
 

Feature extraction for image quality prediction

Citation for published version (APA):
Kayargadde, V. (1995). Feature extraction for image quality prediction. [Phd Thesis 1 (Research TU/e /
Graduation TU/e), Industrial Engineering and Innovation Sciences]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR435553

DOI:
10.6100/IR435553

Document status and date:
Published: 01/01/1995

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR435553
https://doi.org/10.6100/IR435553
https://research.tue.nl/en/publications/51262ee5-2d01-4089-8979-445ba7f30bd5


Feature Extraction 

For 

Im~ge Quality Prediction 

Vishwakumara Kayargadde 



Feature Extraction 

For 

Image Quality Prediction 



cover: prominent edges from the Terrace image detected using the algorithm 
described in Chapter 2 of this thesis. 



Feature Extraction 

For 

Image Quality Prediction 

Proefschrift 

ter verkrijging van de graad van doctor 
aan de Technische Universiteit Eindhoven, 

op gezag van de Rector Magnificus, prof.dr. J.H. van Lint, 
voor een commissie aangewezen door het College van Dekanen 

in het openbaar te verdedigen 
op dinsdag 25 april 1995 om 16.00 uur 

door 

Vishwakumara Kayargadde 

geboren te Bayar dorp, India 



Dit proefschrift is goedgekeurd door de promotoren: 

prof.dr.ir. J.A.J. Roufs 

prof.dr. H. Bouma 

en de copromotor 

dr.ir. J.B.0.S. Martens 

The research described in this thesis was carried out in the Vision Research 
Group of the lnstitute for Perception Research (IPO), Eindhoven, The Nether­
lands. IPO is a joint venture between the Philips Research Labs, Eindhoven 
and the Eindhoven University of Technology. 

CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG 

Kayargadde, Vishwakumara 

Feature extraction for image quality prediction / 
Vishwakumara Kayargadde. - Eindhoven : Eindhoven 
University of Technology 
Thesis Technische Universiteit Eindhoven. - With ref. 
ISBN 90-386-0006-2 
Subject headings: image quality / feature extraction. 

Copyright © 1995 by Vishwakurri.ara Kayargadde 

Druk: Wibro dissertatiedrukkerij, Helmond 



matru pitru guru 

charanaravindayoh 

susamarpitham 



Acknowledgements 

I am deeply indebted to a number of people whose contributions to this 
thesis have been invaluable. In particular, I am grateful to: Prof. Jacques 
Roufs, for his encouragement, constant support and valuable advice; Dr. Jean­
Bernard Martens, for the stimulating discussions during the research years 
and while writing the manuscript, that have contributed significantly to the 
style and the contents of this thesis; Prof. Herman Bouma, for reading the 
manuscript and suggesting a number of improvements; Dr. Huib de Ridder, for 
the invigorating discussions on psychophysical methods and multidimensional 
sealing that have helped me immensely in the analysis of experimental data. 

I would like to thank Prof. Vanwormhoudt, Universiteit Gent, Prof. 
Tom Harrington, University of Nevada, and Neville Lobo, for reviewing the 
manuscript and for their valuable and constructive comments. I am especially 
grateful to Prof. Yegnanarayana, IIT Madras, for being a source of inspiration 
and enlightenment. 

I am indebted to Prof. J. 0. Ramsay, McGill University, for generously 
providing the MULTISCALE program. Thanks are also due to Dr. Hugo 
van Leeuwen for providing special 1EX style files which have been used in the 
preparation of this thesis. 

Special thanks are due to all those who participated in my psychophysical 
experiments. I am also extremely grateful to all my colleagues at IPO for the 
excellent working atmosphere during my tenure at IPO. 



1 Introduction 

1.1 Image Quality. 

l.Ll Definition 

1.1.2 Measurement 

1.1.3 Scope .... 

Contents 

1 

1 

1 

2 

3 

1.2 Image Quality Prediction 4 

1.3 Aim of this Thesis . . . . 7 

2 Estimation ofEdge Parameters, Image Blur, and an Objective 

Measure for Perceived Blur Using Local Derivatives 11 

2.1 Introduction ...... . 

2.2 Polynomial Transforms . 

2.3 Polynomial Coefficients of a Blurred Image 

2.4 Polynomial Coefficients of an Edge . . . . . 

2.4.1 Hermite Coefficients of a Step Edge 

2.4.2 Hermite Coefficients of a Blurred Edge 

2.5 Estimation of Edge Parameters 

12 

16 

19 

20 

21 

23 

25 

2.5.1 Noiseless Case . . . . . 25 

2.5.2 Effect of Independent Errors in Polynomial Coefficients 
on Estimates . . . . . . . . . . . . . . . . . . . . . . . . 26 

2.5.3 Effect of Image Independent, Additive Noise on Estimates 27 

2.6 Blur Estimation Algorithm . . . . . . . . . . . . . . . . . . . . 31 



x Contents 

2.6.1 Selecting Edge Candidates . . . . . . . . . . . . . 32 

2.6.2 Estimation of Blur Parameter at Edge Locations 33 

2.6.3 Estimation of Uniform Image Blur 36 

2.7 Multiscale Blur Estimation Algorithm 38 

2.8 Results of Blur Estimation . . . . . . . 41 

2.9 Experiment: Perceived Effect of Blur on Natural Images 51 

2.10 Estimation of Blur-index . . . . . . . . . 55 

2.10.1 Results of Blur-index Estimation 57 

2.11 Conclusions . . . . . . . . . . . . . . . . 59 

3 Estimation of Noise Variance and an Objective Measure for 

Perceived Noise Using Local Energy 61 

3.1 Introduction . . . . . . . . . . . . . . 62 

3.2 Noise Model Parameter Estimation . 65 

3.2.l White Noise .. 66 

3.2.2 Nonwhite Noise . 66 

3.3 Noise Variance Estimation Algorithm. 68 

3.3.1 White Noise " " .. " . " " .. 70 

A. Using Gradient Energy . 70 

B. Using Gradient Amplitude 72 

C. Using Residual Energy 72 

3.3.2 Nonwhite Noise . . . . . . . . 72 

3.4 Results of Noise Parameter Estimation . 73 

3.5 Psychophysical Experiments to Measure Noisiness 78 

3.5.1 Equipment and Subjects . . . . . . . . . . . 78 

3.5.2 Relevance of the PDF of the Noise to Noisiness 79 

3.5.3 Experiment 1: Sealing Noisiness .. 80 

3.5.4 Experiment 2: Comparing Noisiness 81 

3.5.5 Experiment 3: Effect of Noise SD on Noisiness 86 

3.5.6 Experiment 4: Effect of Local Luminance on Noisiness . 88 



Contents Xl 

3.5. 7 Experiment 5: Effect of White Noise on Natural Images 91 

3.5.8 Experiment 6: Effect of Noise Correlation Length on 
Noisiness . . . . . . . . . . . . 91 

3.6 Noise-index: A Measure for Noisiness . 

3.7 Estimation of Noise-index ...... . 

3.7.l Results of Noise-index Estimation 

3.8 Conclusions . . . . . . . . . . . . . . . . . 

4 Subjective Characterization of Images Degraded by Both Blur 

and Noise 

4.1 Introduction . 

4.2 Experimental Setup 

4.3 Results ........ 

4.3.l MDS Analysis of Dissimilarities . 

4.3.2 Results of Sealing Attributes .. 

4.3.3 MDS Analysis of Scaled Attributes . 

4.4 Conclusions .................. 

96 

97 

100 

103 

105 

106 

108 

109 

109 

117 

119 

127 

5 Estimation of Perceptual Attributes From Objective Measures131 

5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . 132 

5.2 Estimation of Objective Measures for Perceptual Attributes 134 

5.2.1 Estimation of Blur-index 

5.2.2 Estimation of Noise-index 

134 

135 

5.3 Mapping From Psychometrie Space to Perceptual Space 135 

5.4 Estimation of Perceived Quality. 142 

5.5 Conclusions . . . . . . . . . . . . 

6 An Algorithm to Estimate an Objective Measure for Global 

Brightness Contrast 

6.1 Introduction . . . . 

6.2 Estimation of Contrast-index 

146 

147 

147 

150 



:xii Contents 

6.3 Results ... 155 

6.4 Conclusions 158 

7 Epilogue 159 

References 165 

Summary 175 

Samenvatting 179 



Chapter 1 

Introd uction 

1.1 Image Quality 

In today's information age, images are widely used as an eff ective means of 
communicating information. Images produced by TV s, satellites and medica! 
imaging systems are typical examples. In these imaging systems, the image 
quality as perceived by the human observer is often the deciding factor of the 
overall quality of the system. The perceptual quality of the images produced 
by such systems depends to a large extent on the choices made while designing 
them. To obtain the desired image quality and to have a cost-effective design 
cycle, such decisions must be based on a knowledge of image quality and the 
factors which influence it. These demands have made a systematic study of 
perceptual image quality essential. 

1.1.1 Definition 

Every person has a notion of image quality. This notion may however depend 
on the context. It is difficult to fi.nd a genera! definition of image quality that 
is applicable in all contexts. Roufs & Bouma (1980) defined perceptual image 
quality as "the degree of excellence of the image". The term 'subjective image 
quality' is often used instead of 'perceptual image quality'. Although both 
terms aim at the same concept, use of the word 'subjective' may sometimes 
lead to confusion (Roufs, 1992). The term subjective quality may imply that 
the impressions are personal and may differ widely across subjects. However, it 
is known that subjects are able to make consistent judgements of image quality 
and that judgements of different subjects coincide toa considerable extent. The 
term 'subjective image quality' may also mean that aesthetic components play 
a role. To avoid such confusion, the term 'perceptual image quality' is preferred 
(Roufs, 1992). 

Perceptual image quality expresses the overall impression of an observer and 
hence is a global psychological attribute of an image. In addition to perceiving 



2 Chapter 1 Introduction 

the global attribute image quality, human observers of images also perceive 
several other (basic) perceptual attributes of images: sharpness, brightness, 
brightness contrast, noisiness, etc. These basic attributes affect the overall 
impression of image quality. In genera!, it is relatively easier to study and 
understand the factors influencing these basic attributes than to directly study 
those a.ffecting perceived quality. For example, the decrease in sharpness of an 
image may be mainly due to blurring. Similarly, an increase in the noisiness of 
an image may be directly related to a increase in noise variance. In addition to 
sharpness, noisiness and brightness contrast, we will also come across another 
related basic perceptual attribute, unsharpness, in this thesis. The perceived 
lack of sharpness of an image is referred to as unsharpness or perceived blur. 
Thus, unsharpness is an attribute that implies a meaning that is opposite to 
that of the attribute sharpness. Another concept often used in image quality 
research, similarly to the global attribute perceptual image quality, is (global or 
overall) perceptual impairment. Perceived global impairment implies a concept 
that is opposite to that of perceptual quality (de Ridder, 1992; Nijenhuis, 1993 ). 
It therefore means the 'perceived degree of degradation of the image'. The 
perceptual quality of an image can decrease due to many reasons, for example 
due to noise in the image or blurring of the image. The physical processes, such 
as blur and noise, that lead to a decrease in the perceptual quality of images 
by causing physical damage to images are called (physical) impairments or 
degradations. 

Since a strict definition of image quality is not available, operational defi­
nitions are often used. The operational definitions may vary depending on the 
context. At this point, it is important to introduce a distinction between two 
types of contexts in which image quality is used. First, there is the quality 
related to performing a task based on an image. Examples are: reading from a 
video display uriit (VDU), detection of a target from an image, such as a tumor 
in a CT image or a tank in an aerial photograph. The image quality in such 
environments is called the performance-oriented quality (Hunt & Sera, 1978). 
This is different from the quality of an image in an entertainment environment 
such as TV or film. In the case of TV or film, the quality is mainly concerned 
with appreciation or involvement, hence the name appreciation-oriented qual­
ity is used. These two kinds of qualities may also influence each other (Roufs & 
Boschman, 1991). In this thesis, we are concerned with appreciation-oriented 
quality, although the feature extraction methods developed here could alsO be 
used in applications involving performance-oriented quality. 

1.1. 2 M easurement 

To be useful, image quality has to be measurable. The measurements must be 
reliable and reproducible. Traditionally, image quality bas been measured us-
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ing psychophysical methods, where humans (subjects) participate as observers 
and judges of the images (stimuli). Such experiments involve four main com­
ponents: stimuli, viewing conditions, methodology (instructions) and subjects. 
The stimulus generates a sensation in the subject. The strength of that sen­
sation is expressed as a response by the subject according to the instruction 
(Roufs, 1992). For example, the instruction may be to judge an attribute of 
the stimulus, for instance sharpness, using a scale from 1 to 10. The reliability 
and reproducibility of the data depend on the chosen scenes and subjects, as 
well as on the viewing conditions and instructions. Recommendations on these 
were made by the CCIR (1986). 

To ensure the validity and generality of the experimental results, special 
attention has to be paid to the following issues. The scenes have to be care­
fully chosen, hearing in mind that the variability of data between scenes may 
be considerably higher than that between subjects (Roufs, 1992; Roufs et al, 
1994). Although the problem of scene selection is largely unsolved, it can be 
circumvented by using many scenes of different types. The number and type 
of subjects have to be chosen in light of the fact that differences exist be­
tween experienced and naïve subjects. Using subjects who are very familiar 
with either the scene or the kind of distortions may cause misleading results 
(Westerink, 1989). The methodology depends on the type of environment: 
performance-oriented or appreciation-oriented. Sealing according to categories 
using adjectives or numbers is one of the faster and more reliable methods to 
express the sensation. For example, for appreciation-oriented quality, the CCIR 
recommends the use of a category scale with adjectives: Excellent, Good, Fair, 
Poor, Bad. A numerical category scale has also been shown to be very reli­
able for sealing quality and its attributes (Roufs et al, 1990; Ridder & Majoor, 
1990). 

Inter-laboratory tests performed by international organizations such as the 
CCIR have shown that the results of sealing image quality are reliable and 
reproducible. An excellent example is the COST sealing experiment, where four 
video coding algorithms were compared on a category scale, using adjectives in 
five European languages (Allnatt et al, 1983). The results for the five countries 
were strikingly similar. 

1.1.3 Scope 

The notion of image quality is at least as old as photography. lts importance 
increased with the advent of television. The perceived quality of an image is 
influenced by several factors. The physical parameters of the imaging system 
that is used to produce an image are among the most important factors that 
influence the perceptual image quality. Because of this, an important task of 
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imaging system designers is to make the choices regarding the physical param­
eters of the system in such a way that the perceived quality of the images 
produced by the system is maximum. These choices have to be made within 
the given constraints on the system, such as 'constraints on maximum band­
width, bit rate or display size. To make these chokes, the designer must be 
aware of the relations between the physical parameters and the perceived image 
quality. For example, in image display system design, it is important to know 
the relation between perceived quality and physical parameters: bandwidth, 
resolution, display size, screen luminance, sampling lattice, etc., in order to 
make an optimal choice of parameters. In recent years, there bas been a grow­
ing need to communicate or store large amounts of image data using limited 
bandwidth or bits. These bit-rate reductions are attained using image-coding 
or compression algorithms. The designers of image-compression algorithms aim 
at attainiag bit rate reduction with no apparent loss of quality or with mini­
mum loss. Therefore it is important to know which physical properties of the 
image influence quality the most. All these and many other problems regarding 
imaging system design require a thorough understanding of image quality and 
its relation to the physical parameters that influence it. 

The scope of a good understanding of image quality is large. Decisions 
on physical parameters that influence the design of an imaging system ( with 
a specified quality and cost) can be simplified, which means a much shorter 
and cost-effective design process. Existing systems can be made to offer better 
image quality at comparable cost. New imaging systems can be visualized and 
realized faster and at lower design cost. 

1.2 Image Quality Prediction 

Although the results of the psychophysical methods of measuring image quality 
are reliable, the experiments are very time-consuming and expensive. Special 
skills and experience as well as expensive equipments are needed to carry out 
such experiments. Because of these limitations, it is diflicult to incorporate 
subjective tests in the design of imaging systems. This is especially true in a fast 
design cycle, where the designer would like to know, almost immediately, the 
quality of the image produced using a system or an -algorithm. Such diffi.culties 
have created a demand for objective measures of image quality. 

An objective measure for image quality must satisfy two important con­
straints. Firstly, it must correlate well with the perceived quality of the image. 
Therefore, equal intervals in the objective measure must correspond to ap­
proximately equal perceived differences in image quality. Secondly, it must be 
estimated from the image or from the physical parameters of the imaging sys­
tem. The estimates may be given by simple equations or complicated models 
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implemented as computer programs or algorithms. 

Several image quality measures are available in literature. Most of the 
early work on image quality metrics attempted to obtain objective measures 
for image display sharpness. The most successful among them are based 
on the Modulation Transfer Function (MTF). Examples of such approaches 
are Granger & Cupery (1972), Higgins (1977), Carlson & Cohen (1980), and 
Barten (1989,1990,1991,1993). These measures essentially compute a weighted 
sum of the product or the ratio of the MTF of the display and the modulation 
threshold function of the eye. Hultgren (1990) showed that many of these objec­
tive sharpness measures can be unified into one general framework. Although 
these MTF-based methods provide reliable estimates of display sharpness or 
quality, they cannot be successfully applied to images with multiple impair­
ments, such as those encountered in coded images. This is mainly because the 
distortions in digitally coded images cannot be easily described using MTFs. 

In applications such as image coding, image fidelity is often used as a 
quality criterion. The measures assume the existence of an 'original' 1 image 
and a 'degraded' or 'processed' image of the same scene. A distance function 
between the two images is used to estimate quality. Such situations occur 
typically in image coding or transmission, where one would like to estimate the 
quality of the decoded picture, using the original image as a reference. Such an 
estimate may be used, for example, to pick the best coding scheme out of many 
competing schemes or to rank them in terms of their output image quality. 
Early attempts towards this goal were based purely on physical measures like 
root-mean-square error (Pratt, 1991). Although these measures perform well 
for certain distortions and scenes, in general they correlate poorly with the 
perceived quality of the image (Marmolin, 1986). This is especially true when 
images contain multiple impairments. 

Image quality and its attributes are determined by the physical parameters 
of the image as well as by the properties of the human visual system. There­
fore, knowledge about the human visual system plays an important role in 
understanding as well as predicting image quality. Most of the later methods 
for image-quality-prediction make use of knowledge about the human visual 
system. Limb (1979) incorporated the threshold and masking properties of the 
visual system in the quality metric. Lukas & Budrikis (1982) proposed a quality 
measure based on a spatio-temporal model of threshold vision that incorporates 
filtering and masking. Zetzsche & Hauske (1989) proposed a multiple channel 
model for quality prediction based on a 'ratio of Gaussians' pyramid and ori­
entation selective filtering. Daly (1992, 1993) proposed a method to predict 

1By original image, we mean, the image of a scene from which all other images (of the 
same scene) are generated. Note that an original image of a scene, obtained using an imaging 
process is itself impaired {see Fig. 1.1.) 
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the visible difference between the original and processed image and uses it as 
image fidelity. A brief review of image quality metrics based on image fidelity 
is given by Ahumada (1993). 

Knowledge about the human visual system also helps in designing better 
imaging systems (Lubin, 1993). For example, knowledge about invisibility 
of certain distortions can save many bits while coding images (Daly, 1992, 
1993; Girod, 1992, 1993). The properties of the human visual system have 
been widely applied to design better image processing or coding algorithms 
(Anderson & Netravali, 1976; Budrikis, 1972; Mannos & Sakrison, 1974; Gray 
et al, 1993). Many models of the human visual system have emerged to help 
build bet.ter imaging systems (Pearlman, 1978; Stockham Jr., 1972; Hall & 
Hall, 1977; Granrath, 1981; Watson & Ahumada, 1989). 

Many models of image quality have been developed for specific applications 
in image coding. Many of these exploit the spatial or tempora} masking prop­
erties of the human visual system (Girod, 1992; Watson et al, 1986). Netravali 
& Prasada (1977) used the spatial masking property of the visual system in 
amplitude quantization of digitized pictures. Safranek & Johnston (1989) and 
Safranek et al (1990) used an empirically derived masking model to optimize 
a sub-band image coder. Girod (1989) proposed a non-linear spatio-temporal 
model of human threshold vision and used it to predict the coding gain that 
can be achieved by incorporating masking effects in video coding. 

' 
A comparison of some early measures of image quality can be found in 

(Beaton, 1983). However, a comparison of recent measures with respect to 
their predictive power is not available. Hence, the value of most of the above­
mentioned models remains to be established. An assumption common to most 
models is that the image quality is a uni-dimensional attribute shared by all 
subjects. This point of view is questionable. J;n our view, a better understand­
ing and prediction of image quality can be attained by acknowledging that 
image quality is a multi-dimensional percept that is influenced by several ba­
sic perceptual attributes such as sharpness, noisiness, brightness contrast, etc., 
(Roufs & Bouma, 1980; Roufs, 1989). Marmolin & Nyberg (1975) identified 
some underlying dimensions of image quality using multi-dimensional sealing 
(MDS) techniques. They found that sharpness, noisiness and contrast were the 
three most important dimensions of image quality -in their experiment. Other 
studies have also found similar dimensions, both for natural images (Good­
man & Pearson, 1979} and for processed medical images (Escalante et al, 1994; 
Escalante, 1992). 

The multi-dimensional nature of image quality has to be taken into account 
while estimating quality. So far, very few quality measures have made use of 
the multi-dimensional nature of image quality. Nakayama et al (1980) use the 
multi-dimensional nature of image quality in their model. According to their 
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Figure 1.1: An image communication system 
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model, the overall image quality is given as a weighted sum of the underlying 
quality dimensions, and each underlying dimension, such as sharpness, is esti­
mated separately. The multi-dimensional nature of image quality has also been 
used by Ridder, (1992) and Nijenhuis, (1993), to find metrics for image quality 
in terms of its attributes. 

1.3 Aim of this Thesis 

A schematic diagram of an image communication system is shown in Fig. 1.1. 
The imaging system captures the scene and produces an image which is viewed 
by a human observer. The imaging system may be simple, consisting of just a 
camera and a display or a printer, or may also contain additional components 
such as a processor, encoder-decoder, transmitter-receiver, etc. The imaging 
system is characterized by several physical parameters: band-width, resolu­
tion, display size, contrast parameter gamma, maximum luminance, minimum 
luminance, etc. It also introduces physical distortions such as blur, noise, etc., 
which can also be described using physical parameters such as the spread of 
the blurring kemel, the noise variance, etc. The human observer perceives 
several basic attributes of the image, such as sharpness, brightness contrast, 
overall brightness, noisiness, etc. All these basic attributes combine to form 
the overall impression of image quality. The image quality and its attributes 
are perceived notions and hence are described in a psychological or a perceptual 
domain. The aim of this thesis is to contribute towards estimating the 
perceived quality of an image from the image itself. 

The approach used in this thesis is based on the multi-dimensional nature 
of image quality. It is based on the notion that the images are located in 
a perceptual space spanned by the important basic image attributes such as 
sharpness, noisiness, brightness contrast, etc. Quality is obtained by combining 
these basic attributes. The combination rules can be derived from the percep­
tual space. The perceptual image quality can therefore be estimated by first 
estimating the image attributes and then combining them. In this thesis we 
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consider three important basic attributes of image quality: sharpness, noisiness 
and global brightness contrast. 

Each perceptual attribute is predominantly influenced by one physical pa­
rameter, although second-order influences from secondary parameters may also 
exist. For example, sharpness is mainly influenced by ~he spread of the blur­
ring kemel (Westerink & Roufs, 1989; Westerink, 1991) and noisiness is mainly 
detennined by the noise standard deviation. The sensitivity of these percep­
tual attributes to changes in the physical parameters is measurable (Watt & 
Morgan, 1983). Based on these sensitivity measurements, objective measures 
for the perceptual attributes can be derived from the physical parameters (Nij­
enhuis, 1993). Therefore, by estimating the perceptually relevant physical pa­
rameters from the image, the objective measures for the basic attributes of 
image qu&}ity can be estimated. For objective measures derived in this way 
(by taking the sensitivity of the visual system into account), equal intervals 
in the objective measure correspond to approximately equal perceived differ­
ences in the attribute. The objective measures derived in this way are thus 
psychometrie measures (Hunt, 1978). 

The physical parameters that predominantly influence the attributes are 
estimated from the image using computational algorithms. The computa­
tional algorithms are based on image features that are perceptually 
relevant. First we consider the basic attribute sharpness (Chapter 2). The 
computational algorithm to estimate the physical parameter influencing sharp­
ness, the spread of the blurring kemel, is based on the edges in the image. 
Then we consider the basic attribute noisiness (Chapter 3). The algorithm to 
estimate the physical parameters influencing noisiness, the standard deviation 
of noise and the noise correlation length, are based on the uniform regions in 
the image. The relevant information from these features is extracted using local 
operators that have many properties in common with the human visual system. 
We use local derivative operators to estimate the blur and noise parameters. 

Since our aim is to develop computational algorithms to estimate parame­
ters influencing perceived image quality, it is compelling for us to use a trans­
form that performs operations similar to those performed by the visual system. 
The local operators we use in the computational algorithms belong to an image 
description technique motivated by the properties of the human visual system 
called the Hermite transform (Martens, 1990a, 1990b). The Hermite trans­
form performs a local image decomposition, where the image is localized by 
multiplying with a Gaussian window. The local image is decomposed in terms 
of many basic functions which satisfy certain properties such as orthogonality 
with respect to the window function. The Hermite transform facilitates detec­
tion as well as analysis of the perceptually relevant features in the image, such 
as uniform regions, edges, lines and corners. This is attained by local analysis 



1.3 Aim of this Thesis 9 

which makes the relevant information of the features explicit. An important 
property of the operators that are used to compute the Hermite transform of an 
image is that they are equal to the derivatives of a Gaussian. The human visual 
system is known to perform operations similar to the Gaussian derivative oper­
ations (Young, 1985). The Hermite transform is also in agreement with other 
image representations models such as the theory of scale-space representation 
(Koenderink, 1984, 1990; Witkin, 1984; Marr & Hildreth, 1980; Marr, 1982) 
and is related to the wavelet representation (Mallat, 1989; Mallat & Zhong 
1992). 

The parameter estimation algorithms presented in this thesis have wider 
application than just image-quality prediction. For example, estimates of the 
spread of the blurring kemel can be used to deblur the image (Demoment, 
1989), or to estimate the depth in a scene (Pentland, 1987). Similarly, noise 
variance estimates can be used in segmentation or restoration of images (Ro­
selfeld & Kak, 1982). 

The multi-dimensional perceptual space of images degraded by blur and 
noise is constructed using data collected in psychophysical experiments ( Chap­
ter 4). Using this perceptual space, the important basic attributes are iden­
tified, and the relations between them, such as dimensional orthogonality, are 
established (Roufs, 1989; Ashby & Townsend, 1986). The relation between the 
quality and its attributes is also established in the perceptual space. The num­
ber of variables involved in a psychophysical experiment are limited. Hence, 
the space obtained using the experimental data will only be a subspace of the 
entire perceptual space. This has to be borne in mind while comparing spaces 
obtained from different experiments involving different variables. The objective 
measures for the basic attributes sharpness and noisiness are estimated using 
the algorithms developed in Chapters 2 and 3. Based on these estimates, a no­
tion of a psychometrie space spanned by the objective (psychometrie) measures 
for perceptual attributes is introduced (Chapter 5). The relation between the 
perceptual space and the psychometrie space is established and by using that 
relation quality as well as other attributes of images are predicted. 

Similar to sharpness and noisiness, global brightness contrast is an impor­
tant attribute of image quality, and an objective measure for it is very useful 
for optimizing the perceived quality of images produced by imaging systems. 
A simple computational algorithm to estimate an objective measure for global 
brightness contrast is presented in Chapter 6. 

Finally, the main conclusions of this thesis are listed in Chapter 7. Some 
issues that are closely related to the research reported here, hut not addressed in 
this thesis, have been pointed out. Some areas that will require more research 
when the computational approach is extended to estimate other attributes, 
have also been identified. 
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As stated earlier, the main aims of this thesis are to find objective mea­
sures for perceptual attributes of image quality and to develop computational 
algorithms to estimate those objective measures. We also develop methods to 
estimate perceptual image quality using the estimates of the objective mea­
sures. Using these computational algorithms and methods, we intend to show 
how the objective measures for perceptual attributes can be derived from the 
image itself and show how the quality of the image can be estimated from 
the objective measures. We have chosen three important attributes, sharp­
ness, noisiness and global brightness contrast, for this purpose, although the 
approach presented here can also be extended to other attributes. The main 
emphasis of this thesis is thus on computational methods for image quality. It 
is, however, not the intention of this thesis to explain the perceptual signif­
icance of the objective measures proposed, nor is it the intention to provide 
an explanation for the performance of a certain objective measure, although 
knowledge about these will help in building better computational models for 
image quality in future. 

We have chosen to demonstrate the computational algorithms and methods 
for image quality estimation developed in this thesis using the simplest situ­
ation, the still, black and white images. Although, to be of greater practical 
merit, the objective measures and image quality estimation methods must also 
be applicable to moving colour images, no explicit attempts have been made 
here to extend the methods developed here to colour or moving images. This 
is mainly because of the following reasons. Firstly, it is our intention to test 
how well the approach used here performs with the simplest of the situations 
before attempting to extend it to more complex situations of colour and mov­
ing images. Secondly, it is beyond the scope of this thesis to extend and test 
the methods developed here to more complex situations of colour and video. 
In our view, the methods and framework presented here are general in nature 
and can be extended to more complex situations of colour and video. 



Chapter 2 

Estimation of Edge Parameters, Image Blur, and 
an Objective Measure for Perceived Blur Using 

Local Derivatives 

Abstract 

A method is presented for detecting blurred edges in images and 
for estimating the following edge parameters: position, orientation, 
amplitude, mean value and edge slope. The method is based on a 
local image-decomposition technique called a polynomia.1 transform. 
The information that is made explicit by the polynomial transform 
is well suited for detecting image features such as edges and for es­
timating feature parameters. By using the relationship between the 
polynomial coefficients of a blurred feature and those of the a pri­
ori assumed (unblurred) feature in the scene, the parameters of the 
blurred feature can be estimated. The performance of the proposed 
edge-parameter estimation method in the presence of image noise 
has been ana.lysed. An a.lgorithm is presented for estimating the 
spread of a position-invariant Gaussian blurring kemel, using esti­
mates at different edge locations over the image. First a single-scale 
algorithm is developed where one polynomial transform is used. A 
critica! parameter of the single-scale algorithm is the window size, 
which has to be chosen a priori. Since the reliability of the esti­
mate for the spread of the blurring kemel depends on the ratio of 
this spread to the window size, it is difficult to choose a window of 
appropriate size a priori. The problem is overcome by a multiscale 
blur-estimation algorithm where several polynomial transforms at 

1 A substantial part of this chapter has been published in a paper in CVGIP Graphical 
Models and Image Processing (Kayargadde & Martens, 1994a) 

2 Some results of the blur estimation algorithm were presented at the International Work­
shop on Image Processing, Budapest (Kayargadde & Martens, 1994b}, and the results of a 
comparison with psychophysical data were reported at ECVP-94 (Kayargadde & Martens, 
1994c) 
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different scales are applied, and the appropriate scale for analysis 
is chosen a posteriori. By applying the blur estimation algorithm 
to natural and synthetic images with different amounts of blur and 
noise, it is shown that the algorithm gives reliable estimates for the 
spread of the blurring kernel even at low signal-to-noise ratios. 

2.1 Introduction 

Blur is a widespread and important degrading factor in images. In the 
case of images of natura! scenes on television or in print, blur degrades the 
appreciation-oriented quality. In the case of medica! or astronomical images, 
blur often affects the performance-oriented quality of the images, because it 
makes detection, classification or diagnosis more difficult. Image blur can have 
many causes: camera defocus, low-pass filtering performed to obtain reduced 
data rates while coding, pre-filtering before sampling, etc. Blurring is an in­
herent property of image formation systems and cannot be avoided. In certain 
operations such as sampling, some blurring may even be desirable to reduce 
sampling artifacts such as aliasing (Nijenhuis, 1993). Image blur can often 
be approximated by a convolution between the original scene and a blurring 
kernel. 

There are many applications that need a quantitative description of the 
amount of blur. The prediction of image quality is one such application. By 
identifying the subjective dimensions of image quality (Marmolin & Nyberg, 
1975) and estimating the degradation parameters such as the spread of the 
blurring kemel, the noise variance etc. that inftuence these dimensions, the 
quality can be predicted (Nakayama, Kurosu, Honjyo & Nishimoto, 1980). 
Because sharpness is an important quality dimension, which is heavily influ­
enced by physical blur (Westerink & Roufs, 1989), blur estimation is one of 
the first steps in automatic image quality prediction. Image deblurring is an­
other application that needs an estimate of the blurring kemel (Demoment, 
1989; Hummel, Kim.ia & Zucker, 1987). In many dehlurring applications, the 
nature of the blurring kemel is modelled and the parameters involved have 
to he estimated. For instance, in this chapter a Gaussian blurring kemel will 
be assumed. Image deblurring must be preceded by an estimation of the blur 
parameters. Depth estimation is another application where blur estimates are 
used (Pentland, 1987). By measuring the size of the blurring kemel (caused 
by camera defocus) at different positions in the image, a depth map can be 
drawn for the entire scene. Depth maps are very useful in tasks such as object 
recognition and scene interpretation in computer vision (Hom, 1986). The dis­
tance between a point in the scene and the lens, i.e., the depth, is related to 
the size of the blurring kernel and to the parameters of the lens system. Since 
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the parameters of the lens system are known, the problem of depth estimation 
is essentially reduced to one of estimating blur. It has been shown that the 
human visual system can also estimate the (relative) size of a blurring kemel 
with high accuracy (Hamerly & Dvorak, 1981; Watt & Morgan, 1983). 

Gaussian blur is one of the most commonly encountered descriptions of 
blur. It has been shown that small amounts of blur due to camera defocus can 
be well approximated by a two-dimensional (2-D) Gaussian kemel (Pentland, 
1987). In systems involving many blurring operations, the net effect, in light 
of the centra! limit theorem, can be described by a Gaussian kemel. Gaussian 
blur also underlies the process of generating image representations such as the 
scale-space representation (Koenderink, 1984; Witkin, 1984) and the Gaussian 
pyramid representation (Burt & Adelson, 1983). In the scale-space representa­
tion, images are parameterized by the scale parameter which is equal to the size 
of the Gaussian blurring kemel. Hence, estimating the spread of the blurring 
kemel is equivalent to locating the image in the scale space. In view of the 
above reasons, we have chosen to concentrate on Gaussian blur in our present 
work. An additional reason to those stated above is that the case of Gaussian 
blur is easy to tackle mathematically. 

