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Abstract

This dissertation is focused on the development of robust and efficient Amplitude-

Modulation Frequency-Modulation (AM-FM) demodulation methods for image and

video processing1. The motivation for this research lies in the wide number of image

and video processing applications that can significantly benefit from this research.

A number of potential applications are developed in the dissertation.

First, a new, robust and efficient formulation for the instantaneous frequency (IF)

estimation: a variable spacing, local quadratic phase method (VS-LQP) is presented.

VS-LQP produces much more accurate results than current AM-FM methods. At

significant noise levels (SNR < 30dB), for single component images, the VS-LQP

1There is currently a patent pending that covers the AM-FM methods and applications
described in this dissertation.
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method produces better IF estimation results than methods using a multi-scale fil-

terbank. At low noise levels (SNR > 50dB), VS-LQP performs better when used

in combination with a multi-scale filterbank. In all cases, VS-LQP outperforms the

Quasi-Eigen Approximation algorithm by significant amounts (up to 20dB).

New least squares reconstructions using AM-FM components from the input sig-

nal (image or video) are also presented. Three different reconstruction approaches

are developed: (i) using AM-FM harmonics, (ii) using AM-FM components extracted

from different scales and (iii) using AM-FM harmonics with the output of a low-pass

filter. The image reconstruction methods provide perceptually lossless results with

image quality index values bigger than 0.7 on average. The video reconstructions

produced image quality index values, frame by frame, up to more than 0.7 using

AM-FM components extracted from different scales.

An application of the AM-FM method to retinal image analysis is also shown.

This approach uses the instantaneous frequency magnitude and the instantaneous

amplitude (IA) information to provide image features. The new AM-FM approach

produced ROC area of 0.984 in classifying Risk 0 versus Risk 1, 0.95 in classifying

Risk 0 versus Risk 2, 0.973 in classifying Risk 0 versus Risk 3 and 0.95 in classifying

Risk 0 versus all images with any sign of Diabetic Retinopathy.

An extension of the 2D AM-FM demodulation methods to three dimensions is

also presented. New AM-FM methods for motion estimation are developed. The new

motion estimation method provides three motion estimation equations per channel

filter (AM, IF motion equations and a continuity equation). Applications of the

method in motion tracking, trajectory estimation and for continuous-scale video

searching are demonstrated. For each application, we discuss the advantages of the

AM-FM methods over current approaches.
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Chapter 1

Introduction

In this first chapter we present an introduction to this dissertation work. We start

with an introduction to the basis of AM-FM demodulation theory. Then, we present

an overview of the AM-FM demodulation theory together with AM-FM applications

already developed.

Next, we present the motivation for this dissertation followed by the thesis state-

ment. We finish this chapter stating the contributions of this dissertation and pre-

senting an overview of this document.

1.1 AM-FM demodulation theory

We consider multi-scale AM-FM representations, under least-square approximations,

for images given by

I(x, y) ≃
M
∑

n=1

an(x, y) cosϕn(x, y), (1.1)

2



Chapter 1. Introduction

and for videos given by

I(x, y, t) ≃
M
∑

n=1

an(x, y, t) cosϕn(x, y, t), (1.2)

where n = 1, 2, . . . , M denote different scales. In (1.1), a continuous image I(x, y)

is a function of a vector of spatial coordinates (x, y). Similarly, in (1.2), a continuous

video I(x, y, t) is a function of a vector of spatiotemporal coordinates (x, y, t). A col-

lection of M different scales are used to model essential signal modulation structure.

The amplitude functions an(·) are always assumed to be positive.

Our interest in AM-FM model is for modeling non-stationary image and video

content in terms of amplitude and phase functions (see for example [1]). The ba-

sic idea is to let the frequency-modulated (FM) components cos ϕn(·) capture fast-

changing spatial variability in the image intensity. For each phase function ϕn(·) we

define the instantaneous frequency (IF), ∇ϕn(·), in terms of the gradient. Thus, for

images

∇ϕn(x, y) =

(

∂ϕn

∂x
(x, y),

∂ϕn

∂y
(x, y)

)

(1.3)

and for videos

∇ϕn(x, y, t) =

(

∂ϕn

∂x
(x, y, t),

∂ϕn

∂y
(x, y, t),

∂ϕn

∂t
(x, y, t)

)

. (1.4)

The instantaneous frequency vector ∇ϕn(·) can vary continuously over the spatial

domain of the input signal.

Fig. 1.1 depicts the basic AM-FM demodulation method approach. Given the

input image I(k1, k2), we first apply the Hilbert transform to form a 2D extension

of the 1D analytic signal: IAS(k1, k2). IAS(k1, k2) is processed through a collection

of bandpass filters (to be described in the section 3.1) with the desired scale. Each

processing block will produce the instantaneous amplitude, the instantaneous phase,

and the instantaneous frequencies in both x and y directions by means of either the
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QEA method (sub-section 2.1.3) or the QLM method (sub-section 2.1.4). The pro-

cessing for a discrete video I(k1, k2, k3) is similar, applying first a Hilbert transform

to form a 3D extension of the 1D analytic signal: IAS(k1, k2, k3). The instantaneous

frequencies are estimated in all x, y and t directions. For each pixel, we select the

AM-FM demodulation estimates from the processing block that gives the largest

instantaneous amplitude estimate. Hence, the algorithm adaptively selects the esti-

mates from the bandpass filter with the maximum response. This approach does not

assume spatial continuity, and allows the model to quickly adapt to singularities in

the input signal.

For the reconstruction methods presented here, the AM-FM estimations are com-

puted scale by scale and then added as in (1.1) and (1.2), for images and videos,

respectively (chapters 4 and 7, respectively). Similar scale by scale estimation is

used for the application in retinal images (chapter 5). For AM-FM based motion

estimation methods, the velocity vectors are computed based on (1.2) in chapter 8.

Also, an extension of this approach is used for activity recognition in videos.

1.2 An overview of AM-FM theory and Applica-

tions

Multidimensional Amplitude-Modulation Frequency-Modulation (AM-FM) models

provide methods that allow for continuous-scale analysis. There is strong interest in

the further development of AM-FM models, with potential applications in various

areas in signal, image and video processing. Also, in [2], the authors show a class

of multidimensional orthogonal FM transforms, related with AM-FM. Multidimen-

sional AM-FM demodulation methods have been studied in [3, 4, 5, 6, 7, 8, 9, 10].

Also, in [11, 12], the author presents an axiomatic approach that suggests that the
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Chapter 1. Introduction

Figure 1.1: 2D Multi-scale AM-FM demodulation. Dominant AM-FM components
are selected over different image scales. The bandpass filter selector (upper left) is
used to define the bandpass filters that correspond to each scale. The dominant AM-
FM component is selected using the maximum amplitude at every pixel (see lower
right).

analytic-signal demodulation method is the only algorithm that satisfies certain in-

tuitive conditions.

Applications in one-dimensional (1D) signals have been done in [13, 14, 15, 16,

17, 18], and for speech signal analysis in [19, 20, 21, 22, 23, 24]. Recent interest

in one-dimensional AM-FM demodulation work is usually attributed to research

associated with the Teager-Kaiser energy operator and its applications in speech

signal analysis [19, 20, 21, 22]. Multicomponent AM-FM analysis for 1D signals and

speech processing have been done in [3, 14, 25, 26], and recently in [27]. In [28], the

authors provided an AM-FM model for images.

Two-dimensional (2D) applications include image pattern analysis including shape
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from shading in [29], image interpolation in [30], fingerprint classification in [31], the

treatment of analytic signals in [32], image retrieval in digital libraries in [33], applica-

tions in image segmentation in [34], [35], [36], for repairing of damaged image textures

in [37], component tracking in [38] and in reconstruction in [39, 40, 41, 42, 43, 44]. In

[1], the authors use it for analyzing the structure of textured images. In [38, 28, 45, 42]

multi-component AM-FM image representations are studied.

For video image analysis, [46] describes an application in cardiac image segmen-

tation. Earlier, Fleet and Jepson developed phase-based methods for motion esti-

mation in [47]. Recently, AM-FM based methods for reconstruction of videos have

been given in [48] and for motion estimation in medical videos in [49] and general

videos in [48].

The multidimensional extension of the one-dimensional analytic-signal demodula-

tion algorithm was first proposed by Havlicek in his dissertation [50]. A nice tutorial

introduction to multidimensional AM-FM demodulation techniques can be found in

[51]. More recently, an overview of advances made in the area of multidimensional

AM-FM models and methods can be found in [52]. Similarly, multidimensional AM-

FM demodulation methods can be found in [53]. A two-dimensional extension to

the Teager-Kaiser energy operator can be found in [54]. Early applications of the

multidimensional Teager-Kaiser operator and a sign-correction to the instantaneous

frequency vector estimation is given in [55, 56].

Analytic image methods for AM-FM demodulation are based on extending the

notion of the 1D analytic signal to 2D or simply to provide a Hilbert-based extension

of the 1D Hilbert-based demodulation approach. Early work can be found in [50]. In

[57] and [58], the authors introduce the phase quadrature transform for extending the

Hilbert transform into two dimensions. In [9], Felsberg and Sommer introduced the

monogenic signal, a nice extension of the analytic signal to images. The monogenic

signal is a three-dimensional representation that combines an image with its Riesz
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transform to yield a sophisticated 2D analytic signal. Some related work on image

demodulation based on the analytic image includes [4, 5, 6, 9].

1.3 Motivation of current work

The analysis of non-stationary images and videos presents many unique challenges

to current digital image and video processing methods. In one-dimensional analysis

of non-stationary signals, we often use the short-time Fourier Transform (STFT).

When using the STFT, we window in time the signal at different points and then

evaluate its fast Fourier Transform (FFT) over that short window of pixels (time in

the 1D case) to determine the frequency and phase content. Thus, the STFT is a

convenient two-dimensional representation that provides only frequency information

at different intervals in time. Unfortunately, this approach cannot be generalized to

images and videos. To generalize this STFT approach to images, we would have to

evaluate the 2D FFT at a large collection of two-dimensional windows, producing a

four-dimensional representation. Furthermore, a six-dimensional representation will

be produced for digital videos.

Since the late 1990s, the discrete Wavelet transform (DWT) has been used for

transform-based image processing. Unlike the Fourier transform, Wavelet transforms

are based on small waves of varying frequency and limited duration. Thus, the DWT

is a space-frequency representation of the input signal and it is related to harmonic

analysis as in Fourier. While FFT uses equally spaced frequency division, DWT uses

logarithmic divisions of the frequency. Thus, Wavelets do not measure the frequency

content directly but through scales.

The motivation of using AM-FM methods came from the desire of analyzing

and representing non-stationary, yet locally coherent signal structures. These non-

stationarities are often related with visual perception and interpretation. AM-FM
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methods provide pixel-based information in terms of the instantaneous amplitude,

instantaneous frequency and instantaneous phase. Again, while STFT give us only

frequency information within a window in time and Wavelets give us the space and

frequency information through matching to fixed scales, AM-FM gives us these in-

stantaneous amplitude, phase and frequency information directly from the input

signal and at a pixel-based resolution. In contrast with Fourier transforms, AM-FM

functions are complex sinusoids admitting non-stationary amplitude and frequency

modulations which are allowed to change or adapt arbitrarily throughout the signal

domain at a pixel-based resolution.

In AM-FM models, each AM-FM component is inherently and naturally capable

of capturing, extracting and representing significant non-stationary structure within

the signal, these non-stationary amplitude and frequency modulations are allowed to

change or adapt arbitrarily throughout the signal domain at a pixel-based resolution.

Recently, there have been a number of extensions to the one-dimensional AM-

FM energy operator algorithms, including an algebraic method that avoids the use of

bandpass filters for demodulating multiple components [14], and different approaches

for improving the accuracy of the estimation [17], [24], [18]. Similarly, there has been

significant research in extending the one-dimensional algorithms based on the ana-

lytic signal. A recent extension to the one-dimensional demodulation methods based

on the analytic signal can be found in [23]. Recent, multidimensional extensions of

the analytic signal demodulation techniques can be found in [3], [50]. Alternative

AM-FM methods have also been proposed in [15], [16], and [59]. A modulation

bound for discrete modulated signals is given in [60] and one-dimensional Cramer-

Rao bounds for a non-linear AR model are given in [61]. For general problems, the

one-dimensional, analytic signal methods have been widely accepted as referenced

by two recent books [11] and [32]. Strong arguments for the use of one-dimensional

analytic signal method are given by Cohen in [32] and Vakman in [11], [12]. Similar
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to the one-dimensional uniqueness arguments of Vakman, Havlicek proposed three

criteria to support the use of multidimensional, analytic image methods in his PhD

dissertation (pages 68-74 in [50]). However, this work has not been extended to three

dimensions. A recent example of the standard use of Gabor filters is discussed in

[62], where the use of multiple scales for image classification is motivated by models

of the human visual system.

The focus of this dissertation is on 2D and 3D extensions of the 1D analytic

methods for AM-FM demodulation. In this dissertation, we develop new and effi-

cient AM-FM methods for image and video processing. A new, robust and efficient

formulation for the instantaneous frequency (IF) estimation is developed. The new

IF estimation method produces more accurate results than current methods and

also works in the presence of high levels of noise. We develop algorithms based

on AM-FM features for applications in image and video processing. We consider

the analysis of digital images and videos using their AM-FM components through

the least-square reconstructions of the input signal produced by different frequency

scales. An application for the analysis of retinal images for classification of diabetic

retinopathy diseases in people is developed based on AM-FM features produced in

different frequency scales. A new method for pixel-based motion estimation based

on AM-FM methods is developed. We also consider an application of this model

in analyzing atherosclerotic plaque motion, general video motion and video activ-

ity recognition. This study is motivated from a desire to extend traditional motion

estimation methods into the development of reliable methods for video trajectory

estimation. This method produces three equations per pixel per scale (AM, FM, and

continuity equations) allowing us to produce more accurate results and full dense

motion estimates. We extend the application to new AM-FM methods for content

based video retrieval for activity recognition.
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1.4 Thesis statement

The primary thesis of this dissertation is that the development of new AM-FM

methods can lead to a wide range of new and improved image and video processing

applications. First, we introduce new, more accurate methods for multidimensional,

multi-scale AM-FM demodulation. Second, we demonstrate applications in accurate

image and video reconstructions. Third, we discuss new applications in motion

estimation, image classification, content-based image retrieval and video activity

detection.

1.5 Contributions

The most important contributions include:

• Development of a new, robust and efficient IF demodulation method, taking

advantage of new separable, optimal (in the min-max sense), multi-scale fil-

terbanks. Preliminary results using 2D filterbanks were presented in [39]. For

video applications, preliminary results using 3D filterbanks were presented in

[48] and [49].

• Development of new and efficient AM-FM demodulation methods for image

analysis and classification for retinal images. The results have been accepted to

be presented in Asilomar 2008 [63] and [64]. This approach led to outstanding

classification results in retinal image analysis. This effort has been supported

by VisionQuest Biomedical through a grant from NIH.

• New 2D/3D reconstruction methods using AM-FM models. Least-squares re-

constructions using AM-FM models provide effective 2D/3D signals represen-

tations. Results have been presented in [39], [48] and will also be presented in

[65].
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• New AM-FM demodulation-based motion estimation method. An extension

of the original phase model approach in [47], the new AM-FM demodulation

method produces better estimates over different scales. Results have been

presented in [48] and [49].

• New AM-FM methods for content based video retrieval for activity recognition

have been developed. This effort has been supported by DARPA.

1.6 Dissertation Overview

This section contains a brief overview of all that is contained within this dissertation.

The dissertation is organized into four parts.

Part I consists of two chapters. Chapter 1 presents a brief introduction to AM-FM

demodulation theory together with a literature review of the theory, approaches and

applications. The thesis motivation and statement, and the expected contributions

for doing this dissertation are also presented here. In chapter 2, we present the

foundations of AM-FM demodulation theory.

Then, part II presents the theory and applications of this dissertation related

with still image processing. First, in chapter 3, we present robust discrete image

AM-FM demodulation methods. Second, chapter 4 presents three image reconstruc-

tion methods using least-square approximations based on the AM-FM demodulation

methods. Results and discussions are presented for both chapters 3 and 4. Finally,

chapter 5 presents the theory, applications and results for retinal image analysis.

Video processing methods are presented in part III. Starting with robust discrete

video AM-FM demodulation methods in chapter 6, we then present video reconstruc-

tions in chapter 7. A new AM-FM based motion estimation theory is presented in

chapter 8. An activity recognition application is presented in this chapter too. The
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latter chapters conclude with results and discussions.

Concluding remarks, for image and video processing and future work are pre-

sented in the final chapter.
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Chapter 2

Background on AM-FM

Demodulation Methods

2.1 AM-FM demodulation methods

2.1.1 Continuous Space AM-FM Demodulation based on ex-

tensions of the Analytic Signal

Consider a single component AM-FM image defined by

I(x, y) = a(x, y) cosϕ(x, y). (2.1)

In this case, the AM-FM demodulation problem is to estimate: (i) the amplitude

function a(x, y), (ii) the phase function ϕ(x, y) and (iii) the instantaneous frequency

function ∇ϕ(x, y) from I(·).

Analytic image methods for AM-FM demodulation are based on extending the

notion of the 1D analytic signal to 2D or simply to provide a Hilbert-based extension

of the 1D Hilbert-based demodulation approach. Early work can be found in [50].
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Bedrosian in [66] presented the Analytic Signal representation of modulated wave-

forms. Nuttall and Bedrosian in [67] presented a quantitative measure of the discrep-

ancy between the Hilbert transform and the quadrature version of a carrier with am-

plitude and/or phase modulation. This measure was based on the Hilbert transform

theorem. Bedrosian in [68] stated this theorem and Stark in [69, 70] extended it to

n-dimensions. It states that, in the 1D single case, for well-behaved functions f and

g, the Hilbert transform of the product fg is given by H [f(x)g(x)] = f(x)H [g(x)]

if one of the following conditions holds: (i) the functions f and g are low-pass and

high-pass functions respectively, with non-overlapping spectra, or (ii) the functions

f and g are analytic, i.e., their real and imaginary parts are Hilbert parts. Picinbono

in [71, 72] defined that for a 1D signal, the function z(t) is the analytic signal of

x(t) if and only if it can be written as z(t) = x(t) + jy(t), where y(t) is the Hilbert

transform of x(t). Then, the canonical pair associated with x(t) is [a(t), ϕ(t)] with

z(t) = a(t) exp ϕ(t).

