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Abstract

AM-FM decomposition techniques have been successfully used for extracting significative features from a large variety of signals,
helping realtime signal monitoring and pattern recognition, since they represent signals as a simultaneous composition of amplitude
modulation and frequency modulation, where the carriers, amplitude envelopes, and the instantaneous frequencies are the features
to be estimated. Human activities often involve repetitive movements, such as in running or cycling, where sinusoidal AM-FM
decompositions of signals have already demonstrated to be useful to extract compact features to aid monitoring, classification,
or detection. In this work we thus present the challenges and results of implementing the iterated coherent Hilbert decomposition
(ICHD), a particularly effective algorithm to obtain an AM-FM decomposition, within a resource-constrained and low-power ARM
Cortex-M4 microcontroller that is present in a wearable sensor we developed. We apply ICHD to the gyroscope data acquired from
an inertial measurement unit (IMU) that is present in the sensor. Optimizing the implementation allowed us to achieve real-time
performance using less then 16 % of the available CPU time, while consuming only about 5.4 mW of power, which results in a
run-time of over 7 days using a small 250 mAh rechargeable cell.
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1. Introduction

In the last decade classifying, recognizing or simply monitoring human activity all benefitted of the availability of
wearable tiny body sensors. These tasks have now become easy-to-be-implemented, and useful for improving sports,
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fitness, healthcare, ambient assisted living and telemedicine research fields [1–4]. Indeed, acquiring heterogeneous
data such as body position and movement, heart rate, muscle fatigue, and skin temperature, simply using smartwatches
or clothes, belts, shoes, sunglasses, in which miniaturized and lightweight sensors have been transparently embedded,
is quite common nowadays [5–8]. Among all these heterogeneous data, body accelerations are the most widespreadly
employed to evaluate human activities as they record body movements and detect variations in limb orientation [9–
12]. Thus, they have been exploited by many wearable-sensor-based human activity recognition (WSHAR) systems
[13–17].

Accelerometer sensors placed across the body often deal with periodic non-stationary signals during recre-
ational, sports, training and rehabilitation activities involving repetitive movements such as walking, running, cycling,
weightlifting. On this scenario natively non-stationary signal processing algorithms can be useful to estimate the time-
dependent spectral moments. In particular, the empirical mode decomposition (EMD) and its modifications [18], have
been applied to the processing of biological data [19, 20].

For repetitive movements such as running or cycling, sinusoidal AM-FM decompositions of signals have demon-
strated to be useful because they represent signals themselves as resulting from simultaneous amplitude modulation
and frequency modulation, where the carriers, amplitude envelopes, and instantaneous frequencies (IFs) are the fea-
tures to be estimated. Monocomponent representations are consolidated models and several demodulation algorithms
exist, as those based on the Teager-Kaiser operator or the Hilbert transform [21–23]. These approaches use ad hoc
filters in order to regularize the estimated envelope and IF of the signal. Multicomponent AM-FM representations,
that are better suited to model nonlinear and non stationary signals, have been applied in a large number of research
fields [24–33].

In general AM-FM decomposition techniques have been successfully used for extracting significative features
from a large variety of signals, helping realtime signal monitoring and pattern recognition, e.g. in [34] a multiscale
AM-FM decomposition has been converted from MATLAB code into compute unified device architecture (CUDA)
code, in order to take advantage of the graphics processing units to significantly reduce the computation time and
memory needs, while in [35] an efficient FPGA implementation of EMD is presented. But neither CUDA nor FPGA
are particularly suited for wearable devices that must run for prolonged period of times on small and lightweight
batteries, and implementations of these types of decomposition in low-power microcontrollers are not common.

In this work we thus present the challenges and results of implementing the iterated coherent Hilbert decomposition
(ICHD) [7], a particularly effective algorithm to obtain an AM-FM decomposition, within the resource-constrained
and low-power microcontroller that is present in the wearable sensor [2] we developed. It was designed specifically
to monitor activities of daily living of people with cognitive impairments, so it must have a long battery life to allow
continuous operation, but of course it can be used also to monitor and track fitness and recreational activities. This
device incorporates an inertial platform consisting in a 3-axes linear accelerometer and a 3-axes gyroscope, able to
sense angular speed. It is able to stream the acquired data over a Bluetooth low energy (BLE) wireless channel, using
an embedded low-power transceiver, to any suitable receiving device, such as a smartphone or a laptop. ICHD was
already proved to be able to extract very compact and meaningful features for the classification of human activities
[36], so the possibility of using it aboard the device could provide significant bandwidth savings by only transmitting
these compact features instead of the whole motion signal.

