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Abstract

In the area of speech science, one particular problem of importance has been to

develop a clear method for detecting hypernasality in speech. For speech pathologists,

hypernsality is a critical diagnostic used for judging the severity of velopharyngeal

(nasal cavity/mouth separation) inadequacy in children with a cleft lip or cleft palate

condition. For physicians and particularly neurologists, these same velopharyngeal

inadequacies are believed to be linked to nervous system disorders such as Alzheimer’s

disease and particularly Parkinson’s disease. One can therefore envision the need to

not only find a reliable method for detecting hypernasality, but to also quantify the

level (severity) of hypernasality as well.

An integral component in the study of speech is the analysis of speech formants,

i.e., vocal tract resonances. Traditional acoustical analysis methods of using a lin-

ear source model follow the premise that differences between normal and hypernasal

speech can be distinguished by shifts or power changes in the formant frequencies

and/or the widening (or narrowing) of the formant bandwidths. Such a premise,
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however, has not been validated with consistency. Part of the reason is that tra-

ditional acoustical analysis methods such as one-third octave band, LPC (Linear

Predictive Coding), and cepstral analysis are ill-equipped to deal with the nonlinear,

non-stationary, and wideband characteristics of normal and nasal speech signals. Rel-

atively newer DSP methods that employ group delay or energy separation overcome

some of these problems, but have their own issues such as possible mode mixing,

noise, and the aforementioned wideband problem. However, initial investigations

into energy separation methods show promise as long as these issues can be resolved.

This thesis evaluates the success of a novel acoustical energy approach which

deals with the mode mixing and wideband problems where: (1) a DSP sifting al-

gorithm known as the EMD (Empirical Mode Decomposition) is first implemented

to decompose the voice signal into a number of IMFs (Intrinsic Mode Functions).

(2) Energy analysis is performed on each IMF via the Teager-Kaiser Energy Opera-

tor. The proposed EMD energy approach is applied to voice samples taken from the

American CLP Craniofacial database and is shown to produce a clear delineation

between normal and nasal samples and between different levels of hypernasality.
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Chapter 1

Introduction

1.1 Overview

A reliable method for acoustically detecting hypernasality in speech has proven to be

a tough proposition to develop. Many methods have been tried, often with inconsis-

tent results or general disagreement across different methods. Traditional methods,

such as the one-third octave band approach or LPC, assume a narrowband formant

model, and are therefore ill-equipped to deal with the wideband nature of normal

and nasal speech. Furthermore, the non-linear and non-stationary characteristics of

speech cause even more problems for these methods, particularly for LPC. Other

methods, such as the ESA or the group delay function, rely on successful multi-band

filtering (Chebyshev or Gabor bandpass filter bank) which is also found wanting,

since nasal formants are spectrally close to each other and have considerably wide

bandwidths. Newer energy-analysis methods with the Teager-Kaiser operator, which

are ideal for wideband, non-linear, and non-stationary signals, also fall short because

of the same band separation issues.

In this work, we apply a relatively new approach to band separation so that
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the Teager-Kaiser energy operator can be applied successfully. The band separation

is performed with an algorithm known as EMD (Empirical Mode Decomposition),

which is essentially an adaptive sifting algorithm. The EMD is successful where other

decompositions are not because it is not based on a set of predetermined analytic

functions. Instead, the basis functions for the algorithm are derived adaptively from

the data signal itself.

In this thesis, we will examine how some of the traditional speech analysis meth-

ods are employed, and why they are not ideal for detecting hypernasality. We

will then analyze speech samples from the ACP-CA [28] database using the joint

EMD/TKEO method to show that this newer approach is not only more sound for

nasal speech analysis, but is also able to produce a much clearer delineation between

normal and hypernasal speech.

Outside of evaluating velopharyngeal inadequacy and diagnosing Parkinson’s dis-

ease, there are other reasons to develop an acoustic method for measuring hyper-

nasality in speech. For the field clinician or therapist, such a tool would provide an

inexpensive means of diagnosing and treating nasal-related speech impediments. For

instance, such a method could be used to provide real-time biofeedback for a patient

training to reduce hypernasality, or for helping a person adapt to speaking a second

language.

1.2 Thesis Layout

We begin by introducing terminology and background information for understanding

the basics of speech production. Because of its importance, the mechanisms regarding

the production of speech formants are covered in detail. Terminology for digital

speech processing is covered in a similar manner.

We then look at some traditional, if not entirely successful methods of analyzing
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speech signals. The most widely used methods, one-third octave band and LPC

are examined. This will serve mainly as a backdrop to the discussion of the newer

energy-based methods which follow.

The Teager-Kaiser energy operator is introduced and discussed in detail as it is

the crux of the current research. Results of analysis, utilizing the operator in the

early stages of the research, are shown. The main point here is to demonstrate that

the TKEO has marvellous potential as a formant analysis tool, but is not quite viable

for use on speech signals in their pure (unconditioned) form. Voice samples taken

from the ACP-CA database are analyzed to make the case.

A method for decomposing (conditioning) the raw speech signal before energy

analysis is then introduced. This method is known as EMD (Empirical Mode De-

composition). The details of the evolutionary stages of the EMD algorithm are

covered so that the use of the variants of the EMD algorithm can be appreciated.

Finally, the TKEO is applied to the individual sub-components (IMFs) of the

EMD and an ensemble-type of energy analysis is performed. The analysis basically

defines a set of energy metrics that are derived from the energy contributions of

the individual IMFs at pre-determined high and low frequency bands. Voice samples

from this section are taken exclusively from the ACP-CA database since the subjects

are actual cleft-palate patients. The results of this dual EMD/TKEO approach and

recommendations for future work, close the thesis
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Chapter 2

Speech Basics

2.1 Anatomy and Differences between Normal

and Nasal Speech

As can be seen in Figure 2.1, there are many organs that make up the speech-

producing mechanism. For the purposes of studying hypernasality and formant for-

mations, the organs of interest are the velum (soft palate) and the tongue.

In general, human speech is produced by expelling air from the lungs through the

vocal folds which vibrate in connection with variations of air pressure in the glottis.

This interaction produces quasi-periodic pulses which then pass through the vocal

tract. For normal speech, the pulses then travel mainly through the oral cavity and

out through the mouth, with only a small amount passing through the nasal cavity.

For normal speakers, air flow through the nasal cavity is prevented by closure of the

velum. For persons with cleft palate or Parkinsons disease, the velum is malformed

(for cleft palate [3]), or is malfunctioning (for Parkinsons [4]), and is unable to close-

off the nasal cavity, resulting in most(>60%) of the air flow passing into the nasal

cavity and out through the nose. In clinical settings, the percentage of air that
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Figure 2.1: Anatomy of the speech-producing mechanism. The soft palate (velum) and the
tongue are the vital organs for the production of hypernasal vowels. In the left figure[32],
the position of the velum (closed) clearly separates the oral cavity from the nasal cavity
resulting in normal speech. In the right figure[33], the velum is slightly lowered (opened),
allowing some air to escape through the nasal cavity and out through the nose, resulting
in nasal or hypernasal speech.

exits through the nose is measured with a nasometer and produces a percentage

score known as nasalance. In general, nasalance scores less than 10 indicate normal

speech and those above 10 indicate nasal speech. Nasalance scores near 60 and above

indicate hypernasal speech.1

2.2 Formants

A formant is essentially a resonant frequency formed by the different parts of the

speech apparatus, mainly the vocal tract. Different phonemes (units of sound) pro-

duce their own unique set of formants which allow scientists to study the different

aspects of speech. In the study of normal vs. nasal speech, scientists look for changes

in the formant characteristics such as frequency, amplitude, bandwidth, and energy.

1As determined from feigned hypernasal voice samples in the SHS lab
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If one considers the many ways that the human voice can be utilized (speech, whis-

pering, yelling, singing, etc.), as many as 3 to 6 formants can be present for any

particular ’utterance’. For normal (spoken) speech, only the first 3 formants are of

interest and it is these that we will focus on.

While formants are present in both vowels and consonants, it is the vowels that

are typically used as a speech diagnostic. There are two main reasons for this: First,

vowels are well defined sounds and are longer in duration than consonants. Second,

the production of vowels utilize parts of the speech apparatus, such as the velum

and the nasal cavity, where changes in nasality are more apparent. For instance,

the ’ee’ sound from the word ’heed’ would sound much different between normal and

nasal people, as opposed to the ’t’ sound where the nasal differences would hardly

be distinguishable [2].

