from the window centre d (for fixed o}, 0 and
AV). The error in the estimate of ¢}, increases almost linearly with distance.
Figure 2.4c plots the error in the estimate of o as a function of the edge height
AV (for fixed o3, ¢ and d). The error in the estimate of o, decreases with
increasing AV since the signal-to-noise ratio at the edge increases with AV.

2.5.8 Effect of Image Independent, Additive Noise on Estimates

The statistical nature of the estimates of edge parameters in the presence of
image noise has to be studied before using the method on real images. In many
practical situations, the noise can be modelled as an additive Gaussian random
process which is independent of the image (Andrews & Hunt, 1977). We assume
that the noise in the image can be modelled as image-independent, stationary,
additive Gaussian stochastic process with zero-mean. When the additive noise
is a Gaussian random process, the polynomial coefficients are jointly Gaussian
random variables whose covariance matrix can be easily computed once the
noise autocorrelation function is known (Escalante Ramirez & Martens, 1992).
To study the statistical properties of the edge parameters, we need to obtain
their probability density functions (PDFs).

The edge orientation 8 is given by tan~'(fo,1/f1,0). The polynomial co-
efficients f, o and fo; are independent Gaussian random variables with equal
variance (Escalante Ramirez & Martens, 1992). Hence, the angle is a ratio
of two independent Gaussian random variables with equal variance, with an
arc tangent transformation. The PDF of the angle can be derived (Lyvers &
Mitchell, 1988). The angle so estimated is unbiased. Because of the non-linear
nature of the expressions for the other edge parameters, it is not possible to
obtain analytical expressions for their PDFs. Instead we use computer simula-
tions to study their nature.

In the computer simulations, an edge of known height, orientation, mean
value and position is blurred with a 2-D Gaussian kernel with known blur
parameter, op. In each trial of the simulation, the following steps are performed.
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Figure 2.4: Error in the estimate of o, due to independent errors

in fi1, f2, and f3.. Plot (a) shows the error as a function of o, for

op = 1.0 pixel-width, d = 0.25 pixel-width and AV = 100 (arbitrary

units) Plot (b) shows the error as a function of d, for o = 2, g3 = 1.0,

and AV = 100. Here d is expressed in units of sampling interval.
Plot (c) shows the error as a function of AV, for o = 2, 0, = 1.0, and

d = 0.25. In each of the 3 plots, Af; = Afz = Afs = 0.5 (arbitrary

units).
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First, noise with Gaussian PDF of known variance is added to the blurred edge.
Following this, the noisy blurred edge is analysed using a polynomial transform
to obtain the coeflicients. Finally, the edge parameters are computed. The
signal-to-noise ratio (SNR) at an edge can be defined as

sNR = 2¥ (2.36)

Tn

where AV is the signal difference corresponding to the edge height and o, is
the standard deviation of the noise.

The probability density functions of 8, AV, d/o, and o}/0, obtained by
simulations at three different SNRs, are shown in Fig. 2.5. In the figure edge
height AV = 100(arbitrary units) and the noise standard deviation o, = 5,10,
and 20 (arbitrary units). The dotted vertical lines show the values that the
parameters should have when there is no noise in the edge. The variance of
all the estimates increases with decreasing SNR. The estimate of the angle 8 is
unbiased, as was also deduced from the analytical expression. This also serves
as a check on the validity of the simulations. The PDF of the estimate of edge
height remains symmetrical with increasing SNR, indicating no significant bias.
The PDF of the estimate of edge location d/o is symmetrical at high SNRs,
but deviates slightly from symmetry when the SNR drops to 5. The bias due
to this asymmetry is small, for example, when SNR = 5 and d/c is minimum,
i.e., d/o = 0, we obtain a bias of 0.001, and for the same SNR when d/o = 0.5
we obtain a bias of 0.07. The PDF of the estimate of ¢, /o remains symmetrical
about the mean at high SNRs, but becomes increasingly asymmetrical at low
SNRs. At SNRs above 10 the bias in the estimate of 0 /0 is less than 5%. At
low SNRs the blur parameter o, is underestimated. This is due to the nonlinear
nature of Eq. (2.30). The operation of squaring f2 in Eq. (2.30) causes the
bias. It will be shown in the next section that the bias in the estimate of o is
proportional to {0,/ f1)%.

In the analysis so far we have dealt with images in the continuous spatial
domain. Since we are dealing with discrete images, the effect of sampling
needs to be looked into. The effect of sampling on polynomial coefficients has
been studied (Martens, 1990c). When the window spread o is chosen so that
o > 3T/2 where T is the sampling interval, the effect of sampling on the signal-
to-noise ratio of the polynomial coefficients is negligible. In our application
we choose o > 37T/2 in order to keep the effects of sampling on polynomial
coefficients minimal. Once this has been guaranteed, the effect of sampling on
the parameter estimation is minimum, since the estimates are based on the
coefficients.
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Figure 2.5: The PDFs of the edge parameter estimates. Panel (a)

shows PDF of angle 8, (b) PDF of height AV, (c) PDF distance

of d/o and (d) PDF of o3/0. The dotted, dashed and solid lines
correspond to SNRs 20, 10 and 5 respectively. The dashed vertical

lines show the estimates for a noiseless edge. The o of the analysis

window is 2. Each curve is the result of 32000 simulation trials.
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Figure 2.6: Single-scale blur estimation algorithm

2.6 Blur Estimation Algorithm

In this section we show how the relations derived in the previous section on the
estimation of edge parameters can be used to estimate the amount of Gaussian
blur in natural images. We adapt the following computational assumption
about the scene:

We assume that there are at least a few locations in the captured
scene where the luminance distribution is locally a one-dimensional
step edge.