The spread of the blurring kemel bas been shown to be an important de­
terminant of the perceived sharpness in images (Westerink & Roufs, 1989). 
The sensitivity of the perceived blur to changes in the spread of .the blurring 
kemel has been measured by Watt and Morgan (1983). Based on their data on 
just noticeable differences ( JND) of blur, Nijenhuis ( 1993) derived an empirica! 
relation for an objective measure for blur based on the spread of the blurring 
kemel. The objective measure for blur derived in this way bas been shown 
to be a good correlate of perceived (un)sharpness, over a large range of blur 
spread (Nijenhuis, 1993). Thus, an objective measure for blur in an image can 
be estimated from the estimate of the spread of the blurring kemel. 

When an image is blurred, the regions of sharp transition in the image 
such as edges and lines undergo a relatively large change, while uniform regions 
remain essentially unchanged. Hence, these features are the best candidates for 
estimating blur. Accordingly, edges are used in the present study to estimate 
the spread of a Gaussian blurring kemel. 

As mentioned before, reliable estimates of edge parameters are essential 
for many applications in computer vision. Estimates of edge parameters also 
have applications in image coding, such as coding using oriented edges (Kunt, 
Ikonomopoulos & Kocher, 1985; Kunt, 1988) and coding using the local di­
mensionality of the image (Martens, 1990b ). Many authors have developed 
methods to estimate the parameters of step edges (Lyvers & Mitchell, 1988; 
Lyvers, Mitchell, Akey & Reeves, 1989; Tabatabai & Mitchell, 1984; Chen & 
Medioni, 1989; Huertas & Medioni, 1986). Special attention has been paid to 
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the estimation of edge location (Tabatabai & Mitchell, 1984; Chen & Medioni, 
1989; Huertas & Medioni, 1986). Lyvers et al. (1989) and Tabatabai & Mitchell 
(1984) used moment-based edge operators to estimate the parameters of a step 
edge. However, edges that occur in real images are blurred (Nalwa & Binford, 
1986; Petrou & Kittler, 1991). Lyvers et al. (1989) used look-up tables to cor­
rect for the errors in the estimates caused by such deviations from the step 
edge model. Previous work on the estimation of edge blur has been mainly 
aimed at depth estimation (Pentland, 1987; Lai, Fu & Chang, 1993). The al­
gorithm of Pentland (1987) is based on the observation that the Laplacian of 
an image in the vicinity of an edge is a linear function of the distance from 
edge and hence the slope can be estimated by linear regression. Although the 
details of the algorithm are somewhat obscure, it appears that an accurate and 
separate estimate of the edge orientation is required before this regression can 
be performed. The algorithm of Lai et al. (1993) fits an edge profile with three 
parameters to the image. An accurate and separate estimate of edge position 
is required for their algorithm. 

We present a method for simultaneously estimating all parameters of an 
edge that is blurred by a Gaussian kernel. Our approach is inspired by the 
knowledge of the early stages of the human visual system. The visual system is 
thought to extract relevant information, mainly the location, orientation and 
contrast of luminance transitions, for further image analysis. This so-called 
prima! sketch (Marr & Hildreth, 1980) is constructed by local processing with 
receptive fields of different form and size (Koenderink, 1984). To interpret the 
form of these receptive fields, a new image decomposition technique called a 
polynomial transform was developed by Martens (1990a). Polynomial trans­
forms have been applied to image coding (Martens, 1990b ), image deblurring 
(Martens, 1990c) and recently to noise reduction in images {Escalante Ramîrez 
& Martens, 1992). Polynomial transforms have also been applied to detect 
and classify one-dimensional (1-D) patterns such as edges and lines (Martens, 
1990b). The algorithm for estimating edge parameters that we present in this 
chapter is also based on the polynomial transform. Recent psychophysical ex­
periments (Georgeson & Freeman, 1993; Georgeson & Freeman, 1994) indicate 
that the human visual system possibly uses an approach that is very similar to 
the algorithm for estimating blur proposed in this chapter. 

The blur estimation algorithm presented in this chapter consists of. two 
steps. Firstly, the regions of locally one-dimensional (1-D) edges in the image 
are detected. Secondly, the edge parameters are estimated at those locations. 
Both edge detection and estimation are carried out using polynomial trans­
forms. An important assumption made here is that there exist at least some 
locations in the imaged scene where the luminance distribution is locally an 
ideal step edge. Scene refers to the viewer or camera centered ( monocular) 2-D 
view of the luminance distribution of the 3-D scene. Note that the computa-
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tional assumption made relates to the scene and not the image. An image is the 
result of a imaging process that inherently contains blurring. The above com­
putational ässumption is true for most natural scenes, although exceptions to 
this could be found. We assume that the blurring kernel is circularly symmetrie, 
but using the theory we develop here, we can verify whether this assumption 
holds. Indeed, by pooling the estimates of edge blur for different orientations, 
we can check the circular symmetry of the blurring kernel. Similarly, by com­
paring the estimates of the edge blur at different positions in the image, the 
uuiformity of blur over the image can be checked. 

The scale of the polynomial transform has to be chosen a priori when 
using a single-scale algorithm where one polynomial transform is used. When 
an image contains edges with different amounts of blur, a single scale will not 
be optimal for estimating the edge parameters of all edges in the image. In 
order to avoid this a priori choice, a multiscale algorithm is presented, in which 
the image is analysed by polynomial transforms of different window sizes. 

In applications such as image quality prediction and image deblurring, it is 
useful to have an estimate for the spread of the Gaussian blurring kernel over 
the entire image. When the blur is uniform over the entire image, image blur 
can be estimated by statistically combining the estimates of blur parameters 
at different edge locations over the image. If the blurring is due to a space­
invariant operation such as camera defocus or low-pass filtering, then the blur 
is uniform over the image. In natural images, the assumption of uniform blur 
will be satisfied only in a loose sense, since in general all points in the scene 
will not be focused to the same extent. However, when the depth-of-field of 
the lens system used in the imaging device is large compared to the range of 
distances involved in the scene, it can be assumed that the blur is uniform over 
the entire image for most scenes. 

This chapter is organized as follows. In Section 2.2, we briefly review poly­
nomial transforms and introduce the relevant notation. The relation between 
the polynomial coefficients of a blurred signal and the unblurred signal is de­
rived in Section 2.3. In Section 2.4, we first derive the polynomial coefficients 
of a step edge and later derive those of a blurred edge. In Section 2.5, we show 
how the parameters of a blurred edge can be estimated from its polynomial 
coefficients. In Section 2.6, we give a description of the single-scale blur es­
timation algorithm. The multiscale blur estimation algorithm is described in 
Section 2. 7. The results of the blur estimation algorithm on different images 
are given in Section 2.8. A psychophysical experiment to scale unsharpness of 
natural images is described in Section 2.9. In Section 2.10, we present an algo­
rithm to estimate a measure for perceived blur, called blur-index, and correlate 
the results of the algorithm with scaled unsharpness of images. Finally, the 
conclusions are summarized in Section 2.11. 
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2.2 Polynomial Transforms 

Image analysis using polynomial transforms inyolves two steps. In the first step, 
the image is localized by multiplying with a window function. This windowing 
takes place at several positions over the entire image. The window positions 
constitute a sampling lattice S. In the second step, the image within every win­
dow is described as a sum of weighted polynomials. The polynomials that are 
orthogonal with respect to the square of the window function are used as the 
basis functions for the polynomial expansion (Martens, 1990a). For example, 
when the Gaussian window is used, the Hermite polynomials are used for the 
expansion. The mapping from the input image to the coefficients of the poly­
nomials, referred to as polynomial coefficients, is called a forward polynomial 
transform. By interpolating ,the polynomial coefficients with windowed poly­
nomials, the original image can be recovered. This mapping of the polynomial 
coefficients to an output image is called the inverse polynomial transform. 

We first give a description of local image decompositions (Martens, 1993) 
and later discuss the specific case of polynomial transforms. 

Given a window function w(x, y), the input image J(x, y) is decomposed 
into a sum of windowed imagesf(x, y) · w(x - p, y - q), i.e" 

1 
h(x, y) L J(x, y). w(x - p, y - q), 

(p,q)ES 

f(x,y) 

where the periodic weighting function 

h(x,y) = L w(x-p,y-q) 
(p,q)ES 

(2.1) 

(2.2) 

is assumed to be different from zero for all (x, y). We choose a set of basis 
functions such that they are orthonormal with respect to w2(x, y), i.e., 

1:00 1:00 

w
2

(x, Y}'Pm,n-m(x, Y)'Pl,k-t(X, y)dxdy = Ónk6mi, (2.3) 

for n, k = 0, .. " oo, m = 0, ... , n and l 0, ... , k (Szegö, 1959; Martens, 1990a), 
We now compute a set of coefficients: 

fm,n-m(P, q) = l:oo l:oo f(x, y)am,n-m(X p, y - q)dxdy, (2.4) 

at all positions (p, q) in the sampling lattice S, for n = 0, 1, ... , oo and m = 
0, ... , n. The functions 

am,n-m(x,y) = 'Pm,n-m(x,y) ·w2(x,y) (2.5) 
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are referred to as the analysis functions of order m along x and order n - m 
along y. Expanding f(x, y) in the basis functions <t'm,n-m(x - p, y - q) and 
using the coefficients in Eq. (2.4) leads to a series expansion that converges in 
a weighted (by w2(x - p,y q)) quadratic sense, i.e., 

lim 1+001+00 w2(x-p,y q)[J(x,y)-
N-+oo -oo -oo 

t.t. /m,n-m(p, q)'Pm,n-m(X - p, Y - qf dxdy = 0, (2.6) 

for all sampling positions (p, q) in S. This result may also be expressed by 
saying that the image part within each window J(x, y) · w(x - p, y q) is 
decomposed into a sum of orthonormal (unweighted) functions w(x p,y -
q)cpm,n-m(X - p, Y - q) 

The mapping from the image J(x,y) to the coefficients fm,n-m(p,q) for 
all orders m, n - m and positions (p, q) E S specifies the analysis stage or the 
forward transform. The inverse operation of synthesizing the image from these 
coefficients can also be performed and is called the inverse transform (Martens, 
1990a). 

In the particular case of polynomial transforms, the basis functions 
'Pm,n-m(x, y) are polynomials, chosen so that they are orthonormal with re­
spect to w2(x,y), as given by Eq. (2.3). 

Several choices have to be made in selecting a specific polynomial trans­
form. Firstly, the type of window function bas to be selected. Based on psy­
chophysical insights formulated in the scale-space theory (Koenderink, 1984; 
Witkin, 1984) and the evidence that the early stages of the human visual sys­
tem use receptive fields that can be modelled as Gaussian derivatives (Young, 
1985; Young, 1987), the Gaussian window is one of the best candidates for the 
window function. Additional motivation for using a Gaussian window in our 
application has been discussed in Chapter 1. In the case of estimating Gaussian 
blur, using a Gaussian analysis window also makes the problem mathematically 
tractable. Secondly, the size of the window function, also referred to as the spa­
tial scale of the polynomial transform, bas to be chosen. For example, when 
a Gaussian window is used, the spread of the window er bas to be set. In our 
application, we have adopted two approaches: a single-scale algorithm and a 
multiscale algorithm. In the single-scale algorithm, a polynomial transform of 
fixed window size is used. Hence, the size of the window has to be chosen a 
priori. A window that is small compared to the size of the blurring kemel 
will not contain a sufficiently large region of the blurred edge to make a re­
liable estimate. However, a window that is very large compared to the size 
of the blurring kernel will not be able to detect and locate edges accurately, 
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thus reducing the accuracy of the estimates. Moreover, increasing the window 
size also reduces the probability of detecting isolated edges. In the multiscale 
algorithm, polynomial transforms with windows of different sizes are applied, 
and the appropriate size of the window is selected a posteriori. Thirdly, the 
sampling lattice S has to be chosen so that the entire image is covered. This is 
attained by ensuring that the weighting function h( x, y) does not reach values 
close to zero. We choose a rectangular sampling grid with a spacing that is a 
multiple of the sampling distance. Finally, we should also choose the highest 
order of the polynomial coefficients that have to be explicitly computed for the 
application at hand. It will be clear from our analysis that we need coefficients 
only up to order n = 3 in our application. 

We use the Gaussian window for reasons discussed above. A useful prop­
erty of 2-P Gaussian windows is that they are separable, i.e., w(x, y) 
w(x)w(y). The analysis functions are then also separable, i.e., am,n-m(x, y) 
am(x)an-m(Y) and can be implemented efficiently. The orthonormal polyno­
mials that are associated with the Gaussian window function 

(2.7) 

are the Hermite polynomials. The resulting polynomial transform is called the 
Hermite transform (Martens, 1990a). The analysis functions associated with 
the Hermite transform are 

where Hn(x) is the Hermite polynomial of degree n in x. lt is worth noting 
that the functions am,n-m(-x, -y; er) are equal to derivatives of a Gaussian 
(Martens, 1990a). Gaussian derivatives are used for detecting local features 
in images such as edges and lines (Bevington & Mersereau, 1987) and in psy­
chophysical modelling of the human visual system (Marr & Hildreth, 1980). 

The following energy measures derived from the polynomial coeflicients will 
prove useful in our analysis. The n-th order local energy measure is defined as 

n 
ó~ 2 

En = L_,, f m,n-m (2.9) 
m=O 

for n = 1, 2, ... , oo. We will use these energy measures to estimate the parame­
ters of a blurred edge. 

The first-order energy E1 is of particular interest in Chapter 3. The energy 
Ei given by E1 = 16,1 + Jl,o can be derived usingtwo derivative filters: ao,1(x, y) 
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and a1,0 (x, y). The first-order energy E 1 is the square of the local gradient, i.e. 

E1 ff, where the local gradient magnitude !!il J /J,1 + Jl,o· 
Another measure that will be of interest in Chapter 3 is the overall local­

energy measure 

oo oo n 

ER ~ L En = L L f!,n-m fJ,o, (2.10) 
n=l n=Om=O 

i.e., is the sum of local energies of all orders (except zero). This is also called 
the residual energy (Martens, 1994), because it is the residual of signal energy 
minus the square of the local mean. The residual energy ER can be derived by 
making use of the generalized Parseval's theorem for polynomial coeffi.cients, 
without explicitly computing the polynomial coeffi.cients (Martens, 1990a). It 
follows directly from the theorem that 

f
+oof+oo -oo -oo J2(x, y)w2(x 

[f+oo 1+= 
-ex:> _

00 

f(x, y)w2 (x 

p,y- q)dxdy 

2 

p, y q)dxdy] , 

which is amore effi.cient way of determining ER (Martens, 1994). 

2.3 Polynomial Coeflicients of a Blurred Image 

(2.11) 

Let the image f(x, y) be the result of blurring the scene f'(x, y) by a blurring 
kemel b( x, y). This blurring operation is denoted by the following convolution 
expression, 

J(x,y) = J1(x,y) * b(x,y). (2.12) 

The forward polynomial transform of the blurred image can be interpreted as 
a multi-rate filter-bank with filters am,n-m(-x, -y) (Martens, 1990a). The 
polynomial coeffi.cients of the blurred image are therefore given by 

where 

f m,n-m(P, q) [(f'(x, y) * b(x, y)) * am,n-m(-x, -y)](p,q) 

[J'(x, y) * a~,n-m(-x, -y)] (p,q), 

a:n,n-m(x,y) = am,n-m(x,y) * b(x,y) (2.13) 

is the blurred analysis function. In other words, the polynomial coefficients 
of an image blurred by a kemel b(x,y), obtained using analysis functions 
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a.n,n-m(x, y), are the same as the polynomial coefficients of the unblurred 
image obtained using blurred analysis functions a~,n-m(x, y). 

The above result is very useful in sol ving many problems involving blur. 
In this chapter we show how the above property can be used to derive the 
relationship between the Hermite coefficients of blurred and unblurred signals. 
We also exploit this relation to estimate the parameters of a blurred edge and 
the parameters of the image blurring kemel. 

In our application, we are specifically interested in Gaussian blur for reasons 
discussed in the Introduction to this chapter. Hence, in the remainder, we will 
concentrate on the relation between the Hermite coefficients of a Gaussian 
blurred signal and those of the unblurred signal. 

Specifically, if b(x, y) is a~Gaussian blurring kemel given by 

1 [-(x2 + y2)] 
b(x,y) = - 2 exp 2 

1rO'b (Tb 
(2.14) 

then, by using the expression for the Fourier transform of am,n-m(x,y;q) 
(Martens, 1990a), it can be easily shown that 

where am,n-m(x,y;u) is defined by Eq. (2.8). It follows from the equation 
above and from Eq. (2.4) that the Hermite coefficients of the blurred signal 
fm,n-m(p,q;a) are given by 

f m,n-m (p, q; q) = ( v'l+ ~ "'' q )' r 1:.. .• -m (p, q; q v'1 + ( "'' q )'). ( 2.16} 

In other words, the Hermite coefficients of an image after blurring with a Gaus­
sian kemel with parameter O"b, obtained using a window of spread u, are the 
same as the Hermite coefficients of the unblurred image obtained using a win­
dow of spread u,,jl + (ub/u)2, weighted by a factor (1/ ,,jl + (ub/u)2r. 

2.4 Polynomial Coefficients of an Edge 

In the previous section, we derived the relation between the polynomial coeffi­
cients of a blurred image and those of the unblurred image. In this section, we 
first derive the polynomial coefficients of a step edge. By using the relations 
derived in the previous section, we later derive the polynomial coefficients of a 
blurred edge. 
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We use the following Gaussian edge model 

.ó.V [xcosO + ysinO- d] 
edge(x, y; Ve, A V, O'b, d, 0) = Ve + 2erf O'b ' (2.17) 

fora blurred edge with mean signal value Ve, height .ó.V, blur parameter O'b, 
distance from the origin d, and orientation 0. The above edge model is the 
result of a step edge with parameters Ve, AV, d, and(} blurred by a Gaussian 
blurring kemel of spread O'b. In the limit O'b ~ 0, the above model reduces to 
a step edge. A schema.tic diagram of a step edge in (x, y) is shown in Fig. 2.1. 
Figure 2.2 shows the cross-section of a blurred edge along with the step edge 
by blurring of which the blurred edge was obtained. 

2.4.1 Hermite Coefficients of a Step Edge 

The polynomial coefficients of a step edge fora window w(x, y) centered at the 
origin are given by (Martens, 1990b) 

where 

with 

J:n,n-m n! m (} · n-m (} 
'( _ )' cos sm , m.n m. 

1+00 1d 
On(d) = f.Pn(x)w2 (x)dx - f.Pn(x)w2 (x)dx, 

d -oo 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

for n = 0, 1, .... , oo, m = 0, .,., n, where 'Pn(x) is the orthonormal polynomial of 
degree n over w2 (x). From Eq. (2.18) and Eq. (2.9), the n-th order energy of 
a step edge is given by 

(2.22) 

or equivalently, lf~I ~· 

Specifically, for a Gaussian window of spread 17, centered at the origin, it 
can be shown that 

.ó.V·O' 
f~ = J2rï an-1(d; 17), 

2n 
(2.23) 
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Figure 2.1: A step edge in (x, y) with height Ll V, mean value Ve, 
and orientation e located at a distance d from the origin. 

for n = 1, ... , oo, where an(-d; u) is the n-th order derivative of a Gaussian 
(Martens, 1990b ). From the above expression we obtain 

(2.24) 

up to order three. The corresponding energies can be computed using Eq. 
(2.22}. Note that the coeffi.cients f~ are independent of the edge orientation 0. 
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Figure 2.2: The cross-section of a blurred edge along the direction 
of the edge ( drawn curve), for an edge with height Ll V = 100, mean 
value Ve = 75, located at a distance d = 3 from the origin and blurred 
with a Gaussian blurring kernel with <7b = 1. The cross-section of the 
step edge by blurring of which the blurred edge was obtained is also 
shown ( dotted curve). 

2.4.2 Hermite Coefficients of a Blurred Edge 
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In this subsection we make use of the results derived in section 2.3 to obtain 
the Hermite coeflicients of a blurred edge from those of a step edge. Using 
Eq. (2.16), Eq. (2.18) and Eq. (2.23) we obtain the Hermite coeflicients of 
a Gaussian blurred edge, where the blurring kemel is given by Eq. (2.14). 
Hermite coeflicients of a blurred edge can also be written in the form of Eq. 
(2.18), i.e., 

fm,n-m = fn 
n! m () · n-m () 

1 ( _ ) 1 cos sm . m.n m. 
(2.25) 

Specifically, up to order three, we obtain 

ç _V. LlV f [ d/c; l JO - -er 
- e 2 Jl + (c;b/c;)2 

f ( 1 ) LlV [ (d/c;)
2 l 

1 = \./1 + (c;b/c;)2 J27r exp -1 + (c;b/c;)2 (2.26) 
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Figure 2.3: Coefficients h, h and f3 of an edge, as a function of 
d/u. The edge parameters are ub/u = 1/2 and ~V = 100 (arbitrary 
units). 

h = 1 ~V d/u exp _ (d/u) 
( )

2 [ 2 l 
y'l + (ub/u)2 ../2-ff y'l + (ub/u)2 1 + (ub/u)2 

/3 _ 1 ~V __.!:__ 2(d/u)2 
_ 1 exp _ (d/u)

2 

( ) 
3 [ l - y'l + (ub/u)2 ../2-ff J6 (1 + (ub/u) 2 ) 1 + (ub/u)2 

The coefficients of higher orders can also b~ derived, hut are not needed here. 
The resulting energies are given by En = IJ nl2 • Note that, when Ub = 0, Eq. 
(2.26) reduces to Eq. (2.24). Figure 2.3 shows Ji, h and f3 of a blurred edge 
of height ~V = 100 (in arbitrary units) and ub/u = 1/2 as a function of d/u. 
Note that when h is maximum, f3 equals zero. This can also be seen by solving 
the equation 

oh =O 
{)d 

(2.27) 

to obtain d u 2 = 1 + (ub/u)2 )/2, which corresponds to the positions d = 
±u/ [1 + (ub/u)2]/2 where /3 = 0. 
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2.5 Estimation of Edge Parameters 

2.5.1 Noiseless Case 

The edge model is completely defined by five parameters: mean value Ve, height 
a v, distance from the window centre d, orientation (} and blur parameter O'b. 

Using the relationships derived in the previous section, we can estimate the 
parameters of an edge from the polynomial coeflicients. We need at least five 
independent equations to determine all five edge parameters. The mean value 
Ve appears only in the equation for /o,o, hence this equation is needed for 
estimating Ve. In choosing the rest of the equations, we make use of the fact 
that the signal-to-noise ratio of the coeflicients decreases with increasing order 
of the polynomial coeflicients (Martens, 1990c). We choose the other four 
equations so that they involve coeflicients of the lowest order possible. It is 
easy to see that we need coeflicients up to order three to solve for all the five 
edge parameters. From Eq. (2.26) we derive the following relationships 

1 d 
1 + (ab/u)2 ~ 

1 1 ( 2(d/a)
2 

_ i) 
1 + (ab/a)2 v'6 1 + (ab/a)2 ' 

(2.28) 

(2.29) 

between the polynomial coeflicients of an edge. By solving the above set of 

equations we obtain 

O"b I (2:1-1:,r-f' (2.30) = 
O" 

d f, ( 2/? - v'6!a rl (2.31) = 
O" fi !l fi 

By substituting the above two results in the expression for fi, we obtain 

AV = f rn-2 2/2 _ v6/3 / 2 2/2 
( 

2 fii )-(l/
2
) [ 2 ( 2 

u 1 v :.:::7r fl fi exp ff ff (2.32) 

The mean value Ye is obtained by substituting the above parameter va.lues in 
f o,o . fo· All edge parameters except the orientation (} can be estimated just 
from the coeflicients up to order three. The edge orientation (} can be obtained 
from the ratio fo,i/ /i,o = tan 0. The signs of d and a V are determined from 
the signs of the first and the second order coeflicients. 
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To use Eq. (2.30) for blur estimation, we need fi,/2 and fa. We first 
compute their magnitudes from energies El, E2 and Ea computed using Eq. 
(2.9) and Eq. (2.22). The signs of Ji,h and hare obtained using the relation 
between the signs of the horizontal and the vèrtical coefficients of order 1, 2, 
and 3: /o,i. /i,o, /0,2, h,o, fo,3 and !a,o· From Eq. (2.25), h,o = /i cosO and 
/ 0,1 = hsinO. Hence, the;signs of first order coefficients /i,o and /0,1 depend 
on the sign of À V as well as that of cos(} and sine respectively, whereas the 
sign of fi is given by the sign of À V alone. Therefore, the sign of fi can be 
determined by finding the signs of cos e and sine' which is equivalent to finding 
to which quadrant the (} belongs. Based on these facts, the following steps are 
used to determine the sign of fi: 

if /0,1 · f 1,0 > 0 then 

else 

if f 0,1 + li,o > 0 then 
else 

if f 0,1 - li,o > 0 then 
else 

h positive 
fi negative 
h positive 
fi negative 

(2.33) 

From Eq. (2.25), h,o = h cos2 e and fo,2 = h sin2 
(}. Hence, the sign of h is 

given by the sign of h,o + fo,2· From Eq. (2.29), the sign of fa is opposite to 
that of fi when ldl < o/J[l + (ub/u)2]/2 and the same as that of fi otherwise. 
The sign of the ratio /o,a/ /0,1 or /o,a/ /0,1 can be used to decide this. We use 
the most reliable ratio of the two, as follows: 

if l/i,ol > l/0,1 I then if fa,o/ /1,0 > 0 then fa/ h positive 
else fa/ h negative 

else if /o,a/ /0,1 > 0 then fa/ h positive 
else fa/ fi negative 

{2.34) 
Having obtained the coefficients /i, /2, and Ja, the edge parameters can be 
computed using Eq. (2.30), Eq. (2.31) and Eq. (2.32). 

2.5.2 Effect of Independent Errors in Polynomial Coefficients on Estimates 

The independent errors in the measured energies occur mainly due to the quan­
tization of filter coefficients and the quantization of polynomial coefficients .. For 
small independent errors in the energies it is possible to express the error in the 
estimates of edge parameters in terms of the partial derivatives. For example, 
the error in the estimate of o-0 can be expressed as 
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where 81 (a, O"b, d, A V), 82(0', O'b, d, A V) and Sa(<Y, ab, d, A V) are sensitivity fac­
tors expressed in terms of edge parameters and window spread. Similarly, esti­
mation errors in other edge parameters can also be expressed in terms of their 
partial derivatives. 

Figure 2.4 shows the error in O'b as a function of different parameters for 
the case of Af 1 = A/z A/3 = 0.5. These figures are obtained by plotting 
the analytical expressions for Aub given by Eq. 2.35 against its parameters. 
Figure 2.4a plots the error in the estimate of O'b as a function of O' (for fixed <Tb, 

d and AV). The error is minimum when the window spread u is approximately 
equal to the blur parameter <Tb· Figure 2.4b plots the error in the estimate of 
O'b as a function of the distance from the window centre d (for fixed Ub, u and 
AV). The error in the estimate of u" increases almost linearly with distance. 
Figure 2.4c plots the error in the estimate of <Tb as a function of the edge height 
AV (for fixed ub, u and d). The error in the estimate of a" decreases with 
increasing AV since the signal-to-noise ratio at the edge increases with AV. 

2.5.3 Effect of Image Independent, Additive Noise on Estimates 

The statistical nature of the estimates of edge parameters in the presence of 
image noise has to be studied before using the method on real images. In many 
practical situations, the noise can be modelled as an additive Gaussian random 
process which is independent of the image (Andrews & Hunt, 1977). We assume 
that the noise in the image can be modelled as image-independent, stationary, 
additive Gaussian stochastic process with zero-mean. When the additive noise 
is a Gaussian random process, the polynomial coefficients are jointly Gaussian 
random variables whose covariance matrix can be easily computed once the 
noise autocorrelation function is known (Escalante Ramirez & Martens, 1992). 
To study the statistical properties of the edge parameters, we need to obtain 
their probability density functions (PDFs). 

The edge orientation (} is given by tan-1(!0,i/ Ji,0 ). The polynomial co­
efficients !i,o and f 0 ,1 are independent Gaussian random variables with equal 
variance (Escalante Ramirez & Martens, 1992). Hence, the angle is a ratio 
of two independent Gaussian random variables with equal variànce, with an 
are tangent transformation. The PDF of the angle can be derived (Lyvers & 
Mitchell, 1988). The angle so estimated is unbiased. Because of the non-linear 
nature of the expressions for the other edge parameters, it is not possible to 
obtain analytica! expressions for their PDFs. Instead we use computer simula­
tions to study their nature. 

In the computer simulations, an edge of known height, orientation, mean 
value and position is blurred with a 2-D Gaussian kemel with known blur 
parameter, Ub· In each trial of the simulation, the following steps are performed. 
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Figure 2.4: Error in the estimate of O"b due to independent errors 
in fi, h, and f3. Plot ( a) shows the error as a function of u, for 
O"b = 1.0 pixel-width, d = 0.25 pixel-width and av = 100 (arbitrary 
units) Plot (b) shows the error as a function ofd, for u = 2, O"b = 1.0, 
and il V = 100. Here d is expressed in units of sampling interval. · 
Plot (c) shows the error as a function of LlV, for u = 2, ub= 1.0, and 
d = 0.25. In each of the 3 plots, tl.fi = tl.h = Llf3 = 0.5 ( arbitrary 
units). 
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First, noise with Gaussian PDF of known variance is added to the blurred edge. 
Following this, the noisy blurred edge is analysed using a polynomial transform 
to obtain the coefficients. Finally, the edge parameters are computed. The 
signal-to-noise ratio (SNR) at an edge can be defined as 

SNR 
av 

(2.36) 

where a V is the signal difference corresponding to the edge height and an is 
the standard deviation of the noise. 

The probability density functions of e, av, d/a, and ab/a, obtained by 
simulations at three different SNRs, are shown in Fig. 2.5. In the figure edge 
height av = lOO(arbitrary units) and the noise standard deviation an 5, 10, 
and 20 (arbitrary units). The dotted vertical lines show the values that the 
parameters should have when there is no noise in the edge. The variance of 
all the estimates increases with decreasing SNR. The estimate of the angle () is 
unbiased, as was also deduced from the analytical expression. This also serves 
as a check on the validity of the simulations. The PDF of the estimate of edge 
height remains symmetrical with increasing SNR, indicating no significant bias. 
The PDF of the estimate of edge location d/a is symmetrical at high SNRs, 
but deviates slightly from symmetry when the SNR drops to 5. The bias due 
to this asymmetry is small, for example, when SNR = 5 and d/a is minimum, 
i.e., d/a = 0, we obtain a bias of 0.001, and for the same SNR when d/a = 0.5 
we obtain a bias of0.07. The PDF of the estimate of ab/a remains symmetrical 
about the mean at high SNRs, hut becomes increasingly asymmetrical at low 
SNRs. At SNRs above 10 the bias in the estimate of ab/ a is less than 5 %. At 
low SNRs the blur parameter ab is underestimated. This is due to the nonlinear 
nature of Eq. (2.30). The operation of squaring f2 in Eq. (2.30) causes the 
bias. It will be shown in the next section that the bias in the estimate of ab is 
proportional to (an/ fi) 2 • 

In the analysis so far we have dealt with images in the continuous spatial 
domain. Since we are dealing with discrete images, the effect .of sampling 
needs to be looked into. The effect of sampling on polynomial coefficients has 
been studied (Martens, 1990c). When the window spread a is chosen so that 
a > 3T /2 where T is the sampling interval, the effect of sampling on the signal­
to-noise ratio of the polynomial coefficients is negligible. In our application 
we choose a > 3T /2 in order to keep the effects of sampling on polynomial 
coefficients minimal. Once this has been guaranteed, the effect of sampling on 
the parameter estimation is minimum, since the estimates are based on the 
coefficients. 
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Figure 2.5: The PDFs of the edge parameter estimates. Panel (a) 
shows PDF of angle 0, (b) PDF of height av, (c) PDF distance 
of d/a and (d) PDF of ub/a" The dotted, dashed and solid lines 
correspond to SNRs 20, 10 and 5 respectively. The dashed vertical 
lines show the estimates for a noiseless edge. The u of the analysis 
window is 2. Each curve is the result of 32000 simulation trials. 
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In this section we show how the relations derived in the previous section on the 
estimation of edge parameters can be used to estimate the amount of Gaussian 
blur in natura! images. We adapt the following computational assumption 
about the scene: 

We assume that there are at least a few locations in the captured 
scene where the luminance distribution is locally a one-dimensional 
step edge. 

A one-dimensional (1-D) step edge is constant in some direction and varies 
as a step function in the perpendicular direction (see Fig. 2.1). The above 
computational assumption is true for most natural scenes. A block diagram 
of the proposed algorithm is shown in Fig. 2.6. Since the relations derived 
in the previous section hold for an edge, we first have to detect the locations 
of locally edge-like patterns in the image. This task is performed by the edge 
detector shown in Fig. 2.6. At each identified edge location the required edge 
parameters ab/a, d/a, or 6.V can be estimated from the Hermite coefficients 
using Eq. (2.30), Eq. (2.31) or Eq. (2.32) respectively. Thus, we have a set of 
observations obtained from many different edge locations over the image. In 
the case of uniform blur, the goal is to obtain an estimate of ab for the entire 
image by statistically combining the blur estimates at all edge points. 
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2.6.1 Selecting Edge Candidates 

Since the use of a strict definition of an edge is somewhat impractical, it is 
customary to adopt an operational definitiori. We define edge positions as 
those locations where a significant locally one-dimensional transition occurs 
between distinct image values. Such transition regions are characterized by a 
local maximum in the gradient magnitude lfil in the direction 0, where ()is 
the angle of the edge as defined in Fig. 2.1. Therefore edges can be detected 

by locating local maximum in lfil in the direction 0, where !hl= J Jl,o + 16,1 

and () = tan-1(!0,i/ h,o). Local maximum in lfil are detected by finding the 
points where lfil is larger than its two closest neighbours whose positions are 
in the direction indicated by (} at that point. The edge locations detected 
in this way are reorganized into chains of edge locations (Mallat & Hwang, 
1992). A chain of edge locations is a series of consecutive, connected edge 
positions, where each edge location acts as a link in the chain. Thus an edge­
chain is characterized by parameters chain-length and average h over all edge 
positions in the chain. The chaining of the edge locations is based on the fact 
that the fi varies smoothly across the edge curve, and that the orientation 
() of the edge at any location on the curve is perpendicular to the tangent of 
the edge curve at that location. Among the edge-chains that are detected in 
this way, only those chains whose average lfi 1 is greater than a given threshold 
and whose chain-length is greater than a given threshold are considered to be 
reliable and prominent edge candidates. Applying thresholds on the average 
lfil over the chain and the chain-length helps to decrease the probability of 
false alarm of edges. Edges with high fi and large segment length are relatively 
more prominent in an image and hence are assumed to play a greater role in 
determining the perceived blur. 

