102 research outputs found

    Unsupervised Learning for D2D-Assisted Multicast Scheduling in mmWave Networks

    Get PDF
    The combination of multicast and directional mmWave communication paves the way for solving spectrum crunch problems, increasing spectrum efficiency, ensuring reliability, and reducing access point load. Furthermore, multi-hop relaying is considered as one of the key interest areas in future 5G+ systems to achieve enhanced system performance. Based on this approach, users located close to the base station may serve as relays towards cell-edge users in their proximity by using more robust device-to-device (D2D) links, which is essential, e.g., to reduce the power consumption for wearable devices. In this paper, we account for the limitations and capabilities of directional mmWave multicast systems by proposing a low-complexity heuristic solution that leverages an unsupervised machine learning algorithm for multicast group formation and by exploiting the D2D technology to deal with the blockage problem.acceptedVersionPeer reviewe

    Challenges and Performance Evaluation of Multicast Transmission in 60 GHz mmWave

    Get PDF
    Recently, millimeter-wave (mmWave) technology has attracted significant attention due to its ambitious promise to deal with the rapid growth in wireless data traffic. Moreover, mmWave is expected to constitute a foundation for the fifth-generation (5G) communication systems' services, claimed to efficiently and effectively support both unicast and multicast transmission modes. However, the use of highly directional antennas at both user and access point sides is required to compensate for the severe path loss, high attenuation, and atmospheric absorption at extremely high-frequency bands, e.g., mmWave. Hence, multicast transmission needs special attention in directional systems due to the nature of group-oriented services, wherein a single beam simultaneously feeds receivers located at different positions. Since the widest possible beams at 60\,GHz band are limited in terms of range and data rate and cannot serve all users, and, inversely, the use of only fine beams steered toward each user in unicast fashion requires long data transmission duration, the design of efficient directional multicast schemes is of utmost importance. Further, a slight beam misalignment due to mobility can generate a significant signal drop even between devices communicating in unicast fashions. The mission of this paper is to discuss the main challenges that must be faced to take advantage of mmWave communication for multicast data delivery. To this end, we investigate the performance of such systems in terms of data rate and data transmission duration via simulations considering both static and dynamic scenarios.acceptedVersionPeer reviewe

    Direct communication radio Iinterface for new radio multicasting and cooperative positioning

    Get PDF
    Cotutela: Universidad de defensa UNIVERSITA’ MEDITERRANEA DI REGGIO CALABRIARecently, the popularity of Millimeter Wave (mmWave) wireless networks has increased due to their capability to cope with the escalation of mobile data demands caused by the unprecedented proliferation of smart devices in the fifth-generation (5G). Extremely high frequency or mmWave band is a fundamental pillar in the provision of the expected gigabit data rates. Hence, according to both academic and industrial communities, mmWave technology, e.g., 5G New Radio (NR) and WiGig (60 GHz), is considered as one of the main components of 5G and beyond networks. Particularly, the 3rd Generation Partnership Project (3GPP) provides for the use of licensed mmWave sub-bands for the 5G mmWave cellular networks, whereas IEEE actively explores the unlicensed band at 60 GHz for the next-generation wireless local area networks. In this regard, mmWave has been envisaged as a new technology layout for real-time heavy-traffic and wearable applications. This very work is devoted to solving the problem of mmWave band communication system while enhancing its advantages through utilizing the direct communication radio interface for NR multicasting, cooperative positioning, and mission-critical applications. The main contributions presented in this work include: (i) a set of mathematical frameworks and simulation tools to characterize multicast traffic delivery in mmWave directional systems; (ii) sidelink relaying concept exploitation to deal with the channel condition deterioration of dynamic multicast systems and to ensure mission-critical and ultra-reliable low-latency communications; (iii) cooperative positioning techniques analysis for enhancing cellular positioning accuracy for 5G+ emerging applications that require not only improved communication characteristics but also precise localization. Our study indicates the need for additional mechanisms/research that can be utilized: (i) to further improve multicasting performance in 5G/6G systems; (ii) to investigate sideline aspects, including, but not limited to, standardization perspective and the next relay selection strategies; and (iii) to design cooperative positioning systems based on Device-to-Device (D2D) technology

    The Use of Machine Learning Techniques for Optimal Multicasting in 5G NR Systems

    Get PDF
    Multicasting is a key feature of cellular systems, which provides an efficient way to simultaneously disseminate a large amount of traffic to multiple subscribers. However, the efficient use of multicast services in fifth-generation (5G) New Radio (NR) is complicated by several factors, including inherent base station (BS) antenna directivity as well as the exploitation of antenna arrays capable of creating multiple beams concurrently. In this work, we first demonstrate that the problem of efficient multicasting in 5G NR systems can be formalized as a special case of multi-period variable cost and size bin packing problem (BPP). However, the problem is known to be NP-hard, and the solution time is practically unacceptable for large multicast group sizes. To this aim, we further develop and test several machine learning alternatives to address this issue. The numerical analysis shows that there is a trade-off between accuracy and computational complexity for multicast grouping when using decision tree-based algorithms. A higher number of splits offers better performance at the cost of an increased computational time. We also show that the nature of the cell coverage brings three possible solutions to the multicast grouping problem: (i) small-range radii are characterized by a single multicast subgroup with wide beamwidth, (ii) middle-range deployments have to be solved by employing the proposed algorithms, and (iii) BS at long-range radii sweeps narrow unicast beams to serve multicast users.acceptedVersionPeer reviewe

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication
    • …
    corecore