A one-dimensional (1-D) step edge is constant in some direction and varies
as a step function in the perpendicular direction (see Fig. 2.1). The above
computational assumption is true for most natural scenes. A block diagram
of the proposed algorithm is shown in Fig. 2.6. Since the relations derived
in the previous section hold for an edge, we first have to detect the locations
of locally edge-like patterns in the image. This task is performed by the edge
detector shown in Fig. 2.6. At each identified edge location the required edge
parameters op/a, d/o, or AV can be estimated from the Hermite coefficients
using Eq. (2.30), Eq. (2.31) or Eq. (2.32) respectively. Thus, we have a set of
observations obtained from many different edge locations over the image. In
the case of uniform blur, the goal is to obtain an estimate of ¢} for the entire
image by statistically combining the blur estimates at all edge points.
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2.6.1 Selecting Edge Candidates

Since the use of a strict definition of an edge is somewhat impractical, it is
customary to adopt an operational definition. We define edge positions as
those locations where a significant locally one-dimensional transition occurs
between distinct image values. Such transition regions are characterized by a
local maximum in the gradient magnitude |f;| in the direction 8, where @ is
the angle of the edge as defined in Fig. 2.1. Therefore edges can be detected

by locating local maximum in | f;| in the direction €, where |f1| = +/ffo + 3,
and 8 = tan!(fo1/f1,0)- Local maximum in [f;| are detected by finding the
points where |fy| is larger than its two closest neighbours whose positions are
in the direction indicated by @ at that point. The edge locations detected
in this way are reorganized into chains of edge locations (Mallat & Hwang,
1992). A chain of edge locations is a series of consecutive, connected edge
positions, where each edge location acts as a link in the chain. Thus an edge-
chain is characterized by parameters chain-length and average f; over all edge
positions in the chain. The chaining of the edge locations is based on the fact
that the f; varies smoothly across the edge curve, and that the orientation
@ of the edge at any location on the curve is perpendicular to the tangent of
the edge curve at that location. Among the edge-chains that are detected in
this way, only those chains whose average |f1| is greater than a given threshold
and whose chain-length is greater than a given threshold are considered to be
reliable and prominent edge candidates. Applying thresholds on the average
|f1] over the chain and the chain-length helps to decrease the probability of
false alarm of edges. Edges with high f; and large segment length are relatively
more prominent in an image and hence are assumed to play a greater role in
determining the perceived blur.

The blur estimation method is based on a locally 1-D edge. Not all positions
selected by the above detection process are locally 1-D. For instance, corners are
also detected (see for example, top rows of Fig. 2.15 and 2.16). A 1-D pattern
is constant in some direction and varies in the perpendicular direction. Typical
1-D patterns are edges, lines, etc. The Hermite coefficients of a locally 1-D
pattern are equal to zero for all orders greater than zero in one direction, and
non-zero for at least one order greater than zero in the perpendicular direction.
From the edge locations detected above, the 1-D edges are detected by rejecting
all those locations where the pattern is locally 2-D. A 2-D pattern varies in two
(orthogonal) dimensions. Examples of 2-D patterns are corners, curves with
large curvature, etc. We use a 2-D energy measure E»p for rejecting the 2-D
patterns (Martens, 1995). The E,p indicates the extent to which a pattern is
locally two-dimensional. For example, E;p up to order 2 is given by

Esp = [(\/(fz.o — fo2)? +2ff; — f20 + fo,zl) /2]2 (2.37)
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Ideally, locally 1-D patterns are characterized by E;p = 0. For example, 1-D
edges and lines have E,p equal to zero, whereas locally 2-D patterns such as
corners and steep curves have a high value of Esp. We detect locally 1-D edges
by putting a threshold on the ratio E;p/E;. Using this threshold, 2-D patterns
such as corners which have a high value of Eyp are rejected. For our estimate
of the blur to be reliable, the pattern on which the estimate is based has to be a
1-D edge. In other words, the cost associated with a false alarm is much higher
than that associated with a miss. Hence, we keep a sufficiently low threshold
on Esp/E; to be certain that the locations identified really correspond to 1-D
edges.

2.6.2 Estimation of Blur Parameter at Edge Locations

Having identified the edge locations in the image we now have to estimate the
edge parameters at each location. When the distance between the centre of
the window and the edge (d/c) is small, the windowed signal contains most of
the region of the edge transition, i.e., the region of the edge from which most
reliable estimates of the blur can be obtained. However, when d/o is large,
the windowed signal contains only the tail of the edge and estimates based on
that are bound to be less reliable, especially in the presence of noise. When
d/o is small, the dependence of the estimated blur on the blur model is also
small since the transition region is approximately linear for all realistic blur
models. For these reasons, we are interested in making sure that the window
is positioned sufficiently close to the centre of the edge. Since the windowing
takes place at regular intervals in the image, an edge location that is far from
the centre of one window will be close to the centre of another window. Hence,
if the window spread o is sufficiently large compared to the sampling distance,
most edge locations will be included at least in one window.

To obtain a reliable estimate of the blur spread, we want to ensure that
the edge is sufficiently close to the centre of the window. The position of an
edge relative to the window centre can be verified using the ratio f3/f;. By
applying a threshold on the ratio

fa o B (2.38)
fi
we reduce the range of allowed distances, d/o. The result of using Eq. (2.38)
in the (d/o,0,/0) plane is shown in Fig. 2.7. The area of the region can be
varied by varying @ in the range 8 > —1/v/6. In Fig. 2.7, we have chosen
B8 = —1/2v/6. When —1/v6 < 8 < —1/2v/6 the reliable region is bounded in
the (d/o,0b/0)-plane to d/o < 1/2 and op/0 < 1. For example, in Fig. 2.7,
when 3 is decreased below —1/2+/6, the solid curve moves towards the origin,
thus shrinking the region. When £ is increased above —1/ 2v/6, the solid curve
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Figure 2.7: The region of reliable edge positions in the (d/o,04/0)
plane. The solid line is given by the equation f3/fi = 8. The hatched
region shows the region of allowed solutions for 3 = —1/2v/6. The
figure is symmetric around the ordinate.

moves outwards {(away from the origin), thus expanding the region. At every
edge location identified we ensure that (2.38) is satisfied before Eq. (2.30) is
used to estimate blur. Thus, we ensure that only those edges that give rehable
estimates of edge parameters are used to estimate image blur.

