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Abstract. Passengers value reliable travel times but are often faced with delays 
in intermodal urban traffic. To improve their mobility experience, we propose a 
robust route planning tool that provides routes guaranteeing a certain probability 
of on-time arrival and satisfying additional constraints. The constraints can limit 
the number of transfers, time-dependent trip costs and other relevant resources. 
To find such routes, we extend the time-dependent reliable shortest path problem 
by adding constraints on time-dependent and stochastic edge weights. An exact 
solution method based on multi-objective A* search is proposed to solve this 
problem. By applying our algorithm to a showcase featuring an actual city, we 
hope to answer relevant questions for policy-makers and contribute to smarter 
mobility in the future. 
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1 Introduction  

Urban transport passengers value reliable travel times [1]. However, travel times in 
urban transport are uncertain due to a range of factors such as the traffic situation or 
infrastructure defects. A robust route planning tool that takes reliability into account 
can therefore help to improve passengers’ mobility experience in cities and enable 
smarter mobility. However, current tools typically don’t consider reliability and base 
their advice on deterministic public transport schedules and expected car travel times. 

Our contribution is the development of a route planner that finds robust routes in 
intermodal urban traffic. We define a network model that reflects intermodal specifics 
such as uncertain travel times that vary over time and a flexible set of constraints. These 
constraints can limit the number of transfers, time-dependent trip costs and other 
resources. Subsequently, we extend the work of Chen et al. [2] and develop an exact 
algorithm based on multi-objective A* search [3] that finds robust routes satisfying the 
constraints. Reliability is reflected by setting a minimum probability for on-time arrival. 

2 Related Work 

Reliable route planning is a stochastic shortest path problem [4] in a network with time-
dependent travel times [5]. Many variants of this problem exist. Firstly, paths defined 
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a priori can be distinguished from adaptive decision rules that define a successor based 
on realized arrival times [5]. We focus on a priori paths, which are more practical than 
complex decision rules. Secondly, many optimization criteria were proposed, e.g., 
expected time [5, 6], a combination of expected time and variance [7], worst- [8] and 
best-case time [9] as well as criteria based on on-time arrival probability [10, 11]. 

Limiting cost or walking time creates a constrained problem. In its well-studied 
deterministic version [12] it is NP-complete [13] and can include waiting in some 
variants [14]. It was recently extended to the stochastic case [15, 16]. 

Main solution approaches for the unconstrained problem include mixed integer 
programming [11, 15, 17] and label-correcting algorithms [2, 9, 10, 18]. For example, 
Chen et al. [2] use an A* search approach to find a shortest path with on-time arrival 
guarantees and also apply it to a weighted combination of time and cost.  

The constrained problem has been addressed with mixed integer programming to 
minimize expected time [15] and with genetic algorithms to maximize on-time arrival 
probability [16], both assuming constant weights. Building on Chen et al. [2], our 
contribution is to develop an exact solution method for the problem with on-time arrival 
guarantees, applicable to constant as well as time-dependent and stochastic weights.  

3 Problem Definition 

We use a weighted multi-layer digraph = 𝑁, , , 𝛺, ,  to model intermodal 
networks. Locations are represented by nodes ∈ 𝑁 and passengers can travel between 
locations on directed edges , ∈ ⊆ 𝑁 × 𝑁. Each node belongs to a layer ∈  that 
corresponds to a transport mode, e.g., walking or a train line. Edges within a layer 
represent travel using that mode and edges between layers model transfers.  

Departures and arrivals at nodes are assumed to happen at discrete times  within a 
finite time horizon 𝛺 = { , , … , 𝑚𝑎 } and travel times are described by discrete 
random variables. To reflect time-dependence, functions  assign such random 
variables to each edge ,  depending on the time ∈ 𝛺 at which it is used. In addition, 
each edge is labeled with time-dependent discrete random variables , ∈{ , … , } representing a diverse set of non-negative weights such as distance or (time-
dependent) fees.  

