549 research outputs found

    Orbital angular momentum 25 years on [invited]

    Get PDF
    Twenty-five years ago Allen, Beijersbergen, Spreeuw, and Woerdman published their seminal paper establishing that light beams with helical phase-fronts carried an orbital angular momentum. Previously orbital angular momentum had been associated only with high-order atomic/molecular transitions and hence considered to be a rare occurrence. The realization that every photon in a laser beam could carry an orbital angular momentum that was in excess of the angular momentum associated with photon spin has led both to new understandings of optical effects and various applications. These applications range from optical manipulation, imaging and quantum optics, to optical communications. This brief review will examine some of the research in the field to date and consider what future directions might hold

    Quantum metrology and its application in biology

    Full text link
    Quantum metrology provides a route to overcome practical limits in sensing devices. It holds particular relevance to biology, where sensitivity and resolution constraints restrict applications both in fundamental biophysics and in medicine. Here, we review quantum metrology from this biological context, focusing on optical techniques due to their particular relevance for biological imaging, sensing, and stimulation. Our understanding of quantum mechanics has already enabled important applications in biology, including positron emission tomography (PET) with entangled photons, magnetic resonance imaging (MRI) using nuclear magnetic resonance, and bio-magnetic imaging with superconducting quantum interference devices (SQUIDs). In quantum metrology an even greater range of applications arise from the ability to not just understand, but to engineer, coherence and correlations at the quantum level. In the past few years, quite dramatic progress has been seen in applying these ideas into biological systems. Capabilities that have been demonstrated include enhanced sensitivity and resolution, immunity to imaging artifacts and technical noise, and characterization of the biological response to light at the single-photon level. New quantum measurement techniques offer even greater promise, raising the prospect for improved multi-photon microscopy and magnetic imaging, among many other possible applications. Realization of this potential will require cross-disciplinary input from researchers in both biology and quantum physics. In this review we seek to communicate the developments of quantum metrology in a way that is accessible to biologists and biophysicists, while providing sufficient detail to allow the interested reader to obtain a solid understanding of the field. We further seek to introduce quantum physicists to some of the central challenges of optical measurements in biological science.Comment: Submitted review article, comments and suggestions welcom

    Quantum Zeno dynamics of a field in a cavity

    Full text link
    We analyze the quantum Zeno dynamics that takes place when a field stored in a cavity undergoes frequent interactions with atoms. We show that repeated measurements or unitary operations performed on the atoms probing the field state confine the evolution to tailored subspaces of the total Hilbert space. This confinement leads to non-trivial field evolutions and to the generation of interesting non-classical states, including mesoscopic field state superpositions. We elucidate the main features of the quantum Zeno mechanism in the context of a state-of-the-art cavity quantum electrodynamics experiment. A plethora of effects is investigated, from state manipulations by phase space tweezers to nearly arbitrary state synthesis. We analyze in details the practical implementation of this dynamics and assess its robustness by numerical simulations including realistic experimental imperfections. We comment on the various perspectives opened by this proposal

    Roadmap on structured light

    Get PDF
    Structured light refers to the generation and application of custom light fields. As the tools and technology to create and detect structured light have evolved, steadily the applications have begun to emerge. This roadmap touches on the key fields within structured light from the perspective of experts in those areas, providing insight into the current state and the challenges their respective fields face. Collectively the roadmap outlines the venerable nature of structured light research and the exciting prospects for the future that are yet to be realized.Peer ReviewedPostprint (published version

    Experimental investigations of the dipolar interactions between single Rydberg atoms

    Full text link
    This review summarizes experimental works performed over the last decade by several groups on the manipulation of a few individual interacting Rydberg atoms. These studies establish arrays of single Rydberg atoms as a promising platform for quantum state engineering, with potential applications to quantum metrology, quantum simulation and quantum information

    The Hong-Ou-Mandel effect with atoms

    Full text link
    Controlling light at the level of individual photons has led to advances in fields ranging from quantum information and precision sensing to fundamental tests of quantum mechanics. A central development that followed the advent of single photon sources was the observation of the Hong-Ou- Mandel (HOM) effect, a novel two-photon path interference phenomenon experienced by indistinguishable photons. The effect is now a central technique in the field of quantum optics, harnessed for a variety of applications such as diagnosing single photon sources and creating probabilistic entanglement in linear quantum computing. Recently, several distinct experiments using atomic sources have realized the requisite control to observe and exploit Hong-Ou-Mandel interference of atoms. This article provides a summary of this phenomenon and discusses some of its implications for atomic systems. Transitioning from the domain of photons to atoms opens new perspectives on fundamental concepts, such as the classification of entanglement of identical particles. It aids in the design of novel probes of quantities such as entanglement entropy by combining well established tools of AMO physics - unity single-atom detection, tunable interactions, and scalability - with the Hong-Ou-Mandel interference. Furthermore, it is now possible for established protocols in the photon community, such as measurement-induced entanglement, to be employed in atomic experiments that possess deterministic single-particle production and detection. Hence, the realization of the HOM effect with atoms represents a productive union of central ideas in quantum control of atoms and photons.Comment: 19 pages, 7 figure

    Generating scalable graph states in an atom-nanophotonic interface

    Full text link
    Scalable graph states are essential for measurement-based quantum computation and many entanglement-assisted applications in quantum technologies. Generation of these multipartite entangled states requires a controllable and efficient quantum device with delicate design of generation protocol. Here we propose to prepare high-fidelity and scalable graph states in one and two dimensions, which can be tailored in an atom-nanophotonic cavity via state carving technique. We propose a systematic protocol to carve out unwanted state components, which facilitates scalable graph states generations via adiabatic transport of a definite number of atoms in optical tweezers. An analysis of state fidelity is also presented, and the state preparation probability can be optimized via multiqubit state carvings and sequential single-photon probes. Our results showcase the capability of an atom-nanophotonic interface for creating graph states and pave the way toward novel problem-specific applications using scalable high-dimensional graph states with stationary qubits.Comment: 5 figures with supplemental materia
    • …
    corecore