Figure 2.8 shows the region covered by periodic windows of a fixed scale
o, and period T', in the (d,03) plane. These bounds can be varied by varying
the ratio T'/o and the threshold 8 in Eq. (2.38). In Fig. 2.8, T/o = 2/3 and
B=-1/ 2v/6. Edges that fall within the non-overlapping regions are analysed
by only one window that lies nearest to it. Edges that lie in the overlapping
regions could be analysed by more than one window. However, since in our
implementation the edges are detected by locating local maximum in |f;, the
edges lying in the overlapping regions are analysed by only one window that
is located closest to it. The T/o ratio and the threshold 8 have to be chosen
so that the repetitive windows span the entire d-axis. Blurred edges whose
parameters are outside the shaded region will not be analysed by a polynomial
transform with a fixed scale. This calls for a multiscale algorithin which is
discussed in Section 2.7.

At an edge location, observation 7 is corrupted by noise, i.e. ¥ = o} + 7,
where oy, is the parameter to be estimated, 7 is the measured quantity given
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Figure 2.8: The region covered by a periodic window in the (d, o)
plane. Both d and o, are expressed in units of 7. In this figure
o = 3T/2 and 8 = —1/2v/6. The solid line is the boundary of the
region analysed by the window located at a fixed position.

by (see Eq. (2.30)),

1/2

+ —=
i A

~, - -1
f=go (?‘f—% ‘/gf“’) -1 (2.39)

and 7 is the noise. To obtain an estimate of o, and to study its statistical
properties we need to know the PDF, p;,, (F|os). As we noted in the previous
section, it is not possible {o obtain analytical expressions for this PDF. The
computer simulations shown in Fig. 2.5d demonstrate that the expected value
of 7 is lower than that of o3, i.e. E|f] = o, — b, indicating bias. The bias is
mainly due to the squaring of f; in Eq. (2.30). Simulations similar to that
shown in Fig. 2.5d also show that the deviation of the expected value of f2,
E[fZ], from its noise-free value is proportional to 2.

If the bias b can be estimated, we can obtain an unbiased estimate of o}
by adding b to E[F]. The bias b was studied as a function of the input noise
variance 02, the window spread o, and the edge parameters AV, d, 8 and oy,
using simulations. Figure 2.9 shows the result of simulations. From simulations
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it was found that b is approximately proportional to (¢,/f1)?, i.e.,

bk (};)25 | (2.40)

where k is a constant, independent of the edge parameters, window spread and
noise variance. For SNR > 5 and o > 3T/2, the constant k is approximately
equal to 0.53. ‘

An unbiased estimate of the blur parameter at an edge location ¢ can be
obtained by adding the bias b to r;. From Eq. (2.40), it follows that

2
Gy(ri) =ri +k ("—”) : (2.41)

fr
, where d(r;) is the unbiased estimate of o} at i-th edge location. At an edge

location, f; is a measured quantity. If we know the noise variance o2, we can

obtain an unbiased estimate of the blur parameter at each edge location using
the above equation. Noise variance can be either assumed to be known or can
be estimated from uniform regions in the image (Chapter 3).

The variance of the estimation error, Var[dy(7) — o], also increases with
(on/f1)?. The standard deviation of the estimation error as a function of
on/|f1] is plotted in the bottom panel of Fig. 2.9. From the figure we see
that, for a given amount of noise and image blur, the variance of the estimate
decreases with |f1|. From Eq. (2.26) we note that |f;| increases with the edge
height AV, decreases with d/o and with o,/0. Therefore, when the image
contains additive noise, to obtain estimates with low variance, o has to be
chosen such that the ratio o, /o is minimum. Edges with high contrast that are
situated close to the centre of the analysis window give estimates with lower
variance.

2.6.3 Estimation of Uniform Image Blur

In an image with space-invariant Gaussian blur we can estimate the blur pa-
rameter o, more reliably. The observation space R consists of N (independent)
observations from N edge locations over the image. Each observation r; is bi-
ased as well as corrupted by noise, i.e.,

ri=o0p—b;+mn;, 1=12,.... s N, (2.42)

where oy is a constant. Based on these observations, we want to derive the
estimate d(R).
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Figure 2.9: Bias and standard deviation in the estimate of edge blur
obtained using simulations, for different values of the parameters:
0,0p,AV,d,0 and o,. Top panel shows the bias in the estimate of
edge blur. Bottom panel shows the standard deviation of the indi-
vidual errors in the estimate of edge blur. Each point in the plots is
the result of 32000 simulation trials.
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We assume that the noise variance, 02, is constant over the image. Thus,

from Eq. 2.42 and from Eq. 2.40 we obtain

K :
ri=0p— =g +n, i=12...,N, (2.43)
1,4

where the two parameters, o and K, are constant over the image. Hence, when
the blur and the noise are uniform over the image, the bias in the estimate of
op across the edges in the image varies only with |fy ;|, the square-root of the
first-order energy at the i-th edge location. An estimate for o}, (and K ) can
be obtained by minimizing the weighted error

\ |
5’3’}%; {"b - (n + %)] w(|fril), (2.44)

1%

where the sum is over all edge locations. Weighting is necessary because the
reliability of r; increases with |f;|, as discussed in the previous subsection.
We choose the weight w; proportional to |f1|. Note that, in this case, there is
no need to know the noise variance to obtain the estimate &, (R).

2.7 Multiscale Blur Estimation Algorithm

In the previous sections the single-scale blur estimation algorithm was dis-
cussed. When using a single-scale algorithm, the window size ¢ has to be
chosen a priori. Using an a priori chosen window size o, (i.e., the single-scale
algorithm) reliable estimates for blur parameter can only be made within a
limited range for the parameter o, (see Fig. 2.7). To increase this range we
can analyse the image with multiple window sizes and choose the appropriate
window size a posteriori.