The first 3 formants for various vowels are shown in Figure 2.2. Note that the

formants show up as dark horizontal bands on a spectrogram. For several different

languages, the most studied vowels are /i/, /a/, and /u/ (see Figure 2.3 for pronunci-

ations of these and other phonemes). This is not without reason as can be seen from

the IPA vowel chart shown in Figure 2.4. The vowel chart is unusually shaped but

this is for the purpose of roughly depicting the tongue location for the pronunciation

of the various vowels. This is more clearly seen when the chart is overlaid with the

vocal tract as shown in Figure 2.5.

As can be seen from Figure 2.5, the geometry of the IPA chart is intended to

show the tongue height (positive y-direction) and tongue advancement(negative x-

direction) that produce certain vowels. Note that the vowels, /i/, /a/, and /u/ on

the corners of the chart represent extreme locations of the tongue, and indeed they

are known as corner vowels. In examining our three corner vowels of interest, we

note that the 2-dimensional tongue location is close to the roof of the mouth (⇒

high) and is advanced towards the lips (⇒ front) for the vowel /i/, is high and back

(away from the lips) for the vowel /u/, and is low (away from the roof of the mouth)
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Figure 2.2: Spectrograms showing the first three formants for several vowels [1]. For
normal/nasal analysis, the most commonly used vowels are /i/, /a/, and /u/. Reproduced
with permission.

and back for the vowel /a/.

It is important to understand the significance of the high/low-front/back tongue

locations, as these locations directly determine the frequencies of the first 2 formants

for a particular vowel. Figure 2.6 shows why this is the case. Note the two high

vowels (/i/ and /u/) have approx. the same 1st formant (F1) at about 300 Hz while

the two back vowels have 2nd formants (F2) fairly close to each other near 1.1 kHz.

A comparison of the three corner vowels leads us to the following general formant

rule: F1 is inversely proportional to tongue height and F2 is proportional to tongue

advancement.

Now that we understand how vowel formants are formed, it remains to determine
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Figure 2.3: Short phoneme chart for common vowels, diphthongs, and consonants [34].

which vowels would be best for the study of hypernasality. Many studies [5, 6, 16, 20,

27] have been done with the vowels /i/, /a/, /e/, and /o/, with the vowel /i/ being

subjected to the most study. In fact, /i/ was the only analyzed vowel in [5] and [6].

This seems to be a wise choice, because the frequency separation between the first

and second formants is greatest for for this vowel, as can be seen from Figure 2.6

and an expanded list of vowels in Figure 2.7. The initial separation of F1 and F2 is

important so that the formant frequency shifts and bandwidth changes in the two

formant ranges can be clearly distinguished without spectral overlapping. For this

reason, only voice samples of the vowel /i/ will be analyzed in this work.

Returning to Figure 2.7, it should be noted that the formant locations are different

between men, women, and children. In general, the formant groups for the men are

the lowest, while the formant groups for the children are the highest. This is no

doubt due to the normal speaking pitches of the different groups. Also adding to the

spread of formant locations, are the inherent differences of the speech apparatuses
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Figure 2.4: IPA vowel chart [35]. The trapezoidal shape is intended to depict extreme
ranges of tongue position. The vowels /i/, /a/, and /u/ at the corners of the chart are
referred to as ’corner vowels’. Roundness refers to the rounding of the lips during vowel
articulation.

Figure 2.5: Overlay of IPA vowel chart and F2 vs. F1 graph with vocal tract [36]. From
the chart and the vocal tract we can see why /i/ is termed a ’high/front’ vowel. Note that
the higher tongue position produces a lower F1 formant and that a forward tongue position
produces a higher F2 formant.
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Figure 2.6: Formant comparisons of corner vowels [37]. Note that because of common
tongue positioning during vowel articulation, /i/ and /u/ have the same first formant
while /a/ and /u/ have approx. the same second formant.

between speakers. In an attempt to bound the ranges for F1 and F2, spectrogram

data was collected for several vowels for men and women [2]. This data is shown in

Figure 2.7: Formant locations of corner and additional vowels for men, women, and chil-
dren [38]. The wide separaton between F1 and F2 for the vowel /i/ (’beat’) for all three
catagories make it the ideal vowel for formant analysis.
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Figure 2.8: F2 vs. F1 plot for several vowels [39]. Data is taken from a wide range of
speakers. Values for F1 and F2 vary because of gender, age, and inherent anatomical
differences (particularly regarding the vocal track) between subjects. For the vowel /i/,
the F1 formant might lie between 300 ± 150 Hz while the F2 formant might lie between
2575 ± 900 Hz.

Figure 2.8. From the figure, we note that a possible range of F1 for the vowel /i/

could be 300 ± 150 Hz while the F2 range could be 2575 ± 900 Hz.

2.3 Anti-Formants and Criteria for Determining

Hypernasality

At this point, we have a good idea of where the first two formants of the normally

(non-nasal) spoken vowel /i/ are to be found. What about the hypernasal form
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Figure 2.9: Wideband spectrogram for several vowels and consonants [40]. Note that the
intensity for the nasal /n/ at 2.6 kHz is significantly lower than the succeeding vowel /i/. To
a lesser degree a similar intensity difference can be seen at 3.8 kHz. The lower-intensity of
the /n/ indicates the formation of an anti-resonance, or anti-formant, due to the increased
interaction between the nasal and oral cavities.

of this vowel? The answer to this is not universally agreed upon in the literature.

Before determining a set of criteria for determining hypernasality, we need to explore

the counterpart to the formant; the anti-formant.

As the term implies, an anti-formant (anti-resonance) is a weakening of a for-

mant frequency. In our study of hypernasality, the anti-resonance is formed by the

increased interaction of the nasal cavity with the oral cavity [5, 6]. In normal speech,

this naturally occurs for the nasal consonants (nasals) /n/,/m/, and NX (as in sing in

the ARPA chart), where the velum is lowered while the opposite side of the oral cav-

ity is simultaneously closed-off by the lips (/m/) or the tongue (/n/). This oral/nasal

interaction is modelled in [2] as a quarter-wavelength resonator, Fz = c/4Im, where

Im is the length from the velum to the closure point (i.e., oral cavity length), and Fz

is the frequency related to a newly-formed zero in the vocal tract transfer function.
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With the resonator model, an oral cavity length of 3.4 cm should produce a spectral

zero, or lower resonance, at approx. 2.6 kHz. This should be kept in mind as we now

look at the effects of this interaction in the spectrogram of Figure 2.9.

The spectrogram shows the frequency spectrum for several vowels and consonants.

Here were are mainly interested in the nasal consonant /n/ and the succeeding vowel

/i/. At approx. 2.6 kHz (vertical scale), the spectral intensity of /n/ is significantly

lower than the vowel /i/ following it (and the diphthong /ei/ preceding it). This is

consistent with the zero-frequency of the quarter-wavelength resonator. To a lesser

degree, the same differences can be seen near 3.8 kHz. We thus confirm that nasals

produce lower resonances, or anti-resonances at certain formant frequencies. We

expect that this same behaviour will also occur for hypernasal speech, and to a

greater degree. From this point forward, we concern ourselves with verifying this

last point and with identifying the frequencies an/or frequency ranges where the

formants and anti-formants occur for hypernasality.

To this end, we will start by following the one-third octave band criteria from [5]

that the spectral amplitude increases in the region between F1 and F2 (specifically

between 630 and 1000 Hz) and decreases in the F2 region (specifically near 2500 Hz).
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Chapter 3

Traditional Methods of Speech

Analysis

3.1 One-Third Octave Band Method

One of the earliest methods for evaluating speech hypernasality was the one-third

octave spectra analysis approach. Initially developed by Katoaka et al. in the late

1980s [8], this method was widely used until at least 2009. In fact, the results of

the hypernasality studies in [5], where the hypernasality criteria for this work were

established in Chapter 2, were obtained with the one-third octave band method. The

analysis from [6] employed the one-third octave band method as well.

Essentially, the method determines the spectral amplitudes for a pre-determined

set of frequency bands at a pre-determined set of center frequencies. The center

frequencies are determined by dividing the audible frequency range (10 Hz - 20 kHz)

into one-third octave increments using 1 kHz as the initial reference. For instance,

a partial set of center frequencies (in Hz) would be 500, 530, 800, 1000, 1250, 1600,

2000. Bandwidths are selected so that the full frequency spectrum is covered without
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spectral overlap. A full table of center frequencies and bandwidths can be obtained

from [41].