In [57, 58], the authors introduce the phase quadrature transform for extending the

Hilbert transform into two dimensions. In [9], Felsberg and Sommer introduced the

monogenic signal, a nice extension of the analytic signal to images. The monogenic

signal is a three-dimensional representation that combines an image with its Riesz

transform to yield a sophisticated 2D analytic signal. Some related work on image

demodulation based on the analytic image includes [4, 5, 6, 9].

The AM-FM demodulation methods in this work are based on extensions of the

one-dimensional analytic signal. The first step is to compute the extended analytic

signal associated with I(x, y). The extended analytic signal is computed using [50]:

IAS(x, y) = I(x, y) + jH2d[I(x, y)], (2.2)

where H2d denotes a two-dimensional extension of the one-dimensional Hilbert trans-

form operator. The two dimensional operator is defined in terms of the one dimen-
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sional operator, operating in either the x or the y direction:

H2d[I(x, y)] =
1

πx
∗ I(x, y). (2.3)

For the algorithm to work, we must have that IAS(·) is equal, or at-least approxi-

mately equal, to the complex AM-FM harmonic associated with (2.1) (see [32] for

the 1D case):

IAS(x, y) ≈ a(x, y) exp (jϕ(x, y)) . (2.4)

When the approximation holds, it is possible to estimate the amplitude, the phase

and the instantaneous frequency using

a(x, y) = |IAS(x, y)|, (2.5)

ϕ(x, y) = arctan

(

imag(IAS(x, y))

real(IAS(x, y))

)

(2.6)

and

ω(x, y) = real

[

−j
∇IAS(x, y)

IAS(x, y)

]

. (2.7)

The algorithm can thus be summarized into two steps. First, compute the extended

analytic signal using (2.2). Second, compute of all the estimates using (2.5), (2.6)

and (2.7).

The procedure for working with 3D signals is similar and will be explained in

chapter 6.

2.1.2 Uniqueness of the Hilbert-based approaches

This work focuses on two- and three-dimensional extensions of the one-dimensional

concept of an analytic signal (or equivalent concepts), usually computed using the

Hilbert transform. In [11, 12] an axiomatic approach that shows that the analytic-

signal demodulation method is the only approach that satisfies certain intuitive con-

ditions was presented:
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• Amplitude continuity and differentiability. Small variation in the input signals

should lead to small variations in the instantaneous amplitude (IA).

• Phase independence of scaling and homogeneity. If the input signal is scaled

by a constant factor, its instantaneous frequency (IF) and instantaneous phase

(IP) should be the same as the ones in the original signal.

• Harmonic correspondence. An input signal with constant amplitude and fre-

quency (e.g., a sinusoid) should retain its value, i.e., estimation should be

theoretically exact.

Similar to the one dimensional, uniqueness arguments of Vakman, Havlicek pro-

posed three arguments for the multidimensional, analytic image methods, based on

an adjusted Hilbert transform, in his PhD dissertation (pages 68-74 and Appendix

A in [50]).

2.1.3 Quasi-Eigen Approximation (QEA) algorithm

For discrete-space signals, we consider the discrete-space input signal given by

I(k1, k2) = a(k1, k2) cos ϕ(k1, k2), (2.8)

where k1 and k2 represent the discrete versions of x and y, respectively. We define

the discrete-space extended estimate of the 1D analytic signal ÎAS(k1, k2). This is

accomplished via the use of a discrete-time Hilbert Transform or using the Fast

Fourier Transform (FFT), as given in (2.2).
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The instantaneous frequency (IF) can be estimated using (see [13]):

ϕ̂x(k1, k2) = arcsin

[

ÎAS(k1 + 1, k2)− ÎAS(k1 − 1, k2)

2jÎAS(k1, k2)

]

, (2.9)

ϕ̂y(k1, k2) = arcsin

[

ÎAS(k1, k2 + 1)− ÎAS(k1, k2 − 1)

2jÎAS(k1, k2)

]

, (2.10)

ϕ̂x(k1, k2) = arccos

[

ÎAS(k1 + 1, k2) + ÎAS(k1 − 1, k2)

2ÎAS(k1, k2)

]

(2.11)

and

ϕ̂y(k1, k2) = arccos

[

ÎAS(k1, k2 + 1) + ÎAS(k1, k2 − 1)

2ÎAS(k1, k2)

]

. (2.12)

The IA and IP are estimated using ÎAS(k1, k2) as described in sub-section 2.1.1.

2.1.4 Quasi-Local Method (QLM)

The Quasi Local Method (QLM) was introduced, for 1D signals and half the discrete

frequency spectrum, by Girolami and Vakman in [23]. In 2005, Rodriguez in [13]

extended the method for 2D signals, the entire, discrete frequency spectrum and any

finite number of dimensions without the need of resampling.

The discrete-time IA can be estimated using:

â(k1, k2) =
√

2ǧ(0,0)(k1, k2), (2.13)

where ǧ(ǫ1,ǫ2)(k1, k2) = hLP (k1, k2)∗g(ǫ1,ǫ2)(k1, k2), g(ǫ1,ǫ2)x(k1, k2) = f(k1+ǫ1, k2)f(k1−
ǫ2, k2), g(ǫ1,ǫ2)y(k1, k2) = f(k1, k2 + ǫ1)f(k1, k2 − ǫ2) (ǫ1, ǫ2 ≥ 0), and hLP (k1, k2) is a

discrete lowpass filter.

The IF through the x direction can be estimated using:

ϕ̂x(k1, k2) = arccos

(

Rx(k1, k2) +
√

R2
x(k1, k2) + 8

4

)

, (2.14)
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where

Rx(k1, k2) =
2ǧ(1,1)x(k1, k2)

ǧ(1,0)x(k1, k2) + ǧ(0,1)x(k1, k2)
. (2.15)

Similar analysis is done for the y direction. In order to avoid aliasing, the IF of the

input signal must be restricted to 0 < ϕi(k1, k2) < πfs/2, for ϕx or ϕy, where fs is

the sampling frequency. When πfs/2 ≤ ϕi(k1, k2) < πfs, for ϕx or ϕy, [13], the IF

through the x direction can be estimated using:

ϕ̂x(k1, k2) = π − arccos

(

−Rx(k1, k2) +
√

R2
x(k1, k2) + 8

4

)

, (2.16)

Note that this method does not use the Hilbert transform for the estimations

and the estimated instantaneous frequency is done only in magnitude. Thus, the

Hilbert transform will be used for the sign estimation as it is done in QEA methods.

Moreover, the QLM does not estimate the instantaneous phase (IP), so the QEA

method is used for the IP. The basic approach presented in Rodriguez’s dissertation

is summarized in Fig. 2.1.

Figure 2.1: Block diagram of extended QLM method.
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Part II

AM-FM methods for image

processing
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Chapter 3

Robust Discrete Image AM-FM

Demodulation Methods

In this chapter we develop robust AM-FM demodulation methods. We begin with

the design of an efficient filterbank (section 3.1) to be used in all the 2D methods

and applications described here. Next we present a robust approach to use the QEA

and QLM methods in sections 3.2 and 3.3, respectively. Then we present a new

and robust method for the IF estimation: VS-LQP (in section 3.4). We begin with a

discussion on the stable evaluation of functions and extend it to the stable evaluation

of inverse trigonometric functions. Also, an optimum value of the displacement for

low frequency values of IF is introduced. Finally, results and discussion are presented

in the last sections.
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Chapter 3. Robust Discrete Image AM-FM Demodulation Methods

(a) (b) (c)

(d) (e) (f)

Figure 3.1: Multi-scale filterbanks designed using optimal separable filter design ver-
sus traditional filterbanks with support in four quadrants. For AM-FM analysis we
use: (a) Single-scale, (b) two-scale and (c) three-scale filterbanks. For traditional
Wavelet analysis we show: (d) Single-scale, (e) two-scale and (f) three-scale filter-
banks.

3.1 2-D Multi-scale filterbank design for applica-

tions in discrete images

We use separable multi-scale filterbanks covering the whole frequency spectrum (see

Fig. 3.1 (a)-(c)). Also, in this new design each bandpass filter has frequency support

in only two quadrants of the frequency spectrum. This approach produces a correct

sign estimation compared with the traditional Wavelet-like bandpass filters with
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support in four quadrants (see Fig. 3.1 (d)-(f)).

The filters were designed using a min-max, equiripple approach. Passband ripple

was set at 0.017dB and the stopband attenuation was set to 66.02dB. For all filters,

the transition bandwidths were fixed to π/10. Based on this approach, the unit gain

over the passband eliminated the need for amplitude correction, as required by a

Gabor filterbank approach (see [3]).

(a)

(b)

(c)

Figure 3.2: Min-max specifications for 1D filter design. Multidimensional filters can
be efficiently implemented using 1D filters. (a) Lowpass filter. (b) Bandpass filter.
(c) Highpass filter.
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3.2 Robust multi-scale implementation of the QEA

algorithms

We can implement the filterbanks in either the spatial or the discrete frequency

domain. The two methods are summarized in Fig. 3.3.

For both algorithms, a sign correction process for the estimated instantaneous

frequency has been added. This sign correction process is based on the arcsin of

(2.9) and (2.10).

(a)

(b)

Figure 3.3: Block diagrams of the basic QEA methods. (a) Based on FFT. The
Hilbert filter is applied along the column direction. (b) Using direct, discrete space
convolutions. Here, hm denotes the 2D impulse response for filter m. Note that
for the FFT approach in (a), we will first need to zero-pad. Also, since our filters
are separable, note that we can compute the convolution result using separable, 1D
convolutions along the rows and columns. Similarly, we can use 1D FFTs for more
efficient implementations.
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3.3 Robust multi-scale implementation of the Quasi

Local Method (QLM)

The original QLM was described in the sub-section 2.1.4. We note that a bad Lowpass

Filter (LPF) design will significantly reduce the accuracy of the estimates. Then,

the first step to have a better estimation is with the design of an efficient LPF.

The design of the LPF was done using min-max designs as in section 3.1 with a

cutoff frequency set to π/10, transition band set to π/100, with the same ripple and

attenuation to the other cases. Next, depending on the central frequency support of

the filter used in the filterbank, the range of Rx and Ry must be checked to avoid

estimation problems. The ranges are checked in each processing block. The valid

ranges are:

Rx ∈







[−∞, 1], if |wi
cx
| ≤ πfs/2

[−1,∞], otherwise

Ry ∈







[−∞, 1], if |wj
cy
| ≤ πfs/2

[−1,∞], otherwise

where wi
cx

and wj
cy

are the central frequencies of the filter used in the processing block

i through the horizontal direction and j through the vertical direction, respectively.

In addition to the factor corrections, the use of the filterbanks designed in section

3.1 significantly improves the estimation accuracy.

3.4 A robust Instantaneous Frequency estimation

based on a Local Quadratic Phase (LQP) model

We present a new method for robust IF estimation based on a local quadratic

phase model [1]. We use the term variable spacing, local quadratic phase methods
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(VS-LQP) to describe the approach the we develop in this section. Our objective is

to develop and accurate method.

In our development of AM-FM demodulation methods, we have encountered three

inverse trigonometric functions: arcsin, arccos and arctan. Their condition numbers

are given by

(cond arccos) (x) =
|x|

| arccos(x)||
√

1− x2|
, (3.1)

(cond arcsin) (x) =
|x|

| arcsin(x)||
√

1− x2|
and (3.2)

(cond arctan) (x) =
|x|

| arctan(x)||1 + x2| . (3.3)

Here, we note that large condition numbers reflect numerical instability (see Fig.

3.4). The condition numbers become infinite for both the arcsin and the arccos for

x = ±1. Otherwise, we have finite condition numbers for all values of x, including

the cases when arcsin(x) = 0, arccos(x) = 0, or arctan(x) = 0.

From Fig. 3.4, it is clear that for |x| < 0.6 evaluating the arccos is more stable

than evaluating the arcsin. Furthermore, the most stable evaluations occur for small

values of |x|, when using the arccos function.

Even though the arccos function provides the most stable evaluations, we also

need to use the arcsin function to estimate the proper IF quadrant. On the other

hand, we also find that there are also significant problems in accurate estimation

at very high frequencies. As it is well-known, the difference operator of (2.9)-(2.10)

greatly amplifies high-frequency noise (see [73]). Thus, in what follows, we chose

to use the arccos formulas of (2.11)-(2.12), despite the fact that they will not yield

accurate estimates at high-frequencies.

To derive a more stable algorithm for the low instantaneous frequency values, we

return to the QEA equations (see [13]), and consider the case for arbitrary spacings
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−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

x

 

 

|(cond arccos)(x)|
|(cond arcsin)(x)|

Figure 3.4: Absolute value of the condition number for the arccos (solid line) and
arcsin (dash line) is shown. From this graph, it is clear that we have the most stable
evaluation for the arccos function |x| ≈ 0.

n1 and n2. For n1, we have:

γarccos(n1)

=
ÎAS(k1 + n1, k2) + ÎAS(k1 − n1, k2)

2ÎAS(k1, k2)

=
a(k1 + n1, k2) exp(jϕ(k1 + n1, k2)) + a(k1 − n1, k2) exp(jϕ(k1 − n1, k2))

2a(k1, k2) exp(jϕ(k1, k2))
,

(3.4)

where γarccos(n1) is the input for the arccos function for ϕx estimation in (2.11).

Now, if we can guarantee that γarccos(n1) is small, then the application of the arccos

function will be stable (see (3.1) and Fig. 3.4).

In the original QEA, we assume that a(k1 + n1, k2) ≈ a(k1 − n1, k2) ≈ a(k1, k2)

to get

ÎAS(k1 + n1, k2) + ÎAS(k1 − n1, k2)

2ÎAS(k1, k2)
≈ exp(jϕ(k1 + n1, k2)) + exp(jϕ(k1 − n1, k2))

2 exp(jϕ(k1, k2))

= cos(n1ϕx(k1, k2)).

Clearly, this assumption will be violated for any non-constant amplitude. To improve

on the accuracy of the estimation, we will first estimate the instantaneous amplitude
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without requiring the prior estimate of the instantaneous frequency. Here, it is impor-

tant to note that this approach is now possible because we use unit gain filterbanks

(see section 3.1).

In the original QEA, the IF estimate was used to correct the instantaneous ampli-

tude estimate due to pre-filtering by a Gabor filterbank (with non-unit gain over the

passband, see [3, 50]). In our proposed approach, we use a plug-in rule to produce a

new signal ĪAS with unit instantaneous amplitude using:

ĪAS(k1, k2) =
ÎAS(k1, k2)

|ÎAS(k1, k2)|

=
a(k1, k2) exp(jϕ(k1, k2))

a(k1, k2)

= exp(jϕ(k1, k2)). (3.5)

Let’s consider a quadratic approximation for ϕ(k) (see [1]) of order ‖k − k0‖3,
such that

ϕ(k) ≈ ϕ(k0) + (k− k0)
T∇ϕ(k0) +

1

2
(k− k0)

TF(k0)(k− k0),

where F(k) denotes the Hessian of ϕ(k). Then

ĪAS(k1 + n1, k2) + ĪAS(k1 − n1, k2)

2ĪAS(k1, k2)
=

exp(jϕ(k1 + n1, k2)) + exp(jϕ(k1 − n1, k2))

2 exp(jϕ(k1, k2))

= cos(n1ϕx(k1, k2)). (3.6)

This gives

ϕx(k1, k2) =
1

n1

arccos

(

ĪAS(k1 + n1, k2) + ĪAS(k1 − n1, k2)

2ĪAS(k1, k2)

)

. (3.7)

The analysis for ϕy is similar. The goal is to have γarccos(n1) as close to 0 as

possible. We consider four possible values: n1 = 1, 2, 3 and 4. We do not increase

more the value of n1 since we could go to an unstable zone for (3.1) (see Fig. 3.4).
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Note that for the argument of the arccos(·) to be zero, we require that

ĪAS(k1 − n1, n2) = −ĪAS(k1 + n1, n2).

Thus, for n1 = 1, the maximum frequency that we can attain, without requiring

interpolation, will be w1 = π/2. In what follows, we will only consider integer values

for n1. In particular, for n1 = 4, we can consider low IF down to w1 = π/8.

Next, using a bandpass filter with cutoff frequencies given by wp1x and wp2x (see

section 3.1), given the input signal ĪAS(x, y), we estimate the sign of ϕx using (2.9)

as it is done using QEA method. To estimate the IF magnitude, see Fig. 3.5, we

look first at the estimate γarccos(n1) for n1 = 1, 2, 3, 4. Each value for n1 produces an

estimate for ϕx (ϕ̂1x, ϕ̂2x, ϕ̂3x and ϕ̂4x in Fig. 3.5(b)). Finally, the magnitude of ϕx

is given by the estimate with n1 such that both |γarccos(n1)| is minimum and ϕx, for

the same n1, belongs to the frequency support of the bandpass filter:

min
n1=1,2,3,4

|γarccos(n1)| subject to ϕx ∈ [wp1x , wp2x]. (3.8)

Similar for ϕy.

3.4.1 Pre-filtering and post-filtering

To reject impulsive noise without sacrificing bandwidth, as in the case of using fil-

terbanks, we apply a median filter to the input signal. Also, the same median filter

is applied to the IF estimation outputs (for both x and y directions) to provide

continuity in the estimates. Fig. 3.6 depicts this approach.
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Figure 3.6: Pre-filtering and post-filtering using a median filter to improve accuracy
in the IF estimation. The median filter is applied to the input signal, to reject
impulsive noise without sacrificing bandwidth, as well as to the IF estimates, to
improve continuity.

