1,744 research outputs found

    A note on “Multicriteria adaptive paths in stochastic, time-varying networks”

    Get PDF
    In a recent paper, Opasanon and Miller-Hooks study multicriteria adaptive paths in stochastic time-varying networks. They propose a label correcting algorithm for finding the full set of efficient strategies. In this note we show that their algorithm is not correct, since it is based on a property that does not hold in general. Opasanon and Miller-Hooks also propose an algorithm for solving a parametric problem. We give a simplified algorithm which is linear in the input size.Multiple objective programming; shortest paths; stochastic time-dependent networks; time-adaptive strategies

    On finding paths and flows in multicriteria, stochastic and time-varying networks

    Get PDF
    This dissertation addresses two classes of network flow problems in networks with multiple, stochastic and time-varying attributes. The first problem class is concerned with providing routing instructions with the ability to make updated decisions as information about travel conditions is revealed for individual travelers in a transportation network. Three exact algorithms are presented for identifying all or a subset of the adaptive Pareto-optimal solutions with respect to the expected value of each criterion from each node to a desired destination for each departure time in the period of interest. The second problem class is concerned with problems of determining the optimal set of a priori path flows for evacuation in capacitated networks are addressed, where the time-dependent and stochastic nature of arc attributes and capacities inherent in these problems is explicitly considered. The concept of Safest Escape is formulated for developing egress instructions. An exact algorithm is proposed to determine the pattern of flow that maximizes the minimum path probability of successful arrival of supply at the sink. While the Safest Escape problem considers stochastic, time-varying capacities, arc travel times, while time-varying, are deterministic quantities. Explicit consideration of stochastic and time-varying travel times makes the SEscape problem and other related problems significantly more difficult. A meta-heuristic based on the principles of genetic algorithms is developed for determining optimal path flows with respect to several problems in dynamic networks, where arc traversal times and capacities are random variables with probability mass functions that vary with time. The proposed genetic algorithm is extended for use in more difficult, stochastic, time-varying and multicriteria, capacitated networks, for which no exact, efficient algorithms exist. Several objectives may be simultaneously considered in determining the optimal flow pattern: minimize total time, maximize expected flow and maximize the minimum path probability of successful arrival at the sink (the objective of the SEscape problem). Numerical experiments are conducted to assess the performance of all proposed approaches

    Scheduling participants of Assessment Centres

    Get PDF
    Assessment Centres are used as a tool for psychologists and coaches to ob- serve a number of dimensions in a person's behaviour and test his/her potential within a number of chosen focus areas. This is done in an intense course, with a number of dierent exercises which expose each participant's ability level in the chosen focus areas. The participants are observed by assessors with the purpose of gathering material for reaching a conclusion on each participant's personal pro le. We consider the particular case that arises at the company Human Equity (www.humanequity.dk), where Assessment Centres usually last two days and involve 3-6 psychologists or trained coaches as assessors. An entire course is composed of a number of rounds, with each round having its individual duration. In each round, the participants are divided into a number of groups with prespeci ed pairing of group sizes and assessors. The scheduling problem amounts to determining the allocation of participants to groups in each round. We have developed a model and solution approach for this particular scheduling problem, which may be viewed as a rather extensive generalization of the Social Golfer Problem.No keywords;

    Note: Comments on the paper by Rosling (2002)

    Get PDF
    In this note we comment on whether the cost rate function of Model 2 of Rosling (2002) is exactInventory control; compound renewal process

    Robust Route Planning in Intermodal Urban Traffic

    Get PDF
    Passengers value reliable travel times but are often faced with delays in intermodal urban traffic. To improve their mobility experience, we propose a robust route planning tool that provides routes guaranteeing a certain probability of on-time arrival and satisfying additional constraints. The constraints can limit the number of transfers, time-dependent trip costs and other relevant resources. To find such routes, we extend the time-dependent reliable shortest path problem by adding constraints on time-dependent and stochastic edge weights. An exact solution method based on multi-objective A* search is proposed to solve this problem. By applying our algorithm to a showcase featuring an actual city, we hope to answer relevant questions for policy-makers and contribute to smarter mobility in the future

    The role of operational research in green freight transportation

    Get PDF
    Recent years have witnessed an increased awareness of the negative external impacts of freight transportation. The field of Operational Research (OR) has, particularly in the recent years, continued to contribute to alleviating the negative impacts through the use of various optimization models and solution techniques. This paper presents the basic principles behind and an overview of the existing body of recent research on ‘greening’ freight transportation using OR-based planning techniques. The particular focus is on studies that have been described for two heavily used modes for transporting freight across the globe, namely road (including urban and electric vehicles) and maritime transportation, although other modes are also briefly discussed

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    An optimal transportation routing approach using GIS-based dynamic traffic flows

    Full text link
    This paper examines the value of real-time traffic information gathered through Geographic Information Systems for achieving an optimal vehicle routing within a dynamically stochastic transportation network. We present a systematic approach in determining the dynamically varying parameters and implementation attributes that were used for the development of a Web-based transportation routing application integrated with real-time GIS services. We propose and implement an optimal routing algorithm by modifying Dijkstra’s algorithm in order to incorporate stochastically changing traffic flows. We describe the significant features of our Web application in making use of the real-time dynamic traffic flow information from GIS services towards achieving total costs savings and vehicle usage reduction. These features help users and vehicle drivers in improving their service levels and productivity as the Web application enables them to interactively find the optimal path and in identifying destinations effectively
    • …
    corecore