The premise for dividing the audible scale in this manner seems to be a logical

one as it is based on the perception of sound by the human ear [2]. Also, by analyzing

small number of relatively wide frequency bands as opposed to a large number of

narrow frequency bands, the amount of information is compressed.

While these are certainly reasons for embracing the one-third octave band

method, we must note that the scale is devised for human hearing, but not necessarily

human speech. The fact that this could be a problem is pointed out in [8] where

correlation based on perceptual evaluation was only 50%.

Although the hypernasality criteria established by this method is followed in this

work, we believe that the criteria can be further validated and refined by the energy-

based methods to follow. We therefore end the discussion on the one-third octave

band method, noting that it could be a viable method for hypernasality analysis.

However, it cannot delineate between different levels of hypernasality, as opposed to

the energy methods that will be investigated.

3.2 LPC Method

3.2.1 LPC Background

LPC (Linear Predictive Coding ) has been the predominant tool in speech analysis

because of its ability to estimate parameters of speech that can be represented in

a discrete-time model. Such a model is shown in Figure 3.1. Due to the cascade

(series) nature of the model, a voiced speech utterance can be represented as:

S(z) = P (z)G(z)V (z) = E(z)V (z) (3.1)



Chapter 3. Traditional Methods of Speech Analysis 16

Figure 3.1: Discrete-time model for speech production [2]. Each of the major speech
sections can be represented by a spectrum or transfer function in the frequency domain
allowing for cascade combination and analysis as a single all-pole system. The all-pole
transfer function is suitable for LPC analysis.

In the study of hypernasal speech, we are mainly interested in the transfer function

of the vocal tract V(z) which leads to:

V (z) =
S(z)

E(z)
(3.2)

Various sources [2, 9] have used a lossless tube model, such as that shown in Figure

3.2, to represent the vocal tract. If the tube lengths (∆x) are all the same, the vocal

tract can be represented as a constant delay, all-pole discrete filter represented by

V (z) =
1

1−
p∑

k=1

αkz
−k

, αk = 1, 2, ..., p (3.3)

The LPC method works on the principle that a speech sample can be approx-

imated as a linear combination of p past speech samples. Linear coefficients are
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Figure 3.2: Vocal tract model [9] for V(z) from Figure 3.1. The vocal tract can be modelled
as a series of lossless tubes with constant length (∆x) and varying tube areas.

approximated minimizing the mean-squared differences between the actual and lin-

ear predicted voice samples. In theory, the LPC method will derive the best set of

predictor coefficients (αk) to estimate the time-varying spectral properties (in this

case, formants) of a speech signal. While this may be the case for normal speech

signals, in the next section we will see that this may not be the case for a wideband

nasal speech signal.

3.2.2 LPC analysis of a wideband signal

In this section, the LPC method is tested on a composed wideband FM signal that

is representative of a hypernasal speech signal. The continuous form of the signal is

x(t) = cos

∫ t

−∞
ωi(τ)dτ, where (3.4)

ωi(t) = ωc + ωm cos(ωf t), where (3.5)

ωc, ωm, and ωf are the carrier, modulation, and message angular frequencies respec-

tively.
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Figure 3.3: (a) Wideband FM signal for testing LPC. Ωc/Ωm = 5, β = 10. (b) Spectrogram
of wideband test signal in (a). Dominant frequency bands are Ωc ± kΩm (5 kHz ± k×1
kHz).

The discrete form of the signal is

x[n] = cos
n∑
−∞

Ωi[m], where (3.6)

Ωi[m] = Ωc + Ωm cos(Ωf [m]), where (3.7)

Ωc,Ωm, and Ωf are the carrier, modulation, and message angular frequencies respec-

tively.

For the composed signal, fc = 5 kHz, fm = 1 kHz, ff = 100 Hz, and the sampling

frequency is 44.1 kHz. The signal is wideband by the criteria β = Ωm/Ωf = 10 > 1

[25]. The signal and its spectrogram are shown in Figure 3.3. From the spectrogram

we note that the dominant frequency bands are Ωc ± kΩm (5 kHz ± k×1 kHz).

Figure 3.4 shows a DFT of the composed signal. The DFT gives us a little more

information about the frequencies near 5 kHz. In addition to the ± 1 kHz modulation

frequencies centered about the carrier, frequencies of ± 100 Hz and ± 200 are present

as well. These appear to be multiples of the message frequency Ωf .

The LPC method was then applied to the composed signal for polynomial orders
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Figure 3.4: DFT of wideband signal Ωc/Ωm = 5, β = 10. The DFT detects the same
frequencies as the LPC plus additional frequencies at Ωc± 100 - 200 Hz.

of 24 and 60. The order of 24 (for 12 coefficients not including conjugate roots) was

chosen because is typically used for formant tracking [27]. The order of 60 was chosen

for comparison. In order to evaluate the success of the LPC, we use the criteria from

[25] that for wideband signals, dominant frequencies are to be found at Ωc ± kΩm,

which with the chosen parameters will be ..., 3 kHz, 4 kHz, 5 kHz, 6 kHz, 7 kHz,...

The LPC frequency responses are shown in Figure 3.5. The detected frequencies

for each LPC order are tabulated in Table 3.1. In examining the table, there is one

disturbing item:

For both LPC orders, the detected frequencies are not in 1 kHz increments from

the carrier frequency but instead are in 400 Hz - 500 Hz increments. Clearly, the

LPC process is detecting frequencies which are not present in the wideband signal.

In a speech analysis scenario, these extra frequencies might be interpreted as extra

formants. While the extra frequencies (formants) near fc would not be detected by

a lower-order LPC, it is also possible that legitimate frequencies (formants) farther
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Figure 3.5: LPCs of wideband signal Ωc/Ωm = 5, β = 10. (a) LPC order = 24. (b)
LPC order = 60. Note that both LPCs detect Ωc in addition to several low-magnitude
’erroneous’ frequencies. This is particularly noticeable for LPC-order = 60 at f < 5 kHz
(See Table 3.1).

Order f1 f2 f3 f4 f5 f6 f7 f8
24 — — — — — 4112 4614 5178
60 709 1492 2291 3713 4161 4497 4840 5218

Table 3.1: Detected frequencies for 24th and 60th order LPCs. Frequencies from single-
sided spectrum are reported for brevity. For the composed wideband signal Ωc = 5 kHz
and Ωm = 1 kHz, detected frequencies should be Ωc ± kΩm (approx. 5 kHz, 4 kHz, 3
kHz,...) but instead are Ωc ± 1

2kΩm (approx. 5 kHz, 4.5 kHz, 3 kHz,...).

away from fc could also go undetected.

In fact this last point is driven home when we look at the range of frequencies

from f1 - f4 (not to be confused with F1 and F4 for formant designations) for the

60th order LPC. While this set of frequencies are closer to the expected frequency

distribution, they are not easily detectable with a lower-order LPC as can be seen

from the table. However, their successful detection with a higher-order LPC comes

at the price of detecting other non-existent frequencies!

While this short analysis could be extended to other large frequency deviation

scenarios, by itself it serves to demonstrate the danger of using the LPC for analysis
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of wideband signals. Here, its failure to produce an unambiguous result for a simple

wideband FM problem leads one to explore different methods that can accomplish

this objective.
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Chapter 4

The Teager-Kaiser Energy

Operator (TKEO)

4.1 Background

4.1.1 Teager’s early publications and Kaiser’s formalization

of the energy operator.

“A Phenomenological Model for Vowel Production in the Vocal Track” [11], was

published by Teager and Teager in 1983. In this article, the authors made the

claim that the speech model of the time was inadequate. The main part of their

argument was that the model was based on linear filter theory whereas the actual

production of speech was a nonlinear process. In a subsequent publication [12], the

authors addressed the nonlinearties of speech in more detail and showed a plot of

the ”energy” source for the speech signal. No derivation of the energy was given.

Teager’s work caught the attention of Kaiser, who in 1990 published an article

entitled “On a Simple Algorithm to Calculate the ’energy’ of a Signal”[14]. In this
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work, he derived the formal algorithm (shown in then next section) for Teager’s

energy source which he named ”Teager’s Energy Algoritim”. This was very generous

on Kaiser’s part, considering that he derived the algorithm alone as Teager was never

forthcoming on revealing the details supporting his initial energy calculation. Of note

here is that Kaiser derived the discrete form of the operator in this publication and

only later extended it to the continuous form.

