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Chapter 1

Introduction

This thesis is about a database of autonomous objects, named DEGAS. In one
sentence, DEGAS is a temporal-active object-oriented database language, based
on object autonomy. The name DEGAS stands for “Dynamic Entities Get Autono-
mous Status”!. Dynamic entities means data entities extended with the actions
on these data. In our discussion, autonomy means two things: complete encap-
sulation and freedom from central control. Complete encapsulation means a
self-contained specification of an object. Freedom from central control means
that we can construct a system without a central system element, which is po-
tentially both a bottleneck and a vulnerable part.

The aim of our research was to investigate the potential of a database based on
autonomous objects. Hence, our problem statement is:

A number of developments lead to databases based on autonomous
objects. For such a database, we have the following questions:

1. Is it easy to realise in practice?

2. Does it facilitate clean, modular application design?

3. Does it have a simple formalisation?

Overview

The answer to these questions is given in four parts. These parts discuss the
motivation for object autonomy, the DEGAS model for a database of autono-
mous objects, issues in database design in DEGAS and an outlook to the future
of active object systems.

lin addition, we were inspired by the name of the Monet main-memory DBMS [Boncz et al.,
19964, Boncz et al., 1996b] developed by Martin Kersten and his team. It also prolongs the tradi-
tion of naming database systems after French painters, started by Ingres [Stonebraker, 1986al.
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Motivation Part I discusses the motivation for DEGAS. Chapter 2 discuss the
developments in information technology and its applications that lead to au-
tonomous objects. On the technological side, the diminishing size and cost of
computing units causes an increasing spread of computing power. Since this
also means an increasing distribution of information, database management
systems must be able to deal with extreme forms of distribution. On the appli-
cation side, integration of information systems between organisations leads to
systems of components with different owners.

Chapter 3 relates autonomous objects in DEGAS to existing research in data-
bases. In particular, we relate it to research in active databases, temporal data-
bases, and object-oriented databases. After a short overview of these areas, we
discuss the benefits of DEGAS in these areas. First, it provides a clean mod-
ularisation mechanism for active, object-oriented databases. Second, DEGAS
provides a unified formalisation of temporal and active database functional-
ity. Third, it incorporates event expressions to specify historical conditions in
queries. Fourth and last, DEGAS provides a straightforward object evolution
mechanism, that can be used to model roles.

Model Part II gives a specification of DEGAS. Chapter 4 introduces the basic
concepts of the DEGAS model. The basis of DEGAS is the object. Objects are
related to each other through relation objects, which are fully capable objects
themselves. Transient capabilities of objects, such as their roles in relations,
are specified by addons. Class and metaclass objects are present in a DEGAS
database for object management tasks. To illustrate these basic concepts, we
give an example of an application in DEGAS, a stock exchange. We also introduce
the syntax of the DEGAS language. Furthermore, DEGAS queries are introduced.

Chapter 5 then gives the formal semantic definition of DEGAS. This definition is
given from scratch, starting with the formalisation of the underlying type sys-
tem. Then, different elements of a DEGAS object are defined, that are integrated
to the full DEGAS object semantics. The formalisation of DEGAS is based on a
set-based object semantics and process algebra for the dynamic parts. An ad-
vantage of using process algebra is the direct translation from DEGAS language
syntax to semantics.

The next chapter, Chapter 6, gives a functional specification of a DEGAS data-
base system. It gives the basic actions of each component and their effects. In
fact, the complete system, besides a basic communication infrastructure, can
be specified as a DEGAS object.

Practical issues regarding DEGAS are discussed in Chapter 7. We discuss the im-
plementation techniques used in a prototype of DEGAS. Furthermore, we show
how application semantics can be programmed in DEGAS. This chapter also dis-
cusses the practical aspects of DEGAS query processing. It is designed to deal
with the specific complications of object autonomy. One of these is the estima-
tion of the quality of a query result.
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Design Part III deals with the design applications of applications in DEGAS
Design is discussed in two chapters, reflecting two aspects of database design.
Chapter 8 discusses the path from an application to a DEGAS object design.
The example application is workflow. We show that the DEGAS design principles
lead to a design that cleanly separates concerns and that promotes flexibility.
Furthermore, the encapsulation of rules in objects and the relation and addon
mechanism of DEGAS provide a good basis for the integration of workflow in
an active database.

Chapter 9 addresses verification issues. We investigate whether we can decide
the termination and confluence of a given active object design. Due to the com-
plexity of this issue, we use a restricted version of the DEGAS model in this
chapter. We prove that deciding termination and confluence is only possible for
a very basic rule model. This consequently proves the undecidability of these
predicates for DEGAS.

Outlook The final part of this thesis provides an outlook to the future of ac-
tive object databases. This outlook is based on an extrapolation of the devel-
opments described in Chapter 2. In Chapter 10, we discuss the interrelation of
active object-based systems, like DEGAS, and intelligent agents. We discuss this
from two perspectives, viz., the usefulness of agent technology in databases
and the problem of data management in a ubiquitous, agent-based, computing
environment.

Publications

The following parts of this thesis have been published in other places:

e An early version of the DEGAS data model, discussing its application to
computer graphics, was presented at the Eurographics’95 Workshop on
Programming Paradigms in Graphics [Akker and Siebes, 1995bl.

e A general introduction of the DEGAS data model, focussing on the DEGAS
modelling notions, i.e., objects, relations, and addons, was presented at
the CAiSE*96 conference [Akker and Siebes, 1996bl. An extended version
of this paper was published in the CAiSE*96 special issue of Information
Systems journal [Akker and Siebes, 1997b].

e A discussion of the interaction between active rules and the historical
functionality in DEGAS was presented at the DEXA’96 workshop [Akker
and Siebes, 1996cl.

e The discussion of the possible application of agent technology in active
object database in Chapter 10 was part of the Cooperative Information
Agent’97 workshop [Akker and Siebes, 1997c].
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e Chapter 8 has been published separately as a CWI Report [Akker and
Siebes, 1997al.

e Chapter 9 is based on a CWI Report [Siebes et al., 1995].
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Chapter 2

Software of Autonomous
Components

As stated in the Chapter 1, the goal of our work on DEGAS is to study a data-
base based on autonomous objects. This chapter discusses the motivation for
object autonomy from the viewpoint of software architecture. A number of de-
velopments in information technology and its use in organisations promote an
architecture based on autonomous components.

Technological developments of interest are mobile computers and distributed
processing. The benefit of autonomous components under these circumstances
is found in a reduction of overhead. In the use of information technology by or-
ganisations, we see a development towards integration and sharing of informa-
tion between different organisations. Components of these integrated informa-
tion systems must retain their autonomy for reasons of ownership and control.

We show the benefits of autonomous components, given these current devel-
opments. Furthermore, we argue that the object is the most appropriate gran-
ularity for studying autonomous components. The chapter concludes with our
definition of object autonomy, that is compared to the notion of autonomy in
other areas of database research.

2.1 Developments in Technology

As we stated above, autonomy is about doing away with central control. The
motivation for this is found in a number of development foreseen in computer
systems in the near future. These developments trigger the emergence of in-
formation systems based on large, often mobile, networks. In such systems,
central control implies a large amount of overhead.
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The development of powerful mobile computers and the spread of wireless
communications makes large networks of mobile computers possible [Imie-
linski and Badrinath, 1994]. A broad variety of information systems will rely on
such networks. Examples are information systems to support a large number of
sales representatives, or information systems for fleet management of ships or
aircraft. In these systems, each mobile node contains data. Ideally, we want to
access all data in such a network as one large database. For example, in the in-
formation system of an airline, the maintenance department can have access to
information about the current status of an aircraft, either to plan maintenance,
or to assist the pilot in making decisions in a problematic situation. Although
much effort has been put into making databases to inter-operate, it will be very
difficult to devise an arrangement flexible enough to keep up with the size and
volatility of such a network.

A better approach is to have inherent flexibility built into such a system. Ideally
it allows an almost arbitrary collection of objects to be a functioning database.
The collection of objects making up the database may vary over time without
the need for a system “authority” to keep up with their changes. In such a
system, an object is autonomous, because it functions largely independent of
other elements of the system.

Another example is found in massively parallel computing. To further raise
the performance of computer systems massive parallelism is seen as a promis-
ing road to travel [Bell, 1992]. An important condition for the acceptance of
such platforms for general use is the presence of DBMSs. A key problem in
such a DBMS is how to distribute data and execution over the available proces-
sors. Centralising such decisions poses a large overhead on the system. Enough
overhead to make it a considerable factor in the performance of such a system.
Therefore, we must consider distributing decisions in the system. If we do this
for all centrally controlled aspects of the DBMS, we have made a system with
autonomous components.

2.2 Developments in Business

Developments outside the area of computing also promote autonomy of system
components. Although there is a movement to increase integration of systems
between businesses, either in a chain information system!, or through a public
information infrastructure, nobody wishes to give up control of his part of such
a system.

LA chain information system is an information system serving a complete value chain [Porter,
1985]. A value chain is a group of companies that together form a production process from raw
materials to manufactured product. For example, we have a value chain producing automobiles
from iron ore, crude oil, rubber, etc. In this process, each output of a production step is worth
more than the input. Hence, the producers in this chain are said to add value to their input.
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Inter-Organisation Information Systems Developments in networking have a
number of effects in the way organisations interact. For example, it enables a
manufacturer to integrate his information system with his supplier’s informa-
tion systems. However, when an organisation couples its information system
with other organisations, it will not wish to give up control over its own sys-
tem. In particular, everyone wishes to control the information seen and updated
by outsiders. Although the components are under control of separate owners,
we do want to approach such a chain information system as a single (homoge-
neous) information system.

The data in the chain information system and the individual information sys-
tems overlap. In fact, the chain information system is made up from subsets
of the data in each corporate information system. Figure 2.1 show such a situ-
ation, where Terrific Tyre, Spotless Steel, Cool Car Co., and Dutch Dampers all
bring part of their information system into the chain information system, that
is depicted by the darker coloured rectangle.

Chain
Information
System

Cool Car C

Figure 2.1: The integration of ISs in an inter-organisation IS

Different collections of objects make up the corporate information systems of
the participating companies and the chain information system. It is important
to note, that a company will probably be involved in multiple value chains of
suppliers and customers at the same time. Hence, it has to export data to the
information system of each value chain.

The problem related to mobile computing, mentioned in the previous section,
resurfaces again here in another guise. Here, we do not have a set of objects
evolving over time, but different sets of objects making up different databases
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simultaneously. The choice is again between devising a clever scheme for a
chain information system that gets data from different composing databases,
and building in inherent flexibility at the object level. This flexibility should
allow an organisation to decide per object whether or not to make it (partly)
visible to partners in a chain information system. Thus, making objects autono-
mous facilitates integration of an organisation’s data into multiple information
systems at a time.

Another example of an inter-organisation information system is the trading
system of the stock exchange. Every party in the market would like to approach
the computerised market as a whole in order to obtain information. However,
a sensible company would not hand over any control of their computerised
trading system to third parties. It would also want to have complete control
over the flow of its data to other parts of the system. Clearly, this is a system
consisting of autonomous components.

Business Modelling The introduction of information systems in an organisa-
tion is nowadays often used to reevaluate the way business is conducted by the
organisation. This activity has risen to fame in the last years under the name
Business Process Redesign or Business Process Reengineering [Hammer, 1990,
Hammer and Champy, 1993]. Because of the focus on what an organisation
does, business modelling as part of the analysis phase of information systems
development has focussed on the dynamic aspects of an organisation.

Therefore, dynamic modelling, see e.g., [Loucopoulos, 1994] and [Glasson et al.,
1994], has received a considerable amount of attention. Most dynamic models
feature actors that manipulate data according to scripts or scenarios. The re-
actions of actors to events are described by rules. These actors are active and
independent of other actors. Clearly, it would be beneficial to have a model sup-
porting such autonomous entities in the phases following the modelling phase
in the development process.

2.3 Autonomy as a Solution

The developments outlined above lead one to conclude that there is a need
for systems composed of autonomous components. Section 2.1 pointed out a
number of developments in computing that make central control of a system
very difficult. These difficulties can be overcome by distributing control to parts
of the system, thus building inherent flexibility into the parts of the system. The
result will be autonomy for the components of such a system.

In Section 2.2, we indicated a development towards the sharing of data with
outsiders. Approaching data from multiple sources as one database while the
owners retain control, means autonomy of the components. Exporting data to
multiple inter-organisation information systems asks for an inherent flexibility
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that autonomous components can offer. It also explained, that current devel-
opments in the modelling of organisations tend to emphasise the active and
autonomous behaviour of an information system’s components.

DEGAS supports the development of systems of autonomous components. This
is achieved by basing the DEGAS model on autonomous objects. We have cho-
sen the object as the level of autonomy, because of its obvious advantages in
modelling an information system. Object autonomy also has the advantage of
generality, since the complexity of the objects may be arbitrary. Hence, the
model can also be used for autonomous components at a higher abstraction
level, as long as its behaviour can be described in DEGAS. For example, an ac-
tive class of passive objects, where there is activity at the class level but not at
the object level, naturally fits this model.

Please note, that the motivation for autonomy for component systems is partly
similar to the motivation for object autonomy, as discussed earlier in this chap-
ter. [Garcia-Molina and Kogan, 1988] states the following arguments in favour
of node autonomy in a distributed database: organisational issues, diversity of
local needs, data security, lower costs, and containment of failures and bugs.
These arguments also apply to object autonomy. For example, containment of
failures and bugs means that it is desirable, that the failure of one object affects
other objects as little as possible.

2.4 Defining Autonomy

Above, we discussed the benefits of object autonomy in light of recent devel-
opments in technology and business. In this section, we give our definition of
object autonomy. It will serve as the key foundation of the work on DEGAS, pre-
sented in this thesis. After our definition of object autonomy, we compare it to
other types of autonomy in databases

Definition 1 We define object autonomy as follows:

Object autonomy is the maximal encapsulation of specification, con-
trol, and execution of an object.

This definition gives the core notion of object autonomy. Its practical conse-
quences in the DEGAS model are formulated by the following principles:

1. Every object has a separate thread of execution. All objects run in par-
allel. This is encapsulation of execution.

2. Complete encapsulation of the behaviour of an object. Every aspect
of an object’s behaviour is specified on the object itself. Hence, the be-
haviour of an object, given certain stimuli from outside, is determined
locally. This is an element of encapsulation of specification.
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3. Strictly regulated access to an object. A DEGAS object specifies exactly
what objects have access to its actions. Relations between objects specify
exactly what data is shared, and what actions can be accessed. This is an
element of encapsulation of specification.

4. Minimal guarantees about an object’s behaviour to other objects. A
DEGAS object guarantees as little as possible about its behaviour to other
objects. If it gives guarantees, these are specified explicitly. This is an
element of encapsulation of control.

5. Minimal dependency of an object on the behaviour of other objects. A
DEGAS object assumes as little as possible about the behaviour of other
objects. If it makes an assumption, it has to verify this assumption explic-
itly. This is an element of encapsulation of control.

6. Autonomy must be given up explicitly. A further guiding principle is,
that if an object gives up autonomy, then this must be explicitly specified.

These principles guide the development and use of DEGAS, as discussed in this
thesis.

The notion of autonomy is also encountered in the area of distributed and
federated database systems [Sheth and Larson, 1990]. Research in federated
databases studies inter-operation of multiple database systems either as one,
distributed, database system, or as a looser federation of databases. These sys-
tems vary in the degree of freedom of the component databases. Hence, several
authors have formulated criteria of autonomy to distinguish the various sys-
tems.

[Sheth and Larson, 1990] distinguish four dimensions of autonomy for a com-
ponent database of a database federation. These are:

1. Design autonomy. The freedom to choose the design of any part of the
database, from semantic interpretation of the data to the implementation
of the database.

2. Association autonomy. The freedom to decide whether and how much
functionality the component database shares with the federation.

3. Communication autonomy. The freedom to decide when and how to
communicate with other component databases.

4. Execution autonomy. The freedom to decide when and how to execute
operations on the database.

Here, the first two dimensions are about the autonomy of the designer, while
the other two dimensions are about the autonomy of the system. Other criteria
for the autonomy of the nodes in a distributed database system were formu-
lated in [Garcia-Molina and Kogan, 1988]. They distinguish the following dimen-
sion of autonomy:



2.5. CONCLUSION 21

1. Heterogeneity. A component database may choose its own way to man-
age data and transactions.

2. Naming Autonomy. The freedom a component has in choosing names for
its data.

3. Setting priorities for foreign requests. The freedom to decide, whether,
when and how a request from outside is processed.

4. Transaction control autonomy. The freedom a component has in trans-
action management, i.e., scheduling, locking, and aborts.

Again, the first two dimensions are about designer autonomy, and the other two
dimensions about system autonomy. The criteria of Sheth and Larson cover a
wider area than those of Garcia-Molina and Kogan. For example, heterogeneity
and naming autonomy are included in the single category design autonomy.
Setting priorities for foreign requests and transaction control autonomy are
included in the criteria communication autonomy and execution autonomy, re-
spectively.

The applicability of Sheth and Larson’s autonomy criteria for component sys-
tems to object autonomy is limited in some respects. The aim of DEGAS, for-
mulated in Chapter 1, is to study the impact of fine-grained autonomy in data-
bases. Hence, not all criteria for autonomy of component databases are useful
for the definition of object autonomy. Sheth and Larson’s design autonomy for
an object means only defining a communication interface between objects, as
is done by CORBA [OMG, 1996]. Their communication autonomy means for an
object, that it can decide for itself if and how to answer a message. In other
words, the sender of a message has no guarantees about the reaction of the
receiver. Execution autonomy is fully applicable to an object, since it implies
that an object decides internally, what actions to execute, and when to execute
them. Likewise, the association autonomy of an object means the freedom to
decide the visibility of its parts to other objects.

2.5 Conclusion

In this chapter, we presented the motivation for autonomy in software. The un-
derlying developments are increasing distribution and mobility of information
systems, and the increasing integration of information with different owners.
We discussed why software of autonomous components is needed under these
circumstances. For the study of autonomy in software, we take an object as
the granularity. Since objects can be loaded with arbitrary functionality, results
applicable to objects are applicable to any type of module.

This chapter closed with the presentation of object autonomy in DEGAS. Object
autonomy in DEGAS means maximal encapsulation. We discussed the impact of
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this definition on a number of object dimensions, viz., execution, specification,
and control. A comparison of object autonomy in DEGAS with autonomy in fed-
erated databases showed a great degree of commonality. A difference is caused
by the different aims, since DEGAS is also concerned with the internals of the

objects in a system.
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Chapter 3

Object Autonomy in Context

The previous chapter discussed the developments motivating object autonomy.
It also gave the definition of object autonomy used in the development of
DEGAS. This chapter puts the concept of object autonomy in the context of
databases. DEGAS mainly builds on work in active databases. Hence, we open
this chapter with a short overview of this area. Since object autonomy opens
new perspectives on the link of active databases with temporal databases, and
with object-oriented databases, we also give a short introduction to these two
areas.

The second half of this chapter addresses the opportunities of object auto-
nomy in active databases. The maximal encapsulation applied to rules leads to
a clean modularisation of the active database. Furthermore, the view of an au-
tonomous object as a process allows a single model formalising a database that
is both active and historical. Another innovation is the use of event specifica-
tions for temporal queries. Finally, the DEGAS object model reflects the maximal
encapsulation of object autonomy. The object specialisation mechanism is very
simple and flexible, so that an object has the capabilities it needs, when needed.

3.1 Active Databases

This section gives a short introduction to active databases. First, we give a brief
historical overview. Then, we discuss the core area of active databases, viz., rule
specification and execution. Readers interested in a more elaborate overview of
active databases are advised to read [Widom and Ceri, 1995].

3.1.1 History

The term active databases was coined in [Morgenstern, 1983]. There, the term
was used to denote a database management system that automatically updates
views and derives dependent data. Hence, this proposal did not introduce a
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separate notion of rules or triggers. These were first introduced as a separate
element in a database management system in [Stonebraker, 1986bl.

The original goal of rules was to provide a more flexible mechanism for con-
straint enforcement. Without rules, the only possible action in case of a con-
straint violation was to abort the offending transaction. In many cases, however,
more constructive actions exist. For example, a circuit design application often
has the constraint that a minimum distance between wires must be maintained.
If a new wire violating this constraint is inserted, a possibility to correct this is
to shift it, such that the minimum distance is maintained. Clearly, it would be
beneficial if the design database executes this action without user intervention.

As pointed out above, another early application of active rules is derived data.
Like for constraint maintenance, the main advantage of active rules for derived
data is increased flexibility. Active rules allow the database designer to choose
the time of derivation, e.g., either on insertion of an underlying value, or on
retrieval of the derived value.

With the advent of object databases, the incorporation in the database of be-
havioural elements of the application became accepted. Hence, it was found
that large parts of an information system can be encoded by active rules. In
particular, parts of applications that reflect an organisation’s common busi-
ness practices can be implemented by active rules. In the world of information
systems modelling, these are known as the business rules of the organisation
[Herbst et al., 1994].

In recent years, a number of prototype active DBMSs have been developed.
The most important systems are HiPAC [Dayal et al., 1988al, Starburst [Widom,
19961, SAMOS [Gatziu et al., 1991] and Chimera [Ceri et al., 1996]. Of these sys-
tems, Starburst is based on an extended relational database. HiPAC and SAMOS
have an object-based data model. Chimera’s data model is an object data model,
but is heavily influenced by deductive databases. In addition, a number of com-
mercial systems, such as Oracle, Sybase and Ingres, includes a trigger facility.
Furthermore, active rules are part of the SQL3 standard [ISO, 1994], which is
being formulated.

The use of active databases was classified in [Kappel and Schrefl, 1996]. It cat-
egorises applications of rules as follows:

1. maintaining static integrity constraints

2. maintaining derived data and materialised views
3. maintaining dynamic integrity constraints

4. database access authorisation

5. work step ordering
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6. representing permissions to act
7. representing obligations to act

Of these seven, the first four are implementations of DBMS functionality. The
fifth is relatively specific to certain applications, in particular workflow manage-
ment applications. It can be regarded as a special case of the third application.
The last two applications are forms of business rules. Business rules are a spec-
ification of company policy, or a description of the behaviour of a company.
Simple examples are rules in an inventory application, that reorder an item if
the stock falls below a certain level. More advanced business rules describes the
competence of persons in the organisation. These business rules are the rules
used to specify application functionality.

3.1.2 Rule Specification

The generally used format for rules in active databases is the Event - Condition
- Action (ECA) format. The informal meaning is, that on occurrence of event E,
if condition C is satisfied by the database, then action A is executed.

Event Event specification is based on a set of basic events and a set of event
operators. In general, the set of basic events consists of three categories: data-
base events, temporal events and external events. The set of database events
depends on the data model the active DBMS is based on. For a relational data-
base, the usual database events are Insert, Delete and Update. These denote,
respectively, the insertion, deletion and update of a tuple in a relation. Further
database events are related to transaction processing, such as commit or abort.
An object-based database offers the same database events, with objects instead
of tuples as the entities involved for Insert, Delete and Update. Since an ob-
ject based system adds behaviour to a database through methods, object-based
active database systems usually also include method calls as database events.

