8 research outputs found

    Multicriteria Fuzzy Analysis for a GIS-Based Management of Earthquake Scenarios

    Get PDF
    Objective of this article is the formulation andthe implementation of a decision-making model for theoptimal management of emergencies. It is based on theaccurate definition of possible scenarios resulting fromprediction and prevention strategies and explicitly takesinto account the subjectivity of the judgments of prefer-ence. To this end, a multicriteria decision model, basedon fuzzy logic, has been implemented in a user-friendlygeographical information system (GIS) platform so asto allow for the automation of choice processes betweenseveral alternatives for the spatial location of the investi-gated scenarios. In particular, we have analyzed the po-tentialities of the proposed approach in terms of seismicrisk reduction, simplifying the decision process leadingto the actions to be taken from directors and managers ofcoordination services. Due to the large number of vari-ables involved in the decision process, it has been pro-posed a particularly flexible and streamlined method inwhich the damage scenarios, based on the vulnerabilityof the territory, have represented the input data to de-rive a vector of weights to be assigned to different de-cision alternatives. As an application of the proposedapproach, the seismic damage scenario of a region of400 km2, hit by the 2009 earthquake in L’Aquila (Italy),has been analyzed

    Earthquake Hazard Analysis in Ciletuh Pelabuhan Ratu Geopark Area, West Java

    Get PDF
    Indonesia is situated between Asia and Australia, as well as the Indian and Pacific Oceans. This circumstance places Indonesia in a geologically complicated pattern, which increases the intensity of earthquakes, tsunamis, volcanoes, and landslides. UNESCO has classified Pelabuhanratu Ciletuh Geopark as a world heritage area. This has resulted in an explosion in tourist and development activity. Even though this tourism destination has the potential for high seismicity, there has been no analysis of the seismic hazard in this region. This study aims to map the earthquake hazard in the Ciletuh Pelabuhan Ratu Geopark Area. This will be important for determining vital assets' placement and development planning. This study employs remote sensing studies and geographic information systems to examine and classify earthquake-prone locations. We evaluated data from DEM, RBI, and soil-type maps. This method evaluates each earthquake hazard metric using the Analytical Hierarchy Process (AHP). The large research area has a slope between 0-300. Few locations have steep slopes. In the Districts of Cisolok, Cikakak, and portions of Pelabuhan Ratu, the characteristics of the huge hard rock are derived from the Quaternary volcanic deposits of Mount Endut. As a result, this region possesses a solid rock structure that can absorb an earthquake propagation wave. This dynamic process of geomorphological creation can also demonstrate that the region surrounding the lineage will feel the effects of a future earthquake. The results show that Ciemas, Simpenan, parts of Cisolok, and Pelabuhanratu districts are included in the moderate to high category of earthquake threats

    Uncertainty and Fuzzy Decisions in Earthquake Risk Evaluation of Buildings

    Get PDF
    The Northern region of Thailand has been considered as one of the seismic risk zones. However, most existing buildings in the area had been designed and constructed based on old building design codes without seismic consideration. Therefore, those buildings are required to upgrade based on earthquake building damage risk evaluation. With resource limitations, it is not feasible to retrofit all buildings in a short period. In addition, the results of the risk evaluation contain uncertain inputs and outputs. The objective of this study is to prioritize building retrofit based on fuzzy earthquake risk assessment. The risk assessment of a building was made considering the risk factors including (1) building vulnerability, (2) seismic intensity and (3) building values. Then, the total risk was calculated by integrating all the risk factors with their uncertainties using a fuzzy rule based model. An example of the retrofit prioritization is shown here considering the three fuzzy factors. The ranking is hospital, temple, school, government building, factory and house, respectively. The result helps decision makers to screen and prioritize the building retrofitting in the seismically prone area

    RESCUE MANAGEMENT AND ASSESSMENT OF STRUCTURAL DAMAGE BY UAV IN POST-SEISMIC EMERGENCY

    Get PDF
    Abstract. The increasing frequency of emergencies urges the need for a detailed and thorough knowledge of the landscape. The first hours after a disaster are not only chaotic and problematic, but also decisive to successfully save lives and reduce damage to the building stock. One of the most important factors in any emergency response is to get an adequate awareness of the real situation, what is only possible after a thorough analysis of all the available information obtained through the Italian protocol Topography Applied to Rescue. To this purpose geomatic tools are perfectly suited to create, manage and dynamically enrich an organized archive of data to have a quick and functional access to information useful for several types of analysis, helping to develop solutions to manage the emergency and improving the success of rescue operations. Moreover, during an emergency like an earthquake, the conventional inspection to assess the damage status of buildings requires special tools and a lot of time. Therefore, given the large number of buildings requiring safety measures and rehabilitation, efficient use of limited resources such as time and equipment, as well as the safety of the involved personnel are important aspects. The applications shown in the paper are intended to underline how the above-mentioned objective, in particular the rehabilitation interventions of the built heritage, can be achieved through the use of data acquired from UAV platform integrated with geographic data stored in GIS platforms

    CAESAR II Tool: Complementary Analyses for Emergency Planning Based on Seismic Risks Impact Evaluations

    Get PDF
    Italy is a country with high seismic hazard, however since the delay in the seismic classification of the national territory, most of the existing building heritage does not comply with the current technical standards for buildings. The seismic events that have hit different Italian regions in recent years have highlighted the complexity of the challenge for the public bodies both in the emergency management and post‐event reconstruction and in the planning of effective risk prevention and mitigation measures to be implemented in ‘peacetime’. These difficulties concern, in particular, the capacity to properly manage the financial and technical resources available and to identify the intervention priorities throughout the entire emergency cycle. For correct management, the priority is to quantify and localize, through simulations, the quantification of probable damages and to evaluate in terms of cost‐benefits the possible alternative strategies for mitigation, also taking into account the potential, in terms of cost‐effectiveness, of integrated measures for seismic and energy retrofitting. In this framework, the project CAESAR II (Complementary Analyses for Emergency planning based on Seismic Risks impact evaluations) has been developed as a Decision Support System for Public Authorities in charge of developing Disaster Risk Reduction plans, with the possibility of programming mid to long‐term investments for public and private properties, as well as defining custom financial support mechanisms and tax incentives

    Multicriteria Fuzzy Analysis for a GIS-based Management of Earthquake Scenarios

    No full text
    Objective of this article is the formulation and the implementation of a decision‐making model for the optimal management of emergencies. It is based on the accurate definition of possible scenarios resulting from prediction and prevention strategies and explicitly takes into account the subjectivity of the judgments of preference. To this end, a multicriteria decision model, based on fuzzy logic, has been implemented in a user‐friendly geographical information system (GIS) platform so as to allow for the automation of choice processes between several alternatives for the spatial location of the investigated scenarios. In particular, we have analyzed the potentialities of the proposed approach in terms of seismic risk reduction, simplifying the decision process leading to the actions to be taken from directors and managers of coordination services. Due to the large number of variables involved in the decision process, it has been proposed a particularly flexible and streamlined method in which the damage scenarios, based on the vulnerability of the territory, have represented the input data to derive a vector of weights to be assigned to different decision alternatives. As an application of the proposed approach, the seismic damage scenario of a region of 400 km2, hit by the 2009 earthquake in L'Aquila (Italy), has been analyzed
    corecore