The blur estimation method is based on a locally 1-D edge. Not all positions 
selected by the above detection process are locally 1-D. For instance, corners are 
also detected (see for example, top rows of Fig. 2.15 and 2.16). A 1-D pattem 
is constant in some direction and varies in the perpendicular direction. Typical 
1-D patterns are edges, lines, etc. The Hermite coeffi.cients of a locally 1-D 
pattern are equal to zero for all orders greater than zero in one direction, and 
non-zero for at least one order greater than zero in the perpendiculai: direction. 
From the edge locations detected above, the 1-D edges are detected by rejecting 
all those locations where the pattern is locally 2-D. A 2-D pattern varies in two 
( orthogonal) dimensions. Examples of 2-D patterns are corners, curves with 
large curvature, etc. We use a 2-D energy measure E2D for rejecting the 2-D 
patterns (Martens, 1995). The E2D indicates the extent to which a pattern is 
locally two-dimensional. For example, E2D up to order 2 is given by 

E2D [ ( V(ho - fo,2)2 + 2ft,1 - lh,o + /0,21) /2] 2 
(2.37) 
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Ideally, locally 1-D patterns are characterized by E2D = 0. For example, 1-D 
edges and lines have E2v equal to zero, whereas locally 2-D patterns such as 
corners and steep curves have a high value of E2D. We detect locally 1-D edges 
by putting a threshold on the ratio E2D/ E1 . Using this threshold, 2-D patterns 
such as corners which have a high value of E2v are rejected. For our estimate 
of the blur to be reliable, the pattern on which the estimate is based has to be a 
1-D edge. In other words, the cost associated with a false alarm is much higher 
than that associated with a miss. Hence, we keep a sufficiently low threshold 
on E2D / E 1 to be certain that the locations identifi.ed really correspond to 1-D 
edges. 

2.6.2 Estimation of Blur Parameter at Edge Locations 

Having identifi.ed the edge locations in the image we now have to estimate the 
edge parameters at each location. When the distance between the centre of 
the window and the edge (d/u) is small, the windowed signal contains most of 
the region of the edge transition, i.e., the region of the edge from which most 
reliable estimates of the blur can be obtained. However, when d/u is large, 
the windowed signal contains only the tail of the edge and estimates based on 
that are bound to be less reliable, especially in the presence of noise. When 
dj CT is small, the dependence of the estimated blur on the blur model is also 
small since the transition region is approximately linear for all realistic blur 
models. For these reasons, we are interested in making sure that the window 
is positioned sufficiently close to the centre of the edge. Since the windowing 
takes place at regular intervals in the image, an edge location that is far from 
the centre of one window will be close to the centre of another window. Hence, 
if the window spread CT is sufficiently large compared to the sampling distance, 
most edge locations will be included at least in one window. 

To obtain a reliable estimate of the blur spread, we want to ensure that 
the edge is sufficiently close to the centre of the window. The position of an 
edge relative to the window centre can be verified using the ratio fa/ fi. By 
applying a threshold on the ratio 

fa 
fi 

< (3 (2.38) 

we reduce the range of allowed distances, d/cr. The result of using Eq. (2.38) 
in the (d/u,cr0/a) plane is shown in Fig. 2.7. The area of the region can be 
varied by varying (3 in the range (3 > -1/../6. In Fig. 2.7, we have chosen 
(3 = -1/2../6. When -1/../6 < (3 < -1/2.,/6 the reliable region is bounded in 
the (d/O',ab/a)-plane to d/a < 1/2 and u1;/0' < l. For example, in Fig. 2.7, 
when (3 is decreased below -1/2../6, the solid curve moves towards the origin, 
thus shrinking the region. When (3 is increased above -1/2../6, the solid curve 
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Figure 2.7: The region of reliable edge positions in the (d/u,crb/u) 
plane. The solid line is given by the equation '3/ fi = (3. The hatched 
region shows the region of allowed solutions for f3 = -1/2../6. The 
figure is symmetrie around the ordinate. 

moves outwards ( away from the origin), thus expanding the region. At every 
edge location identified we ensure that (2.38) is satisfied before Eq. {2.30) is 
used to estimate blur. Thus, we ensure that only those edges that give reliable 
estimates of edge parameters are used to estimate image blur. 

Figure 2.8 shows the region covered by periodic windows of a fixed scale 
u, and period T, in the (d,ub) plane. These bounds can be varied by varying 
the ratio T/u and the threshold f3 in Eq. (2.38). In Fig. 2.8, T/u = 2/3 and 
f3 = -1/2./6. Edges that fall within the non-overlapping regions are analysed 
by only one window that lies nearest to it. Edges that lie in the overlapping 
regions could be analysed by more than one window. However, since in our 
implementation the edges are detected by locating local maximum in lh, the 
edges lying in the overlapping regions are analysed by only one window that 
is located closest to it. The T /er ratio and the threshold f3 have to be chosen 
so that the repetitive windows span the entire d-axis. Blurred edges whose 
parameters are outside the shaded region will not be analysed by a polynomial 
transform with a fixed scale. This calls for a multiscale algorithm which is 
discussed in Section 2.7. 

At an edge location, observation f is corrupted by noise, i.e. f = ub + n, 
where ub is the parameter to be estimated, f is the measured quantity given 
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Figure 2.8: The region covered by a periodic window in the ( d, O'b) 

plane. Both d and 11'b are expressed in units of T. In this figure 
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region analysed by the· window located at a fixed position. 

by (see Eq. (2.30)), 
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[ 

1 1·] 1/2 
f O' (2!! + J6_la)-

f1 /1 
(2.39) 

and ii is the noise. To obtain an estimate of 11'b and to study its statistical 
properties we need to know the PDF, Prlub(flub)· As we noted in the previous 
section, it is not possible to obtain analytical expressions for this PDF. The 
computer simulations shown in Fig. 2.5d demonstrate that the expected value 
off is lower than that of O'b, i.e. E[r] = O'b - b, indicating bias. The bias is 
mainly due to the squaring of h in Eq. (2.30). Simulations similar to that 
shown in Fig. 2.5d also show that the deviation of the expected value of /?, 
E[f:r], from its noise-free value is proportional toa;. 

If the bias b can be estimated, we can obtain an unbiased estimate of O'b 

by adding b to E[r]. The bias b was studied as a function of the input noise 
variance O'~, the window spread a, and the edge parameters .ó. V, d, () and O'b, 

using simulations. Figure 2.9 shows the result of simulations. From simulations 
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it was found that bis approximately proportional to (un/fi)2 , i.e., 

(2.40) 

where kis a constant, independent of the edge parameters, window spread and 
noise variance. For SNR > 5 and u > 3T /2, the constant k is approximately 
equal to 0.53. 

An unbiased estimate of the blur parameter at an edge location i can be 
obtained by adding the bias b to Ti· From Eq. (2.40), it follows that 

Ti + k ( Un )2 
li,i 

(2.41) 

, where Ûb(ri) is the unbiased estimate of <Tb at i-th edge location. At an edge 
location, fi is a measured quantity. If we know the noise variance O'~, we can 
obtain an unbiased estimate of the blur parameter at each edge location using 
the above equation. Noise variance can be either assumed to be known or can 
be estimated from uniform regions in the image (Chapter 3). 

The variance of the estimation error, Var[efb(r) - ub], also increases with 
(un/fi)2 • The standard deviation of the estimation error as a function of 
un/lfi 1 is plotted in the bottom panel of Fig. 2.9. From the figure we see 
that, fora given amount of noise and image blur, the variance of the esthnate 
decreases with lfil. From Eq. (2.26) we note that lfil increases with the edge 
height ~ V, decreases with d/ O' and with O'b/ O'. Therefore, when the image 
contains additive noise, to obtain estimates with low variance, u has to be 
chosen such that the ratio ub/ u is minimum. Edges with high contrast that are 
situated close to the centre of the analysis window give estimates with lower 
variance. 

2.6.3 Estimation of Uniform Image Blur 

In an image with space-invariant Gaussian blur we can estimate the blur pa­
rameter O'b more reliably. The observation space R consists of N (independent) 
observations from N edge locations over the image. Each observation rï is bi­
ased as well as corrupted by noise, i.e., 

Ti = O'b - bi+ ni, i = 1, 2, " .... , N, (2.42} 

where Ub is a constant. Based on these observations, we want to derive the 
estimate ch ( R). 



2.6 Blur Estimation Algorithm 

..0 

Q 
en 

0.10 

0.08 

0.06 

0.04 

0.02 

. . . ... : • 1 • • 
• •:. 0 ... " ... ~ . . "' ." ... . ,. . .. t 

....... . 
, . . . , . . ", -_ ..... 
' ... \+p­

.,.._"" ." 
• • ... ll. u.' • ':l ..... -=~·.c.·,. 

/11"~.T' 
0.00-+----~----..------.-------. 

0.00 

0.35 

0.30 

0.25 

0.20 

0.15 

0.10 

0.05 

0.00 
0.0 

0.05 0.15 0.20 

. . .• • • ••• •• • .. . ' •··.' .. .. : . . ~·:·· . • •$ z.•• 
. ... ........ ,V' .- ~--= .•· . ' .. "".:··· '. '-··. •• _c..,.;;r • 

• 1"•:.r • 
;ir" • 

0.1 0.4 0.5 

Figure 2.9: Bias and standard deviation in the estimate of edge blur 
obtained using simulations, for different values of the parameters: 
a, ab, ~ V, d, () and an. Top panel shows the bias in the estimate of 
edge blur. Bottom panel shows the standard deviation of the indi­
vidual errors in the estimate of edge blur. Each point in the plots is 
the result of 32000 simulation trials. 
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We assume that the noise variance, O"~, is constant over the image. Thus, 
from Eq. 2.42 and from Eq. 2.40 we obtain 

K 
i = 1,2, ...... ,N, (2.43) 

where the two parameters, O'b and K, are constant over the image. Hence, when 
the blur and the noise are uniform over the image, the bias in the estimate of 
O"b across the edges in the image varies only with l!i,il, the square-root of the 
first-order energy at the i-th edge location. An estimate for O"b (and K ) can 
be obtained by minimizing the weighted error 

min L [ab - (ri + 
1
1; ) ] 2 w(lfi,il), 

u",K i l,i 
(2.44) 

where the sum is over all edge locations. Weighting is necessary because the 
reliability of ri increases with l!i,il, as discussed in the previous subsection. 
We choose the weight Wi proportional to lfil. Note that, in this case, there is 
no need to know the noise variance to obtain the estimate ó'b(R). 

2. 7 Multiscale Blur Estimation Algorithm 

In the previous sections the single-scale blur estimation algorithm was dis­
cussed. When using a single-scale algorithm, the window size O" has to be 
chosen a priori. Using an a priori chosen window size O", (i.e., the single-scale 
algorithm) reliable estimates for blur parameter can only be made within a 
limited range for the parameter ub (see Fig. 2.7). To increase this range we 
can analyse the image with multiple window sizes and choose the appropriate 
window size a posteriori. 

The single-scale algorithm in Fig. 2.6 can be easily extended to a multiscale 
algorithm as shown in Fig. 2.10. Given a blurred image it is first analysed at 
a scale 0-1. All the edges whose parameters are within the bound given in Fig. 
2.8 will be estimated at the first level, resulting in estimates ó'b/u1 at those 
edge positions. Edges with parameters that fall outside the shaded region will 
not be estimated at the first level and have to be èstimated at a higher level. 
The zero-order coefficient image at the first level is taken as the input to the 
second level of the analysis. Since the zero-order Hermite filter is Gaussian, 
the effective blur parameter at the input to the second level is Jul + u~. The 
analysis at the second level takes place at scale u2 , with u2 > u1 The range of 
parameters of edges that can be analysed by the second level is bounded in the 
(d,ub) plane (see Fig. 2.11 for example, where 0'2 = 2u1). Those edges whose 
parameters are within these new bounds ( excluding those that have already 
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Figure 2.10: Multi-scale blur estimation algorithm 

been analysed at the first level) will be estimated at the second level resulting 

in estimates J ;l + aî / a2 at selected edge positions. Those edges that are not 
estimated either at the first or at the second level will have to be estimated at 
higher levels. In this way we proceed to estimate the parameters of all edges 
with the appropriate window size. 

The successive levels in the multiscale algorithm can be chosen so that 
ai = Dai-l· We choose D = 2 in the present implementation. This can 
be implemented by using windows whose spread keeps doubling, or by using 
the well-known pyramid structure (Burt & Adelson, 1983). In the pyramid 
structure, when a subsampling factor of D is used, i.e. Ti = DTi-l, the same 
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Figure 2.11: Region covered by the multi-scale periodic windows in 
the (d,ub) plane. Both d and Ub are expressed in units of T. In this 
figure a 2 = 2a1 , T2 = 2Ti, u = 3T/2 and /3 = -1/2./6. The hatched 
region shows the region covered by the second layer of the multi-scale 
algorithm. The crossed region shows the region covered by the first 
layer (same as Fig. 2.8). The edge A with O"b = 1 is analysed reliably 
at level one, whereas the edge B with O'b = 2 bas to be analysed at 
level two. 

window function can be used at every level. The lowest u that can be used 
is u = 3T /2, due to the effects of sampling on the SNR of the polynomial 
coefficients (Martens, 1990c). Figure 2.11 shows the range of parameters of 
edges analysed at the first and the second level of a multiscale algorithm with 
D = 2. By going further to higher scales, the entire (d, ub) plane can be covered. 
Note that at the second level the effective blur parameter is Jul + aî. Hènce, 
in Fig. 2.11 the reliable region boundary at second level (a2 = 20"1} is obtained 
by computing Eq. (2.38) at the second level and by subtracting the contribution 
of a1 from the effective blur Ja~ + aî. 

Edges for analysis at each level of the multiscale algorithm are chosen so 
that they are estimated most reliably at that level. This can be seen from the 
reliable region for each level in the (d,ab) plane (see Fig. 2.11). The error 
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in the estimate of ab is mainly due to two sources, one due to noise in the 
image (see subsection 2.5.3) and the other due to independent errors in the 
polynomial coefficients (see subsection 2.5.2). The variance in the estimate of 
ab due to image noise decreases with l!il and hence with increasing window 
size a. However, the error in the estimate due to independent errors in the 
polynomial coefficients increases when a is increased beyond ab (Fig. 2.4a). 
Using a window with a that is small compared to ab also results in large errors 
in the estimate due to independent errors in the polynomial coefficients (see Fig. 
2.4a). Considering both forms of estimation errors, the most reliable estimates 
of ab. are given by a window with spread a in the range ab < a < 2ab· From this 
bound it follows that, using a window of spread a, reliable estimates of ab can 
be made in the range a /2 < ab < a. However, because of the effects of sampling 
on the SNR of the polynomial coefficients (Martens, 1990c), the lowest a that 
can be used is a = 3T /2, where T is the sampling interval. The reliable region 
for each level in the ( d, ab) plane is based on this bound on CTb for that level. 
For example, in Fig. 2.11, edge A with parameters ab = 1 and d = 1/4 is 
estimated most reliably at the first level. Instead, if edge A is estimated at the 
second level, the estimation error will increase substantially. This is because 
at the second level the error due to independent errors in the coefficients will 
increase substantially since ab/a changes from 2/3 to 1/3, whereas the decrease 
in the error due to image noise will be small. Similarly, edge B with parameters 
ab = 2 and-d = 1/4 is estimated most reliably at the second level. 

2.8 Results of Blur Estimation 

In this section we present the results of applying the blur estimation algorithm 
to synthetic and natural images. The exercise on grey-scale images is mainly 
aimed at comparing the estimates of blur-spread given by the algorithm against 
the input blur-spreads. Figure 2.12 shows four original images used to test the 
algorithm. The two images at the top, called 'Mondrian'(left) and 'Text', are 
synthesized on the computer, while the two at the bottom, called 'Terrace' (Ieft) 
and 'Wanda', are digitized images of natural scenes. The images of natural 
scenes were captured with a camera (which by itself introduces some blur), and 
were later electronically digitized. Each image shown in Fig. 2.12 contains 512 
by 512 pixels, with 8 bits per pixel accuracy. The synthetic images Mondrian 
and Text, in which the edges are idealy sharp (i.e., step functions) are chosen 
to test the performance of the algorithm in ideal conditions and to compare it 
with that for real images of natural scenes. 

Images with different amounts of blur were generated from the original 
images by filtering with 2-D separable binomial windows of order B. A bino­
mial window of order B is approximately equivalent to a Gaussian window of 
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Figure 2.12: Original images used to test the-algorithm. Images at 
the top are 'Mondrian'(left) and 'Text' and at the bottom are 'Ter­
race' (!eft) and 'Wanda'. 
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Figure 2.13: Images of Terrace scene with blur, noise, and blur as 
well as noise. The image on the top left is the 'original', and the 
image on the top right is obtained by blurring the original with a 
binomial window of order B = 8 (i.e, o = 2) . The image on the 
bottom left is obtained after adding Gaussian density noise with SD 
On = 14 and the image on the bottom right is obtained by first 
blurring with a binomial window of order B = 8 and then adding 
noise of SD On = 14. 
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Figure 2.14: Approximation of Gaussian windows using binomial 
windows, for windows of order B = 2, 4, 8, and 16. The coefficients of 
binomial windows are shown using a bar graph and the corresponding 
Gaussian windows, with a = JBTi., are shown using drawn curves. 

spread ab = JBTi. (Martens, 1990b) (see Fig. 2.14). For example, B = 8 is 
approximately equivalent to ab = 2. To test the behaviour of the algorithm in 
the presence of noise, noisy images were used. Noisy images were generated 
by adding zero-mean white noise with Gaussian PDF of known standard devi­
ation, an, to each pixel of the blurred image. Figure 2.13 shows examples of 
images with blur, noise, and blur and noise. 

Figure 2.15 shows the results of edge detection, using the single-scale al­
gorithm described in Section 2.6. The two input images are Mondrian and 
Terrace blurred with a binomial window of order B = 2 which corresponds 
approximately to ab = I.O. The top row shows the locations of detected edges. 
While detecting the edges, the threshold on lfi J of edge chains and that on 
chain length is selected so that a certain percentage (e.g. 5 % ) of the image 
area is judged to be edge regions. From these edges, 1-D edges are detected by 
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thresholding the ratio E2D/ E 1• A fi.xed value of 0.01 is used as threshold on 
E2v/ E 1 for all the results reported here. The bottom row shows the locations 
of 1-D edges used for blur estimation. Edge locations for blur estimation are 
chosen from the locations of 1-D edges using the threshold (3 in Eq. (2.38). 
Results reported here are generated using a fi.xed value for {3 = -1/2v'6. The 
figure shows that the 1-D edge detector correctly rejects higher-dimensional 
patterns such as corners as well as 0-D patterns (i.e., uniform regions). Using 
the edges chosen in Fig. 2.15, the blur estimation algorithm gives an estimate 
of <Tb= 1.03 and <Tb= 1.16 with SDs 0.18 and 0.39 for Mondrian and Terrace 
respectively (approximate expected value <Tb= 1 for both images). The higher 
value of the blur parameter, O'b, in the case of the natura! scene is mainly 
because the original image of that scene is blurred in the process of camera 
recording and digitization, whereas the original synthetic image bas ideally 
sharp transitions. 

Figure 2.16 shows the results of edge detection using a single--scale algo­
rithm, in the presence of image noise. The two input images are Mondrian 
and Terrace blurred with a binomial window of order B = 2 corresponding to 
ub = 1.0, and contain added noise with O'n = 10. Using the edges chosen in 
Fig. 2.16, the blur estimation algorithm gives an estimate of <Tb = 0.97 and 
<Tb = 1.17 with SDs 0.30 and 0.39 for Mondrian and Terrace respectively. In 
Fig. 2.15 and Fig. 2.16, the low contrast edges are not detected because we 
have chosen the threshold on !ft ! of edge chains such that the probability of 
false alarm is low. 

Figure 2.17 shows the result of the single-scale blur estimation algorithm 
for images with different amounts of blur. These results also show the effect of 
parameters u and (3 on the estimate. The dashed line (D) shows the estimates 
given by an algorithm with a = 2 and {3 = -0.04. Since {3 is high, edges 
with large ab/u ratio were also considered in the estimate. The drawn line 
(<>) shows the estimates obtained when {3 = -1/2v'6 = -0.204, hut with u 
chosen such that it is always higher than the expected O'b, i.e., such that the 
ab/a ratio for most edges in the images is below 1. At low input ab, estimates 
obtained using both settings are almost equal for all scenes, although some 
differences are present for the Wanda scene. It is clear from the figure that 
the original images of both natural scenes are blurred. The effects of using a 
large window are clear from the results for the Text scene, which has many 
line-like structures. When the window is large, it encloses more than one edge 
within it (i.e, line in the case of Text) and hence the estimate based on a single 
edge within a window fails. In the Text scene this happens when u exceeds the 
width of the character stroke. However, when the Text images are analysed 
using lower a hut with higher /3 (to obtain a sufficient number of edge locations 
on which to base the estimate), the estimate is closer to the expected estimate 
(D). The expected estimate is shown by the drawn straight line. The lengths 
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Figure 2.15: Result of edge detection. The mput images are Mon-. 
drian and Terrace blurred with Ub = 1. The top row shows the 
locations of detected edges and the bottom row shows the locations 
of 1-D edges used for blur estimation. Notice that the corners, which 
are 2-D features, have been correctly rejected in the images at the 
bottom. These results are obtained at scale q = 2.0. 
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Figure 2.16: Result of edge detection in images containing noise. 
The input images are Mondrian and Terrace blurred with O'b = 1 
containing noise with O-n = 10. The top row shows the locations of 
detected edges and the bottom row shows the locations of 1-D edges 
used for blur estimation. These results are obtained at scale o- = 2.0. 
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of the error bars in all figures are equal to twice the standard error of the mean 
(SEM). However, in most cases, the SEM is small and the error bars in the 
plots are barely visible. 

Figure 2.18 shows the result of the blur estimatio~ algorithm for images 
with different amounts of blur and noise. All estimates are obtained using 
a single polynomial transform of window size u = 2 and {3 = -0.204 Points 
joined by a line correspond to images that have the same amount of blur, hut 
contain different amounts of noise. In each plot, the point in the lower left 
corner corresponds to the original image. The parallel curves demonstrate that 
the algorithm gives reliable estimates of the blur parameter in the presence of 
image noise. In the case of Mondrian, consistent estimates of ub are obtained 
in the presence of noise, for all levels of blur except for the case u" = 0 {the 
lower most curve). The algorithm overestimates the blur of a noisy image with 
zero input blur. The O'b = 0 situation does not occur in real images, since real 
images are blurred due to the imaging process. In the case of Text also the 
estimates are consistent in the presence of noise hut are slightly lower than 
those for Mondrian. In the case of Terrace, consistent estimates of O'b are 
obtained in the entire range tested. In the case of Wanda we obtain consistent 
estimates when the variance of the input noise is small, hut when the input 
noise is high the estimates become less reliable. This is because the image 
Wanda does not contain high-contrast edges. When an image does not contain 
high-contrast edges, reliability of the blur estimate decreases rapidly as the 
input noise increases because the SNR at the edges decreases drastically. 

Figure 2.19 shows how the estimate of ub varies as a function of the scale 
of the polynomial transform, u. The input images are Terrace with O'b = 0. 7, 
Un = 10 (Iower curve) and Mondrian with u" = 1.4, O'n = 5 (upper curve). 
We have used u > 3T /2 to keep the effects of sampling on the polynomial 
coefficients to a minimum. There is a small variation in the estimated value of 
u~ as the scale varies, hut it is within the SD of the estimate. For both images 
the SD of the estimate does not vary much with the scale in the range of u 
tested. 

Figure 2.20 shows the result of the multiscale algorithm on Terrace as O'n 

increases. These results are obtained using a three-level algorithm with a 1 = 2, 
u2 = 4, and 0'3 = 8, which has a pyramid structure, with {3 = -1/2v'6. The 
aim here is to merely demonstrate the use of the proposed multi-scale blur 
estimation algorithm using a typical example. Therefore, the results of the 
multi-scale algorithm shown here are intented only as a demonstration of the 
multi-scale algorithm to estimate blur in images of natura! scenes. 
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Figure 2.17: Results ofblur estimation using a single-scale algorithm 
on images with different amounts of blur. The inputs are original 
images of the Mondrian, Text, Terrace and Wanda scenes, blurred 
with binomial filters of order B = 0 (original), to 16 (i.e., O'b ~ 0, to 
2.83). The dashed line (0) shows the results obtained with a = 2.0 
and f3 = -0.04. The drawn line (<>)shows the results obtained with 
f3 = -0.204 hut with different values of a. For each scene, the images 
with input O'b < 1.5 (first 5 images) were analysed at u = 2.0, those 
with 1.5 < Ub ~ 2 ( next 4 images) were analysed at u = 2.83 and 
those with Ub > 2 (last 4 images) were analysed at a = 4.0 
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Figure 2.18: Results of blur estimation on images with different 
amounts of blur and noise. The input images are: Mondrian, Text, 
Terrace and Wanda, blurred with binomial filters of order B = 0 
{original), 1, 2, 3, and 4 (i.e., O'b ~ 0, 0.71, 1, 1.23, and 1.41) and· 
containing noise with Un = O, 5, 7, 10 and 14. These results were 
obtained using a single-scale algorithm with u = 2.0 and fJ = -0.204. 
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Figure 2.19: Blur estimate as a function of scale, a. The input images 
are Terrace with ab = 0.7,an = 10 (lower curve) and Mondrian with 
ab = 1.4,an = 5 (upper curve). 
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In this section, we describe a psychophysical experiment that is aimed at study­
ing the effect of blur on the perceived unsharpness of the natural images. The 
results of this experiment will be used to test the estimates of a measure for 
perceived blur obtained using the computational algorithm. 

Stimuli: In this experiment, black and white still images are used as stimuli. 
The parameter that is varied is the spread of the blurring kemel ab. Two 
natural scenes were used: Terrace and Wanda (see Fig 2.12). Stimuli were 
generated by blurring the 'original' images of the scenes with binomial filters 
of given order B. A binomial filter of order B is approximately equal to a 
Gaussian window of parameter ab ~ JB7'i, (see Fig. 2.14). Six values of 
B were used: 1, 2, 3, 4, 6 and 8. The original images of the scenes were 
also used in the experiment. Thus there were seven stimuli per scene. The 
images had a size of 512x512 pixels with 8 bits per pixel accuracy, but in the 
experiment only the central region of 450x450 pixels (0.24 m by 0.24 mor 9.8° 
by 9.8°) was displayed. The viewing distance was six times the image height. 
The images were displayed on a BARCO-CCID-7351B high-resolution non­
interlace monitor using a VME-bus based system (with MEN-A301 graphics 
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Figure 2.20: Result of the multi-scale algorithm on noisy, blurred 
images. The input images are Terrace with B = 8, (i.e., O'b = 2.0, 
lower curve) and B = 16 (i.e., Ub = 2.83, upper curve) containing 
noise with O'n = 0, 5, 7, 10 and 14. These results were obtained using 
a three-scale algorithm with u1 = 2, u2 = 4, and u3 = 8. The lengths 
of the error bars are equal to twice the standard error of mean (SEM). 

board). The display characteristics were calibrated to have a 'Y = 2.5 (Poynton, 
1993). The luminance of the monitor for an all-white screen was 60 cd/m2 • 

Method: The viewing conditions satisfied the CCIR recommendation 500 
(CCIR, 1986). Images were displayed fora fixed duration of 5 sec, with at least 
a 2 sec adaptation time between two presentations, during which an adaptation 
field of 10.7 cd/m2 was displayed. The luminance of the adaptation field was 
approximately equal to the average of the mean luminance of the two scenes. 
The subjects were instructed to judge the unsharpness of the images using a 
10-point numerical category scale ranging from one to ten. Subjects took part 
first in a session with images of the Terrace scene and then with those of the 
Wanda scene. Each stimulus was repeated four times. Thus there were 7x4 
= 28 presentations per session. The order of presentation within each session 
was random. Before the start of the each session, subjects took part in a trial 
session with 8 stimuli covering the entire range, in order to adjust the sensitivity 
of their scale. 
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Figure 2.21: Results of sealing unsharpness plotted against input 
blur-spread ab, for images of Terrace scene with blur, for subject TG 
and TR~ The lengths of the error bars are equal to twice the standard 
error of mean (SEM). 
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Subjects: Eight subjects between 22 and 38 years of age took part in the 
experiment. All were familiar with the use of numerical a category sealing pro­
cedure and the concept of unsharpness in images. All had normal or corrected­
to-normal visual acuity between 1.5 and 2, measured on a Landolt chart. 

Results: The numerical category data from the experiment were transformed 
into an interval scale on a psychologically linear scale using Thurstone's law 
of categorical judgement. The class 1 model involving replications over trials 
within one subject with constraints of condition D was applied (Torgerson, 
1958). In condition D the number of parameters are limited by assuming that 
the dispersions of the category boundaries as well as the stimulus locations are 
constant, and that the correlation between their momentary positions is also 
constant. 1 

Figure 2.21 shows the results for two subjects, for the Terrace scene. The 
figure shows that there are no significant differences between the trends in 

1 However, when a stimulus is judged to be in a boundary category in all the repetitions, 
the condition D constraints lead to a misleading position for that stimulus. This is because 
such stimuli do not satisfy the assumptions of condition D. To obtain meaningful positions in 
the psychological continuum for such stimuli as wel!, a. correction was applied before applying 
the Thurstone's model (de Ridder, 1994). Let us assume that there a.re n categories (labelled 
1 to n), and m repetitions per stimulus. Then the correction applied was as follows: (1) 
two additional categories were added: 0 and n + 1, one at each boundary, (2) the scores of 
the stimuli which had full entry min the bounda.ry category (either 1 or n) were distributed 
symmetrically among its two neighbouring categories, as follows, if category n had m entries, 
it was corrected by placing 1 in ca.tegory n - 1, replacing m - 2 in category n, a.nd placing 1 
in category n + 1. Similar correction was applied if m entries occurred in ca.tegory 1. 
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Figure 2.22: A verage results of sealing unsharpness plotted against 
input blur-spread <Tb, for images of the Terrace and Wanda scenes 
with blur. Each point is the result of averaging over 8 subjects. 

the data between subjects. This was also the case with the data for other 
subjects. Hence, the Thurstone corrected data were averaged over subjects. 
Before averaging over subjects, the data for each subject were norm.alized using 
the z-score transform (Hays, 1988). Finally, the z-scores averaged over the 
subjects were normalized so that the resulting average standard error of mean 
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(SEM) was equa.l to one. The results averaged over all subjects is shown in Fig. 
2.22. These results show that the subjects are able to integrate the blur over 
the image very consistently. Notice that the original images of both scenes, 
(the lower-most point in each plot) are deviating from the drawn line. 

2.10 Estimation of Blur-index 

It bas been shown that, for small amounts of blur, the spread of the blurring 
kernel <1'b is a good correlate of the perceived blur (or unsharpness) of images 
(Westerink & Roufs, 1989; Westerink, 1991). Nijenhuis (1993) derived an em­
pirica.I relation for an ohjective measure for blur from the spread of the blurring 
kemel, based on the sensitivity of the visual system to changes in the <1'b (See 
Introduction to this chapter). The relation is given by 

(2.45) 

where sb is the objective measure for blur (0 :::; sb :::; 1), <1'bi is the spread of the 
image blurring kernel and <1'b0 is the intrinsic blur in the early-visual pathway. 
In this thesis, we refer to the objective measure Sb as blur-index. Equal interva.ls 
in sb correspond to ápproximately equa.l perceived differences in unsharpness. 
Hence, Sb is a psychometrie quantity (Hunt, 1978). In Figure 2.23, blur-index 
sb is plotted as a function of <Tbi/ <1'bO· At very low va.lues, Ubi/ uw < 0.25, sb is 
very low and insensitive to changes in abi/ubo· In the range 0.5 < abi/<1'b0 < 2, 
the relation increases rapidly and almost linearly. At higher va.lues of ubi/aw, 
Sb saturates. Using this relation, the objective measure for blur of an image 
can be estimated from the estimate of the spread of the blurring kernel from 
the image. In this section we present an algorithm to estimate the blur-index 
sb of an image from the image itself. 

Fig. 2.24 shows the schema.tic diagram of the algorithm to estimate blur­
index Sb. The lumina.nee image is obtained from the grey-sca.Ie image using 
the Gamma-characteristics of thé monitor (Poynton, 1993), 

(2.46) 

where L is the luminance, Lmax is the maximum lumina.nee of the monitor, 
Lmin is the minimum lumina.nee of the monitor, g is the grey-value, 9max 

is the maximum grey-va.lue, and"{ is the exponent. In our case, 9max 255, 
Lmax = 60cd/m2 , Lmin = 0.2cd/m2

, and"{ 2.5. The optical blur of the visua.I 
system is approximated by blurring the luminance image with an approximately 
Gaussian window. We use a Gaussian with spread ubO = 0.65 min are. The 
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Figure 2.23: An objective measure for blur Sb as a function of the 
ratio of spread of the blurring kemel to the intrinsic blur ub/ O"bo 
(Nijenhuis, 1993). 

resulting luminance image is transformed into an approximate psychometrie 
brightness image using a pointwise transformation. This transformation refiects 
the non-linear compressive transformation that takes place in the early stage 
of the visual system, expressed by the Weber-Fechner or the Stevens relation. 
This non-linear compressive transformation in the visual system is thought to 
take place prior to the spatial filtering operations that compute relevant image 
information such as edge location (Morgan et al., 1984). We use the CIE 1976 
relation for psychometrie lightness as the compressive transformation (Hunt, 
1978), 

{ 

( 
L )l/3 

L 
B = 116 Lmaz - 16, Lmaz > 0.008856 

903.3 (-L L ) , -L L $ 0.008856 
ma.z ma.z 

(2.47) 

where 0 $ B $ 100. Although, strictly speaking the CIE relation given above 
expresses psychometrie lightness and hence is valid only for secondary light 
sources ( refiecting bodies), we have adapted it here because it is one of the few 
standardized relations available to express the non-linear transformation. In 
our application, the exact nature and the exponent of the compressive trans­
formation is found to be not very critical. This is another reason why we use 
the CIE relation, which has an exponent of 1/3, although other exponents as 
high as 0.5 are also possible (Roufs, Blommaert & de Ridder, 1991). Noise 
is added to the psychometrie brightness image obtained after the compressive 
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Noise 

1 

transformation. This represents the intemal noise in the early visual system 
(See Chapter 3). We add stationary, Gaussian distributed noise, with white 
density spectrum with standard deviation 3.0 units (i.e., SD= 3 %)(See Chap­
ter 3). The resulting image is used as the input to the blur estimator. The 
later steps are the same as those in the blur estimation algorithm, described in 
Section 2.6. 