3.4.2 Modulation for High Frequencies

Recall from the VS-LQP method that, for spacing n1 = 1, the maximum frequency

that we can estimate accurately, without requiring interpolation, is w1 = π/2.

Thus, for high frequencies, we apply a modulation to the input signal given by

exp (jwM1
k1 + jwM2

k2) to modulate the input signal to the medium-low frequencies.

The frequencies wM1
and wM2

are determined by the frequency support of the band-

pass filter where the dominant amplitude is located. Table 3.1 shows the values of

wM1
and wM2

depending on the frequency support of the signal.

3.5 Results for Robust AM-FM estimation

In this section, we present results from all methods using synthetic images. In the

case of using the QEA method (section 3.2), we filter the signal through each channel

using direct, discrete space convolutions.

We first define the synthetic images used, then define the metric to measure the
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Table 3.1: Modulation frequency factors for high frequency signals.

Bandpass filter wM1
wM2

2 +π/2 0

3 0 −π/2

4 +π/2 −π/2

5 −π/2 0

6 0 −π/2

7 −π/2 −π/2

error in terms of the IF. Finally, we present the results.

3.5.1 Gaussian amplitude modulated (Gaussian AM)

We use

I(k1, k2) = 100 exp



−1

2
α2





(

k1 + 1
2

N
2

)2

+

(

k2 + 1
2

N
2

)2






 cos (w(k1 + k2)) ,

for k1, k2 = −N
2
, . . . , N

2
− 1, with N = 512, α = 2.5. Here, ϕx(·) = ϕy(·) = w, for

w = {π/3, π/5, π/6, π/8, π/12, π/14, π/16}.

3.5.2 Gaussian amplitude-modulated Quadratic frequency-

modulated (Gaussian AM Quadratic FM)

For this signal, we use

I(k1, k2) = 100 exp



−1

2
α2





(

k1 + 1
2

N
2

)2

+

(

k2 + 1
2

N
2

)2






 cos ϕ(k1, k2)

for k1, k2 = −N
2
, . . . , N

2
− 1 and N = 512. The phase ϕ(k1, k2) has a quadratic form

ϕ(k1, k2) = αxk1 +
βx

2
k2

1 + αyk2 +
βy

2
k2

2,
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where βi =
(

fBi
−fAi

N−1

)

, αi = βiN
2

+ fAi
, for i = 1, 2. fBi

represents the desired maxi-

mum instantaneous frequency in the i direction (x or y), and fBi
represents the de-

sired minimum instantaneous frequency. Setting fBi
and fAi

will produce ϕx(k1, k2)

and ϕy(k1, k2) to be in desired ranges. We consider four cases in terms of the in-

stantaneous frequency ∇ϕ(k1, k2): (i) ϕx(k1, k2) ∈ [0.001π, 0.01π], (ii) ϕx(k1, k2) ∈
[0.01π, 0.1π], (iii) ϕx(k1, k2) ∈ [0.166π, 0.2π] and (iv) ϕx(k1, k2) ∈ [0.2π, 0.3π]. For

all cases, ϕy(k1, k2) = −ϕx(k1, k2).

3.5.3 Error in IF estimation

Due to the ambiguity of the instantaneous frequency vectors (coming from cosϕ(k1, k2) =

cos(−ϕ(k1, k2)), we compute the mean-squared error using the closest estimation be-

tween ∇ϕ̂(k1, k2) and −∇ϕ̂(k1, k2), to ∇ϕ(k1, k2):

ei =
1

N ·N ·
N,N
∑

k1,k2=1

S(k1, k2) (ϕi(k1, k2)− ϕ̂i(k1, k2))
2

+
1

N ·N ·
N,N
∑

k1,k2=1

(1− S(k1, k2)) (ϕi(k1, k2) + ϕ̂i(k1, k2))
2 ,

(3.9)

where:

S(k1, k2) =







1, if
∣

∣

∣

∣

∣

∣
f̂sub(k1, k2)

∣

∣

∣

∣

∣

∣

2
≤
∣

∣

∣

∣

∣

∣
f̂add(k1, k2)

∣

∣

∣

∣

∣

∣

2

0, otherwise
,

with f̂sub = ∇ϕ− ∇̂ϕ and f̂add = ∇ϕ + ∇̂ϕ.

3.5.4 Results for synthetic images

In Figure 3.7 we show the PSNR (given by 20 log10

(

100/
√

MSE
)

) for IA estimation.

Since QEA and VS-LQP use the same approach for the IA estimation, we only
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present the results for the QEA and QLM methods. We compare the results in

terms of the PSNR using: (i) no filterbank, (ii) the two-scale filterbank and (iii) the

three-scale filterbank. We compare the methods in the presence of white Gaussian

noise (SNR = {20.00, 30.46, 40.00, 50.46}dB). We use all the signals described at

the beginning of this section.

Figure 3.8 compares the error in the IF estimation among all the methods. We

compare the results in terms of the PSNR (given by 20 log10

(

π/
√

MSE
)

) using: (i)

no filterbank (first column), (ii) the two-scale filterbank (second column) and (iii)

the three-scale filterbank (last column). We compare the methods in the presence

of white Gaussian noise (SNR = {20.00, 30.46, 40.00, 50.46, 60.00}dB). Since the

results in x and y directions are similar, we only show the results in the x direction.

In Figure 3.9 we show the results that produced the worst PSNR for the proposed

methods.

Results with median filter and modulation

We compare VS-LQP versus QEA applying the pre- and post-filtering using median

filters without the use of filterbanks in Figs. 3.10 (a) and (b) for Gaussian amplitude

modulated signals and Gaussian amplitude-modulated frequency-modulated signals,

respectively. We compare the methods in the presence of white Gaussian noise from

SNR = 1.9dB to SNR = 40dB applied to the input signal.

Figs. 3.10 (c) and (d) show the results for high frequency

(ϕx = ϕy = {5π/6, 7π/10, 4π/6, 5π/8}) Gaussian amplitude modulated signals using

the modulation technique in the presence of Gaussian noise from SNR = 1.9dB to

SNR = 40dB applied to the input signal. A three-scale filterbank was used. We

compare VS-LQP versus QEA in (c) and versus QLM in (d).
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3.6 Discussion for Robust AM-FM estimation

As we stated in section 3.4, since the VS-LQP method is designed for low instanta-

neous frequencies signals, we do not consider input signals with IF bigger than, or

closer to, π/2 (for either x or y direction). Also, we consider synthetic signals with

quadratic phase to compare the new methods.

For IA estimation, and considering the QEA method (see Figs. 3.7 (a), (b), (d)

and (e)), we can see that using the multi-scale filterbank improved the accuracy

of the estimation in ∼ 10dB. Note that the three-scale filterbank produced better

results than the two-scale filterbank. These results are clear when Gaussian AM

signals were used. However, when a Gaussian AM-FM signal was used, and the

frequencies were very close to DC, the IA estimation was not good when a filterbank

was used. The reason is that the frequency spectrum of the IA is close or overlapped

with the frequency support of the FM part, producing instability for the AM-FM

demodulation approach (see sub-section 2.1.1 and [67, 69, 68, 70]).

When we use the QLM, the three-scale filterbank results were very similar to the

ones using the two-scale filterbank. The same problem as in QEA of the very low

frequencies using a Gaussian AM-FM is seen.

Now, we continue our discussion for IF estimation. From the results, we show that

the VS-LQP approach yields significant improvements. Without using a filterbank,

we can see from Figs. 3.8 (a) and (f), how the VS-LQP method is robust in the

presence of noise, always giving the best results. Typical results without using a

filterbank range from 10dB to 20dB better than the QEA method for noise levels

from 20dB to 60dB. When the QLM was used (see Figs. 3.8 (d), (e), (i) and (j)),

the improvement of using a three-scale filterbank versus a two-scale filterbank was

around 25dB for Gaussian AM signals and around 22dB for Gaussian AM-FM signals

in the presence of 60dB of noise.
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At significant noise levels (SNR < 30dB), for single component images, the

VS-LQP method produces the best results, which are also better than when using

a multi-scale filterbank. At low noise levels (SNR > 50dB), VS-LQP performs

better when used in combination with a multi-scale filterbank. In all cases, VS-LQP

outperforms the QEA algorithm by significant amounts (up to 20dB).

Fig. 3.9 shows the worst cases for IF estimation errors when the input signals

have frequencies close to π/2. In Figs. 3.9 (a) and (d) we can see how VS-LQP is

not better than QEA when the presence of noise was reduced. However, note that as

the noise is increased, the VS-LQP produces better results. In Figs. 3.9 (b), (c), (e)

and (f), we can see how the QEA and VS-LQP produced very similar good results

whereas QLM always produced the lower PSNR.

Discussion for median filter and modulation

The use of pre- and post-filtering using median filters in the presence of high levels

of noise for medium and low frequency input signals does improve the accuracy of

the IF estimation (see Figs. 3.10 (a) and (b)). VS-LQP always produces the best

results. In the presence of noise from SNR = 1.9dB to SNR = 40dB, VS-LQP was

better than QEA from 5dB to 20dB in the PSNR sense.

When the input signal is a high frequency signal, VS-LQP produced better IF

estimations than QEA and QLM in the presence of high levels of noise (see Figs. 3.10

(c) and (d)). Using a three-scale filterbank, VS-QLP produced high PSNR values in

the presence of noise from SNR = 1.9dB to 40dB. VS-QLP was up to 14dB better

than QEA and up to 20dB better than QLM.
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(a)

(b)

Figure 3.5: VS-LQP block diagram using a general bandpass filter in (a). Since
separable 1D filters are used, the spectrum of the bandpass filter is showed in 1D
and it is generic for x and y. IFx block is showed in (b) (IFy block is similar).

γarccos(n1) =
(

ĪAS(k1 + n1, k2) + ĪAS(k1 − n1, k2)
)

/
(

2ĪAS(k1, k2)
)

.
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Figure 3.7: PSNR for IA estimation for all the methods used. Improvements in the
estimation due to the filterbanks used. (a), (b), (c) Gaussian amplitude modulated
signals. (d), (e), (f) Gaussian amplitude-modulated frequency-modulated. (a), (d)
QEA when no filterbank is used (dotted line) versus using a two-scale filterbank
(solid line). (b), (e) QEA when no filterbank is used (dotted line) versus using a
three-scale filterbank (solid line). (c), (f) QLM method using a two-scale filterbank
(solid line) versus using a three-scale filterbank (dotted line).

36



Chapter 3. Robust Discrete Image AM-FM Demodulation Methods

20 30 40 50 60
10

20

30

40

50

60

70

SNR (dB)

P
S

N
R

 (
dB

)

 

 

VS−LQP: w = π/6
VS−LQP: w = π/8
VS−LQP: w = π/12
VS−LQP: w = π/14
VS−LQP: w = π/16
QEA: w = π/6
QEA: w = π/8
QEA: w = π/12
QEA: w = π/14
QEA: w = π/16

20 30 40 50 60
10

20

30

40

50

60

70

SNR (dB)

P
S

N
R

 (
dB

)

 

 

VS−LQP: w = π/12
VS−LQP: w = π/14
VS−LQP: w = π/16
QEA: w = π/12
QEA: w = π/14
QEA: w = π/16

20 30 40 50 60
10

20

30

40

50

60

70

80

SNR (dB)

P
S

N
R

 (
dB

)

 

 

VS−LQP: w = π/12
VS−LQP: w = π/14
VS−LQP: w = π/16
QEA: w = π/12
QEA: w = π/14
QEA: w = π/16

(a) (b) (c)

20 30 40 50 60
10

20

30

40

50

60

70

80

SNR (dB)

P
S

N
R

 (
dB

)

 

 

VS−LQP: w = π/6
VS−LQP: w = π/8
VS−LQP: w = π/12
VS−LQP: w = π/14
VS−LQP: w = π/16
QLM: w = π/6
QLM: w = π/8
QLM: w = π/12
QLM: w = π/14
QLM: w = π/16

20 30 40 50 60
10

20

30

40

50

60

70

80

SNR (dB)

P
S

N
R

 (
dB

)

 

 

VS−LQP: w = π/6
VS−LQP: w = π/8
VS−LQP: w = π/12
VS−LQP: w = π/14
VS−LQP: w = π/16
QLM: w = π/6
QLM: w = π/8
QLM: w = π/12
QLM: w = π/14
QLM: w = π/16

(d) (e)

20 30 40 50 60
10

20

30

40

50

60

SNR (dB)

P
S

N
R

 (
dB

)

 

 

VS−LQP: [0.001π, 0.01π]
VS−LQP: [0.01π, 0.1π]
VS−LQP: [π/6, π/5]
QEA: [0.001π, 0.01π]
QEA: [0.01π, 0.1π]
QEA: [π/6, π/5]

20 30 40 50 60
10

20

30

40

50

60

70

80

SNR (dB)

P
S

N
R

 (
dB

)

 

 

VS−LQP: [0.001π, 0.01π]
VS−LQP: [0.01π, 0.1π]
VS−LQP: [π/6, π/5]
QEA: [0.001π, 0.01π]
QEA: [0.01π, 0.1π]
QEA: [π/6, π/5]

20 30 40 50 60
10

20

30

40

50

60

70

80

SNR (dB)

P
S

N
R

 (
dB

)

 

 

VS−LQP: [0.001π, 0.01π]
VS−LQP: [0.01π, 0.1π]
VS−LQP: [π/6, π/5]
QEA: [0.001π, 0.01π]
QEA: [0.01π, 0.1π]
QEA: [π/6, π/5]

(f) (g) (h)

20 30 40 50 60
0

10

20

30

40

50

60

70

80

SNR (dB)

P
S

N
R

 (
dB

)

 

 

VS−LQP: [0.001π, 0.01π]
VS−LQP: [0.01π, 0.1π]
VS−LQP: [π/6, π/5]
QLM: [0.001π, 0.01π]
QLM: [0.01π, 0.1π]
QLM: [π/6, π/5]

20 30 40 50 60
0

10

20

30

40

50

60

70

80

SNR (dB)

P
S

N
R

 (
dB

)

 

 

VS−LQP: [0.001π, 0.01π]
VS−LQP: [0.01π, 0.1π]
VS−LQP: [π/6, π/5]
QLM: [0.001π, 0.01π]
QLM: [0.01π, 0.1π]
QLM: [π/6, π/5]

(i) (j)

Figure 3.8: PSNR for IF estimation. Results computed using: (i) no filterbank
(first column), (ii) the two-scale filterbank (second column) and (iii) the three-scale
filterbank (last column). We only show the results in the x direction since results
in the y direction were very similar. (a)-(e) Gaussian amplitude modulated signals.
(f)-(j) Gaussian amplitude-modulated frequency-modulated. (a)-(c), (f)-(h) VS-LQP
versus QEA. (d), (e), (i), (j) VS-LQP versus QLM.
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Figure 3.9: PSNR for IF estimation: worst case. Results computed using: (i) no
filterbank (first column), (ii) the two-scale filterbank (second column) and (iii) the
three-scale filterbank (last column). We only show the results in the x direction.
Gaussian amplitude modulated signals in the first row and Gaussian amplitude-
modulated frequency-modulated in the last one.

38



Chapter 3. Robust Discrete Image AM-FM Demodulation Methods

0 10 20 30 40
5

10

15

20

25

30

35

40

45

50

SNR (dB)

P
S

N
R

 (
dB

)

 

 

VS−LQP: w = π/6
VS−LQP: w = π/8
VS−LQP: w = π/12
VS−LQP: w = π/14
VS−LQP: w = π/16
QEA: w = π/6
QEA: w = π/8
QEA: w = π/12
QEA: w = π/14
QEA: w = π/16

0 10 20 30 40
5

10

15

20

25

30

35

40

45

50

SNR (dB)

P
S

N
R

 (
dB

)

 

 

VS−LQP: [0.001π, 0.01π]
VS−LQP: [0.01π, 0.1π]
VS−LQP: [π/6, π/5]
QEA: [0.001π, 0.01π]
QEA: [0.01π, 0.1π]
QEA: [π/6, π/5]

(a) (b)

10 15 20 25 30 35 40
0

10

20

30

40

50

SNR (dB)

P
S

N
R

 (
dB

)

 

 

VS−LQP: w = 5π/6
VS−LQP: w = 7π/10
VS−LQP: w = 4π/6
VS−LQP: w = 5π/8
QEA: w = 5π/6
QEA: w = 7π/10
QEA: w = 4π/6
QEA: w = 5π/8

10 15 20 25 30 35 40
0

10

20

30

40

50

SNR (dB)

P
S

N
R

 (
dB

)

 

 

VS−LQP: w = 5π/6
VS−LQP: w = 7π/10
VS−LQP: w = 4π/6
VS−LQP: w = 5π/8
QLM: w = 5π/6
QLM: w = 7π/10
QLM: w = 4π/6
QLM: w = 5π/8

(c) (d)

Figure 3.10: PSNR for IF estimation. VS-LQP versus QEA using pre- and post-
filtering using median filters without using filterbanks in (a) and (b). Medium-low
frequency signals used. (a) Gaussian amplitude modulated results. (b) Gaussian
amplitude-modulated frequency-modulated results. Modulation technique applied
to high frequency (ϕx = ϕy = {5π/6, 7π/10, 4π/6, 5π/8}) input signals in (c) and
(d) for Gaussian amplitude modulated signals. (c) VS-LQP versus QEA using a
three-scale filterbank. (d) VS-LQP versus QLM using a three-scale filterbank.

39



Chapter 4

Image Reconstructions using

AM-FM

In this chapter, we discuss how to reconstruct an image using its AM-FM compo-

nents. We consider three different approaches: using AM-FM harmonics (section

4.1), using AM-FM components extracted from different scales (section 4.3) and a

combined approach (section 4.2).