The single-scale algorithm in Fig. 2.6 can be easily extended to a multiscale
algorithm as shown in Fig. 2.10. Given a blurred image it is first analysed at
a scale oy. All the edges whose parameters are within the bound given in Fig.
2.8 will be estimated at the first level, resulting in estimates /oy at those
edge positions. Edges with parameters that fall outside the shaded region will
not be estimated at the first level and have to be estimated at a higher level.
The zero-order coefficient image at the first level is taken as the input to the
second level of the analysis. Since the zero-order Hermite filter is Gaussian,
the effective blur parameter at the input to the second level is 1/03 + 012. The
analysis at the second level takes place at scale o9, with o3 > oy The range of
parameters of edges that can be analysed by the second level is bounded in the
(d,0s) plane (see Fig. 2.11 for example, where o = 20;). Those edges whose
parameters are within these new bounds (excluding those that have already
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Figure 2.10: Multi-scale blur estimation algorithm

been analysed at the first level) will be estimated at the second level resulting

in estimates |/ o2 + 02 /o, at selected edge positions. Those edges that are not
estimated either at the first or at the second level will have to be estimated at
higher levels. In this way we proceed to estimate the parameters of all edges
with the appropriate window size.

The successive levels in the multiscale algorithm can be chosen so that
o; = Do;_1. We choose D = 2 in the present implementation. This can
be implemented by using windows whose spread keeps doubling, or by using
the well-known pyramid structure (Burt & Adelson, 1983). In the pyramid
structure, when a subsampling factor of D is used, i.e. T; = DT;_;, the same
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Figure 2.11: Region covered by the multi-scale periodic windows in
the (d, o) plane. Both d and o are expressed in units of T'. In this
figure 05 = 204, Ty = 2T}, 0 = 3T/2 and 8 = —1/2v6. The hatched
region shows the region covered by the second layer of the multi-scale
algorithm. The crossed region shows the region covered by the first
layer (same as Fig. 2.8). The edge A with o, = 1 is analysed reliably
at level one, whereas the edge B with o, = 2 has to be analysed at
level two.

window function can be used at every level. The lowest o that can be used
is 0 = 3T/2, due to the effects of sampling on the SNR of the polynomial
coefficients (Martens, 1990c). Figure 2.11 shows the range of parameters of
edges analysed at the first and the second level of a multiscale algorithm with
D = 2. By going further to higher scales, the entire (d, o) plane can be covered.
Note that at the second level the effective blur parameter is /o7 + o7. Hence,
in Fig. 2.11 the reliable region boundary at second level (o2 = 20,) is obtained
by computing Eq. (2.38) at the second level and by subtracting the contribution
of o1 from the effective blur /o7 + o7. '

Edges for analysis at each level of the multiscale algorithm are chosen so
that they are estimated most reliably at that level. This can be seen from the
reliable region for each level in the (d,03) plane (see Fig. 2.11). The error
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in the estimate of o} is mainly due to two sources, one due to noise in the
image (see subsection 2.5.3) and the other due to independent errors in the
polynomial coefficients (see subsection 2.5.2). The variance in the estimate of
op due to image noise decreases with |fi| and hence with increasing window
size 0. However, the error in the estimate due to independent errors in the
polynomial coefficients increases when o is increased beyond o, (Fig. 2.4a).
Using a window with o that is small compared to o} also results in large errors
in the estimate due to independent errors in the polynomial coefficients (see Fig.
2.4a). Considering both forms of estimation errors, the most reliable estimates
of o}, are given by a window with spread ¢ in the range oy < 0 < 20%. From this
bound it follows that, using a window of spread o, reliable estimates of o}, can
be made in the range 0/2 < 0} < 0. However, because of the effects of sampling
on the SNR of the polynomial coefficients (Martens, 1990c), the lowest o that
can be used is 0 = 3T/2, where T is the sampling interval. The reliable region
for each level in the (d,0,) plane is based on this bound on o} for that level.
For example, in Fig. 2.11, edge A with parameters o, = 1 and d = 1/4 is
estimated most reliably at the first level. Instead, if edge A is estimated at the
second level, the estimation error will increase substantially. This is because
at the second level the error due to independent errors in the coefficients will
increase substantially since o}, /0 changes from 2/3 to 1/3, whereas the decrease
in the error due to image noise will be small. Similarly, edge B with parameters
op = 2 and d = 1/4 is estimated most reliably at the second level.

2.8 Results of Blur Estimation

In this section we present the results of applying the blur estimation algorithm
to synthetic and natural images. The exercise on grey-scale images is mainly
aimed at comparing the estimates of blur-spread given by the algorithm against
the input blur-spreads. Figure 2.12 shows four original images used to test the
algorithm. The two images at the top, called ‘Mondrian’(left) and ‘Text’, are
synthesized on the computer, while the two at the bottom, called ‘Terrace’ (left)
and ‘Wanda’, are digitized images of natural scenes. The images of natural
scenes were captured with a camera (which by itself introduces some blur), and
were later electronically digitized. Each image shown in Fig. 2.12 contains 512
by 512 pixels, with 8 bits per pixel accuracy. The synthetic images Mondrian
and Text, in which the edges are idealy sharp (i.e., step functions) are chosen
to test the performance of the algorithm in ideal conditions and to compare it
with that for real images of natural scenes.

Images with different amounts of blur were generated from the original
images by filtering with 2-D separable binomial windows of order B. A bino-
mial window of order B is approximately equivalent to a Gaussian window of
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Figure 2.12: Original images used to test the algorithm. Images at
the top are ‘Mondrian’(left) and ‘Text’ and at the bottom are ‘Ter-
race’ (left) and ‘Wanda’'.
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Figure 2.13: Images of Terrace scene with blur, noise, and blur as
well as noise. The image on the top left is the ‘original’, and the
image on the top right is obtained by blurring the original with a
binomial window of order B = 8 (i.e, 0 = 2). The image on the
bottom left is obtained after adding Gaussian density noise with SD
o, = 14 and the image on the bottom right is obtained by first
blurring with a binomial window of order B = 8 and then adding
noise of SD o,, = 14.
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Figure 2.14: Approximation of Gaussian windows using binomial
windows, for windows of order B = 2,4, 8, and 16. The coefficients of
binomial windows are shown using a bar graph and the corresponding
Gaussian windows, with o = y/B/2, are shown using drawn curves.

spread o, = y/B/2 (Martens, 1990b) (see Fig. 2.14). For example, B = 8 is
approximately equivalent to o, = 2. To test the behaviour of the algorithm in
the presence of noise, noisy images were used. Noisy images were generated
by adding zero-mean white noise with Gaussian PDF of known standard devi-
ation, o,, to each pixel of the blurred image. Figure 2.13 shows examples of
images with blur, noise, and blur and noise.