2.10.1 Results of Blur-index Estimation 

In this section, the results of the psychophysical experiment will be correlated 
with the blur-index Sb estimated using the algorithm. The Sb for each stimulus 
was estimated by applyîng the algorithm shown in Figure 2.24. The blur-index 
Sb was computed from the estimate of efb using the equation, Sb = 1 J abo/ àb 
, where efb is the estimate obtained using the algorithm (Figure 2.24) and abo 
is the intrinsic blur of the visual system. This equation is obtained from Eq. 
(2.45), by noting that efb éstimated in Figure 2.24 is the combined result of 
image blur O'bi and the optical blur of the visual system abO, i.e., ag = agi +a&,. 
We use aw 0.65 min are. The results of correlating the estimated Sb with the 
scaled unsharpness averaged over all subjects are given in Figure 2.25. Note 
that the estimated blur-index of the original image of the Wanda scene (the 
lowermost point) is higher than that of the Terrace scene, indicating that the 
latter is sharper. The coefficient of correlation between the · estimated blur­
index and the measured unsharpness are 0.992 and 0.985 for the Terrace and 
Wanda scenes respectively. These results show that the blur-index Sb obtained 
using the algorithm is a good correlate of the perceived unsharpness. 

Most objective measures for perceived sharpness found in the literature 
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are based on the modulation transfer function (MTF) of the display and the 
modulation threshold function of the eye (Carlson & Cohen; Barten, 1990). 
They aim at evaluating the sharpness of images produced by displays and 
hence are often called display-sharpness measures. The MTF is a spatial­
frequency domain equivalent of the spread of the blurring kernel ab. The MTF­
based objective measures for sharpness are thus the spatial-frequency domain 
methods for deriving Sb from ub. The main difference between the MTF-based 
methods and the method presented here is that, the method presented here 
estimates the sharpness of an image by first estimating the blur-spread ab from 
the image itself and then computing sb from the estimated O"b, whereas the 
MTF-based methods compute sharpness from the specified MTF. 

2.11 Conclusions 

In this chapter, a new method for estimating the parameters of a blurred edge 
bas been presented. The parameter estimation method presented is based on 
a local image decomposition technique called a polynomial transform. We 
have used the polynomial transform fora Gaussian window. By studying the 
behaviour of the estimates in the presence of noise, it is shown that the method 
gives reliable estimates of edge parameters. 

An algorithm to estimate the spread of the Gaussian image blurring kernel 
has been presented. The algorithm has two stages, a detection stage where 
locally 1-D edges are detected, followed by an estimation stage. The blur esti­
mation algorithm can be realized as a single-scale algorithm or as a multiscale 
algorithm. In the case of uniform image blur, the spread of the blurring kernel 
is estimated by statistically combining the estimates of the blur parameter at 
different edge locations over the image. lt is shown that the algorithm gives 
reliable estimates of the spread of the Gaussian blurring kemel at low SNRs 
by applying it to natural as well as synthetic images with different amounts of 
blur and noise. 

An algorithm to estimate an objective measure for perceived blur has been 
presented. Using subjective experiments, it is shown that the measure for blur 
estimated using the algorithm correlates well with the perceived unsharpness 
in images. 
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Chapter 3 

Estimation of Noise Variance and an Objective 
Measure for Perceived Noise Using Local Energy 

Abstract 

An algorithm for estimating the variance of additive white noise in 
images is presented. It is based on the first-order local energy in 
uniform regions of the image. The performance of the new method 
is compared with a recently developed method based on the overall 
local energy (Martens, 1994), and it is shown that the method pre­
sented here provides equally reliable estimates at approximately the 
same computational complexity. A new algorithm is also presented 
for estimating the parameters of nonwhite noise in images. It is 
based on comparing the first-order local energies for two windows 
of different size, i.e. two scales. 

For image quality applications, it is necessary to have a measure 
that correlates well with the perceived noise in images. It must also 
be possible to estimate such an measure from the noisy image using 
computational algorithms. In an effort to achieve this, the effect 
of noise on images is studied using psychophysical experiments. It 
is shown that the perceived noise (or noisiness) of an image is in­
dependent of the probability density function (PDF) of the noise. 
It is also shown that the local luminance of uniform regions in an 
image does not inf:luence the noisiness significantly. Subjective ex­
periments show that the two important parameters that influence 
the noisiness are the noise standard deviation (SD) and the noise 
correlation length (CL). Based on these findings about the noisiness 
in the uniform regions, an objective measure for noisiness of an im­
age, called noise-index, is proposed. The noise-index is based on 
the noise SD in the case of white noise, and in the case of nonwhite 
noise it is based on the SD of the white noise by filtering of which 
the nonwhite noise bas been obtained. Both of these SDs can be 
estimated from the image using the algorithms presented in this 
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chapter. Using the results of the psychophysical experiments it is 
shown that the proposed measure for noisiness correlates well with 
the measured noisiness. 

3.1 lntroduction 

Noise in an image affects the quality of the image. Noise not only decreases the 
perceptual quality of the images hut can also degrade the performance of the 
task for which the images are intended (van Overveld, 1994). For example, 
a diagnosis based on X-ray or computed tomography (CT) images contami­
nated by noise is likely to be less reliable because of the loss of details caused 
by the noise. Many applications require a quantitative description of noise 
and a method to measure it. Image restoration and segmentation (Demoment, 
1989; Rosenfeld & Kak, 1982) are typical examples. Image quality prediction 
is an emerging application that requires a perceptually relevant quantitative 
description of noise. By identifying the subjective dimensions of image qual­
ity (Marmolin & · Nyberg, 1975) and by estimating the perceptually relevant 
physical parameters of degradations (such as, the spread of the blurring kernel 
(Westerink & Roufs, 1989) or the noise variance) the image quality can be 
predicted (Nakayama, Kurosu, Honjyo & Nishimoto, 1980). 

In many practical imaging situations, noise can be modeled approximately 
as an additive Gaussian random process which is independent of· the image 
(Andrews & Hunt, 1977), i.e., · 

f(x, y) = J'(x, y) + n(x, y), (3.1) 

where f'(x, y) is the uncorrupted image and n(x, y) is an image-independent, 
stationary, stochastic process. The aim is to estimate the parameters of n(x, y), 
given the image f(x, y). 

Many researchers have developed methods to estimate the variance of white 
noise in images (Besl & Jain, 1988; Lee, 1981; Meer., Jolin & Rosenfeld, 1990; 
Canny, 1986; Bracho & Sanderson, 1985; Voorhees & Poggio, 1987; Lee & 
Hoppel, 1989). All methods are based on the observation that in uniform re­
gions of the image the variations are mainly due to noise. Thus, the noise 
variance is estimated by computing a local measure in the uniform regions of 
the image and deriving an estimate of the image noise variance from this mea­
sure. Although the methods are based on the uniform regions, they do not 
explicitly detect uniform regions prior to estimating noise. In fact, detection 
of uniform regions in noisy images itself needs an estimate of noise variance 
to set thresholds on uniformity (Besl & Jain, 1988). The need to detect uni­
form regions is circumvented by making use of apriori knowledge about the 
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probahility of occurrence of locally uniform regions for the class of images to 
which the method is applied. For exarnple, for most natural images ( excluding 
texture) it can be assumed that a large percentage of the image area is locally 
uniform. Using this assumption, the noise variance is estimated by: (i) com­
puting a local measure at all positions over the entire image, and (ii) using only 
those values of the local measure that are most likely to have arisen from the 
uniform regions. 

In the literature, there are mainly two classes of noise estimation meth­
ods, one based on overall energy measures and the other based on gradient­
amplitude (first-order derivative) measures. Examples of methods based on 
the overall energy are found in Besl & Jain (1988) and Lee (1981). Besl & 
Jain (1988) use the root-mean-square error of the local planer fit as their mea­
sure. The measure is discarded if the local gradient amplitude is higher than 
a threshold, where the threshold is based on the percentage of image area as­
sumed to be uniform. The image noise variance is computed from the mean of 
the root-mean-square-error measure over all the undiscarded positions in the 
image. Other methods estimate the image noise variance from the average of 
the smallest local variances measured in a set of image blocks, implicitly as­
suming that such measurements are most likely to have arisen from a uniform 
region. For example in Lee (1981), the average of the 5 smallest variances, for 
7x7 blocks, is used. Sophisticated and robust versions of such approaches can 
be found in Meer. et al. (1990) and Lee & Hoppe! (1989). 

Examples of the estimates based on gradient-amplitude measures are found 
in Canny {1986}, Bracho & Sanderson (1985) and Voorhees & Poggio (1987). 
In these methods, the local gradient amplitude is used as a measure. Canny 
(1986) used the output of his edge detector as the local measure, which is 
approximaltely equal to the local gradient. Noise was estimated from the lowest 
80-th percentile of the amplitude histogram of the edge detector responses. 
Bracho and Sanderson (Bracho & Sanderson, 1985) compute the noise variance 
by finding the peak in the histogram of the image gradient amplitude, which 
is Rayleigh distributed in uniform regions of the image, when the input noise 
has a Gaussian distribution. Extension of their method to textured images can 
be found in Voorhees & Poggio (1987), where a Rayleigh distribution is fitted 
only to the rising portion of the histogram. 

For most of the methods mentioned above the accuracy of the estimate 
depends on the detailed way in which the algorithm has been implemented. 
For histogram-based methods, the range and the number of bins used in the 
histogram and the form of the smoothing function have to be chosen. The 
reliability of the estimate depends considerably on these choices, especially for 
small noise variances. Recently, a comparative study of many of the above­
mentioned noise-variance-estimation methods was reported (Olsen, 1993). It 
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was concluded that the most reliable estimates of noise variance result from 
the methods based on the average local variance, such as the one in Bes! & 
Jain (1988). 

So far only two kinds of measures have been used for noise estimation, the 
gradient amplitude and the overall energy. R.ecently it has been shown that 
other local measures that are derived by quadratic filtering of the image could 
also be used for noise variance estimation (Martens, 1994). It bas been shown 
using simulations that an algorithm based on the overall local energy provides 
reliable estimates of the noise variance (Martens, 1994}. 

When an image is distorted by additive noise, the uniform regions in the 
image undergo maximum visually noticeable change. The visibility of noise 
is reduced near steep transients in the image such as edges and lines, due to 
masking (Girod, 1989; Girod, 1993). Hence, uniform regions in the image 
are the perceptually relevant parts of the image to be nsed in noise estimation. 
The noise estimation methods presented in this chapter are based on the locally 
uniform features in the image. Except for Martens (1994), all noise estimation 
methods so far use rectangular windows. We use smooth overlapping windows 
in the analysis. A motivation for the methods used in this chapter comes 
from knowledge about the visual system. There is evidence that the early 
stages of the human visual system use overlapping receptive fields that can be 
modeled as derivatives of a Gaussian (Young, 1985; Young, 1987), and that 
such information is gathered at multiple spatial scales. The methods presented 
in this chapter are based on local derivatives of the image. 

In this chapter, a new noise variance estimation algorithm based on gradient 
energy is developed. Unlike the previous methods which are based on the 
gradient amplitude, this algorithm is based on the gmdient energy and its 
probability density function (PDF) in the uniform regions. An algorithm based 
on the gradient amplitude, sîmîlar to the one in Bracho & Sanderson (1985) 
is also implemented for comparison purposes. These noîse e.stimation methods 
based on gradient measures are compared with the method based on overall 
energy (Martens, 1994). 

Most algorîthms found in the literature assume that the input noise is white. 
However, in real images noise is nouwhite, often filtered (i.e" blurred) by a low­
pass filter. In this chapter, the autocovariance function of the nonwhite noise 
is as.sumed to be Gaussîan, characterized by two parameters, the variance and 
the correlation length. We develop an algorithm for simultaneously estimating 
both of these parameters. 

The perceptual attribute of image quality that is most strongly înfluenced 
by noise in an image is the noisiness or the perceived noise in the image (Mar­
molin & Nyberg, 1975), although it may also affect other attributes such as 
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sharpness. The perceptual effects of noise in images have also been descrihed 
in the literature using alternative terms such as visibility of noise (Marmolîn 
& Carlström, 1985) and annoyance of noise (Escalant<>-Ramlrez, 1992). In this 
chapter the perceptual effect of noise in images is referred to as noisiness. For 
the image quality applications, a measure that correlates wel! with the noisiness 
has to be estimated. Noisiness of an image is dependent on many parameters 
of the noise and of the image, sud1 as: the noise variance, the bandwidth of 
the noise (Huang, 1965), the average lumina.nee of the image (Marmolin &. 
Carlström, 1985 ), etc. In this chapter, the inlluence of these parameters on the 
noisiness is investigated using psychophysical experiments. Most importantly, 
it is shown experimentally that the noisiness of images with white noise depends 
only on the noise SD and is largely independent of the PDF of the noise. Us­
ing the results of the psychophysical experiments, a measure for the perceived 
noisiness in images, called noise-index, is presented. It uses the estimates of 
the image noise variance. 

This chapter is organized as follows. In Section 3.2 the noise estimators 
for white and nonwhite noise are derived. In Section 3.3, a description of the 
noise estimation algorithms is given. The performance of the noise variance 
estimation algorithms are discussed in Section 3.4. The psychophysical expe.r­
iments on noisiness are described in section 3.5. Based on the results of the 
psychophysical experiments, a measure for noisiness, called the noise-index, is 
proposed in Section 3.6. An algorithm to estimate the noise-index and the 
results of that algorithm are given in Section 3.7. 

3.2 Noise Model Parameter Estimation 

The aim here is to estimate the parameters of ii(x, y) in Eq. (3.1) using the 
polynomial coefficients în the uniform regions of the image. We refer to Sec­
tîon 2.2 of Chapter 2, for a discussion on polynomial transforms, as well as 
the relevant notation. When n(x, y) is a Gaussian random process, the poly­
nomial coefficîents are jointly Gaussîan random varia.bles. In a uniform region 
they have zero mean except for /o.o. Let the input noise ii(x, y) be signal­
independent, zero mean, stationary, Gaussian stochastic process. In addition 
to these properties, if the noise autocovariance functîon R(x, y) satisfies certain 
symmetry conditions (Escalante Ramlrez & Martens, 1992}, then the first-order 
coefficients h,o and /0,1 are independent Gaussian random variables with equal 
variance. The probability density function (PDF) of the gradient energy E'1 

and that of the gradient amplitude lh 1 $,, in a uniform region of the 
image, are then given by (Papoulis, 1991 ), 

P(E',} = 2~2 exp (- 2~~) U(E'1}, (3.2} 
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P(l/11) = l!il ( l!il2) U(lf 1) (32 exp - 2(32 1 ' (3.3) 

where U(.) is the unit step function and (32 == Ri,0;1,0 = Ro,1;0,1 is the cross­
correlation of the polynomial coefficients, i.e., 

Rm,n-m;l,k-l = [R(x, y) * am,n-m(x, y) * ai,k-l(-x, -y)]x=y=O. (3.4) 

The mean and the variance of E 1 are 2(32 and 4(34 respectively. Note that in 
the uniform regions of the image lfi 1 bas a Rayleigh density with peak density 
at lfil f3 (Papoulis, 1991). 

3.2.1 White Noise 

If the noise is white with variance u!, i.e., R(x,y) = u~6(x,y), then we obtain 
from Eq. (3.4), 

f +oof+oo 
Ri,0;1,0 = u: _

00 

-oo aÎ,0 (x,y)dxdy, (3.5) 

which can be further simplified if the filter function a1,o(x, y) is separable. If 
w2 (x,y) is a Gaussian window with parameter u, i.e, 

2 1 [-(x2 + y2)] w (x, y) = - 2 exp 2 , 
71"0" <T 

(3.6) 

then ai,o(x, y) is separable (Martens, 1990a) and we obtain from Eq. {3.5) 

<Tn 

(3 = 2..ji <T. (3.7) 

lnstead, if w 2 (x, y) is a binomial window of order B, then a1,0 (x,y) is again 
separable (Martens, 1990a) and we obtain 

Un B [ (2B)I ]
2 

(3 = 2B- l (2BB!)2 

In both cases, (3 is proportional to <Tn· 

3.2.2 Nonwhite Noise 

Let the noise autocovariance function be 

. . - u! [-(x2 + y2)] 
R(x, y, O'n, lc) - 21rl~ exp 2l~ . 

(3.8) 

(3.9) 
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This autocovariance function is the same as that of a white noise with variance 
u~ filtered (or blurred) by a Gaussian filter of parameter u = lc (as in Eq. 
(3.6)). The aim is to determine both the noise variance u~ and the correlation 
length lc. The SD of the nonwhite noise is given by 

'f/ = VR(O,O;un;lc) = $ . (3.10) 
27r lc 

The relation between the polynomial coefficients of a blurred and the unblurred 
image bas been derived in Chapter 2. Using those relations and substituting Eq. 
(3.9) in Eq. (3.4), it can be shown that, for nonwhite noise with autocovariance 
function given in Eq. (3.9}, the correlation between the polynomial coefficients 
for a Gaussian analysis window of spread u becomes 

{3.11) 

where u e J u2 + l~ is the effective spread. In other words, the cross­
correlation coefficient of order m, n-m; l, k-l of a noisy image with correlation 
length lc analyzed at scale u is the same as that of a white noise image with 
variance u~ analyzed at scale Ue = Ju2 + l~, weighted by a factor (u/ue)n+k. 

We need to find f3 = JR1,o;t,O· Using Eq. (3.11) and Eq. (3.7), 

(3.12) 

is obtained. This relation can also be derived directly using Eq. (3.4) and 
Eq. (3.9). Note that when lc = 0, Eq. (3.12) reduces to Eq. (3.7). Also for 
lc << u, (3.12) approaches Eq. (3.7). 

To estimate both u; and lc we need at least two equations. These are 
obtained by analyzing the image at two scales Ut and u2 • Thus from Eq. 
(3.12) we obtain two simultaneous equations 

UnU2 
f32 = 2y'i(l~ + u~)' (3.13) 

one for each scale. By solving the above equations, the following estimates 

2v'if31f32(u~ - ui} 
Un = 

f:Ji CT2 - f32Ut 
(3.14} 

[
Ut u2 (f32cr2 /31 Ut)] 

112 

/31 u2 - f32u1 
(3.15) 
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Figure 3.1: The parameter f3 for nonwhite noise as function of u /lc, 
plotted on a log axis, at u = l. 

are obtained, where u2 > u1. 

Figure 3.1 shows how f3 varies as a function of u /lc, on a log axis. The 
parameter f3 is maximum when u = lc, and decreases on either side. Provided 
that the two scales u1 and u2 are chosen such that they are sufficiently far 
apart on the log axis and preferably both <T1 and <T2 greater than lc, then the 
value of f3s at those two scales of analysis will be sufficiently distinct to give 
reliable estimates of <Tn and lc. For example, this can be attained by choosing 
<T2 = 2u1. 

3.3 Noise Variance Estimation Algorithm 

In this section, noise variance estimation algorithms that make use ·Of P(E1) 

and P(lfil) are described. The estimates derived in the previous section are 
based on the locally uniform features in the image. To use those methods in 
images, we make use of the following computational assumption: we assUID.e 
that 

there are at least a few locations in the scene, where the luminance 
distribution is locally zero-dimensional {0-D) 

A 0-D feature is constant in all directions, i.e., uniform. This assumption is 
valid for most natural scenes. In fact, in most natural scenes, a large percentage 
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of the image area is locally uniform. An exception to the above assumption are 
textured images. To obtain an estimate of the noise variance using the PDF of 
E1 in the uniform regions, the uniform regions in the image have to be detected 
first. However, detecting uniform regions itself needs an estimate of the noise 
variance (see Introduction to this chapter). To circumvent the detection prob­
lem and yet be able to estimate the noise variance from the uniform regions in 
the image, we make use of the following a priori knowledge about the class 
of natural images. For most natural images, a large part of the image areas is 
locally uniform. This forms our second computational assumption: we assume 
that, 

there are a sufficiently large number of locations in the scene, where 
the luminance distribution is locally zero-dimensional (0-D) 

By sufficiently large we mean large enough to represent the total image area 
adequately. The first computational assumption is essential to use the 0-D fea­
tures for noise estimation and the second assumption is needed to circumvent 
their explicit detection. In the uniform regions, the variations are mainly due 
to noise and hence the histogram of E1 in those regions will be close to P(E1). 

Steep transitions such as edges, which occur less frequently in the image, result 
in large values of E1 , and hence contribute mostly to the tail of the histogram 
(see Fig. 3.2 for example). Therefore, for images that satisfy the second com­
putational assumption, at low values of E1 the histogram of E1 for the entire 
image will not differ much from P(E1) in the uniform regions, given by Eq. 
(3.2). The same holds for the histogram of 1'11· Therefore, the noise can be 
estimated from the initia! part of the histogram of either E 1 or lfi 1 for the 
entire image, without having to explicitly detect the uniform regions. 

The original images of natural scenes 'Wanda' and 'Terrace' with which the 
noise estimation algorithms have been tested, have been shown in Fig. 2.12. 
The images are of size 512x512 pixels with 8 bits per pixel. Figure 3.2 shows the 
histograms of E1 and lfi 1 for natural image Wanda with Gaussian distributed 
noise of standard deviation (SD) <1n = 10. The PDFs given by Eq. (3.2) 
and Eq. (3.3) are also plotted for comparison. For small argument values the 
histograms do not differ much from their derived PDFs. Thus the parameter 
f3 in Eq. (3.2) and in Eq. (3.3) can be determined from the initial part of 
the histogram of either E1 or lfil for the entire image. The noise variance is 
computed from the estimate of (3. 

The noise estimation method based on the residual energy (Martens, 1994) 
is also implemented for comparison purposes. 
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Figure 3.2: Histograms of Ei and lfi 1 for natural image Wanda 
containing noise with Gaussian PDF of SD O'n = 10. Dotted lines 
show the PDF of Ei and lfi 1 that were fitted to the histograms. The 
analysis window is binomial of order B = 4. The estimate of <Tn 

from the histogram of Ei is Ûn. = 10.95. The mode of the smoothed 
histogram of !lil is at 2.32 and the resulting estimate u"'n, = 11.2. 

3.3.1 White Noise 

A. Using Gradient Energy 

The noise variance is estimated by estimating {3 in Eq. (3.2). First, the local 
derivatives /i,o, fo,i and the gradient energy Ei = ff.,o + /J,1 are computed 
at each sampling position in the image. Next, the histogram of Ei, h(E1) for 
the entire image is computed. An estimate of {3 is obtained by minimizing the 
weighted error 

(3.16) 

where 

(3.17) 
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from this histogram <În = 10.93. 
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is derived from the estimated value of /3 using either Eq. (3.7) or Eq. (3.8), 
depending on which window is used for the analysis. 

Alternatively, /3 can be estimated by linear regression of log(P(E1)) to E1, 

i.e., by minimizing the weighted error 

(3.18) 

where w(E1) is again given by Eq. (3.17). Figure 3.3 shows a plot oflog(P(E1)) 

vs E1 for the natural image Wanda. 

There is no significant difference between the results obtained using the 
method of Eq. (3.16) and those obtained using Eq. (3.18), except when the 
noise variance is very small, Un < 1. At low noise variances, the linear regression 
method of Eq. (3.18) is more robust than the method of Eq. (3.16). Hence the 
method in Eq. (3.18) is used for all estimates that are based on the gradient 
energy E1 that are reported in this chapter. In the present implementation, a 
histogram of 256 bins is used. 
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B. Using Gradient Amplitude 

From Eq. 3.3 we know that the gradient amplitude lfil has a Rayleigh 
density with peak at /3. Hence, /3 can be estimated from the peak of the 
histogram of lfi I· This method is similar to the one used in (Bracho & 
Sanderson, 1985). First, the local derivatives fi,0 , /0,1 aJtd the gradient ampli-

tude lfi 1 ~ J J'f,o + /J,1 are compu~ed at each sampling positioll. in the image. 

Next, the histogram of lfi 1 for the entire image is computed. , Since the his­
togram is noisy, it is smoothéd before the position of the peak is estimated. In . 
the present implementation Ûniform windows are used for smoothing, although 
other smoóthiilg -Windows such as the binomial could also be considered. The 
noise variance,.iè computed from the position of the peak (i.e, (3), using either 
Eq. (3.7) {;1- Eq. (3.?) dépènding on which window is used for the analysis. In 
the present· implementatiori, a histogram of 1024 bins is used. The range of lfi 1 
covered by the histogram is decided from the image such that it corresponds 
to a preset percentage ( for example 66 % ) of the cumulative histogram of lft 1-

C. Usirig .Residual Energy 
. . 

SimÜar to 1/1 1, the residual ènergy .ER can also be used to estimate the noise 
variance (Martens, 1994). When the input noise is wb,ite, ~he PDF 'óf the resid­
ual energy in the uniform regions is also peaked. The mode of the histogram 
is related to the noise variance and can be used to compute the noise variance. 
For most natural images, the mode of the histogram of the residual energy ER 
for the entire image does not diffeF substantially from that ·of the PDF in the 
uniform regions. Hence, the noise variancé can be computed from the mode of 
the histogram of the residual energy for the entire image. An example of the 
histogram of the residual energy ER in a natura! image with noise is shown in 
Fig. 3.4. Since the histogram is noisy, it is smoothed before computing the 
position of the peak. In the present implementation uniform windows are used 
for smoothing, although other smoothing windows such as binomial could also 
be considered. In the present implementation~ a histogram of 1024 bins is used. 
The range of ER covered by the histogram is decided from the image such that 
it corresponds to a preset percentage {for example 66 %) of the cumulative 
histogram of ER· In the implementation, a binomial window is used, although 
other windows, such as a uniform window, could alsQ be used (Martens, 1994). 

3.3.2 Nonwhite Noise 

When the input noise is nonwhite with a Gaussian autocovariance function 
(with certain spread), the image has to be analyzed at two scales in order for 
us to be able to estimate both <7~ and lc. At eàch scale, f3 is computed using the 
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image Wanda with added noise of SD Un = 10. The analysis window 
is binomial of order B = 4. The estimated mode of the smoothed 
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method described in Eq. (3.18). From the resulting estimates of /3 at two scales 
(fh and /32 ), the noise variance u~ and the correlation length lc are computed 
using Eq. (3.14) and Eq. (3.15). Although not used here, the method based 
on lhl described in subsection 3.3.1.B could also be used to estimate /31 and 
132. 

The two scales of analysis 0'1 and 0"2 have to be chosen a priori. Our 
simulations show that reliable estimates are obtained for a large range of u1 

and u2, provided the u1 is not very small or 0-2 is not very large compared 
with the correlation length lc and when the ratio 0"2/0"1 is in the range between 
1.5 and 2 (See also Fig. 3.1 and Section 3.2.2). The scales can be chosen a 
posteriori using a multi-scale algorithm, similar to that in Chapter 2. However, 
a multi-scale algorithm has not been attempted here since it is beyond the scope 
of this chapter. 

3.4 Results of Noise Parameter Estimation 

Results of applying the noise variance estimation algorithms to synthetic and 
natura! images with varying amounts of noise are shown in Fig. 3.5. The 
synthetic image was uniform with grey value 163 and the natural images were 
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Figure 3.5: Results of noise variance estimation using Ei, l/il and 
ER. for a uniform image and natural images Wanda and Terrace, with 
varying amounts of noise. The dotted line shows the ideally expected 
estimate. The analysis window was binomial of order B = 4. 
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Wanda and Terrace. For the uniform image, estimation algorithms based on Ei 
and ER both give reliable estimates in the entire range tested. The algorithm 
based on the peak of the histogram of 1fi1, gives less reliable estimates. For the 
natural images, algorithms based on Ei and ER both give consistent estimates 
in the entire range tested, although estimates based on Ei are approximately 
5 % higher than those given by ER· This is mainly because of the contributions 
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of the image structure (i.e., non-uniform regions) to the histogram of Ei at 
low values of Ei, which causes the histogram to deviate from the PDF. Note 
that the estimates show that the 'original' images of both natura! scenes are 
corrupted by noise. These estimates are obtained using a binomial window of 
order B = 4. 

From these simulations it can be concluded that the estimates based on the 
histogram of the first-order energy E1 for the entire image provide satisfactory 
estimates of the noise SD. Estimates ba.sed on the mode of the histogram of the 
residual energy ER in the entire image provide slightly more reliable estimates 
of the noise SD. The difference between the two methods is mainly that the 
estimates based on E1 are about 5 % higher than those provided by En. If 
the same window is used to analyze the image in both methods, then the 
computational complexity to compute E 1 or ER per pixel is the same. Hence, 
the difference is only in the complexity of computing the noise variance from 
the histogram of the energy. The histogram of ER bas to be smoothed before 
estimating its mode. When lfil is used, {3 is estimated from h(lfil) using Eq. 
(3.18). The choice between these two methods will be mainly decided by the 
type of intermedia.te result that is available. For example, if the intermedia.te 
results consist of first order derivatives of the image, then the method based on 
E1 can be used. This happens for example in edge detection (Canny, 1986) and 
in segmentation based on gradient information (Bracho & Sanderson, 1985). 
The method based on the residual energy will be preferred in applications such 
as noise reduction (Martens, 1994; Lee, 1981). Results of Fig. 3.5 also show 
that, although the estimates based on the mode of the histogram of lfil are 
less reliable, they can nevertheless be used as a first approximation. 

Estimates based on Ei and lfi 1 assume that the PDF of the input noise is 
Gaussian. Simulations were performed to test the deviations of the estimated 
noise variance when the input noise PDF deviates from a Gaussian. Images 
containing noise with three different PDFs: Gaussian, triangular and uniform, 
were generated by adding noise toa uniform image of grey value 163. Results 
of the simulation using E1 are shown in Figure 3.6. As can be seen from the 
figure, the estimated noise SDs deviate only slightly for triangular and uniform 
PDFs. The estimated SD of triangular PDF noise is about 2 % higher and 
that of uniform PDF noise is about 4 % higher than the expected value of SD 
(see Fig. 3.6). Similar simulations using natura} images (not shown here), also 
show approximately the same results. 

Figure 3.7 shows the results of estimating the SD O'n and the correlation 
length lc of nonwhite noise in uniform, Wanda and Terrace images. Images with 
different amount of input noise SD O'n and correlation length lc were generated 
from the original images by adding nonwhite noise. The nonwhite noise was 
generated by filtering the white noise with binomial filters. Estimates were 
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Figure 3.6: Results of noise variance estimation using E 1 in a uniform 
image with input noise of different PDF. The points joined by a 
line correspond to images containing the same input noise SD hut 
different PDF. The dotted lines show the expected noise SD. Each 
point represents . the mean. of 10 trials. The analysis window was 
binomial with B 4. 

derived by analyzing the images at two scales, using binomial windows of order 
B1 = 2 and B2 = 8. For the uniform image, the estimates are close to the 
expected estimates. For the natural image Terrace, the correlation length is 
overestimated at low values of input noise SD. For the natura! image Wanda, 
the correlation length is underestimated at low input noise SD and high input 
correlation lengths. For both natura! images the noise SD Un is overestimated. 
This is mainly because of the image structure that interferes with the noise at 
those correlation lengths. Similar results were obtained also when B1 = 4 and 
B2 = 8 was used. 

To study the dependence of the scales of analysis u1 and u2 on the estimates 
of nonwhite noise parameters, simulations were performed with different ratios 
of u2 / u1 . Figure 3.8 shows how the estimates vary with the ratio of the .two 
scales of analysis. When the ratio is close to 1, the estimates are less stable. 
When the ratio is around 2 the estimates are more stahle. The uniform image 
and the Wanda image show a hroad region of stable estimates. The Terrace 
image shows only a narrow region of stable estimates. A ratio of 2 between 
scales is also motivated from psychophysical evidence that the human visual 
system performs spatial analysis using a number of distinct spatial frequency­
tuned channels, at approximately one octave apart (Wilson & Bergen, 1979). 
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3.5 Psychophysical Experiments to Measure Noisiness 

Perceived noise in an image infiuences the perceived quality of the image. It 
has been identified to be one· of the important dimensions of image quality 
(Marmolin & Nyberg, 1975; Goodman & Pearson, 1979). In this thesis we 
refer to the perceived effect of noise in images as noisiness. Several researchers 
have studied noisiness and its effect on image quality. (Marmolin & Carlström, 
1985; Huang, 1965; Runt & Sera, 1978). Their studies indicate that the main 
factors that infiuence noisiness of images are the noise SD and the noise band­
width (or the noise correlation length). In uniform regions of the image, the 
mean luminance of the uniform region may also affect the noisiness. Using 
psychophysical experiments, we investigate how each of the above parameters 
infiuences the noisiness in images. We also investigate whether the form of the 
PDF of the noise infiuences the noisiness in images. 

3.5.1 Equipment and Subjects 

In all psychophysical experiments described in this chapter, images were dis­
played on a BARCO-CCID-7351B high-resolution non-interlace monitor us­
ing a VME-bus based system (with MEN-A301 graphics board). The rela-
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tion between the grey level and the luminance on the monitor is specified by 
the Gamma characteristics of the monitor (Poynton, 1993). lt is given by 
L = Lmax(g/255)"t where Lis the luminance, Lmax is the maximum luminance 
of the monitor, g is the grey value and 'Y is the exponent. The Gamma char­
acteristics of the monitor was calibrated to have a "( = 2.5, with a maximum 
monitor luminance of 60 cd/m2 • The viewing conditions satisfied the CCIR rec­
ommendation 500 (CCIR, 1986) except for the viewing distance which was 1.4 
meters for all experiments. At this viewing distance, each pixel on the monitor 
extended approximately 1.3 min are x 1.3 min are retina! angle, and the view­
ing distance to image height (d/h) ratio varied from 5.5 to 8 depending on the 
height of the images used in different experiments. In all experiments except 
Experiment 2, each stimulus was displayed for a fixed duration of 5 sec. In Ex­
periment 2, each stimulus was displayed for 8 sec. Between two presentations, 
a uniform adaptation field was displayed, at least for 2 sec. The luminance of 
the adaptation field was approximately equal to that of the average luminance 
of the stimuli. 