For our reconstructions we use least squares methods derived from the proposed

multi-scale decomposition that is computed using QEA (only method that estimates

both the phase and amplitude).
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4.1 Least-Squares Reconstructions using AM-FM

harmonics (LESHA)

We consider reconstructing an image using its AM-FM harmonics (see [31]):

Î(k1, k2) ≈ d +

h
∑

n=1

cna(k1, k2) cos (nϕ(k1, k2)) , (4.1)

In (4.1), we assume that the instantaneous amplitude a(k1, k2) and the instantaneous

phase ϕ(k1, k2) have been computed using a single dominant component estimated

from all scales (see Fig. 1.1).

We then want to compute the AM-FM harmonic coefficients cn, n = 1, 2, . . . , h,

so that Î(k1, k2) is a least-squares estimate of I(k1, k2) over the space of the AM-FM

harmonics. We compute cn using:

















d

c1

...

cM

















=
(

AT A
)−1 (

AT b
)

, (4.2)

where the columns of A contain the basis functions. Thus, the first column of A

is filled with 1’s, while the ith column is filled with the values of the (i − 1)th AM-

FM harmonic, and b is a column vector of the input image. We also compute an

orthonormal basis over the space of the AM-FM harmonics using the Modified Gram-

Schmidt (MGS) Algorithm [74] (see Fig. 4.1).
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Modified Gram-Schmidt (MGS) Algorithm:
Given the matrix ‘A’, with the input vectors in its columns, such that the first column of
A is filled with 1’s, while the ith column is filled with the values of the (i− 1)th AM-FM
harmonic, compute the number of columns and rows of A:
rows, columns ← A
for i = 0 to columns - 1

qi = A(:,i)

for j = 0 to i - 2
rj,i = qT

j · qi

(In classical Gram-Schmidt algorithm: rj,i = qT
j · A(:,i))

qi = qi - rj,i · qj

end
ri,i = ‖ qi ‖2
if ri,i ≤ tolerance

quit
end if
qi = qi/ri,i

end for

Figure 4.1: Modified Gram-Schmidt (MGS) Algorithm for computing an orthonormal
basis over the space of the AM-FM harmonics.

4.2 Least-Squares Reconstructions using AM-FM

harmonics and the LPF (LESCA)

We extend LESHA by simply adding the low-pass filter (LPF) output to the DC and

the AM-FM harmonics. We have:

Î(k1, k2) ≈ d + c0G(k1, k2) +
h
∑

n=1

cha(k1, k2) cos (nϕ(k1, k2)) , (4.3)

where h is the number of AM-FM harmonics and:

d: denotes a constant DC image,

G(k1, k2): denotes the LPF output,
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a cos ϕ: denotes the dominant AM-FM component estimated across scales

and

a cos hϕ: denotes the hth AM-FM harmonic.

4.3 Multi-scale least-squares reconstructions

(MULTILES)

The third method uses AM-FM estimates extracted from different scales. We de-

scribe the correspondence between scales and bandpass filters in Table 4.1 (see Fig.

3.1 (a)-(c) also). For QLM methods, filters 5, 6, 7, 11, 12, 13, 17, 18 and 19 are not

applicable for the IP estimation (see sub-section 2.1.4). Define:

d: Global DC image estimate,

G(k1, k2): low-pass filter output,

a1 cos ϕ1: high-frequency scale AM-FM component,

a2 cos ϕ2: medium-frequency scale AM-FM component and

a3 cos ϕ3: low-frequency scale AM-FM component.

In this case, we consider least squares reconstructions given by:

Î(k1, k2) ≈ d + c0G(k1, k2) +

s
∑

n=1

cnan(k1, k2) cos (ϕn(k1, k2)) , (4.4)

where s is the number of scales used.

We then compute the AM-FM multi-scale coefficients cn, n = 0, 1, . . . , s, so that

Î(k1, k2) is a least-squares estimate of I(k1, k2). We also compute an orthonormal

basis over the space of the AM-FM estimations scale by scale (see previous section).
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Table 4.1: Bandpass filters corresponding to different image scales.

Scale Single-scale Two-scale Three-scale

LPF 1 1 1

High frequencies 2, 3, 4, 5, 6, 7 2, 3, 4, 5, 6, 7 2, 3, 4, 5, 6, 7

Medium frequencies NA* 8, 9, 10, 11, 12, 13 8, 9, 10, 11, 12, 13

Low frequencies NA* NA* 14, 15, 16, 17, 18, 19

NA* = Not Applicable.

4.4 Results for Image Reconstructions

In this section, we present results for real images from [75]: 38 aerial images, 64

texture images and 44 miscellaneous images (including the standards Lena and Man-

drill). The images were either 256x256, 512x512 or 1024x1024 pixels. We present

results based on both the MSE and the universal image quality index [76].

Tables 4.2, 4.3 and 4.4 summarize results for MSE for LESHA, MULTILES and

LESCA (sections 4.1, 4.3 and 4.2, respectively).

The image quality index values (Q) are given in Tables 4.5, 4.6 and 4.7. Figs. 4.2

and 4.3 shows examples of the reconstructions for Lena and Mandrill images using

QEA. In Fig. 4.4, we show the best and the worst reconstructions in terms of Q for

both Lena and Mandrill, we use a two-scale and a three-scale filterbank.

In Figs. 4.5 and 4.6 we present an analysis of the FM results for Lena and a fin-

gerprint, respectively. The IF vectors are shown. The analysis is performed without

the lowpass information using a two-scale and a three-scale filterbank. Note that we

do not consider pixels with very low IA values because those could be computational

errors. We use the values of the IA greater or equal than the mean for Lena and

greater or equal than the statistical mode for the fingerprint.

We also apply the FM analysis to images created from digital videos. For this,
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Table 4.2: MSE using LESHA (section 4.1). MSE values less than 150 are shown in
bold typeface.

Single-scale Two-scale Three-scale

Harmonics 1 5 1 5 1 5

Aerial 60.4431 60.3892 133.6635 133.4294 188.8712 187.9637

Miscellaneous 114.0075 103.2501 306.3992 291.3852 421.8333 394.3852

Textures 220.9811 215.8769 702.4578 670.5156 1107.4 1028.9

Table 4.3: MSE using MULTILES (section 4.3, see Table 4.1 also). LPF denotes the
low-pass filter reconstruction. L denotes the low-frequency scale AM-FM component.
Similarly, M and H denote the medium- and high-frequency scale AM-FM component.
MSE values less than 150 are shown in bold typeface.

Single-scale Two-scale Three-scale

Scales LPF LPF+H LPF LPF+M+H LPF LPF+L+M+H

Aerial 60.3962 36.8965 133.4740 79.7860 187.5334 76.0427

Miscellaneous 153.4645 63.0507 298.2355 129.1126 406.8230 111.8693

Textures 210.4859 129.7632 651.1088 393.9337 1020.0157 356.3910

we generate 2D images by sampling a line of pixels through time (see Fig. 4.7).

The standard videos of Akiyo and Foreman were used. Fig. 4.8 shows frames from

these videos. For Akiyo, we sampled column 79 through time. For Foreman, we

sampled column 85 through time, respectively. Fig. 4.9 shows the results for Akiyo

and Foreman, in (a)-(d) and (e)-(h), respectively.

4.5 Discussion on Image Reconstructions

As expected, from Tables 4.2, 4.3, 4.4, 4.5, 4.6 and 4.7, as we increase the number of

scales for the filterbank, the MSE is increased and Q is decreased. This is due to the

fact that each additional scale removes lowpass information captured in the previous
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Table 4.4: MSE using LESCA (section 4.2). MSE values less than 150 are shown in
bold typeface.

Single-scale Two-scale Three-scale

LPF LPF+5h* LPF LPF+5h* LPF LPF+5h*

Aerial 60.3962 36.8759 133.4740 99.8574 187.5334 129.3556

Miscellaneous 153.4645 52.7000 298.2355 141.8296 406.8230 189.8731

Textures 210.4859 129.4057 651.1088 500.3847 1020.0157 621.6269

LPF+5h* = LPF + 5 AM-FM harmonics.

Table 4.5: Image Quality Index using LESHA (section 4.1). Q-values above 0.75 are
shown in bold typeface.

Single-scale Two-scale Three-scale

Harmonics 1 5 1 5 1 5

Aerial 0.7523 0.7523 0.5224 0.5225 0.3255 0.3258

Miscellaneous 0.7664 0.7637 0.5775 0.5764 0.4126 0.4129

Textures 0.8469 0.8469 0.6421 0.6474 0.4063 0.4239

scale. In other words, a single-scale filterbank uses a larger part of the frequency

spectrum than is used for the two-scale filterbank (and so forth).

Note also that for comparing methods, as more AM-FM harmonics and/or com-

ponents are used, both MSE and Q are improved. As an example, for LESHA

Table 4.6: Image Quality Index using MULTILES (section 4.3), see Table 4.1 also).
LPF denotes the low-pass filter reconstruction. L denotes the low-frequency scale
AM-FM component. Similarly, M and H denote the medium- and high-frequency
scale AM-FM component. Q-values above 0.75 are shown in bold typeface.

Single-scale Two-scale Three-scale

Scales LPF LPF+H LPF LPF+M+H LPF LPF+L+M+H

Aerial 0.752 0.866 0.522 0.775 0.325 0.779

Miscellaneous 0.763 0.837 0.579 0.747 0.416 0.744

Textures 0.848 0.902 0.650 0.804 0.425 0.814
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Table 4.7: Image Quality Index using LESCA (section 4.2). Q-values above 0.75 are
shown in bold typeface.

Single-scale Two-scale Three-scale

LPF LPF+5h* LPF LPF+5h* LPF LPF+5h*

Aerial 0.7523 0.8667 0.5225 0.7028 0.3259 0.6110

Miscellaneous 0.7630 0.8355 0.5791 0.6889 0.4161 0.5820

Textures 0.8489 0.9013 0.6504 0.7459 0.4255 0.6683

LPF+5h* = LPF + 5 AM-FM harmonics.

Table 4.8: MSE and Image Quality Index (Q) for the reconstructions shown in Figs.
4.2 and 4.3.

Lena Mandrill

Filterbank Method MSE Q MSE Q

LESHA 15.5002 0.8336 221.4102 0.7880

Single-scale MULTILES 10.2028 0.9000 119.0642 0.8917

LESCA 10.1955 0.9001 119.0505 0.8917

LESHA 71.4186 0.6721 439.1018 0.5273

Two-scale MULTILES 52.7913 0.8142 220.5814 0.8004

LESCA 63.3575 0.7443 279.9986 0.7338

LESHA 121.4774 0.5299 563.9774 0.3224

Three-scale MULTILES 48.8083 0.8058 198.5808 0.8104

LESCA 90.7965 0.6263 328.6932 0.6612

(section 4.1), we can see that the more AM-FM harmonics we use, the higher Q

we get and the lower MSE. MULTILES produces the best results, whereas LESHA

produces the worst results.

The use of multiple scales produced the best results as shown in Figs. 4.2 and

4.3, where we present examples of the reconstructions for Lena and Mandrill images.

These two examples visually demonstrate that even if the reconstruction looks very

good, the difference between the MSE of Lena and Mandrill can be very big. How-

ever, reflecting good perceptual agreement, Q is really close between them in almost
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all of the cases, except for the LESHA method. The reconstructed images also show

that the bigger the number of scales that the filterbank has, the bigger the MSE

and the lower the value of Q is obtained. This can be seen in the resolution of the

images.

We present the best and the worst reconstructions in Fig. 4.4. In the case of

Lena, we can see artifacts in her shoulder for the best reconstruction. The best

reconstruction of Mandrill has problems in the lower zone of the beard. For both

images, the worst reconstructions look like a smoothed version of the original.

When the FM and the IF information is analyzed, we can see from Figs. 4.5

and 4.6 how AM-FM captures the fast changes from one pixel to another. Figs. 4.5

(f)-(g) show clearly how the frequency component adapt to Lena’s hair. In Fig. 4.6

we can see this adaptation more clear. Similar results we can see when images from

digital videos are used (see Fig. 4.9).
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(a)

(b) (c) (d)

(e) (f) (g)

(h) (i) (j)

Figure 4.2: Multi-scale AM-FM reconstructions for the Lena image. (a) Original
image 512x512 pixels. Single-scale filterbank results for: (b) LESHA, (c) MULTILES
and (d) LESCA. Two-scale filterbank results for: (e) LESHA, (f) MULTILES and
(g) LESCA. Three-scale filterbank results for: (h) LESHA, (i) MULTILES and (j)
LESCA.
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(a)

(b) (c) (d)

(e) (f) (g)

(h) (i) (j)

Figure 4.3: Multi-scale AM-FM reconstructions for the Mandrill image. (a) Original
image 512x512 pixels. Single-scale filterbank results for: (b) LESHA, (c) MULTILES
and (d) LESCA. Two-scale filterbank results for: (e) LESHA, (f) MULTILES and
(g) LESCA. Three-scale filterbank results for: (h) LESHA, (i) MULTILES and (j)
LESCA.
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(a) (d)

(b) (e)

(c) (f)

Figure 4.4: Best and worst Lena and Mandrill reconstructions between a two-scale
filterbank and a three-scale filterbank based on the image quality index from Table
4.8. (a) Original Lena image 512x512 pixels. (b) MULTILES two-scale filterbank:
Q = 0.8142 (MSE = 52.7913). (c) LESHA three-scale filterbank: Q = 0.5299
(MSE = 121.4774). (d) Original Mandrill image 512x512 pixels. (e) MULTILES
three-scale filterbank: Q = 0.8104 (MSE = 198.5808). (f) LESHA three-scale
filterbank: Q = 0.3224 (MSE = 563.9774).
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(a) (b) (c)

(d) (e)

(f) (g) (h)

(i) (j)

Figure 4.5: High amplitude FM Analysis using QEA method for Lena. For (b), (c),
(g) and (h) we only show the FM component pixels for which the instantaneous
amplitude is above the IA mean. (a) Original image. FM analysis in (b) using a
two-scale filterbank and in (c) using a three-scale filterbank. IF using a two-scale
filterbank in (d) and using a three-scale filterbank in (e). Zoom on Lena’s hair in
(f). FM analysis in (g) using a two-scale filterbank and in (h) using a three-scale
filterbank. IF using a two-scale filterbank in (i) and using a three-scale filterbank in
(j).

52



Chapter 4. Image Reconstructions using AM-FM

(a)

(b) (c)

(d) (e)

Figure 4.6: High amplitude FM Analysis using QEA method for a fingerprint image.
Here, we show results for which the instantaneous amplitude is greater than the IA
statistical mode. (a) Original image. (b) FM using a two-scale filterbank. (c) FM
using a three-scale filterbank. (d) IF using a two-scale filterbank. (e) IF using a
three-scale filterbank.
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Figure 4.7: Method to produce an image from a fixed column in a real video.

(a) (b)

Figure 4.8: Frames of videos with a column clearly highlighted. (a) Frame of Akiyo
video with column 79 clearly highlighted. (b) Frame of Foreman video with column
85 clearly highlighted.
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(a) (e)

(b) (f)

(c) (g)

(d) (g)

Figure 4.9: FM Analysis for Akiyo and Foreman. Single-scale filterbank, two-scale
filterbank and three-scale filterbank in rows two, three and four, respectively. Orig-
inal Images: (a) Akiyo and (e) Foreman. Akiyo’s results in column one. Foreman’s
results in column two.
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Retinal Image Analysis

In this chapter, we present results for retinal image analysis using methods AM-

FM methods. This work was motivated, proposed and supported by VisionQuest

Biomedical. For this work, we established a collaboration that includes ophthalmol-

ogists and technologists from the University of Iowa and the Texas Retina Institute

of South Texas in San Antonio, TX.

We present an introduction in section 5.1. Next, we present a background in

retinal image analysis in section 5.2. We present our method in section 5.3. Finally,

the results and discussion are described in the last two sections. The results and

procedures described in the next sections are based on the reports presented to

VisionQuest Biomedical.

5.1 Introduction

We start this sub-section defining terms that are used in this section. To assess

image classification performance we refer to Fig. 5.1. In Fig. 5.1, we use the

term true positive to refer to a case when both the computer and the clinician(s)
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classified an image as exhibiting disease. On the other hand, a false positive refers

to a normal case (as viewed by the clinician(s)) that was classified as abnormal by

the computer. Similarly, true negative refers to the case when they both agree on

a normal classification, while a false negative refers to a normal classification by

computer of an abnormal case. We define:

• Sensitivity: Fraction of diseased population correctly diagnosed.

Sensitivity =
TP

TP + FN

• Specificity: Fraction of normal population correctly diagnosed.

Sensitivity =
TN

TN + FP

Note that 1− Specificity = FAF is often used, where FAF is the fraction of false

alarms.

For the purposes of this application, we sought a distribution of “normal” (con-

trols) images that was much less than is typically found in a random population of

diabetics. AM-FM methods were evaluated using the MESSIDOR1 database [77].

Tables 5.1, 5.2 and 5.3 give a summary of the cases found in the subset (N = 400

images) of the MESSIDOR database. This database contains the closest approxima-

tion to the distribution of disease severity proposed for use in this application. For

all but one category, this database exceeds the proposed number of 50 cases.

The MESSIDOR fundus image database contains 1200 color digital images of the

posterior pole (back of the eye, the retina between the optic disc and the macula)

[77]. These data were acquired at three ophthalmologic departments using a digital

color CCD camera with a Topcon TRC NW6 non-mydriatic ophthalmoscope. Images

1Méthodes d’Evaluation de Systèmes de Segmentation et d’Indexation Dédies à

l’Ophtalmologie Rétinienne, in English: Methods to evaluate segmentation and indexing

techniques in the field of retinal ophthalmology. Kindly provided by the MESSIDOR pro-
gram partners.
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were taken with a 45 degree field of view. The image format is 8 bits per color plane

at 1440x960, 2240x1488 and 2304x1536 pixels. 800 images were acquired with pupil

dilation (one drop of Tropicamide at 10%) and 400 without dilation [77]. The 1200

images are packaged in three sets, one per ophthalmologic department.

We selected 265 images for our study. Each image has been diagnosed as indicated

in the Tables 5.1, 5.2 and 5.3 and an image quality value assigned where 0 is the

poorest quality and 5 is the best quality. All of the images contained in the database

were used for making actual clinical diagnoses.