Temporal events are used to relate database activities to a clock. Absolute tem-
poral events, e.g. 11 FEB 1997 20:00:00, refer to one specific point in time.
Periodic events, e.g. every MON 05:00:00, can be used to schedule repeating
activities. Finally, relative temporal events specify a duration relative to another
event. An example in an object-based database is 2 weeks after Confirm,
where Confirmis a method of a database object Order. In a relational database,
an equivalent specification would be 2 weeks after ConfirmedOrders.In-
sert, where ConfirmedOrders is the relation containing the confirmed orders.

External events are used for communication with the outside world. Two pos-
sible sources of external events are interaction with the user or messages from
other applications. An example is a high-temperature message from a tem-
perature sensor in a control application.
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Basic events can be combined to form composite event expressions through the
use of event operators. The most common event operators are sequential com-
position and alternative composition. Some active DBMSs offer a large range of
event operators, yielding a complex event language. An example is ODE [Gehani
et al, 1992]. Studies of active database applications [Appelrath et al., 1996],
however, have shown that relatively simple rule languages, i.e., rule languages
with alternative and sequential composition of events, are sufficient for most
applications.

Condition The condition of a rule is a predicate on the database. If the pred-
icate is true, then the condition of the rule is satisfied. A number of systems
allow the condition to refer to the state before and after the triggering event.
An example is the following rule, that is triggered by salary increases of more
than 25 percent:

On Update(Emp.Salary)
if Salary > 1.25 * old Salary

In this example, Salary qualified by o1d refers to the value of Salary before
the Update action.

Action In most active database systems, the action can be an arbitrary da-
tabase action. For example, it can include transactional commands, such as a
rollback instruction. In relational systems, we can add any relational retrieval
or update action. In object-oriented systems, method calls can be made in a
rule’s action.

3.1.3 Rule Execution

The semantics of rule execution can vary on a number of dimensions. These are
the time and granularity of rule checking, the selection of rules to execute, on
which objects to execute, and the coupling between the three parts of a rule.

The first dimension of rule execution is, when the rule engine checks for trig-
gered rules. A natural point to do this is at the end of a transaction, since it
would be very difficult to enforce constraints for updates of smaller granularity.
The check generally considers the net effect of the transaction. For example, if a
tuple is inserted and then updated, the net effect is the insertion of the updated
tuple. Likewise, if a tuple is inserted and deleted later on in the transaction, the
net effect is empty. In object-oriented databases, another natural moment to
check rule triggering is after a method call. In addition, an active DBMS might
provide a primitive to force a rule checking. An example is the process rules
command in Starburst [Widom, 1996].

A further dimension of rule execution is how rules execute on the objects, or
tuples, they are triggered on. In the literature [Widom et al., 19911, set-oriented
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and instance-oriented semantics are distinguished. Under the former, a trig-
gered rule executes simultaneously on all objects that satisfy its condition. Un-
der the latter, the triggered rule executes, non-deterministically, on one object
that satisfies this condition at a time. As we will discuss in Chapter 9, this af-
fects the result of rule execution. The execution sequence of triggered rules
can be influenced by introducing priorities between rules. High priority rules
are executed before low priority rules. The last choice in the selection of rules
to execute, is whether a system executes all triggered rules, or picks only a
single rule for execution.

Figure 3.1: Immediate coupling of event and condition

Since rules consist of three parts, another dimension of rule execution is the
interaction of these parts. This is known as the coupling of these three parts.
Two couplings are of importance: Event - Condition coupling and Condition
- Action coupling. Three main coupling modes are distinguished: immediate,
deferred and independent. These modes assume a flat, i.e., non-nested, trans-
action model as used in most DBMSs. An immediate coupling between event
and condition means that the condition is checked immediately on occurrence
of the event, in the same transaction. For example, in Figure 3.1, condition C is
checked immediately after the event E occurred in transaction T1.

Tl A1 A2 A3 A4 T2

| | | | |
[ | I [ [

m

Figure 3.2: Deferred coupling of event and condition

With deferred coupling the condition is checked in the same transaction as the
event occurred, but only at the end of the transaction, as depicted in Figure 3.2.
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Finally, independent coupling means that the condition is checked in a separate
transaction, as depicted in Figure 3.3. With a more advanced transaction model,
e.g., the nested transaction model of HiPAC [Dayal et al., 1988al, additional
coupling modes are possible. An example is the causally-dependent decoupled
mode in HiPAC. In this mode, the rule’s action is executed in a separate sub-
transaction, that can commit only if the triggering transaction commits.

Tl a1 A2 A3 A4

[ | | | | |
[ [ I I

Figure 3.3: Independent coupling of event and condition

3.2 Temporal Databases

An information system reflects the state of a part of the real world, that is sub-
ject to change. In many applications, we need facilities to consult data from the
past. For example, a bank wants insight in the amount of money flowing into
and out of your bank account during the past year to assess your creditwor-
thiness. This need to store data in relation to time is supported by temporal
databases. This is a considerable extension of DBMS functionality, due to the
complexity of temporal data. This complexity is mainly found in the many pos-
sible data models, different temporal dimensions, and interval operators. In
this section, we give a short introduction of temporal databases. The reader is
referred to [Tansel et al., 1993] for an elaborate overview of temporal databases.

Temporal Dimensions If we have data to be entered in a temporal database,
different criteria can be applied to give time stamps. One criterion is the time
the data was entered into the database. This is called transaction time. Another
criterion is the validity of the data in the real world, which is known as valid
time. For example. in the Netherlands, a new born baby can be registered with
the Registry Office up to two working days after birth. Suppose a baby is born
on Sunday, April 14th, 1997 and registered on Tuesday, April 16th, 1997. Then
in the Civic Registiv, April 14th, 1997 would be the valid time and April 16th,
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1997 the transaction time of the birth. This example shows a drawback of using
transaction time only, viz., the potential lag between the time of validity and the
time of entry. Using valid time only, however, also has its disadvantage. If data
is entered incorrectly, the previously stored data is lost in a valid time database.
Although we can represent past states of the world with only valid time, we can-
not reconstruct past database states. Therefore, a full temporal data model, e.g.,
the data model underlying TSQL2 [Snodgrass, 1994], incorporates both trans-
action and valid time. Databases containing only transaction time allow us to
reconstruct past database states. Usually, these are called historical databases.

Data Models Most work on temporal databases is based on an extended re-
lational model. If a clock is available, adding timestamps to data is relatively
straightforward in this case. For example, to each tuple we add an attribute,
that indicates when this tuple was valid. This is known as tuple time-stamping.
Another approach, known as attribute time-stamping, is to record the time of
validity per attribute. An overview of temporal relational algebras, and the de-
sign decisions in defining them, is given in [McKenzie and Snodgrass, 1991].

Object-based temporal data models are less common. In [Wuu and Dayal, 1992],
it is shown how a temporal dimension can be brought into the OODAPLEX
model. In this model, every function application to an object is parameterised
with time in order to get the object state at that time. Another model that stores
past object states is Ginsburg’s object history formalism [Ginsburg, 1993]. Here,
the state of an object is a sequence of past states representing the history of
the object. Again, we can also record temporal data on an attribute basis. This
is proposed as a special case of versioning in [Sciore, 1991]. In an object-based
temporal model, we can either have interval time-stamps or point time-stamps.
In the former case, a time-stamp gives the complete interval of validity. In the
latter case, a time-stamp gives the starting point of a value’s validity. Given a
number of valuations, we can then infer the interval. Due to the lack of object
identifiers, this is not possible in a relational model.

Temporal Queries Querying a temporal database is more complex than query-
ing a database without a temporal dimension, because of operations on time
intervals. The temporal dimension influences queries in a number of different
ways.

In a temporal database, the result of a query can be a time interval. An ex-
ample of this is the query “When was the price of Philips shares higher than
80 guilders?”. More complex queries for time intervals involve comparisons
between intervals. As an example, consider the query “Give the interval when
Philips shares were more than 80 guilders and IBM shares were more than 125
dollars”. This query asks for the intersection between two intervals, viz., the
interval when Philips’ share price was higher than 80 guilders and the interval
when IBM’s share price was higher than 125 dollars. Besides intersection, the
union of two time intervals is useful to support queries for time intervals.
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A query’s condition can include conditions on time intervals. An example is
the query “Find the salary of Jones when Smith was his manager.” Here, we
have a condition on that two intervals must overlap. The first interval is the
validity of the returned value for the salary. The second interval is the validity
of the manager attribute having value Smith. This type of queries is supported
by predicates such as BEFORE, DURING, OVERLAP, et cetera. These represent
the usual boolean functions on intervals in general.

In addition to these interval operations, a number of aggregate functions also
have temporal variants. Time can be included through the application of aggre-
gates to intervals. For example, a temporal sum operator can be used to find the
total duration of a condition’s truth. A different type of function takes an inter-
val as input parameter in order to find an aggregate value for the given interval.
For example, functions like max, min, and average can be applied to intervals.
In this case, the operator max yields the maximum value of an attribute within
the specified interval.

More purely temporal operations in queries are restriction of a query’s tempo-
ral scope and queries to find specific intervals. The first operation is also known
as time-slicing. A time-slice restricts the result to part of the database history.
For example, a time-slice [1992,1995] only yields results between January 1st,
1992 and December 31st, 1995. Conceptually, this is just another temporal
predicate. For clarity, it is often put into a separate clause. The second opera-
tion, finding intervals, finds smallest or largest intervals satisfying a specified
condition. An example is a query “What is the largest interval during which the
price of Philips did not exceed fifty guilders?”

3.3 Object-Oriented Databases

Object-orientation is the combination of data and behaviour in objects that
have a close correspondence to real-world objects. It was first found in SIMULA
[Birtwistle et al., 1974] to structure computer programs for simulations. It was
taken further by languages such as Smalltalk [Goldberg and Robson, 1983], C++
[Stroustrup, 19911, and Eiffel [Meyer, 1988].

Important for the introduction of object-orientation in databases were the sys-
tems O3 [Deux, 1990] and GemStone [Maier and Stein, 1987]. In this section, we
give a short overview of object-oriented databases. For a general discussion of
the object model in databases the reader is referred to [Kim, 1995]. The Story
of O; [Bancilhon et al.,, 1992] gives a good overview of issues in building an
object-oriented database management system.

The first occurrence of object-oriented notions in databases is in the Entity-
Relationship model [Chen, 1976]. Until the mid-eighties, object-orientation was
only found in data modelling. Implementation of an information system was
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mainly done using relational databases. The broadening scope of information
systems brought to light a number of shortcomings of relational systems for ad-
vanced applications, like design databases, manufacturing databases, and office
automation systems. In such applications, an object-oriented database offers
better facilities to model complex structures. A significant advantage of object-
oriented databases is the encapsulation of operations with the data. This way,
operations shared between programs are specified and stored in a single place.
For example, most applications using a manufacturing database need to obtain
the composing parts of an assembly. In this case, it has obvious advantages
to specify a single operation for this together with the data specification of an
assembly. Furthermore, object-orientation offers better facilities to view data at
different abstraction levels. For example, we might want to view an aircraft de-
sign at the level of the complete aircraft, split up into wings, fuselage, engines
etc., or completely “exploded” into parts.

Research in object-oriented databases has not yet yielded a single, well-defined
data model, as was achieved very early for the relational model [Codd, 1970I.
Hence, standardisation has been actively pursued by both the industrial and the
academic parts of the OODBMS community. This effort resulted in the ODMG
(Object Data Management Group) model [Catell, 1994]. ODMG defines an inter-
face to and a data model for an OODBMS to promote portability of applications
between DBMSs.

This absence of a single well-defined data model led to the formulation of
an OODBMS’ key properties in the often cited object-oriented database mani-
festo [Atkinson et al., 1989]. These are:

1. Complex Objects. A complex object is an object built from simpler ones.
An example is a car object that exists of other objects, viz., part objects.
Complex objects can also be recursive. For example, in a design database,
a subassembly object can consist of other subassembly objects. This
construction of complex objects from other objects is called aggregation.

2. Object Identity. Object data models are based on identity, as opposed to
the relational model, which is value-based. In the relational model, two tu-
ples are the same, if their attribute values are equal. In an object-oriented
data model, two objects are the same if and only if their identities are the
same.

3. Encapsulation. This has two aspects. The first aspect originates in ab-
stract data types. It is concerned with the separation of interface and
implementation. Additionally, this allows us to hide private data of an
object. The second aspect is the combined specification of data and be-
haviour in an object. This is the important aspect from a database point
of view.
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. Types and Classes. Two key notions in an OODBMS are types and classes.

In an object-oriented system, a type is a specification of an object’s fea-
tures. The type of an object is often given as a tuple of attribute and
method types. A class is a collection of objects, that is used to create and
store objects.

Usually, the notions of class and type are closely associated. The relation
between types and classes can be in two directions. Commonly, objects
in a class conform to the associated type, because they are instances of
that class. Another approach is that objects belong to a class, because
they conform to the associated type. This is the case in data models al-
lowing arbitrary addition and deletion of attributes, methods and other
elements of objects, such as Self [Ungar and Smith, 1987] and Goblin [Ker-
sten, 1991].

. Class or Type Hierarchies. Classes and types are part of hierarchies,

formed by inheritance. A subclass inherits the features from a superclass,
which means that it has the same data and behaviour, possibly extended
with its own data and behaviour. Hence, the subclass is a specialisation of
the superclass. Likewise, a superclass is a generalisation of its subclasses.
Everywhere an object of the superclass is required, an object of the sub-
class can be used.

. Overriding, Overloading, and Late Binding. With the separation of in-

terface and implementations, subclasses of a superclass might have the
interface of an operation in common, but have a different implementa-
tion. A classical example is a display operation for a graphic object,
which is implemented differently by its subclasses circle, triangle,
and polygon objects. Since the name display denotes different opera-
tions, it is said to be overloaded. If the graphic object implements its
own, generic, display operation, then the subclasses are said to override
this operation with their own definition.

Overloading and overriding operations means choosing an implementa-
tion to execute for each invocation of the operation. For example, if we in-
voke the display operation on a graphic object, then we would like the
system to execute the most-specific implementation, e.g., the triangle
implementation of display for triangle object. This is achieved by late
binding, which means that the implementation is chosen at the actual ex-
ecution time.

. Computational Completeness. An OODBMS must allow every computable

function to be computed in its data manipulation language.

. Extensibility. The user of the OODBMS must be able to define his own

types. Furthermore, there is no distinction in use between system-defined
types and uscr-defined types.
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9. An OODBMS is a DBMS. An OODBMS must support persistence, sec-
ondary storage management, concurrency, recovery, and an ad-hoc query
facility.

The final requirement is stated as five separate requirements in the Manifesto
itself. The other requirements are on the data model, that also apply to object-
oriented programming languages. Actually, this close relation to programming
languages is one of the main advantages of an OODBMS over a relational DBMS
for complex applications. Most programming languages use a data model, that
is different from the relational model. In particular, many programming lan-
guages do not have a set-construct, while results from relational queries are
always sets. Hence, we have an impedance mismatch between the programming
language and the relational DBMS. Since an OODBMS uses the same data model
as an OO programming language, the impedance mismatch is solved here.

3.4 The Impact of Object Autonomy

Autonomous objects build on the field of active databases. In this section, we
discuss the impact of object autonomy on an active database. Secondary themes
in the research are the links between active databases, and temporal and object
databases. Hence, the scope is the upper, darker coloured, triangle in Figure 3.4.

Active Databases

Object Databases Temporal Databases

Figure 3.4: The scope of the research in this thesis

We will discuss the impact of object autonomy on an active database in the
following four issues:

1. Modularisation of an active database.
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2. A unified, process-algebraic, formalisation of active and historical data-
bases.

3. Queries in an active database.
4. Object evolution.

In these four areas the maximal encapsulation of object autonomy offers sig-
nificant advantages, which we discuss below.

3.4.1 Modularisation of Active Databases

The consequence of object autonomy for the modularisation of an active da-
tabase is the encapsulation of rules in objects. DEGAS is the first active data
model to consequently apply this object-oriented principle to an active data-
base. Other active object databases, like Chimera [Ceri et al., 1996] and SAMOS
[Gatziu et al., 19911, offer a hybrid rule model. Rules can be encapsulated, but
the separate definition of rules is still allowed.

The modularisation of rules is important, if we have a large number of rules in
a database. This is the case if we use rules to implement large parts of an ap-
plication’s functionality. Clearly, in such a situation a single, flat rulebase does
not promote easy maintenance and understandability of the system. Hence, an
active database needs facilities to bring structure to the rulebase. Since the data
in a database is already structured by some means, i.e., through relations in a
relational database or through objects in an object-oriented database, rules can
either have a structure separate from the data, or have the same structure as
the data.

Separate structure for rules and data. If rules use a separate structure, the
rulebase is separate from the database, as depicted in Figure 3.5. Here, the
modularisation applied to the rules is different from that applied to the data.
In some systems with a separate rulebase, such as Starburst [Widom, 1996],
rules are grouped in rule sets. One of the main uses of these rule sets is to
activate and deactivate several rules at a time. Consequently, the main criterion
for modularisation is functional.

A number of different criteria can be used for grouping rules in sets. [Bar-
alis et al., 1996] gives three different criteria, using the term stratification!.
Behavioural stratification groups rules that together perform a given task. As-
sertional stratification groups rules that progressively establish some assertion
on the database, which is the post-condition of the stratum. Event-based speci-
fication groups rules that share a set of triggering events, or that share a set of
produced events.

IThe use of this notion from deductive databases is explained by the strong influence of that
area on the work of [Baralis et al., 1996]
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Another example of separate modularisation for rules is HiPAC [Dayal et al.,
1988bl. In HiPAC, rules are treated as objects. Consequently, the rulebase is it-
self an object database. According to [Dayal et al., 1988b], the advantage is the
availability of the mechanisms for manipulating data for manipulating rules.
For example, rules can be part of an inheritance hierarchy. Furthermore, they
are subject to transaction control, like any other item in the database. The struc-
ture of the rulebase, however, is unrelated to the structure of the database.

Active DBMS

Database Rulebase

Figure 3.5: Separation of Database and Rulebase

Same structure for rules and data. The other approach is that rules follow
the same modularisation as data in the database. For a relational system, this
means that rules are defined on the relations in the database. This approach is
followed by the SQL3 rules standard [ISO, 1994]. In object systems, the data is
modularised according to a class hierarchy. If rules follow the object structure,
objects also encapsulate rules. An example of an active object database that
provides encapsulated rules is Chimera [Ceri et al., 1996]. The modularisation
in Chimera, however, is hybrid, since it still allowed to define rules separately.

In DEGAS, we opt for the complete encapsulation of rules in objects. Hence,
the modularisation of the data is applied to the rules without any changes.
This limits the number of concepts used in the database design. Furthermore,
since rules are part of the behaviour of the data, it is a rigorous application
of object-oriented principles. This encapsulation of rules also has the advan-
tage of having all aspects of an object’s behaviour defined in one place. This
independence of an object’s specification is a necessary consequence of object
autonomy.

An older system that aims to integrate active rules into objects is MOKUM [Riet,
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1989]. Like DEGAS it incorporates active elements in objects. Activity in MOKUM
occurs in two elements. First, attribute definition allows derived data and con-
straint enforcement. Second, triggers occur in scripts, that define the lifecycle
of an object. A MOKUM script is a representation of a finite state machine. State
transitions in a MOKUM script are defined by triggers, that specify an action
and a state transition to be executed on an incoming event. Since MOKUM is
Prolog-based, there is no distinction between conditions and actions in a trig-
ger. Another similarity between DEGAS and MOKUM is the facility to add types
to objects. There is, however, no interaction between the scripts of different
types of an objects, as is possible with DEGAS lifecycles.

3.4.2 Formalisation of Active and Historical Databases

Object autonomy has a distinct impact on the formalisation of a database. Since
one consequence of object autonomy is that every object executes as a separate
process, the execution of a single process is the basis of the formalisation of
DEGAS. This process-centered view motivates the choice for process algebra, in
particular ACP [Baeten and Weijland, 1990], as a central element in the formal-
isation, as shown in Chapter 5. The key notion in ACP is to match a process
specification against the trace of an executed process. If we apply this to an
autonomous object, the trace is the history of method execution and process
specifications are event specifications. This clearly indicates a link between the
history of the database and its rule facility.

The inherent temporal element in active databases was also observed by [Dit-
trich and Gatziu, 1993] and [Widom and Ceri, 1995]. This temporal element is
caused by the inclusion in ECA rules of event expressions composed of multiple
basic events, such as method calls [Dayal et al., 1988b, Gatziu et al., 1991], and
time events [Dayal et al., 1988a, Hanson, 1989, Gatziu et al, 1991]. This also
shows that an event specification is a condition on the history of the database.

We can also see this through a more detailed look into rule triggering. In or-
der to detect complex events, we need to store the basic events occurring in
the database. Since a complex event expression usually specifies a sequence of
events, the record of basic events must store information about the order in
which events occurred, e.g., in an event queue.

This inherent temporal element in active databases raises the question of the
relation to temporal and historical databases. To that end, we examine what
temporal data needs to be stored in an active databases. Not surprisingly, this
depends on the rule language offered.

Many active databases include time in an event expression. This can be in rela-
tive form, such as “5 days after event A” or absolute such as “every day at mid-
night”. In addition to explicit time events, it is desirable to refer to an event’s
time of occurrence. One possible approach is that the active database gives
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access to the time of occurrence in the condition, either through a specific op-
erator [Gatziu and Dittrich, 1993], or by allowing a time parameter to be bound
to each event, as is done in DEGAS. Another approach is to specify the tempo-
ral conditions on the event by putting the appropriate time events in the event
specification. This choice makes a difference in the way we check the temporal
part of the rule specification. In the former case, we can check temporal condi-
tions in the condition of the rule. In the latter case, the time events are included
in the event detection mechanism.

Since most active database management systems offer the possibility to specify
parameters of events, they also need to store the parameters of a method call,
in addition to the time it occurred. This way, a rule can be triggered on method
calls with certain values for the parameters only. For example, we may have a
rule on a bank account that is only invoked, if a debit action of more than 1000
guilders is executed.

It should be clear by now, that every extension of event specification in the def-
inition of rules beyond single basic events necessitates a partial record of the
database history. In particular, if an active DBMS offers all facilities described
above, it has to store all method calls with their parameters and timestamp.
Obviously, we can reconstruct all historical states of the database, if we have
all state transitions in the form of method calls. Hence, it is a small step from
an active database to a historical database. Since DEGAS aims to offer full active
database functionality, the state of a DEGAS object includes its history, i.e., a
record of past states and method calls. DEGAS offers a single temporal dimen-
sion, viz., transaction time, to retain a simple active database model.

Earlier research into the common ground of active and temporal databases
mainly focussed on temporal conditions in rules [Gal et al, 1996, Sistla and
Wolfson, 1995]. This work extended the condition of a condition - action rule,
allowing the specification of an attribute’s change over time. An example is to
trigger, if the salary of an employee doubles within a year. Since this work did
not involve events, it is limited from the standpoint of active databases. Hence,
an innovation in DEGAS is the inclusion of temporal functionality in an active
database offering full ECA rules.

The formalisation of DEGAS in process algebra has a further advantage. This is
found in the direct formulation of the semantics. In active database systems,
events are defined and specified in varied ways. Although the complexity of
event algebras varies, the algebra can usually be reduced to a small set of op-
erators [Gehani et al., 1992]. Hence, the main difference of interest is in the
formalisation of the event algebras.