All sub jects that took part in the experiments were between 22 and 38 years 
of age. All were familiar with the use of numerical category sealing procedures 
and the concept of noisiness in images. All had normal or corrected-to-normal 
visual acuity between 1.5 and 2, measured on a Landolt chart. Before the 
start of each experiment, subjects took part in a trial session with a number of 
stimuli representing the entire range of the stimuli in the experiment, in order 
to adjust the sensitivity of their scale. 

3.5.2 Relevance of the PDF of the Noise to Noisiness 

Two psychophysical experiments were performed to study the infiuence of the 
probability density function (PDF) of the noise on the noisiness of images. 
The question we sought to answer using these experiments was: Suppose a 
subject is provided with two images of the same scene, containing white noise 
of equal variance hut with different PDFs, will the subject perceive one image 
to be more noisy than the other ? Three forms of PDF are considered in the 
experiment: Uniform, triangular and Gaussian. The Gaussian PDF is one of 
the most commonly used descriptions of noise (Demoment, 1989). The PDF 
of quantization noise is uniform. The PDF of the sum of two random variables 
with uniform PDF is triangular. 

Two experiments have been used to address the question. The first exper­
iment uses a numerical category sealing technique. The second experiment is 
based on a method of paired comparisons, where two images are compared for 
noisiness. These two methods complement each other, in the sense that the 
category sealing is very effi.cient for studying a large range of differences and the 
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method of paired comparisons is more reliable for studying small differences. 

3.5.3 Experiment 1: Sealing Noisiness 

In this experiment the numerical category sealing (de Ridder & Majoor, 1990) 
method is used to infer the dependence of the noisiness on the PDF. of the 
noise. The numerical category sealing bas been shown to be an efficient and 
reliable technique for evaluating image quality and its attributes (de Ridder & 
Majoor, 1990). 

Stimuli: The variables in this experiment were the PDF of the noise and the 
noise SD. Three PDFs: Gaussian, triangular and uniform, were used. Five 
levels of standard deviations were used: 7.1, 10, 14.1, 20 and 25. Noise of all 
combinations of three PDFs and five SDs were considered to obtain a total of 
3x5 15 stimuli. Stimuli were generated by adding noise of a given PDF and 
SD to every pixel of a uniform image. The uniform image had a grey value 
of 163, which resulted in an ave~age luininance of 20 cd/m2 when displayed 
on the monitor. The stimuli had a size of 335x335 pixels with 8 bits per pixel 
accuracy. Each stimulus was repeated 4 times in the experiment. To have 
independent noise samples in the four repetitions, four replicas of each stimulus 
with independent noise samples were generated. Thus, a total of 3x5x4 60 
images were created. The images had a size of 0.17 m by 0.17 m on the monitor 
(7° by 7° in viewing angle). 

Method: The subjects were instructed to judge the noisiness of the images 
using a 10-point numerical category i:;cale ranging from one to ten. All 15 stimuli 
were presented four times, each time with independent noise samples. Thus 
there were 15x4 = 60 presentations. The order of presentation was random. 
Ten subjects took part in the experiment. 

Results: The numerical category data from the experiment were transformed 
into a psychologically linear (interval) scale using Thurstone's law of categorical 
judgement. This was carried out in the same way as was earlier described in 
Session 2.9 of Chapter .2. 

Figure 3.9 shows the results for four subjects. The trends in the data for the 
other six subjects were also very similar. Since there were no significant differ­
ences between the trends in the data of the subjects, the Thurstone-corrected 
data were averaged over subjects. Before averaging over subjects, the data for 
each subject were normalized using the z-score transform (Hays, 1988). Finally, 
the z-scores averaged over the subjects were normalized so that the resulting 
average standard error of mean (SEM) is equal to one. The average result for 
10 subjects are shown in Fig. 3.10. In the top plot of Fig. 3.10, the points 
joined by a drawn curve refer to the same input noise SD hut a different PDF. 
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There is no systematic dependence of noisiness on the PDF. Hence, it can be 
concluded from the results of this experiment that the noisiness is not very 
dependent on the noise PDF in the range tested. 

The results as a function of noise SD are plotted in the bottom panel of 
Fig. 3.10. This figure also shows that the noisiness is not very dependent on 
the noise PDF. Figure 3.10 also shows that, in the range tested, the noisiness 
is approximately linearly related to noise SD. 

3.5.4 Experiment 2: Comparing Noisiness 

The results of the Experiment 1, in which noisiness is scaled using numerical 
category sealing, showed that the PDF of the noise bas no significant influence 
on the noisiness, at least not in the range tbat was tested. However, using 
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numerical category sealing it is in general diffi.cult to discriminate stimuli with 
very small perceived differences (order of 1 jnd or less) (Sjoberg, 1987). On the 
other hand, the method of paired comparisons can reveal small differences, but 
is more laborious. In general, the task of comparing images for one attribute 
is less taxing for the subjects than sealing the attribute of an image. Hence, 
more reliable results could be obtained at an added cost of having to perform 
many more trials. Thus, a second experiment was carried out to test more 
rigorously whether the PDF of the noise influences the noisiness and to confirm 
the results of the first experiment. This experiment deals with the comparison 
of the noisiness of two images. 

Stimuli: In this experiment, each stimulus was an image pair. Each image in 
the pair was 240 pixels wide and 470 pixels high, with 8 bits per pixel. Thus 
two images could be displayed simultaneously side by side on the monitor (one 
on the left, and the other on the right) with a separation of 20 pixels between 
them. The two images i.n a pair had noise with the same SD hut with the same 
or different PDF. There were three different sessiOns in this experiment. Stimuli 
in each session had three PDFs. From these three PDFs, all three possible pairs 
were considered: ( Gaussian, triangular), ( triangular, uniform), and (uniform, 
Gaussian). In the experiment each stimulus pair was presented 20 times. In 
addition, one pair of identical stimuli (Gaussian, Gaussian) were also used 
for reference purposes. It was presented 10 times. To have independent noise 
samples in all the presentations, 20 replicas of each stimulus pair were generated 
with independent noise samples. Thus, a total of 3x2x20 + 2x10 = 140 images 
(70 pairs) were generated per session. 

The stimuli in three sessions differ either in the image to which the noise 
has been added to obtain the stimuli or the domain in which the noise has been 
generated. The stimuli in the first session were generated by adding noise of 
SD, un = 20 toa uniform image of grey value 163. This uniform image had a 
luminance of 20 cd/m2 when displayed on the monitor (i.e. for Gamma=2.5 
and maximum monitor luminance of 60 cd/m2). The stimuli in the second 
session were generated by adding noise in the luminance domain. Noise with 
SD Un = 4cd/m2 was added to a uniform image of 20cd/m2 • In the grey level 
domain, this approximately corresponded to SD crn = 13.5 added toa uniform 
image of grey level 163. Note that now the PDFs have their defined form in 
the luminance domain. The corresponding PDFs in the grey scale domain will 
have a slightly skewed form due to the non-linear Gamma transformation. The 
stimuli in the third session were generated by adding noise with SD un = 10 
to the grey values of the natural image Wanda. The images had a size of 0.12 
m by 0.25 m on the monitor (4.8° by 10.2°), with 1.25 cm separation. 

Method: Each stimulus (image pair) was displayed fora fixed duration of 8 
sec. The subjects were instructed to indicate which image in the presented pair 
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appeared most noisy. They had to choose one of the two. Each PDF pair in 
each session was presented 20 times, 10 times with an image with one type of 
PDF on the left of the monitor and 10 pairs with the same on the right side of 
the monitor. The identical pair was presented '10 times. Thus, for each session 
there were 70 presentations. Every presentation had images with independent 
noise samples. The subjects took part first in session one, then in session two 
and finally in session three. The order of presentation within each session was 
random. Seven subjects took part in the experiment. 

Results: Table 3.I shows the results. Each entry ( i, j) against stimulus pair 
(A,B) shows that: i times the subject found the stimulus A most noisy and j 
times the stimulus B. In the last row of each session, each entry (i,j) against 
stimulus pair (Gaussian, Gaussian) shows that: i times the subject found the 
stimulus displayed on the left of the monitor most noisy and j times the one 
on the right. These results are interpreted by using the x2 goodness-of-fit test 
(Chatfield, 1983). The null hypothesis used is HO: the subject perceives two 
images containing noise with equal SD but of different PDF to be equally noisy. 
Then, the alternative hypothesis is, Hl: they are different in noisiness, i.e" the 
subject perceives one to be more noisy than the other. If HO holds, the expected 
probability of the subject choosing either image in a pair to be most noisy is 
equal, i.e., P1 = P2 1/2. Therefore out of 20 presentations, the expected 
frequency of each image being chosen is 20x{l/2} = 10. Then the x2 statistic 
is given by (Chatfield, 1983), 

(i - 10)2 (j - 10)2 

10 + 10 (3.19) 

and i + j = 20. In our experiment, the number of categories are two, hence 
the number of degrees of freedom are (2 - 1) = 1. For this case, from the x2 

distribution tables {Chatfield, 1983), if x2 computed in Eq. (3.19) is less than 
3.84, then the results will not be significant at 5 % level and hence the null 
hypothesis can be accepted. If x2 is greater than 3.84, then the results will be 
significant at 5 % level and hence the null hypothesis has to be rejected. This 
happens when either i or j in the data pair (i,j) in Table 3.1 is greater than or 
equal to 15, for the case of 20 presentations. For the case of ten presentations, 
the null hypothesis fails when either i or j is greater than or equal to 9. In 
Table 3.1, the underlined data show the cases where the null hypothesis fails. 
The last column shows the number of subjects for which the null hypothesis 
holds. Note that for the identical pair, (Gaussian, Gaussian) presented ten 
times, the hypothesis holds for all subjects in all the three sessions. This shows 
that the experimental set-up (i.e., the monitor) was not biased for noisiness 
judgement. 

From the results, the following conclusions can be drawn: (1) for natura! 
images, the perceived noisiness is independent of the noise PDF, at least up 
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Table 3.I: Results of Experiment 2. Each entry i j against stimulus pair 
A-B shows that: i times the subject found the image A most noisy and j times 
the image B. N is the number of times the stimulus pair was presented. The 
underlined data show the stimulus pair for which the null hypothesis HO fails. 
Mis the number of subjects (out of seven) for which the HO holds. 

j L Uniform image(163) + noise with <Yn = 20 in the grey level domain 

Subject 
stimulus pair NB TR TV M 

Gaussian-uilifo .Q:l.Q !§:Q 3 
Gaussian-triangular 9-11 11-9 8-12 4 
triangular-uniform 8-12 13-7 8-12 14-6 6 
Gaussian-Gaussian 5-5 7-3 4-6 7 

j 2. Uniform image(20cd/m2) + noise with <Yn = 4cd/m2 

Gaussian-triangular 20 9-11 9-11 9-11 
triangular-uniform 20 11-9 12-8 9-11 
Gaussian-Gaussian 10 5-5 5-5 8-2 

j 3. Natural image Wanda+ noise with <Yn = 10 in the grey level doma.in I 
Subject 

stimulus pair 
aussian-uniform 
aussian-triangular 20 12-8 6-14 

triangular-uniform 20 9-11 14-6 
Gaussian-Gaussian 10 6-4 2-8 7 

to SD <Tn = 10, (2) for uniform regions, at large noise SDs (of the order of 
O"n = 20), most subjects do not perceive the noisiness of images with noise of 
different PDF to be different. However, at high SDs some subjects do perceive 
the noisiness of the Gaussian PDF noise to be more than that of the uniform 
PDF noise, (3) there is no significant difference between the results of the 
experiments with noise added in the grey level domain and noise added in 
the luminance doma.in. For the case of noise in a uniform background, the 
results for the subjects 'MB' and . 'NB' differ significantly from those of the 
other subjects. This may be because the subjects were identifying the stimuli 
with a particular PDF and rated them consistently to be most noisy, without 
actually comparing the noisiness of the two images in the pair. The important 
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practical implication of the results of this experiment is that, for natura! images, 
the perceived noisiness is independent of the type of noise PDF hut depends 
only on the noise SD, especially for O'n < 10, the range that is of practical 
importance (for instance, in applications such as dithering of images). 

3.5.5 Experiment 3: Effect of Noise SD on Noisiness 

The results of Experiment 1, plotted as a function of noise SD in Fig 3.10, show 
that the noisiness is approximately linearly related to the noise SD O'n, in the 
range tested. However, in Experiment 1, noise SD un was varied only from 7 to 
25, in the grey level domain. To obtain a measure for noisiness that is valid for 
a much wider range, it is necessary to study the relation between noisiness and 
SD also at very low SDs. The following experiment was conducted to achieve 
this goal. 

Stimuli: The variable in this experiment is the noise SD. The stimuli were 
generated by adding white noise with Gaussian PDF, in the luminance domain. 
Noise with given SD was added to each pixel of a uniform image of size 335x335 
pixels. There were two scenes. In the first scene, the luminance of the uniform 
image was 20cd/m2 and in the second 30cd/m2 • There were 20 stimuli per 
scene, whose SD varied from 0 to 6.17 cd/m2 • This approximately corresponds 
to SD range of 0 to 20 in the grey level domain, for the scene with 20cd/m2 

luroinance. The highest noise SD chosen was dictated by the criteria that the 
histogram of the noisy image may (at most) be slightly clipped at the ends. 
The images had a size of 0.17 m by 0.17 m on the monitor (7° by 7°) and 8 
bits per pixel accuracy. 

Method: The subjects were instructed to judge the noisiness of the images 
using a 10-point numerical category scale ranging from one to ten. There were 
two sessions, one for 20cd/m2 scene and another for 30cd/m2 scene. Each 
stimuli were presented four times. Thus there were 20x4 = 80 presentations 
per session. The order of presentation was random. Eight subjects took part 
in the experiment. 

Results: The numerical category data from the experiment were transformed 
in the same way as in Experiment 1 described in subsection 3.5.3. Since there 
were no significant differences between the trends in the data of the subjects, 
the Thurstone-corrected data were averaged over subjects in the same way as 
in Experiment 1. The average result over eight subjects is shown in Fig. 3.11. 
It can be seen from the figure that at both luminances, there is a threshold 
SD below which the perceived noisiness is approximately the same as that 
of the ( noiseless) uniform image. This threshold is higher at higher average 
luminance. Discussion about the dashed curves is deferred until Section 3.6. 
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Figure 3.11: Results of Experiment 3 plotted as a function of the 
noise SD Un· Each point is the average over 8 subjects. The drawn 
lines are given by Eq. 3.20. 
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3.5.6 Experiment 4: Effect of Local Luminance on Noisiness 

The influence of the average luminance of the. image on the visibility of noise 
bas been studied in (Marmolin & Carlström, 1985; Girod, 1989). Marmolin 
& Carlström (1985) found that the perceived noisiness is proportional to the 
ratio of the noise SD <Yn to the average luminance. They used a monitor with 
a Gamma of 1.0. Girod (1989} studied the visibility thresholds of noise in 
uniform images, as a function of the luminance of the uniform images. He 
found that, for a monitor Gamma of 2.2, when the background luminance 
increases from zero, the just visible variance of the noise first decreases steeply, 
reaches a minimum at around a grey value of 82 and then increases slowly. 
To obtain a local measure of noisiness, it is important to study how the local 
luminance of the region can influence the noisiness. This experiment is aimed 
at studying how the noisiness in uniform regions of an image varies with the 
local luminance. In the experiment the stimuli are generated such that only 
the local luminance changes while the average luminance of the image remains 
constant. 

Stimuli: The schematic diagram of the image used in this experiment is shown 
in Fig. 3.12. The image was of size 384x384 pixels with 8 bits per pixel accuracy. 
Each sub-block was uniform with a size of 128x128 pixels. The grey values for 
one stimulus are given in Fig. 3.12. Stimuli were generated by adding Gaussian­
distributed white noise of given SD to each pixel in the centra! sub-block of 
the image. Four SDs were used in the experiment: SD = 5, 7.07, 10 and 14.1. 
Stimuli with a different local luminance (in the centra! block) were obtained 
from the image by swapping the centra! sub-block with one of the corner sub­
blocks, before adding noise. Thus, the average luminance of the stimuli was 
kept constant. Five local luminances were used in the experiment: 1.9, 5.2, 
10.7, 18.7 and 29.5 cd/m2 , corresponding to grey values 64, 96, 128, 160 and 
192 respectively. These five luminance levels correspond to the centra! and the 
four corner sub-blocks in Fig 3.12. All combinations of 5 luminance levels and 
4 SDs were considered to obtain a total of 4x5 = 20 stimuli. The images had 
a size of 0.2 m by 0.2 m (8.2° by 8.2°) when displayed on the monitor. Thus 
the centra! square region was 2. 7° by 2. 7° in size. 

Method: The subjects were instructed to judge ".the noisiness in the centra! 
square region of the image" using a 10-point numerical category scale ràng­
ing from one to ten. Each stimulus was repeated four times. The order of 
presentation was random. Eight subjects took part in the experiment. 

Results: The numerical category sealing data from the experiment were trans­
formed in the same way as in Experiment 1 described in subsection 3.5.3. Since 
there were no significant differences between the trends in the data of the sub­
jects, the Thurstone-corrected data were averaged over subjects in the same 
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Figure 3.12: A schematic diagram of the stimuli used in the Exper­
iment 4. The image size is 384x384 pixels. Each sub-block has a size 
of 128x128 pixels. The noise is added only to the central sub-block. 
The numbers show the grey values of the sub-bloclcs when the cen­
tra! block has grey value 64. The other four possible grey values at 
the centra! sub-block are obtained by swapping the central sub-block 
with one of the corner sub-blocks, before adding noise. 
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way as in Experiment 1. The average result over eight subjects is shown in 
Fig. 3.13. In Fig. 3.13, top panel, points joined by a curve contain stimuli 
with noise of the same SD O'n hut with different local luminance. The results do 
not show a strong influence of the local luminance on the noisiness. However, 
there is a weak tendency for noisiness to decrease with increasing local lumi­
nance. The two lowermost curves corresponding to SD, O'n = 5 and <Tn = 7.07 
show a slight decrease in noisiness as the local luminance increases. However, 
the curve corresponding to <Tn = 10 shows no systematic variations. In the up­
permost curve corresponding to <Tn 14, the two stimuli with local luminance 
64 and 96 are perceived as being more noisy than those with local luminance 
128 and 160. As illustrated by the error bar, the noisiness judgement for the 
stimuli with local luminance 192 is less reliable. 

The results as a function of the noise SD O'n are replotted in Fig. 3.13, 
bottom panel. This figure, similar to Fig. 3.10, also shows that the noisiness 
is approximately linearly related to the noise SD in the range tested. 
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Figure 3.13: Top: Results of Experiment 4 plotted as the function of 
local grey value, with noise SD as the parameter. Points joined by a 
line correspond to stimuli containing noise with equal SD but having 
different local luminance. Each point is the average over 8 subjects. 
The lengths of the error bars are equal to twice the standard error of 
the mean. The plot at the bottom shows the same results plotted as 
a function of noise SD, where local grey value is the parameter. 
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3.5. 7 Experiment 5: Effect of White Noise on Natural Images 

In the experiments so far we have studied the effect of white noise on the 
noisiness of uniform regions. The following experiment is aimed at studying 
the effect of white noise on the noisiness of the natura! images. The variable 
in this experiment is the noise SD an. The results of this experiment will be 
used to test the correlation between noisiness and the proposed measure for 
noisiness. 

Stimuli: Two natural scenes were used in this experiment: Terrace and 
Wanda. Stimuli were generated by adding white noise with a Gaussian PDF 
to the 'original' images of the scenes. Six levels of the noise SD an were used: 
3.5, 5, 7.1, 10, 12.25 and 14.1. The original images of the scenes were also used 
in the experiment. Thus there were seven stimuli per scene. The images had 
a size of 512x512 pixels with 8 bits per pixel accuracy, hut in the experiment 
only the central region of 450x450 pixels (0.24 m by 0.24 m or 9.8° by 9.8°) 
was displayed. 

Method: The subjects were instructed to judge the noisiness of the images 
using a 10-point numerical category scale ranging from one to ten. Subjects 
took part first in a session with images of the Terrace scene and then with those 
of the Wanda scene. Each stimulus was repeated four times. Thus there were 
7x4 = 28 presentations per session. The order of presentation in each session 
was random. Eight subjects took part in the experiment. 

Results: The numerical category sealing data from the experiment were trans­
formed in the same way as in Experiment 1 described in subsection 3.5.3. Since 
there were no significant differences between the trends in the data between sub­
jects, the Thurstone-corrected data were averaged over subjects in the same 
way as in Experiment 1. The average result over eight subjects is shown in 
Fig. 3.14. Notice that the original images of both scenes (the lowermost point 
in each plot) deviate from the drawn line. 

3.5.8 Experiment 6: Effect of Noise Correlation Length on Noisiness 

So far we have studied the effect of white noise on the noisiness. The noise band­
width or the correlation length also strongly influences the noisiness (Huang, 
1965). This experiment was aimed at studying how the noisiness varies as a 
function of the noise correlation length. 

Stimuli: Two natural scenes were used in this experiment: Terrace and 
Wanda. Stimuli were generated by adding filtered noise to the 'original' images 
of the scenes. Filtered noise was obtained by filtering white noise with a Gaus­
sian PDF with standard deviation O"n by means of a binomial filter of order 
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Figure 3.14: Results of Experiment 5, for natura! scenes Wanda and 
Terrace. Each point is the average over 8 subjects. The lengths of 
the error bars are equal to twice the standard error of the mean. 
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B. The SD of the filtered noise is equal to rJ = <Tn/v'2irlc (see. Eq. (3.10)), 
where lc :=::::: JBl2 (Martens, 1990a). Two values for the 'f/ were used: 5 and 
7.07. Seven values of the correlation length lc were used: 0, 0.71, 1.0, 1.22, 1.41, 
1. 73, 2.0 , corresponding to binomial filters oforder B = 0( unfiltered),1, 2, 3, 4, 6 
and 8. The standard deviation of the white noise to be filtered, un, was chosen 
such that the filtered noise would have the desired standard deviation 'f/· The 
original images were also used in the experiment. Thus, considering all levels 
of rJ and lc, for both scenes, a total of (2x7+l)x2 = 30 stimuli were generated. 
The images had a size of 512x512 pixels with 8 bits per pixel accuracy, but in 
the experiment only the central region of 450x450 pixels (0.24 m by 0.24 mor 
9.8° by 9.8°) was displayed. 

Method: The subjects were instructed to judge the noisiness of the images 
using a 10-point numerical category scale ranging from one to ten. Each stim­
ulus was repeated four times. Thus there were 30x4 = 120 presentations. The 
order of presentation was random, except that two stimuli of the same scene 
were not allowed to appear one after the other. Six subjects took part in the 
experiment. 

Results: The numerical category data from the experiment were transformed 
in the same way as in Experiment 1. described in subsection 3.5.3. Since there 
were no significant differences between the trends in the data between subjects, 
the Thurstone-corrected data were averaged over subjects in the same way as 
in Experiment 1. The average result over 6 subjects is shown in Fig. 3.15. For 
both scenes the noisiness increases linearly with lc at low values of.lc. At higher 
values of lc, the noisiness saturates. The linear range is larger at higher 'f/· The 
linear range is also scene-dependent. At 'f/ = 7.07, the linear range goes up to 
about lc :::.:: 2.2 min are for Wanda and up to about lc :::.:: 1.6 min are for Terrace 
. From the results of this experiment, it can be concluded that, at low va.lues of 
lc, i.e., lc < 1.6 min are , the noisiness is proportional to the correlation length 
lc. 

Figure 3.16 shows the plot of the data as a function of un, the SD of the 
white noise by filtering of which the nonwhite noise bas been obtained. This 
plot shows the difference between the scenes. For Wanda scene, the curves at 
rJ = 5 and rJ = 7.07 merge well whereas for Terrace scene, they remain separate. 
Again in this plot, at large va.lues of <Tni the noisiness saturates for both scenes. 
From these results, we concluded that, as a first approximation, at low va.lues 
of correlation length lc, the white noise SD Un is the predominant factor in 
determining the noisiness of images with nonwhite noise. 

Huang (1965) studied the objectionability of the noise as a function of the 
width of the noise power density spectrum. He found that, at a constant noise 
power, when the noise bandwidth decreases from a large value, the objection­
ability of the noise first increases, reaches a maximum and then decreases. 
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Figure 3.15: Results of Experiment 6, plotted as a function of the 
noise correlation length lc· The parameter is the SD of the nonwhite 
noise 17. The points joined by a line correspond to stimuli with identi­
cal noise 1J hut different correlation length. For each scene, the upper 
curve corresponds to 1J = 7 .07 and the lower to 1J = 5. The lowest 
points on the lower left of each plot show the result for the original 
images of the scenes. 
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Figure 3.16: Results of Experiment 6, plotted as a function of un, 
the SD of the white noise by filtering of which the non-white was 
obtained. The parameter is the SD of the nonwhite noise 17. The 
points joined by a line correspond to stimuli with identical noise 17 
hut different correlation length. For each scene, the upper curve 
corresponds to 17 = 7.07 and the lower to 17 = 5. 
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Since the noise power density spectrum (and hence the noise bandwidth) and 
the auto--correlation function are related via the Fourier transform (Papoulis, 
1991), Huang's findings can be reformulated as follows: when the correlation 
length lc increases from a value close to zero, the objectionability of the noise 
first increases, reaches a maximum and then decreases. Our findings are in 
agreement with those of Huang. The range of lc in our experiment is small. 
Our stimuli covered only the initia! linear region and part of the saturation 
region. Stimuli with large correlation length were not included here because 
of their limited practical importance. Huang also found that his isopreference 
curves were scene-dependent. 

3.6 Noise-index: A Measure for Noisiness 

In this section we propose a measure for noisiness based on the results of the 
psychophysical experiments described in the previous sections. To be useful, 
the noise measure must satisfy two requirements. Firstly, it has to correlate 
well with the noisiness in natural images. Secondly, it has to be possible to 
estimate the measure from the noisy image using computational algorithms. 

Using experiment 1 and 2, it was shown that the noisiness is independent of 
the noise PDF and depended only on the variance, for the ranges used. Using 
Experiment 4, it was shown that the local luminance of the uniform region also 
does not have a strong influence on the perceived noisiness, in a reasonably 
chosen range. Results of Experiment 6 showed that, for small values of lc, the 
noisiness of nonwhite noise is mainly determined by the SD of the white noise 
by filtering of which the nonwhite noise is generated. Hence, the main factor 
that influences the noisiness in images is the SD of the white noise. 

We are interested in deriving the relation between the (perceived) noisiness 
and the physical parameter noise SD. Nijenhuis (1993) derived an empirica! 
relation for a measure for perceived blur using the spread of the blurring kerneL 
lt is given by sb = 1 - 1/11 + (o-bi/O"b0)2J114 where sb is the blur-index, O'bi is 
the spread of the image blurring kemel and O'bo is the intrinsic blur in the 
early-visual pathway. Using this relation, the blur-index of an image can be 
estimated by estimating the spread of the blurring kernel from the image, as 
was done in Chapter 2. We fitted a similar empirical relation to the noisiness 
vs noise SD data obtained in Experiment 3. It is given by, 

Sn = 1 
1 

(3.20) 

where Sn, similarly to the blur-index is called the noise-index (0 :::; Sn :::; 1), 
<Tni is the SD of the noise in the image and O'no is the equivalent SD of the 
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intrinsic noise in the early-visual pathway. The fitted relations are shown by 
the dashed curves in Fig. 3.11. The best fitting O'no were 1.7 cd/m2 for the 
scene with 20cd/m2 average luminance and 2.0 cd/m2 for 30cd/m2 average 
luminance scene. Similar to blur-index Sb, equal intervals in Sn correspond 
to approximately equal perceived differences in noisiness. Hence, Sn is also a 
psychometrie quantity (Hunt, 1978). 

Figure 3.17, shows the perceived noisiness in Experiment 3 plotted against 
the noise-index Sn computed using Eq. 3.20. The linear fit in the figure shows 
that, Sn is a good correlate of noisiness in the range tested. Figure 3.18 shows 
the same for Experiment 1 and Experiment 4. 

Based on the above findings we propose that the noise PDF and the local 
luminance do not significantly influence the noisiness, and that the noisiness is 
proportional to the noise-index, given by the Eq. 3.20. In thé present model 
we are interested only in small values of lc· For nonwhite noise with small 
values of lc, Eq. 3.20 is also applicable, provided the SD O"n of the white noise 
by filtering of which the nonwhite noise was generated is used as the relevant 
physical parameter. 

The above findings are applicable to noisiness in the uniform regions. For 
image quality prediction, it is useful to have one measure for the entire image. 
In natural images, the noisiness of an image is decided mainly by the noisiness 
in the uniform regions of the image, since the visibility of noise is less at other 
parts of the image such as edges and lines due to masking (Girod, 1993). Hence, 
the noisiness of the entire image can be obtained by combining the noisiness 
over the uniform regions in the image. When the noise is stationary over the 
image, the noise SD and the correlation length · are constant over the image. 
Hence the noise measure is obtained from the estimate of noise SD for the 
entire image. Therefore, Eq. (3.20) is assumed to hold for the entire image, 
where SD is estimated from the uniform regions of the image. 

3. 7 Estimation of N oise-index 

Fig. 3.19 shows the schematic diagram of the algorithm to estimate noise-index. 
The initia! stages in the algorithm are the same as those in the blur-index 
estimation algorithm. Fora discussion on those stages we refer to Section 2.10. 
The values of the parameters of the opties stage and the (intrinsic) noise stages 
are also the same as those used in the blur-index estimation algorithm. The 
later steps are the same as those in the noise estimation algorithm, described 
in Section 3.3.1.A or 3.3.2, depending on whether input noise is white or non­
white. 

The noise-index was computed from the estimate of cfn using the equation, 
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Figure 3.17: Results of Experiment 3 plotted as a function of the 
noise-index given by Eq. 3.20. The fit at 20cd/m2 was obtained with 
O'no = 1.7 and at 30cd/m2 with O'no = 2. 



3. 7 Estimation of Noise-index 

40 

(/) 
20 (/) 

(1) 
c: 
ÏÏ) 
·5 

0 c 
"O 
(J) 

·(ij. 
-20 (.) 

(/) 

-40 

0.1 

20 

(/) 
(/) 
(1) 10 c 
(/) 
·5 
c 
"C 
..9:? 

0 
as 
~ 

-10 

-20 

0.05 

0.2 0.3 

0.15 0.25 

noise-index 

0.4 

192 
64 
96 
160 
128 

0.35 

Figure 3.18: Results of Experiment 1 (top) and 4 (bottom) plotted 
as a function of the noise-index given by Eq. 3.20. The fit for Exper­
iment 1 was obtained with <7no = 3.2 grey levels and for Experiment 
4 with O'no = 2.8, grey levels. The parameter in the top plot is the 
noise PDF and the parameter in the bottom plot is the local grey 
value. 
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Sn = 1 - Jano/<in , where <in is the estimate obtained using the algorithm 
(Figure 3.19) and <Yno is the intrinsic noise of the visual system. This equation 
is obtained from Eq. (3.20) by noting that <in estimated in Figure 3.19 is the 
combined result of image noise ani and the intrinsic noise of the visual system 
<Yno, i.e., a~ = a~i + a~0 • We use <Yno = 3 in the brightness domain which has 
a range of 0 to 100. 

3. 7.1 Results of Noise-index Estimation 

The results of correlating the measured noisiness in psychophysical experiments 
5 and 6 with the estimated noise-index will be reported here. The noise SD for 
each stimulus was estimated by applying the algorithm shown in Figure 3.19. 

The results for Experiment 5 are given in Fig. 3.20. The coeffi.cients of 
correlation between the estimated noise SD and the measured noisiness are 
0.989 and 0.998 for Wanda and Terrace scenes respectively. The results for 
Experiment 6 are correlated with the noise-index in Fig. 3.21. In Experiment 
6, the noise added to the images was nonwhite, i.e., generated by filtering white 
noise of SD <Yn with binomial filters. Therefore, the estimate of the white noise 
SD <in given by the algorithm (Fig. 3.19 and Section 3.3.2) is used while 
computing Sn. The coeffi.cients of correlation between Sn and the measured 
noisiness are 0.98 and 0.99 for Wanda and Terrace scenes respectively. Note 
that although the nonwhite noise estimation algorithm overestimates the noise 
SD <Yn of natural images (Fig. 3.7), the estimates correlate rather well with the 
perceived noisiness. This indicates that the judgement of noisiness by subjects 
is also influenced by the image content or detail that has a similar structure 
to that of the noise. The overestimates of <Yn given by the nonwhite noise 
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Figure 3.20: Results of Experiment 5 (see Fig. 3.14) plotted against 
the estimated noise-index, for natural images Wanda and Terrace. 
Each point is the average over 8 subjects. The analysis window used 
of estimation was binomial with B = 4. 
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Figure 3.21: Results of Experiment 6 with nonwhite noise (see Fig. 
3.16) plotted against the estimated noise-index, for natural images 
Wanda and Terrace scenes. Each point is the average over 8 subjects. 
The analysis windows used for estimation were binomial with B 1 = 2 
and B2 = 8. 
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estimation algorithm, discussed in Section (3.4), were also for the same reason. 

These results show that the estimated noise-index Sn is a good correlate 
ofnoisiness of images, impaired with either white noise or nonwhite noise with 
low correlation length lc· 

3.8 Conclusions 

An overview of the existing algorithms for estimating the noise variance is given. 
A new algorithm for estimating the variance of white noise, based on the first­
order local energy, is presented. It bas been shown that the new algorithm 
provides reliable estimates of noise variance in synthetic as well as natural 
images. The new method is compared with the method based on the overall 
local energy (Martens, 1994) and is shown to provide similar performance at 
approximately the same computational complexity. It is also shown to provide 
more reliable estimates than the algorithm based on the peak of the histogram 
of the gradient amplitude lfil (Bracho & Sanderson, 1985). A new algorithm 
to estimate nonwhite noise with a Gaussian autocovariance function has been 
presented. By applying the algorithm on synthetic and natural images, it is 
shown that the algorithm provides reliables estimates except in some cases for 
natura! images where the noise SD is overestimated. 