In the next sub-section, we present a background about related work for detection

and phenotyping of retinal disease. Next we present the methods used in sub-section

5.3. In sub-sections 5.4 and 5.5 we present the results and the discussion, respectively.

Figure 5.1: Decision Matrix. Figure by Bert Davis from VisionQuest Biomedical.

Table 5.1: Retinopathy Grade Distribution.

Grade Number of images (percentage)

3 52 (20%)

2 50 (19%)

1 71 (27%)

0 92 (34%)

Total 265 (100%)
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Table 5.2: Image Quality Distribution. Highest grade is 5. Lowest grade is 1.

Grade Number of images (percentage)

5 90 (34%)

4 139 (52%)

3 24 (9%)

2 10 (4%)

1 2 (1%)

Table 5.3: Risk of Macular Edema (ME) Distribution.

Grade Number of images (percentage)

2 37 (14%)

1 15 (6%)

0 213 (80%)

5.2 Background on Related Work

Professor Abramoff, a collaborator at the University of Iowa, has approached the

problem using Gabor filters. He evaluated the performance of the system on 10,000

exams from 5692 unique patients with diabetes (2 images from each eye). The

images were collected from diabetics as part of an actual (diabetic retinopathy) DR

screening program at 10 different clinics with 4 different types of retinal nonmydriatic

camera. These diabetic patients had not been previously diagnosed with DR. The

performance of the DR screening algorithm had an area under the curve of 0.85 on

the first visit, and an optimal sensitivity of 0.84 and specificity of 0.64. These results

show the potential of this approach. That the system is relatively stable is illustrated

by the fact that the area under the curve for the second visit is 0.84.

At this point, 7689/10000 (77%) of the exams had acceptable image quality,
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4648/7689 (60%) were true negatives, 59/7689 (0.8%) false negatives, 319/7689 (4%)

true positives, and 2581/7689 (33%) false positives. 27% of false negatives contained

large hemorrhages and/or neovascularizations. By improving the image feature clas-

sification step, they have been able to perform additional validation on an additional

set of 10,000 exams, with an area under the ROC2 curve of 0.90 (see Table 5.4).

Table 5.4: Results from other research studies. Sensitivity and Specificity are given
in percentage (%).

Researcher Reference Se‡ Sp§ AUC # Samples

Larson (2002) [78, 79] 93.1 71.4 – 231

Abramoff & Niemeijer [80, 81, 82, 83] 90.0 – – 10000

Lee [84] 100.0 87.0 0.90 369

Gardner [85] 88.4 83.5 – –

AM-FM Study (unpublished) 99.0 92.0 0.93 to 0.98 265

Abramoff (unpublished) – – 0.90 400

Se‡ = Sensitivity. Sp§ = Specificity.

5.3 Methods

5.3.1 Filterbank design

Extending the filterbank design of section 3.1, we designed a new four-scale filterbank

(see Fig. 5.2). This filterbank uses separable bandpass filters also. Fig. 5.3 shows

an example of the frequency response of one 1D bandpass filter.

In Fig. 5.2, filter 1 corresponds to a low pass filter (LPF) with frequency support

in [−π/16, π/16] for both x and y directions. For all the other filters, the bigger the

label number of the filter, the lower the frequency support that it has. The filters

in the highest frequencies (filters from 2 to 7 in Fig. 5.2), have a bandwidth of π/2

2ROC = Receiver Operating Characteristic.
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for both x and y directions. The bandwidth is decreased by a factor of 0.5 for each

added scale.

(a) (b)

Figure 5.2: Four-scale filterbank used for retinal image analysis. (a) Complete fre-
quency spectrum of the filterbank. (b) Zoom on the low frequency bandpass filters.

Figure 5.3: Example of the separable design. An 1D filterbank response is shown.
The filter corresponds to a bandpass filter with frequency support in [π/8, π/4].
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5.3.2 Multi-scale AM-FM analysis

We use AM-FM components extracted from different scales. We describe the corre-

spondence between the scales and bandpass filters in Table 5.5 (see Fig. 5.2 also).

For retinal applications, we consider nine different cases of extracting dominant AM-

FM component from different scales (see Table 5.6). From each case i, i = 1, . . . , 9,

we use the histograms of both the instantaneous amplitude ai and the magnitude

of the instantaneous frequency (∇ϕi) given by ||∇ϕi|| as image features. Note that

high-frequency bandpass filters (filters from 2 to 7 in Fig.5.2) are not used for the

analysis because the information in there is the high frequency noise of the image.

Reconstructions from theses cases are given in Figs. 5.4 and 5.5 for a patient with

Risk 0 and for a patient with Risk 1, respectively.

We use histograms of IA and the magnitude of the IF, ||IF||, to create a fea-

ture vector for detection of DR. Using histograms at different scales (see Table 5.6)

the information extracted with AM-FM can be analyzed to find differences among

retinal images with DR and healthy images. A region containing micro-aneurysms,

hemorrhages, and exudates will have different estimates for IA than a region lacking

these features. Using these histograms, we can find if a certain frequency component

that encodes a feature is present at the image.

Both histograms, of ai and ||∇ϕi||, for i = 1, 2, . . . or 9, are computed using

forty bins, leading to one histogram of eighty bins. Histograms are computed for

each image at all nine filterbank cases and analyzed separately. Thus, each image

has nine histograms, one per filterbank case.
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Table 5.5: Bandpass filters used for estimating AM-FM in a four-scale filterbank.

Scales Bandpass filters

LPF Low pass filter 1

VL Very low frequencies 20, 21, 22, 23, 24, 25

L Low frequencies 14, 15, 16, 17, 18, 19

M Medium frequencies 8, 9, 10, 11, 12, 13

Table 5.6: Scales used for the nine cases in retinal image analysis.

Case # Scales used for AM-FM estimation AM-FM component

1 VL, L, M a1 cos ϕ1

2 LPF a2 cos ϕ2

3 VL a3 cos ϕ3

4 L a4 cos ϕ4

5 M a5 cos ϕ5

6 LPF, VL, L, M a6 cos ϕ6

7 LPF, VL a7 cos ϕ7

8 VL, L a8 cos ϕ8

9 L, M a9 cos ϕ9

(a) (b) (c)

(d) (e) (f)

Figure 5.4: Four different scales (see Table 5.6) for analyzing a retinal image that
was graded as Risk 0. (a) Original image. (b) Region of Interest (ROI) for green
channel only. (c) a6 cos ϕ6. (d) a5 cos ϕ5. (e) a4 cos ϕ4. (f) a1 cos ϕ1.

63



Chapter 5. Retinal Image Analysis

(a) (b) (c)

(d) (e) (f)

Figure 5.5: Four different cases of scales (see Table 5.6) for analyzing a retinal image
that was graded as Risk 1. (a) Original image. (b) Region of Interest (ROI) for
green channel only. (c) a6 cos ϕ6. (d) a5 cos ϕ5. (e) a4 cos ϕ4. (f) a1 cos ϕ1.

5.3.3 Prediction of DR state based on the AM-FM histogram

estimates

The purpose of this sub-section is to develop a predictor of disease state based on the

histogram bins counts generated. The dependent variable, disease state, was coded

with 0’s for normal and 1’s for the disease state. The normal images were separately

compared with disease Risks 1, 2 and 3. Thus, we considered three cases: (i) 0 versus

1, (ii) 0 versus 2 and (iii) 0 versus 3.

Each of the nine cases for estimating the AM-FM features, see previous sub-

section and Table 5.6, has an 80-bin histogram. Then, we create a joined histogram

vector containing the histogram of the nine case. Thus, 9 cases × 80 bins each = 720

bins used for each image. This number is reduced by first solving the detection prob-

lem for each filter case, then combining the nine detectors into one. The regression
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model is given by

Y = Xβ + ε, (5.1)

where Y is the vector of diagnoses such as 0’s and 1’s for normal and diseased, X

is the matrix of independent variables (bin counts of IA and ||IF|| histograms), β is

the vector of weights and ε is a vector of random errors. The Gauss-Markov theorem

assures that the least-squares estimate of β given by the so called normal equations

β̂ = (X ′X)−1X ′Y (5.2)

is the Best Linear Unbiased Estimator (BLUE) of β and hence the BLUE of Y as

given by Ŷ = Xβ̂.

Several issues arise that make the least-squares estimator undesirable or difficult

to compute accurately. One instance is where the number of cases, the number of

rows of the X matrix, is less than the number of variables, the number of columns

of the X matrix. In this case, an inverse of X ′X does not exist. Another common

problem is when the columns of the X matrix are highly correlated which is called

multi-colinearity. In this case the inverse of X ′X may exist, but is numerically un-

stable and the normal equations cannot be solved accurately. Unfortunately, both

circumstances exist in the current data sets. The number of histogram bins is fre-

quently larger than the number of eyes in the study, and adjacent histogram bins are

obviously very correlated if the underlying frequency distribution is continuous. A

number of methods referred to as shrinkage methods exist that forgo the unbiased

criterion and in these cases decrease the variance more than the loss of accuracy due

to some added bias.

One shrinkage method that is in common use is principal components regression

(PCR). PCR is based on principal components analysis (PCA) which factors the nxp

matrix X into two parts

X = TL,
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where the matrix T is an orthogonal matrix of size nxp containing the p principal

components and L is a pxp matrix of loading factors. The advantage of PCA is that

the principal components are ordered in their ability to reconstruct X. That is X

can be approximated parsimoniously by the first columns of T and rows of L. This

leads to a reduction of the regression problem called PCR:

X ≈ T1L1

Y = Xβ + ε ≈ T1(L1β) + ε = T1γ + ε,

where now the number of variables has been reduced from p to the number of columns

of T1 and the multi-colinear columns of X have been replaced by the uncorrelated

columns of T1.

The difficulty of PCR is that in the linear regression application it is the wrong

optimization. PCA is based only on the covariance of the columns of X. In the re-

gression problem, it is the covariance of X with Y that is of concern rather than the

columns of X with themselves. While the first columns of the T matrix frequently

will serendipitously have all of the information on Y contained in X, numerous appli-

cations have been incurred where the first columns of T contained only information

about X with the information about Y being in the eigenvectors corresponding to

the smaller eigenvalues, i.e., the later columns of T [86]. In that case, PCR misses

the information X contains about Y completely.

A second shrinkage method very similar to PCR solves the problem discussed in

the previous paragraph. The method, called Partial Least Squares (PLS), factors

the X matrix exactly like PCA, only while PCA optimally explains the covariance of

the columns of X with themselves, the PLS optimization explains the covariance of

the columns of X with Y as parsimoniously as possible. PLS results in a T matrix

of so called latent factors which are orthogonal, and the first columns T1 use as few

columns as possible to explain the variability of Y . PLS will be used in the analysis

of the data and predictions of diagnoses.
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5.3.4 Validation using a Leave-one-out Method

When a model is fit to a data set using any of the methods discussed in the previous

section, the predictor is then applied to that data set to assess the accuracy of the

predictor. It is inevitable that when the model is used to make predictions for a new

data set not used in the construction of the model, the accuracy is not as good. The

difference between the two predictions is referred to as the optimism of the model.

Several methods are used to minimize the optimism, one such method being the

jackknife, or leave-one-out method.

The concept of the jackknife is to serially remove each case of the data, fit the

model without that case, and then predict the y value for that case using the model.

What this is accomplishing is to make predictions using models that were not con-

structed using the case being predicted. The algorithm is summarized in Fig. 5.6.

Using this algorithm a less optimistic prediction error can be constructed. This

algorithm and other variants of it are used to assess all results in this study.

For i = 1 to n
Xi = X with the ith row removed.
Yi = Y with the ith element removed.
Fit the model Yi and Xi.
Predict the ith value of Y using the ith row of X.
Accumulate the sum of the squared prediction errors.

end

Figure 5.6: Jacknife algorithm.
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5.4 Results

5.4.1 Analysis of Detection

The purpose of this section is to develop a predictor of disease state based on the

histogram bins counts generated. The dependent variable, disease state, was coded

with 0’s for normal and 1’s for the disease state. The normal images were separately

compared with disease Risks 1, 2 and 3. For each of the nine cases (see Table 5.6),

histograms of the IA and ||IF|| are generated for every image. This is a total of 720

histogram bins for each image. This number is reduced by first solving the detection

problem for each case, then combining the nine detectors into one. The regression

model is given by (5.1).

The first step was to develop a robust estimator for each case. To accomplish this,

each case were analyzed separately fitting PLS models with 2 to 20 latent factors.

In each combination, a jackknife estimate of the predictors was constructed and the

area under the ROC curve (AUC) estimated using these predictions. Jackknifed

predictions were used for robustness. The number of latent factors giving the highest

AUC was retained as the optimal number of latent factors for that filter case. To

increase the robustness of each model, only cases using 10 or fewer factors were

included in the next step since a larger number of factors generally indicates that

the model is fitting noise. Table 5.7 shows the resulting number of latent factors

used in the experiments that produced the results which will be presented in the

sub-section 5.4.

For example, in the detection of Risk 1 in the data containing Risk 1 as the only

level of retinopathy and Risk 0 (normals), cases 4 and 9 (from Table 5.6) provided

the best model for the detection of the Risk 1 patients. These cases appear to

indicate that the spatial information, as encoded by the associated scales, serve to
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differentiate the two classes of images, i.e., normal versus Risk 0. Similarly, one can

select appropriate combinations of scale (cases from Table 5.6) for the detection of

the Risk 2 and Risk 3. Likewise, detecting certain lesion types, such as NVE3/NVD4,

will be performed using specific scales.

Based on this factor-based analysis, the next step was to use the information

to produce a matrix of independent variables that is parsimonious, well conditioned

and robust. To accomplish this, the data for each case with 10 or fewer factors was

used in a PLS model using the optimal number of factors as shown in the tables

above. For the normal’s vs. Risk 1 retinopathy, for example, case 1 was fitted with a

PLS model using 9 factors producing a T matrix of t-scores, T1. The case 2, which

requires 16 factors, was not fitted since the number of factors is greater than 10.

Finally, case 9 was fitted using 9 factors producing a t-score matrix T9. From this, a

matrix of independent variables is constructed as

X = [T1 | T3 | T5 | T6 | T8 | T9] .

From the regression model of (5.1), X is constructed from the T matrices. This

model was fitted using PLS with 2 factors and jackknifed predictions of the diagnoses

obtained. The resulting ROC curves and AUC’s estimated from these predictions

are presented in the next sub-section.

3NVE = Neovascularization.
4NVD = New Vessels of the Disc.
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Table 5.7: Number of Factors in Normal versus Risk {1, 2, 3} Retinopathy.

Risk 1 Risk 2 Risk 3

Case # Factors Case # Factors Case # Factors

1 9 1 8 1 8

2 16 2 4 3 8

3 7 3 11 3 3

4 18 4 4 4 4

5 5 5 2 5 9

6 2 6 4 6 8

7 16 7 4 7 9

8 2 8 7 8 10

9 9 9 3 9 4

Table 5.8: Distribution of image quality by Risk level. Higher values indicate better
image quality.

Image Quality

Risk Total 1 2 3 4 5

0 92 2 3 5 43 39

1 71 0 1 4 37 29

2 50 0 3 9 23 15

3 52 0 3 6 36 7

5.4.2 Results for Diabetic Retinopathy

We first consider the application of AM-FM feature extraction and PLS classification

to the four categories of DR severity (0 = none; 1 = few MAs5; and 2 = MAs

and hemorrhages present, and 3 = extensive MAs, hemorrhages, possible ME6 and

neovascularization). The sensitivity, specificity, and area under the ROC curve are

5MAs = Microaneurysms.
6ME = Macular Edema.
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given for both the testing processes described above. First, we determine the ability

to correctly detect those images with signs of DR in a set of images composed of Risk

0 (normal N = 92) and Risk 1 (N = 71). A total of 163 images were selected from

the total available (N = 265). As with all the experiments, AM-FM features were

calculated for the nine cases (see Table 5.6). The PLS-based classifier was tested

using all combinations to determine the best model (as measured by AUC). Fig. 5.7

(a) shows the ROC curve for detecting and classifying Risk 1 images in a set of Risk

1 and Risk 0. Next, we tested the same sample of Risk 0 (normals) versus Risk 2,

versus Risk 3 and versus all images with any sign of DR in Figs. 5.7 (b), (c) and

(d), respectively.

In our second application, we consider the application of AM-FM/PLS processing

to images sets with vascular abnormalities and risk for macular edema (DR level 3

and macular edema level 2). Also, the effects of image quality are addressed here.

Table 5.8 shows the distribution of image quality for the 265 test images. Here,

we combine 36 images from Risks 2 and 3 with risk of macular edema and attempt

to separate them from 11 images with vascular abnormalities. All (100%) of these

images were correctly classified.

5.5 Discussion for Diabetic Retinopathy

In classifying Risk 0 versus Risk 1 (Fig. 5.7 (a)), we got a sensitivity of 95% with

a specificity is 85%. Area under the ROC is 0.984. This data set of 265 includes

4.5% images of less than optimal quality, i.e., worse than image quality grade 3. A

sensitivity of 98% and specificity of 93% would be achieved if 4-5% of the worse

quality images are removed. The rationale for eliminating poor quality images is

found in papers by Zimmer-Galler [87] and Abramoff [88], where 11% and 12% were

found to be ungradeable in their studies.
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Fig. 5.7 (b) presents the ROC curve for comparing Risk 0 versus Risk 2. For a

sensitivity of 90%, the specificity is 80%. Area under the ROC was 0.95. Risk 0

versus Risk 3 from Fig. 5.7 (c) presents a sensitivity of 100%, specificity is 82%.

Area under the ROC was 0.973. Finally, Risk 0 (normals) versus all images with any

sign of DR (Figure 5.7 (d)) produced a sensitivity of 100%, specificity is 82% and an

area under the ROC equal to 0.95.