Two main approaches can be distinguished here. One approach is to translate
the event specification to another formalism with a well-defined semantics. For
example, in SAMOS [Gatziu and Dittrich, 1994] event expressions are translated
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to Petri nets [Reisig, 1985]. Then, the occurrence of events in the database is
represented by placement of tokens in the Petri net. The translation to another
formalism is a disadvantage of this approach, because it introduces an extra
step in the formalisation. An advantage is the straightforward implementation
of a Petri net.

The other approach is a more direct one. The semantics of the event algebra
is defined directly in terms of the database history. An example of this is ODE
[Gehani et al., 1992]. An advantage is the directness, since the translation is not
needed.

The semantics of events in DEGAS is defined in the direct way. As stated at
the start of this section, the DEGAS event algebra is a variant of ACP [Baeten
and Weijland, 1990], a well-known specification formalism proven in practice
[Baeten, 1990]. The ACP concept of matching a process definition and an action
trace can easily be translated to the triggering of an event specification by an
event trace. The reuse of an existing formalism as an event algebra is a clear ad-
vantage of DEGAS. Furthermore, it does not exclude a translation to a different
formalism for implementation purposes.

3.4.3 Queries in an Active Database

The link between active and temporal databases, discussed in Section 3.4.2,
showed that event specifications can be regarded as conditions on the history
of the database. If the history records events, as is the case in DEGAS, then they
must also be accessible for queries. Hence, DEGAS queries allow the use of event
specifications in the selector.

Event specifications facilitate the formulation of queries like: “Give all credit
cards used more than five times last Saturday” or “Give the balance of bank
accounts at the time they were debited more than DFL 10,000”. Thus, we have
an additional means to specify a historical situation in the database, that is
independent of time. It is useful to specify that we are interested in a certain
situation, without requiring a specific time of occurrence.

A further advantage of the use of event specifications in queries is in the for-
malisation of the active database. An ECA rule can be considered to be a query-
action pair, thus decreasing the number of concepts required. Furthermore,
the inclusion of events in a query obviates the need for specific temporal op-
erations in the condition. In fact, the combination event-condition subsumes
the temporal conditions in, for example, mono-temporal TSQL [Navathe and
Ahmed, 1993].

We know of no earlier work involving events in temporal queries. The work
reported in [Claramunt and Thériault, 1995] involves event-oriented queries,
but events are a notion from the application, not from the database system
itself.
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3.4.4 Object Evolution

One of the key features of OODBMSs, as described in Section 3.3, are classes and
types. Each object in a database belongs to a class. In most systems, an object’s
membership of a class is a fixed property. Hence, an object does not migrate
from one class to another in the hierarchy. Specialisation of objects, however,
is also a dynamic phenomenon. The specialisation is dependent on the role of
an object. For example, a person object is specialised to an employee object,
because of its role in an employment relation. [Gottlob et al., 1996] discuss
the extension of object-oriented systems with roles. An extensive conceptual
study and formalisation of objects with roles is found in [Wieringa et al., 1995].
There, a distinction is made between static classes, dynamic classes and roles.
Objects cannot migrate between static classes, because a static class defines
inherent properties of the object. Dynamic classes are dynamic partitions of an
object class. Objects can migrate between dynamic classes, possibly subject to
constraints. Roles are also dynamic classes but roles do not partition an object
class. In addition, an object can play multiple roles at a time.

The relevance of roles for object modelling indicates the need in an object data-
base for a mechanism to dynamically migrate objects from one class to another.
Some work has been done in this area. For example, the database programming
language Fibonacci [Albano et al., 1993] offers an extensive role mechanism.
Roles themselves are part of a hierarchy. Hence, roles can be specialisation of
other roles, which gives a relatively complex structure.

An obvious approach is to model roles by inheritance. This is an obvious choice,
given that inheritance is the standard specialisation mechanism on most object-
based systems. Modelling roles by inheritance, however, has a strong disadvan-
tage, if an object can play multiple roles at a time. In an inheritance hierarchy,
we would need a separate class for each possible combination of object exten-
sions. Clearly, this leads to a combinatorial explosion of the number of classes
in the hierarchy [McAllester and Zabih, 1986].

To avoid this combinatorial explosion, each role can be specified separately,
while allowing addition of multiple roles at a time. An example is the work on
Aspects [Richardson and Schwarz, 1991]. An aspect is a unit of data and be-
haviour that can be added dynamically to an object. Aspects, however, do not
address the link between aspects and relations, as in the empToyment example
at the start of this section. Furthermore, although aspects can have other as-
pects, interaction is not possible between different aspects of the same object.
Hence, we cannot model interactions between two roles of the same object. An
example would be the use by a person of information obtained through his
employee role in his investor role.

In DEGAS, we introduce a simple object extension mechanism, the addon mech-
anism. This avoids the complications of multiple inheritance. Furthermore, ac-
tive rules allow object extension to be triggered by events on the database. This
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is especially useful to extend an object further, if a combination of addons is
present. The addon mechanism is discussed in Chapter 4.

3.5 Conclusion

This chapter presented the areas in database research that are of interest for
our research. We started with an overview of active databases, which is the area
DEGAS builds on. Object autonomy also gives new perspectives on the connec-
tion of active databases to temporal and object-oriented databases, which were
also introduced.

Further discussion in this chapter concerns the impact of object autonomy on
different issues in active object databases. The maximal encapsulation of object
autonomy promotes a consequent application of object-oriented principles to
the modularisation of rules in an active databases. Furthermore, the process-
oriented view of object autonomy on the formalisation of an active database
gives us a model that unifies active and historical databases. A further advan-
tage of this formalisation is that it gives the semantics of rules directly.

The integration of active and temporal database also sheds new light on the
specification of temporal queries. Events as temporal conditions allow the spec-
ification of historical situations independent of their exact time of occurrence.
Another contribution of the DEGAS model is the straightforward object exten-
sion mechanism, that allows the implementation of objects with roles.

The next part of this thesis introduces the DEGAS model in full. The presenta-
tion of the DEGAS model will make clear, how DEGAS fulfills the contributions
described in this chapter.
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Chapter 4

The DEGAS Object Model

Now that the motivation for DEGAS has been discussed in depth, its main con-
cepts can be introduced formally. The basis of DEGAS is the autonomous ob-
ject. As explained before, these objects can evolve through addons, containers
of additional, temporally present, functionality. Furthermore, objects are inter-
related through relation objects. For a good understanding of these concepts,
we use trading on a stock exchange as an on-going example. This example also
serves as an introduction of the DEGAS language.

The introduction of DEGAS concepts is topped off with the DEGAS query lan-
guage. DEGAS’ event specifications offer a new way to formulate temporal con-
ditions. This adds an event specification clause to the usual SQL-like object
query format. Object autonomy also leads to the introduction of the quality of
a query result. Furthermore, we discuss the object management structures in a
DEGAS databases.

4.1 DEGAS Objects

In DEGAS, objects are instances of classes. Hence, a DEGAS object definition
specifies an instance of a class. As usual, we distinguish structure and be-
haviour in a DEGAS object. The structure of an object is determined by the
attributes. The behaviour of an object has three components: methods, lifecy-
cles, and rules. Methods specify what an object can do. The lifecycles specify
what an object might do, i.e. what methods it is willing to execute in a certain
context, by specifying sequencing of and preconditions on method execution.
Rules specify what an object will do, by specifying actual actions to be exe-
cuted in certain situations, defined in terms of events and object states. Thus,
methods and lifecycles specify potential behaviour of an object, whereas rules
describe actual behaviour. Traditionally, only potential behaviour is specified
in object-oriented databases, often limited to methods only.
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The first section of an object specification specifies the attributes of a class.
DEGAS supports the types commonly found in object models: simple types,
tuple types and power types, i.e., sets. One of types supported is the set of
class names in the databases. Hence, other object’s attributes can be referred to
through path expressions, that are translated to method calls to other objects.

As usual in an object-based model, methods specify the possible state changes
of an object. In DEGAS, methods can either change attributes in the object, or
call other methods, both local and in other objects. Method calls between ob-
jects are by way of non-blocking message passing. This will be further explained
in Chapter 6.

An object’s lifecycle specifies sequencing of methods and pre-conditions on me-
thod invocations. Hence, every method call is checked against the lifecycle of
the object. A method call will only be executed, if the current state of the lifecy-
cle allows it. The formalism chosen to specify lifecycles in DEGAS is guarded ba-
sic process algebraic expressions [Baeten and Weijland, 1990]. The basic actions
in such an expression are method names. Complex expressions are composed
using sequential composition, alternative composition, repetition, and parallel
merge (or indifference) operators.

Rules in DEGAS follow the usual Event-Condition-Action (ECA) format. Like life-
cycles, event specifications in DEGAS are expressed using process algebra. We
chose process algebra as an event algebra is, because it is well understood, and
has found broad application [Baeten, 1990]. In addition to the operators in a
lifecycle, an event specification can use the negation of an event. This denotes
any event on the object, except the negated event. As was explained in Sec-
tion 3.1, the action of an ECA rule is executed on occurrence of the event, if the
condition is satisfied. In DEGAS, this check of event and condition is done after
every method invocation. The action of a rule is a method call, either local or to
amethod in another object. Hence, the action is also subject to object lifecycles.

Another way to define a class is generalisation. Generalisation captures com-
monalities between objects of different classes. There are no instances of a
generalisation class, since the class of an object defines its inherent, unchange-
able properties. An example is the notion of a legal entity. Both companies and
persons are legal entities, but no object exists that is only a legal entity. A lot
of relations, however, are between legal entities. Hence, we need the ability to
specify such generalisations in DEGAS.

Objects can be specialised through the addon mechanism. An addon defines
additional attributes, methods, rules and lifecycles. If an object is extended
through an addon, it gains these transient capabilities. These cannot be distin-
guished from the inherent capabilities of an object!. The capabilities specified

1An object with introspection might keep track of its capabilities to determine which capa-
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in an addon are lost, when the addon is removed. Since an addon only defines
an extension of an object, instances of an addon do not exist.

Addons allow the capabilities of an object to evolve over time, like those of
an object in the real world. During its life, an object is created, acquires and
loses relations, and consequently gains and loses capabilities. An example is an
employee that has different capabilities in different jobs.

In DEGAS, relations between objects are objects themselves. Thus, we have a
place for data and behaviour of a relation. Furthermore, the fact that a relation
object is an object itself, also means that it can engage in relations itself. A
more abstract motivation of this objectification is, that a relation is a kind of
contract, a view also found in, e.g., NIAM [Nijssen and Halpin, 1990].

Before two objects enter a relationship, certain preconditions will have to be
satisfied. For example, if two persons wish to marry, both must be of a differ-
ent sex and must be unmarried. Likewise, the termination of a relationship is
subject to restrictions. In relations, we often need to store data and behaviour
of the relation. An example is the bank account relation between a bank and its
clients. This information, and the capabilities to handle termination of the rela-
tionship, are stored in a relation object. The capabilities to handle the initiation
of a relationship, including the creation of the relation object, can be found in
the corresponding relation class object.

An object that engages in a relation is extended using the addon mechanism.
Through the addon it acquires the capabilities to handle the relationship. An
addon is always added, since an object must have a method to terminate the
relation. An example is a person with a bank account. If he is in this relation,
he can transfer money to other bank accounts or withdraw money through an
ATMZ,

The three meta classes in DEGAS, objects, relation objects, and addons, lead
to a three-layered structure of a DEGAS database. At the lowest level, we find
the object instances. These are objects and relation objects with their addons.
Addons do not have a separate existence, since they only define an extension
of a DEGAS object. Each class of objects is represented by a class object. These
are again typed by the three meta classes. These three layers are depicted in
Figure 4.1. They can be characterised as follows:

1. Instance Level. This level is the representation of the Universe of Dis-
course of our information system. Here, objects such as persons, banks
and bank accounts can be found.

bilities are permanent and which are transient. A DEGAS object, however, is not equipped with
introspection.
2 Automated Teller Machine



46 4.1. DEGAS OBJECTS

2. Class Level. This level contains class objects, that are representations for
every object class, relation object class and addon class. Class objects
handle object creation and keep track of the objects in their class. Class
objects are DEGAS objects without the ability to engage in relations.

3. Meta Class Level. The meta classes are also represented by objects in the
system. This is the highest level in the system. The presence of meta class
objects facilitates schema evolution by creating and destroying classes, in
analogy to the creation and destruction of objects by class objects.
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Figure 4.1: Structure of the Object Model

Each class in DEGAS is represented by a class object. Besides recording part of
the extent of the class, class objects serve three functions:

1. Creation of new objects
2. Information about the schema of a class
3. Schema updates.

The first two functions are purely local as long as the object schema is fixed.
Schema information about objects is necessary to check the correctness of
queries. For example, we can test whether an attribute defined in a query actu-
ally occurs in that object. Type checking for queries will be discussed in Sec-
tion 7.4 below.
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All three meta classes in DEGAS, i.e., objects, relation objects, and addons, have
class objects associated with them. These class objects maintain the extent
set of their classes. For example, we can get the set of objects that have an
accountholder addon through the class object for this addon.

4.2 DEGAS by example

In this section, we introduce the DEGAS concepts by modelling a highly dynamic
application, since these are the most challenging to deal with. Trading on the
stock exchange3 is such an application with fast changing data and rapidly
evolving relations. New data emerges constantly in the form of buying and sell-
ing orders, economic news items through newsreels, et cetera. Both new and
historical data influence the behaviour of the parties in the market.

Let us briefly describe the example in more detail. Companies are owned by per-
sons. A person can buy and sell shares. He can subscribe to a newspaper spe-
cialised in news about companies of his interest. Buying and selling of shares
goes through a market-maker. If a person wants to buy or sell, he informs the
market-maker. Periodically, the market-maker determines the price that bal-
ances supply and demand. Buying and selling orders that agree with this price
are fulfilled.

We start this example with the market-maker. The market-maker matches sup-
ply and demand for his market. Hence, the actions he can execute are to accept
buying and selling orders and to try to match these. The data stored by the
market-maker is the current price of the share he deals in, which is a real num-
ber. This is specified by the DEGAS definition of attributes and methods of an
object class Marketmaker in Figure 4.2. The methods in this object only contain
actions to engage in a relation or actions to extend the object with an addon. An
object engages in a relation by sending a method call to the class object of the
relation. An example is the initiateMarketmaker message sent to the class
object of the Supply relation. The creation of a DEGAS relation is largely left to
the application designer, as is discussed in full detail in Section 7.3.

This defines the basic properties and actions, but we know more about the
market-maker. This information is specified in the lifecycle. The lifecycle of a
Marketmaker object consists of taking buying and selling orders. If both ac-
tions have occurred in an arbitrary number and sequence, he is allowed to
match supply and demand. In this process algebraic expression ; denotes se-
quence, * denotes repetition, and || denotes indifference parallelism.

The specification of the actual execution of actions by a DEGAS object is given
by its rules. The behaviour of a market-maker is to register supply and demand,

30ur example is a simplification of the stock exchange in the Netherlands.
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Object Marketmaker
Attributes
currentPrice : real
Methods
takeSellOrder = {
SupplyClass.initiateMarketMaker

takeBuyOrder = {
DemandClass.initiateMarketMaker

makeMarket = {
Extend(SupplyDemand)

Lifecycles
((takeSellOrder* || takeBuyOrder*);makeMarket)*

Rules
On (takeSellOrder||takeBuyOrder) do makeMarket

EndObject

Figure 4.2: Specification of the Marketmaker object

and clear the market if both are present. A rule, that completes the definition
of the Marketmaker object, specifies this behaviour.

In our example, a person can buy shares. To do this, he should place a buying
order. If this order can be met by supply in the market, he will actually buy
the shares. If it is unsuccessful, a cancellation will be the result. In addition
to buying shares, a person can take a subscription to a newspaper in order to
obtain information. If he owns shares and also reads a newspaper, he will use
the information from the newspaper to influence decisions about his shares.
This is specified in the Person object in Figure 4.3

In the Person and Marketmaker objects, the methods define that the object
engages in relations. Relations in DEGAS are objects themselves. A relation ob-
ject can have the same kind of capabilities as an ordinary object. For example,
a share is modelled as an ownership relation between a person and a company.
In the relation object, the partners in the relation are present as implicit at-
tributes, specified in the Relation clause. These can be used like any other
attribute of the relation object. Other information present is the price of the
share when it was bought. The definition of the Share relation object in Fig-
ure 4.4 shows the use of guard conditions in the lifecycle. The action after a
condition can only be executed, if the condition is satisfied. In the Share rela-
tion object, guards are used to restrict access to its methods. Thus, in DEGAS we
are able to control access to an object’s methods in greater detail than in, e.g.,
C++ [Stroustrup, 1991], where the only distinction is between private, public
and friend methods.
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Object Person
Attributes
name : string
birthday : time
birthplace : string
Methods
tryToBuy(company:Company, number:integer, maxPrice:real) = {
DemandClass.initiate(company,number,maxPrice)
}
readPaper(paper:Newspaper) = {
SubscriptionClass.initiatePerson(paper)
}
useNews = {
Extend(InformedOwner)
}
Lifecycles
(tryToBuy)*
((extendShareholder || extendInformedPerson);useNews)*
Rules
On (Extend(Shareholder)||Extend(InformedPerson))
do useNews
EndObject

Figure 4.3: Specification of the Person object

Object Share
Relation Person, Company
Attributes
buyPrice : real
currentPrice : real
value : real
Methods
transferOwnership(newOwner:Person,price:real) = {
Person = newOwner
buyPrice = price

}
payDividend(div:real) = {
value = value + div

Lifecycles
([sender=Person]transferOwnership)*
([sender=Company]payDividend)*

EndObject

Figure 4.4: Specification of the Share relation object
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A Person object does not have the capability to deal with the share relation
built-in. Instead, it acquires these when it engages in this relation. In this exam-
ple, a person who becomes a shareholder gains capabilities to sell the shares
again. This is specified in the Shareholder addon in Figure 4.5. An addon tem-
porarily adds capabilities to a DEGAS object. These capabilities are present in
the object from the time it is extended by the addon until the addon is re-
moved. The capabilities specified in the addon cannot be distinguished from
the inherent capabilities of the object, while they are present. As was discussed
in Section 3.4.4, objects have a role in their relations. Since the role is only
needed when the object is in the relation, an important use of addons is to
model roles in connection with relations.

Addon Shareholder
Extends Person
Attributes
share : Share
Methods
tryToSell(company:Company, number:integer, minPrice:real) = {
SupplyClass.initiateShareholder(company,number,minPrice)

Sell(buyer,price) = {
share.transferOwnership(buyer,price)
Remove(Supply)

cancelSupply = {
Remove(Supply)

Lifecycles
(tryToSell;(Sell+cancelSupply))*
EndAddon

Figure 4.5: Specification of the Shareholder addon

The SupplyClass.initiate action in this addon specification also occurred
in the specification of the Marketmaker object. A call to an initiate method
is made by an object to express its wish to engage in a relation. Since the re-
lation object does not exist at this time, initiate is a method of the rela-
tion class object. In this case, a Shareholder object sends an initiate call to
the Supply class object. In response, it sends a takeBuyOrder message to the
market-maker to ask, if it is willing to accept the relation. As we can see in the
specification of the Marketmaker object, it responds with an initiate call to
express its agreement. The Supply class object then proceeds with instantia-
tion of the relation. A further explanation of the way relations are established
can be found in Section 7.3.

As we can see in the specification of the Person object, an addon can also be
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used to link two relations. In our example, the information a person reads in
the paper influences his decisions as a shareholder. This is achieved by extend-
ing the person with a further addon, if he owns shares and reads a newspaper.
In Figure 4.6, we give the specification of the InformedPerson addon, that ex-
tends a Person object with a subscription to a newspaper.

Addon InformedPerson
Extends Person
Attributes
subscription : Subscription
transactionPrice : real
Methods
goodNews(company : Company) = {
transactionPrice = subscription.priceAdvice(company)
}

badNews(company : Company) = {
transactionPrice = subscription.priceAdvice(company)
}

Lifecycles
([sender=subscription]goodNews*)
([sender=subscription]badNews*)
(Extend(InformedPerson);Remove(InformedPerson))*
Rules
On goodNews(company)(t1);goodNews(company)(t2)
if t; — t; <7 days
do tryToBuy(company,transactionPrice)
EndAddon

Figure 4.6: Specification of the InformedPerson addon

The rule definitions in the specifications of InformedPerson and Informed-
Owner show the use of time in DEGAS. Historical values of attributes can be
referenced by a time parameter. Likewise, we can refer to the timestamp of an
event. The specification in Figure 4.7 gives an example of how the informed
shareholder deals with bad news. This addon can extend a person, if it has
both the Shareholder and the InformedPerson addons. Hence, the extends
specification gives two original object names. Please note, that this is not a form
of multiple inheritance. It simply specifies, what the addon may assume to be
present.

The diagram in Figure 4.8 shows the complete model of the stock exchange
example. In this picture, large boxes represent objects and small boxes repre-
sent addons. The dashed boxes are relation objects. Please note that the arrows
do not imply any arity constraints on the relations. Instead, the arrows simply
point to the partners in the relation.
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Addon InformedOwner
Extends InformedPerson,Shareholder
Attributes
Key : P( subscription : Subscription, share : Share )
Lifecycles
Extend(InformedOwner)*
Remove(InformedOwner)*
Rules
On badNews(company)(t; );badNews(company)(t2)
if (t, — t;) < 7 days and transactionPrice(t;) < transactionPrice(t;)
do tryToSell(transactionPrice)
On goodNews(t;);badNews(t>)
if t, — t; < 7 days and transactionPrice(t;) = max(transactionPrice, t1,t2)
do tryToSell(transactionPrice)
On Remove(ShareHolder) do Remove(InformedOwner)
On Remove(Subscription) do Remove(InformedOwner)
EndAddon

Figure 4.7: Specification of the InformedOwner addon
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Figure 4.8: The DEGAS model for a financial market
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4.3 Syntax of a DEGAS Object

In this section, we give the syntax of the DEGAS data model. Since we showed a
number of example DEGAS specifications in the previous section, we only show
examples of syntactic constructs that did not occur there. The syntax is given
as a BNF grammar. Symbols from the DEGAS language are printed in teletype
font. Non-terminals are denoted by (NonTerminal) . | denotes a choice. Optional
parts are surrounded by rectangular braces: []. Other symbols in the right hand
side of a rule are terminal symbols.

Before we proceed with the syntax definition, we postulate the presence of the
following disjoint sets from which terminals are taken:

A set of basic types (BasicType)

A set of basic functions (BasicFunction)
A set of values for each basic type (BasicValue)

A set of Boolean functions on the basic types (BasicCondition)
A set of attribute identifiers (AttributeName)
A set of parameter identifiers (Parameterld)

A set of method identifiers (MethodName)
A set of variable names (VariableName)
A set of class names (ClassName)

An ordered set of label identifiers (LabelName)

An linearly ordered set of timestamps (TimeStamp)

Please note, that names of attributes and methods must be unique across a
complete DEGAS database.

Basic Types and Functions The set of basic types includes the following
types. The domains of the types are defined in Section 5.1.