To derive a measure for perceived noise, the perceptual effect of noise in 
images is studied using psychophysical experiments. lt is shown that the form 
of the PDF of the noise is not significant for the perceived noise. It is also 
shown that the local luminance of the uniform regions in the image does not 
significantly infl.uence the noisiness. The two important parameters that in­
fluence the noisiness are the SD and the correlation length. Based on the 
psychophysical experiments, a measure for perceived noise, called noise-index, 
is proposed. The analytica! equation for the noise-index is similar to that for 
the blur-index. In the case of white noise, the noise-index is determined the 
noise SD. In the case of nonwhite noise, noise-index is determined by the SD 
of the white noise by filtering of which the nonwhite noise has been obtained. 
An algorithm to estimate the noise-index from an image has been presented. 
It is shown that the estimates of noise-index given by the algorithm correlate 
well with the image noisiness, measured using the psychophysical experiments, 
both for white noise as well as for nonwhite noise. 

Here we address possible improvements upon some issues discussed in this 
chapter. Similar to the curve fitting method based on the first-order energy 
Ei, curve fitting to the histogram of the gradient amplitude lfi 1 can be used 
to estimate noise variance. It is expected that such a curve fitting method on 
lfi 1 will provide more reliable estimates than the peak-based method, since it 
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pools information from a lärger region of the histogram. The nonwhite noise 
estimation algorithm can be extended to a multi-scale algorithm, where the 
scales can be chosen a posteriori. In the experiment on the effect of the PDF 
on noisiness, we have considered only three forms of PDFs. However, other 
PDFs such as Poisson may also be of importance in images, and m.ay have to 
be investigated. In our experiment with nonwhite noise as well as that of Huang 
(Huang, 1965), some scene dependence has been observed. Further experinients 
will be needed to investigate this issue. We have studied the effect of noise 
PDF, local luminance, noise SD, and correlation length on the noisiness of 
images. An important parameter that is known to influence the image noisiness 
is the average luminance of the image (Marmolin & Carlström, 1985). Another 
parameter that influences the image noisiness is the 'Y of the display ( Girod, 
1989; van Overveld, 1994). Presently no attempt has been made to incorporate 
the effects of these global image parameters into the noisiness measure. 



Chapter 4 

Subjective Characterization of Images Degraded 
by Both Blur and Noise 

Abstract 

The notion of a perceptual space spanned by a number. of basic per­
ceptual image attributes is very useful to subjectively charactetize 
images. In this chapter, images degi:aded by blur and. noise are 
subjectively characterized by locating them.in a multi-dimensional 
perceptual ~pace. The perceptual space is constructed using multi:· 
dimensional sealing (MDS) techniques. The data collected in a 
series of psychophysical experiments, invölving images of one syn- . 
thetic scene and two Iiatural scenes, is used as input to the MDS 
techniques. Two different MDS approaches, one makirig use of the 
perceived dissimilarity between the. images and another making use 
of the scaled perceptual attributes of the images, are used. In the 
latter approach, three important perceptual 'attributes, i.e., un­
sharpness, noisiness and quality are. consîdered. It is shown that 
both approaches 'lead to very simîlar stimulus configurations in the 
perceptual space. For each of the three scenes used, a 2-D percep­
tual space is shown to adequately represent the images. The per­
ceptual spaces obtained for all the three scenes considered are very 
similar. Using the directions of the attribute vectors in the percep­
tual space, it is shown that the attributes unsharpness and noisiness 
are not orthogonal, hut are separated by an angle of approximately 
80° between them, indicating a weak interaction between the two. 
It is also shown that the impairment vector (the direction of which 
is opposite to the direction of quality vector) lies between the un­
sharpness and noisiness vectors, with an angle of approximately 33° 
between unsharpness and impairment vectors. 
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4.1 lntroduetion 

Perceptual image quality research bas attract~ considerable attention in the 
past decade. Image quality is a global attribute of images that is affected by 
many impairments sucb as blur, noise, etc. Images may be simultaneously 
impaired by several impairments. Most approaches to understanding and pre­
dicting image quality treat image quality as a unidimensional global attribute, 
that is directly determined by the physical image. Although sucb approaches 
are successful when images are degraded by one impairment, they fail when 
images are multiply impaired. When images are multiply impaired, it is useful 
both for analyzing and for modeling image quality to consider image quality as 
being determined by several perceptual attributes such as sharpness, noisiness, 
brightness contrast, etc. This has led to the multi-dimensional approach to im­
age quality, where images are treated as being located in a multi-dimensional 
perceptual space, spanned by the basic perceptual attributes of the images. 
The task of locating the images (stimuli) in sucb a multi-dimensional space is 
carried out by multi-dimensional sealing (MDS) techniques (Green, Carmone 
& Smith, 1989; Kruskal & Wish, 1978). The input to the MDS methods are 
data of psychophysical experiments. The MDS method consists of a series of 
mathematical algorithms to determine the location of the stimuli in the multi­
dimensional space from. this input. The problem is similar to locating cities 
in a country (i.e., constructing the map), given the distances between all the 
cities (Kruskal & Wish, 1978). 

The MDS space can be derived &om dissimilarity (or similarity) judge­
ments between stimuli or from judgements of several attributes for each stim­
ulus {Jackson, 1978; Schiffman, Reynolds & Young, 1981). Depending on the 
nature of the distance measure used to determine the position of the stimuli in 
the space, the MDS techniques are divided into two classes: metric and non­
metric. The metric MDS methods assume that the perceived dissimilarities can 
be represented on a ratio scale (ratio-scaled data) and hence that the distances 
between the stimuli in the MDS space are proportional to the dissimilarity 
judgements. The non-metric methods assume that the perceived dissimilarities 
can be represented only on an ordinal scale { ordinal-scaled data) and hence that 
there is only a monotonie relation between dissimilarities and the distances in 
the space. In most metric methods, Euclidean distances are used, although 
some methods also allow for general Minkowski distances to be uàed, In this 
chapter, only metric MDS methods with Euclidean distances are used. MDS 
bas been used in many areas of research that deal with the psychophysical 
evaluation of stimuli varying in multiple aspects (Green et al., 1989). Multi­
dimensional sealing can also be used to test the dimensional orthogonality of 
perceptual attributes (Ashby & Townsend, 1986). 

Marmolin & Nyberg (1975) used MDS techniques to understand image 
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quality in a multidimensional framework. They used the data of psychophys­
ically evaluated impaired images as input to the MDS method. The physical 
variables were the modulation transfer function (MTF) of the system, the noise 
power spectrum, the nóise level and the gamma value (Poynton, 1993). By vi­
sually inspecting the location of the images in the MDS space, they attributed 
sharpness, noise and contrast to 3 dimensions of their 4-dimensional space. 
The fourth unidentified 'dimension was found to be scene-dependent. Good­
man & Pearson (1979) studied the MDS space of television images impaired 
by DPCM-quantized errors, echo, noise and bandwidth Iimitation. They also 
found a 4-dimensional space and its dimensions were associated with sophisti­
cated names that describe concepts that are similar to visibility of echo, noise, 
sharpness and visibility of objects. In both the studies mentioned above, the 
dimensions were labelled on the basis of visual inspection of the stimulus lo­
cations in the .MDS space. Escalante-Ramlrez (1992) and EScalante-Ramîrez, 
Martens & de Ridder (1994), studied the perceptual quality of noise-reduced 
CT images using MDS techniques. In addition to obtaining an MDS space us­
ing the dissimilarity data, they also obtained an MDS space using the sealing 
data of the most relevant attributes: general preference, annoyance of noise, 
sharpness and visibility of structures. Although both approaches resulted in 
similar configurations, the latter approach helped to rigorously identify the di­
mensions of the perceptual space, A 2-D space was appropriate to represent the 
images. The first dimension was associated with the annoyance of noise. The 
second dimension could not be associated with one specific attribute, hut it 
was found to correlate with sharpness and visibility of structures .. This method 
of labelling dimensions is often more reliable than the method based only on 
the visual inspection of stimuli in the MDS space. It can also be used to draw 
stronger conclusions from the MDS space, for example about dimensional or­
thogonality. 

Linde (1981) studied the interaction between blur and noise using similarity 
data. The data analysis as well as the results of MDS showed interaction 
between the two percepts. Physically constant noise standard deviation (SD) 
intervals increased perceptually with increasing blur and physically constant 
blur intervals decreased perceptually with increasing noise. However, the extent 
of the interaction could not be quantified from their analysis. The interaction 
was also found to be scene-dependent. 

In order to relate perceptual image quality to its attributes, it is essen­
tial to understand their interaction and how they combine to give the overall 
impression of quality. The aim of this chapter is to perceptually characterize 
images degraded by blur and noise, by locating them in a multidimensional 
perceptual space. By locating the images in the MDS space and by identi­
fying the directions of the important perceptual attributes in the space, the 
inter-relation between the attributes can be understood. Specifically, the aim 
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is to test whether the attributes unsharpness and noisiness are dimensionally 
orthogonal (Ashby & Townsend, 1986). Knowledge about their interaction is 
essential in order to predict image quality from the estimates of these individual 
attributes. · 

The MDS techniques will be used to locate the images in a perceptual space 
spanned by the basic attributes. Dissimilarity data colleeted in psychophysical 
experiments will be used for this purpose. The underlying perceptual dimen­
sions of the MDS space will be identified by using an MDS technique based on 
the psychophysically scaled image attributes. The data for this purpose wil1 be 
collected using numerical category sealing of important perceptual attributes 
and quality of images. 

This chapter is organized as follows. The experimental setup is described 
in section 4.2. The results of analyzing the dissimilarity data using MDS tech­
niques are reported in section 4.3. The results of sealing attributes and its 
analysis using MDS is also reported in section 4.3. In section 4.4, the implica­
tions of the results obtained are discussed. 

4.2 Experimental Setup 

Stimuli: Three scenes were used in this experiment: two natura! scenes Wanda 
and Terrace and a synthetic scene Mondrian. The original images of these 
scenes are shown in Fig. 2.12. The stimuli were derived from the original 
images by first blurring the images with a binomial window of variable order 
Band then adding zero mean Gaussian-distributed white noise of given SD O'n 

to every pixel of the image. A binomial window of order B is approximately 
equal to a Gaussian window of spread <1'1> RoJ VBfi, (Martens, 1990b). Four 
levels of <1'1> corresponding to binomial filters of order B = 0, 2, 4, and 8 were 
used. Four levels of O'n were used: 0, 7, 10 and 14. The pixel value of noisy 
images was truncated to be between zero and 255. However, because the noise 
SDs were small, the grey value of the pixels of noisy images rarely exceeded 
255 or fell below 0. All combinations of the four levels of blur and four levels 
of noise were considered to obtain a total of 16 stimuli per scene. Although the 
original images were 512x512 pixels in size, only a region of interest of 240x470 
pixels (0.13 m by 0.25 m or 5° by 9.5°) was displayed in the experiment. 
This enabled simultaneous display of two images side by side on the monitor, 
one on the left and the other on the right. The images were displayed on a 
BARCO-CCID-7351B high-resolution non-interlace monitor using a VME-bus 
based system (with MEN-A301 graphics board). The display characteristics 
were calibrated so as to have a 'Y = 2.5, a maximum luminance Lmax = 60cd/m2 

and a minimum luminance Lmin = 0.2cd/m2 (See Eq. (2.46)). The viewing 
conditions satisfied the CCIR recommendation 500 (CCIR, 1986). The viewing 
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distance was 1.5 m, which corresponds to a height/distance (h/d) ratio of 6. 
Images were displayed for a fixed duration of 5 seconds, with at least a 2 
seconds adaptation period between two presentations. The adaptation field 
was uniform and had a lmninance of 9 cd/ m 2 , which is approximately equal to 
the average of the mean lumiuance of the original images of all scenes, 

Method: There were two experimental sessions for each scene. In the first 
session, dissimilarity scores for all pairs of stimuli were assembled. All com­
binations of 16 stimuli of the same scene were considered, to obtain a total 
of 256 pairs of stimuli per scene, During the experiment, each pair of stimuli 
was displayed on the monitor in random order, with one image on the left side 
of the monitor and the other on the right, The subjects were instructed to 
rate the dissimilarity between the two stimuli using an integer score ranging 
from 0 to 10. Subjects were urged to base their score only on how dissimilar 
or different they perceive the images to be and not to base their score on any 
preference, quality or emotional criteria. A score of 10 was used to indicate the 
largest dissimilarity and a score of 0 implied no perceived difference. Before 
the start of a session, subjects took part in a trial session with 15 presentations 
covering the entire range, in order to adjust the sensitivity of their scale, 

In the second session, attributes of the images were judged using a numer­
ical category sealing procedure (de Ridder & Majoor, 1990). There were three 
subse.ssions, each evaluatîng a different attribute of the image: unsharpness, 
noisiness and quality. The 16 stimuli were repeated four times in each subses­
sion. The order of presentation was random, The subjects were instructed to 
judge the attributes of the image using an 11-point nmnerical category scale, 
ranging from 0 to 10. The stronger the judged attribute, the higher the score. 
Before the start of the session, subjects took part in a trial session with 12 
stimuli covering the entire range, in order to adjust the sensitivity of their 
scale, 

Subjects: Five subjects between 25 and 39 years of age took part in the first 
session of the experiment. Two additional subjects, from the Same age group, 
took part in the second session, makîng a total of 7 subjects, All subjects were 
familiar with numerical category sealing and the concepts of image quality, 
unsharpness and noisiness. All had normal or corrected-to-normal visual acuity 
between L5 and 2, measured on a Landolt chart. 

4.3 Results 

4.!l.l MDS Analysis of Dissimilarities 

The first session resulted in a dissimilarity matrix of size 16xl6 for each subject 
and each scene. The entry ó;,; at position (i,j) in tbe matrix is the judged 
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dissimilarity score between stimuli i and j. The upper and the lower triangular 
matrices were averaged in order to obtain a single distance between stimuli i 
and j, i.e., l5i,i = (ó;,1 + Ój,t}/2. The resulting lower triangular matrix (without 
the diagonal) was used for furtber processing. These data were used to study 
the distribution of the stimuli in a multidimensional space. 

Two MOS techniques were used to analyze the data: SINOSCAL and MUL­
TISCALE. SINOSCAL is a computer program tbat implements the individual 
difference model for MDS (Carroll & Chang, 1970). This model assumes that 
all subjects share a common perceptual space and that the individual subjects 
differ in the weight that they attribute to the different orthogonal dimensions. 
Data for SINDSCAL involves several dissimilarity matrices, one for each sub­
ject. SINDSCAL is a metric MDS method. A metric method arrives at a con­
figuration i:>f the stimuli in a given dimensional space, such that the distances 
bet ween the stimuli in that space are proportional (as closely as possible) to 
the dissimilarity data between them. In other words, a metric method assumes 
that the input data are ratio-scaled dissimilarities (Kruskal &. Wish, 1978). The 
goodness-of-fit fora SINOSCAL solution is indicated by the varia.nee accounted 
for (VAF) by the solution or the 'loss' ofvariance (= 1 - VAF). The dimension­
ality of the SINDSCAL solution is decided on the basis of bow the VAF or loss 
changes with the number of dimensions. The output of SINOSCAL consists 
of two spa.ces, a group stimulus space and a subject weight space. The group 
stimulus space is a common psychological space for all subjects, with N points, 
corresponding to the N stimuli. The subject weight space shows the weight 
each subject assigns to the dimensions. It contains M points, corresponding 
to the M subjects. The individual psychological space for each subject is ob­
tained by sealing the group stimulus space by the subject weight factor along 
each dimension, derived from the subject weight space. 

MULTISCALE is based on the maximum likelihood (ML) estimation prin­
ciple (Ramsay, 1977). The main advantage of MULTISCALE is that it can 
be used as an exploratory as well as confirmatory data analysis tool. MULTI­
SCALE makes explicit assumptions about the distribution of errors and about 
the transformation of ·dissimilarity. Many statistica] tests of significance on 
the data and on the MOS solution can be performed by varying these assump­
tions in MULTISCALE. For example, the chi square test of significance can 
be used to decide the dimensionality of the MOS solution for a given data set. 
The confidence regions indicating the relatîve precision of the stimulus coor­
dinates in the MDS solution map are very useful in confirmatory analysis. It 
has been shown that MULTISCALE provîdes very relîable results, often better 
than SINOSCAL, especially for noisy data (Ramsay, 1977). In a comparative 
study of MDS methods, MULTISCALE has also been shown to produce the 
best results among the metric methods tested (Spence &. Lewandowsky, 1989). 
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The metric of the Cartesian coordinate system can be specified in MUL­
TISCALE: identity, diagonal or full metric. In the identity metric case, all 
dimensions have equal weight, hence the solution is rotation invariant. When 
the metric is diagonal, each orthogonal dimension can have a different weight, 
and the solution is not rotation invariant. This case is similar to that of SIND­
SCAL, in the sense that it results in a common perceptual space for all subjects 
and a subject weight space. The full metric case is the most genera! one, where 
the angles between the dimensions is also allowed to vary. MULTISCALE al­
lows for different assumptions about the transformation of dissimilarities into 
distances, the distribution of errors, and the variance component model for 
subjects and stimuli. The explicit assumptions can be specified by the user. 
We assumed a power transformation between the scaled dissimilarities and the 
distances. This transformation captures some of the non-linearity observed 
between dissimilarities and distances, such as Weber's law. The distribution 
of errors was assumed to be log-normal. Accordîng to this assumption, larger 
judgements produce larger variability (errors) and smaller judgements produce 
smaller variability, which reflects a very general finding in psychophysics. The 
stimulus variance was assumed to be equal for all stimuli and the subject vari­
ance was allowed to be subject-dependent. When this assumption is used, 
MULTISCALE provides within-subject standard error estimates. This is an 
index for the relative lack of precision of each subject's data in comparison to 
the estimated model. 

Both SINDSCAL and MULTISCALE locate the stimuli in a multi­
dimensional space. To interpret the solution of the MDS, the perceptual mean­
ing of the dimensions has to be understood. This can not be done from the 
MDS solution alone. In the next section, it will be shown how direct sealing of 
perceptual attributes of the stimuli can be used in interpreting the dimensions. 

A separate SINDSCAL analysis was performed for each scene. The dissimi­
larity matrices of all subjects for the given scene were input to SINDSCAL. For 
each scene, several runs were looked at, each with a different starting configura­
tion, and the configuration with the least number of dimensions that adequately 
accounted for the variance was retained. Configurations with dimensions 1 up 
to 5 were tried for each scene. The loss as a function of the dimension of the 
configuration is shown in Fig. 4.1. This plot shows that, for all scenes, by 
going from a 1-D solution toa 2-D solution, there is a substantial decrease in 
the loss, whereas by going from a 2-D solution toa 3-D solution, the decrease 
in loss is relatively less. The same is also true for other dimensions larger than 
2. Thus, from the point of view of accounted variance, the 2-D configuration 
gives an adequate fit for all three scenes. Examining the 3-D and the higher 
dimensional solutions <lid not give any additional insight into the configuration, 
since there were no systematic trends in the configuration in those dimensions. 
Based on these observations, we conclude that a 2-D configuration gives an 
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Figure 4.1: Loss as a function of dimension of the configuration, of 
analyzing the dissimilarity data using SINDSCAL, for the Mondrian 
(0), Terrace (+)and Wanda (D) scenes. 

adequate fit for all three scenes. 

Figure 4.2 shows the denormalized two-dimensional group-stimulus-spaces 
obtained using SINDSCAL. The variance explained by the first and the second 
dimension is, 49 % and 26 %, 41 % and 33 %, and 52 % and 26 % , for the 
Mondrian, Terrace and Wanda scenes respectively. For the 2-D configuration, 
the correlation between the scores of the subject and the computed scores 
varied from 0.82 to 0.91 (mean 0.87), from 0.84 to 0.91, (mean 0.86) and from 
0.80 to 0.93 (mean 0.88), over subjects, for the Mondrian, Terrace and Wanda 
scenes respectively. Figure 4.3 shows the subject-weight-spaces corresponding 
to the stimulus-spaces given in Fig. 4.2. In the subject-weight-space, with the 
exception of subject 4 for the Mondrian scene, all subjects are located close to 
each other, and hence could be considered to belong to one group. The average 
subject weight for the first and the second dimension were, 0.7 and 0.5, for 
Mondrian, 0.64, and 0.58 for Terrace, and 0.71and0.5 for Wanda respectively. 
The denormalized group stimulus spaces shown in Fig. 4.2 were obtained by 
sealing the normalized solution given by SINDSCAL with the square root of 
the average subject weights, along both dimensions. In Fig. 4.2, the MDS 
configurations for all three scenes are very similar, indicating no strong scene 
dependence. There are however, some small differences, especially between 
the synthetic scene Mondrian and the natural scenes, Terrace and Wanda. A 
better picture of these differences will emerge from the MULTISCALE solution 



Figure 4.2: Results of analyzing the dissimilarity data using SIND­
SCAL. Denormalized stimulus spaces for the Mondrian, Terrace and 
Wanda scenes. The stimulus parameters, the noise standard devia­
tion O'n (SD) and the spread of the blurring kemel O'b {BS), are also 
shown. The corresponding subject-weight-spaces are shown in Fig. 
4.3. 

{Fig. 4.4) and hence a discussion about this is deferred until we discuss the 
MULTISCALE solution. 

A separate MULTISCALE analysis was also performed for each scene. The 
dissimilarity matrices of all subjects for the given scene were input to MUL­
TISCALE. Configurations with dimensions 1, 2, 3 and 4 were tried with the 
identity as well as with the diagonal metric of the Cartician coordinate sys-
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Figure 4.3: Results of analyzing the dissimilarity data using SIND­
SCAL. Subject weight spaces, for five subjects: VK(l), TV(2), 
TR(3), JV(4), and HR(5), for the Mondrian, Terrace and Wanda 
scenes. 

. 

tem. Using an asymptotic chi-square goodness of fit, for the identity-metric 
case and diagonal-metric case, a 2-D configuration with identity-metric was 
found to provide an adequate fit for all three scenes. The 2-D solution with 
identity-metric was considered adequate over the diagonal-metric case, mainly 
because the identity metric case has a lower number of parameters than the 
diagonal-metric case. Also the diagonal-metric solution was very similar to that 
obtained using the identity-metric, and the subject weights for all subjects were 
approximately equal. For the 2-D solution, the within-subject multiple corre­
lation varied from 0.77 to 0.91 (mean 0.85), from 0.77 to 0.88 (mean 0.85), and 
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from 0. 79 to 0.92 (mean 0.86), for the Mondrian, Terrace and Wanda scenes 
respectively. The 2-D solutions are shown in Fig. 4.4. Note that for the iden­
tity metric case, the configuration is rotation invariant. MULTISCALE chooses 
the direction of the first dimension such that it is along the direction where 
the points vary most, the second perpendicular to it, etc. Hence, although 
the configuration for scene Terrace is not aligned in the same way as that for 
the other two scenes, it can be rotated. The MDS configurations in Fig. 4.4 
for all three scenes are very similar. There are however some small differences 
between the synthetic scene Mondrian and· the natural scenes. In the case of 
Mondrian, it can be seen that the physically constant noise standard deviation 
(SD) intervals increase perceptually with increasing blur and physically con­
stant blur-spread intervals decrease perceptually with increasing noise. This is 
similar to the findings of Linde (1981). However, this is much less pronounced 
in the case of the natural images Terrace and Wanda. Similar observations 
can also be made about the SINDSCAL solutions, although in the case of the 
SINDSCAL solution, the scene differences are relatively less prominent. 

The 95 % confidence regions for the stimulus locations generated by MUL­
TISCALE are shown in Fig. 4.5. For all scenes, the stimulus with B=4 and 
SD=lO has a relatively large confidence region, indicating a relatively small 
precision in the estimate of its location. The confidence regions for all other 
images are almost equal in size, for all scenes. The approximate circular shape 
of the confidence regions indicate that the precision in the stimulus locations 
is equal in both dimensions of the MDS space. 

Comparing the configurations obtained via SINDSCAL and MULTISCALE 
shows that the main differences are in the positions of the corner stimuli. 
Similar trends can also be seen from the results of Monte Carlo simulations 
(Ramsay, 1977), where noisy data has been analyzed using both SINDSCAL 
and MULTISCALE. In their study, comparing the stimulus space obtained us­
ing SINDSCAL with the ideal configuration showed that larger errors occur in 
the location of the stimuli that are located away from the centre of the config­
uration. We compared the configuration obtained using SINDSCAL with that 
obtained with MULTISCALE. The correlation was clone using MULTISCALE, 
where rotation of the configurations was allowed to obtain the best match. 
The denormalized solution of SINDSCAL (Fig. 4.2) was used for correlation 
with the MULTISCALE configuration (Fig. 4.4). The correlation coefficients 
between the configurations were 0.992, 0.985 and 0.986 for the Mondrian, Ter­
race and Wanda scenes respectively. The high correlation coefficients indicate 
that the configurations obtained using SINDSCAL and MULTISCALE are very 
similar. 

The stimuli in the experiment varied in two aspects, viz, the spread of the 
blurring kemel O"b and the SD of the noise an . MDS analysis of the dissimilarity 
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Figure 4.4: Results of analyzing the dissimilarity data using MULTI­
SCALE, for the Mondrian, Terrace and Wanda scenes. The directions 
along which the stimulus parameters, the noise standard deviation Un 

(SD) and the spread of the blurring kernel Ub (BS) increase are also 
shown. 

data showed that a 2-D solution space is adequate to represent the images. This 
shows that, varying the two physical parameters of the stimuli Ub and Un has 
led to variations in only two perceptual dimensions. Although at a first glance 
this may appear to be obvious, i.e., variation in one physical parameter leading 
to variation in (only) one perceptual dimension, it need not be true in general. 
Changing one physical parameter may sometimes lead to changes in more than 
one perceptual dimension. For example, changing the gamma of an imaging 
system can cause changes in the global brightness contrast as well as changes 
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Figure 4.5: Confidence regions of estimated stimulus coordinates 
using MULTISCALE, for the Mondrian, Terrace and Wanda scenes. 
The stimulus coordinates shown using (D) are the same as those 
shown in Fig. 4.4. 

in the perceived sharpness of images (Roufs, 1989). 

4.3.2 Results of Sealing Attributes 
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In the second session, the sealing of three attributes, unsharpness, noisiness 
and quality resulted in numerical category data on an 11-point scale. For each 
scene, the 16 stimuli were judged 4 times, for all 3 attributes, by each of the 7 
subjects. The numerical category data from the experiment were transformed 
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into an interval scale on a psychologically linear continuum using Thurstone's 
law of categoricaljudgement, in the same way as was earlier described in Session 
2.9 of Chapter 2. 

Since there were no significant differences between the trends in the data of 
the subjects, the Thurstone transformed data were averaged over subjects. Be­
fore averaging over subjects, the Thurstone transformed data for each subject 
were normalized using the z-score transform (Hays, 1988). Finally, the z-scores 
averaged over the subjects were normalized so that the resulting average stan­
dard error of mean (SEM) was equal to one. The average results for 7 subjects 
are shown in Figures 4.6, 4.7, 4.8, 4.9, 4.10 and 4.11. 

Fig. 4.6 shows the results of sealing unsharpness as a function of blur 
spread, O'b. Points joined by a drawn curve contain stimuli with the same input 
noise SD hut different blur spread. The four different curves correspond to 
noise SD 0, 7 10 and 14. From this figure it can be seen that the perceived 
unsharpness increases almost linearly with blur spread for all noise levels. The 
sa.me results have been replotted in Fig. 4.7 as a function of noise SD <Yn· This 
figure shows that the perceived unsharpness is dependent on the noise SD. At 
high blur spread perceived unsharpness decreases with noise SD, at low blur 
spread perceived unsharpness increases with noise SD, and at intermediate 
noise SD perceived unsharpness is independent of noise SD. In other words, 
adding noise to sharp images makes them appear blurred, whereas adding noise 
to very blurred images makes them appear slightly less blurred. 

Fig. 4.8 shows the results of sealing noisiness as a function of noise SD, 
<Yn· Points joined by a drawn curve contain images with the same blur spread 
but different input noise SD. The four different curves correspond to binomial 
filters of order B = 0, 2, 4, and 8, which are approximately equivalent to 
O'b ~ 0, 1, 1.4 and 2 pixels. From this figure it can be seen that the perceived 
noisiness increases almost linearly with noise SD for all blur spread levels. The 
same results have been replotted in Fig. 4.9 as a function of the blur spread 
O"b. This figure shows that at low va.lues of the noise SD, the noisiness is almost 
independent of blur spread and at high values of the noise SD the noisiness 
increases with blur spread. In other words, blurred images with noise always 
appear more noisy than sharp images with noise, especially for large amounts 
of noise. 

The results of sealing quality are shown in Fig. 4.10 and 4.11, as a function 
of blur spread, O'b and noise SD, O"n, respectively. From these figures, it can 
be seen that the quality decreases with both O'b and un, due to blur and noise. 
In Fig. 4.10, points joined by a drawn curve contain images with the sarne 
input noise SD hut different blur spread. In Fig. 4.10 the slope of the curves 
decreases with increasing noise SD <Yn· Similarly, in Fig. 4.11, the slope of the 
curves decreases with increasing blur spread ab. 
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Figure 4.6: Results of sealing unsharpness, plotted as a function 
of the spread of the blurring kemel <Tb, with noise SD <Tn as the 
parameter, for the Mondrian, Terrace and Wanda scenes. 

4.3.3 MDS Analysis of Scaled Attributes 
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2 

In the previous subsection we looked at the meao scores of the scaled attributes. 
These data can also be used to locate the stimuli in a multi-dimensional percep­
tual space, similar to the way in which MULTISCALE and SINDSCAL were 
used for the dissimilarity data. The perceptual space that will be arrived at 
using the scaled attributes and the one arrived at earlier using dissimilarities 
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16 

can then be compared. The perceptual space that is constructed using the data 
of scaled attributes is based on the assumption that the chosen attributes are 
the most relevant ones and that they span the entire perceptual space. Hence, 
it is assumed that any other attribute can be expressed in terms of these basic 
attributes. The main difference between the MDS techniques based on the dis­
similarities and those based on the scaled attributes data is that, in the latter 
case, the direction of the attribute vectors given by the method assists in a 
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better understanding of the perceptual meaning of the dimensions. 

121 

16 

The multi-dimensional model MDPREF (Green et al., 1989) is used to 
analyze the data of the scaled attributes. This model represents both the at­
tribute vectors and the stimulus vectors simultaneously in a multi-dimensional 
space. It is a metric MDS model. Using principle component analysis, ît de­
composes the input matrix of N attributes x n stimuli into two matrices, one 
of N attributes x r dimensions and another of r dimensions x n stimuli, ac-
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Figure 4.9: Results of sealing noise, plotted as a function of the blur 
spread ab, with noise SD <Yn as the parameter, for the Mondrian, 
Terrace and Wanda scenes. 

cording to a least-square error criterion. The first matrix defines the attribute 
vectors and the second matrix represents coordinates of the stimuli in the r­
dimensional perceptual space. The perpendicular projections of the stimuli on 
the attribute vectors represent the strengths of the corresponding attributes 
of the stimuli. These projections are the least-square estimates of the data in 
the input matrix (N x n). The goodness-of-fit measure in MDPREF is the 
cumulative proportion of variance accounted for by all dimensions of a certain 
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2 

solution. 

The data of the scaled attributes, unsharpness, noisiness and quality are 
averaged over all seven subjects and input to MDPREF. Separate analysis is 
performed for each scene. Solutions up to 3-D were looked at. The proportion 
of variance accounted for by dimensions 1, 2 and 3 respectively are 0.697, 
0.294 and 0.001 for the Mondrian, 0.718, 0.271 and 0.012 for the Terrace and 
0. 72, 0.266 and 0.014 for the Wanda scene. Since for all three scenes, 99 % 
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Figure 4.11: Results of sealing quality, plotted as a function of the 
noise SD O"n, with blur-spread O"b as the parameter, for the Mondrian, 
Terrace and Wanda scenes. 

of the cumulative variance is explained by a 2-D solution, the 2-D solution 
was accepted as the best fitting solution for all the scenes. The 2-D solutions 
are shown in Fig. 4.12. The vectors show the directions of the attributes in 
the 2-D perceptual space. The perpendicular projections of a stimulus onto 
the attribute vectors correspond to the scaled attributes of that stimulus. In 
MDPREF, just as in MULTISCALE, the first dimension lies along the direction 
in which the points vary most, the second dimension is perpendicular to it, 
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etc. The relative angle () between the vectors unsharpness and noisiness is 
83°, 79° and 79° for the Mondrian, Terrace and Wanda scenes respectively. 
These results indicate that the attributes unsharpness and noisiness are not 
orthogonal. However, since the angles are close to 90° the interaction is weak. 
Here again, it is worth noting that the perceptual spaces for all three scenes 
are very similar. 

The relation between the attribute vectors and the quality vector is also 
important for estimating quality. To quantify these relations, it is useful to 
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define a vector called impairment vector whose d.irection is opposite to that 
of quality, i.e. lmpairment = -Quality (de Ridder, 1992; Nijenhuis, 1993). 
In our experiment, the impairment vector lies between the unsharpness and 
noisiness vectors. The relative angle (Ju between the impairment vector and 
the unsharpness vector is 35.5°, 33.6° and 33.0° for the Mondrian, Terrace 
and Wanda scenes respectively. The relative angle (Jn between the impairment 
vector and the noisiness vector is 47.7°,45.7° and 46.4° for the Mondrian, 
Terrace and Wanda scenes respectively. Note that, since the space is two­
dimensional, Ou + On = (}. For all the scenes, the impairment vector is closer 
to the unsharpness vector than to the noisiness vector. This implies that, in 
our experiments, impairment (or decrease in quality) is infl.uenced more by 
unsharpness than by noisiness. 

The positions of stimuli and the directions of attribute vectors given by 
MDPREF are best in the sense that the projection of stimuli onto the axes are 
the least square estimates of the input data. MULTISCALE, however, does 
not provide an estimate of the relative precision (i.e, standard deviation) of 
the estimates. To obtain an estimate of the relative precision of the directions 
of attributes given by MDPREF, we projected the stimulus positions given 
by MDPREF onto vectors of varying direction and correlated the projections 
with the scaled attributes. Figure 4.13 shows the correlation coeffi.cients as 
a function of the direction of the vector, for attributes unsharpness, noisiness 
and quality. The angle at which the correlation is maximum is the optimum 
orientation of the attribute vector. These orientations closely match the orien­
tations of attributes obtained using MDPREF, although there are some small 
differences. The differences can be seen better in the bottom right plot of Fig. 
4.13, which shows a close-up of correlation coeffi.cient verses direction of vector 
plot, for scaled quality. All plots in Fig. 4.13 are characterized by broad peaks, 
indicating a relatively low sensitivity of the direction of the attribute estimates. 