Our preliminary conclusion is that the AM-FM approach is somewhat insensitive

to image quality. This finding was not entirely unexpected. Our approach required

no preprocessing of the images. It is common to “flatten” images to remove un-

even lighting artifacts which hamper most segmentation approaches for explicitly

detecting lesions, such as MA and hemorrhages. With the AM-FM approach, the

frequency-based features are not seriously affected.

For the 265 image data set, the sensitivity and specificity statistics quoted above

are improved to 99% and 92%, respectively when removing the 4.5% worse quality

images as is done in many other studies.
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(a) (b)

(c) (d)

Figure 5.7: ROC for detection of Risk 0 (normal) in a set of normals versus different
forms of DR: Risk {1, 2, 3}. (a) Risk 0 versus Risk 1. (b) Risk 0 versus Risk 2. (c)
Risk 0 versus Risk 3. (d) Risk 0 versus all patients with any form of DR.
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Part III

AM-FM methods for video

processing
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Chapter 6

Robust Discrete Video AM-FM

Demodulation Methods

In this chapter we present robust 3D AM-FM demodulation methods. We begin with

the design of an efficient filterbank (section 6.1) to be used in all the 3D methods

and applications described here. Next, in section 6.2 we present a robust approach

to use the VS-LQP methods in 3D. Finally, results and discussion are presented in

the last sections.

6.1 3D Multi-scale filterbank design for applica-

tions in discrete videos

We extended the 2D filterbank design from section 3.1 to generate a 3D multi-scale

filterbank. The same equiripple design, with the same specifications are used. The

third dimension, time, will increase the total number of bandpass filters.

Fig. 6.1 shows, from left to right, the numbering system for 1D filters through
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the time direction, to be used for a 3D single-, two- and three-scale filterbank, re-

spectively. Note that the bandpass filters always have frequency support in only half

of the spectrum. For the filters through time, we adopt the following notation:

• Filter 1 is the low pass filter (LPF).

• Filters 2 and 3 are high frequency filters.

• Filters 4 and 5 are medium frequency filters.

• Filters 6 and 7 are low frequency filters.

Thus, considering that for 2D applications the designed filterbanks have 7, 13 and

19 bandpass filters for a single-, two- and three-scale filterbank, respectively, for the

3D filterbanks we have 21, 65 and 133 3D bandpass filters.

Recall the 2D two-scale filterbank from section 3.1 (see Fig. 3.1(b)). Fig. 6.2(a)

shows the same filterbank but now with the added frequencies associated with the

time variable. Fig. 6.2(b) shows the 3D frequency-domain decomposition for a 3D

two-scale filterbank.

Figure 6.1: Numbering of the bandpass filters for the time variable for, from left to
right, 3D single-, two- and three-scale filterbanks, respectively.
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(a) (b)

Figure 6.2: Frequency spectrum decomposition for 3D two-scale filterbank. (a) 2D
two-scale filterbank for a single wx slice. (b) Complete 3D frequency spectrum de-
composition for the 3D two-scale filterbank.

6.2 3D VS-LQP method

We extend to 3D the 2D formulas from chapter 3 (see chapter 2 also). We consider

3D multi-scale AM-FM representations for videos given by (1.2), with the IF defined

by (1.4).

Consider a single component AM-FM video defined by

I(x, y, t) = a(x, y, t) cosϕ(x, y, t). (6.1)

In this case, the AM-FM demodulation problem is to estimate: (i) the amplitude

function a(x, y, t), (ii) the phase function ϕ(x, y, t), and (iii) the instantaneous fre-

quency function ∇ϕ(x, y, t) from I(.).

The 3D AM-FM demodulation methods in this work are based on extensions

77



Chapter 6. Robust Discrete Video AM-FM Demodulation Methods

of the one-dimensional analytic signal. The first step is to compute the extended

3D version of the one-dimensional analytic signal associated with I(x, y, t). The

extended analytic signal is computed using:

IAS(x, y, t) = I(x, y, t) + jH3d[I(x, y, t)], (6.2)

where H3d denotes a three-dimensional extension of the one-dimensional Hilbert

transform operator. The three dimensional operator is defined in terms of the one

dimensional operator, operating in either the x, the y or the t direction:

H3d[I(x, y, t)] =
1

πx
∗ I(x, y, t), (6.3)

for the x direction. For the algorithm to work, we must have that IAS(·) is equal,

or at-least approximately equal, to the complex AM-FM harmonic associated with

(6.1) (see [32] for the 1D case):

IAS(x, y, t) ≈ a(x, y, t) exp (jϕ(x, y, t)) . (6.4)

When the approximation holds, it is possible to estimate the amplitude, the phase

and the instantaneous frequency using

â(x, y, t) = |IAS(x, y, t)|, (6.5)

ϕ̂(x, y, t) = arctan

(

imag(IAS(x, y, t))

real(IAS(x, y, t))

)

, (6.6)

and

∇̂ϕ(x, y, t) = real

[

−j
∇IAS(x, y, t)

IAS(x, y, t)

]

. (6.7)

The algorithm can thus be summarized into two steps. First, compute the extended

analytic signal using (6.2). Second, compute all the estimates using (6.5), (6.6) and

(6.7).

For discrete videos, we define the discrete-space-time input signal as

I(k1, k2, k3) ≈ a(k1, k2, k3) cos ϕ(k1, k2, k3), (6.8)
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where k1 and k2 represent the discrete versions of x and y, respectively, and k3 rep-

resents the discrete version of t. In what follows, we will not consider the conversion

of the estimated discrete frequencies back to continuous space. It is also impor-

tant to note that the term “analytic” here is inaccurate. Our approach is meant

to simply enable us to produce an estimate of a(k1, k2, k3) exp (jϕ(k1, k2, k3)) from

a(k1, k2, k3) cos ϕ(k1, k2, k3) very fast. Our approach is not intended to produce an

analytic signal in the mathematical sense. We define the discrete-space-time ex-

tended estimate of the 1-D analytic signal ÎAS(k1, k2, k3). This is accomplished via

the use of a discrete-time Hilbert Transform or using the Fast Fourier Transform

(FFT), as given in (6.2).

Recall sections 3.2 and 3.4 to extend the 2D robust QEA method to 3D. Define

ĪAS such that

ĪAS(k1, k2, k3) =
ÎAS(k1, k2, k3)

|ÎAS(k1, k2, k3)|

=
a(k1, k2, k3) exp(jϕ(k1, k2, k3))

a(k1, k2, k3)

= exp(jϕ(k1, k2, k3)).

Then, for the IF (assuming δx = δy = δt = 1) we get:

ϕ̂x(k1, k2, k3) =
1

n1
arcsin

[

ĪAS(k1 + n1, k2, k3)− ĪAS(k1 − n1, k2, k3)

2jĪAS(k1, k2, k3)

]

, (6.9)

ϕ̂y(k1, k2, k3) =
1

n2
arcsin

[

ĪAS(k1, k2 + n2, k3)− ĪAS(k1, k2 − n2, k3)

2jĪAS(k1, k2, k3)

]

, (6.10)

ϕ̂t(k1, k2, k3) =
1

n3
arcsin

[

ĪAS(k1, k2, k3 + n3)− ĪAS(k1, k2, k3 − n3)

2jĪAS(k1, k2, k3)

]

, (6.11)

ϕ̂x(k1, k2, k3) =
1

n1

arccos

[

ĪAS(k1 + n1, k2, k3) + ĪAS(k1 − n1, k2, k3)

2ĪAS(k1, k2, k3)

]

, (6.12)

ϕ̂y(k1, k2, k3) =
1

n2
arccos

[

ĪAS(k1, k2 + n2, k3) + ĪAS(k1, k2 − n2, k3)

2ĪAS(k1, k2, k3)

]

(6.13)
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and

ϕ̂t(k1, k2, k3) =
1

n3
arccos

[

ĪAS(k1, k2, k3 + n3) + ĪAS(k1, k2, k3 − n3)

2ĪAS(k1, k2, k3)

]

, (6.14)

with similar constraints as in the 2D case in (3.8).

6.3 Results on 3D AM-FM estimation

In this section, we present results for the 3D AM-FM methods using synthetic 3D

signals. We filter the signal through each channel using the 3D FFT.

We first define the synthetic signals used and then we present the results.

6.3.1 3D Chirp

For this signal, we use I(k1, k2, k3) = cos ϕ(k1, k2, k3), for k1, k2, k3 = −N
2
, . . . , N

2
− 1

and N = 256. The phase ϕ(k1, k2, k3) has a quadratic form

ϕ(k1, k2, k3) = αxk1 +
βx

2
k2

1 + αyk2 +
βy

2
k2

2 + αtk3 +
βt

2
k2

3,

where βi =
(

fBi
−fAi

N−1

)

, αi = βiN
2

+ fAi
, for i = 1, 2, 3. fBi

represents the desired

maximum instantaneous frequency in the i direction (x, y or t), and fBi
repre-

sents the desired minimum instantaneous frequency. Setting fBi
and fAi

will pro-

duce ϕx(k1, k2, k3), ϕy(k1, k2, k3) and ϕt(k1, k2, k3) to be in desired ranges. We con-

sider the instantaneous frequency ϕx(k1, k2, k3) ∈ [−0.4π, 0.4π], with ϕx(k1, k2, k3) =

ϕy(k1, k2, k3) = ϕt(k1, k2, k3).
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Table 6.1: MSE and PSNR for IA estimation using 3D synthetic signals.

3D Chirp 3D Gauss AM-FM

Filterbank MSE PSNR (dB) MSE PSNR (dB)

Single-scale 2.127x10−2 16.721 29.21 25.344

Two-scale 2.732x10−2 15.636 33.05 24.809

Three-scale 3.324x10−2 14.784 44.10 23.555

6.3.2 3D Gaussian amplitude-modulated frequency-modulated

We use

I(k1, k2, k3) = 100 exp



−1

2
α2

i=3
∑

i=1

(

ki + 1
2

N
2

)2


 cos ϕ(k1, k2, k3)

for k1, k2, k3 = −N
2
, . . . , N

2
− 1 and N = 256. The phase ϕ(k1, k2, k3) has a quadratic

form equal to the 3D Chirp signal from the previous sub-section.

6.3.3 Results for synthetic 3D signals

In Table 6.1 we show both the MSE and the PSNR (given by 10 log10

(

IA2
max

MSE

)

, with

IAmax = 1 when a 3D chirp is used, and IAmax = 100 in the other case) for the IA

estimation of both synthetic images.

In Table 6.2, we show the errors, in the IF estimation, in terms of the PSNR for

the 3D Chirp and 3D Gaussian amplitude-modulated frequency-modulated. Results

in terms of the MSE are showed in Table 6.3. The errors are computed in terms

of the magnitude of the IF in each direction. Thus, the PSNR is computed using

10 log10

(

π2

MSE

)

.
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Table 6.2: PSNR (dB) for ||IF|| estimation using 3D synthetic signals.

3D Chirp 3D Gauss AM-FM

Filterbank x y t x y t

Single-scale 43.806 40.403 42.780 39.137 35.862 39.907

Two-scale 43.819 42.459 43.386 41.517 41.168 42.767

Three-scale 42.030 41.972 39.467 41.057 41.210 39.939

Table 6.3: MSE for ||IF|| estimation using 3D synthetic signals.

3D Chirp 3D Gauss AM-FM

Filterbank x y t x y t

Single-scale 4.11x10−4 9.00x10−4 5.20x10−4 1.20x10−3 2.56x10−3 1.01x10−3

Two-scale 4.10x10−4 5.60x10−4 4.53x10−4 6.96x10−4 7.54x10−4 5.22x10−4

Three-scale 6.18x10−4 6.27x10−4 1.12x10−3 7.74x10−4 7.47x10−4 1.00x10−3

6.4 Discussion for 3D AM-FM estimation

As expected, from Table 6.1, we can see how in the IA estimation as we increase the

number of scales in the filterbank (in this noise-free example), the error increases. In

terms of ||IF|| estimation, both signals produced very similar results (see Tables 6.2

and 6.3). Note how when we change the use of a single-scale filterbank to a two-scale

filterbank, the MSE is significantly reduced.
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Chapter 7

Video Reconstructions using

AM-FM Decompositions

In this chapter, we discuss how to reconstruct a video using its AM-FM components.

We extend the theory presented for 2D signals in chapter 4 to get 3D versions of

those three methods.

7.1 3-D Multi-scale reconstructions

We use the 3D multi-scale filterbank from section 6.1 to extend the 2D reconstruction

methods from section 4 to reconstruct videos using: (i) 3D Least-Squares Recon-

structions using AM-FM harmonics (3D-LESHA), (ii) 3D Multi-scale least-squares

reconstructions (3D-MULTILES) and (iii) 3D Least-Squares Reconstructions using

AM-FM harmonics and the DCA (3D-LESCA). Since the theory is similar to the

one explained in section 4, we only present 3D-MULTILES.

3D-MULTILES is based on the scales of the filterbanks designed in section 6.1.
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Define:

d: Global DC image estimate.

G(k1, k2, k3): Low pass filter output.

a1 cos ϕ1: High-frequency scale AM-FM component.

a2 cos ϕ2: Medium-frequency scale AM-FM component.

a3 cos ϕ3: Low-frequency scale AM-FM component.

In this case, we consider least squares reconstructions given by:

Î(k1, k2, k3) ≈ d + c0G(k1, k2, k3) +
s
∑

n=1

cnan(k1, k2, k3) cos (ϕn(k1, k2, k3)) , (7.1)

where s is the number of scales used.

We then compute the AM-FM multi-scale coefficients cn, n = 0, 1, . . . , s, so that

Î(k1, k2, k3) is a least-squares estimate of I(k1, k2, k3). We also compute an orthonor-

mal basis over the space of the AM-FM estimations scale by scale (see section 4.3

for a 2D reference). Fig. 7.1 shows an example of the 3D bandpass filters used for

this method when a two-scale filterbank is used.

It is important to recall that adding decomposition levels also reduces the total

amount of video signal energy that is captured by the decomposition. First, let us

note that for a single scale decomposition, video signal energy is captured by the

low-pass filter component and the dominant high-frequency components, selected

from the high frequency 3D bandpass filters. Then, in two-scale decompositions,

the 3D spectrum captured by the low-pass filter is further decomposed into two

new scales. We again find the dominant components in this second scale while the

lowest frequency components are captured by the new low-pass filters. Similarly, for

three-scales, we decompose the frequency spectrum of the 3D low-pass filter.

The extracted dominant components from each scale allow us to provide de-

compositions using an independent AM-FM component per scale. Furthermore, the
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corresponding dominant channel filters allow us to extract local spatiotemporal con-

tent over each pixel. This approach allows us, e.g., to re-formulate the classical

motion estimation problem with several independent equations over each scale. It is

also important to note that the AM-FM decomposition also allows us to track both

continuous and discontinuous motions since at every pixel we can associate three

different dominant channels from three different scales.

For the 3D-LESHA reconstruction method, we consider reconstructing the input

video using AM-FM harmonics (see [31]):

Î(k1, k2, k3) ≈ d +
h
∑

n=1

cna(k1, k2, k3) cos (nϕ(k1, k2, k3)) , (7.2)

where d is a scalar and h is the maximum number of AM-FM harmonics to use.

For 3D-LESCA, we also use G(k1, k2, k3) (the LPF output). Thus, we consider

least squares video reconstructions using:

Î(k1, k2, k3) = d + c0G(k1, k2, k3) +
h
∑

n=1

cha(k1, k2, k3) cos (nϕ(k1, k2, k3)) . (7.3)

Figure 7.1: 3D-MULTILES method for video reconstruction using a 3D two-scale
filterbank.
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Table 7.1: MSE and Average Image Quality Index in the reconstructions of the
videos using 3D-MULTILES method (multi-scale). LPF denotes low-pass filter re-
construction, M denotes the medium frequencies and H denotes high frequencies.

Scales

Mean-Square Error LPF LPF+M LPF+M+H

Average MSE 379.09 330.70 249.64

Minimum MSE 334.01 284.58 216.00

Maximum MSE 467.06 413.54 316.28

Average Image Quality Index LPF LPF+M LPF+M+H

Average Qv 0.543 0.618 0.712

Minimum Qv 0.535 0.607 0.706

Maximum Qv 0.552 0.626 0.717

7.2 Results for Video Reconstructions

We use the videos from [89], provided for detecting human activity. The video

resolution is at 384x288 pixels per frame, 25 frames per second and compressed

using MPEG2 (half the resolution of the PAL standard). The file sizes are mostly

between 6 and 12 MB, a few up to 21 MB. We used nine videos in total, corresponding

to three different scenarios: a person browsing at information displays (3 videos),

groups of people encountering (3 videos) and people fighting (3 videos).

We reconstructed the videos using the three methods described in section 7.1 and

using a two-scale filterbank (see section 6.1).

In Table 7.1 we show the average MSE obtained in the reconstruction of the

nine videos using the 3D-MULTILES method. We present both the minimum MSE

and the maximum MSE for each case. We also present the average image quality

index value Qv (see section 4.4. Tables 7.2 and 7.3 show the MSE and Qv for the

3D-LESHA and 3D-LESCA methods, respectively.
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Table 7.2: MSE and Average Image Quality Index in the reconstructions of the
videos using 3D-LESHA method.

Number of AM-FM harmonics

Mean-Square Error 1 2 3 4 5

Average MSE 433.20 429.64 429.20 428.65 428.64

Minimum MSE 401.15 397.82 397.32 396.83 396.82

Maximum MSE 475.92 472.70 472.27 471.70 471.69

Average Image Quality Index 1 2 3 4 5

Average Qv 0.558 0.560 0.558 0.557 0.557

Minimum Qv 0.551 0.552 0.550 0.550 0.550

Maximum Qv 0.566 0.567 0.565 0.565 0.565

7.3 Discussion for Video Reconstructions

Similarly to the 2D results (see section 4.4), 3D-MULTILES produce the best results

in the MSE sense, and 3D-LESHA the worst ones. 3D-LESHA does not improve

considerably its results when the number of harmonics is increased. Note that 3D-

LESCA improved its results from MSE ∼ 379, when only the LPF was used, to MSE

Table 7.3: MSE and Average Image Quality Index in the reconstructions of the
videos using 3D-LESCA method (same as 3D-LESHA + LPF).