Figure 2.15 shows the results of edge detection, using the single-scale al-
gorithm described in Section 2.6. The two input images are Mondrian and
Terrace blurred with a binomial window of order B = 2 which corresponds
approximately to o, = 1.0. The top row shows the locations of detected edges.
While detecting the edges, the threshold on |fi| of edge chains and that on
chain length is selected so that a certain percentage (e.g. 5% ) of the image
area is judged to be edge regions. From these edges, 1-D edges are detected by
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thresholding the ratio Eop/E;. A fixed value of 0.01 is used as threshold on
E3p/E, for all the results reported here. The bottom row shows the locations
of 1-D edges used for blur estimation. Edge locations for blur estimation are
chosen from the locations of 1-D edges using the threshold 3 in Eq. (2.38).
Results reported here are generated using a fixed value for 8 = —1/2v/6. The
figure shows that the 1-D edge detector correctly rejects higher-dimensional
patterns such as corners as well as 0-D patterns (i.e., uniform regions). Using
the edges chosen in Fig. 2.15, the blur estimation algorithm gives an estimate
of 63 = 1.03 and oy = 1.16 with SDs 0.18 and 0.39 for Mondrian and Terrace
respectively (approximate expected value o3 = 1 for both images). The higher
value of the blur parameter, oy, in the case of the natural scene is mainly
because the original image of that scene is blurred in the process of camera
recording and digitization, whereas the original synthetic image has ideally
sharp transitions.

Figure 2.16 shows the results of edge detection using a single-scale algo-
rithm, in the presence of image noise. The two input images are Mondrian
and Terrace blurred with a binomial window of order B = 2 corresponding to
op = 1.0, and contain added noise with o, = 10. Using the edges chosen in
Fig. 2.16, the blur estimation algorithm gives an estimate of o, = 0.97 and
op = 1.17 with SDs 0.30 and 0.39 for Mondrian and Terrace respectively. In
Fig. 2.15 and Fig. 2.16, the low contrast edges are not detected because we
have chosen the threshold on |f;| of edge chains such that the probability of
false alarm is low.

Figure 2.17 shows the result of the single-scale blur estimation algorithm
for images with different amounts of blur. These results also show the effect of
parameters o and 3 on the estimate. The dashed line (O) shows the estimates
given by an algorithm with 0 = 2 and 8 = —0.04. Since (3 is high, edges
with large o,/0 ratio were also considered in the estimate. The drawn line
(©) shows the estimates obtained when 8 = —1/2v/6 = —0.204, but with o
chosen such that it is always higher than the expected oy, i.e., such that the
op /o ratio for most edges in the images is below 1. At low input o}, estimates
obtained using both settings are almost equal for all scenes, although some
differences are present for the Wanda scene. It is clear from the figure that
the original images of both natural scenes are blurred. The effects of using a
large window are clear from the results for the Text scene, which has many
line-like structures. When the window is large, it encloses more than one edge
within it (i.e, line in the case of Text) and hence the estimate based on a single
edge within a window fails. In the Text scene this happens when o exceeds the
width of the character stroke. However, when the Text images are analysed
using lower o but with higher 3 (to obtain a sufficient number of edge locations
on which to base the estimate), the estimate is closer to the expected estimate
(O). The expected estimate is shown by the drawn straight line. The lengths
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Figure 2.15: Result of edge detection. The input images are Mon- .-
drian and Terrace blurred with ¢, = 1. The top row shows the
locations of detected edges and the bottom row shows the locations
of 1-D edges used for blur estimation. Notice that the corners, which
are 2-D features, have been correctly rejected in the images at the
bottom. These results are obtained at scale o = 2.0.
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Figure 2.16: Result of edge detection in images containing noise.
The input images are Mondrian and Terrace blurred with o, = 1
containing noise with ¢, = 10. The top row shows the locations of
detected edges and the bottom row shows the locations of 1-D edges
used for blur estimation. These results are obtained at scale o = 2.0.
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of the error bars in all figures are equal to twice the standard error of the mean
(SEM). However, in most cases, the SEM is small and the error bars in the
plots are barely visible.

Figure 2.18 shows the result of the blur estimation algorithm for images
with different amounts of blur and noise. All estimates are obtained using
a single polynomial transform of window size ¢ = 2 and 8 = —0.204 Points
joined by a line correspond to images that have the same amount of blur, but
contain different amounts of noise. In each plot, the point in the lower left
corner corresponds to the original image. The parallel curves demonstrate that
the algorithm gives reliable estimates of the blur parameter in the presence of
image noise. In the case of Mondrian, consistent estimates of oy are obtained
in the presence of noise, for all levels of blur except for the case o5 = 0 (the
lower most curve). The algorithm overestimates the blur of a noisy image with
zero input blur. The ¢, = 0 situation does not occur in real images, since real
images are blurred due to the imaging process. In the case of Text also the
estimates are consistent in the presence of noise but are slightly lower than
those for Mondrian. In the case of Terrace, consistent estimates of o} are
obtained in the entire range tested. In the case of Wanda we obtain consistent
estimates when the variance of the input noise is small, but when the input
noise is high the estimates become less reliable. This is because the image
Wanda does not contain high-contrast edges. When an image does not contain
high-contrast edges, reliability of the blur estimate decreases rapidly as the
input noise increases because the SNR at the edges decreases drastically.