The configurations obtained from the scaled attributes data using MD­
PREF closely resemble those obtained from dissimilarity data using MULTI­
SCALE and SINDSCAL. The MDPREF configurations were compared with 
those obtained using MULTISCALE, in a similar way as the SINDSCAL and 
MULTISCALE configurations were compared earlier. The resulting correla­
tion coefficients were, 0.968, 0.964 and 0.963 for the Mondrian, Terrace and 
Wanda scenes respectively. The MULTISCALE configuration rotated to best­
fit with that of the MDPREF configuration is shown in Fig. 4.14, along with 
the MDPREF vectors. 

Our findings are in agreement with the qualitative results obtained by Linde 
(1981), namely that the attributes unsharpness and noise are not orthogonal. 
However, unlike in their findings, we found, within the investigated range, no 
significant scene dependence of the perceptual spaces. The angle between the 
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Figure 4.13: Correlation between the scaled attributes and the pro­
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attributes unsharpness and noisiness was about 80° for all three scenes. 

4.4 Conclusions 

Images degraded by blur and noise have been characterized by locating them 
in a multi-dimensional perceptual space. This is carried out using two different 
approaches, the first based on the perceived dissimilarity between the images 
and the second based on the perceptual attributes of the images. 
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6 

The first approach is based on the assumption that the underlying per­
ceptual dimensions can be obtained from the perceived differences between the 
images. Therefore, the scaled dissimilarities between all stimulus pairs are used 
as the input to a MDS analysis. Two different MDS techniques, SINDSCAL 
and MULTISCALE, are used. A 2-D solution is found to provide an adequate 
fit using both techniques. Both techniques resulted in very similar stimulus 
configurations in the perceptual space. 
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To understand the perceptual significance of the dimensions of the MDS 
space, a second approach is used. This approach is based on the assumption 
that the underlying dimensions of the perceptual space can be obtained by 
constructing a MDS space directly from sealing the most relevant attributes. 
The sealing data of three important attributes, unsharpness, noisiness and 
quality, is used as input to a MDS technique (MDPREF). A 2-D solution 
is found to be the best fitting one using MDPREF. The configuration found 
using scaled attributes (MDPREF) closely matches that found using dissim­
ilarity data (MULTISCALE and SINDSCAL). The perceptual spa.ces for all 
three scenes considered are very similar. Using the direction of the percep­
tual attributes unsharpness and noisiness, it is shown that the two attributes 
are not orthogonal. Nevertheless, the interaction is found to be weak in the 
range tested. The angle between the attributes unsharpness and noisiness is 
about 80°. The impairment vector, whose direct ion is opposite to the direction 
of quality vector, is found to lie between the unsharpness and noisiness vec­
tors, with an angle of approximately 33° between unsharpness and impairment 
vectors. 
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Chapter 5 

Estimation of Perceptual Attributes From 
Objective Measures 

Abstract 

Reliable and economie methods to assess image quality are essen­
tial for designing better imaging systems. Although reliable psy­
chophysical methods are available to assess perceptual image qual­
ity with the help of human subjects, the cost of performing such 
experiments prevents their use for evaluating large amounts of im­
age material. This has led to an increasing demand for objective 
methods to estimate image quality. The perceived quality of an im­
age is determined by many underlying perceptual attributes, such as 
sharpness and noisiness. The relationship between these attributes 
and the overall quality can be represented in a multi-dimensional 
perceptual space, spanned by the important perceptual attributes 
of the images. In this perceptual space, the images are represented 
by points, and the strengths of their perceptual attributes are mod­
elled by the projections of these image positions onto the attribute 
a.xes. Two important image attributes, unsharpness and noisiness, 
are considered in this chapter. Each of these attributes is predom­
inantly influenced by one physical parameter of the image. The 
value of the objective measures for these attributes can be com­
puted from the estimates of the corresponding physical parameters 
from the image, where the physical parameters are estimated from 
the image using computational algorithms. Similarly to the percep­
tual space, a psychometrie space spanned by the objective (psycho­
metrie) measures for the attributes is introduced in this chapter. 
The mapping between the psychometrie space and the perceptual 
space is estimated and used to map the image positions in the psy­
chometrie space to image positions in the perceptual space. The 
perceptual attributes of an image are hence estimated by: estimat­
ing the physical parameters, computing the objective measures for 
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the attributes i.e, locating the image position in the psychomet­
rie space, mapping the image position from psychometrie space to 
the perceptual space and projecting the position onto the attribute 
axes. We show that the attributes and the quality thus estimated 
correlate well with the perceived attributes and quality. 

5.1 Introduction 

The technica} quality of an imaging system is determined mainly by the percep­
tual quality of the images produced by it. Therefore, it is extremely important 
to evaluate the perceptual quality of the images produced by a system. Often, 
the perceptual quality of large amounts of image material has to be assessed 
with an affordable cost and within a limited time. The evaluation of processed 
or coded images generated with different parameter settings in order to decide 
the best parameter .setting is a typical example. New subjective evaluation 
techniques with better efficiency and reliability have been developed for this 
purpose (Roufs, 1992; de Ridder & Majoor, 1990). However, the use of such 
techniques to evaluate large amounts of image material is hindered due to the 
amount of time and the costs required to perform the subjective evaluations. 
This bas led to an increasing demand for objective methods for image quality 
prediction. Such an objective estimate must correlate well with the perceived 
quality of the image. A reliable objective method for image quality estimation 
is very useful for researchers to optimize the quality performance of image cod­
ing or processing algorithms, for example, to obtain the maximum quality with 
a given bit rate, or to obtain the minimum bit rate with a given quality. 

Most of the early work on image quality metrics was restricted to objec­
tive measures for image display sharpness. Sharpness is an important attribute 
that affects the quality of the image. However, image quality is not only influ­
enced by sharpness hut also by other attributes: noisiness, brightness contrast, 
etc. Most popular sharpness measures were ba,sed on the modulation transfer 
function (MTF) of the display and the modulation threshold function of the 
eye. Examples of such approaches are (Darten, 1989; Darten, 1990; Carlson 
& Cohen, 1980). Such measures are derived from the display system charac­
teristics, such as the MTF. In applications such as image coding, it is useful 
to derive the objective measure from the image instead of the system. Such 
measures are based on image fidelity. They assume the existence of an 'origi­
nal' image and a 'degraded' or 'processed' image of the same scene. A distance 
function between the two images is used as the fidelity measure. Most measures 
make use of knowledge about the human visual system while arriving at the 
distance function. A large number of image quality measures of this kind have 
been developed, with different degrees of success. Examples of such measures 
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include (Limb, 1979; Lukas & Budrikis, 1982; Marmolin, 1986; Zetzsche & 
Hauske, 1989; Daly, 1992). A brief review of image quality metrics of this kind 
is given by Ahumada (1993). Recent image quality estimation methods based 
on models of the human visual system can be found in (Watson, 1993). A 
rigorous comparisons of the predictive power of these measures is not available, 
except for comparison of some early measures (Beaton, 1983). 

Most methods for image quality estimation treat image quality as a uni­
dimensional attribute. However, image quality is a multi-dimensional percept 
that is influenced by many basic perceptual attributes: sharpness, noisiness, 
brightness contrast, etc. Although it has been recognized for over a decade 
that image quality is multi-dimensional (Marmolin & Nyberg, 1975), very few 
quality measures have made use of this idea. Nakayama, Kurosu, Honjyo & 
Nishimoto (1980) have modelled image quality as a weighted sum of underlying 
quality dimensions. Escalante-Ramlrez (1992) derived a perceptual space using 
multi-dimensional sealing (MDS) analysis and investigated the relation between 
image quality and its important attributes. de Ridder (1992) and Nijenhuis 
( 1993) showed that a. Minkowski metric with exponent close to 2 is a useful 
combination rule for the underlying dimensions of image quality. 

The image quality estimation method presented in this chapter is also based 
on the multi-dimensional nature of image quality. According to this approach, 
images are located in a M-dimensional perceptual space spanned by important 
perceptual image attributes: sharpness, noisiness, brightness contrast, etc. In 
such a (metric) perceptual space, the distance between the points (images) 
is proportional to the perceived dissimilarity between them, and the differ­
ent perceptual attributes correspond to different directions in the perceptual 
space. The projection of an image onto an attribute axis is proportional to 
the perceived strength of that attribute for that image. Therefore, by locating 
images in a perceptual space, their perceived attributes can be modelled. The 
relation between different attributes of image quality can also be derived from 
this space (Chapter 4). For example, the orthogonality of different attributes 
can be verified (Chapter 4). Because of these properties, the perceptual space 
is very useful in understanding and predicting perceived image quality, espe­
cially when the images are multiply impaired. The perceptual space can be 
constructed using MDS analysis of psychophysical data on images (Chapter 4) 
(Escalante-Ram1rez, Martens & de Ridder, 1994). 

Most perceptual attributes are predominantly influenced by one perceptu­
ally relevant physical parameter of the image. For example, perceived sharp­
ness is mainly determined by the spread of the blurring kemel Ub (Westerink, 
1991)(Chapter 2), while perceived noisiness is mainly determined by the noise 
standard deviation u n ( Chapter 3), etc. The relevant physical parameters can 
be estimated from the image using computational algorithms. The objective 
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measures for the perceptual attributes can be computed from these estimates by 
taking into account of the sensitivity of the visual system (see Chapters 2, and 
3). For objective measures derived in this way, equal intervals in the objective 
scale correspond to approximately equal percèived difference in the attribute. 
The objective measures are thus psychometrie quantities (Hunt, 1978). 

The perceptual space is spanned by the important perceptual image at­
tributes. Similarly, it is useful to consider a psychometrie space spanned by the 
objective (psychometrie) measures for the perceptual attributes. The objective 
measures are computed from the estimates of the corresponding perceptually 
relevant physical parameters such as noise SD and spread of the blurring kemel. 
The relation between these two spaces (i.e., the mapping or the transformation) 
can be derived. Using such a mapping, any image in the psychometrie space 
with estimated objective measures can be mapped toa position in the percep­
tual space. The perceptual attributes of the image can then be estimated by 
projecting the image onto the attribute axes. Note that the psychometrie space 
is spanned by the opjective (psychometrie) measures that have been derived 
from the physical parameters, taking the sensitivity of the visual system into 
account, whereas the perceptual space is derived from psychophysical data and 
hence is a psychological space. 

In this chapter, we first show that the objective measures for attributes 
estimated using computational algorithms are good correlates of the perceived 
attributes of images with multiple impairments. Two important attributes, 
unsharpness and noisiness, will be considered. The psychophysical data from 
Chapter 4 will be used for this purpose. The mapping between the psychometrie 
and the perceptual space is derived using the estimates of objective measures 
obtained using the computational algorithms and the MDS space obtained in 
Chapter 4. Using this mapping, the images are projected from the psychometrie 
space to the perceptual space. The strengths of the perceptual attributes of the 
images are estimated by projecting the images onto the attribute axes. The 
attributes estimated using this method are correlated with the subjectively 
measured attributes of the images. We show that the estimated attributes and 
quality of images correlate well with the perceived attributes and quality. 

5.2 Estimation of Objective Measures for Perceptual Attributes 

5.2.1 Estimation of Blur-index 

\In Chapter 2, it has been shown that, for blurred images, the blur-index Sb 
based on the spread of the blurring kemel O'b is a good correlate of the perceived 
unsharpness. The blur-index Sb can be estimated from the blurred image using 
the computational algorithm described in Chapter 2. A schematic diagram 
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of the algorithm to estimate the blur-index was shown in Fig. 2.24. For a 
description of the steps in the algorithms we refer to Section 2.10. In this 
Section we show that the blur-index Sb is a good correlate of unsharpness, also 
for images with multiple impairments. 

The results of sealing unsharpness in images containing blur as well as 
noise were reported in Chapter 4. The estimated blur-index Sb of those images 
is compared to the scaled unsharpness in Fig. 5.1. The resulting correlation 
coeffi.cients are, 0.97 , 0.97 and 0.94 for the Mondrian, Terrace and Wanda 
scenes respectively. The correlation coeffi.cients in this case are lower than 
those for images with only blur as impairment (Chapter 2). Nevertheless, these 
results show that the blur-index Sb is a fair correlate of perceived unsharpness 
also in images with multiple impairments. 

5.2.2 Estimation of Noise-index 

In Chapter 3, it has been shown that, for images containing noise, the noise­
index Sn based on the standard deviation (SD) is a good correlate of the per­
ceived noisiness. The noise-index Sn can be estirnated from the noisy image 
using the computational algorithm described in Chapter 3. A schematic dia­
gram of the algorithm to estimate the noise-index was shown in Fig. 3.19. For 
a description of the steps in the algorithms we refer to Section 3.7. In this 
Section we show that the noise-index Sn is a good correlate of noisiness, also 
for images with multiple impairments. 

The results of sealing noisiness in images containing blur as well as noise 
were reported in Chapter 4. The estimated noise-index Sn of those images 
is compared to the scaled noisiness in Fig. 5.2. The resulting correlation 
coeffi.cients are, 0.98, 0.98 and 0.99 for the Mondrian, Terrace and Wanda 
scenes respectively. These results show that the estimated noise-index Sn is a 
good correlate of the perceived noisiness in images with multiple impairments. 

5.3 Mapping From Psychometrie Space to Perceptual Space 

A perceptual space is spanned by a number of perceptual attributes. Most at­
tributes are predominantly influenced by one physical parameter of the image, 
although secondary influences from other parameters may also exist. For ex­
ample, for images degraded by blur and noise, the spread of the blurring kernel 
and the SD of the noise are the two perceptually relevant physical parameters. 
The objective measures for the perceptual attributes unsharpness and noisiness 
are determined by these physical parameters. lt is therefore useful to model a 
space spanned by the objective measures for the perceptual attributes. We call 
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Figure 5.1: Results of correlation between scaled unsharpness and 
estimated blur-index Sb, for images with blur and noise. Scenes: 
Mondrian, Terrace and Wanda. The parameter is the SD of noise O-n· 

such a space a psychometrie space. The dimensions of this space are objective 
(psychometrie) measures based on the physical parameters, derived by taking 
the sensitivity of the visual system to changes in the physical parameters into 
account. For example, the psychometrie space for images degraded by blur and 
noise is spanned by two parameters, the blur-index Sb and the noise-index Sn. 
The relation between the perceptual space and the psychometrie space can be 
used to understand the process of image quality perception. Using the coor­
dinates of the images in bath spaces, the transformation or mapping between 
the two spaces can be derived. For this mapping, different kinds of transforma­
tions could be allowed: sealing, rotation about the origin, affi.ne transformation, 
nonlinear warping, etc. 
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Figure 5.2: Results of correlation between perceived noisiness and 
estimated noise-index Sn, for images with blur and noise. Scenes: 
Mondrian, Terrace and Wanda. The parameter is the blur-spread Ub· 
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In Chapter 4, the perceptual space of images degraded by blur and noise 
was derived using MDS analysis. A 2-D perceptual space spanned by the 
attributes unsharpness and noisiness was found to be appropriate to describe 
the data. Therefore, each image in the perceptual space is specilied using 
two coordinates. Each image in the corresponding psychometrie space is also 
specilied by two parameters, the blur-index Sb and the noise-index Sn. The 
coordinates of images in the psychometrie space are given by (Sb, Sn), where 
it is assumed that the axes Sb and Sn are orthogonal. The parameters Sb and 
Sn are derived from the image using computational algorithms described in 
Sections 2.10 and 3.7, respectively. 

We use MULTISCALE (Ramsay, 1991) to find the mapping between the 
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psychometrie space and the perceptual space. The coordinates of the images 
in the psychometrie space are input to MULTISCALE as a reference matrix 
Y. Matrix Y has M rows corresponding to M images and two columns cor­
responding to two coordinates. The matrix of coordinates of the images in 
the perceptual space X is transformed using a transformation matrix A such 
that the transformed coordinates X A best matched the reference matrix Y, 
where the best match is obtained by maximizing the inner product tr(At XtY). 
MULTISCALE also gives a correlation measure for the match (Ramsay, 1991). 
Sealing, rotation and affine transformation (oblique axis) are permitted to ob­
tain the best match, i.e" the matrix Ais only required to be nonsingular. The 
transformation matrices A obtained for the Mondrian, Terrace and Wanda · 
scenes are given below: 

A = [ 0.034 0.009 ] A = [ 0.024 0.018 ] A = [ 0.027 0.001 ] 
-0.008 0.055 -0.027 0.023 -0.006 0.017 

(5.1) 
The respective correlation coefficients for the match are 0.93, 0.98 and 0.99. 

Our aim is to map the images from the psychometrie space to the perceptual 
space. The transformation matrix G = (AT)- 1 was used for this purpose, i.e, 

[ : ] = [ :~:~ :~:~ ] [ ~: ] 
(5.2) 

where x and y are the coordinates of the image in the perceptual space, along 
dimension one and two respectively. Figure 5.3 shows the results of such map­
ping for three scenes, along with the MDS solution. The match between the 
mapped coordinates and the coordinates of the images obtained using MDS 
is good for the two natural scenes, Terrace and Wanda, with high correlation 
coefficients 0.98 and 0.99 respectively. However, for the synthetic scene, Mon­
drian, the correlation coefficient is only 0.93 and the match is worse, especially 
for images with no blur, i.e, the lowermost row. 

One possible explanation for the difference observed in the results for the 
synthetie scene, Mondrian, is that while judging dissimilarities, subjects clas­
sify images into those that are multiply impaired and those that are impaired 
by only one impairment. It is relatively easy for subjects to perform such clas­
sification in the case of Mondrian, since it has edges that are close to ideally 
sharp transitions and uniform regions that are close to perfectly noiseless re­
gions. On the other hand, such a classification is relatively difficult in the case 
of images of natural scenes, since the original images of natural scenes are al­
ready blurred and are impaired by noise. To test this, a separate analysis was 
performed for the Mondrian scene in which the images with no blur were not 
used. The results of the analysis and the mapping are shown in Figure 5.4. Now 
the correlation coefficient increased from 0.93 to 0.96. A similar analysis was 
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Figure 5.3: Results of correlation between points in the perceptual 
space and the points mapped onto it from the psychometrie space, 
for the Mondrian, Terrace and Wanda scenes. The points joined by 
the drawn curves show the positions of images obtained using MDS 
analysis of dissimilarities (MULTISCALE solution, same as Fig. 4.4). 
The points joined by the dotted line show the positions of images 
obtained by mapping their positions from the psychometrie space, 
using the map ping G. The vectors Sb and Sn show the mapped 
directions of Sb and Sn axes from the psychometrie space. 
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Figure 5.4: Results of correlation between points in the perceptual 
space and the points mapped onto it from the psychometrie space, for 
the Mondrian scene, where images with no blur have not been con­
sidered. The points joined by the drawn curves show the positions 
of images obtained using MDS analysis of dissimilarities (MULTI­
SCALE solution). The points joined by the dotted line show the 
positions of images obtained by mapping their positions from the 
psychometrie space, using the mapping G. The vectors Sb and Sn 
show the mapped direetions of Sb and Sn axes from the psychometrie 
space. 

also performed with only those images of the Mondrian that contained both 
impairments, and a result similar to that shown in Fig 5.4 was obtained. Figure 
5.4 shows that although there is a considerable improvement in the match, the 
transformation is unable to eompletely capture the variations in the perceptual 
space. A main reason for this is that, while mapping, only rotation, sealing 
and affine transformations were allowed. 

The transformation G is a combined result of sealing, rotation and affine 
transformation. To study each of these transformations separately, the trans­
formation matrix G can be decomposed into four matrices, eorresponding to 
the four different operations, where the sealing operation has been decomposed 
further into two operations, equal sealing on both axes and unequal sealing. 
Thus the four operations are: unequal sealing, affine transformation, equal 
sealing, and rotation, in this order. The matrix decomposition eorresponding 
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to these operations can be written as 

g1,2 ] [ cosw 
g2,2 -sinw 

sinw ] 
cosw [ ~ ~ ] [ co~ <P si~ <P ] [ ~ ~ ] · 

(5.3) 
Here, w is the angle by which the configuration is rotated, s is the equal sealing 
factor on both axes, <P is the angle between the axes in the new coordinate 
system and À is the weight on the objective measure of the second attribute. By 
solving the above equations, the parameters w, <P, s and À can be computed from 
the coefficients of the matrix G. Using this procedure, we obtained <P = 87°, 78° 
and 78° for the Mondrian, Terrace and Wanda scenes. These angles are close to 
the angles between the attribute unsharpness and noisiness ( () 83°, 79° and 
79°) obtained using MDS analysis for these scenes (Chapter 4). This indicates 
that the angle between the mapped directions of axes Sb and Sn onto the 
perceptual space very closely represent the angle between the directions of the 
attributes unsharpness and noisiness. The weights À are 1.58, 0.85 and 0.66 for 
the Mondrian, Terrace and Wanda scenes respectively. These weights indicate 
that, for natura! scenes the second objective measure (i.e, blur-index) has to be 
compressed relative to the first while mapping, whereas for the synthetic scene 
it has to expanded. This can also be seen graphically from the relative lengths of 
vectors Sb and Sn for each scene, in Fig. 5.3. For the solution of the Mondrian 
scene shown in Fig. 5.4, the angle <P = 87° and weight À = 0.99. The weight À 

in this case is closer to the values obtained for natural scenes. This indicated 
that the images of the Mondrian scene with multiple impairment behave very 
similar to the natura! images, although images with only one impairment may 
deviate in their behaviour from that of the natural images. 

In the transformation G derived above, the rotation and equal sealing op­
erations do not have any perceptual significance. Hence, the two significant 
operations are: the unequal scale factor on the objective measures and the 
affine transfor:mation. Based on this, we propose that any image in the psy­
chometrie space with coordinates (Sn, Sb) can be mapped onto the perceptual 
space (x, y) using the transformation, 

[ : ] = [ co~ <P si~ <P ] [ ~ ~ ] [ ~; ] (5.4) 

The two parameters in this transformation are the angle <P between the axes in 
the perceptual space and the weighting factor of the second dimension À. These 
can be estimated using the procedure described above. For natura! images we 
used <P ~ 80° and the average À ~ 0. 75. 
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Figure 5.5: Relation between the directions of attributes quality (Q), 
impairment (I), unsharpness (U) and noisiness (N), in the perceptual 
space. The relative angles Ou and On are also indicated. 

5.4 Estimation of Perceived Quality 

The approach to image quality estimation to be developed in this Section is 
based on the assumption that the perceptual attributes in a perceptual space 
can be considered as vectors, each specified by a direction in the perceptual 
space. In Chapter 4, the orientation of the perceptual attributes in the per­
ceptual space were identified using MDS analysis. The perceptual quality of 
an image was modelled to be proportional to the projection of that image onto 
the quality axis. In this Section we show how this method of projection can be 
used to estimate quality and other attributes of images. 

It was found in Chapter 4 that the perceptual attributes unsharpness and 
noisiness are separated by an angle () ~ 80°. The direction of overall impair­
ment (i.e., -quality) was in between those of the two attributes. A schematic 
diagram indicating the relative angle (J,u between impairment and unsharpness, 
and the relative angle On between impairment and noisiness, is shown in Fig 5.5. 

Any image in the psychometrie space can be mapped to the perceptual 
space using the transformation given by Eq. (5.4). We propose that the di­
rection of vectors representing any basic perceptual attribute in the perceptual 
space can be estimated by mapping the direction of vectors representing the 

· corresponding relevant physical parameter in the psychometrie space. For ex­
ample, the direction of noisiness can be estimated by mapping the Sn-axis 
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using Eq. (5.4). This can also be verified by finding the directions of the at­
tribute based on the perceptual attributes measured on the images. We also 
propose that the directions of the vectors representing the basic attributes in 
the perceptual space are invariant to the range of variations of attributes in the 
experiment. The direction of global attributes such as quality, that are derived 
from the basic attributes, may vary between experiments. Hence, the angle 
between the quality axis and the other basic attribute axes may change, hut 
not the angles between the basic attribute axes. 

Using the mapping from the psychometrie space to the perceptual space 
and the assumptions stated above, the directions of the basic attributes in 
the perceptual space can be estimated. The strengths of the attributes in the 
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images can be estimated by projecting the stimulus position onto the axes. 
Having estimated the direction of the basic attributes in the perceptual space, 
the direction of quality can be specified with respect to the basic attributes. For 
example, in our case, using Ou or On, with respect to unsharpness or noisiness. 
Thus the direction of quality can also estimated. The quality of the images is 
given by their projection onto the quality axis. 

First we show the results of estimating the attributes obtained using the 
projection of stimuli onto the attribute axes. In Fig. 5.6, perceived unsharpness 
is plotted against the strength of unsharpness estimated using the projection 
method described above. Figure 5.7 shows the same for noisiness. These results 
were obtained using Eq. (5.4), with </> = 80° and >. = 0.75. The correlation 
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coefticients for the unsharpness estimates (Fig. 5.6) are 0.96 , 0.96 and 0.95 
for the Mondrian, Terrace and Wanda scenes respectively. The correlation 
coefticients for the noisiness estimates (Fig. 5. 7) are 0.99, 0.99 and 0.99 for the 
Mondrian, Terrace and Wanda scenes respectively. 

In Fig. 5.8, perceived quality is plotted against the quality estimated using 
the projection method described above. For all the three scenes, Ou = 34° 
and On = 80° - 34° 46° was used. This is the average value of angles for 
the three scenes obtained from the perceptual space constructed using MDS 
analysis (Chapter 4). The correlation coefticients for quality estimates are 0.95, 
0.91 and 0.86 for the Mondrian, Terrace and Wanda scenes respectively. 

Note that the estimates reported in Figs. 5.6, 5.7, and 5.8, are obtained 
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with fixed values of parameters .X, </>, and Om for all scenes. The results reported 
here show that the concept of a mapping between the psychometrie space and 
the perceptual space is very useful for quality prediction. The results also show 
that the attribute and quality prediction by 'projecting the images onto the 
attribute axes in the perceptual space is a very promising method, and leads 
to reliable predictions for attributes and quality. 

5.5 Conclusions 

Image quality is determined by many underlying perceptual attributes such as · 
sharpness, noisiness and brightness contrast. The relationship between these 
attributes and the quality can be studied in the perceptual space spanned by 
the important basic attributes of the images. Each of the perceptual attributes 
is predominantly influenced by one perceptually relevant physical parameter 
of the image. These physical parameters can be estimated from the image us­
ing computational algorithms. We have shown that the blur-index estimated 
using the algorithm proposed in Chapter 2 correlates well with the perceived 
unsharpness of images with both blur and noise. Similarly, the noise-index 
estimated using the algorithm proposed in Chapter 3 is shown to correlate well 
with the perceived noisiness in images with both blur and noise. In this chap­
ter, a psychometrie space spanned by the objective measures for perceptual 
attributes is introduced. The mapping between the psychometrie and the per­
ceptual space is shown to be very useful to estimate the perceptual attributes 
and the quality of images. It is shown that the estimates of quality and other 
attributes obtained using this new method correlate well with the perceived 
quality and the attributes of images. 



Chapter 6 

An Algorithm to Estimate an Objective Measure 
for Global Brightness Contrast 

Abstract 

Imaging system designers require objective measures that correlate 
well with perceived image quality and its attributes. Image quality 
as a function of one of its important perceptual attributes, global 
brightness contrast, has a maximum. Therefore, an objective mea­
sure for global brightness contrast is very useful to optimize the 
quality of images produced by imaging systems. In this chapter, an 
objective measure for global brightness contrast is presented. lt is 
based on the slope of the cumulative histogram of an approximate 
psychometrie brightness image. By applying the algorithm on im­
ages with different contrast and by using the subjectively scaled 
brightness contrast data, we show that the proposed objective con­
trast measure is a good correlate of the perceived global brightness 
contrast of natural images. We also show that the contrast mea­
sure derived here can be used to optimize the perceptual quality of 
images produced by imaging systems. 

6.1 Introduction 

Global brightness contrast is an important basic attribute of perceptual image 
quality. Subjects are able to make consistent judgements of this image attribute 
(Roufs, 1992; van Overveld, 1994). The perceptual image quality of natural 
scenes as a function of their perceived global brightness contrast has a maximum 
(Roufs & Goossens, 1988). In imaging system design, it is important to ensure 
the optimum quality of the images produced by the system. To attain this, 
the global brightness contrast of the output image has to correspond to the 
optimum quality. This optimization needs an objective measure that correlates 
well with the global brightness contrast of the image. 
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Perceptual image quality is determined by many underlying attributes: 
unsharpness, noisiness, brightness contrast, etc (Marmolin & Nyberg, 1975). 
Image quality can be estimated by first estimating the underlying attributes 
and then combining them. In Chapter 2 we ·have proposed an algorithm to 
estimate an objective measure for image unsharpness. In Chapter 3 we have 
proposed an algorithm to estimate an objective measure for image noisiness. 
In this chapter, we present an algorithm to estimate an objective measure that 
correlates well with the perceived global brightness contrast of images. 

The luminance reproduction characteristics of an imaging system are an 
important factor influencing the brightness contrast of the output image. The . 
overall luminance reproduction characteristics of an imaging system are given 
by the combination of the luminance reproduction characteristics of its units: 
the camera, the image processor, the display, etc. The relation between the 
input and output of most of these units can be approximately described as 
power functions, although some units may have approximately linear or lin­
earized input-output characteristics. The exponent of such a power relation 
'gamma' (Poynton, 1993) is a widely used physical parameter to specify the 
input-output characteristics of the units. For example, for a display monitor 
the relation between the input voltage and the output luminance is given by a 
power function with approximate gamma = 2.5. When the input-output rela­
tion, i.e" the luminance reproduction function, is plotted on log-log axes, the 
slope of the linear part of the curve equals gamma. 

In image quality applications, the interest is to obtain an estimate for the 
global brightness contrast of the image. Subjects are able to make consistent 
and accurate judgements of global brightness contrast of images, although the 
local brightness contrast may vary considerably across any given image (Roufs, 
1992). There are many definitions and methods to measure local brightness 
contrast (Peli, 1990; Lillesaeter, 1993; Hurvich & Jameson, 1966). However, 
the way in which these local contrasts combine to form a global impression 
of brightness contrast is still largely unknown, especially for images of natura! 
scenes. The gamma parameter of an imaging system indicates only the ability 
of the system to reproduce the input luminance contrast. It however is not an 
adequate measure for the global brightness contrast of the image of a scene. 
Roufs, Koselka & Tongeren (1994) showed that an objective measure called 
effective gamma correlates closely with the global brightness contrast of natura! 
images. They derived the effective gamma by a linear regression of the most 
frequently occupied region of the luminance reproduction curve of the imaging 
system. 

Our initial attempts towards developing an objective measure for global 
brightness contrast were based on local images features. We first estimated a 
local contrast measure at prominent locations in the image and then combined 
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them to form an estimate of a global contrast measure. This is similar to the 
way in which the (global) image blur spread is computed from (local) edge 
blur spread in Chapter 2. We chose edges as the prominent local features 
and estimated local contrast measures at all prominent edge locations in the 
image. The local contrast measures at edges were computed using the edge 
parameter estimation algorithm described in Chapter 2. Prominent edges were 
also selected in the same way as they were selected for blur estimation in 
Chapter 2. Several definitions were tried for local contrast measures, including 
the widely used Michelson contrast given by C1 = (Smax-Smin)/(Smax+Smin), 
where Smax and Smin are the signal levels on the high and the low side of the 
edge respectively. These measures were tried on luminance images as well 
as on approximate psychometrie brightness images. The mean of the local 
contrast measure computed over all selected edge locations was taken as an 
estimate of global contrast measure. Although the perceived contrast increased 
monotonically with a measure derived in this way, images of two different scenes 
perceived to be of equal contrast had a very different value for the global 
contrast measure. Thus, our attempts based on (local) image features, similar 
to those presented in Chapter 2 and Chapter 3, did not lead to useful results 
towards developing a measure for global brightness contrast. The reasons for 
this may be manyfold. First of all, it is diffi.cult to find a reliable objective 
measure for local brightness contrast (Cannon Jr, 1984; Peli, Yang, Goldstein 
& Reeves, 1991 ). Secondly, the selection of local features that play a prominent 
role in deciding the global brightness contrast is very diffi.cult. Thirdly, even 
when a reliable local contrast measure is found, thorough knowledge about how 
the local measures have to be combined to derive a global measure does not 
exist. Finally, the global brightness contrast is influenced mainly by the first­
order variation in brightness across the image, whereas the local edge contrast 
does not provide any information about this sart of variation across the image. 
The first-order variation in brightness across the image is influenced by the 
areas of different brightness in the image and the contrast between them. 

Because of the abovementioned diffi.culties in arriving at a measure for 
contrast based on local features, we sought to derive a heuristic measure for 
global brightness contrast that captures the first-order variation in brightness 
across the image. The main motivation for our heuristic approach comes from 
the histogram equalization methods used in image processing (Pratt, 1991) as 
well as from the concept of an effective gamma (Roufs et al., 1994). 

In this chapter, we present an algorithm to estimate an objective measure 
for the global brightness contrast of an image, from the image itself. We call 
this measure a contrast-index. The contrast-index we propose here is based on 
the cumulative histogram of the approximate psychometrie brightness image. 
Thus it is not based on first estimating the local contrast measures and then 
combining them to derive a global measure, instead it directly derives a global 
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measure from the image. Since the contrast-index is based on the cumulative 
histogram, it indirectly captures the effect of areas of different brightnesses on 
the impressions of global brightness contrast. Using the contrast-index, the 
global brightness contrast of any image can be estimated from the image itself. 
Since the contrast-index correlates well with the perceived global brightness 
contrast and because quality as a function of global brightness contrast has 
a maximum, the contrast-index can also be used to optimize the perceptual 
quality of images produced by imaging systems. 

We first describe the contrast-index estimation algorithm. The results of 
psychophysical experiments involving sealing of global brightness contrast and 
quality of images (Roufs et al., 1994) will be used to show that the contrast­
index proposed here correlates well with the scaled brightness contrast of im­
ages. 

6.2 Estimation of Contrast-index 

The contrast-index of an image is estimated from an approximate psychometrie 
brightness image. Figure 6.1 shows a schematic diagram of the contrast-index 
estimation algorithm. The steps in this algorithm are similar to the blur-index 
and noise-index algorithms presented earlier in Chapters 2 and 3. In the initial 
stage of the algorithms, the grey-scale image is transformed into a luminance 
image using the monitor characteristics, as defined in Eq. (2.46) of Chap­
ter 2. The luminance image is blurred according to the eye-optics and then 
transformed into an approximate psychometrie brightness image. This trans­
formation from luminance to approximate psychometrie brightness is the same 
as the one used in the algorithm to estimate blur-index and noise-index. We 
refer to Section 2.10 of Chapter 2 fora description of this transformation and 
the details of the eye-optics and the intrinsic noise. The cumulative histogram 
of the approximate psychometrie brightness image is computed and used for 
further estimation. 