Mean-Square Error LPF LPF+1h♭ LPF+5h♯

Average MSE 379.09 287.14 284.8553

Minimum MSE 334.01 250.63 247.1343

Maximum MSE 467.06 357.53 355.3691

Average Image Quality Index LPF LPF+1h♭ LPF+5h♯

Average Qv 0.543 0.667 0.668

Minimum Qv 0.535 0.661 0.662

Maximum Qv 0.552 0.674 0.674

LPF+1h♭ = LPF + LPF + 1 AM-FM harmonic.

LPF+5h♯ = LPF + 5 AM-FM harmonics.
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∼ 284, when 5 harmonics were added. Furthermore, 3D-MULTILES improved its

results up to MSE ∼ 249 when all the scales where used.

For 3D-LESCA, note that video reconstruction was improved when a single AM-

FM harmonic was added to the LPF (see Table 7.3). When 3D-MULTILES is used,

we get almost good quality videos with Qv around 0.712 on the average. The 3D AM-

FM reconstructions methods are useful for analyzing the importance of each scale,

in terms of contribution of information, for applications such as motion estimation.

Indeed, 3D-MULTILES will be used in the next chapter as the first processing step

for analyzing the input videos to compute the motion estimation in them.
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Motion Estimation (ME) methods

based on AM-FM

8.1 Introduction

In this chapter, we present a new method for pixel-level based motion estimation

using an Amplitude-Modulation Frequency-Modulation (AM-FM) model for digital

video. We also consider an application of this model in analyzing atherosclerotic

plaque motion, general video motion and video activity recognition.

Our study is motivated from a desire to extend traditional motion estimation

methods into the development of reliable methods for video trajectory estimation.

To accomplish this for atherosclerosis, we are interested in developing realistic plaque

motion models that are motivated from clinical experience. We expect that accurate

motion estimation will help us develop more accurate models that can predict plaque

rupture (see Fig. 8.1). If we can predict the breakup, we should be able to reduce

the number of stentings (or surgeries) in patients (Fig. 8.1 (b)).
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In related work [90], the authors computed optical flow estimates from 45 pa-

tients and reported a significant increase in the maximal discrepant surface velocity

for the symptomatic cases, as compared to the asymptomatic cases. In [91], the au-

thors used 3D intravascular ultrasound to provide a computational analysis of stress

distribution. Clearly, the development of accurate motion estimation methods can

also benefit this related research.

Using realistic motion models, we propose a new, amplitude and phase based

motion estimation method based on robust, multidimensional Amplitude-Modulation

Frequency-Modulation (AM-FM) methods. Extending out prior work reported in

[92], we investigate the limits of the new method as compared against traditional

motion estimation methods.

We provide background information about related work in section 8.2. We de-

scribe our new method in section 8.3. Results are shown in section 8.4 and finally,

the discussion is given in section 8.5. In section 8.6, we consider an application in

video activity recognition.
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(a)

(b)

Figure 8.1: Atherosclerotic plaques. (a) Internal carotid artery. (b) Surgery in the
carotid artery. Images from Adam c©: http://www.adam.com
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8.2 Background on Motion Estimation

8.2.1 Optical Flow

Fundamental to the concept of actual object motion, but nevertheless different, is

optical flow. Optical flow is the instantaneous motion of image intensities. This is

not the same as the motion of the objects being imaged. This is easily understood

by these examples:

• A moving camera taking pictures of a stationary object will produce image

(optical flow) motion (despite the lack of object motion).

• A rotating uniform intensity sphere will not produce any image (optical flow)

motion.

Still, optical flow is all the motion information that the image supplies. Therefore,

most methods of motion estimation, motion compensation, etc. depend on it.

8.2.2 Continuous Formulation

The image intensity at a point in space and time is I(x, y, t). After a sufficiently

small time interval △t, the intensity at (x, y) will move to a point (x +△x, y +△y).

In other words: I(x+△x, y+△y, t+△t) = I(x, y, t). This assumes that the intensity

does not change, just its position.

Expanding the LHS in a Taylor’s series:

I(x +△x, y +△y, t +△t) = I(x, y, t) +△x · ∂I

∂x
+△y · ∂I

∂y
+△t · ∂I

∂t
+ h.o.t.

If we ignore the higher order term (h.o.t.), divide by △t, and then take the limit as

△t→ 0, we get:

∂I

∂x
· ∂x

∂t
+

∂I

∂y
· ∂y

∂t
+

∂I

∂t
= 0.
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Now, define the motion velocities u and v using: u(x, y, t) = ∂x/∂t and v(x, y, t) =

∂y/∂t.

Putting this all together gives the optical flow constraint equation (OFCE):

Ixu + Iyv + It = 0. (8.1)

In (8.1), note that at every pixel we have a single equation in two unknowns.

8.2.3 Phase-Based Methods for Motion Estimation

Fleet and Jepson [47] proposed the use of an AM-FM model for modeling digital

video based on

R (x, t) = ρ (x, t) exp (jϕ (x, t)) (8.2)

where x denotes the spatial variables x = (x, y), t denotes time, ρ (x, t) denotes the

amplitude and ϕ (x, t) denotes the phase component. For estimating the AM-FM

components, Fleet and Jepson used a set of band-pass complex valued Gabor filters.

For pixel velocity estimation, the basic model of (8.2) can only be used to esti-

mate the projected component velocities that are in the direction of the instanta-

neous frequency. We express this using vn = α n (x, t) where ϕx (x, t) = (ϕx, ϕy)
T ,

n (x, t) = ϕx (x, t) /‖ϕx (x, t) ‖ and α = −ϕt (x, t) /‖ϕx (x, t) ‖.

For estimating the instantaneous frequency, they proposed to use:

∇ϕ (x, t) =
Im [R∗ (x, t)∇R (x, t)]

ρ2 (x, t)
, (8.3)

where R∗ denotes the complex conjugate of R, Im [z] ≡ (Im [z1] , Im [z2] , Im [z3]).

Note that in order to recover the velocity components that are orthogonal to the

instantaneous frequency vectors we will need to apply some type of smoothing over
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the estimated velocities. Fleet and Jepson accomplish this by fitting a local linear

model over 5× 5 neighborhoods:

v (x, t) = (α0 + α1x + α2y, β0 + β1x + β2y) . (8.4)

Then, from (8.4), the estimated 2D velocity is then taken to be (α0, β0).

To provide for a method of identifying accurate measures, Fleet and Jepson re-

quire that the estimated instantaneous frequency is within the range of the estimating

filter. This is expressed as

‖∇ϕ (x, t)− (ki, wi) ‖ ≤ τσk (8.5)

where (ki, wi) is the peak tuning frequency of the i-th filter, σk is the standard devia-

tion of the filter’s amplitude spectrum, and τ is a threshold used to reject unreliable

estimates of instantaneous frequencies. Similarly, for the amplitude, they require

that the local signal amplitude must be as large as the average local amplitude, and

at least 5% of the largest response amplitude across all the filters at that frame.

When either one of these two conditions is not met, the method does not provide

velocity estimates.

8.3 AM-FM based Motion Estimation Method

8.3.1 An AM-FM model for motion estimation

In what follows, consider a single AM-FM component approximation to the input

video:

I(x, y, t) = a(x, y, t) exp(jϕ(x, y, t)). (8.6)

Recall the optical flow constraint equation:

Ixu + Ivv + It = 0. (8.7)

94



Chapter 8. Motion Estimation (ME) methods based on AM-FM

We apply (8.7) to (8.6) and separate out the real from the imaginary parts to get

the amplitude constraint equation

axu + ayv + at = 0, (8.8)

and the frequency modulation constraint equation

ϕxu + ϕyv + ϕt = 0. (8.9)

The advantage of (8.8)-(8.9) is that they provide us with two equations per pixel.

We also add a smoothness constrain to add a third equation. Collectively, the AM,

FM and continuity constraints give:

Es =

∫∫

[

u2
x + u2

y + v2
x + v2

y

]

dxdy, (8.10)

EAM =

∫∫

[axu + ayv + at]
2 dxdy, (8.11)

and

EFM =

∫∫

[ϕxu + ϕyv + ϕt]
2 dxdy. (8.12)

We combine all constraints together to get

E = Es + λEFM + βEAM . (8.13)

8.3.2 Discrete Optimization

For minimizing (8.13) we consider finite-difference approximations:

ux ≈ [u(i + 1, j)− u(i, j)] /2,

uy ≈ [u(i, j + 1)− u(i, j)] /2,

vx ≈ [v(i + 1, j)− v(i, j)] /2,
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and

vy ≈ [v(i, j + 1)− v(i, j)] /2.

We then convert the sums to integrals and take derivatives with respect to u(m, n)

and v(m, n) to get

∂E

∂u(m, n)
= 2 [u(m, n)− uave(m, n)]

+ 2λ [ϕxu + ϕyv + ϕt] · ϕx

+ 2β [axu + ayv + at] · ax = 0

and

∂E

∂v(m, n)
= 2 [v(m, n)− vave(m, n)]

+ 2λ [ϕxu + ϕyv + ϕt] · ϕy

+ 2β [axu + ayv + at] · ay = 0.

where

uave(m, n) =
1

4
[u(m + 1, n) + u(m− 1, n) + u(m, n + 1)

+ u(m, n− 1)]

and

vave(m, n) =
1

4
[v(m + 1, n)

+ v(m− 1, n) + v(m, n + 1) + v(m, n− 1)].

For optimal values, we require that the gradient should be zero

∂E

∂u(m, n)
=

∂E

∂v(m, n)
= 0. (8.14)
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We re-write (8.14) as

Ax = b,

where:

A =





(1 + λϕ2
x + βa2

x) (λϕxϕt − βaxay)

(λϕxϕt − βaxay)
(

1 + λϕ2
y + βa2

y

)



 ,

x =





u

v



 ,

and

b =





(uave − λϕxϕt − βaxat)

(vave − λϕyϕt − βayat)



 .

Solving for u(m, n) and v(m, n) yields:

u = uave −λ

(

ϕx + βa2
yϕx − βayaxϕy

)

uave + ϕyvave +
(

βa2
y + 1

)

ϕt − βayϕyat

1 + λ
(

ϕ2
y + ϕ2

x

)

+ λβ (ϕxay − ϕyax)
2 + β

(

a2
x + a2

y

) ϕx

−β
[λ (axϕy − ayϕx) ϕy + ax] uave + ayvave − λayϕyϕt +

(

λϕ2
y + 1

)

at

1 + λ
(

ϕ2
y + ϕ2

x

)

+ λβ (ϕxay − ϕyax)
2 + β

(

a2
x + a2

y

) ax

(8.15)

and

v = vave −λ
ϕxuave + (ϕy + βa2

xϕy − βaxayϕx) vave + (βa2
x + 1)ϕt − βaxϕxat

1 + λ
(

ϕ2
y + ϕ2

x

)

+ λβ (ϕxay − ϕyax)
2 + β

(

a2
x + a2

y

) ϕy

−β
axuave + [λ (ayϕx − axϕy) ϕx + ay] vave − λaxϕxϕt + (λϕ2

x + 1) at

1 + λ
(

ϕ2
y + ϕ2

x

)

+ λβ (ϕxay − ϕyax)
2 + β

(

a2
x + a2

y

) ay.

(8.16)

Or, in a shorter form:

u = uave − λ
uN1

D
ϕx − β

uN2

D
ax
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and

v = vave − λ
vN1

D
ϕy − β

vN2

D
ay

where:

uN1 =
(

ϕx + βa2
yϕx − βayaxϕy

)

uave + ϕyvave

+
(

βa2
y + 1

)

ϕt − βayϕyat,

uN2 = [λ (axϕy − ayϕx) ϕy + ax] uave + ayvave

− λayϕyϕt +
(

λϕ2
y + 1

)

at,

and

D = 1 + λ
(

ϕ2
y + ϕ2

x

)

+ λβ (ϕxay − ϕyax)
2

+ β
(

a2
x + a2

y

)

,

and similarly for vN1, vN2, after exchanging x with y derivatives. The instantaneous

frequency components are estimated using the AM-FM demodulation process de-

scribed in section 6.

Instead of a 3D Gabor filterbank, we propose the use of a multiscale, separable 3D

filterbank (see section 6.1). First, we take a 3D FFT of N frames of the input video.

If we let I(x, y, t) denote the input video, we then use Ĩ(ωx, ωy, ωt) to denote its DFT.

Similar to the 2D case, we zero-out all the frequency components that have negative

ωt. In other words, we set Ĩ(ωx, ωy, ωt < 0) = 0. Let ÎAS denote the resulting video.

Then, for each video, we compute the dominant AM-FM components over a three-

scale 3D filterbank. To estimate the amplitude derivatives ax, ay, at, we take differ-

ences of Gaussian averages over 3x3 neighborhoods (σ = 1).

Using the derivative estimates, we iteratively compute velocity estimates at each

iteration p. The relaxation algorithm is:

u(p+1) = u(p)
ave − λ

uN1

D
ϕx − β

uN2

D
ax (8.17)
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and

v(p+1) = v(p)
ave − λ

vN1

D
ϕy − β

vN2

D
ay. (8.18)

We initialize the estimation by using zero-velocity estimates. The iterations are

continued for both a prescribed number P of iterations and until further iterations

do not change the solution. For example, for the u-component, we detect no change

if max(m,n)

∣

∣u(p+1)(m, n)− u(p)(m, n)
∣

∣ < TOL, where TOL is a tolerance threshold.

Using the estimated motion vectors, we apply a Kalman filter to track the tra-

jectories throughout the video. In summary, for the clinical videos, we establish

the validity of the estimated trajectories based on: (i) the density of the estimated

velocities, (ii) we require that trajectories remain valid throughout the video, (iii)

estimation consistency and (iv) agreement with clinical expectations.

8.4 Results for Motion Estimation

We apply the developed AM-FM method for motion estimation using separable 3D

filterbanks (see section 6.1). We use a dyadic decomposition with three-levels of

decomposition. Furthermore, at each pixel, we compute motion estimates over the

3D channel that gives the maximum response (dominant component analysis). In

this analysis, we did not use the VS-LQP. For IF estimation, the pixel spacing was

fixed at a single pixel.

For the examples that we present we set the constraint parameters in (8.13) using:

• AM only: λ = 0, β = 10.

• FM only: λ = 10, β = 0.

• AM-FM: λ = 10, β = 10.
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Here, we note that in (8.13), the continuity constraint is weighted by 1. Thus, in all

of our experiments, we have placed a significantly more weight on the new AM-FM

methods.

8.4.1 Results for a synthetic example

To test the implementations, we first present results using motion generated using a

chirp image. A frame of this is shown in Fig. 8.2. The chirp image is given by

I(n1, n2) = cos ϕ(n1, n2)

where

ϕ(n1, n2) = 2π

[

α1n1 + β1
n2

1

2
+ α2n2 + β2

n2
2

2

]

, (8.19)

∇ϕ(n1, n2) = 2π (α1 + β1n1, α2 + β2n2, ) (8.20)

with parameter values described in the caption of Fig. 8.2. Here, we note that the

chirp image covers all the possible discrete values of the instantaneous frequency.

As documented in [93], we are interested in simulating periodic motion that

closely resembles atherosclerotic plaque motion. This is accomplished by using:

x(t) = Ah sin(
2π

N
fht) +

Ah

2
sin(

2π

N
(2fh)) +

Ah

3
sin(

2π

N
(3fh)) (8.21)

and

y(t) = Av sin(
2π

N
fvt) +

Av

2
sin(

2π

N
(2fv)t) +

Av

3
sin(

2π

N
(3fv)t). (8.22)

As noted in [93], as measured in atherosclerotic videos, the harmonic amplitudes

decay at a rate that is inversely proportional to the harmonic frequency. This is

consistent with a discontinuity in the motion and has also been observed in the

power spectra of the estimated trajectories.

100



Chapter 8. Motion Estimation (ME) methods based on AM-FM

Figure 8.2: Chirp used for our first test in motion estimation. For the simulation,
from (8.19), we use square images of size N = 128, α1 = α2 = 9/40(N − 1), and
β1 = β2 = 18/40(N − 1). This gives an instantaneous frequency magnitude range
interval of [−9π/20, 9π/20] for both directions. For the motion, we set Ah = Av = 2
and fh = fv = 1.

We compare the AM-FM results against optimal results obtained with Horn’s

method and also the phase-based method developed by Fleet and Jepson. We report

the results in Table 8.1. For Horn, we compared against two different runs using a

Lagrange multiplier of α = 10, 20 for cases 1 and 2. In both cases, for the Gaussian

smoothing parameter, we used σ = 1.00. For the Fleet and Jepson approach, to

obtain a reasonable density, for the valid constraint: ‖∇ϕ− (ki, wi)‖ ≤ τσk and the

amplitude constraint (see subsection 8.2.3), we used

• Case 1: σ = 0.75, Ampthreshold = 1%, τ = 2,

• Case 2: σ = 1.00, Ampthreshold = 1%, τ = 2,

• Case 3: σ = 1.00, Ampthreshold = 5%, τ = 10,

• Case 4: σ = 1.25, Ampthreshold = 1%, τ = 2.

In Table 8.1, we report the mean-square-error (MSE) for the magnitude of the esti-
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mated velocity vectors and the density of the estimates.

Table 8.1: MSE and density in the velocity estimation of the synthetic chirp signal.

Method Motion Magnitude Density

Fleet (1) Did not work 0%
Fleet (2) 0.0075 10.9851%
Fleet (3) 0.0140 33.4311%
Fleet (4) 0.0073 9.6752%

Horn (1) 0.0141 28.9235%
Horn (2) 0.0153 28.9235%

FM 0.0081 100%

AM 0.0090 100%

AM-FM 0.0085 100%

8.4.2 Results for atherosclerotic plaque videos

We present the first video frames in Fig. 8.3 and the tracked video frames in Figs.

8.4 and 8.5. For estimating the motion, we applied the AM, the FM, and the AM-FM

method.

