65 research outputs found

    Non Stationary Signal Analysis, Energy Demodulation and the Multicomponent AM--FM Signal Model

    Get PDF

    Embedded AM-FM Signal Decomposition Algorithm for Continuous Human Activity Monitoring

    Get PDF
    AM-FM decomposition techniques have been successfully used for extracting significative features from a large variety of signals, helping realtime signal monitoring and pattern recognition, since they represent signals as a simultaneous composition of amplitude modulation and frequency modulation, where the carriers, amplitude envelopes, and the instantaneous frequencies are the features to be estimated. Human activities often involve repetitive movements, such as in running or cycling, where sinusoidal AM-FM decompositions of signals have already demonstrated to be useful to extract compact features to aid monitoring, classification, or detection. In this work we thus present the challenges and results of implementing the iterated coherent Hilbert decomposition (ICHD), a particularly effective algorithm to obtain an AM-FM decomposition, within a resource-constrained and low-power ARM Cortex-M4 microcontroller that is present in a wearable sensor we developed. We apply ICHD to the gyroscope data acquired from an inertial measurement unit (IMU) that is present in the sensor. Optimizing the implementation allowed us to achieve real-time performance using less then 16 % of the available CPU time, while consuming only about 5.4 mW of power, which results in a run-time of over 7 days using a small 250 mAh rechargeable cell

    AM-FM methods for image and video processing

    Get PDF
    This dissertation is focused on the development of robust and efficient Amplitude-Modulation Frequency-Modulation (AM-FM) demodulation methods for image and video processing (there is currently a patent pending that covers the AM-FM methods and applications described in this dissertation). The motivation for this research lies in the wide number of image and video processing applications that can significantly benefit from this research. A number of potential applications are developed in the dissertation. First, a new, robust and efficient formulation for the instantaneous frequency (IF) estimation: a variable spacing, local quadratic phase method (VS-LQP) is presented. VS-LQP produces much more accurate results than current AM-FM methods. At significant noise levels (SNR \u3c 30dB), for single component images, the VS-LQP method produces better IF estimation results than methods using a multi-scale filterbank. At low noise levels (SNR \u3e 50dB), VS-LQP performs better when used in combination with a multi-scale filterbank. In all cases, VS-LQP outperforms the Quasi-Eigen Approximation algorithm by significant amounts (up to 20dB). New least squares reconstructions using AM-FM components from the input signal (image or video) are also presented. Three different reconstruction approaches are developed: (i) using AM-FM harmonics, (ii) using AM-FM components extracted from different scales and (iii) using AM-FM harmonics with the output of a low-pass filter. The image reconstruction methods provide perceptually lossless results with image quality index values bigger than 0.7 on average. The video reconstructions produced image quality index values, frame by frame, up to more than 0.7 using AM-FM components extracted from different scales. An application of the AM-FM method to retinal image analysis is also shown. This approach uses the instantaneous frequency magnitude and the instantaneous amplitude (IA) information to provide image features. The new AM-FM approach produced ROC area of 0.984 in classifying Risk 0 versus Risk 1, 0.95 in classifying Risk 0 versus Risk 2, 0.973 in classifying Risk 0 versus Risk 3 and 0.95 in classifying Risk 0 versus all images with any sign of Diabetic Retinopathy. An extension of the 2D AM-FM demodulation methods to three dimensions is also presented. New AM-FM methods for motion estimation are developed. The new motion estimation method provides three motion estimation equations per channel filter (AM, IF motion equations and a continuity equation). Applications of the method in motion tracking, trajectory estimation and for continuous-scale video searching are demonstrated. For each application, we discuss the advantages of the AM-FM methods over current approaches

    Analyzing Image Structure by Multidimensional Frequency Modulation

    Full text link

    Hypernasal Speech Analysis via Emperical Mode Decomposition and the Teager-Kasiser Energy Operator

    Get PDF
    In the area of speech science, one particular problem of importance has been to develop a clear method for detecting hypernasality in speech. For speech pathologists, hypernsality is a critical diagnostic used for judging the severity of velopharyngeal (nasal cavity/mouth separation) inadequacy in children with a cleft lip or cleft palate condition. For physicians and particularly neurologists, these same velopharyngeal inadequacies are believed to be linked to nervous system disorders such as Alzheimers disease and particularly Parkinson\u27s disease. One can therefore envision the need to not only find a reliable method for detecting hypernasality, but to also quantify the level (severity) of hypernasality as well. An integral component in the study of speech is the analysis of speech formants, i.e., vocal tract resonances. Traditional acoustical analysis methods of using a linear source model follow the premise that differences between normal and hypernasal speech can be distinguished by shifts or power changes in the formant frequencies and/or the widening (or narrowing) of the formant bandwidths. Such a premise, however, has not been validated with consistency. Part of the reason is that traditional acoustical analysis methods such as one-third octave band, LPC (Linear Predictive Coding), and cepstral analysis are ill-equipped to deal with the nonlinear, non-stationary, and wideband characteristics of normal and nasal speech signals. Relatively newer DSP methods that employ group delay or energy separation overcome some of these problems, but have their own issues such as possible mode mixing, noise, and the aforementioned wideband problem. However, initial investigations into energy separation methods show promise as long as these issues can be resolved. This thesis evaluates the success of a novel acoustical energy approach which deals with the mode mixing and wideband problems where: (1) a DSP sifting algorithm known as the EMD (Empirical Mode Decomposition) is first implemented to decompose the voice signal into a number of IMFs (Intrinsic Mode Functions). (2) Energy analysis is performed on each IMF via the Teager-Kaiser Energy Operator. The proposed EMD energy approach is applied to voice samples taken from the American CLP Craniofacial database and is shown to produce a clear delineation between normal and nasal samples and between different levels of hypernasality.\u2

    Dynamic Classification using Multivariate Locally Stationary Wavelet Processes

    Get PDF
    Methods for the supervised classification of signals generally aim to assign a signal to one class for its entire time span. In this paper we present an alternative formulation for multivariate signals where the class membership is permitted to change over time. Our aim therefore changes from classifying the signal as a whole to classifying the signal at each time point to one of a fixed number of known classes. We assume that each class is characterised by a different stationary generating process, the signal as a whole will however be nonstationary due to class switching. To capture this nonstationarity we use the recently proposed Multivariate Locally Stationary Wavelet model. To account for uncertainty in class membership at each time point our goal is not to assign a definite class membership but rather to calculate the probability of a signal belonging to a particular class. Under this framework we prove some asymptotic consistency results. This method is also shown to perform well when applied to both simulated and accelerometer data. In both cases our method is able to place a high probability on the correct class for the majority of time points

    Friction, Vibration and Dynamic Properties of Transmission System under Wear Progression

    Get PDF
    This reprint focuses on wear and fatigue analysis, the dynamic properties of coating surfaces in transmission systems, and non-destructive condition monitoring for the health management of transmission systems. Transmission systems play a vital role in various types of industrial structure, including wind turbines, vehicles, mining and material-handling equipment, offshore vessels, and aircrafts. Surface wear is an inevitable phenomenon during the service life of transmission systems (such as on gearboxes, bearings, and shafts), and wear propagation can reduce the durability of the contact coating surface. As a result, the performance of the transmission system can degrade significantly, which can cause sudden shutdown of the whole system and lead to unexpected economic loss and accidents. Therefore, to ensure adequate health management of the transmission system, it is necessary to investigate the friction, vibration, and dynamic properties of its contact coating surface and monitor its operating conditions

    Multicomponent AM-FM demodulation via periodicity-based algebraic separation and energy-based demodulation

    No full text
    corecore