Figure 6.2 shows the histograms of approximate psychometrie brightness 
images for three scenes, at image processor gamma 'Yp = 0.4 and 1.6. The three 
scenes are, stad, an indoor scene containing a sculpture and indoor plants, ter, 
an outdoor scene of a cafe and Wanda03 (w03), a female portrait. For all scenes, 
the dynamic range (spread or width) of the psychometrie brightness histogram 
is small(~ 50) when 'Yp = 0.4 and is large(~ 80) when 'Yp = 1.6. The perceived 
global brightness contrast of images with 'Yp = 1.6 is also considerably higher 
than that of-images with 'Yp = 0.4. These histograms show that the dynamic 
range of the psychometrie brightness in an image is an important factor in de­
termining its perceived global brightness contrast. This fact has been exploited 
for many years by image contrast enhancement algorithms based on histogram 
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Figure 6.1: Contrast-index estimation algorithm 
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equalization or modification (Pratt, 1991; Gonzalez & Wintz, 1987; Woods & 
Gonzalez, 1981). We use the width of the psychometrie brightness histogram 
as a first order measure for the dynamic range of brightness in the image. 

Let us assume, for the purposes of explanation, that the probability density 
function (PDF) of the approximate psychometrie brightness image is uniform 
(Papoulis, 1991), i.e., 

{ 

_i_ b < b < b f (b) = b2-b1 i - :-- 2 
0 otherw1se. 

The cumulative distribution is then a ramp function, 

(6.1) 

(6.2) 

The cumulative histogram increases linearly from 0 to 1, when b increases 
from bi to b2. The slope of the linear part of this cumulative distribution is 
1/(b2 - bi). It is inversely proportional to the width of the histogram (b2 - bi). 
Therefore, the width of the histogram can be obtained from the estimate of the 
slope of the linear part of the cumulative distribution. Figure 6.3 shows plots 
of uniform PDFs and their cumulative distribution functions, for two differents 
widths of the PDF. Note that the PDF with the larger width has a shallower 
slope in the cumulative distribution. Note also that the starting position of the 
linear part of the cumulative distribution depends on the starting position of 
the uniform PDF, bi. 

In the above treatment, we assumed a uniform PDF to relate the width 
of the PDF to the slope of the cumulative distribution. Similar relations also 
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Figure 6.2: Histograms of approximate psychometrie brightness im­
ages for 3 scenes, stad, ter and W03. Top, at 'Yv = 0.4 and bottom, 
at 'Yv = 1.6. 

hold when the PDF is a Gaussian. When the PDF is a Gaussian, the slope of 
the linear part of the cumulative distribution is inversely proportional to the 
spread of the Gaussian (Papoulis, 1991). The cumulative distribution in the 
range 0.16 to 0.84 is almost linear. Hence, the inverse of the slope of the (Iinear 
part of the) cumulative distribution can be used as a first order approximation 
for the width of the histogram, for a wide variety of PDFs. 

The cumulative histograms for three scenes, at image processor gamma 
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"lp = 0.4 and 1.6 are shown in Fig. 6.4. Large parts of these cumulative 
histograms are approximately linear. In the algorithm, the slope of the linear 
part of the cumulative histograms is estimated. An estimate for the slope e is 
obtained by minimizing the error 

min L [ebi + K - F{bi)]2
, 

e,K . 
(6.3} 

i 

where F(bi) is the value of the cumulative histogram of psychometrie brightness 
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Figure 6.4: Cumulative histograms of approximate psychometrie 
brightness images for 3 scenes. Top at 'Yp = 0.4 and bottom at 'Yp = 
1.6. 

bi, at its i-th sampling position. In our implementation, only those samples of 
F(bi) for which b > 5 are used. A first order approximation to the dynamic 
range of approximate psychometrie brightness in an image is given by the 
inverse of the slope e. Therefore we use Cb = 1/e as an index for global 
brightness contrast. 
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6.3 Results 

The contrast estimation algorithm was applied to images used in Experiment 1, 
reported by Roufs et al. (1994). In their experiment, the images were obtained 
by scanning photographic slides with a slide scanner with exponent 0.4. The 
contrast of the resulting digital images was varied with an image processor 
whose exponent 'Yp could be varied. The resulting images were displayed on a 
monitor with exponent 'Y = 2.5, Lmax = 149 cd/m2 and Lmin = 0.2 cd/m2

. In 
the experiment 'Yp was varied from 0.4 to 2.2, in steps of 0.3. The algorithm that 
varied the 'Yp was designed such that the mean luminance of the displayed image 
is the same for all images of a scene. The mean luminance was held constant 
to avoid the effects of variation of mean luminance on perceived contrast and 
quality. In the psychophysical experiment, the subjects judged the brightness 
contrast of the images in one session and the quality in another session, both 
using a 10-point numerical category scale ranging from one to ten. 

In Fig. 6.5, the results of the experiment are plotted against the estimates 
given by the algorithm, for grey-scale images of three natural scenes. The 
contrast and quality scores are averaged over three subjects. Although there 
are small differences between the different scenes, the results show that the 
estimated contrast-index eb is a fair correlate of perceived global brightness 
contrast. The plot of perceived quality VS contrast-index eb shows that the 
quality is maximum when the contrast-index is approximately 0.906. 

Figure 6.6 shows the results of applying the algorithm to images of an 
experiment identical to that described above, except that in this experiment 
the images were displayed on a monitor with èxponent gamma = 2.0. The 
figure shows that the estimated contrast-index again correlates well with the 
perceived contrast. The quality is maximum when the contrast-index is 0.914, 
which is approximately equal to the optimum value observed in the previous 
experiment. 

These results show that the effective dynamic range over which the bright­
ness in an image varies plays an important role in determining the perceived 
global brightness contrast of the image. The contrast-index derived here is 
essentially a first-order approximation to the eff ective brightness range in the 
image. We derived the effective dynamic range of brightness based on the his­
togram or frequency of occurrence of the approximate psychometrie brightness 
in the image. When the 'Yp is low, the dynamic range of brightness is small and 
the image appears to have a low contrast. At this contrast, the visibility of 
details in the bright regions of the image is poor. On the other hand, when the 
'Yv is high, the dynamic range of brightness is large and the image appears to 
have high contrast. At high contrast, the visibility of details in the clark regions 
of the image deteriorates. The optimum perceived quality is observed at inter-
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Figure 6.5: Scaled contrast and quality vs estimated global contrast­
index Cb, for 3 scenes. Data from Experiment 1 in Roufs et al. (1994). 
The contrast and quality scores are average over three subjects. Dis­
play monitor exponent 'Y = 2.5. 
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mediate values of '"Yrn where probably the most natura! brightness distribution, 
causing the most natural brightness contrast, appears. At intermediate values 
of '"YrH the visibility of details in both light and dark regions of the image is 
good and this may also be another factors in determining the optimum in per-. 
ceived quality as a function of perceived global brightness contrast. In addition 
to this, many other factors may also contribute to the ·Optimum in perceived 
quality. For example, images at very low contrast values ·are perceived to be 
misty and blurred {Roufs, 1989). 

6.4 Conclusions 

In this chapter, we have presented an objective measure for global brightness 
contrast of an image. The measure, called contrast-index eb, can be derived 
from the image using a simple algorithm. It is based on the slope of the 
cumulative histogram of an approximate psychometrie brightness image, and 
hence mainly incorporates the area effects on the global brightness contrast. By 
applying the algorithm to images of natura! scenes with different contrast, we 
have shown that the contrast-index eb is a good correlate of global brightness 
contrast. The scaled quality results on the images show that the quality is 
maximum when the contrast-index eb is approximately equal to 0.91. 

Encouraging results have been obtained by testing the proposed contrast­
index estimation algorithm using psychophysical data on three scenes, at two 
different display monitor exponents. More psychophysical data will be required 
to rigorously test the usefulness of the proposed contrast-index in imaging 
system design. 
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Epilogue 

The perceived quality of images produced by an imaging system plays a sig­
nificant role in deciding the overall quality of the imaging system. Because of 
this, imaging system designers are often posed with the problem of attaining 
maximum quality with given constraints on the system. An example of this 
is to compare the quality of images produced for different parameter settings 
of a coding or processing algorithm and to choose the best parameter settings. 
Another often encountered problem is how to compare the quality of images 
produced by different algorithms and to choose the best algorithm. Until now 
these problems have been solved mostly using subjective experiments. Sub­
jective experiments, however, are time-consuming and expensive. Hence, for 
an efficient and economie solution to the above-stated problems, an objective 
measure that correlates well with the perceived quality of images is essential. 

This thesis has dealt with finding objective measures for perceptual image 
quality and its attributes, and with developing computational algorithms to 
estimate these measures from the image itself. In this thesis, the perceptual 
image quality prediction problem has been addressed from a multi-dimensional 
point of view. According to this approach, the overall impression of image 
quality is determined by several underlying perceptual attributes. Examples 
of these attributes are unsharpness, noisiness, global brightness and global 
brightness contrast. 

Each basic attribute is predominantly affected by one physical parame­
ter of the image. For example, the perceived unsharpness is mainly affected 
by the spread of the blurring kernel and the noisiness by the standard devia­
tion of the noise ( although sometimes in extreme conditions, other parameters 
also appear to be important). Therefore, estimating these physical parame­
ters from the image is an important step towards computational algorithms to 
image quality prediction. Two important basic attributes were considered in 
this thesis: unsharpness in Chapter 2, noisiness in Chapter 3. Computational 
algorithms based on explicit computational assumptions were used to estimate 
the physical parameters from the image. Algorithms were also developed to 
estimate objective measures that correlate well with unsharpness and noisiness. 
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These objective measures were derived from the physical parameters, based on 
the sensitivity of the visual system to the changes in the strengths of physical 
parameters. The estimates of objective measures given by these algorithms 
were shown to correlate well with the corresponding perceived attributes of the 
images, even when images contained multiple impairments. 

Understanding the relationship between the basic perceptual attributes, 
and knowing how the basic attributes combine to form the overall impression 
of perceptual image quality, is essential for estimating objective measures for 
image quality from the objective measures for the underlying basic attributes. 
These relationships can be expressed in the perceptual space spanned by the 
basic attributes. In such a (metric) space, the distance between two image 
positions is proportional to their dissimilarity and the projection of an image 
position onto an attributes axis is modelled to be proportional to the strength 
of the attribute for that image. The perceptual space is constructed using 
multi-dimensional sealing (MDS) techniques on psychophysical data. In Chap­
ter 4 we constructed the perceptual space of images degraded by blur and noise. 
In the 2-D perceptual space thus obtained, we found that the attributes un­
sharpness and noisiness are not orthogonal hut are separated by an angle of 
80°. The orientation of the quality axis relative to the attributes unsharpness 
and noisiness was also determined. 

Similar to the perceptual space, a psychometrie space spanned by the ob­
jective measures for the perceptual attributes was introduced in Chapter 5. 
As stated earlier, these objective measures were derived from the estimates of 
relevant physical parameters, taking the sensitivity of the visual system into 
account. An important property of these objective measures is that equal in­
tervals in the objective measures correspond to approximately equal perceived 
differences in the attributes. Hence, they are psychometrie measures. The lo­
cation of images in the psychometrie space was obtained from the estimates 
of these objective measures. The mapping from the psychometrie space to the 
perceptual space was derived and used to estimate the location of the images 
in the perceptual space. After locating the images in the perceptual space, 
their quality was estimated by projecting the stimulus positions onto the qual­
ity axis. The concept of a psychometrie space and the mapping from it to the 
perceptual space have helped us in unravelling th~ relationship between the 
psychometrie and the perceptual spaces. Use of these relationships have also 
shown encouraging results for image quality prediction. 

Imaging system designers can readily use the algorithms developed here 
to estimate the objective measures, blur-index, noise-index and contrast-index 
from an image. For example the blur-index can be estimated from an image 
using the algorithm shown in Fig. 2.24. The luminance image on the display is 
obtained from the grey-scale image using the luminance transfer characteristics 
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of the monitor that is used to display the image. Fora calibrated monitor, the 
luminance transfer function can be well approximated by Eq. (2.46). For some 
monitors, the luminance image may also have to be filtered with the blurring 
kemel of the monitor, although for monitors with a relatively high resolution 
this filtering is not needed, since the blur due to the monitor is relatively 
small compared to that due to the eye-optics. For further computation the 
image is specified in retina! angles (in minutes of are). A unit distance (in 
meters) on the monitor corresponds to 2tan-1 (1/2d) min are in retinal angle, 
where d is the viewing distance (also in meters). The luminance image thus 
obtained is blurred using eye-optics to obtain the retina! image. A Gaussian 
with spread O"bo in the range 0.5 to 0.75 min are is a good approximation for 
optica! blur of the eye. The retina! image is transformed into an approximate 
psychometrie brightness image using the transformation shown in Eq. (2.47). 
The psychometrie brightness image computed in this way has values between 
0 and 100. Intrinsic noise is then added to this image. White noise with 
Gaussian PDF and SD, O"no in the range 2 to 3 units is a good approximation 
to the intrinsic noise. Finally, the blur estimation algorithm involving local 
derivative analysis, edge detection and blur estimation is applied to this image 
to obtain an estimate of blur-spread 1Îb, specified in min are. Blur-index Sb of 
the image is computed from <h using the equation Sb 1-J O"bO/ tib. Similarly, 
the noise-index Sn and contrast-index Cb can also be estimated from an image 
using the algorithms shown in Fig. (3.19) and (6.1) in Chapters 3 and 6, 
respectively. 

For images containing only blur as impairment, quality is proportional to 
the blur-index and for images containing only noise, quality is proportional 
to the noise-index. The image quality of images degraded by both blur and 
noise can be predicted from the blur-index and noise-index of the image us­
ing the mapping from the psychometrie space to the perceptual space. The 
transformation from the psychometrie space to the perceptual space given by 
Eq. (5.4) is used on the blur-index Sb and noise-index Sn, to obtain the co­
ordinates of the image (x, y) in perceptual space. Our results showed that 
<P ~ 80° and À ~ 0. 75 are reasonable values for the parameters in this map­
ping. Having obtained (x, y), the image quality is predicted by projecting 
the image position onto the quality axis. The direction of the quality axis 
is specified with respect to the unsharpness and noisiness axes using (Ju and 
8n. The direction of unsharpness is along the y axis. Thus, predicted quality 
Qp Jx2 +y2 cos[tan- 1 (y/x) + 8u - 90). Our results on limited number of 
scenes gave a value of Ou ~ 33°. More experiments will be needed to confirm 
this value of Ou. 

In the subjective experiments reported in this thesis we have used only three 
scenes, hut each belonged to a different category, a synthetic scene, an outdoor 
scene and a portrait. The perceptual spaces for the three scenes are found to 
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be very similar. To generalize our findings about the perceptual space, more 
data of subjective experiments involving a large number of scenes and subjects 
is required. Generalizing the results found in this thesis or establishing the 
classes of images to which the findings apply, 1s important for transferring the 
knowledge gained here into imaging system design. 

The computational algorithms in this thesis have demonstrated that im­
portant physical parameters of images can be reliably estimated by extracting 
features such as edges, by local processing of the image. A similar approach 
can also be used to estimate other physical parameters of images, for exam­
ple, to estimate parameters influencing visibility of structure in sampled and 
interpolated images (Nijenhuis 1993). 

The computational methods developed in this thesis are applicable to black 
and white still images of natural scenes. Although extension to colour images 
has not been attempted here, use of the algorithms on the luminance component 
of the colour images is expected to provide reliable estimates. Extension to 
moving images (i.e., video) is important and should be considered in future 
research. 

Our main aim in this thesis was to derive objective measures for global 
perceptual attributes, i.e., deriving one measure for the entire image. For ex­
ample, we derived objective measures for image unsharpness, image noisiness 
and image or global brightness contrast. In addition to these global measures, 
in applications such as image coding and restoration, it is sometimes also es­
sential to have objective measures for local perceptual attributes, such as local 
unsharpness, local noisiness and local contrast. To derive objective measures 
for local perceptual attributes, estimates of local parameters of the image are 
required. The edge parameter estimation method developed in Chapter 2 will 
be very useful for this purpose. An objective measure for local blur can be es­
timated from the local edge blur derived using the edge parameter estimation 
method presented in Chapter 2. A measure for local blur can be derived from 
the edge blur, by taking the sensitivity of the visual system into account, in 
the same way as was done while arriving at the blur-index, in Chapter 2. The 
important physical parameters that influence the local brightness contrast, the 
edge height, the background value and the edge slope, can also be obtained 
from the edge parameter estimation method preserited in Chapter 2. However, 
the relation between these physical parameters of the edge and the local con­
trast has to be experimentally determined to arrive at an objective measure 
for local brightness contrast. To find a measure for local noisiness, the noise 
parameters have to be estimated locally. In the uniform regions, this can be 
done by first detecting the locally uniform regions and then estimating the 
noise parameters in the uniform regions, by using the techniques described in 
Chapter 3, separately in each uniform region. As discused in the Introduc-
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tion to Chapter 3, the detection of uniform regions and the noise parameter 
estimation are inter-connected problems and image segmentation prior to local 
noise estimation will be required to obtain local estimates of noise parameters. 
Deriving local measures for noisiness in and around non-uniform regions, such 
as edges, is even more complex (Girod, 1993). 

In this thesis a 2-D subspace of the entire N-dimensional (N-D) percep­
tual space was constructed. The two attributes that we considered are un­
sharpness and noisiness. Considering only two attributes made the problem 
tractable. When more attributes are allowed to vary in the experimental set­
up, psychophysical data collection is expected to become a main bottleneck. 
For example, in our experiment there were two variables, each with four levels, 
resulting in 42 stimuli. Considering all pairs for dissimilarity judgement re­
sulted in 162 256 pairs to be judged. Allowing approximately 10 seconds per 
viewing and judgement, needed 45 minute for an experiment. Similarly, when 3 
attributes are varied (43) 2 = 4096 pairs have to be judged and for 4 variables it 
becomes 65,536 pairs. The number of pairs increases as a power function, k2n, 

where n is the number of variables and k is the number of levels per variable. 
Therefore, while considering more variables at a time, ways have to be sought 
to keep the data collection problem tractable. Some partial solutions to this 
problem, such as discarding pairs that would provide redundant information 
have been suggested in the literature (Berkum, 1985). 

In the blur estimation algorithm presented here, image blur is obtained by 
a weighted sum of edge blur at prominent edge locations in image, implicitly 
assuming that blur at prominent edges plays a greater role in deciding the 
overall blur of an image. In our algorithm prominence is based on the edge 
height and edge segment length, and the weight is based on the edge height. In 
reality, however, the prominence may also be decided by the region of attention 
in the images, driven by higher order features. For example, the prominent 
higher-order features in a portrait would be the eyes, nose, etc. One way of 
locating prominent regions in images would be to incorporate information about 
eye movements. Estimation based on the prominence of image features will be 
essential, especially while estimating the parameters of video images. These 
considerations will form the main research goals while developing methods to 
predict the quality of video images. 

We have considered simple distortions in images, blur and noise, that occur 
in conventional analog imaging systems as well as in digital systems. Never­
theless, the results in this thesis have shown that the problem of image quality 
prediction is not trivia!. Distortions in processed or coded images are rela­
tively complex. An example is the blocking artifact (Rabbani & Jones, 1991). 
A much deeper understanding of image perception will be required to identify 
and to arrive at estimates of appropriate physical parameters of images with 
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such impairments. The issue of integrating local information to form a global 
impression will play an even more important role while predicting their percep­
tual attributes and quality. The problem of how local perceptual information, 
such as local blur or noisiness, combines to form a global impression of the 
attribute is largely unsolved. More research effort will have to be directed in 
the future towards solving these underlying problems. 
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Summary 

The need to have fast, reliable and economie methods to evaluate images that 
have been generated, processed or coded in new ways has lead to an increas­
ing demand for techniques that objectively evaluate the perceptual quality of 
images. This thesis addresses the problem of perceptual image quality predic­
tion, treating image quality as a multidimensional percept, consisting of several 
underlying perceptual attributes such as sharpness, noisiness and global bright­
ness contrast. Each of these attributes is predominantly infiuenced by one phys­
ical parameter of the image. Therefore, by estimating those relevant physical 
parameters from the image, and by relating the estimates to the attributes, the 
attributes can be predicted. The image quality can then be predicted by find­
ing the relation between the attributes and the quality. The goal of the thesis 
is to develop computational algorithms to estimate image feature parameters 
from degraded images, and to develop methods to predict image quality based 
on these estimates. 

Computational algorithms are developed to estimate two important image 
parameters: the spread of the image blurring kemel (Chapter 2) and the stan­
dard deviation of the noise in an image (Chapter 3). These physical parameters 
of the image are known to be the main determinants of perceptual attributes 
unsharpness and noisiness. The image parameter estimation algorithms are 
based on perceptually relevant features of the image. For example, blur in an 
image causes a large perceived change near sharp transitions such as edges and 
lines. Similarly, noise in an image is most visible in uniform regions of the 
image. The detection and analysis of these perceptually relevant features is 
carried out using local derivatives of the image. Specifically, local derivatives 
of a Gaussian, which have many properties in common with some receptive 
fields in the human visual system, are used. The blur estimation algorithm 
detects the pronounced one-dimensional edges in the image and estimates the 
blur from the relation between the local derivatives of a blurred and the un­
blurred edge. The noise estimation algorithm is based on the statistics of the 
energy in the first-derivative in uniform regions of the image. The design, anal­
ysis and results of these algorithms are discussed in detail in this thesis. The 
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results show that the algorithms provide robust estimates of the required image 
parameters even at very low SNRs. 

The perceived attributes of images depend not only on the value of the 
physical parameters that influence them, hut also on the sensitivity of the vi­
sual system to changes in the values of the physical parameters. Therefore, 
objective measures for unsharpness and noisiness are obtained by transform­
ing the physical parameters, where the transformations take the sensitivities 
into account. The objective measure obtained by transforming blur-spread is 
called blur-index and that obtained from noise standard deviation is called 
noise-index. Algorithms have been developed to estimate the blur-index and 
the noise-index from an image. lt bas been shown that the estimates of objec­
tive measures obtained using these algorithms correlate well with the strengths 
of the perceived attributes of images, even when images have multiple impair­
ments. 

Results of several subjective experiments involving stimuli varying in blur 
and noise are reported in Chapter 4. Multidimensional sealing (MDS) tech­
niques have been used to analyze these data and to construct the perceptual 
space of images degraded by blur and noise. The perceptual space is spanned 
by the important perceptual attributes of images and can be used to under­
stand the relation between the perceived attributes and quality. Using the 
directions of attributes derived in the perceptual space, it is shown that the 
attributes unsharpness and noisiness are not orthogonal, hut interact weakly, 
with an angle of approximately 80° between them. It is also shown that the 
impairment vector, whose direction is opposite to the direction of the quality 
vector, lies between the unsharpness and noisiness vectors, with an angle of 
approximately 33° between the unsharpness and the impairment vectors. 

Similar to the perceptual space spanned by the basic image attributes, a no­
tion of a psychometrie space spanned by the objective (psychometrie) measures 
bas been introduced in Chapter 5. The mapping between these two spaces has 
been derived and used to map images from the psychometrie space to the per­
ceptual space. The positions of images in the psychometrie space are obtained 
from the estimates of the objective measures. The strengths of the perceptual 
attributes are given by the projections of the image positions in the perceptual 
space onto the attribute axes. Therefore, the perceptual attributes of an image 
can be estimated by estimating the objective measures for the attributes using 
the algorithms, i.e, locating the image position in the psychometrie space, map­
ping the image position from psychometrie space to the perceptual space, and 
projecting the position onto the attribute axes. It is shown that the attributes 
and the quality thus estimated correlate well with the perceived attributes and 
perceived quality of images. 
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Similar to unsharpness and noisiness, the global brightness contrast is also 
an important perceptual attribute of images. An algorithm to estimate a mea­
sure for global brightness contrast, called a contrast-index, has been presented 
in Chapter 6. The contrast-index estimation algorithm is based on the cu­
mulative histogram of an approximate psychometrie brightness image. The 
algorithm essentially captures the effective dynamic range of brightness in an 
image. 

The main findings of this thesis have been summarized in Chapter 7. The 
computational algorithms developed in this thesis have demonstrated that im­
portant physical parameters of images can be reliably estimated from image 
features such as edges and uniform regions extracted by local processing of the 
image. The results obtained in this thesis show that the proposed objective 
measures for unsharpness and noisiness, based on edge features and uniform 
regions, are good correlates of perceived unsharpness and noisiness. The results 
also show that the approach used in this thesis, based on the multidimensional 
nature of the image quality and the mapping between the perceptual space and 
the psychometrie space, is a promising one. 



178 



Samenvatting 

De behoefte aan snelle, betrouwbare en zuinige methoden voor de evaluatie van 
op nieuwe manieren gegenereerde, bewerkte of gecodeerde beelden heeft geleid 
tot een toenemende vraag naar technieken waarmee de perceptieve kwaliteit 
van beelden objectief geëvalueerd kan worden. Dit proefschrift behandelt het 
probleem van het voorspellen van perceptieve beeldkwaliteit, waarbij beeld­
kwaliteit beschouwd wordt als een multidimensionaal percept dat bestaat uit 
verschillende onderliggende percepten zoals scherpte, ruizigheid en globaal hel­
derheidscontrast. Elk van deze attributen wordt hoofdzakelijk beïnvloed door 
één fysische parameter van het beeld. Daarom kunnen de attributen voorspeld 
worden door het schatten van de relevante fysische parameters uit het beeld 
en het relateren van deze schattingen aan de attributen. De perceptieve beeld­
kwaliteit kan dan voorspeld worden door het vinden van de relatie tussen de 
attributen en de kwaliteit. Het doel van dit proefschrift is het ontwikkelen 
van computationele algoritmen voor het schatten van de parameters van beeld­
kenmerken uit gedegradeerde beelden en het ontwikkelen van methoden om de 
beeldkwaliteit te voorspellen op basis van deze schattingen. 

Er zijn computationele algoritmen ontwikkeld voor het schatten van twee 
belangrijke beeldparameters: de helling van de stapresponsie van een filter 
dat onscherpte in het beeld introduceert (Hoofdstuk 2) en de standaardafwij­
king van de ruis in een beeld (Hoofdstuk 3). Het is bekend dat deze fysische 
beeldparameters hoofdzakelijk bepalend zijn voor de perceptieve attributen 
onscherpte en ruizigheid. De schattingsalgoritmen voor beeldparameters zijn 
gebaseerd op perceptief relevante kenmerken van het beeld. Onscherpte in 
een beeld veroorzaakt bijvoorbeeld een grote waargenomen verandering in de 
buurt van scherpe overgangen zoals randen en lijnen. Evenzo is ruis in een 
beeld het duidelijkst zichtbaar in uniforme gebieden van het beeld. De detec­
tie en analyse van deze perceptief relevante kenmerken wordt uitgevoerd met 
behulp van lokale afgeleiden in het beeld. In het bijzonder worden lokale afgelei­
den van een Gaussiaan gebruikt, die veel eigenschappen gemeen hebben met 
sommige receptieve velden in het menselijke visuele systeem. Het schattingsal­
goritme voor onscherpte detecteert de uitgesproken ééndimensionale randen 
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in het beeld en schat de onscherpte uit de relatie tussen de lokale afgeleiden 
van een onscherpe en de scherpe rand. Het schattingsalgoritme voor ruis is 
gebaseerd op de statistiek van de energie in de eerste afgeleide in uniforme 
gebieden van het beeld. Het ontwerp, de analyse en de resultaten van deze 
algoritmen worden in detail besproken in dit proefschrift. De resultaten tonen 
aan dat de algoritmen robuuste schattingen van de benodigde beeldparameters 
opleveren, zelfs bij zeer lage signaal-ruisverhoudingen. 

De waargenomen attributen van beelden hangen niet alleen af van de 
waarde van de fysische parameters die hen beïnvloeden, maar ook van de 
gevoeligheid van het visuele systeem voor veranderingen in de waarden van 
die fysische parameters. Daarom worden objectieve maten voor waargenomen 
onscherpte en ruizigheid verkregen door het transformeren van de fysische pa­
rameters, waarbij de transformaties rekening houden met de gevoeligheden. De 
maat die wordt verkregen door transformatie van de helling van de staprespon­
sie van het onscherpte-filter wordt de onscherpte-index genoemd, en de maat 
verkregen uit de standaardafwijking van de ruis wordt de ruis-index genoemd. 
Er zijn algoritmen ontwikkeld voor het schatten van de onscherpte-index en de 
ruis-index uit een beeld. Er is aangetoond dat de schattingen van de objec­
tieve maten die met deze algoritmen verkregen worden goed correleren met de 
waargenomen sterkte van de perceptieve attributen van beelden, zelfs wanneer 
beelden meervoudige degradaties bevatten. 

In hoofdstuk 4 worden de resultaten vermeld van een aantal subjectieve 
experimenten, waarbij stimuli gebruikt zijn die variëren in onscherpte en ruis. 
Multidimensionale schalingstechnieken (MDS) zijn gebruikt om deze data te 
analyseren en om de perceptieve ruimte te construeren van beelden die door 
onscherpte en ruis gedegradeerd zijn. De perceptieve ruimte wordt opgespan­
nen door de belangrijke perceptieve attributen van beelden en kan gebruikt 
worden om de relatie tussen waargenomen attributen en kwaliteit te begrij­
pen. Gebruik makend van de richtingen van attributen zoals afgeleid in de 
perceptieve ruimte wordt aangetoond dat de attributen onscherpte en ruis niet 
loodrecht op elkaar staan, maar een zwakke interactie hebben met een hoek 
van ongeveer 80° ertussen. Er wordt ook aangetoond dat de degradatievector, 
wiens richting tegengesteld is aan de kwaltiteitsvector, tussen de onscherpte- en 
ruizigheidsvectoren in ligt, met een hoek van ongeveer 33° tussen de onscherpte­
en de degradatievector. 

Analoog aan de perceptieve ruimte opgespannen door de fundamentele 
beeldattributen wordt het begrip van een psychometrische ruimte, opgespan­
nen door de objectieve (psychometrische) maten voor de perceptieve attributen, 
geïntroduceerd in Hoofdstuk 5. De afbeelding tussen deze twee ruimten wordt 
afgeleid en gebruikt om beelden af te beelden van de psychometrische naar 
de perceptieve ruimte. De posities van beelden in de psychometrische ruimte 
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worden verkregen uit de schattingen van de objectieve maten. De sterkten 
van perceptieve attributen worden gegeven door projectie van de posities van 
beelden in de perceptieve ruimte op de attribuut-assen. De perceptieve at­
tributen van een beeld kunnen daarom geschat worden door het schatten van 
de objectieve maten voor de attributen gebruik makend van de algoritmen, dus 
het bepalen van de positie van het beeld in de psychometrische ruimte, het 
afbeelden van de positie van het beeld van de psychometrische naar de per­
ceptieve ruimte, en het projecteren van deze positie op de attribuut-assen. Er 
wordt aangetoond dat de op deze manier geschatte attributen en de kwaliteit 
goed correleren met de waargenomen attributen en kwaliteit van beelden. 

Net als perceptieve onscherpte en ruizigheid is ook het globale helderheids­
contrast een belangrijk perceptief attribuut van beelden. In Hoofdstuk 6 wordt 
een algoritme gepresenteerd voor het schatten van een maat voor globaal helder­
heidscontrast, de contrastindex genaamd. Het schattingsalgoritme voor de con­
trastindex is gebaseerd op het cumulatieve histogram van een bij benadering, 
psychometrische helderheidsbeeld. In wezen bepaalt het algoritme het effec­
tieve dynamische bereik van de helderheid in een beeld. 

De belangrijkste bevindingen van dit proefschrift worden nog eens in on­
derling verband gebracht in Hoofdstuk 7. De in dit proefschrift ontwikkelde 
computationele algoritmen hebben aangetoond dat belangrijke fysische para­
meters van beelden betrouwbaar geschat kunnen worden uit beeldkenmerken 
zoals randen en uniforme gebieden, die door lokale bewerking uit het beeld 
geëxtraheerd worden. De resultaten verkregen in dit proefschrift laten zien dat 
de voorgestelde objectieve maten voor onscherpte en ruizigheid, gebaseerd op 
kenmerken van randen en uniforme gebieden, goed correleren met waargenomen 
onscherpte en ruizigheid. De resultaten tonen tevens aan dat de in dit proef­
schrift gebruikte aanpak, gebaseerd op de multidimensionale aard van beeld­
kwaltiteit en de afbeelding tussen perceptieve en psychometrische ruimte, veel­
belovend is. 
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Stellingen 
behorende bij het proefschrift 

Feature Extmction For Image Quality Prediction 
van Vishwakumara Kayargadde 

1. The widely used objective measure for quality, the root mean 
square difference between the original and the processed image, 
is good only for images impaired by additive white noise hut not 
for those with other impairments such as blur. 

This thesis. 

Limb J. (1979) Distortion criteria of the human viewer, IEEE 
Trans. Syst. Man Cybern., SMC-9, 778-793. 

2. When the headlights of an automobile are on, the visibility of the 
front indicator lights is relatively poor. This is mainly due to 
the glare from the headlights and a higher Weber fraction. The 
visibility of the indicator lights can be improved considerably by 
slightly reducing the glare or the intensity of the headlights when 
the indicator lights are on. 

3. Science and common sense have to be clearly distinguished in a 
classroom. 

4. The design of the Dutch ten-cent coin needs reconsideration be­
cause of its poor ergonomie properties, especially in relation to its 
use by the elderly. 

5. Cooking is an unique example of human creativity that gives rise 
to psychological attributes stemming from all five senses, although 
the weight given to the different attributes varies widely across 
cultures. 



6. The degree of dissatisfaction due to an action, is often a function 
of the distance between the desired or the expected result and the 
achieved result. Since it is often not possible to make this distance 
zero, one way to remain immune to dissatisfaction is to assign a 
negligible weight to this distance. 

The complete works of Swami Vivekananda (1962) Vol 1, llth 
Ed., Advaita Ashrama, Calcutta. 

7. It took the extermination of quite a few species for mankind to 
realize that the consequences of wiping out any one species from 
earth's ecosystem are considerably greater than those of knocking 
out a brick from a wall. 

8. While robots are frequently being designed to function like humans, · 
imitating robots by humans has become a common form of street 
entertainment. 