0id Object identifiers
Integer Natural numbers
Real Real numbers

String Alphanumeric strings
Boolean Truth value
Time Timestamp

Basic functions are defined on the basic types or on a Cartesian product of basic
types. The set of basic functions is the following:

+ Addition

—  Subtraction

%  Multiplication
/ Division

The following Boolean functions are defined on the basic types, where appro-
priate. For example, on Oid only equality and inequality predicates are mean-
ingful.
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Equality

Inequality

less than

less than or equal to
greater than

greater than or equal

Class The definition of a class has five parts, the header and four sections for
the definition of the attributes, methods, rules and lifecycles.

(Class) —

(ClassHeader)
(AttributeSection)
(MethodSection)
(LifecycleSection)
(RuleSection)
(ClassEnd)

(4.1)

Types The basic types are used to construct complex types. Constant values
can be used in expressions. The possible type constructs are power types and

tuple types.

(Type)
(TupleType)
(FieldList)
(Field)

— (BasicType) | P (Type) | (TupleType) | (ClassName)
—  ((FieldList) )

—  (Field) | (Field) , (FieldList)

—  (LabelName) : (Type)

(4.2)
(4.3)
(4.4)
(4.5)

Class Header The class header indicates the place of the class in the type
structure by giving the meta class, i.e., object, relation object, or addon. Further
information is the list of subclasses for a generalisation class. For relation ob-
ject classes, it defines the partners of the relation. In the definition of an addon
class, it gives the class it extends.

(ClassHeader)
(ClassHeader)
(ClassHeader)

(ClassHeader)

(ClassList)

— Object (ClassName)
— Object (ClassName) generalises (ClassList)
— Object (ClassName)
Relation (ClassList)
— AddOn (ClassName)
Extends (ClassList)
— (ClassName) , (ClassList) | (ClassName)

An example of an object class that generalises other object classes is:

Object LegalEntity generalises Person, Company

(4.6)
(4.7)
(4.8)
(4.9)

(4.10)
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After the class header, the capabilities of the class are specified. There are no
syntactical differences between objects, relation objects, and addons in this
specification.

Attributes Declaration of attributes is straightforward using the types defined
above. Every (relation) object class has an implicit attribute this : 0id con-
taining the object identifier, which cannot be changed by the programmer. An
addon does not have an identifier, because it is not an autonomous object.

(AttributeSection) — Attributes (4.11)
(AttributeList)
(AttributeList) —  (AttributeDecl) (4.12)
| (AttributeDecl) , (AttributeList)
(AttributeDecl) —  (AttributeName) : (Type) (4.13)

Methods The methods of an object are defined in the method section of the
class declaration. A method may either modify the object state or call other
methods. A method call can be either to an internal method or to a method of
another object. Modification of the object state can take place through assign-
ments to attributes. In addition, method calls or assignments can be executed
simultaneously on all elements of a set-valued attribute.

Methods included in every (relation) object class are those to add and remove
addons from an object. This is explained in more detail in Section 6.2.

(MethodSection) — Methods (4.14)
(MethodList)
(MethodList) — (MethodDecl) (4.15)
| (MethodDecl) , (MethodList)
(MethodDecl) — (MethodName) ( (ParameterList) )= (4.16)
{ (StatementList) }
(StatementList) — (Statement) (4.17)
| (Statement) ; (StatementList)
(Statement) —  (AttributeName) : = (Expression) (4.18)
| (MethodCall)
| (AttributeName) : = (MethodCall)
| (Setlteration)
| Return (Expression)
(Expression) — (AttributeName) | (PathExpression) (4.19)
| (BasicFunction) | (BasicValue)
(PathExpression) — (PathExpression) . (AttributeName) (4.20)

| (AttributeName)
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(MethodCall) — (4.21)
[(PathExpression) .] (MethodName) ( (ActParamList) )
(Setlteration) — forall (VariableName) in (AttributeName) (4.22)

where (Condition)
do_{ (StatementList) }

(ActParamList) — (ActParam) | (ActParam) , (ActParamList) (4.23)
(ActParam) — [(Parameterld)=] (Expression) (4.24)
(Condition) — (BasicCondition) (4.25)

| (Condition) and (Condition)
| (Condition) or (Condition)

An example of a setiteration is the following method in a Bank object. It awards
a premium to accounts with a balance higher than a specified limit. The at-
tribute coffer represents the bank’s own account.

Methods
award(premium : real, premiumLimit : real) = {
forall acct in Accounts
where acct.balance > premiumLimit
do {
coffer.debit(premium)
acct.credit(premium)

}
}

Rules The rules section defines the rules on the object. These are Event - Con-
dition - Action triples as is usual in active database systems. Event expressions
are basic process algebraic expressions. Complex expressions are defined using
sequential composition (;), alternative composition (+), repetition (*), parallel
merge (||) and non-occurrence (—) operators.

(RuleSection) — Rules (4.26)
(RuleList)
(RuleList) —  (Rule) | (Rule) , (RuleList) (4.27)
(Rule) — On (EventSpec) (4.28)
if (Condition)
do (Action)
(EventSpec) — (Event) [(TimeWindow)] (4.29)
(Event) — (MethodName) [(ParameterList)] (4.30)
| (TimeStamp)

| ((Event) + (Event) )
| ({Event) ; (Event))
| = (Event)
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| (Event) *
| (Event) || (Event)
(TimeWindow) — [ (TimePairList) ] (4.31)
(TimePairList) — (TimePair) , (TimePairList) | (TimePair) (4.32)
(TimePair) — ((TimeStamp) , (TimeStamp) ) (4.33)
(Action) — (MethodCall) (4.34)

Lifecycles The lifecycle of an object is defined in the lifecycle section of the
class definition. Lifecycles are guarded basic process algebraic expressions. The
basic actions are the methods of the object. The guards are conditions on the
object state. We can specify a number of expressions in the lifecycle section,
each starting on a new line. These expressions are merged into one lifecycle
through communication merge, as explained in Section 5.7.2.

Please note that, despite their similarity, lifecycles and event specifications use
different expressions. Event expressions in rules can use the negation operator,
whereas a lifecycle cannot. This difference originates in the nature of rules and
lifecycles. A lifecycle is a positive description of what an object is allowed to
do, while an event expression is basically a query on the history of an object.

(LifecycleSection) — Lifecycles (4.35)
(LifecycleList)

(LifecycleList) — (Lifecycle) | (Lifecycle) , (LifecycleList) (4.36)

(Lifecycle) — (MethodName) [(ParameterList)] (4.37)

| ([ (Condition) ] (Lifecycle) )
| ((Lifecycle) + (Lifecycle) )

| ((Lifecycle) ; (Lifecycle) )

| (Lifecycle) *

| ((Lifecycle) || (Lifecycle) )

This grammar defines syntactically correct classes. More, however, is needed
to get a meaningful hierarchy. For that, we need uniqueness constraints and
referential constraints.

Uniqueness Constraints Classes, types, attributes, labels and methods must
have unique names.

Referential Constraints The references to other entities in declarations must
be correct. More specifically:

1. All methods must be well-typed. All assignments and method calls must
be correctly typed, i.e., all values must be of the same type, or a subtype
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of that type, as the attribute or parameter they are assigned to. Typing is
discussed further in Section 5.1.

2. All classes referred to in declarations must exist in the class hierarchy.

3. A method call must have the right number of actual parameters.

4.4 Querying DEGAS objects

A DEGAS query selects the members of a class that satisfy a specified selection
condition or selector. A novel feature in the selector is the event specification.
This allows the specification of arbitrary temporal conditions. The advantage is
in the possibility to specify conditions related independent from specific time
points. In a DEGAS query, we can express our interest in an event regardless of
the time it occurred.

The temporal dimension of DEGAS is reflected in the result of a query. Since the
state of an object includes its complete history, a query against an object state
is a query against the history of the object. Hence, it is not sufficient to only give
the object identities as a result. The time when the object satisfied the query is
also relevant. In DEGAS, a query returns a set of object-history pairs, giving the
sub-histories that matched the event specification in the query’s selector. The
selector consists of two parts, an event expression and a condition. The format
of a query is:

Select from (Class)

on (EventSpecification)

if (Condition)

quality (Integer)
The full syntax definition of the DEGAS query language is given by the follow-
ing BNF grammar. Non-terminals in this definition refer to the productions in
Section 4.3.

(Query) — Select_from(ClassName) (4.38)
on (EventSpec)
if (CompoundCondition)
quality (Percentage)
(CompoundCondition) — (Condition) (4.39)
| Exists_in (Query) : (Condition)

An example of a DEGAS query is:

Select from ATMcards
on ChangePIN(t1);ChangePIN(t2)
if t2 - t1 < 1 day
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This query selects all PIN cards that had their code changed twice within a day.
The timestamps associated with the events are bound to the t1 and t2 param-
eters. These can be referenced in the condition of the query. The parameters
of an event can also be referenced in the query condition, as is done in the fol-
lowing example. This query selects bank accounts involved in a fast transfer of
money, hinting at potential illegal activities.

Select from BankAccount

on credit(cr.amount)(t1);debit(db_amount)(t2)

if cr.amount > 10000 and db_amount > 10000
and t2 - t1 < 2 days

Since a DEGAS object records its complete history, a query also applies to the
complete history. If we wish to restrict it temporally, then we specify a time
window for the event expression. A time window restricts the part of the history
the event expression is checked against. For example, we might be interested
only in occurrences of an event during the last fortnight. Here, we are interested
in bank accounts that are overdrawn by a single large transaction:

Select from BankAccount
on debit(db_amount)(t)[1 Mar 1997, 15 Mar 1997]
if db_amount > 10000 and balance(t) < 0

A further facility in the DEGAS query language is the nested query. A nested
query is used to specify conditions over multiple objects. This is done through
the Exists predicate, that consists of a query and a condition. The condition
joins the result of this query to objects in the root class of the query. An exam-
ple is the following query, that selects the trains with a destination that is the
location of a cycle race.

Select from Train
if

Exists in Select from Cyclerace:
Train.destination = Cyclerace.location

Above, we saw one of the novel features of DEGAS queries, viz., events to spec-
ify temporal conditions. Another new element is caused by object autonomy.
A consequence of object autonomy is that it is decided in an object, whether
to answer or not to answer a query. This depends on the object’s lifecycle.
Furthermore, the inherently distributed nature of DEGAS implies that the un-
derlying network may be partially unreachable. Hence, the answer to a query in
DEGAS need not necessarily contain all objects satisfying the query. Therefore,
the result of a query is accompanied by an estimate of the quality of a query. By
the quality of a query, we mean the number of objects giving a positive answer
A relative to the total number of objects in the database satisfying the query
selector S:

A

S
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Since the divisor § cannot be given with certainty due to object autonomy,
the quality measure returned with a query is an estimate. A user can specify
an expected quality for a query through the quality clause of a query. For
example, in the following query the user is satisfied with an answer including
80 percent of the relevant objects.

Select from ATMcards

on ChangePIN(t1);ChangePIN(t2)
if t2 -t1 <1 day

quality 80 %

In Chapter 6, we discuss the impact of query result quality on query processing
in DEGAS.

4.5 Distribution Model

Each DEGAS object has an independent thread of control. In this respect, it
follows concurrent object-oriented languages [Agha et al., 1993]. Examples of
such languages are Actors [Agha, 1986], POOL-T [America, 19871, and Procol
[Bos and Laffra, 1991]. Experience in implementing a database using POOL-T
in the PRISMA/DB project [Apers et al, 1992] learns us that a large number
of concurrent objects cannot be managed without some structure. Hence, the
large number of objects in a DEGAS database is organised in two ways: locality
and class. The distribution model describes the assumptions about locality of
objects. The organisation by class leads to the three-layered model outlined in
Section 4.1. These two structures are used to find the reach the desired objects
in DEGAS query processing.

Physically, the objects in a DEGAS database live on networked processing units.
This network consists of a number of nodes linked by network connections. In
view of the motivation for DEGAS in Chapter 2, we do not make any assumptions
about the nature of the computing units and the network connections involved.
Both can be anything, from a dedicated parallel server to a mobile phone or
from an ATM* fibre cable to a GSM> wireless link.

Logically, distribution in DEGAS is organised by sites. Intuitively, a site is a set of
computing units that are close to each other relative to others in the network.
The logical network a DEGAS database lives on, is represented by a graph. In
this graph, the set of vertices is the set of sites. An edge between two nodes
exists, if a connection exists between the two sites.

The topology of a network may change arbitrarily. For example, the network
may temporarily become partitioned. For any site, we define the active part of

4Asynchronous Transfer Mode
5Global System for Mobile communications
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the network relative to time. For a network N, time t, and site s, it is denoted
by Active(N,t,s)

Definition 2 In a network N, a site sy is reachable from s> at time t, if there is a
path from s, to s; in Active(N,t,s>2).

Figure 4.9 gives an example network. In this picture, the full lines indicate the
active connections. Consequently, the darker coloured vertices represent the
sites reachable from site c.

Figure 4.9: Reachability in a network

In DEGAS, each site in the network is represented by a site object. A site object
functions as a kind of data dictionary. A site object keeps track of the objects
residing at its site. Furthermore, it keeps schema information in the form of
class objects. To assist query processing, a site object also maintains numerical
information about the fragmentation of classes over other sites in the DEGAS
database. A further discussion of the workings of site objects is postponed to
Section 6.8.

4.6 Conclusion

This chapter introduced the main concepts of the DEGAs model. Object au-
tonomy has two main results. First, every aspect of an object’s behaviour is
encapsulated. Second, each object has an independent thread of control. The
model is based on three meta classes: objects, relation objects, and addons.
DEGAS class specifications encapsulate every aspect of an object. In compari-
son with existent object models, DEGAS extends an object with lifecycles and
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rules. The stock exchange example showed how these are used to model the
dynamics of information exchange through relations.

The independent thread of control in each object has its impact on query pro-
cessing. Since it is a local decision to answer a query, the DEGAS query language
introduces the quality of a query result. This notion represents the proportion
of desired objects in the answer to the query. A further novel facility is the spec-
ification of temporal conditions through event expressions. To support query
processing a DEGAS database is organised by class and by location in order
to get structure in the large number of objects in a database. This is further
discussed in Chapter 6.
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Chapter 5

Abstract Semantics of DEGAS

The previous chapter gave an introduction to the concepts of the DEGAS model,
including a syntax for specifying DEGAS objects. In this chapter, we define the
formal semantics of the DEGAS model. In order to give a formal definition of a
DEGAS database, a considerable amount of preparatory work is needed.

As a first foundation of the formalisation, we define the type system underlying
DEGAS. Based on this type system, we define the effects of DEGAS methods on a
tuple of attributes. Then, we discuss the use of time in DEGAS, which results in
an initial definition of the history of an object, the pre-history. The pre-history
is used to define the interpretation of a DEGAS object and a model of a DEGAS
database. The final element defined in advance is a selector, that is used in
DEGAS rules and queries.

These preparations allow the formal definition of the dynamic parts of a DEGAS
object, viz., methods and rules. In this formalisation, the history plays a central
role. For example, whether a method is allowed to execute by a lifecycle is
dependent on the history. Lifecycle and rule semantics are defined in process
algebraic terms, mapping directly to the event history of the object.

The semantics of method and rule execution lead to a number of constraints on
an object history. A database consisting of objects with a valid object history
is a valid DEGAS database. This database can be queried using the DEGAS query
language. To complete the formalisation of DEGAS, we define the semantics of
DEGAS queries.

5.1 Typing

We open the formalisation of DEGAs with the definition of the type system.
Typing of attributes and methods in DEGAS is defined following [Balsters and
Fokkinga, 1991]. We first give the semantic counterpart of the syntactic con-
struction of the types in Section 4.3.
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We start the definition of the DEGAS type system with the basic types.

Definition 3 A set of basic types B is postulated. B contains the following types:

oid Object identifiers
Integer  Integer numbers
Real Real numbers

String Text strings
Boolean Truth value

A hermit type 1 is introduced to cater for functions that always return the same
value. This type consists of a single element. So a function to 1 discards all its
input values, since it always returns the same value.

Definition 4 Given a set of basic types B, a hermit type 1, an ordered set of labels
L, the set of types T is defined as follows:

1.1€T

2. BcT.

3. (c—-T1)€eT,ifo, TeT.
4

a1 T,...,am:Tm)ET, ifmeNandforl <i<mT;€T,a; €L and
aAi < Aj+1-

5. PteT,ifreT.
6. oxteT,ifo,TeT.

DEGAS object specifications, i.e., object, relation object, and addon definitions,
define an underlying type, which is a tuple of attributes.

Definition 5 To each object, relation object, and addon definition D we can ap-
ply an operator Type(D) that yields the underlying type (a; : T1,...,4n : Tn)
defined by D. References to other classes are cast to the type Oid. The underly-
ing type of an object definition contains at least the attribute “this : Oid”. Given
a definition D with the following attribute section:

Attributes
ay T

az ! T2

An ' Tn

Then
Type(D) = (this:oid,a; : T1,...,an : Tn)

Additionally, a relation object contains a Relation clause. Given a definition D’
with the Attribute section above and the following Relation clause:
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Relation o1, 0,...,0,
These are also added to the underlying type:

Type(D') =
(this :oid,0; : 0id,02 : 0id,...,0n :0id,a1 : T1,...,an : Tn)

As an example, we give the underlying type of a Person object, defined in Sec-
tion 4.2, if it is not extended by any addon.

(this: Oid,name: string,birthday : time,birthplace : string)

A subtyping relationship is defined on the types following [Cardelli, 1984] and
[Balsters and Fokkinga, 1991].

Definition 6 The subtyping relation <: T x T is defined as follows:
1. ifT€B, thent < T.
2. Integer < Real.

3. Lletg=(01—~02) €eTandTt= (11 - T2) € T.If 71 <01 and 02 < T,
theno < T.

4. ifo,T€Tand o < T, then Po < PT.

5.ifor=(L :T1,...,ln:Tp) €T and oz = (M1 : vV1,...,my : V) € T, such
thatVie {1,...,k},3j € {1,...,n} :m; = lj A Tj < v;, then 01 < 0>.

6. ifoy <Tyand 02 < T, then oy X 02 < Ty X Tp.
The domains of the basic types are given in the following definition.

Definition 7 With each basic type B is associated a domain D(B). The domain of
the type String is defined by a regular expression.

D(Real) = R
D(Integer) = Z
D(Boolean) = {true,false}
D(String) = [A-Za-z0-9]+
D(1) = {@}

We postulate the existence of a set of object identifiers D(Oid).

Before we define the domains of the types, we postulate the domains of the
basic functions.

Definition 8 The set of basic functions BF consists of the following functions:
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Arithmetic + — %/
Set operations U < C €\
Equality =
Comparison € &>

For each basic function f € BF, we postulate its pre-domain Dy (f).

The domains of the types are defined following [Balsters and Fokkinga, 19911,
such that D(o") <€ D(7) if o < T. First, we define the predomains of the types:

Definition 9 For each type T € T the predomain of T, Dp(T), is defined as
follows:

1. The predomain D, (1) is postulated in Definition 7.
2. The predomain D, (B) of a basic type B is postulated in Definition 7.
3. Dp(PT) = PDp(T)
4. Dp({ly:T1,.. i) = {{lh:ay,...,ln:an)lai € Dp(Ti)}
5. Dp(o xT)={(s5,t)|s €EDp(0) At € Dp(T)}
For the functional types o — T the predomains are defined as follows:

1. The predomain D,(0 — T) of a basic function f € BF is postulated in
Definition 8.

22 Dp(c—~T)={f-9l13peT:fE€Dp(p—~T)AgEDp(o - p)}
3. Dp(Po — PT1) = {f*|f € Dy(0 — T)}, where f*(A) = {f(a)la € A}

4. Dp((x1:01,...,0n:0n) = (B1:T1,...,Bm: Tm)) =
{(f1,....fm)lfi €Dp(p1 X...X p1 = Ti),pi € {O1,...,0n}}

5. Dp(01 X...XOp=T1 X...XTm) =
{1, fm)lfi € Dp(pr X ... X p1 = Ti),pi € {01,...,0n}}

From these predomains, we derive the domains as follows:

Definition 10 For each type T € T the domain D(T) is constructed as follows
from the predomains: '

1. D(1) = Dp(1)

2. For a basic type B, D(B) = D, (B)

3. D(PT) = P(D(1))

4. Ift=(l1:T1,...,ln: Tn), then D(T) = Uy<r Dp(0).

5. DoxT)={(st)lseD(o)ArteD(T)}
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6. D(0c = T) =Ug' <01 <t Dp(0’ = T')
We show that the domains reflects the subtyping relations.

Theorem 1 Given a two types T and o with ¢ < T. Then:

D(o) € D(71)

Proof This theorem has been proved for the type system of [Balsters and
Fokkinga, 1991], to which the reader is referred. We prove the theorem for the
set of basic types B in DEGAS. Additional composite types in the DEGAS type
system are the Cartesian product and the set type. We also prove the theorem
for these two constructs.

In the set of basic types, we have Integer < Real. Since D(Integer) = Z and
D(Real) = R and Z < R, the theorem holds for the basic types.

For the proof of the theorem for set types, we assume that the theorem holds
for types other than set types. Given two types o = Po’ and T = PT1’, with
0 < 7. Then, o’ < 1’. For the domains of o and T, we have D(o0) = PD(0")
and D(t) = PD(7’). Since 0’ < T’, D(0’) € D(7’), which implies PD(0’) <
PD(T’). Hence, D(0) < D(T).

For the proof of the theorem for Cartesian products, we assume that the theo-
rem holds for types other than Cartesian products. Given two types o = 01 X0»
and T = T} X T2, with 0 < 7. Then, 0y < T, and 02 < Tp. For the do-
mains of o and T, we have D(o) = {(s1,52)|s1 € D(01) A s2 € D(02)} and
D(t) = {(t1,t2)|t; € D(11) At € D(12)}. Since 07 < 11 and 02 < T,
we have D(oy) € D(t1y) and D(02) € D(T12). Consequently, for every ele-
ment (s1,s2) € D(o0), we have s; € D(1;) and s € D(12). Hence, every
(s1,52) € D(0o) is also an element of D(7) and D(o) < D(T). o

The domain of each class is a set of object identifiers.

Definition 11 Let C be a class and Oid an infinite set of distinct object identi-
fiers. The domain of C is a subset of Oid, D(C) < Oid, such that:

1. If C, generalises C>, then D(Cz) < D(Cy).

2. If C; # C; and not C; generalises C, or C> generalises C, and AC such
that C; generalises C and C, generalises C, then D(C;) n D(C2) = Q.

Methods are typed as well in DEGAS. This is done through function types, like in
TM/FM [Balsters et al., 1993]. In this approach, a method is a function mapping
an object state and instantiated input parameters to a new object state and
instantiated output parameters.
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In our model, however, the underlying type of an object is not fixed. This is
caused by the evolution of an object through the addon mechanism. For exam-
ple, consider the attributes of a Person object before and after extension by an
Accountholder addon. Before the extension, the underlying type is given by
the tuple (Name : string, Birthday : date, Purse : integer), while afterwards the
attributes are the tuple (Name : string, Birthday : date, Purse : integer, Account
: Oid). This makes typing of methods more complicated than in the standard
case. To define the type of a method, we first define how tuple types can be
combined. The combination of tuple types is of importance for the definition
of object extension through addons. The tuple type composition operator is
defined as follows:

Definition 12 Given two tuple types T = (t, : T1,...,tn : Tn) and S = (51 :
O1y..ySm : Om) With {t1,...,th} N {51,...,5m} = @, the composition of these
tuple types is defined as follows:

T®S=(uy:vi,...,Un+m : Vnim)
whereu;:vi € {t1 :T1, ..., tn : T, S1:01,...,Sm :Om} and Vi,0 <i<n+m:
Ui < Ujyl-

Please note that Definition 4 required that labels are unique in DEGAS. Hence,
the requirement {ty,...,tn} N {51,...,5m} = @ is always satisfied by two tuple
types. This unicity requirement can be imposed on DEGAS’ type system, because
of the absence of multiple inheritance in the language.