2. Methods

2.1. Iterated Coherent Hilbert Decomposition

The details of ICHD are thoroughly described in [7], this section reports a brief summary for easier reference.
ICHD is based on the extraction of quasi-sinusoidal components from a time-domain signal x(t), starting with

the highest amplitude one, and iteratively progressing to the smaller ones. The most prominent features of the signal
should hence be captured in the first few components. Usually, just two suffice for most applications.

In general, any signal x(t) can be written as:

x(t) ≃
N∑

i=1

ai(t) cos
(
φi +

∫ t

0
ωi(τ) dτ

)
(1)
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where the approximation can also be an exact identity if no constraints are posed on the signals ai(t), which should be
instantaneous amplitudes, and ωi(t), which should be instantaneous frequencies. Since, to be meaningful, we require
that these signals ai(t) and ωi(t) be slowly time-varying with respect to the dynamics of the original signal, an initial
phase φi is added to allow smoothing of ai(t) near time zero, and up to N components are used to model progressively
finer details, with the assumption that, on average, ai > ai+1. Of course, the decomposition is not unique, but depends
on the smoothness requirements imposed.

A possible and effective extraction technique starts with an exact representation of (1) with N = 1, obtained by
means of the Hilbert transformH[·], which can be used to produce an analytical signal z(t) such that

z(t) = x(t) + jH[x(t)] = a(t) e jφ(t) (2)

which can be recast in the form (1) by posing N = 1, a1(t) = a(t), ω1(t) = dφ(t)/dt, φ1 = φ(0). In general, the
derivative of φ(t) as obtained by the Hilbert transform would not be smooth, so this exact decomposition is not often
useful for real-world signals. We proceed by obtaining a smooth frequency estimate by low-pass filtering the initial
estimate ω(t) = dφ(t)/dt, let us call ω̂(t) this low-pass filtered version of ω(t). After adjusting the initial phase δ(0),
the amplitude component can be estimated by coherent demodulation:

c(t) = z(t) exp
(
− j δ(0) − j

∫ t

0
ω̂(τ) dτ

)
(3)

and the AM part can be posed equal to its low-pass filtered amplitude c(t), hence â(t) = |c(t)|.
Having obtained the estimates â(t) and ω̂(t), they can be assigned to a component ai(t) and ωi(t), the resulting

signal subtracted from the original, and the procedure repeated for the subsequent components.
This algorithm allows the computation of instantaneous amplitudes and frequencies, that results in an expansion

of the amount of data since a single time-domain signal is now represented by 2 N signals. But since these signals
are now slowly varying, they can be drastically subsampled. Indeed, it has been proved that taking just their median
value in a window that spans a few seconds is enough to classify activities [36]. So, after computing ICHD, only the
medians Ai of ai(t) and fi of ωi(t) from (1) are computed (in a suitably long window) and retained.

2.2. Implementation

A straightforward implementation of the algorithm just exposed might require significant computational resources,
as it requires to compute Hilbert transforms, compute inverse trigonometric functions to estimate instantaneous phase,
low-pass filtering, coherent demodulation, and further low-pass filtering.

Significant savings can be obtained by performing all the filtering in the frequency domain, discontinuities in
inverse trigonometric functions that can lead to problems in computing the derivative can be avoided by noting
that, by taking the logarithm of z(t), the instantaneous phase is just its imaginary part, and the derivative of a log-
arithm can be computed without requiring any transcendental function evaluation since dφ(t)/dt = d

(ℑ log z(t)
)
/dt =

ℑ (1/z(t) · dz(t)/dt), that only requires basic (complex) arithmetic. A schematic representation of the complete data
processing that is implemented in the microcontroller is shown in Figure 1.

