1,723 research outputs found

    Dark clouds on the horizon:the challenge of cloud forensics

    Get PDF
    We introduce the challenges to digital forensics introduced by the advent and adoption of technologies, such as encryption, secure networking, secure processors and anonymous routing. All potentially render current approaches to digital forensic investigation unusable. We explain how the Cloud, due to its global distribution and multi-jurisdictional nature, exacerbates these challenges. The latest developments in the computing milieu threaten a complete “evidence blackout” with severe implications for the detection, investigation and prosecution of cybercrime. In this paper, we review the current landscape of cloud-based forensics investigations. We posit a number of potential solutions. Cloud forensic difficulties can only be addressed if we acknowledge its socio-technological nature, and design solutions that address both human and technological dimensions. No firm conclusion is drawn; rather the objective is to present a position paper, which will stimulate debate in the area and move the discipline of digital cloud forensics forward. Thus, the paper concludes with an invitation to further informed debate on this issue

    Unified Theory of Relativistic Identification of Information in a Systems Age: Proposed Convergence of Unique Identification with Syntax and Semantics through Internet Protocol version 6

    Get PDF
    Unique identification of objects are helpful to the decision making process in many domains. Decisions, however, are often based on information that takes into account multiple factors. Physical objects and their unique identification may be one of many factors. In real-world scenarios, increasingly decisions are based on collective information gathered from multiple sources (or systems) and then combined to a higher level domain that may trigger a decision or action. Currently, we do not have a globally unique mechanism to identify information derived from data originating from objects and processes. Unique identification of information, hence, is an open question. In addition, information, to be of value, must be related to the context of the process. In general, contextual information is of greater relevance in the decision making process or in decision support systems. In this working paper, I shall refer to such information as decisionable information. The suggestion here is to utilize the vast potential of internet protocol version six (IPv6) to uniquely identify not only objects and processes but also relationships (semantics) and interfaces (sensors). Convergence of identification of diverse entities using the globally agreed structure of IPv6 offers the potential to identify 3.4x10[subscript 38] instances based on the fact that the 128-bit IPv6 structure can support 3.4x10[subscript 38] unique addresses. It is not necessary that all instances must be connected to the internet or routed or transmitted simply because an IP addressing scheme is suggested. This is a means for identification that will be globally unique and offers the potential to be connected or routed via the internet. In this working paper, scenarios offer [1] new revenue potential from data routing (P2P traffic track and trace) for telecommunication industries, [2] potential for use in healthcare and biomedical community, [3] scope of use in the semantic web structure by transitioning URIs used in RDF, [4] applications involving thousands of mobile ad hoc sensors (MANET) that demand dynamic adaptive auto-reconfiguration. This paper presents a confluence of ideas

    Analyzing challenging aspects of IPv6 over IPv4

    Get PDF
    The exponential expansion of the Internet has exhausted the IPv4 addresses provided by IANA. The new IP edition, i.e. IPv6 introduced by IETF with new features such as a simplified packet header, a greater address space, a different address sort, improved encryption, powerful section routing, and stronger QoS. ISPs are slowly seeking to migrate from current IPv4 physical networks to new generation IPv6 networks. ‎The move from actual IPv4 to software-based IPv6 is very sluggish, since billions of computers across the globe use IPv4 addresses. The configuration and actions of IP4 and IPv6 protocols are distinct. Direct correspondence between IPv4 and IPv6 is also not feasible. In terms of the incompatibility problems, all protocols can co-exist throughout the transformation for a few years. Compatibility, interoperability, and stability are key concerns between IP4 and IPv6 protocols. After the conversion of the network through an IPv6, the move causes several issues for ISPs. The key challenges faced by ISPs are packet traversing, routing scalability, performance reliability, and protection. Within this study, we meticulously analyzed a detailed overview of all aforementioned issues during switching into ipv6 network

    A Predictive Sensor Network Using Ant System

    Get PDF
    The need for a robust predictive sensor communication network inspired this research. There are many critical issues in a communication network with different data rate requirements, limited power and bandwidth. Energy consumption is one of the key issues in a sensor network as energy dissipation occurs during routing, communication and monitoring of the environment. This paper covers the routing of a sensor communication network by applying an evolutionary algorithm- the ant system. The issues considered include optimal energy, data fusion from different sensor types and predicting changes in environment with respect to time

    A Predictive Sensor Network Using Ant System

    Get PDF
    The need for a robust predictive sensor communication network inspired this research. There are many critical issues in a communication network with different data rate requirements, limited power and bandwidth. Energy consumption is one of the key issues in a sensor network as energy dissipation occurs during routing, communication and monitoring of the environment. This paper covers the routing of a sensor communication network by applying an evolutionary algorithm- the ant system. The issues considered include optimal energy, data fusion from different sensor types and predicting changes in environment with respect to time

    A Study on Intrusion Detection System in Wireless Sensor Networks

    Get PDF
    The technology of Wireless Sensor Networks (WSNs) has become most significant in present day. WSNs are extensively used in applications like military, industry, health, smart homes and smart cities. All the applications of WSN require secure communication between the sensor nodes and the base station. Adversary compromises at the sensor nodes to introduce different attacks into WSN. Hence, suitable Intrusion Detection System (IDS) is essential in WSN to defend against the security attack. IDS approaches for WSN are classified based on the mechanism used to detect the attacks. In this paper, we present the taxonomy of security attacks, different IDS mechanisms for detecting attacks and performance metrics used to assess the IDS algorithm for WSNs. Future research directions on IDS in WSN are also discussed

    Automated Formal Analysis of Internet Routing Configurations

    Get PDF
    Today\u27s Internet interdomain routing protocol, the Border Gateway Protocol (BGP), is increasingly complicated and fragile due to policy misconfigurations by individual autonomous systems (ASes). To create provably correct networks, the past twenty years have witnessed, among many other efforts, advances in formal network modeling, system verification and testing, and point solutions for network management by formal reasoning. On the conceptual side, the formal models usually abstract away low-level details, specifying what are the correct functionalities but not how to achieve them. On the practical side, system verification of existing networked systems is generally hard, and system testing or simulation provide limited formal guarantees. This is known as a long standing challenge in network practice --- formal reasoning is decoupled from actual implementation. This thesis seeks to bridge formal reasoning and actual network implementation in the setting of the Border Gateway Protocol (BGP), by developing the Formally Verifiable Routing (FVR) toolkit that combines formal methods and programming language techniques. Starting from the formal model, FVR automates verification of routing models and the synthesis of faithful implementations that carries the correctness property. Conversely, starting from large real-world BGP systems with arbitrary policy configurations, automates the analysis of Internet routing configurations, and also includes a novel network reduction technique that scales up existing techniques for automated analysis. By developing the above formal theories and tools, this thesis aims to help network operators to create and manage BGP systems with correctness guarantee
    • …
    corecore