The composition of two types can be used in place of the composing types,
because the composition is a subtype of each composing type.

Theorem 2 Given two tuple types T and S, then:
T®S<T

Proof Recall the definition of the subtyping relation for tuple types:

ifor=(1:11,....In:Tw)€Tand 02 = (M : v1,....,my: k) €T,
such that Vi € {1,...,k},3j € {1,...,n} : m; = lj A Tj < v;, then
o] < 0.

From Definition 12, we have the following:

T = (b2 Thyeew, b P Ti)
S = {S1:01;::4:5m  Tm)
T®S = (Ur1:Vi,...,Un+sm : Vnim)
where u; : v; € {t; : T1,...,tn : Tn,51 : O1,...,5m : O} imposes that all ele-

ments of the composition are elements of the composing tuple types. Further-
more, the requirement Vi,0 < i < n+ m: u; < Ui+ implies that all elements
of the composition are unique. Hence:

Vi,0<i<n,3j,0<j<n+m:iti=ujAti=Vj
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This implies the subtyping relation T® S < T ]

Because the type of an object is not fixed, a method can only operate on those
attributes whose presence is certain. These are the inherent attributes of an
object and the attributes defined in the same addon as the method itself. The
typing of methods. however, must take the variability of an object’s type into
account. The absence of a fixed underlying type of an object can be solved by
introducing a type variable representing the type context of a method [Vreeze,
1991]. It is used, for example, in TM/FM to correctly type inherited methods. In
the DEGAS data model, the relevant part of the type context for a method M in
an object O is given by the class, or inherent type, of O plus, if M is defined in
an addon A, the type A. The rest of the type context is represented by a type
variable. Since the rest of the current type of an object is not of importance, it
may be of any type.

Definition 13 Given a method M defined in an addon A that extends a class
C with input parameters in, : Ti,...,iny : Ty and output parameters out, :
O1,...,0Uly : Opm. The type of M is:

VPET:A®P XTI X - XTyp —=A®PXO1 X+ XOm
where A = Type(C) ® Type(A)
To illustrate this, consider the example of a Person object:
Object Person
that is extended through an addon

Addon AccountHolder
Extends Person

In the addon AccountHolder, the following method is defined:

GetCash(amount:integer) {
Purse := Purse + Account.giveMeMoney(amount)
}

This method takes a Person object extended with an AccountHolder addon
and an integer, yielding again a Person object extended with an Account-
Holder addon. The typing of the method GetCash is:

Vp € T:GetCash: A® p X integer — A® p
where the type context of this method is

A = Type(Person) ® Type(AccountHolder)
= (Name : string, Birthday : date, Purse : integer, Account : Oid)

This manner of typing methods preserves subtyping of functions. This is stated
in the following theorem:



70 5.2. OBJECTS

Theorem 3 Given two function types, T = T| — T and o = 01 — 02 Witho < T.
Subtyping is preserved by DEGAS method typing:

VpeET:A®pXT)T —A®pP XT2
<
VpeT:A®pXxX01 —A®p X0

Proof From the definition of the subtyping relation on Cartesian products in
Definition 6, it follows clearly that given types t; and t;:

VseT:ti<th=t1 Xs<trXSs

Therefore, given

g = 01— 0?2
T = T1—-T2
o & T

we have:

TI <01 AN02 =T2
and it is straightforward that given a tuple type A:

VpeT:
A®PXTI <A®p X0
A
A®PXO2<A®pPXT2

This means that the subtyping relation of functions is preserved by DEGAS me-
thod typing. m]

5.2 Objects

The previous section defined the type system used for the formalisation of
DEGAS. Before we define the effects of method execution in the next section, we
define a number of operators for use in the definition of the DEGAS model:

Definition 14 Given an object class or addon T:
1. Attr(T) yields the set of attributes defined in T.
2. Meth(T) yields the set of methods defined in T.
3. Cycl(T) yields the set of lifecycles defined in T.
4. Rules(T) yields the set of rules defined in T.

Similar functions are defined for an object relative to time:
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Definition 15 Given an object O at timet:
1. Attr(O,t) yields the set of attributes of O at timet.
2. Meth(O,t) yields the set of methods of O at time t.
3. Cycl(0,t) yields the set of lifecycles of O at time't.

4. Rules(0,t) yields the set of rules of O at time t.

5.3 Method Semantics

In this section, we define the first element of DEGAS’ semantics, viz., the effect
of method execution on a tuple of attributes. The results from this section
are used to define the semantics of method execution by a DEGAS object in
Section 5.7.2.

The effects of method execution are defined in terms of variant interpretations
and the semantics of basic functions. Here, we use a simplified notion of an ob-
ject’s interpretation. An interpretation for an object maps the object to a value
from the domain of the underlying type. Please note, that the interpretation of
an object as used in this section, does not include a temporal aspect. There-
fore, we refer to it as a snapshot interpretation. In Section 5.4, we discuss the
full interpretation of a DEGAS object, i.e., relative to time.

A snapshot interpretation of an object maps the attributes of the object to a
value in its domain.

Definition 16 A snapshot interpretation I of an object O is a function
I:0id — D(T)

where T = (X1 : T1,...,0n - Tn) is the underlying type of O. I assigns values k;
to each «; such thatk; € D(T1;).

A variant interpretation relates two snapshot interpretations to each other. A
variant of a snapshot interpretation I(0O) is denoted by I(O){x = v}. I(O){x =
v} is the same as I(O), except for the value assigned to the attribute &, which
is v.

The semantics of method calls is defined in terms of a function M. It yields
the interpretation of an object after method execution, given the interpretation
before execution and a method call. Hence, its type for an object of class C with
type T = Type(C) is given by

M : (0id — D(T1)) X Meth(C)

—_—

(0id — D(T))
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We consider as given the semantics of the basic functions on the basic types.
We start with the semantics of assignment, which is defined in terms of variant
interpretations.

Definition 17 Given a statement S and a snapshot interpretation I(O) for object
0, M(S,1(0)) returns the snapshot interpretation of O after execution of S on
O. The effect of an assignment statement A, denoted by M(A,I1(0)), is defined

by:
1. Leta; : T; be an attribute of O and v a correctly typed basic value, then

M(ai:=v,1(0)) = 1(0){a; = v}

2. Let a; : T; be an attribute of O and BF(p,...,pn) a correctly typed basic
function call, then

M(al = BF(plv---npn);I(O)) = I(O){al = [BF(ply---:pn)]}

where [ ] denotes the evaluation of the basic function.

3. Leta;: Ti be an attribute of O and m(p, ..., pn) a correctly typed method
call, then

M(ai:=m(p1,...,pn),1(0)) = I1(0O){ai = R(m(py1,...,pn))}
where R is a function yielding the return value of a method call as defined
in Definition 22.

Application of a statement to all elements of a set simultaneously amounts to
taking the map of a function on a set.

Definition 18 Let S be a statement, A : Pt a set-valued attribute and I1(A) =
{vi,..., vy} its interpretation, then

M(S,I(A)) = {M(S,I(v1)),...,M(S,1(vn))}
Production 4.22 of the syntax definition defined set iteration:

Forall a in A
where C;
do S.

where A : Pt is a set-valued attribute of O, C; is a condition on a variable of
type T and S is a statement. The semantics of set iteration is defined as follows:

Definition 19 Let ST be a set iteration (A, Cr, S), where A : PT is a set-valued at-
tribute of O, C+ is a condition on a variable of type T and S is a statement. Given
an interpretation 1(O) on an object O the effect of SI, denoted by M(S1,1(0)),
is defined as

M(SI,1(0)) = M(S,1({Cr(a)la € A}))

C+(a) denotes that the condition C is true fora : T.
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Statements can be combined to form compound statements. The components
of a compound statement are executed in sequence.

Definition 20 Given two statements S1 and S>, the semantics of the execution of
a compound statement S, = S1;S» is defined as:

M(Sc,1(0)) = M(S2,M(51,1(0)))

The semantics of executing a method on an object is defined in terms of the
statements forming the method. The statements used in defining the semantics
of method execution are statements with the actual parameters in place of the
formal parameters.

Definition 21 Given a method m = Sy;...; Sk, the effect of a method call m on
object O with interpretation I(O) is given by:

M(m,1(0)) = M(Sy;...; 5k 1(0))

Methods can also return values. In this case, we define the return value of the
method and the effect on the object executing the method.

Definition 22 Let m = S,;...;Sk; Returne be a method with Sy,...,Sx state-
ments and e : T an expression. The effect of executing m on object O with inter-
pretation 1(O) is given by:

M(m,I(0)) = M(Sy;...;5k,1(0))
The result of the method call R (m) : T that is returned to the caller, is defined as
R(m) = [e]

where [e] denotes the evaluation of e after evaluation of M(m,1(0))

5.4 Time in an Autonomous Object

The aspects of the semantics discussed above are all independent of time. Since
DEGAS aims at the integration of historical database functionality in an ac-
tive database, this section proceeds with the temporal semantics of the DEGAS
data model. The requirement on the availability of historical data in DEGAS is
twofold. First, we need the historic values of attributes to be available. Second,
the method calls executed must be available in order to check for triggered
rules and to check method calls against lifecycles.

In this section, we discuss the basics of DEGAS’ temporal dimension. First, we
discuss nature and source of time in a DEGAS database. Then, we give an initial
definition of a DEGAS object history. This is an initial definition, because rule
execution and lifecycle checking impose a number of constraints on a DEGAS
object history to be a valid object history. These constraints are discussed in
Section 5.7.
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5.4.1 Clocks and Autonomous Objects

Time is relatively simple in DEGAS. As was discussed in Section 3.4.2, we times-
tamp once only, so there is no distinction between valid and transaction time in
this model. Since the timestamp is produced by the system, DEGAS uses trans-
action time. In our model, time in an individual object is discrete and linear.
The discreteness of time does not pose problems for applications, since we can
make the granularity of time sufficiently small for any application. Linearity of
time means that there is a strict order on all time-stamped events in an object.

Timestamps are always local. In other words, a DEGAS object only works with its
own historical view of the world. An event it has seen earlier, happened earlier
in its time. Two general rules govern the way timestamps are handed out by
a DEGAS object. First, time increase monotonically. Second, two events never
get the same timestamp. These requirements on timestamps are rather loose.
It honours one of the two requirements formulated by Lamport in [Lamport,
1978]. These requirements were formulated with help of a clock function C; for
process P;:

1. If a and b are events in process P; and a comes before b, then Ci(a) <
Ci(b).

2. If a is the sending of a message by process P; and b is the receipt of the
message by process Pj, then C;(a) < Cj(b).

In the distributed environment of a DEGAS database, it is very difficult to guar-
antee Condition 2, which constrains the relation between the clocks of different
autonomous objects. If different objects use different clocks, possibly running
at different speeds, clock synchronisation must take place. The other option
is to use one global clock for all objects, which compromises the autonomy of
objects. Hence, we do not follow requirement 2 in the DEGAS model. This leads
us to the following definition of the clock function in DEGAS:

Definition 23 The clock of an object O is a function Tp : N — N that takes as
input an event counter and yields as output its current time. Tp is an injective
increasing function.

5.4.2 Pre-history

The history of a DEGAS object records past states of the object. It does this by
recording all past states with the method calls that brought the object into the
state. Please note, that the history of a DEGAS object is not replayable, since
a value may depend on a result returned by another object. Object autonomy
implies that an object can not give guarantees on the state of another object.
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State Pre-history We now have all definitions to define a state of a DEGAS
object at a certain point in time. Following temporal database terminology, this
is called the snapshot state [McKenzie and Snodgrass, 1991]. A snapshot state
records the time the object entered that snapshot state, a valuation for a tuple
of attributes, as defined in Definition 16 and the method call that brought the
object into this snapshot state.

Definition 24 A snapshot state of an object O is a quadruple (t,T,I(T),MC),
where

1. t is a timestamp giving the start time of the validity of this state.

2. T is a tuple type {a; : T1,...,am : Tm), the underlying type of O at time't.
3. I(T) is the interpretation of T in the interval starting at time t.

4. MC a method call.

The state history of an object records the snapshot states the object went
through in the past. Not any sequence of snapshot states is a correct state
history for a DEGAS object. A state transition can only occur in the history, if
it, e.g., respects the lifecycle specified by the programmer of that object. There-
fore, we start with the definition of a state pre-history. A state pre-history is
a sequence of snapshot states. In Section 5.7, we define the constraints that a
state pre-history must satisfy to be a correct state history.

Definition 25 The state pre-history SH of an object O is a sequence of snapshot
states

SH =SH(0);SH(1);...;SH(n)
SH(i) = (ti, T3, I(Ti), MCy)
where
VOo<i<n-1:ti<tiz1 Al(Ti+1) = M(MCis1,1(Ti))

An example of a state pre-history is the following:

(13:00: 00,
(balance : integer,week : integer, maxover : integer),
(balance = 1002, week = 130, maxover = 400),
create(acct))

(13:15:00,
(balance : integer,week : integer, maxover : integer),
(balance = 902, week = 230, maxover = 400)
withdraw (100))



76 5.5. INTERPRETATION

Event Pre-history In the definition of the DEGAS data model, we sometimes
only need the historical events without state information. To deal with these
definitions, we define the event history of an object. The event history is a
projection of the state history. The events occurring in a DEGAS object are the
method calls executed by the object.

Definition 26 Given a state pre-history SH = SH(0);SH(1);...;SH(n), we de-
fine an event pre-history EH = EH(0); EH(1);...;E(n) of time-event pairs, such
that:

VO<i=<n,SH(i) = (t;, 1, I1(1i),MC;) :
EH() Y (1, MCy)
For use in the definitions on event specification, we define the type of an event

history. For an object, the alphabet of the event history is the set of all possible
methods occurring in that object.

Definition 27 Given an object O of class C. The set of all addons of C is denoted
by AddonSet(C). The set of all potential methods of O is defined as follows:

Meth(0O) = {u | (u € Meth(y)) A (y € {C} U AddonSet(C))}

The set of methods at time t is given, using the set of addons at time t, denoted
by Addons(O,t):

Meth(O,t) = {u | (u € Meth(y)) A (y € {C} U Addons(0,t))}

Definition 28 Given an object O of class C with set of addons Addons(C) at
time t. The type of an event history of O, denoted by EHist(O) is a string over
the alphabet of time-event pairs:

{T € Timestamp|0 < T <t} X Meth(O)

5.5 Interpretation

The next step in the formalisation of DEGAS is the interpretation of a DEGAS
object. Using the definition of the interpretation, we can refer to an attribute
value of an object at a certain time point. This allows us to check the validity of
a condition on an object, which is needed to define the semantics of selectors
in Section 5.6.

As stated before, we refer to the state of a DEGAS object at a certain point in
time. Hence, an interpretation of an object is defined relative to time:

Definition 29 Given a state history SH = SH(0);...;SH(n) for object O. The
interpretation of O at time't

1(0)(t) = I(T})
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if
I0<i<n,SH®) = (ti, 7, I1(Ti),MC;) :
i<t
A
Vi< j<n,SH(j) = (tj, Tj,I(1;),MC;j) :
t<tj

It is now straightforward to define the value of an attribute in a DEGAS object
at a certain time point. For example, balance(t) gives us the value of attribute

balance at time t.

Definition 30 a(t) denotes the value of an attribute a in object O at time t.
a(t) . va, lf

IO)t)EI(a:0)(t) =v,

where & denotes the standard logical inference relation [Dalen, 1985].

From the interpretations of all objects in a database we construct a model for
a database relative to time.

Definition 31 Letdb = {0,1,...,0n} be a set of objects.

r(db)(t) = |JI(0:)(t)

i=1
is a pre-model for db.

If all object references in a pre-model exist, it is a model for a database.

Definition 32 Given a set of classes C, a pre-model for a database at time t
I'(db)(t) is a model for db, iff

Via:0)(t):0€eC
_

Joedb:I(a:0)(t) =0

From a model of a complete DEGAS database, we get a model for the part of the
database related to a specific object. To determine this part, we need the notion
of reachability through path expressions.

Definition 33 Given two objects 0, and 0. We can reach o, through path ex-
pressions from o, at time t, denoted by R(03,t), if we can construct a path
expression ®1.x2. - - - .0y, such that:

1 € Attr(oz,t)

A

VO<i<n:xi+ € Attr(og. - - -.x4,t)
A

K.X2.* = - .0p = 01
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The set of reachable objects is use to define the model
Definition 34 I'(O)(t) < '(db)(t) is the model induced by O. It is defined by

roy = \J 1o
0€R(0O,t)

Theorem 4 Given two objects 0, and 02, then:
02 € R(01,t) = T(02)(t) =T (01)(t)

Proof For every element o € R(02,t) we can construct a path expression
X1.02. - - - .0n, Such that:

1 € Attr(oz,t)

A
VO<i<n:aig € Attr(og. - - - ., t)
A

X1.02.%+*.0p =0

The fact that o2 € R(o;,t) means that we can construct a path expression
B1.B2.- - - .Bm, such that

B1 € Attr(oy,t)
A
VO <i<m:Bi € Attr(By1.- - - .Bi,t)

A
BI-BZ- LS. .Bm = 02
As a consequence, if 0 € R(o2,t), the path expression
BI'BZ- T -Bm.(xl,(xz_ s .0n

satisfies the requirements of inclusion in R (01, t) formulated in Definition 33.
Thus, we have:

Yo € R(o2,t) : 02 € R(01,t) = 0 € R(01,t)
Hence:
R(02,t) € R(01,t)

which means that
Uoer(o,,1) I(0) (t) =T (02)(t)

c
Uoer(or,t) I(0) (t) =T (01)(t)
]
The model of an object over an interval is obtained by taking the models at the
time points in the interval together through a direct sum, denoted by &.

Definition 35 Given an object O and an interval (tsiayt, tena). We define a model
['(O, (tstart, tena)) for O during (tstart,tena), as follows:

[(O, (tstart, tena)) = €@ T(O)(t)

tE(tstart tena)
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5.6 Selectors

Selectors play an important role in two key elements of DEGAS, rules and quer-
ies. As defined in Chapter 4, a selector is an event-condition pair. An object is
selected by a selector, if the event occurs in the history and the condition is
satisfied. Since this situation can occur multiple times in the history of a DEGAS
object, a selector returns the set of sub-histories that satisfy the selector.

Clearly, the definition of selectors is based on the event history of an object,
defined in Section 5.4, and the interpretation of an object, defined in Section 5.5.
Selectors are used to define the semantics of DEGAS rules in Section 5.7.3 and
to define the semantics of DEGAS queries in Section 5.9.

5.6.1 Event Specification

An event specification consists of an event expression and a time window. An
“event expression is a process algebraic expression [Baeten and Weijland, 1990]
over an alphabet, that is the union of the set of method names of the object
and timestamps.

Definition 36 An event expression is a process algebraic expression over a set of
basic actions:

E = Meth(O)

The type of an event expression is denoted by EventExpr. An event expres-
sion matches an event history, if a sub-history exists that is a trace of the pro-
cess specified by the event expression, as defined in [Baeten and Weijland, 1990,
Chapter 7.

The process algebraic operators used, and their meaning are given in the follow-
ing table. Please note that, like in ordinary calculus, > represents a sequence of
+’s.

Sequence A;B A followed by B

Choice A+B AorB

Repetition A* One or more times A

Merge A||B=A;B+ B;A A and B in parallel

Negation -A= > e An event that is not A
ec€T\{A}

An additional operator used in an event expression, that is not an action, is
the L symbol. It denotes the end of the event history, i.e., an event expression
ended with L only matches the tail of an event history.

Since multiple matching sub-histories may be found, the result of testing an
event expression on an event history is a set of matching sub-histories. As an
example, consider the event history:

(1,e);(3,£);(8,9);(10,a); (11,a);(12,a); (13, b); (14, c);
(22,d);(33,e); (34, f); (39, b); (40, c)
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Testing the event expression b;c on this event history yields the set
{{(13,b);(14,c), (39,b);(40,c)}

The event expression b;c; 1 is only matched by the tail of the event history. Its
result is:

{(39,b);(40,c)}
Another example is the event expression a*; b that is matched by the set
{(10,a);(11,a);(12,a);{13,b), (11,a);(12,a);(13,b), (12,a);(13,b)}

An event expression is extended to an event specification by adding a time win-
dow to it. A time window specifies a subset of the history by giving pairs of
timestamps that bound the intervals comprising the sub-history. Informally
speaking, its effect is that the event expression is only checked against this
part of the history.

Definition 37 The type of an interval specification is denoted by TimeSpec,
defined as:

TimeSpec = P(Timestamp X Timestamp)
where:
VT :TimeSpec: (t1,t2) eT =1t <t

A time window is a function that yields a set of sub-histories, given an event
history and a time specification.

Definition 38 Given an object O of class C, then the time window function TW
on O is typed as follows:

TW : TimeSpec x EHist(C) — PEHist(C)
The result of a time window function’s application is defined as follows:

Ve:EHist(C), TS : TimeSpec,EH : EHist(C),n € N :
€=E€1;...;€n
o€ TW(TS,EH)
=
A(t1,t2) €eTS,Vli<i<n:
S o B )

As an example, suppose that we again have the following event history:

(1,e); (3, £);(8,9);(10,a);(11,a);(12,a);{13,b); {14, c);
(22,d);(33,e); (34, f); (39, b); (40, c)

The time specification {(1,9)} gives us the following sub-history as a result:

(1,e);(3,£);(8,4),(9)
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Multiple elernents in the time specification means that the result has multiple
elements. For example, the time specification {(1,9), (20,35)} gives us the fol-
lowing result:

(1,e);(3,f);(8,9),(9)
(20);(22,d); (33,e); (34, f); (35)

Given these preliminary definitions, we can now turn to the definition of a com-
plete event specification. An event specification has two components, an event
expression Expr and an interval specification TS:

Expr[TS]

An event specification is triggered, if one of the sub-histories in the time win-
dow parses the event expression correctly. The reader is referred to [Baeten and
Weijland, 1990, Chapter 7] for an explanation of matching process specifica-
tions with process traces, i.e., matching event expressions with event histories.