Figure 2.19 shows how the estimate of o}, varies as a function of the scale
of the polynomial transform, ¢. The input images are Terrace with o} = 0.7,
on = 10 (lower curve) and Mondrian with o, = 1.4, 0, = 5 (upper curve).
We have used o > 3T/2 to keep the effects of sampling on the polynomial
coefficients to a minimum. There is a small variation in the estimated value of
o as the scale varies, but it is within the SD of the estimate. For both images
the SD of the estimate does not vary much with the scale in the range of o
tested.

Figure 2.20 shows the result of the multiscale algorithm on Terrace as o,
increases. These results are obtained using a three-level algorithm with oy = 2,
02 = 4, and o3 = 8, which has a pyramid structure, with 8 = —1/2v/6. The
aim here is to merely demonstrate the use of the proposed multi-scale blur
estimation algorithm using a typical example. Therefore, the results of the
multi-scale algorithm shown here are intented only as a demonstration of the
multi-scale algorithm to estimate blur in images of natural scenes.
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Figure 2.17: Results of blur estimation using a single-scale algorithm
on images with different amounts of blur. The inputs are original
images of the Mondrian, Text, Terrace and Wanda scenes, blurred
with binomial filters of order B = 0 (original), to 16 (i.e., op = 0, to
2.83). The dashed line (O) shows the results obtained with ¢ = 2.0
and 8 = —0.04. The drawn line (©)shows the results obtained with
B = —0.204 but with different values of 0. For each scene, the images
with input o, < 1.5 (first 5 images) were analysed at o = 2.0, those
with 1.5 < 03 < 2 (next 4 images) were analysed at o = 2.83 and
those with oy > 2 (last 4 images) were analysed at ¢ = 4.0
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Figure 2.18: Results of blur estimation on images with different
amounts of blur and noise. The input images are: Mondrian, Text,
Terrace and Wanda, blurred with binomial filters of order B = 0
(original), 1, 2, 3, and 4 (ie., o, ~ 0, 0.71, 1, 1.23, and 1.41) and -
containing noise with o,, = 0,5,7,10 and 14. These resulis were
obtained using a single-scale algorithm with ¢ = 2.0 and 8 = —0.204.
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Figure 2.19: Blur estimate as a function of scale, . The input images
are Terrace with o3 = 0.7,0,, = 10 (lower curve) and Mondrian with
op = 1.4,0, = 5 (upper curve).

2.9 Experiment: Perceived Effect of Blur on Natural Images

In this section, we describe a psychophysical experiment that is aimed at study-
ing the effect of blur on the perceived unsharpness of the natural images. The
results of this experiment will be used to test the estimates of a measure for
perceived blur obtained using the computational algorithm.

Stimuli: In this experiment, black and white still images are used as stimuli.
The parameter that is varied is the spread of the blurring kernel o,. Two
natural scenes were used: Terrace and Wanda (see Fig 2.12). Stimuli were
generated by blurring the ‘original’ images of the scenes with binomial filters
of given order B. A binomial filter of order B is approximately equal to a
Gaussian window of parameter o, ~ /B/2 (see Fig. 2.14). Six values of
B were used: 1, 2, 3, 4, 6 and 8 The original images of the scenes were
also used in the experiment. Thus there were seven stimuli per scene. The
images had a size of 512x512 pixels with 8 bits per pixel accuracy, but in the
experiment only the central region of 450x450 pixels (0.24 m by 0.24 m or 9.8°
by 9.8°) was displayed. The viewing distance was six times the image height.
The images were displayed on a BARCO-CCID-7351B high-resolution non-
interlace monitor using a VME-bus based system (with MEN-A301 graphics
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Figure 2.20; Result of the multi-scale algorithm on noisy, blurred
images. The input images are Terrace with B = 8, (i.e., o5 = 2.0,
lower curve) and B = 16 (i.e., o, = 2.83, upper curve) containing
noise with o, = 0,5,7,10 and 14. These results were obtained using
a three-scale algorithm with oy = 2, 63 = 4, and 03 = 8. The lengths
of the error bars are equal to twice the standard error of mean (SEM).

board). The display characteristics were calibrated to have a y=2.5 (Poyntdn,
1993). The luminance of the monitor for an all-white screen was 60 cd/m?2.

Method: The viewing conditions satisfied the CCIR recommendation 500
(CCIR, 1986). Images were displayed for a fixed duration of 5 sec, with at least
a 2 sec adaptation time between two presentations, during which an adaptation
field of 10.7 cd/m? was displayed. The luminance of the adaptation field was
approximately equal to the average of the mean luminance of the two scenes.
The subjects were instructed to judge the unsharpness of the images using a
10-point numerical category scale ranging from one to ten. Subjects took part
first in a session with images of the Terrace scene and then with those of the
Wanda scene. Each stimulus was repeated four times. Thus there were 7x4
= 28 presentations per session. The order of presentation within each session
was random. Before the start of the each session, subjects took part in a trial
session with 8 stimuli covering the entire range, in order to adjust the sensitivity
of their scale.
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Figure 2.21: Results of scaling unsharpness plotted against input
blur-spread oy, for images of Terrace scene with blur, for subject TG
and TR. The lengths of the error bars are equal to twice the standard
error of mean (SEM). ’

Subjects: Eight subjects between 22 and 38 years of age took part in the
experiment. All were familiar with the use of numerical a category scaling pro-
cedure and the concept of unsharpness in images. All had normal or corrected-
to-normal visual acuity between 1.5 and 2, measured on a Landolt chart.

Results: The numerical category data from the experiment were transformed
into an interval scale on a psychologically linear scale using Thurstone’s law
of categorical judgement. The class I model involving replications over trials
within one subject with constraints of condition D was applied (Torgerson,
1958). In condition D the number of parameters are limited by assuming that
the dispersions of the category boundaries as well as the stimulus locations are
constant, and that the correlation between their momentary positions is also
constant. !