These optimizations have first been prototyped in MATLAB to ensure correct operation, and then converted to C
code, suitable to run on the embedded 32 bit ARM Cortex-M4 that powers the wearable sensor, with the help of the
MATLAB Coder. Indeed, the coder was not able to directly produce C code suitable to be embedded in the device
firmware. Functions such as “fftfilt” could not be converted automatically due to failure in propagation of constant
values. So, several hand-tuned changes had to be implemented to optimize memory usage and allocation, avoiding
the placement of large vectors on the stack (which is quite small on this platform), doing without dynamic memory
allocation (to avoid heap fragmentation), and to propagate constants that can be computed at compile-time instead of
run-time.

In particular, by fixing the filter length to P = 1025, the window length to L = 1024, the cut-off frequency to
40 % of the Nyquist frequency, it is possible not only to precompute the filter coefficients, which is the customary
thing to do, but also to specialize the overlap-and-add algorithm to the required number of blocks, 2 in this case,
using 2048-points FFTs. Moreover, since to limit the effects of artifacts near block boundaries, the ICHD algorithm
implemented a mirror (even) extension of the signal, that was embedded in the filtering function, that is now
composed of the following steps:
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Fig. 1. Schematic representation of the data flow and of the main blocks that compose the ICHD algorithm as implemented within the microcon-
troller, highlighting the FFT-based implementation of the filters (Hilbert filter in gray, low-pass filter in yellow).

• preliminary step: convert the 1025-tap filter coefficients with a 2048-points FFT;
• prepare time-domain data using the first half of the acquired data, even-mirrored to the left to compensate the

filter group delay.
• compute the signal FFT using the just created 1024-point data vector, zero-padded to 2048 points;
• compute the inverse FFT (IFFT) of the product of the just computed FFT with the filter frequency response;
• apply another 2048-points FFT to the second half of the acquired data, even-mirrored to the right;
• compute the inverse FFT of the product of the just computed FFT with the filter frequency response;
• add the last 1024 values from the first IFFT to the first 1024 values of the second IFFT.

With these optimizations at least a four-fold speedup was obtained w.r.t. a straightforward implementation, and
further optimizations were achieved by leveraging libraries specifically optimized for the Cortex-M4 instead of relying
on generic C code. For instance, using the ARM CMSIS FFT library instead of a generic radix-2 implementation more
than halved again the execution time.

3. Results

To evaluate the suitability of the ICHD algorithm for real-time feature extraction in a continuous monitoring ap-
plication, the C code optimized as described above was included in the firmware of the device presented in [2], called
EMGyro2. It includes an STmicroelectronics LSM6DSO 6-degrees of freedom inertial sensor (gyroscope and linear
accelerometer), a 6-channel EMG sensor (not used in the present work, but potentially useful for future applications
always in the field of continuous human monitoring), all coordinated by a Nordic Semiconductor nRF52840 system,
that incorporates the BLE radio and a 64 MHz Cortex-M4 CPU with FPU, 1 MiB of flash memory, and 256 KiB of
RAM. The whole device is battery powered, and is shown in Figure 2.

A new BLE characteristic was added to the GYRO service to stream the median amplitudes and frequencies
computed by the microcontroller. In the current implementation, N was fixed to 2, and the window length L to 1024.
Using an acquisition frequency FS=104 Hz, this results in windows of about 10 s, an appropriate length for activity
classification. The communication requirements of the new characteristic are thus totally negligible: just four 32-bit
floating point numbers every 10 s. In contrast, raw inertial data streaming for off-line elaboration requires at least 16
bits per axis, for a total of 12 bytes nearly every 10 ms, a considerable bandwidth for a BLE system that maxes out at
6×20 bytes packets every 7.5 ms.
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Fig. 2. Picture of the wearable device used for the experiments. PCB dimensions are 52 mm × 27 mm and it is powered by a 250 mAh lithium-
polymer battery rechargeable through the micro-USB connector. The Fanstel module on the lower left contains the nRF52840 chip.

A first test to evaluate the performance of the implementation was performed by measuring the device current
consumption during operation. This type of test is able to shed light on many of the internal BLE protocol operations
and, most importantly, allows the precise evaluation of the CPU time required to process the algorithm and the amount
of energy it consumes, hence enabling a precise estimation of the battery run time. The measurements were performed
with an ad-hoc system described in [37], and the results are reported in Figure 3.