Definition 39 Given an object O. An event specification E = Expr[TS] is trig-
gered, if Expr matches (as defined in Definition 36) one of the sub-histories
in TW(TS,EHist(0)), where EHist(O) is the event history of O. The function
EventTest(E,O) returns the set of matching sub-histories of E. The type of this
function is:

EventTest : (EventExpr X TimeSpec) X C — PEHist(C)

For example, consider the event history given above and the following event
specification:

f:90(1,9),(20,35)]

It would be triggered in the first sub-history. The function EventTest(E,O)
returns the singleton set

{(3,£):(8,9)}
An event specification can be triggered by multiple occurrences of an event. In
this case, we will get multiple matching sub-histories. For example, the event
specification

e; f[(1,10),(20,35)]

yields as the result of EventTest(E, O) the following set:

{(1,e);(3,f), (33,e);(34, 1)}
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5.6.2 Condition

The other part of a selector is the condition. A condition is a predicate on the
model induced by the object. In other words, it can contain local attributes and
attributes of other objects, provided these are reachable through path expres-
sions. Hence, the typing is as follows:

Definition 40 A condition C defined in an addon A extending class C is a boolean
function

VpeT:Type(C)® Type(A)® p — {true, false}

Satisfaction of a condition by an object relative to time is then defined as fol-
lows:

Definition 41 Given a condition C on an object O and a sub-history EH of O.
The timestamp of the first event in EH is denoted by tgy start- The timestamp of
the last event in EH is denoted by tey ena- C is satisfied by O during EH, denoted
by C(O,EH), iff

I'(O, (ten,start, tEH,ena)) E C

where = denotes the standard logical inference relation [Dalen, 1985].

5.6.3 Selection

An object is selected by a selector, if the event specified in the On clause occurs
and the condition in the if clause is satisfied during the matching sub-history
of the event.

Definition 42 (Selection of an object) An object O of class C is selected by a
selector S = (E, C) with an event specification E and a condition C, iff

JEH € EventTest(E,O) : C(O,EH)
The selection set Selected (S, O) is defined accordingly:
Selected(S,0) = {EH € EventTest(E,O) | C(O,EH)}

5.7 From pre-history to history

The work in the previous sections allows us to formalise the dynamic aspects
of a DEGAS object, viz., type evolution, method execution and rule execution. In
this section, we define their semantics building on the elements defined earlier
in this chapter. Furthermore, these semantics yield a number of constraints on
the history of a DEGAS object. These constraints lead to the definition of a valid
object history and a valid DEGAS database in Section 5.8.
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5.7.1 Type Evolution

The type of a DEGAS object can change over time through the addon mecha-
nism. Hence, the attributes we see in the state history can vary over time. The
variation is limited by the addons defined for the inherent type of the object.

If the type of an object is extended, this must be done by an Extend action. This
is stated in the following constraint:

Constraint 1 The type of an object can only be extended through the addition
of an addon. Given a state pre-history SH = SH(0);...;SH(n) of an object O of
class C:

Vi,0<i<n
SH(i) = (ti, T3, I(T3), MCy)
SH(i+1) = (tiv1, Tis1, I (Tix1),MCiy1) :
x € AddOnSet(C)A
Ti® Type(A) = Tis1
=D
MCiy1 = Extend(x)

where Extend(«x) extends O with an addon «.
The effect of Extend(«x) on the set of addons is as follows:

Definition 43 Given an object O of class C and an addon &« € AddonSet(C).
The effect of an action Extend () on the set of current addons Addons is given

by:
Addons(tiz1,0) = Addons(t;,0) U {«}

Likewise, the loss of attributes must be through an action to drop an addon.

Constraint 2 The type of an object can only be limited by dropping an addon.
Given a state pre-history SH = SH(0);...;SH(n) of an object O of class C:
Vi:0<i<n
SH(i) = (t;, T4, 1(T:), MC;)
SH(i+1) = (ti+1, Tir1, [(Ti+1), MCis1) :
o € AddOnSet(C)A
Ti =Ti+1 @ Type(x)
=
MCi;1 = Remove(x)

where Remove () is the action to remove addon «.

Definition 44 Given an object O of class C and an addon « € AddonSet(C).
The effect of an action Remove(x) on the set of current addons Addons is
given by:

Addons(tiy1,0) = Addons(t;,0) \ {a}
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In addition, we have the constraint that the type of an object must always cor-
respond to its set of active addons.

Constraint 3 Given a state S = (t, T,I1(T),MC) for an object O at time't,

A = AddOns(t,0)
=
T =Type(Class(0)) ® Quca Type(a)

5.7.2 Method Execution and Lifecycles

Execution of a method is the only way to bring a DEGAS object from one state
to another. Therefore, every state of the object must be the result of the ap-
plication of a method to the previous state. In addition, execution of methods
and rules must conform to the lifecycles. As we saw above, lifecycles are event
expressions, where an event can be guarded by a condition.

Definition 45 Given an object O of class C, a lifecycle is a guarded basic process
algebraic expression where the event alphabet M is the set of methods defined
onO.

M= Meth(O)
and the guard conditions are of the type defined in Definition 40.

The semantics of lifecycles is formulated in process algebraic terms [Baeten
and Weijland, 1990].

Definition 46 Suppose we have an object O with the following lifecycle defini-
tion:

Lifecycles
G
(@)

Cn
Then O follows the process:

C=0GIC|...ICn

with communication function y defined by: Vo« € M : y(x, ®) = &, where M is
the event alphabet of C as defined in Definition 45.

In process algebra, a communication function y specifies synchronisation be-
tween two processes. y(A, B) = C means that the actions A and B have to take
place simultaneously and are replaced in the trace of the process by the single
action C. For example, if we have the process (A;B)|(C;D) and y(B,D) = E,
then a resulting trace might be: A; C;E.
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In practical terms, the communication function defined for a DEGAS object
means, that if an action occurs in more than one lifecycle, the execution of
that action is a step forward in all lifecycles.

To define what methods are allowed to execute, we define the set of lifecycles
of an object relative to time.

Definition 47 Given an object O of class C. The set of lifecycles at time t is
defined as follows:

Cycl(0,t) = Cycl(C) v U Cycl(x)
axeAddons(O,t)

The set of lifecycles of an object is translated to a single process specification.
Method execution will be checked against this process.

Definition 48 Given Cycl(O,t), the set of lifecycles of an object O at time t.
The lifecycle of O at time t is given by:

LCo(t) = |cecyclonC

with communication function y defined by: Ve € M : y(x, x) = «, where M is
the event alphabet of C as defined in Definition 45.

Different alternatives exist for the composition of the complete lifecycle of a
DEGAS object from the set of specified lifecycles. These alternatives are identi-
fied using a number of questions on the nature of a lifecycle specification.

Composition The first question is about the composition of lifecycles. The
main issue is, how to deal with the occurrence of a method in multiple lifecy-
cles. Suppose a method u occurs in lifecycles C; and C». If a call to u is made,
it can be a step in only one lifecycle, or in both of the lifecycles containing
the action. These two alternatives can be formalised in process algebraic terms.
Suppose we have an object O with a set of lifecycles {C;, Ca,...,Cyn}. In the first
case, this will lead to the following compound lifecycle:

GllCl... IC

If, in the other case, multiple lifecycles consume the same action, there will be,
in process algebraic terms, communication between the lifecycles. Thus, these
are composed using communication merge:

GIC|...|Cn

where the communication function y is defined by Ve € M : y(x, &) = «,
where M is the event alphabet of the lifecycle definition.
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Lifecycle specification in addons The second issue in lifecycle composition
is the way we deal with lifecycles specified in addons. It has obvious advan-
tages to treat these lifecycles on the same footing as lifecycles specified in an
object. There are, however, problems related to the specification of lifecycles in
addons. These originate in the question whether an addon is allowed to modify
lifecycles of the original object. If this question is answered positive, how can
an addon modify the lifecycles? Another problem in that case is, what happens
if two addons modify the same lifecycle?

The main requirement on lifecycle specification in addons is, that addons must
conform to the original object. In other words, the lifecycles specified in an
addon are not allowed to violate the lifecycle of the original object. If Cp is the
lifecycle of the original object O and Cj4 the lifecycle of O extended with addon
A, we can define this using the process algebra abstraction operator as:

o (Ca) = Co

where H is the set of methods defined in the addon. This constraint must be sat-
isfied by redefinition of lifecycles. In practical terms, this means that an addon
can only extend the original lifecycle, e.g., by interspersing its own methods.

If we use the communication merge as a composition operator, we get redefini-
tion for free. This is shown by the following example. Suppose object O has the
lifecycle:

A;B;C

If we specify in addon A the lifecycle:
A X5B Y C

then the resulting lifecycle for the extended object will be:
(A;B;O) (A X;BY;C) = A X;B Y, C

To illustrate the potential conflicts of lifecycle redefinition, consider the follow-
ing situation, where two addons try to modify an object’s lifecycle. An example
are constraints added to objects in a graphical database, as shown in [Akker
and Siebes, 1995b]. The original object O has the lifecycle:

A;B

Object O engages in a relation that demands that O must execute action C
between A and B. Thus, the addon A; requires O to follow:

A;C;B

Now, we have a problem if we add an second addon A;, that desires an action
D to be inserted in the lifecycle of O:

A;D;B
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The question is what the desired lifecycle of O is, if it has both A; and A, and
how this should be specified. If we use parallel composition for lifecycles in
addons, we get the following lifecycle for O:

(A;C;B)|I(A; D; B)

The drawback of this behaviour is shown, if we take the viewpoint of addon
A;. It does not know of the existence of D. Hence, seen through A; O might
execute A; B without C occurring in between. If we use communication merge,
the result would be that O follows:

A; (CID); B

This conforms to the original lifecycle of the O, but each occurrence of A and
B also satisfies the lifecycles of the addons.

Our choice Communication merge as a composition operator for lifecycles
gives us inherent redefinition, which is needed by addons. If we would use the
parallel merge, redefinition would not be possible, thus putting undesirable
constraints on the design of addons. Note however, that we can still express
the other way of merging lifecycles within an object or addon specification by
explicitly using a parallel merge.

The behaviour with regard to the specification of lifecycles in addons is the
main reason for our choice of communication merge with identity as commu-
nication function as the lifecycle composition operator in DEGAS.

Lifecycle Checking A method is executed, if it does not violate the lifecycles
imposed on the object. Hence, the object state must satisfy the, possibly empty,
precondition given by the lifecycle. In addition, the method call in combination
with the event history must match the event expression given by the lifecycle.
If this is true, the method call is executed and appended to the history. If the
method call does not satisfy the lifecycle of an object, it is removed from the
method queue and discarded.

As a result of addon extension and deletion, the set of events, i.e., methods,
is not fixed over the lifetime of an object. This means that we might encounter
events in the history, that are currently not defined on the object, since they are
part of a removed addon, and consequently are not present in the current life-
cycle. To cater for the deletion of addons, the lifecycle check abstracts from the
events not currently present in the object. In other words, if an event is a me-
thod of a removed addon, then it is disregarded for the check of a method call
against the current lifecycle. Abstraction is defined using the ACP abstraction
operator 0.

Definition 49 A method call m(py,...,px) is executed on an object O with state
history SH = SH(0);...;SH(n) at time t, iff 0y (EH;m(p1,...,px)) Iis a prefix
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of a trace that matches the process LCo(t) and C(t,O), where H = Meth(O,t).
The resulting new state of the object is

SH' = SH; (t, Ta, M(m(p1,...,px),I(T0)), m(p1,...,Pk))

This requirement on method execution is translated to the following constraint
on the state history of a DEGAS object.

Constraint 4 Given a state history SH = SH(0);...; SH(n) of an object O. Each
method call MC occurring in SH at time t must follow the lifecycle Cyclo(t).

5.7.3 Rule Execution

As explained before, rules in DEGAS use the event-condition-action format. As
we described in Section 5.6, an event-condition pair is a selector. Hence, for the
definition of its semantics, a rule is considered to be a selector-action pair.

Definition 50 A rule R is a triple (S, A), where S = (E,C) is a selector with an
event expression E and a condition C. A is a method call, as defined in Produc-
tion 4.21.

Recall that a rule R that appears in the semantics of DEGAS as (S, A), with
S = (E, C) is written in the DEGAS syntax as:

OnE
if C
do A
A rule is triggered, if the object is selected by the selector of the rule. Please

note, that encapsulation of rules means that the selector is applied to a single
object in this case.

Definition 51 A rule R = (S, A) with a selector S and an action A is triggered
on an object O, if Selected(S,0) + @.

From this definition follows the definition of the set of triggered rules.

Definition 52 The set of triggered rules R at time t on object o is:
R = {p € Rules(o,t) | p = (S,A) A Selected(S,0) + @}

where Rules(o,t) denotes the set of rules in object o at time't.

At first sight, one would expect rule processing to result in a constraint that
one of the rules triggered by a method must be executed. The fact, however,
that actions of rules must also obey an object’s lifecycle means that a rule’s
action need not necessarily be executed.



5.8. A DEGAS DATABASE 89

5.8 A DEGAS Database

The preceding sections in this chapter defined everything needed to formalise
a DEGAS database. The typing system served as a foundation to the definition
of method execution. Both were used in the preliminary definition of a DEGAS
object history. In order to define the constraints on a DEGAS object history,
we formalised the interpretation of a DEGAS object, which allowed us to define
selectors in DEGAS. After this, we were able to define the semantics of method
and rule execution. These resulted in a number of constraints on the history of
a DEGAS object.

A valid object history of a DEGAS object is defined as follows:

Definition 53 A state pre-history SH of an object O is a state history for O, iff it
satisfies all constraints defined in this Chapter.

A DEGAS database is a collection of objects with a valid object history and
correct references between objects.

Definition 54 A collection of objects Q) is valid DEGAS database at time t, if:
1. Each o € Q has a valid object history.

2. For each time point o < T < t, we have a valid model T (Q)(T).

5.9 Queries

A DEGAS query collects a set of objects in the root class of a query, specified
in the select from part, that satisfies the selector. Object autonomy implies
that some objects will be in a state where they are not willing to respond to a
query. Furthermore, as a result of the volatility of the network, a query might
not reach all objects. The semantics of the DEGAS query language includes these
issues. The abstract semantics of the DEGAS query language is set-based. The
main reason to use this kind of semantics is the need to include reachability
and willingness to respond of objects in the DEGAS query semantics. These
notions cannot be included in a semantics based on an object algebra [Alhajj
and Arkun, 1993, Ozsu and Straube, 1991, Shaw and Zdonik, 1990].

A query consists of a class and a selector:

Definition 55 A query Q is a pair (C,S), where C is a class and S is a selector
on that class.

Recall from Section 4.4, that the syntactic equivalent of a query Q = (Class, S),
with § = (E,C) is:
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Select from Class

onE

if C
The selector of a query has one extension relative to the selector defined in
Section 5.6. The exists clause makes it possible to connect different classes
through a nested query. The result of this query is related to objects in the root
class of the query. The semantics of a nested query is defined as follows:

Definition 56 Given a query Q, with a nested query:

Select from C,
onkE,
if C; and Exists in Q3 : C(0,,0;)

where Q» = (C2,S2). We define two selection sets:
S1 = {o€C(C|Selected({E;,C}),0) + D}
S, = {oe€ (G| Selected(Sz,0) + @}

Let EH; be a matching sub-history of O1 € S, and EH, a matching sub-history of
O, € S2. The timestamps tgy, start, LEH, ends LEH,,start, And tem, ena are defined
the same as in Definition 41. This predicate is satisfied by O and O3, iff

[(O1, (teH; start, tEH, end)) ® T (O2, (teH, start, tEH, ena)) = C(O1,02)

where & denotes the standard logical inference relation [Dalen, 1985] and where
@& denotes a direct sum.

Due to network failures, it is possible that a query does not reach all objects.
Hence, the set of objects the query is applied to is restricted to the set of objects
reachable from the site where the query is issued.

Definition 57 (Reachability of an object) An object o at site s, is reachable at
time t for a query Q issued at site s,, denoted by Reachable(Q,o,t), if 51 is
reachable from s, as defined in Definition 2.

To answer a query an object must be in a state where it is willing to an-
swer the query. This means that its lifecycle must allow the execution of the
CheckSelector method at the time it takes the method call from its message
queue.

Definition 58 (Willingness to respond) Given an object o and a query Q that
sends a CheckSelector method call q to o. o is willing to respond to Q at time
t, denoted by Willing(Q, o, t), if the method call q satisfies the lifecycle of O at
time t, where t is the time o takes the call to q from its message queue.

Using the notions of reachability and willingness, we define the result of a
query. The result is a set containing object - history pairs, where an element
(O, Hist) means that the query is satisfied by sub-history Hist of object O. O
must be in the set of willing and reachable objects.
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Definition 59 A query Q = (S, C) issued at time t4. It is a function

ClassName X (EventExpr X TimeSpec x Condition)

S—

P(0id,EHist(C))
The resulting set of objects is the set

Result(Q) = {(O,EH)| O € CA EH € Selected(S,0)
A Reachable(Q,0,t,3) A Willing(Q, 0, tg)

5.10 Conclusion

In this chapter, we discussed the abstract semantics of DEGAS. The fundamen-
tals are the typing of objects, the semantics of method execution, and the na-
ture of time in DEGAS. These are used to define the central notion of the DEGAS
semantics, the object history. An object history is a sequence of the past object
states. Since the history is the result of execution of method calls and rules, the
semantics of these dynamic aspects determine constraints on the history.

The use of process algebra for lifecycle and rule specification gives a straight-
forward way to define their semantics. The event history must be a trace of the
process specified by the lifecycle. Reversely, a rule is triggered if a sub-history
of the event history is a trace for the event specification in the rule’s selector.

The formal definition of DEGAS queries is set-based. A novel feature is the use
of event specification as a temporal condition. The query semantics includes the
notions of reachability and willingness, that are particular to the DEGAS model.
These lead to a notion of query result quality, which is further examined along
other operational aspects of DEGAS in the next chapter.
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Chapter 6

Functional Specification of
DEGAS

Chapter 5 gave the formal definition of the DEGAS model. In this chapter, we
give a functional specification of the elements needed to implement a DEGAS
database. A functioning DEGAS database requires a number of elements to be
present. Except for a layer providing basic object functionality, these are all
DEGAS objects. Hence, the specification of the basic DEGAS object is the central
element of this chapter.

A specialisation of a DEGAS object is the relation object. Its function implies a
number of additional requirements on the data it stores and the actions it im-
plements. Besides instances of objects and relation objects, a DEGAS database
needs class objects to manage objects, relation objects, and addons. Further-
more, the distribution model is implemented by site objects. For each element
of a DEGAS database, we give the data structures required, the primitive actions
offered, and their execution.

Further specification given in this chapter is a functional specification of query
processing. Here, we give the objects required to implement DEGAS query pro-
cessing following the same approach as for the other aspects of a DEGAS data-
base.

6.1 Preliminaries

Before we give the formal specification of a DEGAS database, we define short-
hands for a number of often used types. Furthermore, we define the notation
for a list. Please note, that the types in this chapter are a form of pseudo-typing,
since the specified implementation is outside the scope of the DEGAS type sys-
tem.
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A type used in this chapter is the type MethodCall. It consists of a method
name and a list of parameters:

MethodCall = string X [(parameterName, parameterValue)]

The type of parameterValue depends on the type of the method parameter.

A further type is the type of a selector, denoted by Selector Ty pe. Recall from
Section 5.6, that it is defined as:

SelectorType = (EventExpr x TimeSpec) X Condition

A final matter of notation serves to specify the presence of a set of named
capabilities in an object, where the name is dependent on the contents of the
set. An example is the get method associated with an attribute. In this case,
the name of the attribute is part of the name of the method, because the set of
attributes is fixed for a given object specification. The notation for the presence
of named capabilities, where a part of the name fixedpart is fixed and another
part is a variable Name over a set Set, is as follows:

* x » For each Name € Set : » * %
fixedpart<Name>

For example, a DEGAS object has a get method for every attribute. This is writ-
ten as follows:

* % x For each Attribute € Attr : x x %
get<Attribute>

6.2 Objects

The basic building block of a DEGAS implementation is the object. In this sec-
tion, we specify the working of the basic DEGAS object. First, we specify the
information recorded in a DEGAS object. Then, we give the primitive actions of
a DEGAS object. The main result of this section is the specification of the execu-
tion cycle of an object. This cycle implements all dynamic aspects of a DEGAS
object, viz., method execution, rule execution, and query processing.

6.2.1 Data Structures

A basic DEGAS object contains the following data structures:

State History The object records its complete historical state, as was de-
fined in Definitions 25 and 53. It is denoted by SH.
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Query Queue The query queue is the queue for incoming query messages. In
the specification of a DEGAS object it is denoted by Q. The incoming queries are
calls to the CheckSelector method. Besides the requested selector, we record
in Q the identity of the sender and of the reply’s recipient. Furthermore, a query
has an identity gid to allow the Site object to process multiple queries at a
time. This is explained further in Section 6.8. Consequently, the query queue is
specified as follows:

Q : [(sender:oid,rveplyTo :oid,
qid : integer, selector : SelectorType)]

External Method Queue Method calls from other objects are queued in the
external method queue, denoted by M,;. Each entry records the sender of the
call, the reply’s recipient, the name of the method called, and the list of param-
eters. The identity of the sender is used in the lifecycle, while the answer of a
method is sent to the reply’s recipient. This differentiation is used to process
queries in the CheckSelector action and to efficiently evaluate path expres-
sions using the Get action. Consequently, M,y is specified as follows:

Mext : [(sender :oid,replyTo :oid,MC : MethodCall)]

Internal Method Queue Method calls from other methods in the object are
queued in the internal method queue. It is denoted by M;y,:. Otherwise, the
internal method queue is identical to the external method queue.

Mint : [(sender :oid,replyTo :o0id,MC : MethodCall)]

Reply Box The answer to the evaluation of a path expression is put into the
reply box. It is denoted by RB. It can contain a single value of any type.

RB : Value

Capability Sets Each category of capabilities is represented in the DEGAS ob-
ject by a set. To illustrate the discussion, we use the specification of a Person
object from Section 4.2. It is repeated in Figure 6.1.

Attribute Set This set contains the current attributes of the object. It is
denoted by Attr. It is the materialisation of the function Attr (O, t) defined in
Definition 15. In the unextended Person object in Figure 6.1, it is:

Attr = {name, birthday, birthplace}

Method Set This set contains the current methods of the object. It is denoted
by Meth. It is the materialisation of the function Meth (O, t) defined in Defini-
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Object Person
Attributes
name : string
birthday : time
birthplace : string
Methods
tryToBuy(company:string, number:integer, maxPrice:real) = {
DemandClass.initiate(company,number,maxPrice)
}
readPaper(paper:string) = {
SubscriptionClass.initiatePerson(paper)
}
useNews = {
Extend(InformedOwner)
}
Lifecycles
(tryToBuy)*
((extend(Shareholder)||extend(InformedPerson));useNews)*
Rules
On (extend(Shareholder)| extend(InformedPerson))
do useNews
EndObject

Figure 6.1: Specification of the Person object, given earlier in Figure 4.3.
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tion 15. In the unextended Person object in Figure 6.1, it is:

Meth = {tryToBuy, readPaper, useNews}

Lifecycle Set This set contains the current lifecycles of the object. It is de-
noted by Cycl. It is the materialisation of the function Cycl(O,t) defined in
Definition 15. In the unextended Person object in Figure 6.1, it is:

Cycl = {
(tryToBuy)*,
((extend(Shareholder)|lextend(InformedPerson)); useNews)*
}

Rule Set This set contains the current rules of the object. It is denoted by
Rules. It is the materialisation of the function Rules(O,t) defined in Defini-
tion 15. In the unextended Person object in Figure 6.1, it is:

Rules = {
On (extend(Shareholder)|lextend(InformedPerson))
do useNews

}

This This attribute contains the object’s own identity.
This : Oid

It cannot be changed, but can be referenced as a normal attribute.