To verify tracking, we magnified the plaque regions that we wanted to analyze

and carefully examined how each pixel is tracked through time. We also note that

transducer motion can cause artificial plaque motion and this is something that we

need to guard against. To avoid this problem we carefully examined the videos to

confirm that: (i) we do not have significant intensity changes from frame to frame and

(ii) there is a clear periodicity in the video frames, showing that there is no detectable

drift between consecutive cardiac cycles. Now, having confirmed that there is no drift,

we are led to believe that the motion estimates tended to be unbiased and thus any

small, noisy variations were correctly filtered out by the Kalman filter trackers.
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(a)

(b)

(c)

(d)

Figure 8.3: First frame of atherosclerotic plaque videos that were used. We display
an ‘x’ over pixels where the Kalman filter was able to track throughout the video.
The individual video characteristics are as follows: (a) video of size 125 rows × 250
columns × 67 frames, (b) video of size 125 rows × 150 columns × 111 frames, (c)
video of size 100 rows × 240 columns × 87 frames, and (d) video of size 125 rows
× 250 columns × 67 frames. We would like to thank Maura Griffin (PhD) and Ms.
Niki Georgiou (S.R.N.) for selecting the case studies and carefully collecting the
ultrasound videos that have collected the atherosclerotic videos for this study.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8.4: Pixel tracking results from frames 1, 21, 41 and 61 for each video from
Figs. 8.3 (a)-(b). For the video shown in Fig. 8.3(a), we have extracted a Region of
Interest (ROI) of 30− 140× 30− 210. We then show frame 1 in (a), frame 21 in (b),
frame 41 in (c), frame 61 in (d). Similarly, we show the same frames for the video
shown in Fig. 8.3 (b) for ROI: 90− 160× 120− 270 in (e)-(h).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8.5: Pixel tracking results from frames 1, 21, 41 and 61 for each video from
Figs. 8.3 (c)-(d). For the video showed in Fig. 8.3(c), we have extracted a Region
of Interest (ROI) of 100 − 260 × 80 − 315. We then show frame 1 in (a), frame 21
in (b), frame 41 in (c), frame 61 in (d). Similarly, we show the same frames for the
video of Fig. 8.3 (d) for ROI: 40− 160× 100− 300 in (e)-(h).
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8.4.3 Results for tracking of Taxi Video with AM-FM based

Motion Estimation

In this sub-section, we present motion tracking results from the taxi video sequence

(see Hamburg taxi video in [94]).

Reconstruction for taxi video: We start the analysis with a reconstruction

of the video. We summarize video reconstruction results in Tables 8.2, 8.3, 8.4 and

Fig. 8.6. We provide the MSE in Tables 8.2 and 8.3.

Tracking with AM-FM based ME: In Fig. 8.7 we show two different targets

to demonstrate the independence among the AM, AM-FM and the FM estimates.

We show a person tracking example in (a) and FM tracking results over the taxi

region in (b).

(a) (b) (c)

Figure 8.6: Video reconstructions for the taxi video (we only show frame 1) using
dominant components from each scale. (a) 3D Single-scale filterbank. (b) 3D Two-
scale filterbank. (c) 3D Three-scale filterbank.

106



Chapter 8. Motion Estimation (ME) methods based on AM-FM

Table 8.2: MSE for the taxi video using 3D-MULTILES method.

Scales Single-scale Two-scale Three-scale

0 34.7781 115.1141 186.2611

0, 1 34.5966 110.9505 185.2432

0, 1, 2 - 110.7431 180.1949

0, 1, 2, 3 - - 179.9799

Table 8.3: MSE for the taxi video using 3D-LESHA method.

AM-FM Harmonics Single-scale Two-scale Three-scale

1 34.7336 115.3749 202.3249

2 34.5546 115.3658 201.5240

3 34.2859 115.3632 197.0237

4 34.2842 115.2712 194.7118

5 34.2179 115.1972 194.6775

(a) (b)

Figure 8.7: Frame 1 of the Hamburg taxi video for tracking with the motion estimated
during the video. (a) Zoom on the person. (b) Zoom on the taxi.
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Table 8.4: Coefficients used for the taxi video reconstructions using 3D-MULTILES
method.

Coefficients for AM-FM reconstructions using 3D-MULTILES.

level single-scale two-scale three-scale

0 0.9967 0.9999 1.0011

1 0.3459 1.0007 0.2205

2 - 0.3698 1.1030

3 - - 0.3765

8.5 Discussion

For the synthetic video examples (sub-section 8.4.1), we note that the AM-FM ap-

proach provides reliable motion estimates at every pixel. In Table 8.1, this is demon-

strated by the fact that AM, FM and AM-FM estimates have a density of 100%. On

the other hand, the methods by Horn and Fleet and Jepson do not produce densities

over 30%. This is attributed to the fact that the filter-banks used in the AM-FM

approach cover the entire frequency plane.

In terms of accuracy, we note that the phase-based methods gave the best results.

At 100% density, the proposed method achieved an accuracy that is comparable to

what Fleet and Jepson achieved at 10%. It is also interesting to note that the AM

method gave very good results and that the combined AM-FM method gave an

accuracy that ranges between the AM and the FM methods. Here, we note that

since the chirp has constant amplitude, the generated AM comes from processing

the motion through the dyadic filter-bank.

For the atherosclerotic videos (sub-section 8.4.2) the best results were obtained

by the AM method, closely followed by the full AM-FM and then the FM method.

Apparently, ultrasound speckle dominated the FM while the AM captured the essen-

tial brightness variations without the noise. As a result, the Fleet and Jepson phased

based method (similar to FM) was not able to track the pixel motion through the

video. For Fleet and Jepson, the periodic motion resulted in stationary estimates
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and the motion was not tracked throughout the periods. On the other hand, the

optimized Horn’s method appeared to track the pixels within the period, similar to

the newly developed AM method. The correct pixel tracking is clearly visible in the

examples in Fig. 8.4.

For tracking the person and the taxi in the taxi video, from Tables 8.2, 8.3 and

8.4, we note that the zeroth-scale refers to least-squares reconstruction using the

low-pass filter output from each scale. This low-pass filter varies with scale as we

detailed in the methods section. It is interesting to note the relative importance of the

different scales as summarized in the optimal coefficients in Table 8.4. In Table 8.4,

we note that using 3D-MULTILES, the second scale AM-FM component coefficient

is equal to the low-pass filter component. As we shall see, the motion estimates from

this level will prove very useful. On the other hand, the use of AM-FM harmonics

(3D-LESHA method) did not reduce the MSE by any significant amount.

In Fig. 8.7 (a), both the AM and the dominant AM-FM component equations

provide good trajectory tracking results. It is interesting to note that in this case,

the person image is well-localized and its motion appears to be easier to follow.

From Fig. 8.7 (b), it is much more interesting to examine the FM tracking results

over the taxi region. Tracking individual pixels over the taxi region proved to be much

more challenging. To understand why, we simply note the uniform intensity regions

over the surface of the taxi. Yet, the FM motion equation provided nice trajectory

tracking results over the edges of the taxi images. We note that these nice tracking

results could not have been reproduced with the AM motion equations.

In summary, we can see that AM motion estimation made a big difference and

FM motion estimation will not work for small instantaneous frequencies.
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8.6 Continuous-scale video search

In this section we present an AM-FM application in content-based video retrieval

(CBVR) as an example of continuous-scale video search. We apply this CBVR

retrieval to human activity recognition for the database given in [89].

Because of the fast growth of digital information, in this case of digital videos,

searching video content is a challenging task. First approaches exploited low-level

features such as colors, textures, shapes and lines orientation to retrieve the infor-

mation. Later approaches look for matching of sketches in the objects of the video,

analyzing the moving separately from the still components. Recently, research in

CBVR has been focused on exploiting different approaches to recognize the video

content. Some approaches are based on text-based video retrieval [95], others in

matching trajectories [96, 97, 98] or learning methods [99]. The applications are in

sports videos [100], broadcasting news [101], video surveillance [102] or in detecting

human activity. We propose an AM-FM approach for retrieving videos of human

activities.

8.6.1 Continuous-scale video search Dataset

For the database given in [89], we created two new versions from each video used:

(i) a rotated version (30o counterclockwise) and (ii) a downsampled (by 2) version

of (i). Thus, each video is compared also versus its same version but rotated and

also with a smaller size. We present examples of our video database in Fig. 8.8 for

a fight video: (a) original video, (b) rotated video and (c) rotated and downsampled

video. The video file sizes are mostly between 6 and 12 MB, a few up to 21 MB.

A summary of the database that we used is also given in Table 8.7. We used five

videos in total, corresponding to two different scenarios: groups of people meeting

(3 videos) and people fighting (2 videos).
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(a)

(b)

(c)

Figure 8.8: Examples of the three different versions for a fight video: (a) original
video, (b) rotated video and (c) rotated and downsampled video. Frame 300 is shown.
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8.6.2 Methods

The basic architecture of the system is shown in Fig. 8.9. We present the steps in

greater detail in Fig. 8.10.

For this application we consider the use of motion velocity vectors computed

using AM-FM methods.

Figure 8.9: Content-based Video Retrieval System.

Table 8.5: An example demonstrating the computation of the table of distances.

Video 1 Video 2 Video 3 Video 4

Video 1 0 distance{1,2} distance{1,3} distance{1,4}
Video 2 distance{2,1} 0 distance{2,3} distance{2,4}
Video 3 distance{3,1} distance{3,2} 0 distance{3,4}
Video 4 distance{4,1} distance{4,2} distance{4,3} 0

112



Chapter 8. Motion Estimation (ME) methods based on AM-FM

1. For an input video I(k1, k2, k3), we compute the AM-FM estimates IA and IF
vectors using (6.5), (6.6), (6.9)-(6.14).

2. We compute the velocity vectors u and v using (8.17) and (8.18). Then, let V
be the magnitude of the velocity vector given by V =

√
u2 + v2.

3. We compute the mean µV and the standard deviation σV of V and store them
only for the frames were the action was presented. Note that since the number of
frames where the action is presented differs from video to video, we only consider
the central number frames with action such that the number of frames is the same
for all the videos.

4. We create a feature vector for each video that contains the values µV and σV

frame by frame.
5. We compute the distance among all the videos using correlation distance: given

an m−by−n matrix X, which is treated as m1xn row vectors x1, x2, . . . , xm, the
correlation distance between the vector xr and xs is defined as follows:

drs = 1− (xr − x̄r) (xs − x̄s)
T

[

(xr − x̄r) (xr − x̄r)
T
] 1

2

[

(xs − x̄s) (xs − x̄s)
T
] 1

2

, (8.23)

where x̄r = 1
n

∑

j xrj and x̄s = 1
n

∑

j xsj .
6. We create a table of distances as shown in Table 8.5.
7. We decide the number of videos relevant to the query using a k-nearest neighbor

algorithm with k = 3.
8. The retrieved videos are presented in ascending order using the computed distances

to the query video.

Figure 8.10: Steps for continuous scale video search using AM-FM features.

8.6.3 Results for Activity Recognition

In Table 8.7 we present the results for this approach (produced for a report to

DARPA). In this case, we use five original videos (see sub-section 8.6.1), with their ro-

tated and downsampled-rotated versions. The correct matches are shown underlined.

Table 8.6 shows the numbering scheme used for the videos depending on the activity.
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Table 8.6: Numeration for the videos used in Table 8.7.

Video Type

Activity Original Rotated Rotated and downsampled

Fighting 1, 2 11, 12 21, 21

Meeting 3, 4, 5 13, 14, 15 23, 24, 25

Also, we compute the precision (p) and recall (r) rates as given in [103]:

p =
Number of correctly retrieved videos

Number of videos returned by the method
,

and

r =
Number of correctly retrieved videos

Number of videos relevant to the query
.

Here, note that if the number of returned videos is the same as the number of relevant

videos, we have that p = r. In our example, a k-nearest neighbor classifier (k = 3)

was used to determine the number of videos that should be retrieved. Since the

classifier always selected the correct cluster, we actually did get that p = r.

Also, in our example, for a fight video (see Table 8.6)

p = {number of correct retrieved videos}/5 and for a meeting video

p = {number of correct retrieved videos}/8.

8.6.4 Discussion for Activity Recognition

The approach considering σV and µV as the only features for the videos produced

good results (see Table 8.7). Considering the eight retrieved videos shown, not only

at least the first three retrieval were correct (perfect classification using k-nearest

neighbor algorithm with k = 3) but also correct videos were retrieved in the other

five positions. An average of 82% of precision obtained, with a maximum of 100%

and a minimum of 60%. However, recall that the dataset used was small (15 videos

with 2 activities).
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Table 8.7: CBVR table for the first approach using 15 videos. Correct matches are
shown underlined. The average precision is 82%.

Query video # 1st 2nd 3rd 4th 5th 6th 7th 8th Precision (%)

1 11 12 2 3 13 23 21 5 60%

2 12 11 1 22 23 3 13 15 80%

3 13 23 14 4 25 5 15 11 88%

4 14 24 3 13 23 25 15 5 100%

5 15 25 3 13 23 12 14 11 75%

21 11 12 1 3 13 2 4 5 60%

22 2 12 11 1 21 3 13 23 100%

23 3 13 14 4 25 5 15 11 88%

24 14 4 3 13 23 25 15 5 100%

25 15 5 13 3 23 14 4 11 88%

11 1 12 2 3 13 23 21 5 60%

12 2 11 1 23 13 3 15 5 60%

13 3 23 14 4 25 15 5 11 88%

14 4 13 3 23 24 25 15 5 100%

15 5 25 13 3 23 14 12 4 88%

This approach does not need annotation and works without knowledge of the

number of activities presented. Furthermore, it does not require a database with

annotated features for the activities to compare. However, it is important to note that

our video data-set was very small. Furthermore, the use of the k-nearest neighbor

classifier required that we had prior knowledge on the number of videos that belong

to each activity.
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Conclusions and Future Work
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Chapter 9

Concluding Remarks and Future

Work

We provide a brief summary of the new AM-FM methods and their applications in

image and video processing. We also provide a short summary of proposed future

work.

9.1 Summary of AM-FM methods in Image pro-

cessing

The first step in developing new AM-FM methods was to design a new multi-scale

filterbank. This design allowed us to have correct IF component sign estimation. The

almost flat response in the bandpass frequency of the 1D filters eliminated errors due

to the use of an amplitude correction as in the case of using Gabor filterbanks. The

use of these filters in the AM-FM demodulation problem produced big improvements

in the IA and IF estimations.
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We developed a new method for robust instantaneous frequency estimation:

VS-LQP (see section 3.4). For noisy signals, VS-LQP produced better results than

previous methods such as QEA or QLM.

We developed new methods for reconstructing images based on their IA and IP

information. Three least squares methods were presented: MULTILES, LESHA and

LESCA (see chapter 4). These methods produced good image reconstructions and

MULTILES showed that AM-FM components from different scales of the frequency

spectrum contain important information that can be used to improve image quality

in the reconstruction. Overall, we show that the system provides for accurate recon-

structions of general images and show extracted AM-FM component parameters in

several cases. Even though the AM-FM reconstructions were promising, our primary

focus was on image analysis applications (as demonstrated in the case of Lena’s hair

or the fingerprint).

For retinal image analysis (see chapter 5), we designed a new four-scale filter-

bank. For diabetic retinopathy (DR), we have developed an algorithm to detect the

lesions’ characteristics of DR in digital retinal images which have been graded (di-

agnosed) by retinal specialists. The algorithm can run without human supervision

and will ultimately be used to identify those images suspected of containing diabetic

retinopathy, macular degeneration, or other abnormalities. In this implementation,

the computer-based screening system eliminates most (about 80 to 90%) of the nor-

mals, i.e., specificity, requiring the human experts to assess only the suspect images,

reducing their workload significantly.

Clearly, all prior applications that were based on AM-FM demodulation can

benefit from using the new filterbanks presented. Results using the new approach for

AM-FM representations for the characterization of carotid plaque ultrasound images

have been accepted in [104], where AM-FM representations provide new feature

sets, which can be used for the classification of carotid plaques or other imaging

118



Chapter 9. Concluding Remarks and Future Work

classification problems.

9.2 Summary of AM-FM methods in Video pro-

cessing

As for 2D, the first step was to design new 3D multi-scale filterbanks with support

in four octants of the frequency spectrum. Similar to the 2D case, the flat response

in the bandpass frequency of the 1D filters eliminate errors due to the use of an

amplitude correction as in the case of using Gabor filterbanks. We extended the 2D

AM-FM formulation and theory to 3D.

We have shown video reconstructions using AM-FM from multiple-scales in three

different forms based on the 2D methods. Even though these methods reconstructed

the original videos within an acceptable quality, our focus was again concentrated

on video analysis applications.

We presented new AM-FM methods for motion estimation, allowing us to es-

timate pixel motion (requiring two displacements vectors (u, v)) with up to three

equations per pixel per scale (AM, FM, and continuity equations). The new fil-

terbanks cover the entire frequency spectrum, allowing us to provide dense motion

estimates. From the results on atherosclerotic plaque videos, we showed that the

AM method can provide visibly correct tracking over the plaques.

The AM-FM based motion estimation method was used to characterize human

activities in surveillance videos to retrieve videos. This content-based video retrieval

(CBVR) method is unsupervised and does not require a learning processing or match-

ing with known activities.
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9.3 Future Work

The new AM-FM methods can benefit a wide range of applications. The retinal

image analysis applications showed that AM-FM features can be used to characterize

disease in eye images. The same approach can be used for applications such as

detecting tumors in chest radiographs or for breast cancer (mammograms).

In the future, we will consider the implementation of AM-FM methods on an

FPGA platform. This will enable us to explore real-time video processing applica-

tions.

The content based image/video retrieval applications presented in this disserta-

tion are related with results that are based on subjective grading. The system needs

to adapts its hits to the user. Thus, in future work, one can look for the best solu-

tion for the adaptation. A suggested solution is to follow the ideas of PageRankTM

[105, 106].
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