4.1.2 Derivation of operator

While the Teager-Kaiser energy operator (TKEO) has continuous and discrete forms

[13], the discrete form is of primary interest here, since we are analyzing digitized

speech signals. However, the continuous form is necessary for understanding the

physical nature of the operator and will aid in deriving the discrete form. The

continuous and discrete forms of the operator are:

Ψ(x(t)) = ẋ2 − x(t)ẍ(t) continuous (4.1)

Ψ(x[n]) = x2[n]− x[n− 1]x[n+ 1] discrete. (4.2)

In Kaiser’s derivation, the energy operator was believed to track the energy behaviour

of a harmonic oscillator. An analysis of a simple spring/mass system will show why

this is so.

The homogeneous differential equation for a classical spring/mass system is:

d2x

dt2
+

k

m
x = 0 (4.3)

where: x is position, k is the spring constant, m is mass.

The solution of the differential equation is:

x(t) = A cos(ωt+ φ) (4.4)

where: x(t) is position at time t, ω= 2πf, φ= phase.
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The total system energy is the sum of the potential and kinetic energy given by

Etot =
1

2
kx2 +

1

2
mv2. (4.5)

Substituting

v =
dx

dt
and x = A cos(ωt+ φ) into the above equation yields (4.6)

Etot =
1

2
mω2A2 ⇒ Etot ≡ A2ω2. (4.7)

From this analysis, it is apparent that the energy of a harmonic oscillator is propor-

tional to the oscillating amplitude and frequency.

Restating the continuous form of the TKEO:

Ψ(x(t)) = ẋ2(t)− x(t)ẍ(t), (4.8)

and substituting x(t) = Acos(ωt + φ) from equation 4.4 yields

Ψ(x(t)) = (−Aω sin(ωt))2 − A cos(ωt)(−ω2A cos(ωt))

= A2ω2[sin2(ωt) + cos2(ωt)]

= A2ω2.

(4.9)

which is the same result as Equation 4.7. It can be surmised that the behaviour of

the continuous TKEO is indeed the same as the basic harmonic oscillator. Extending

to the discrete case, we rewrite the continuous solution in equation 4.4 in discrete

form:

x[n] = A cos(Ωn+ φ), (4.10)

where Ω= 2πf/F, F = sampling frequency.

Since equation 4.10 has 3 unknowns (A, Ω, φ), 3 instances of the equation can be

used to define a system of linear equations for solution of the unknowns. We define
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the instances at an arbitrary point x[n], and at points on either side of x[n], namely

at x[n-1] and x[n+1]. This produces the following system of equations:

x[n] = A cos(Ω[n] + φ) (a)

x[n− 1] = A cos(Ω[n− 1] + φ) (b)

x[n+ 1] = A cos(Ω[n+ 1] + φ) (c)

(4.11)

Using substitution and the following trigonometric identities:

cos(α + β) cos(α− β) =
1

2
[cos(2α) + cos(2β)], (4.12)

cos(2α) = 2 cos2(α)− 1 = 1− 2 sin2(α), (4.13)

yields after multiplying equations 4.11(b) and (c),

x[n− 1]x[n+ 1] = A2 cos2(Ω + φ)− A2 sin2(Ω)

= (x[n])2 − A2sin2(Ω).
(4.14)

Substituting equation 4.11(a) for x[n] into Equation 4.14 and manipulating we get

A2 sin2(Ω) = x2[n]− x[n− 1][n+ 1], (4.15)

which is close to Kaiser’s discrete TKEO. In this form, equation 4.15 is exact but

yields a unique result only under the condition that Ω is less than π/2, or that f/F is

less than 1/4. With a sampling frequency of 44.1 kHz, this would mean that energies

at frequencies above 11 kHz would be unsuitable for analysis.

To get to Kaiser’s final form of the operator equation, the left-hand side of equa-

tion 4.15 can be simplified by imposing a stronger constraint on Ω conditions. A

sampling frequency of 44.1 kHz would mean that energies at frequencies above 5.5

kHz will have at least a 11% error. Assuming we accept this tolerance (as Kaiser

did), then

A2 sin2(Ω) ≡ A2Ω2, (4.16)
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and from Equation 4.7 we get

A2Ω2 ≡ Etot ≡ Ψ(x(t)) ≡ Ψ(x[n]), (4.17)

which in conjunction with Equation 4.15 gives us Kaiser’s energy operator equation

with the constraint

Ψ(x[n]) = x2[n]− x[n− 1]x[n+ 1], under the condition Ω <
π

4
(4.18)

4.1.3 Energy operator characteristics and conditions for

non-negativity

As can be seen in Chapter 4.1.2, the energy operator works on a very small (minimal)

time scale, i.e., has excellent time-resolution, which makes it ideal for analysis of non-

stationary wideband signals, such as human speech. Such was not the case for LPC,

as was demonstrated in Chapter 3.

The previous analysis would also seem to suggest that the operator would only

be useful for sinusoidal signals but such is not the case. In [16] it was demonstrated

that accurate energy signatures could be extracted from exponential, exponentially

damped sinusoid, complex (2-dimensional), FM, and AM-FM signals. In fact, the

operator is the workhorse for the ESAs (Energy Separation Algorithms) developed

in [16] and [17] where the energies of the amplitude and frequency components are

isolated. This opens the door to a completely different approach to speech analysis

which will not be covered here.

It is important to realize that the operator is intended to model the energy of

a signal source, not the energy of the signal itself. Because of this characteristic,

there are certain types of signals where the use of the operator has its limitations. In

such cases, the algorithm has been known to produce negative energy values, which

would appear to be a physical irregularity. For instance, signals with multiple AM-

FM components that differ significantly in amplitude are susceptible to this type of
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misinterpretation. Examples where this has occurred [10, 18, 19], would be for a

signal like:

s(t) = A1 cos(ω1t) + A2 cos(ω2t), where A1 = 10A2 and ω2 = 8ω1 (4.19)

which is a combination of two sinusoidal signals, which could imply the existence of

two different energy sources with significantly different distances. This could account

for the significant amount of negative energy as the operator function is geared to

compute the energy for a single energy source. This was also seen in [17] where the

parameters of ω2 = 1.133ω1 produced a ’beating’ frequency resulting in sharp IF

reversals from the ESA due to the input of an ’irregular’ energy signature.

While this type of error must always be taken into account, it is not an issue for

the current work. All of the analyzed voice signals were shown to have negligible

negative-energy amplitudes. Furthermore, with the later use of the EMD in Chapter

5, this problem is eliminated, as the main purpose of the EMD is to separate the

signal of interest into several ’single-source’ subcomponents.
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Chapter 5

Early Implementation of the

TKEO for Formant Detection

Now that we have a clear understanding of the TKEO, it is time to see how it can

be implemented as a formant detector. It should be noted that the operator is not

applied directly to a speech signal but rather to resonant subcomponents (frequency

bands) of the signal that may or may not be formants. The information contained

in the frequency bands depends on what type of voice model is being used and on

what type of separator (filter) is applied to the voice signal.

For this chapter, we start from the premise that speech resonances can be modeled

as an amplitude and frequency-modulated signal (AM-FM). Work done by Maragos,

et al. in [16] demonstrates the validity of this premise. From here the following

processes take place: the resonances of the modulated speech signal are separated

by a bank of band-pass filters known as Gabor filters. The Gabor filter is optimum

for this type of separation and will be explained in detail in the next section. At this

point there are two different directions that can be taken:

(1) Each frequency band can be individually processed by an energy separation
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algorithm (ESA) which basically demodulates the speech signal into its instanta-

neous AM and FM components. From these components, the short-time formant

frequencies are estimated and are represented in a ’piknogram’. This was done in

[16] and [17] with inconclusive results and will not be done here. It should be noted

that the ESA utilizes the TKEO.

(2) We can calculate the energy as a function of time for each frequency band with

the TKEO to derive an energy spectrum and represent the result as an ‘energygram‘

[15]. The energygram is a 3-dimensional representation of the energy intensity as

a function of time and frequency and will serve as a visual aid for determining the

formant frequencies. It is our belief that the frequencies with the highest energy

levels are indeed formants. This is the method that will now be examined with two

speech samples from the ACP-CA database: (1) WOMENRS1 which is a normal

signal and (2) WOMENRS6 which is a Level-6 hypernasal signal.