6.2.2 Primitive Actions

The following actions are implemented by a DEGAS object:

CheckSelector This action checks the satisfaction of an event - condition
pair. It implements the EventTest function defined in Definition 39. The be-
haviour of CheckSelector is dependent on the sender of the action. If the
CheckSelector action is invoked from outside for query processing, it must
check whether the sender of the message is allowed access to the attributes in
the condition.

The input of CheckSelector is a selector, a sender and a replyTo. Its output is
a set of matching sub-histories. It is specified as follows:

SelectorType x Oid x Oid — PEHist
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If CheckSelector is called from outside, i.e., Sender is not the object itself, it
executes get actions to check access of Sender to the attributes in the condi-
tion. Then, the tests in CheckSelector are executed in the sequence discussed
in Section 5.6. First, the event specification is matched against the event history.
Then, the condition is tested on each matching sub-history. A call to Check-
Selector is not recorded in the history, because it is not a method.

The algorithm executed by the CheckSelector action is given in Figure 6.2. In
this specification, we see that the CheckSelector action is called recursively
for rule processing after execution of getAttr methods. This recursion is only
one level deep, because the Sender is always This in rule processing.

CheckSelector(Selector, Sender, ReplyTo) = {
Event, Condition — Selector
if Sender # This
then {
Allowed := @
foreach Attr in Attr(Condition)
where MethodAllowed(getAttr(), Sender)
do Allowed := Allowed U { Attr }

if Allowed # Attr(Condition)
then Exit()

foreach Attr in Attr(Condition)

do {
ExecuteMethod(getAttr(), Sender, Self)
* * x Rule Processing * x *
R = {R € Rules | R = (S, A) A CheckSelector(S, Self) + @}
(S,A) — Pick random from R

}

}

Matching Set — EventTest(Event)
Evaluate Condition on Matching Set
Return Matching Subhistories

Note: Attr(Condition) denotes the set of attributes occurring in Condition.

Figure 6.2: The algorithm executed by CheckSelector.

The use of CheckSelector reflects the two uses of selectors in DEGAS. Queries
are sent to objects as calls to CheckSelector, which are queued in the query
queue Q. The selector of a rule is also checked using CheckSelector. These
calls are made directly by the object itself, as is shown in Section 6.2.4.
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MethodAllowed This action checks a given method call against the current
lifecycle of the object, as defined in Definition 49. The input parameters are the
sender of the call, the name of the method, and the input parameters of the call.
MethodAllowed is a Boolean function, that can only be invoked from inside the
object. Hence, its type is:

MethodAllowed : oid x MethodCall — Boolean
Invocations of MethodAllowed are not recorded in the object’s history.

ExecuteMethod This action executes a method. Its effect is given by the func-
tion M defined in Section 5.3. The effect of ExecuteMethod on the object is
as defined in Definition 49. In a method, we can have three kinds of actions,
viz., modifications of attributes, calls to methods within the object, and calls to
methods in other objects. These are discussed in turn below.

We start with the effect of attribute modifications on the object itself. Given a
state history SH = SH(0);...;SH(n) at time t, where

SH(n) = (tn, Tn,I(Tn), m)
The new state history SH’ as a result of ExecuteMethod with a method call
u(4qu,...,qx) is:

SH' = SH; (t, Tn, M(m(qy,...,4qx),1(Tn)), u(q1,.--,4qk))
Please note that ExecuteMethod itself is not recorded in the history.

Alternatively, a method can make calls to other methods. If the call MC is to
a method of the object itself, then it is added to the internal method queue of
the object:

M’ = Mint +MC

int
where M;,, denotes M;y,; after execution of the call. Calls to methods in other
objects are sent off to other objects using the sendMessage action provided by
the system layer, that is discussed in Section 6.3. For a method call Path.MC,
where Path is a path expression evaluating to an object identity Obj, the fol-

lowing is executed:
sendMessage(Obj, MC)

The evaluation of path expressions in an object is translated to calls to get
methods. The object awaits the answer to the get calls. Hence, this is a form of
blocking communication. The answer to the get calls is delivered by a send-
Reply action of the system layer (see Section 6.3) in the reply box of the object.
Assignment from the reply box RB blocks the object until the reply box is
filled with a result. To prevent the object form blocking infinitely, a time-out is
built in. If the block is timed out, the action is aborted and not recorded in the
history.

ExecuteMethod is invoked from inside the object. It is not recorded in the
object’s history.
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6.2.3 Standard Methods

The following methods are present in a DEGAS object. Like the primitive actions,
they implement basic DEGAS functionality. Unlike the primitive actions, they are
subject to the lifecycle specification. Since they are methods, they are recorded
in an object’s history.

getPathExpr This method evaluates a path expression given as parameter.
If the path expression is an attribute of the object itself, then the appropriate
get method is invoked. Otherwise, the head of the path expression is evalu-
ated to serve as the destination of a getPathExpr message containing the tail
of the path expression. As a consequence, the evaluation of a path expression
requires a sequence of messages between objects. An example is shown in Fig-
ure 6.3. There, we see the use of the replyTo field of a message. Access to the
successive attributes in the path expression is dependent on the access rights
of the previous object in the evaluation chain, that is the sender of the method.
The answer, however, must be returned to the original sender of the complete
path expression, object A in Figure 6.3. This is achieved by including its iden-
tity as the ReplyTo object. The final object in the evaluation chain, object Z in
Figure 6.3, executes a return statement in its getAm method, which returns the
value of Am to the ReplyTo object, i.e., object A.

The algorithm executed by getPathExpr method is the following:

getPathExpr(pathexpr) = {
if 3 attribute € Attr: pathexpr = attribute
then
Mext := Mext + ( sender=Sender, replyTo=ReplyTo, getattribute )
else
sendMessage(Dest=head(pathexpr), sender=Sender,
replyTo=ReplyTo, Mesg=getPathExpr(pathExpr))

get A get action is defined for every attribute of the object. For the attribute
Attr, the associated actions is named getAttr. It is used to specify access to
attributes from outside. The attributes of a DEGAS object are accessible from
outside in two manners: queries and path expressions. In both cases, a refer-
ence to an attribute is treated as a call to the associated get method. Since it is
a method, every call to getAttr is entered in the history of the DEGAS object.

For a query, the sender of the get method is set to the sender of the query.
For example, suppose the following query on the class Employee is issue by the
object Taxman:

Select from Employee
if Salary > 70000
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getPathExpr (A1.A2.A3..Am-1.Am)
ReplyTo: Object A
Sender: Object A

Object B

Al = Object C

getPathExpr (A2.A3..Am-1.Am)
ReplyTo: Object A
Sender: Object B

Object C

A2 = Object D

Object Y

Am-1 = Object 2Z

getPathExpr (Am)
ReplyTo: Object A
Sender: Object Y

Object Z

Am = value (Am)

getAm()
ReplyTo: Object A
Sender: Object Z

Figure 6.3: Evaluation of a DEGAS path expression.
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To check this condition CheckSelector executes the method getSalary with
sender = Taxman. Hence, the lifecycle checks whether Taxman has access
to the attribute Salary. Likewise, the evaluation of path expressions also leads
to calls to get. The evaluation of a path expression is discussed above in the
specification of getPathExpr.

The default lifecycle of a get method is to allow everyone to call it. Hence, if
the programmer does not specify a lifecycle for the getSalary method, then it
is:

Lifecycle
getSalary*

If we wish to restrict the access to an attribute, we specify a guard for this
method. For example, the following lifecycle restricts access to salary to the
tax inspector.

Lifecycle
[sender=Taxman]getSalary*

Of course, any other restriction on the execution of getSalary is possible. The
composition of lifecycles using the communication merge operator |, discussed
in Section 5.7.2, ensures that these specifications are orthogonal to the rest of
the lifecycle specification.

Extend This action extends the object with an addon. The name of the addon
is given as a parameter. Given a call to Extend with addon A as a parameter.
The capabilities defined by A are given by the following sets:

Attr(A),Meth(A),Cycl(A),Rules(A)

The effect on the object of executing Extend(A) is given by

Attr’ = Attr U Attr(A)
Meth' = Meth uMeth(A)
Cycl' = CycluCycl(A)
Rules’ = RulesuURules(A)

where Attr’ denotes the set of attributes after execution of Extend. The mean-
ing of Meth', Cycl’, and Rules’ is similar. Please note, that we assume unique
names for attributes and methods, as stated in Section 4.3.

The lifecycle of the object after execution, denoted by LC’, is:
LC" = |aecycrA

where | denotes communication merge with communication function y (u, u) =
u for all u € Meth'.
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To implement the extension with an addon, an object requests the appropriate
schema information from the addon class object. The capabilities in the addon
are then added to the capabilities of the object. The addon class object is re-
ferred to through the name of the addon. The actions of the addon class object
are specified in Section 6.5.

Remove This action removes an addon from an object. The name of the addon
is given as a parameter. Given a call to Remove with addon A as a parameter.
The capabilities defined by A are given by the following sets:

Attr(A),Meth(A),Cycl(A),Rules(A)

The effect on the object of executing Remove (A) is given by

Attr’ = Attr\ Attr(A)
Meth'’ = Meth\Meth(A)
Cycl' = Cycl\Cycl(A)
Rules’ = Rules\Rules(A)

where Attr’ denotes the set of attributes after execution of Remove. The mean-
ing of Meth’, Cycl’, and Rules’ is similar. The lifecycle of the object after
execution, denoted by LC’, is:

LC' = |A€Cycl’7\

where | denotes communication merge with communication function y (u, u) =
u for all u € Meth'.

Ki1ll The Ki11 action terminates the existence of an object. By default, it can
only be executed by the class object and the object itself. Hence, its default
lifecycle specification is:

Lifecycle
[sender=ClassObject or Sender=Self] Kill

Default Lifecycle In the specification of a DEGAS objects’ actions, we referred
a number of times to the default lifecycle of a DEGAS object. Actions that can
be invoked from outside and that are recorded in the object’s history, must be
specified in the lifecyle of an object. This is the case for the following actions:
get, Extend, Remove, and Ki11.

Lifecycle
* x x For each Attribute € Attr: x x *
get<Attribute>*
Extend*
Remove*
[Sender=ClassObject or Sender=This] Kill
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6.2.4 Execution

The functionality of a DEGAS object is implemented by an execution cycle that
uses the actions defined in the previous subsection. Basically, the object cycles
through two activities, viz., processing queries and executing method calls. Rule
execution is done as part of method execution. The execution cycle is depicted
in Figure 6.4.

Process Queries  [<€------ Query Queue

Queries in queue Query Queue Empty

—————— Internal Method Queue

Execute Method
—————— External Method Queue

Y

Generate set of
triggered rules

Figure 6.4: Execution Cycle of a DEGAS Object

The exact actions of the object are given in the algorithm in Figure 6.5. In the
query processing stage, the object process the complete query queue Q. If Q is
empty, then it proceeds with method execution. Here, method calls from inside
the object take precedence over method calls from outside. Hence, the object
only takes a method call MC from M,x¢, if M;y; is empty. The call MC is then
checked against the lifecycle of the object. If it is not allowed it is discarded. It
MC is allowed, then MC is executed.

After execution of a method, the set of triggered rules is generated. One rule is
then picked at random for execution. Execution of the rule’s action means that
the call is made. In the case of an internal method call, it is appended to M;y;.
If it is a call to another object, it is sent to that object.
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* x * Execution Cycle of a DEGAS object *x x *
Repeat
* x * Query Processing x x x
While 9 not empty do
(Sender,ReplyTo,QueryID, Selector) — Head(Q)
Result := CheckSelector(Selector, Sender)
ReplyTo.queryResult(Quer yID, Result)

* x * Method Execution * * %
Repeat
if M;,: not empty
Sender,ReplyTo,MC — Head(Min:)
Mint — tail(Mine)
else
Sender,ReplyTo,MC — Head(Mex:)
Mext — tail(Mext)
fi
Until MethAllowed(Sender,MC)
ExecuteMethod(M C)
Return answer to ReplyTo, if necessary

* % * Rule Processing * * x
R = {R € Rules | R = (S, A) A CheckSelector(S, Self) #+ @}
(§,A) — Pick random from R
* * x The action is executed x * *
Send message A
Until The End of this Object

Figure 6.5: The Execution of a DEGAS Object
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Action of the object | Event History Internal Method Queue
EH Mint

Execute U [u2, 3]

R, triggered [u2, p3, 01]

Query processing

Execute y, My 2 [p3, 1]

R, triggered [us3, a1, 2]

Query processing

Execute p3 H1; H2; U3 [, 2]

Query processing

Execute o M1; M2; M35 &1 [e2]

Query processing

Execute o M1; p2; u3; 00502 | []

Figure 6.6: An example execution by a DEGAS object

As an illustration of this algorithm, we show an example execution of a DEGAS
object O. In this example, we abstract from the data in O in order to focus on
the dynamic aspects. The object has five methods, u;, 2, us3, o, and op. All
methods manipulate data except u;, which calls y> and us. The lifecycle of O
is:

(1l (uzs p3)); (o llexz) ) *

Furthermore, O has two rules:

Rl = On Hi1
do o
Ry = On u;
do o

We show a short snapshot of O’s execution in Figure 6.6. It starts with the
execution of y;. We do not show the checks against the lifecycle, since it is
obvious that this execution satisfies O’s lifecycle.

In DEGAS rule processing, non-executed triggered rules are discarded by the
object. In combination with the negation operator, this gives the application
programmer a great degree of flexibility in the interaction of rules and lifecy-
cles. If the action of a rule is not executed, we have two options, viz., to leave
the rule unexecuted or to retry it at a later time. A rule is left unexecuted in
situations where only a timely reaction is useful. An example is found in au-
tomatic trading in financial markets. There, our reaction to a falling price of
shares might be that we buy a number of them. This is only profitable if we
do it immediately, because otherwise the price may already have risen again.
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A rule is retried, if the action must always be executed once a rule has been
triggered. Rules that maintain integrity constraints will use such a strategy.

Both strategies can be programmed in DEGAS through the negation operator —.
Suppose an object must react to the occurrence of the event A; B with an action
u. If we only want an immediate reaction, we will use the standard behaviour
and specify the rule as:

On A;B
do u

On the other hand, if we want the action always to be executed after the event,
we will specify the following rule:

On A; B; (—u)*
do u

This rule is triggered, as long as no u action is execute after the occurrence of
A;B.

We can also characterise the DEGAS execution model using the dimensions of
rule execution in active databases, discussed in Section 3.1. Since rules are en-
capsulated in an object, and an object executes as a separate thread, rule ex-
ecution in DEGAS is instance-oriented. Furthermore, the coupling of event and
condition is immediate, since they are checked as a unit by CheckSelector.
The action of a rule is queued into the internal method queue M;,;. Hence,
condition - action coupling is deferred.

6.3 System Layer

The basic DEGAS object is built on top of a system layer. It provides the lowest
level implementation of objects, i.e., an abstraction of the physical object level.
The two functions implemented by the system layer are creation of new objects
and communication between objects.

Empty DEGAS objects created by the system layer implement the functionality
defined in Section 6.2, but does not contain any capabilities. Hence, a class
object has to add these in order to make the object an instance of its class.

Communication between objects in DEGAS can take place in two ways:

1. Point-to-point asynchronous. This kind of communication is through me-
thod calls. These are sent off by an object to a specified other object with-
out expecting an answer.

2. Point-to-point synchronous. This kind of communication is used to eval-
uate path expressions. The object evaluating the expression awaits the
result from another object.
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3. Broadcast. The broadcast facility offered by the DEGAS system layer sends
a message to all objects in a class. An example of its use is in query
processing, as discussed in Section 7.2.

The communication primitives defined in this section act directly on the data
structures specified for the basic DEGAS object.

The recipient of a message is specified by its identity. The point-to-point com-
munications action additionally accept names as destination objects. The name
is resolved to an object identity by the system layer.

In the following definition of the system layer, we consider this layer as one
entity. In Chapter 7, we discuss the implementation of the system layer in a
distributed environment.

6.3.1 Data Structures
The system layer records a directory of all objects and their addresses.
Object Directory This contains all objects in the DEGAS database with their
physical addresses. It is denoted by ObjDir. The pseudo-type of ObjDir is:
ObjDir : P(Oid x PhyysAddr)
ObjDir is only used internally by the system layer to deliver messages to
DEGAS objects.
Name Directory This directory records the identities of named objects. It
maps names to object identities. It is specified as follows:
NameDir : P(String x Oid)

NameDir is used internally by the system layer to support communication
to named objects. Objects recorded in NameDir can be specified by name as a
destination. NameDir contains the following objects:

1. Class objects

2. Relation Class objects
3. Addon Class objects
4. A site object

The former three categories are referenced by the name of the class with Class
appended. For example, the class object of Person is known as PersonClass.
The latter is referenced by the name Site.
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6.3.2 Actions

Here, we specify the actions offered by the system layer in terms of their effects
on the data in the system layer and the objects involved.

NewEmptyObject This action creates a new empty DEGAS object. A call to
NewEmptyObject results in an empty DEGAS object with identity NewOid at
physical address New Addr. Hence, the type of NewEmptyObject is:

NewEmptyObject:1 — Oid X PhysAddr
The new object directory ObjDir’ after execution of this action is:
ObjDir' = ObjDir v {NewOid x New Addr}

The action NewEmptyObject can be invoked by class objects. NewOid, the
identity of the new object, is returned to the sender of the action. Its use by the
class object is explained in Section 6.4.

sendMessage This action implements asynchronous point-to-point commu-
nication. It sends a message from an object to another object. Messages are
always method calls in DEGAS. The parameters of sendMessage are the follow-
ing:

Destination object Dest oid
Sending object Sender oid
Recipient of reply replyTo Oid
Message Mesg MethodCall

The destination of sendMessage can also be specified by a name. The effect of
sendMessage is that the message Mesg is added to the external method queue
Mex: of Dest. The external method queue after execution is denoted by M,

Dest.M,,; = Dest.Mex; + Mesg

Any object can invoke sendMessage.

sendQuery This action implements another form of asynchronous point-to-
point communication. It sends a query from an object to another object. The
parameters of sendQuery are the following:

Destination object Dest oid

Sending object Sender oid

Recipient of reply replyTo Oid

Query Identity QueryID integer
Selector Sel SelectorType
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The destination of sendQuery can also be specified by a name. The effect of
invocation of sendQuery by an object O; on behalf of an object O, is that a
tuple Query added to the query queue Q of Dest, where

Query = (sender =0, rveplyTo = 0>,
qid = QuerylID, Selector = Sel)

The query queue after execution is denoted by Q":
Dest.Q" = Dest.Q + Query

Any object can invoke sendQuery.

sendReply This action implements synchronous point-to-point communica-
tion. It is used to return a value to an object. The parameters of sendReply are
the following:

Destination object Dest oid
Reply Answer value

The destination of sendReply can also be specified by a name. The effect of
sendReply is that the value Answer is put into the reply box RB of Dest. The
reply box after execution is denoted by RB’:

RB' = Answer

Broadcast This action sends a message to all objects in a class. The parame-
ters of Broadcast are a class name DestClass and a method call Mesg:

Destination class DestClass Classname
Sending object Sender oid
Recipient of reply replyTo Oid
Message Mesg MethodCall

Execution of Broadcast effects the external method queues M,y ; of all ob-
jects in class DestClass. The external method queue M,,, after execution is
as follows:

VO € DestClass : 0.M,,;, = O.Mext + Mesg

Any object can invoke Broadcast.

6.3.3 Execution

The execution of the system layer is completely driven by requests from DEGAS
objects. Calls to actions in the system layer are executed on a First Come, First
Served basis. This is the only place in DEGAS, where object autonomy is com-
promised by introducing a form of synchronisation. Clearly, this is necessary
to allow objects to communicate.
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6.4 Class Objects

Class objects implement a major part of object management. They are respon-
sible for the creation of new object instances of their class. As a consequence,
a class object keeps a record of existing instances. Furthermore, a class object
provides schema information.

6.4.1 Data Structures

The following data is recorded in a class object, in addition to the data recorded
as standard in a DEGAS object.

Extent This set contains the identities of the objects in the extent of the class
managed by the class object. Because the system layer provides an abstraction
from physical addresses, the type of Extent is:

Extent : POid

Class Attribute Set This set contains the attributes specified for the class.
It is denoted by ClassAttr.

Class Method Set This set contains the methods specified for the class. It is
denoted by ClassMeth.

Class Lifecycle Set This set contains the lifecycles specified for the class.
It is denoted by ClassCycl.

Class Rule Set This set contains the rules specified for the class. It is de-
noted by ClassRules.

6.4.2 Actions

A class object provides all actions of a DEGAS object. In addition, it provides
actions to create new objects and actions to provide schema information.

New This action produces a new object in the class. First, a new empty DEGAS
object is requested form the system layer. Then, this object is filled with the
capabilities specified for the class. The created object is added to the extent of
the class.

After the first phase, the following conditions hold:

NewOid
NewOid.Attr

NewEmptyObject ()
%)



112 6.5. ADDON CLASS OBJECT

NewOid.Meth = O
NewOid.Cycl = @
NewOid.Rules = @

Filling the object means that the following post-conditions are satisfied, where
Extent’ denotes the value of Extent after execution of New.

Extent’ = Extentu {NewOid}
NewOid.Attr = ClassAttr
NewOid.Meth = ClassMeth
NewOid.Cycl = ClassCycl
NewOid.Rules = ClassRules

getExtent This action returns the extent managed by the class object.
getExtent : 1 — POid

This action can be invoked by a Site object.

IsAttribute This is a Boolean function to check for the presence of an at-

tribute in a class. IsAttribute is used to check the correctness of queries, as

is discussed in Section 7.2. As parameters, it takes the name and type of an
attribute. It is typed:

IsAttribute: String x Type — Boolean
The IsAttribute action can be called by Site objects.
IsMethod This is a Boolean function to check for the presence of a method in

a class. IsMethod is used for type checking. As parameters, it takes the name
of the method and its parameters. It is typed:

IsMethod : String X [(name : string, Type)] — Boolean

The IsMethod action can be called by Si te objects.

6.5 Addon Class Object

Information about addons is stored in addon class objects. An addon class ob-
ject is similar to a class object. The only difference is the absence of an action
to create a new object. Since an addon extending an object does not have object
identity, an addon class object only adds and removes existing object identi-
fiers to and from its extent. The class extended by the addon, specified in the
Extends clause in the addon definition, is denoted by BaseClass.
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Object PersonClass
Attributes
Extent :P0id
ClassAttr : P( Name, Type )
ClassMeth : P( Name, Type )
ClassCycl
ClassRules
NewOid : Oid
attr : ( Name, Type )
meth : ( Name, Type )
site : oid
Methods
New = {
NewOid := NewEmptyObject()
Extent : = Extent U {NewOid}
NewOid.Attr := ClassAttr
NewOid.Meth := ClassMeth
NewOid.Cycl := ClassCycl
NewOid.Rules := ClassRules
Return NewOid

getExtent = {
return Extent

IsAttribute(Name, Type) = {
Foreach attr in ClassAttr
where attr.name =Name and attr.type = Type
do return True

IsMethod(Name, Type) = {
Foreach meth in ClassAttr
where attr.name =Name and attr.type = Type
do return True

}

Lifecycle

New*

[sender=site]getExtent*

[sender=sitelisAttribute*

[sender=site]isMethod*

Rules
EndObject

Figure 6.7: An example DEGAS class object.
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6.5.1 Data Structures
The following data is recorded in an addon class object, in addition to the data

recorded as standard in a DEGAS object.