Finding robust routes translates into a discrete and stochastic optimization problem:                          𝑎, 𝑎 𝑎                     (1) . . 𝑃( 𝑎 𝑎 𝑔 ) 𝛼  (2)  𝑃( 𝑎 ) = , ∀ ∈ { , … , }  (3)  𝑎 ∈ 𝛺,   ∈ 𝑃  (4)

 

The goal is to find a path  in the set of simple paths 𝑃  from origin ∈ 𝑁 to 
destination ∈ 𝑁 that leaves the origin at the latest possible time 𝑎  and reaches the 
destination before or at a given time 𝑎 𝑔 ∈ 𝛺 with a probability of at least 𝛼 while 
satisfying additional constraints on, e.g., the number of transfers, cost or walking time.  
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The random variable  in (2) describes the arrival time at node  if starting at 
time  along path = , … , , , … . With = , it is calculated as follows: 

 = + , ∀ ∈ \   (5) 

In (3), accumulated weights, described by time-dependent random variables , ∀ ∈  are limited to . With = , ∀ ∈ , they are calculated as follows:  

         =  + , ∀ ∈ \  , ∀ ∈ { , … , }  (6)  

The sums of random variables in (5) and (6) can be calculated using time-dependent 
convolution. For example, the probability of reaching node  on path  at time w is 
calculated as follows:              𝑃( = ) = ∑ 𝑃( = )𝑃( = − ), ∀ ∈ 𝛺∈𝛺, ≤       (7) 

This requires a sufficiently large time horizon and the assumption of independent edge 
travel times along paths. However, for scheduled modes, travel times are likely 
dependent. For example, a train that is delayed on one trip segment might try to get 
back on schedule on the subsequent segment by driving at top speed. To reflect such 
dependencies and still maintain the independence assumption, we represent entire 
journeys on one transportation line with a single edge. The travel time on that edge 
includes waiting before boarding and total time on board. 

Waiting at nodes is often not allowed [2, 18]. However, it can improve the solution 
in the constrained problem: for example, waiting for congestion charges to drop after 
rush hour can allow passengers with a limited budget to use a faster mode of transport 
and thus accelerate their journey. We call this strategic waiting, as it is voluntary and 
thus distinguished from transfer waiting, i.e., waiting for a scheduled vehicle. We 
introduce strategic waiting by replacing  in (5) and (6) with a random variable ,  representing arrival time after strategic waiting. It depends on the original 
arrival time  and waiting parameter ∈ 𝛺, ∀ ∈ 𝑁.  is an additional decision 
variable and models that the passenger waits until  if arriving before . 

4 Solution Approach 

We will build on the work of Chen et al. [2], who iteratively solve the closely related 
forward problem in which 𝑎  is fixed and 𝑎 𝑔  is minimized. After several 
iterations with different starting times, a solution to the original problem is found.  

The forward problem will be converted to a multi-objective problem by turning the 
weight constraints into objective functions. The set of non-dominated solutions to this 
associated multi-objective problem contains a solution to the constrained problem [19].  

To find the non-dominated solutions, we will generalize the A* approach in [2] and 
apply multi-objective A* search [3]. A* search is defined for additive attributes, but 
can be extended to convolutions if they are order-preserving [20]. Given two paths ,  from  to a node ∈ 𝑁\  with  dominating  and any path  starting at , 
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the order-preserving property (OPP) implies that the extended path  dominates the 
extended path . Given the OPP, dominated paths can be pruned in the algorithm. 

Without constraints, the OPP holds if distributions are FIFO1 [2]. As this is not 
always true with constraints and general weight functions, we will define conditions for 
which the OPP holds and structure our proofs along three hypotheses:  

• The OPP holds for FIFO travel times and non-decreasing, deterministic weights. 
• For deterministic weights that are non-decreasing until time t' and decrease after-

wards (e.g., a congestion charge during rush-hour), strategic waiting parameters can 
be set such that the combined waiting and travel times satisfy the OPP.  

• The OPP holds for time-dependent stochastic weights if ′ >  implies for all edges 
that ′ , ∀ ∈  regarding first-order stochastic dominance (FSD)2. 

5 Next Steps and Expected Contributions 

So far, this research in progress has defined the constrained time-dependent reliable 
shortest path problem with time-dependent and stochastic weights to model robust route 
planning in urban intermodal traffic. In addition, we outlined an exact solution method.   

We will continue to implement this approach and support it with required proofs. 
Numerical experiments will be conducted to evaluate the algorithm’s speed given 
different network sizes and problem setups. This will include a comparison with the 
less complex unconstrained problem that was solved within seconds for real-world 
instances [2]. Furthermore, solutions will be benchmarked against deterministic routing 
advice. Finally, we plan to set up a showcase for an actual city with travel times sampled 
from, e.g., real-time public transport data or car trajectories. We expect that this will 
help to answer important questions for policy-makers such as: 

• Which measures are most effective for improving reliability? For example, how does 
the effect of increasing train reliability compare to that of higher trip frequencies? 

• How does reliability affect mode choice? And can mode choice be effectively 
influenced by improving the reliability of certain modes (e.g., bus or bike sharing)? 

By answering these questions, we hope to make a significant contribution to smarter 
urban mobility in the future. 
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