5.1 Gabor Filtering

Before applying the TKEO, the resonances around possible formants are isolated

with a bank of Gabor filters. The Gabor filter is a one-dimensional band-pass filter

that is cosine-shaped with a Gaussian envelope. In 1946, Gabor demonstrated that

this filter design obtained the optimal compromise between localization in the time

and frequency domains in compliance with the uncertainty principle [21]. In filter

terminology such a filter is described as being compact. Another redeeming quality

of the Gabor filter is that the production of large sidelobes is avoided due to its

Gaussian shape.

Processing by a bank of filters means that the speech signal is filtered at many

different center frequencies, which in our case translates to formant candidate fre-

quencies. For instance, if we want to search for formant candidates in the range of
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Figure 5.1: Processing steps of single-filterbank energy output for signal WOMENRS1. (a)
time-truncated speech signal. (b) time-domain Gabor filter impulse response at bandpass
fc of 2,200 Hz and BW of 400 Hz. (c) Gabor-filtered speech signal. (d) square root of
energy. The full Gabor filter bank (250 filters) sweeps the range 200 Hz - 5.2 kHz in 20 Hz
increments. All energy components are later combined to form an ’energygram’.

200 Hz to 4.2 kHz, we could set up a bank of 80 Gabor filters to cover this range at

50 Hz increments. For the following analysis, a bank of 250 Gabor filters is used to

cover the range 200 Hz to 5.2 kHz in 20 Hz increments.

For signal processing, along with a range of center frequencies (fc), a filter band-

width (BW) must be specified. Experiments in [16] utilized a BW of 400 Hz which

is used here as well. For any given filter bank, the BW is the same for all of the

filters, which as we will see later, may not be ideal. A typical time-domain impulse

response of the Gabor filter can be seen in the Figures 5.1 (b) and 5.2 (b). In fact

both are the same filter with an (fc) of 2,200 Hz and BW of 400 Hz.
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Figure 5.2: Processing steps of single-filterbank energy output for signal WOMENRS6. (a)
time-truncated speech signal. (b) time-domain Gabor filter impulse response at bandpass
fc of 2,200 Hz and BW of 400 Hz. (c) Gabor-filtered speech signal. (d) square root of
Teager-Kaiser energy.

The equation for the continuous-time impulse response of the Gabor filter is:

h(t) = exp(−α2t2) cos(ωct) (5.1)

where t is in seconds, ωc = 2πfc, and α controls BW through the relationship

BWrms =
α√
2π

as stated in [16]. The impulse response is then discretized by using

the form:

h[n] = exp(−b2n2) cos(Ωcn) (5.2)

where

n = T/t (T = sampling period in sec.), b = αT , Ωc = 2πfcT , and −N ≤ n ≤
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N , where N is chosen to truncate the Gaussian envelope essentially to zero; e.g.,

exp(−b2N2) ≤ 10−5

Bandpass filtering is then performed by convolving h[n] with the speech signal.

It is important to strictly follow the constraints for N as the convolution operation

will appear to time-shift and/or lengthen the tail of the speech signal if not properly

adhered to. A check of the filter impulse response centered at 2,200 Hz, as well as

all of the other center frequencies, shows that this constraint is always met. Filtered

versions of the speech signals WOMENRS1 and WOMENRS6 can be seen in Figures

5.1 (c) and 5.2 (c). Note that the AM component of the speech signal is now more

visible.

5.2 Intermediate processing steps

As previously stated, signal processing was performed on two signals from the ACP-

CA database; WOMENRS1 (normal) and WOMENRS6’ (nasal Level 6). The signals

were recorded with 16-bit resolution and sampled at a rate of 44.1 kHz.

Figures 5.1 and 5.2 depict the intermediate processing results for the two signals

at an fc of 2,200 Hz. Since the original speech signal is swept from 200 Hz to 5,200 Hz

in 20 Hz increments, there are 250 (number of Gabor filters) such sets of intermediate

results that are generated. For the current set of plots, the filter BW is 400 Hz. A

brief description of each subplot follows:

(a) Raw speech signal, time truncated. The original speech signals are up to 50

ms long but here are truncated to 20 - 40 ms since the speech pattern appears to

repeat. The amplitudes have not been scaled or normalized.

(b) Impulse response of the Gabor filter at the band-pass center frequency of

interest. For this set of data the center frequency (fc) is 2,200 Hz.
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(c) Band-pass filtered signal in (a) by filter in (b). Note that the modulated

components of the signal, particularly the AM component, are more apparent.

(d) The square root of the Teager-Kaiser energy produced by the TKEO algo-

rithm. Before taking the square root, the output from EO is amplitude shifted by

the smallest amount necessary to eliminate negative values.

5.3 Energygram and interpretation of results

The ’enerygram’ is produced by combining all 250 energy profiles into a color map

that is plotted as a function of center frequency vs. time. The color scheme from

highest to lowest energy is dark red/red/orange/yellow/green/light blue/blue/dark

blue.

Enerygrams for the normal and nasal speech signals are shown in Figure 5.3.

An examination of the normal signal (a) shows that the highest energies are in the

region 2.5 kHz - 4.7 kHz with the two strongest energies at 3.0 kHz and 4.2 kHz.

The energies at the lower frequencies are much weaker.

An examination of the nasal signal (b) shows that the highest energies are in the

region 200 Hz - 700 Hz with the strongest energy at about 600 Hz. The energies at

the higher frequencies are much lower or negligible.

The differences in the energygrams are in general agreement with criteria set forth

in [7] and in Chap 2.3, which states that for nasal speech, the spectral amplitude

increases in the region between F1 and F2 and decreases in the F2 region. There

are however some small discrepancies. For one, the spectral decrease for the nasal

signal is actually closer to F3 than F2. Another is that there appears to be a F4

formant range that follows the same behaviour as the F3 formant. The reasons for

these discrepancies may in part be due to the inability of a fixed- bandwidth Gabor
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filter to successfully identify and separate the resonances of the original signal. This

type of problem was pointed out in Chapter 1.

At this point, it appears that the energygram can be used to detect the presence

of hypernasality but cannot determine the level of hypernasality. While detecting

the presence of hypernasality is an important discovery, we still would like to be able

to distinguish between the different levels. A promising method for determining the

hypernasality level will be covered in the remaining two chapters.
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(a)

(b)

Figure 5.3: (a) Energygram for normal voice signal WOMENRS1. (b) Energygram for
nasal Level-6 nasal voice signal WOMENRS6. The nasal signal has higher spectral energy
in the F1-F2 region and lower spectral energy in the F2 region. This is consistent with the
criteria for hypernasality established in [5] and [7].
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Chapter 6

Empirical Mode Decomposition

As can be seen in the previous chapters, all of the analysis methods for consistently

detecting hypernasal speech have fallen short for various reasons. For the one-third

octave band and LPC methods, the wideband nature of speech is the main culprit.

For the more promising energy-based methods, the main culprit is the inability to

spectrally isolate the resonant frequencies. If this were possible, not only would the

energy-based methods show clearer results but there would be reason to revisit the

LPC methods as was done in [27].

In this chapter, we investigate a relatively new method for waveform decompo-

sition known as the EMD. Its success lies in the fact that it is an adaptive type

of decomposition fully intended to be used for non-linear, non-stationary, and wide

band signals.

6.1 The EMD Concept

Many types of signal decompositions (transformations), like for instance the Fourier

transform, rely on a fixed set of orthogonal basis functions to perform the transforma-
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tion. In the case of the Fourier transform, the basis functions are decided beforehand

and remain fixed through the transform process without taking into account the na-

ture of the signal being analyzed. Also, since the transform computes constant values

of amplitude and frequency over a fixed time frame, it is only reliable for data that is

of a stationary nature. In short, because it utilizes fixed basis functions, the Fourier

transform is not an adaptive type of transform.

The wavelet transform, which is in many ways similar to the Fourier transform,

is superior for transforming data that is non-stationary. This is because the basis

functions can be altered before analysis to suit the nature of the data being analyzed.

Keep in mind that once the basis functions are selected, they remain fixed for a

given process. Unlike the Fourier transform however, the basis functions can be

adjusted and the process can repeated until a suitable result is obtained. Thus the

wavelet transform would appear to be a solution to our decomposition problem. The

only problem here is that the choice of basis functions are a judgement call and

can produce erratic results. In short, the wavelet transform is a pseudo-adaptive

transform which requires a great amount of expertise to apply successfully.