Recording of the current trace started when the device was already connected via BLE to a smartphone. After about
11.4 s the gyroscope was activated and the streaming of the raw inertial data started. The current signal seems noisy
but it is actually composed of a train of pulses corresponding to radio reception/transmission of BLE packets, as better
highlighted in the insets. The average current still stays quite low, at around 1.4 mA, because the packets are short.
Indeed, the baseline current consumption of the gyroscope plus microcontroller, with just the keep-alive packets and
no data being streamed at all, is about 1.1 mA.

After further approximatively 10 s, the ICHD characteristic was activated, enabling internal buffering of the gy-
roscope data (while real-time streaming continues) for subsequent processing. Once a full buffer of data is acquired
(1024 data points), the ICHD algorithm starts processing and, in the current implementation (which lacks an RTOS for
concurrent code execution), we pause the real-time streaming. The current consumption in this case is about 3.9 mA,
at the nominal supply voltage of 3.7 V. Processing time is 1.5 s, which compared to the 1024/FS=9.85 s window
corresponds to a CPU utilization of 15.4 %, proving that the microcontroller can easily cope with the computational
requirements of ICHD.

The average current consumption of the whole device in these conditions (including streaming of raw data) is just
1.76 mA, which means that the 250 mAh battery can power the system for nearly 6 days of continuous monitoring.
By disabling the raw data streaming further savings can be achieved, with the average current reaching 1.46 mA and
the expected runtime thus exceeding 1 week.

A second test was performed to verify the accuracy of the implemented algorithm, since it only uses 32 bits floating
point numbers instead of the double precision, 64-bits arithmetic of the MATLAB reference implementation. To this
end, a simple movement consisting of repeated arm swings was performed with the sensor attached to the hand, so
as to achieve a nearly periodic, and thus simply to understand by visual inspection, signal. This is indeed shown in
Figure 4 (green trace).

For reference, the same figure also shows the instantaneous amplitudes and frequencies as extracted by MATLAB
from the streamed raw data. It is apparent that A1 tracks the amplitude of the signal, while the second component
(likely a high-frequency vibration due to the device attachment) is very low. The red bars denote the median f1 as
reported by the device over the ICHD BLE characteristic, that corresponds to the instantaneous frequency computed
by MATLAB. ( f1 was chosen because it allows simple visual inspection of its correctness by counting the number of
periods in the 10 s interval.)
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Fig. 3. Measured device current consumption during data acquisition, streaming, and elaboration, at a 3.7 V supply voltage. For the first 10 s or so
the device is just connected over BLE to the smartphone, current spikes denote radio activity for keeping the connection alive. When the gyroscope
is activated at time 11.4 s the baseline current consumptions grows due to the sensor power draw, and radio communication intervals are shortened
to stream the real-time data (lower left insert). A few seconds later the ICHD subsystem is activated, it collects 10 s worth of data and then elaborates
it. High CPU activity results in the nearly 4 mA current drawn for the 1.5 s required to perform the computations, as can be seen in the lower right
panel. In this implementation, streaming is suspended during elaboration. For reference, a few more computation “events” are shown in the upper
panel, and then at around 72 s the connection is closed (the final spike train represents the advertising packets the node sends to re-establish the
connection if needed, they stop after a few minutes).

To analytically estimate the actual error, features extracted on-device and by MATLAB are reported and compared
side-by-side in Table 1. The error is computed as the absolute value of the difference between the two implementations,
divided by the result of the MATLAB one, assumed as a reference. As can be seen, the relative error on the first
component is very low, 10−5 on the amplitude and 10−4 on the frequency, not much more than the resolution limit of
32-bit floats. The error is somewhat larger in the second component, because its amplitude is much smaller than that
of the first, and being obtained by subtraction it is bound to have lower accuracy. Nevertheless, it is still negligible for
any practical application.