Figure 2.21 shows the results for two subjects, for the Terrace scene. The
figure shows that there are no significant differences between the trends in

1However, when a stimulus is judged to be in a boundary category in all the repetitions,
the condition D constraints lead to a misleading position for that stimulus. This is because
such stimuli do not satisfy the assumptions of condition D. To obtain meaningful positions in
the psychological continuum for such stimuli as well, a correction was applied before applying
the Thurstone’s model (de Ridder, 1994). Let us assume that there are n categories {(labelled
1 to n), and m repetitions per stimulus. Then the correction applied was as follows: (1)
two additional categories were added: 0 and n + 1, one at each boundary, (2) the scores of
the stimuli which had full entry m in the boundary category (either 1 or n) were distributed
symmetrically among its two neighbouring categories, as follows, if category n had m entries,
it was corrected by placing 1 in category n — 1, replacing m — 2 in category n, and placing 1
in category n + 1. Similar correction was applied if m entries occurred in category 1.
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Figure 2.22: Average results of scaling unsharpness plotted against
input blur-spread o, for images of the Terrace and Wanda scenes
with blur. Each point is the result of averaging over 8 subjects.

the data between subjects. This was also the case with the data for other
subjects. Hence, the Thurstone corrected data were averaged over subjects,
Before averaging over subjects, the data for each subject were normalized using
the z-score transform (Hays, 1988). Finally, the z-scores averaged over the
subjects were normalized so that the resulting average standard error of mean
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(SEM) was equal to one. The results averaged over all subjects is shown in Fig.
2.22. These results show that the subjects are able to integrate the blur over
the image very consistently. Notice that the original images of both scenes,
(the lower-most point in each plot) are deviating from the drawn line.

2.10 Estimation of Blur-index

It has been shown that, for small amounts of blur, the spread of the blurring
kernel o} is a good correlate of the perceived blur (or unsharpness) of images
(Westerink & Roufs, 1989; Westerink, 1991). Nijenhuis (1993) derived an em-
pirical relation for an objective measure for blur from the spread of the blurring
kernel, based on the sensitivity of the visual system to changes in the o}, (See
Introduction to this chapter). The relation is given by

1
So=1- [+ (o3i/050)?]"* (249)

where S, is the objective measure for blur (0 < S, < 1), 0y is the spread of the
image blurring kernel and oo is the intrinsic blur in the early-visual pathway.
In this thesis, we refer to the objective measure S; as blur-index. Equal intervals
in Sy correspond to approximately equal perceived differences in unsharpness.
Hence, S is a psychometric quantity (Hunt, 1978). In Figure 2.23, blur-index
Sy, is plotted as a function of 0p;/0b9. At very low values, op; /0w < 0.25, Sy is
very low and insensitive to changes in oy;/0s. In the range 0.5 < 04; /0w < 2,
the relation increases rapidly and almost linearly. At higher values of gy, /040,
Sy saturates. Using this relation, the objective measure for blur of an image
can be estimated from the estimate of the spread of the blurring kernel from
the image. In this section we present an algorithm to estimate the blur-index
S; of an image from the image itself.

Fig. 2.24 shows the schematic diagram of the algorithm to estimate blur-
index S,. The luminance image is obtained from the grey-scale image using
the Gamma-characteristics of the monitor (Poynton, 1993),

L= { Loz (g/gma:c)hl y Lmag (g/gmas)? > Lin

2.46
Lmin, Lmaw (g/gma:r:)’]f S Lmén ( )

where L is the luminance, L4, is the maximum luminance of the monitor,
Lpin is the minimum luminance of the monitor, g is the grey-value, g,,q.
is the maximum grey-value, and ~ is the exponent. In our case, gmes = 255,
Lnaz = 60cd/m?, Ly = 0.2cd/m?2, and v = 2.5. The optical blur of the visual
system is approximated by blurring the luminance image with an approximately
Gaussian window. We use a Gaussian with spread oy = 0.65 min arc. The
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Figure 2.23: An objective measure for blur S; as a function of the
ratio of spread of the blurring kernel to the intrinsic blur o,/030
(Nijenhuis, 1993).

resulting luminance image is transformed into an approximate psychometric
brightness image using a pointwise transformation. This transformation reflects
the non-linear compressive transformation that takes place in the early stage
of the visual system, expressed by the Weber-Fechner or the Stevens relation.
This non-linear compressive transformation in the visual system is thought to
take place prior to the spatial filtering operations that compute relevant image
information such as edge location (Morgan et al., 1984). We use the CIE 1976
relation for psychometric lightness as the compressive transformation (Hunt,
1978),

1/3
16 (zL) " - 16, £ > 0.008856

B= Lmaz (2.47)
903.3 (££) L < 0.008856

where 0 < B < 100. Although, strictly speaking the CIE relation given above
expresses psychometric lightness and hence is valid only for secondary light
sources (reflecting bodies), we have adapted it here because it is one of the few
standardized relations available to express the non-linear transformation. In
our application, the exact nature and the exponent of the compressive trans-
formation is found to be not very critical. This is another reason why we use
the CIE relation, which has an exponent of 1/3, although other exponents as
high as 0.5 are also possible (Roufs, Blommaert & de Ridder, 1991). Noise
is added to the psychometric brightness image obtained after the compressive
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Figure 2.24: Blur-index estimation algorithm

transformation. This represents the internal noise in the early visual system
(See Chapter 3). We add stationary, Gaussian distributed noise, with white
density spectrum with standard deviation 3.0 units (i.e., SD= 3 %)(See Chap-
ter 3). The resulting image is used as the input to the blur estimator. The
later steps are the same as those in the blur estimation algorithm, described in
Section 2.6.

2.10.1 Results of Blur-index Estimation

In this section, the results of the psychophysical experiment will be correlated
with the blur-index S, estimated using the algorithm. The S for each stimulus
was estimated by applying the algorithm shown in Figure 2.24. The blur-index
Sy was computed from the estimate of &, using the equation, S; = 1—+/0p9/0%
, where d is the estimate obtained using the algorithm (Figure 2.24) and o9
is the intrinsic blur of the visual system. This equation is obtained from Eq.
(2.45), by noting that J} éstimated in Figure 2.24 is the combined result of
image blur o; and the optical blur of the visual system oyg, i.e., 02 = 0F; +03).
We use o3 = 0.65 min arc. The results of correlating the estimated S with the
scaled unsharpness averaged over all subjects are given in Figure 2.25. Note
that the estimated blur-index of the original image of the Wanda scene (the
lowermost point) is higher than that of the Terrace scene, indicating that the
latter is sharper. The coefficient of correlation between the estimated blur-
index and the measured unsharpness are 0.992 and 0.985 for the Terrace and
Wanda scenes respectively. These results show that the blur-index S obtained
using the algorithm is a good correlate of the perceived unsharpness.