For speech signals, the EMD is far superior to the Fourier or wavelet transforms,

in that it is not based on a set of predetermined analytic basis functions. Instead, the

basis functions for the algorithm are derived adaptively from the data signal itself.

This makes it ideal for non-linear and non-stationary signals.

The EMD algorithm works by employing a sifting process that decomposes the

input signal into constituent sub-signals called IMFs (Intrinsic Mode Functions).

The IMFs are oscillatory in nature and indeed resemble AM/FM signals, which are

consistent with our chosen speech model. By definition, the IMF must meet the

following 2 criteria:

(1) the number of total extrema (min and max) and number of zero-crossings

are the same or differ by 1, i.e., there is only 1 zero-crossing between 2 consecutive
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extrema.

(2) at any point in time, the mean of the local maximum envelope and local

minimum envelope is zero.

In meeting the above criteria, we are assured that the IMFs will be well-behaved,

sinusoidal-like signals which are similar in nature to the resonances we seek. A sum-

mation of all of the IMFs will reproduce the original voice signal. This is analogous

to summing the sinusoids from a Fourier transform to form the original signal before

transformation.

For a typical voice signal, the EMD will produce from 7 to 12 true IMFs, and a

residual IMF which is discarded as it represents the DC level of the signal.

6.2 The Basic EMD Algorithm

Before addressing the specifics of the EMD algorithm, we note that due to the adap-

tive nature of the EMD, there is no analytical or formal proof of the algorithm. It

is a truly empirical algorithm (not derived or supported by mathematical theory)

and the resulting IMFs are indeed empirical functions. However the algorithm has

been tested on a large class of composed and real waveforms [22, 23, 24, 26, 27] with

unambiguous results.

Figure 6.1 shows the beginning steps in the formation of an IMF. The signal

for analysis is the damped sinusoid in solid blue. The positive and negative peak

envelopes are estimated by fitting a cubic spline to the positive and negative peaks of

the signal. The mean envelope (dashed gray line) is calculated by taking the average

of the positive and negative peak envelopes. The mean envelope is subtracted from

the signal and is tested by the two criteria stated in the previous section. If the

criteria are met, then the first IMF has been calculated. If the criteria are not met,
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Figure 6.1: Basic EMD process for a damped sinusoid signal [31]. The positive and negative
peak envelopes are estimated with cubic spline fit. The envelopes are then averaged and
the mean envelope is subtracted from the original signal. The modified signal is tested by
the IMF criteria.

the positive and negative envelopes are computed for the new waveform and the

process repeats. This process is the sifting part of the algorithm. When the criteria

is met for forming the first IMF, the IMF is subtracted from the initial signal and a

new sifting process is started for the second IMF. This process is repeated until all

of the IMFs and the residual have been produced.

A pseudocode representation for these steps similar to that in [24] is as follows:

r0(t) = X0(t)
%Sifting loop
for i=1:j
h0 = rk−1
extract local minima/maxima of hj−1(t)
obtain envelopes EMINj−1(t) and EMAXj−1(t)
compute mean envelope mj−1(t) = [EMINj−1(t) + EMAXj−1(t)]/2
hj(t) = hj−1(t)−mj−1(t)

if (Is IMF?)
YES. Extract kth IMF dk(t) = hj(t)
exit loop

else
NO. j=j+1

end
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end
rk(t) = rk−1(t)− dk(t)

if (at least 2 extrema?)
jump to sifting loop

else
Exit loop. EMD complete

end
end

Figure 6.2 shows the full EMD for an arbitrary waveform which consists of 4

IMFs and the residual. We note that the IMFs are oscillatory as expected, that they

decrease in frequency with each new IMF, and that the residual does indeed track

the DC level of the signal. In (a), the IMFs are plotted on the same vertical scale

as the arbitrary waveform and in (b) they are auto-scaled so that the details can be

seen. It is important to note that in (a), the IMFs span similar vertical ranges. This

is a desirable feature as it indicates that there are no disparate modes in the original

signal [22]. For speech signals, this will often not be the case and we will need a way

to deal with it. This issue is dealt with in the next section.
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(a)

(b)

Figure 6.2: EMD of arbitrary data [31]. (a) Time plot of arbitrary data, 4 IMFs, and
residual. (b) Same as (a) but with vertical auto-scaling of IMFs to see waveform details
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6.3 Evolution of the basic EMD Algorithm

In its original form [23], the EMD is well-equipped to handle many classes of signals.

As long as the signals are mainly oscillatory in nature, and do not have disparate

modes, this version of EMD serves as a reliable mode separator [26]. However, for

speech signals, especially the hypernasal ones, this will often not be the case as

formants are often close to each other and as their bandwidths change, there can

be spectral overlap. In these cases, modal behaviour that would be visible on one

IMF may not be detected on a different IMF where the detail could be lost because

because of the ’sensitivity’ of the new IMF. Such a problem is known as mode mixing.

To deal with the mode-mixing problem, the basic EMD algorithm has been im-

proved in several iterations. It has evolved from EMD, to EEMD, to Complementary

EEMD (which was short lived), to CEEMDAN, and finally to the Improved CEEM-

DAN, which for this thesis, is assigned the name CEEMDAN-2014. The develop-

mental details are well documented in [24]. In this section, only a brief overview

of the evolutionary process is given. The main purpose here is to explain why the

newest version, CEEMDAN-2014, was chosen for this work.

EMD - original algorithm developed by Huang in [30]

EEMD - Ensemble EMD - addresses the mode mixing problem by adding white

Gaussian noise to copies of the original signal (ensemble), performing the decomposi-

tion, and then averaging the results. The downsides are: (a) the addition of residual

noise to the recomposed signal and (b) the production of a different number of modes

making final averaging difficult.

Complementary EEMD - attempts to deal with (a) above by using complemen-

tary (added and subtracted) pairs of noise but the completeness property cannot be

verified and (b) is still present.

CEEMDAN - Complete EEMD w/ Adaptive Noise - solves the noise-in-
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reconstruction problem and the different number of modes problem of the EEMD.

Downsides are (c) some residual noise is present in some IMFs and (d) signal infor-

mation appears in later IMFs, making earlier IMFs (the first 2 or 3) erroneous or

spurious.

CEEMDAN-2014 - referred to as the ’Improved CEEMDAN’ approach in [24].

Resolves issues (c) and (d) above but the number of the IMF’s (modes) varies as in

EEMD. Produces the least number of IMFs.
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Chapter 7

EMD/Teager-Kaiser Energy

Analysis of Hypernasal Voice

Signals

We are now at the crux of the thesis where the strongest tools from the previous

chapters are combined to define a strong marker for hypernasality. At this point, it

should be apparent that the TKEO is the most suitable tool (ideal for non-linear,

non-stationary and wideband data) for energy analysis of speech signals and that

the EMD is the most suitable method (non-stationary, adaptive, oscillatory) for

extracting resonances on which the energy operator can be applied. We shall now

see how the hybrid EMD/TKEO approach works in practice.

In this chapter, the EMD is applied to normal and nasal voice signals from the

ACP-CA database. A set of energy metrics (η1 and η2) is then derived from the

IMFs via the TKEO that allows for, as we shall see, the delineation of the different

hypernasal levels. Finally, the energy metrics plotted against the nasal levels stated

in the database define a trend that links the energy to the hypernasality level .
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7.1 Voice Signals from the Cleft-Palate Database

The voice samples used for analysis were taken from the American Cleft Palate -

Craniofacial Assoc., or ACP-CA database [28]. This database is the most appropriate

one found to-date as the subjects are cleft palate patients and exhibit various levels

of hypernasality [29]. The database consists of 6 to 8 voice samples each for men,

women, and children. The nasal levels of the subjects were determined on basis of

perceptual evaluation by clinician(s), and range from 1 to 8, with 1 indicating normal

speech and 8 indicating extreme hypernasality. Only the vowel /i/ was chosen for

analysis. At this time, the nasalance scores for the voice samples are not available.

Two sets of voice samples (from the SHS lab and UNM-DSP lab) were recorded

but were not analyzed. The reason for this was because these voice samples were

those of normal speakers feigning hypernasality. Our presumption is that the mech-

anisms that produce true hypernasal speech could be fundamentally different from

those for feigned hypernasal speech. Until this presumption can be investigated (see

Chap. 8.2), conclusions will only be drawn from the ACP-CA data set.

7.2 Energy Metrics and Pseudo-Classification

Three voice samples each for women, men, and children (9 total) were analyzed.