4. Conclusions

In this work we presented an optimized implementation of the ICHD algorithm, suitable to extract compact but
significant features from a motion signal. It targets a compact, multi-function and low-power wearable platform we
previously developed. Results show that reducing the computation accuracy from 64 bits to 32 bits did not significantly
affect accuracy on the major components, and the code can run in real time, using only about one sixth of the available
CPU time. The average power consumption, including streaming of the raw data over BLE, is just 6.5 mW, which
reduces to 5.4 mW if only the ICHD features are transmitted, enabling a small rechargeable battery to power the
device for over a week of operation, making it suitable for continuous monitoring of human activities. The computed
data is transmitted over BLE and can thus be collected by any smartphone with a simple app for further relaying or
elaboration.
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Fig. 3. Measured device current consumption during data acquisition, streaming, and elaboration, at a 3.7 V supply voltage. For the first 10 s or so
the device is just connected over BLE to the smartphone, current spikes denote radio activity for keeping the connection alive. When the gyroscope
is activated at time 11.4 s the baseline current consumptions grows due to the sensor power draw, and radio communication intervals are shortened
to stream the real-time data (lower left insert). A few seconds later the ICHD subsystem is activated, it collects 10 s worth of data and then elaborates
it. High CPU activity results in the nearly 4 mA current drawn for the 1.5 s required to perform the computations, as can be seen in the lower right
panel. In this implementation, streaming is suspended during elaboration. For reference, a few more computation “events” are shown in the upper
panel, and then at around 72 s the connection is closed (the final spike train represents the advertising packets the node sends to re-establish the
connection if needed, they stop after a few minutes).

To analytically estimate the actual error, features extracted on-device and by MATLAB are reported and compared
side-by-side in Table 1. The error is computed as the absolute value of the difference between the two implementations,
divided by the result of the MATLAB one, assumed as a reference. As can be seen, the relative error on the first
component is very low, 10−5 on the amplitude and 10−4 on the frequency, not much more than the resolution limit of
32-bit floats. The error is somewhat larger in the second component, because its amplitude is much smaller than that
of the first, and being obtained by subtraction it is bound to have lower accuracy. Nevertheless, it is still negligible for
any practical application.

4. Conclusions

In this work we presented an optimized implementation of the ICHD algorithm, suitable to extract compact but
significant features from a motion signal. It targets a compact, multi-function and low-power wearable platform we
previously developed. Results show that reducing the computation accuracy from 64 bits to 32 bits did not significantly
affect accuracy on the major components, and the code can run in real time, using only about one sixth of the available
CPU time. The average power consumption, including streaming of the raw data over BLE, is just 6.5 mW, which
reduces to 5.4 mW if only the ICHD features are transmitted, enabling a small rechargeable battery to power the
device for over a week of operation, making it suitable for continuous monitoring of human activities. The computed
data is transmitted over BLE and can thus be collected by any smartphone with a simple app for further relaying or
elaboration.
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Fig. 4. Example of an acquired signal (gyroscope data) measured with the sensor attached to the hand while swinging the arm, as received from
the real-time BLE stream. The “median f1” line shows the value of the frequency of the first AM-FM component as computed within the device
itself and notified over BLE at the end of the elaboration (occurring during the time intervals without data). For reference, the amplitudes A1, A2
and frequencies f1, f2 of the first two AM-FM components as computed off-line by MATLAB are also shown.

Table 1. Median values of the amplitudes and frequencies of the first two AM-FM components extracted from a sample gyroscope signal (a portion
of which is shown in Fig. 4). The acquired signal is an angular velocity so both its amplitude and its (variation) frequency are reported in radians
per second. The values computed on-line by the device itself (EMGyro2) and later off-line with MATLAB are reported for comparison.

interval
A1 (rad/s) f1 (rad/s) A2 (rad/s) f2 (rad/s)

EMGyro2 MATLAB EMGyro2 MATLAB EMGyro2 MATLAB EMGyro2 MATLAB

#1 1.2517 1.2518 4.3519 4.3519 0.1132 0.1132 25.3043 25.3026
#2 1.3716 1.3716 4.2432 4.2426 0.0946 0.0946 21.8441 21.8458
#3 1.2618 1.2618 4.1666 4.1667 0.1313 0.1313 16.3060 16.2873
#4 1.1949 1.1949 4.2490 4.2482 0.1556 0.1557 16.6359 16.6046
#5 1.1417 1.1417 4.2616 4.2616 0.1527 0.1530 18.0039 17.9924
#6 0.8854 0.8854 4.2413 4.2398 0.1056 0.1056 21.0020 21.0021

error 1.03×10−5 4.20×10−4 1.15×10−4 6.37×10−4
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