Most objective measures for perceived sharpness found in the literature
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are based on the modulation transfer function (MTF) of the display and the
modulation threshold function of the eye (Carlson & Cohen; Barten, 1990).
They aim at evaluating the sharpness of images produced by displays and
hence are often called display-sharpness measures. The MTF is a spatial-
frequency domain equivalent of the spread of the blurring kernel 0. The MTF-
based objective measures for sharpness are thus the spatial-frequency domain
methods for deriving S from . The main difference between the MTF-based
methods and the method presented here is that, the method presented here
estimates the sharpness of an image by first estimating the blur-spread o, from
the image itself and then computing Sp from the estimated o3, whereas the
MT¥F-based methods compute sharpness from the specified MTF.

2.11  Conclusions

In this chapter, a new method for estimating the parameters of a blurred edge
has been presented. The parameter estimation method presented is based on
a local image decomposition technique called a polynomial transform. We
have used the polynomial transform for a Gaussian window. By studying the
behaviour of the estimates in the presence of noise, it is shown that the method
gives reliable estimates of edge parameters.

An algorithm to estimate the spread of the Gaussian image blurring kernel
has been presented. The algorithm has two stages, a detection stage where
locally 1-D edges are detected, followed by an estimation stage. The blur esti-
mation algorithm can be realized as a single-scale algorithm or as a multiscale
algorithm. In the case of uniform image blur, the spread of the blurring kernel
is estimated by statistically combining the estimates of the blur parameter at
different edge locations over the image. It is shown that the algorithm gives
reliable estimates of the spread of the Gaussian blurring kernel at low SNRs
by applying it to natural as well as synthetic images with different amounts of
blur and noise.

An algorithm to estimate an objective measure for perceived blur has been
presented. Using subjective experiments, it is shown that the measure for blur
estimated using the algorithm correlates well with the perceived unsharpness
in images.
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Chapter 3

Estimation of Noise Variance and an Objective
Measure for Perceived Noise Using Local Energy

Abstract

An algorithm for estimating the variance of additive white noise in
images is presented. It is based on the first-order local energy in
uniform regions of the image. The performance of the new method
is compared with a recently developed method based on the overall
local energy (Martens, 1994), and it is shown that the method pre-
sented here provides equally reliable estimates at approximately the
same computational complexity. A new algorithm is also presented
for estimating the parameters of nonwhite noise in images. It is
based on comparing the first-order local energies for two windows
of different size, i.e. two scales.

For image quality applications, it is necessary to have a measure
that correlates well with the perceived noise in images. It must also
be possible to estimate such an measure from the noisy image using
computational algorithms. In an effort to achieve this, the effect
of noise on images is studied using psychophysical experiments. It
is shown that the perceived noise {or noisiness) of an image is in-
dependent of the probability density function (PDF) of the noise.
It is also shown that the local luminance of uniform regions in an
image does not influence the noisiness significantly. Subjective ex-
periments show that the two important parameters that influence
the noisiness are the noise standard deviation (SD) and the noise
correlation length (CL). Based on these findings about the noisiness
in the uniform regions, an objective measure for noisiness of an im-
age, called noise-index, is proposed. The noise-index is based on
the noise SD in the case of white noise, and in the case of nonwhite
noise it is based on the SD of the white noise by filtering of which
the nonwhite noise has been obtained. Both of these SDs can be
estimated from the image using the algorithms presented in this
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chapter. Using the results of the psychophysical experiments it is
shown that the proposed measure for noisiness correlates well with
the measured noisiness.

3.1 Introduction

Noise in an image affects the quality of the image. Noise not only decreases the
perceptual quality of the images but can also degrade the performance of the
task for which the images are intended ( van Overveld, 1994). For example,
a diagnosis based on X-ray or computed tomography (CT) images contami-
nated by noise is likely to be less reliable because of the loss of details caused
by the noise. Many applications require a quantitative description of noise
and a method to measure it. Image restoration and segmentation (Demoment,
1989; Rosenfeld & Kak, 1982) are typical examples. Image quality prediction
is an emerging application that requires a perceptually relevant quantitative
description of noise. By identifying the subjective dimensions of image qual-
ity (Marmolin & Nyberg, 1975) and by estimating the perceptually relevant
physical parameters of degradations (such as, the spread of the blurring kernel
(Westerink & Roufs, 1989} or the noise variance) the image quality can be
predicted (Nakayama, Kurosu, Honjyo & Nishimoto, 1980).

In many practical imaging situations, noise can be modeled approximately
as an additive Gaussian random process which is independent of the image
(Andrews & Hunt, 1977), i.e., '

f(ﬂ:, y) = f,(x$ y) + ﬁ(:{:,y), (3‘1)

where f'(z,y) is the uncorrupted image and 7i(z,y) is an image-independent,
stationary, stochastic process. The aim is to estimate the parameters of 7i(z, ),
given the image f(z,y). ’

Many researchers have developed methods to estimate the variance of white
noise in images (Besl & Jain, 1988; Lee, 1981; Meer., Jolin & Rosenfeld, 1990;
Canny, 1986; Bracho & Sanderson, 1985; Voorhees & Poggio, 1987; Lee &
Hoppel, 1989). All methods are based on the observation that in uniform re-
gions of the image the variations are mainly due to noise. Thus, the noise
variance is estimated by computing a local measure in the uniform regions of
the image and deriving an estimate of the image noise variance from this mea-
sure. Although the methods are based on the uniform regions, they do not
explicitly detect uniform regions prior to estimating noise. In fact, detection
of uniform regions in noisy images itself needs an estimate of noise variance
to set thresho