These were:

(1) Women: Levels 1, 3, 6

(2) Men: Levels 1, 4, 6

(3) Child: Levels 1, 5, 6
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Figure 7.1: Voice samples of vowel /i/ from ACP-CA database [29]. (a) Normal voice
signal ’WOMENRS1’. Vowel is extracted from utterance ”seeds”. (b) Nasal voice signal
’WOMENRS6. Vowel is extracted from the utterance ”see”.

Voice samples where the vowel /i/ was clearly distinguishable were chosen. Care was

taken to avoid words where the vowel was proceeded or followed by a nasal consonant

such as /n/ or /m/. This was so that additional nasal components would not be

introduced into the voice samples.

Figure 7.1 shows speech samples of the vowel /i/ for the signals WOMENRS1 and

WOMENRS6, which as the names indicate are nasal Level-1 (normal) and hypernasal

Level-6. The full length of the vowel (up to 30 pitch periods) was chosen for analysis.
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Figure 7.2 shows the ’relevant’ IMFs that were produced for each of the signals

from Figure 7.1. Here, a ’relevant’ IMF is one that contributes significant energy

(≥ 1%) to the total energy spectrum (Energy computations are done later). As

can be seen, the IMFs look as they should: they are oscillatory and generally look

like AM/FM signals. Note that the frequency content tends to decrease with higher

numbered IMFs.

Spectrograms for each IMF are shown in Figures 7.3 and 7.4. The spectro-

grams verify that the lower-numbered IMFs retain more of the original signal’s high-

frequency content while the higher-numbered IMFs retain more of the low-frequency

content. Later, the spectrograms will be used with the energy metrics to establish

classification criteria for the different hypernasality levels.

The energies for each IMF were then computed with the TKEO. (IMF energy

plots are shown in Appendix A). Energy metrics were then derived for the higher and

lower frequency bands. For this work, the higher frequency bands are those above 1

kHz (fs = 44.1 kHz) and the lower frequency bands are those below 1 kHz (fs = 44.1

kHz).

The energy metric for the upper frequency bands is given by:

η1[k] =

k∑
i=1

ψ̃ (mi[n])

n∑
i=1

ψ̃ (mi[n])

(7.1)

The energy metric for the lower frequency bands is given by:

η2[k] =

n∑
i=k

ψ̃ (mi[n])

n∑
i=1

ψ̃ (mi[n])

(7.2)
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Figure 7.2: Selected IMFs of voice samples from Figure 7.1. (a) Normal voice signal of
utterance ”seeds” from speaker ’WOMENRS1’. (b) Nasal voice signal of utterance ”see”
from speaker ’WOMENRS6’. IMFs were produced by the CEEMDAN-2014 algorithm. The
lower-numbered IMFs retain more of the original signal’s high-frequency content while the
higher-numbered IMFs retain more of the low-frequency content. Only 5 (displayed) of the
12 produced IMFs for each signal contribute significantly to the total signal energy. EMD
decomposition into IMFs permits a clearer analysis of local signal oscillations by breaking
down the voice signal into modular amplitude and frequency components.
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(a)

(b)

Figure 7.3: Spectrograms of IMFs from Figure 7.2. (a) 1-7 kHz range for normal voice
signal. (b) 1-7 kHz range for nasal voice signal. Comparing IMFs #3 and #4 from (a) and
(b), a much weaker high-frequency content is observed above 3 kHz for the nasal signal,
indicating the formation of an anti-resonance or a range of anti-resonances. This is the
first marker for hypernasality.
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(a)

(b)

Figure 7.4: Spectrograms of IMFs from Figure 7.2. (a) 0-1 kHz range for normal voice
signal. (b) 0-1 kHz range for nasal voice signal. Comparing IMF #4 from (a) and (b), a
much stronger low-frequency content is observed in the range 200 Hz - 1 kHz for the nasal
signal indicating the formation of a resonance or range of resonances. This is the second
marker for hypernasality.
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For equations 7.1 and 7.2, η denotes the set of energy metrics, mi[n] is the ith IMF

in a set of IMFs for a particular signal, ψ̃ is the medium energy after applying the

TKEO, k is a counter limit whose value is determined by the classification criteria

(1 kHz), and n is the total number of IMFs for a particular signal.

In short, the energy metric η is a percentage measure of the energy that is con-

tained in a partial sum of IMFs. For equation 7.1, the summation in the numera-

tor begins at the lowest-numbered IMFs, which contain the high-frequency content,

and sums forward. For equation 7.2, the summation in the numerator begins at

the highest-numbered IMFs, which contain the lowest-frequency content, and sums

backward. For both equations, the partial energy sums are computed as ratios to

the median total energy, thus producing an energy percentage.

Energy metrics (η1 and η2 values) for the three women’s voices are shown in Table

7.1. For completeness, the η values are calculated out to k = n. This will result in

all η1 values ending at 1 and all η2 values beginning at 1.

The bolded entries of Table 7.1 represent the η values that meet the 1 kHz

classification criteria and are used to judge the level of hypernasality. The frequency

content for each IMF can be roughly judged from the spectrograms in Figures 7.3

and 7.4, but they were more precisely determined using the FFT.

In words, Table 7.1 (and the following tables) can be interpreted as follows: “As

nasality increases from Level-1, to Level-4, to Level 6, the energies in the upper

frequency bands (η1) correspondingly decrease from 76%, to 21%, to 9.7%. For the

same nasality levels, the energies in the lower frequency bands (η2) correspondingly

increase from 25%, to 71%, to 99%.”

At this point, the energygrams from Figure 5.3 are redisplayed in Figure 7.5 so

that we can compare them to the WOMEN energy metrics just obtained. On com-

paring (a) to (b), we note that the decrease of energy intensities at high frequencies

of 3.0 kHz and 4.3 kHz are consistent with the decreasing η1 values from Table 7.1.
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IMF η1:normal η2:normal η1:nasal3 η2:nasal3 η1:nasal6 η2:nasal6
1 0.0069 1.0000 0.0027 1.0000 0.0010 1.0000
2 0.0695 0.9865 0.0256 0.9933 0.0017 0.9983
3 0.7294 0.8683 0.2069 0.9731 0.0072 0.9979
4 0.7590 0.2728 0.2069 0.7123 0.0972 0.9889
5 0.8088 0.2449 0.8085 0.6752 0.8302 0.8261
6 1.0000 0.2032 1.0000 0.1467 0.9999 0.1615
7 1.0000 0.0000 1.0000 0.0000 1.0000 0.0001
8 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000
9 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000
10 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000

Table 7.1: Energy metrics for normal voice signal ’WOMENRS1’, Level-3 nasal voice sig-
nal ’WOMENRS3’, and Level-6 nasal voice signal ’WOMENRS6’ from [29]. The bolded
η1s represent the maximum η1 values that meet the classification criteria of containing
frequency content >1 kHz. The bolded η2s represent the maximum η2 values that meet
the classification criteria of containing frequency content <1kHz. For this and other nor-
mal/nasal comparisons from the ACP-CA database, the nasal η1s are typically lower than
the normal η1 while the nasal η2s are typically higher than the normal η2. The consistency
of this dual comparison indicates the presence of a strong marker for hypernasality.

We can also see that the increase of energy intensities at a low frequency of 600 Hz

is consistent with the increasing η2 values also from Table 7.1. As was noted in Sec

5.5.3, the energygram is a marvellous tool for detecting nasality, but not necessarily

useful for quantifying nasality. It is reintroduced here merely to demonstrate that the

energy metrics are a step in the right direction towards delineating between different

hypernasality levels.

Energy metrics were similarly derived for men and children. These results are

shown in Tables 7.2 and 7.3. The dual trends of decreasing η1 and increasing η2 as

a function of increased hypernasality are observed here as well.
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(a)

(b)

Figure 7.5: (a) Energygram for the normal voice signal WOMENRS1. (b) Energygram
for the nasal Level-6 voice signal WOMENRS6. The decrease of energy intensities at high
frequencies of 3.0 kHz and 4.3 kHz are consistent with the decreasing η1 values from Table
7.1. The increase of energy intensities at a low frequency of 600 Hz is consistent with the
increasing η2 values also from Table 7.1.
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IMF η1:normal η2:normal η1:nasal4 η2:nasal4 η1:nasal7 η2:nasal7
1 0.0510 1.0000 0.0412 1.0000 0.0149 1.0000
2 0.2714 0.9206 0.0970 0.9274 0.0266 0.9769
3 0.7494 0.5935 0.1487 0.8683 0.0478 0.9661
4 0.8343 0.2220 0.2470 0.7488 0.0577 0.9393
5 0.9774 0.1332 0.8573 0.5679 0.0703 0.9131
6 0.9945 0.0237 0.9818 0.1456 0.6286 0.8835
7 1.0000 0.0051 0.9996 0.0150 0.9995 0.2233
8 1.0000 0.0000 1.0000 0.0001 1.0000 0.0015
9 1.0000 0.0000 1.0000 0.0000 1.0000 0.0001
10 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000
11 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000

Table 7.2: Energy metrics for normal voice signal ’MENRS1’, Level-4 nasal voice signal
’MENRS4”, and Level-7 nasal voice signal ’MENRS7’ from [29]

IMF η1:normal η2:normal η1:nasal5 η2:nasal5 η1:nasal6 η2:nasal6
1 0.0062 1.0000 0.0003 1.0000 0.1030 1.0000
2 0.7378 0.9883 0.0028 0.9995 0.3114 0.7636
3 0.9386 0.2476 0.0109 0.9925 0.4445 0.4334
4 0.9489 0.0585 0.0226 0.9771 0.5304 0.3766
5 0.9824 0.0514 0.6603 0.9517 0.6185 0.3214
6 1.0000 0.0114 0.9998 0.2900 0.9370 0.2796
7 1.0000 0.0000 0.9999 0.0002 0.9993 0.0342
8 1.0000 0.0000 1.0000 0.0001 1.0000 0.0007
9 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000
10 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000
11 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000

Table 7.3: Energy metrics for normal voice signal ’CHILDRS1’, Level-5 nasal voice signal
’CHILDRS5’, and Level-6 nasal voice signal ’CHILDRS6’ from [29]

Figure 7.6 shows the η values for all 9 speech signals plotted as a function of

nasal level. Of note here is the monotonically decreasing nature of η1 with increasing

hypernasality and the monotonically increasing nature of η2 with increasing hyper-

nasality. This trend is present amongst all of the chosen subjects and appears to be

consistent across gender and age.
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In attempting to curve-fit the different η sets, linear regressive power, exponential,

and 2nd-order polynomial fits were tested. Intuitively, one would think that the

energy level should level-off (approach zero slope) as the nasal levels approach a

maximum. Therefore the best curvatures were judged to be convex-like for the η1

fits and concave-like for the η2 fits.

For the η2 sets, the power and exponential fits did not work well and even exhib-

ited slightly convex behaviour. Therefore all of the η2 sets were fit to a 2nd-order

polynomial which looks quite appropriate. However, it should be recalled that 3 data

points form an overdetermined system for a 2nd-order polynomial and the fit will

pass through all of the data points.

For the η1 sets, the power fit works very well for women while an exponential fit

looks better for the men. The best fit for the children is a 2nd-order polynomial, in

spite of the wrong curvature.

The slight ambiguities in the η1 curves, especially for the children, expose a

potential problem with the EMD/TKEO approach. Because the CEEMDAN-2014

algorithm minimizes the number of IMFs that are produced, there is not a high

amount of resolution in the energy metrics. For instance, if we examine Table 7.3

and compare IMF #4 to IMF #5 for nasal Level 5 of η1, we note that the energy

metric jumps from 2% to 66%.

Earlier versions of the EMD algorithm, such as CEEMDAN that can produce as

many as 17-20 IMFs for this type of data, would not fare much better as many of

the IMFs would be throwaways [24].

If we can accept that 1 of the 9 energy metrics is an outlier or falls within a

reasonable statistical bound, the following hypothesis can be made:
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Figure 7.6: η1 and η2 values vs. Nasal Level for voices from [29]: (a) Women. (b) Men. (c)
Children. The nasality of subjects are determined on the basis of perceptual evaluation by
a clinician and range from 1 to 8, with 1 indicating normal speech and 8 indicating extreme
hypernasality. Of note here, is the monotonically decreasing nature of η1 with increasing
hypernasality and the monotonically increasing nature of η2 with increasing hypernasality.
The trend is consistent across both age and gender.
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For a given classification criterion, the η1 and η2 energy metrics are able to de-

lineate between different levels of hypernasal speech. For the vowel /i/, the energy

metrics for the higher formants (F1-F2) decrease monotonically with increased hy-

pernasality while the metrics for the lower formants (F1) increase monotonically with

increased hypernasality.

We note that the best curve fits for η1 are either power or exponential and the best

curve fit for η2 is a 2nd-order polynomial. We also note that the different curve fits

might indicate that the formation of resonances and anti-resonances are different in

nature. This is consistent with the fact that a resonance corresponds to constructive

interference and an anti-resonance corresponds to destructive interference.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis, a novel hybrid EMD/TKEO approach was developed to address the

inadequacies of existing approaches for hypernasal speech detection. The traditional

methods of formant analysis were shown to have limitations in terms of their suit-

ability for analyzing nasal and hypernasal speech signals. Furthermore, these meth-

ods were not able to discern between different levels of hypernasality. The hybrid

EMD/TKEO approach, however, was able to produce a clear delineation between

hypernasality levels when applied specifically to voice samples from the ACP-CA

database.

At this time a few cautionary remarks must be made about the voice samples from

the ACP-CA database; in listening to all of the voice samples, there appear to be

some patients that have speech problems in addition to the hypernasality issues. For

instance, the voice sample CHILDRS6 (used for this study), has an irregular voicing

source, possibly indicating that the vocal folds are not vibrating synchronously. The

voice sample MENRS7 (used for this study) has a drop of acoustic energy towards
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the end of the vowel /i/.

There are also some voice samples that are compromised by the quality of the

sound recording. For instance, the sample WOMENRS8 (not used for this study)

has a high level of background noise, more than likely caused by the low level of

’sound’ exiting through the mouth for such a high level of hypernasality. In the voice

sample MENRS8 (not used for this study), there appears to be a typewriter in the

background towards the end of the recording.

Such issues with this particular database will limit the scope of this study as

we must assume that some of the energy metrics could be determined by factors

outside of hypernasality. However, since the aforementioned issues are found to be

prevalent in subjects with high hypernasality, the EMD/TKEO results are still valid,

but perhaps only up to certain nasal levels, depending on subject group. Based on

the irregularities found in the database, the energy metrics for Men and Children

should perhaps be re-evaluated with voice samples taken at Nasal Levels 6 and 5

respectively. The energy metrics for Women are not in question as none of the noted

irregular features were present in the chosen speech samples for this group. This

may in fact be the main reason why the η1 vs. Nasal Level plot for Women has the

best curve fit.

8.2 Future Work

While the EMD/TKEO approach to hypernasal speech analysis looks promising,

the results for this work were obtained from a fairly small set (9) of data samples.

Future work would entail testing the method on larger and different types of speech

databases. Future tasks would be to:

(1) Apply the EMD/TKEO to the remaining samples of ACP-CA database to

see how well the results compare to the energy metrics established in Chapter 7.2.
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The same type of analysis should also be done for the vowels /a/, /e/ and /o/ and

compared with the results in [16], [20], and [27].

(2) Develop more stringent classification criteria for determining the energy met-

rics that determine the hypernasality levels. While a single threshold level of 1 kHz

proved sufficient for this thesis, multiple threshold levels based on the traditional F1,

F2, and F3 formant levels may prove optimal.

(3) Cross-validate the hypernasality results by using the EMD/TKEO to ’gener-

ate’ a database of synthetic vowels with different levels of hypernasality. The levels

of synthetic hypernasality would then be compared with the perceptual evaluation

by a clinician.

(4) Compare different causes of nasality. This would entail analyzing the data

from the SHS and UNM-DSP labs to determine if the mechanisms for true and

feigned hypernasal speech are similar or different from each other.

(4) Apply the EMD/TKEO to voice samples recorded in the SHS lab where

nasalance scores were collected with the voice data. Generate η vs. Nasalance Score

plots and compare with the η vs. Nasal Level obtained in Fig. 7.6 to see how the

trends compare. The η vs. Nasalance Score data should also be compared with the

one-third octave band criteria established in [5].
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Appendix A

EMD Decompositions from

ACP-CA Database

A.1 IMFs of analyzed signals

This Appendix shows plots IMFs, spectrograms, and energies that are not in the

main body of the thesis.
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A.2 Spectrograms of IMFs for analyzed signals
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A.3 Teager-Kaiser energies of analyzed signals
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