Extent This set contains the identities of the objects extended with the addon
managed by the addon class object. Hence, it has a slightly different meaning
than Extent in a class object. The type of Extent is:

Extent : POid

Addon Attribute Set This set contains the attributes specified for the ad-
don. It is denoted by AddonAttr.

Addon Method Set This set contains the methods specified for the addon. It
is denoted by AddonMeth.

Addon Lifecycle Set This set contains the lifecycles specified for the ad-
don. It is denoted by AddonCycl.

Addon Rule Set This set contains the rules specified for the addon. It is de-
noted by AddonRules.

6.5.2 Actions

The actions of an addon class object are to provide information about the ca-
pabilities of an object.

getExtent This action returns the objects extended by the addon of the ad-
don class object, i.e., the value of Extent.

getExtent : 1 — POid
This action can be invoked by a site object.
registerExtent This action registers the extension of an object with the ad-
don. It does not have any parameters, because the message is sent by the ex-
tended object. The execution of registerExtent results in the addition of the

sender’s identity to Extent. Extent’ denotes the extent of the addon class
after execution:

Extent’ = Extent U {Sender}

The action registerExtent can be called by objects in BaseClass.
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removeExtent This action informs the addon class object of the removal of
an addon. It does not take any parameters, because the message is sent by the
object the addon is removed from. The execution of removeExtent results in
the removal of the sender’s identity from Extent. Extent’ denotes the extent
of the addon class after execution:

Extent’ = Extent \ {Sender}

The action removeExtent can be called by objects in BaseClass.

IsAttribute This is a Boolean function to check for the presence of an at-
tribute in a class. IsAttribute is used to check the correctness of queries, as
is discussed in Section 7.2. As parameters, it takes the name and type of an
attribute. It is typed:

IsAttribute: String X Type — Boolean

The IsAttribute action can be called by Site objects.

IsMethod This is a Boolean function to check for the presence of a method in
a class. IsMethod is used for type checking. As parameters, it takes the name
of the method and its parameters. It is typed:

IsMethod : String x [(name : string, Type)] — Boolean
The IsMethod action can be called by S1ite objects.

Default Lifecycle The default lifecycle of an addon class object ensures that
the actions to extend an object are executed in the right sequence. In particular,
this lifecycle guarantees that an object can only register with the addon, if it has
executed the necessary action for extension.

Lifecycle
[sender € BaseClass]registerExtent*

[sender € Extent]removeExtent*
[sender = site]getExtent*

6.6 Relation Objects

A relation object is also a DEGAS object. Hence, it contains all data structures
and actions defined in Section 6.2. In addition, a relation object always has
attributes to record the identities of the partners in the relation. Furthermore,
the involvement of partners means that terminating a relation is more complex
than simply killing the relation object.

6.6.1 Data Structures

Additional attributes provided by the relation object contain the identities of
the partners in the relation.
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Partners The specification of a relation object specifies the partners in the
relation in the ReTlation clause. For example, consider the Relation clause in
a Share relation:

Object Share
Relation Company, Shareholder

As a result the Share relation object contains the attributes Shareholder and
Company. Furthermore, the partners in the relation are recorded as a set in the
attribute Partners. In general, consider a relation object R with the following
header:

Object R
Relation Py, P;,..., Py,

Then we have the following elements in the attribute set of R:

V1<i<n:P;:oid € Attr
Partners : POid € Attr

The partner objects in the relation are stored a second time in a set to be able
to send a message to all partner object at the same time through a set iteration.

6.6.2 Actions

An action to terminate the relation is provided in addition to the straight ki11
in a DEGAS object.

Terminate This action implements termination of the relation. As a result of
Terminate the relation object ceases to exist. Furthermore, the partners in the
relation must be informed of the end of the relation.

Methods

Terminate = {
* * x For each Part € Partners x x*
Part.terminate<Part>()
}
Rules
On Terminate do Kill
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6.7 Relation Class Objects

A relation class object is a class object. Hence, it contains all capabilities of a
class object and, by implication, all capabilities of a DEGAS object. The main role
of a relation class object is to match partners for a relation. The way this takes
place is dependent on the application semantics of the relation. Hence, this sec-
tion only gives a standard interface for initiating relations. Possible scenarios
for use in applications are discussed in Section 7.3.

6.7.1 Data Structures

The additional data structures in a relation class object relative to a class ob-
ject serve to record data about prospective partners in relations that are being
formed.

Prospect This attribute records prospective partners in a relation. It is de-
noted by Prospect. Since the result of the matching process are relations, the
prospective partners are recorded as tuples of objects. The set of partners in a
relation is denoted by Partners.

VPart € Partners : Prospect : P(<Part>: oid)

A tuple in this set denotes a potential combination of objects to form a relation.
The missing partners in a combination of prospects are represented by a Nul1
value in the tuple. For example, suppose we have a three way relation Schedule
with partners Teacher, Course, and Room. An example Prospect set in the
relation class object is:

{{Teacher :123,Course :345,Room : Null),
(Teacher :135,Course : 368, Room : Null),
(Teacher : Null,Course : 369, Room : 981)}

This relation class object has two teacher - course pairs looking for a room and

one course - room pair lacking a teacher.

6.7.2 Actions

The following actions are defined in addition to the actions of a class object.

initiate This action is used by prospective partners to express interest in
engaging in a relation. There is an initiate action for each partner in the
relation. Let Meth be the method set of a relation class object RC, then:

VPart € Partners : initiate<Part> € RC.Meth

In the example of the Schedule relation class object, we have the following
actions:
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initiateTeacher
initiateCourse
initiateRoom

An initiate method can have parameters, for example containing the desired
partner in the relation. The exact actions of these methods are dependent on the
application, as will be discussed in Section 7.3. As a consequence, the relation
class object is specified by the application programmer.

instantiateRelation This action does the actual instantiation of the rela-
tion. This means that it creates the relation object and instructs the partners
to extend themselves with the appropriate addon. Furthermore, it removes the
tuple of partners from Prospects.

Methods

* x xVPart € Partners: *x x x

instantiateRelation( <Part> : oid ) = {
Part.extend(<Part>)
Relation := new()
Part.initialise(Relation)
Foreach p in Prospects
where p.<Part> = <Part>
do Prospects := Prospects - p

}

This action can only be invoked by the object itself.

Default Lifecycle The default lifecycle of the initiate actions allows their
execution at any time.

Lifecycle
~x x x For each <Part> € Partners x xx
Initiate<Part>*
[Sender=Self] instantiateRelation*

6.8 Site Objects

A Site object facilitates object management, as discussed in Section 4.5. It has
a number of class objects, that provide schema information and record the
local extent of their class. The main activity of a Site object is related to query
processing.

6.8.1 Data structures

Data stored by the Site object are the classes known by the site and interme-
diate results of queries.
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ClassesOnSite This attribute contains the set of classes on the site. For each
class object, the Site object records name and identity.

ClassesOnSite: P{ClassName : String,ClassObj: Oid)

The local extent of the class, i.e., the part of the class extent at this site, is stored
by the class object, as discussed in Section 6.4

QResults This attribute contains the results of queries processed by the Site
object. The result of a single query is a set of object - history pairs. Its type is
denoted by QueryResultType

QueryResultType = P(Object : Oid,EH : EHist)
Please note that EHist denotes the type of an event history, as defined in Defi-
nition 28.
Because a Site object must have the ability to process multiple queries at a

time, it also records a query identity and the query generating object.

QResults:
P(Qid : integer,Issuer :Oid,Result : Quer yResultType)

The query identity serves to distinguish multiple queries processed at the same
time by the Site object. It is also sent with the CheckSelector request, as we
saw in Section 6.2.

NextQid This is a numerical attribute containing the next query identity to be
handed out:

NextQid : integer

It is simply a number, that is increased each time a query is distributed by the
Site object.

6.8.2 Actions

The actions of a Site object are mainly concerned with query processing. It
offers facilities to distribute a query over a class, collect the results from the
instances, and ship the result back to the object issuing the query.

DistributeQuery This action is used to distribute a query over the instances
of a class. As parameters it takes the identity of the query, the name of the class
and the query to be distributed.

Class : ClassName
Query : (sender : o0id,Selector : SelectorType)
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To distribute the query, the site object first assigns an identity to the query.
Then, it obtains the local extent of the class from the class object. After that,
the Si te object sends the query to all objects in the extent using the sendQuery
primitive of the system layer (see Section 6.3).

distributeQuery(Class : String, Query : QueryType ) = {
if not Class.isAttribute(Attributes in Selector)
or not Class.isAttribute(Events in Selector)
then exit

gid := NextQid

NextQid := NextQid + 1

extent := Class.getExtent()

foreach o in extent

do sendQuery(dest=0, sender=Query.Sender, replyTo=This,
QueryID= qid, Sel = Query.Selector)

}

In this specification QueryType is shorthand for the type of a query, as given
above.

queryResult This action is used to collect the results of a query. It adds a
given result for an individual object to the set of query results QResults stored
in the object. The parameters of queryResult are the identity of the query and
the set of matching sub-histories in the object history.

Qid: integer
LocalResult : PEHist

The effect of this action is that the local result is added to the set of query
results.

QR € QResults:
QR.Qid = Qid
QR.Result’ QR.Result v
{(object = ObjectID,EH = hist) |
ObjectID = Sender A hist € LocalResult}

The action queryResult can be invoked by any object.

shipResult This action sends the result of a query to the object issuing the
query. The result of a query g is taken from QResults. After it is shipped, the
result of g is removed from QResults. It’s actions are specified as follows in
DEGAS:

shipResult(Qid : integer) = {
Foreach gr in QResult
where qr.qgid = Qid
do {



6.9. CONCLUSION 121

sendMessage(qr.Issuer, This, This, answerQuery(qr.Result))
QResults := QResults - gr
}
}

The action shipResult can only be invoked by the Site object itself.

Default Lifecycle The lifecycle of a Site object prescribes the correct se-
quence for query processing. First, the object distributes the query. Then, it
receives the answers from the object instances. Finally, it ships the result back
to the sender of the query:

Lifecycle
| (distributeQuery;queryResult*;shipResult)*

6.9 Conclusion

In this chapter, we gave a functional specification of DEGAS as an intermediate
step between the abstract semantics and an implementation. To that end, we
identified for each element needed to implement a DEGAS database, what data
is stored and what actions are required.

As a foundation, a system layer offers communication and object creation ser-
vices. These are necessary for the basic DEGAS object, which implements all ob-
ject capabilities, viz., attributes, methods, lifecycles, and rules, using a number
of primitive actions. These actions are executed as part of a cycle, that pro-
cesses query requests, then executes a method, and processes triggered rules.

All further elements of a DEGAS database are specified as DEGAS objects them-
selves. For these objects, we specified the actions required for a DEGAS data-
base. Relation objects must offer actions to terminate the relation. Class ob-
jects, relation class objects, and addon class objects all take care of creating
instances in their class. The messages to handle this are standardised. Site ob-
jects do not implement part of the data model. Instead, their main task is to
facilitate query processing
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Chapter 7

Practical Aspects of DEGAS

This chapter addresses a number of issues in the realisation of a DEGAS da-
tabase. First, we discuss the prototype of a DEGAS implementation. In the in-
troduction of Chapter 6, we positioned the functional specification as half way
between the abstract semantics of DEGAS, specified in Chapter 5, and a DEGAS
implementation. Hence, this chapter discusses the implementation of the sys-
tem specified in the previous chapter. Additionally, we shortly discuss the in-
terface of DEGAS to the outside world.

Furthermore, the specification given in Chapter 6 gave only a specification of
a standard interface for creating new objects and new relation objects. In this
chapter, we discuss how application dependent semantics can be programmed
in DEGAS using this standard interface. Furthermore, we discuss how the ac-
tions specified in Chapter 6 are used to implement query processing in DEGAS.
This discussion includes the maintenance of a data dictionary and the approxi-
mation of query result quality in the context of DEGAS object autonomy.

7.1 Implementation of DEGAS

The implementation of a DEGAS database is explained by showing how to im-
plement each element of the functional specification. For this discussion, we
draw on our experience with the implementation of an early DEGAS prototype
in Python. In this section, we first motivate our choice for Python as the imple-
mentation language. Then, we explain the implementation of the key elements
of a DEGAS database. These are the basic DEGAS object and the system layer.
Other elements of a DEGAS database are themselves DEGAS objects. Therefore,
we can implement these, if we can implement a basic DEGAS object.
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7.1.1 The Implementation Language

The aim of the prototype DEGAS implementation was to provide a proof of con-
cept for the model defined in this thesis. The prototype is meant to show that
a DEGAS database can be implemented. This lead to the following requirements
on the implementation language:

1. Object support. Besides the obvious advantages of object orientation in
software development, the presence of objects makes implementation an
object-based system like DEGAS easier.

2. Facility for threads or processes. DEGAS objects run concurrently. Hence,
the implementation platform must support concurrency.

3. Made for Prototyping. Since the prototype is only meant to provide a
proof-of-concept, quick implementation is more important than optimal
performance.

We chose Python [Lutz, 1996] as the implementation platform for a DEGAS
prototype. Python! is an object-oriented scripting language developed at CWI
[Rossum, 1995b, Rossum, 1995c]. It is especially suitable for rapid prototyping,
since it draws on earlier experience with ABC [Geurts et al, 1990], designed
from the viewpoint of a programming language as a user interface. Python has
a number of features that were of particular use in writing a DEGAS prototype.
It has a large number of built-in data structures, such as list and dictionaries. A
Python dictionary has the usual structure of a key followed by an entry. As an
example, suppose we enter the following in the Python interpreter:

>>> telefoon = {}

>>> telefoon[’Johan’] = 4134

>>> telefoon[’Arno’] = 4139

>>> telefoon[’Arjan’] = 4054

Then, the contents of telefoon are as follows:

>>> telefoon
{’Arjan’: 4054, ’Johan’: 4134, ’Arno’: 4139}

Elements are deleted from a dictionary using the de1 statement:

>>> del telefoon[’Arjan’]
>>> telefoon
{’Johan’: 4134, ’Arno’: 4139}

A dictionary offers a structure of variable size and content to store a DEGAS ob-
ject’s capability sets. For example, the attribute values of an object are stored
in a dictionary indexed by name. This allows easy addition and deletion of at-
tributes, as is discussed in Section 7.1.2.

Furthermore, Python allows references to functions by name. This is a very
useful feature for the implementation of the addon mechanism. To illustrate
this, suppose we have defined the following function in the Python interpreter:

1 An extensive source of information on Python is the web site www. python.org.
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>>> def multiply(parameter):
number = parameter * 2
return number

Then we assign:
>>> naam = multiply
Calling naam leads to the execution of multiply:

>>> naam(45)
90

This feature, together with dictionaries, facilitates easy implementation of a
DEGAS object’s variable method set. The implementation of a method is stored
as a Python function. Each DEGAS object has a dictionary storing references
to these Python functions indexed by method name, as discussed further in
Section 7.1.2.

An additional attractive feature of Python is the extensive library [Rossum,
1995al of modules available in the standard distribution. The modules in the
library present their functionality as abstract data types. For example, the soc-
ket module implements Unix inter-process communication by a socket object
with socket operations as methods. In the DEGAS prototype, we use several
modaules, that implement threads, locking, and inter-process communication.
The thread module is used to implement a DEGAS object’s separate thread of
control. This module also implements simple locks to prevent conflicts between
DEGAS objects and the system layer in the implementation of communication
primitives. Finally, inter-process communication through sockets was used in
the prototype implementation for communication between the DEGAS database
and the user interface.

We also considered C++ [Stroustrup, 1991] as an implementation language. It
satisfies our first two requirements, support for objects and for concurrency.
It scores lower, however, on its fitness for prototyping. This is mainly due to
the lack of higher level data structures in C++. Especially dictionaries and the
various library modules of Python are easier to use than similar C++ facilities.
These arguments also apply to Java. Furthermore, we did not have any porta-
bility requirements that could be fulfilled by Java.

7.1.2 The Basic DEGAS Object

This section discusses the implementation of the basic DEGAS object. It is imple-
mented by a Python object. In this object, the data structures are attributes. The
basic actions are method calls of the Python object implementing the DEGAS ob-
ject.. The execution cycle in Figure 6.4 is also a method. To achieve concurrent
execution of DEGAS objects, this method is executed in a separate thread for
each object.
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Storage
A basic DEGAS object records an object’s capabilities, as specified in Section 6.2.
Here, we look at the storage of these data in an implementation.

State History The state history of an object is stored as a dictionary with
the time as a key. This allows fast retrieval of historical attribute values. Hence,
the following data are recorded in a tuple:

1. Time Stamp. The time of the method call is represented by an integer.

2. Attribute. A dictionary containing name and values of the object’s at-
tribute set at the time indicated. The attribute name is the key of this
dictionary.

3. Method Name. A string containing the name of the method call causing
the state change.

4. Method Parameters. A list containing the parameters of the method call.
Queues The three queues of a DEGAS object are FIFO queues implemented by
lists. These lists contains tuples representing the messages. The head of the list

is the earliest message. The attributes of a message is dependent of the queue.
The following attributes are used:

1. Sender. The object identity of the sender.
2. ReplyTo. The recipient of the message’s response.

3. Event. This contains the encoded event expression of the selector. The
encoding of event expressions is discussed in Section 7.1.2.

4. Condition. A selection condition is represented by a function testing it.
This attribute of a query tuple contains a reference to this function.

5. Method name. A string containing the name of the method.

6. Param. A list of actual parameters of the method call.

The table below indicates the attributes of tuples in each queue of a DEGAS
object.

S \ga‘*‘z
¢ (&0 XKD
& é\* S S S
FE G E W ?
Query Queue v v v /
External Method Queue v V v /
Internal Method Queue v V v /
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The external queues, i.e., the query queue and the external method queue, are
guarded by a lock, to avoid conflicts between the system layer and the object
itself in modifying the external method queue. The list and the lock are encap-
sulated in a separate object.

Reply Box The Reply Box is a value.

Capability Sets The capability sets of a DEGAS object are stored in dictio-
naries. For each capability, attributes, methods, lifecycles, and rules, an object
has a dictionary. Attributes and methods are stored indexed by their name,
while rules and lifecycles are indexed by the name of their class or addon. This
choices of indices is motivated by their most common use. Attributes and meth-
ods are always referenced by their names. Modifications of the lifecycle and
rule dictionaries take place when the DEGAS object is extended by an addon or
when an addon is removed. In these situations, the elements of the dictionary
are accessed through the name of the defining addon.

As a result, the Python implementation of a DEGAS object has the following
attributes:

1. Attributes. The (Python) attribute attr is the dictionary containing the
object’s current attributes and their values.

2. Methods. The attribute meth is the dictionary of methods. For every me-
thod of the DEGAS object, it contains a pointer to the Python function
implementing the action.

3. Lifecycles. The attribute cyc] is the dictionary containing the current life-
cycle elements of the object. These are all lines from the lifecycle specifi-
cations in the class definition and the definitions of the addons currently
present.

4. Rule Set. The attribute rule is the dictionary containing the event, the
condition, and the action of all rules currently defined in the DEGAS ob-
ject. The event is encoded as a finite state machine, as explained in Sec-
tion 7.1.2. The condition is stored as a Boolean function checking it. The
action is a method call.

Lifecycle The attribute LifeCycle is a dictionary containing the current
lifecycle of the DEGAS object. It contains the finite state machine for the current
lifecycle. The encoding of the state machine is explained in Section 7.1.2. It is
constructed by combining the elements stored in the lifecycle dictionary cycl
using the communication merge as explained in Section 5.7.2.
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This The identity of an object is a logical address provided on creation by the
DEGAS system layer. Hence, the attribute This in the DEGAS object is different
from the self reference self of the Python object, which contains the physical
address of the object.

Actions

The primitive actions of a basic DEGAS object are implemented by methods of
the Python object. Here, we shortly give the techniques used by each primitive
action.

ExecuteMethod A method is executed by looking up the reference to its Py-
thon translation in the Meth dictionary by its name. Then, the function con-
taining the Python translation is executed. After that, the new object state is
appended to the history. All constructs in a DEGAS method have a straight-
forward translation to Python code. The Foreach ... in ... where ... do

. can be implemented using the Python For iterator [Rossum, 1995b], that
applies a program block to all elements of a set.

Below, we give the Python code implementing ExecuteMethod. The lines pre-
ceded by # indicate comments explaining the actions. First, the current attribute
values are copied. After that, the actual execution takes place. The expression
self.meth[name] resolves to the name of the Python implementation stored
in the dictionary meth. The parameters taken by the Python function are the
parameters of the DEGAS method and the current attributes. The presence of
self as a parameter to the method call is a Python feature to indicate a func-
tion of a Python object. After execution of the method, the new attribute values
are inserted in the object history.

def executeMethod(self,name,parameters):
#
# Copy attributes to local attribute dict
#
attribuut = {}
lastattr = self.stateHist[max(self.stateHist.keys())]
for i in lastattr.keys():
attribuut[i] = lastattr[i]
#
# Execute the method
&
self.meth[name] (self, parameters, attribuut)
#
# Append the local attribute dict to the state history
#
self.stateHist[self.count] = (attribuut,name)
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CheckSelector The implementation of this action first checks the event ex-
pression using the techniques explained in Section 7.1.2. Then, satisfaction of
the condition by the matching sub histories is checked. The condition is en-
coded as a Boolean function testing the condition.

MethodAllowed The implementation of this action takes the lifecycle stored
as a finite automaton in Lifecycle. It checks the tail of the event history to-
gether with the proposed method call against the automaton. This is explained
in Section 7.1.2.

get This is implemented by a generic Get method in the Python object, that
returns the current value from the Attr dictionary.

Extend This action manipulates the capabilities sets, i.e., Attr, Meth, Rules,
and Cyc], as specified in Section 6.2. A new automaton for Lifecycle is con-
structed using the compositions described in Section 7.1.2. A further explana-
tion of the implementation of the addon mechanism is given below.

Remove This action is implemented analogously to the Extend action.

Ki1ll Termination of an object means terminating its execution cycle. This is
implemented by terminating the thread executing the object. The result is that
the object is still around in the database, but that nothing is added to its history
anymore. The object is available for historical queries.

Addon Extension

The implementation of the addon mechanism is supported by the storage of ca-
pabilities in dictionaries. Furthermore, the possibility of referencing functions
by name allows an object access to functions that were not pre-defined in the
object.

Recall the specification of the addon class object in Section 6.5. There, we saw
that an object O executing an Extend(A) action requests the capabilities of ad-
don A from the addon class object of A. References to functions simplify this
process. The addon class object simply returns the name of a function contain-
ing the extension actions, i.e., the appropriate assignments to the capabilities
sets. This function is executed by O to achieve the desired extension.

For example, suppose we have the specification of the addon Extra in Fig-
ure 7.1. For brevity, assume that the Python implementations of the methods
represented by the functions P_setFirst, P_setSecond, and P_total, respec-
tively. Furthermore, the encoding of the lifecycle is stored in P_Lifecycle-
Extra. This results in the following function to extend a Standard object O
with the addon Extra.
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Addon Extra
Extends Standard
Attributes

first : integer

second : integer
Methods

setFirst(no :integer) = {

first := no
}

setSecond(no :integer) = {
second := no
}

total = {
return first + second
}

Lifecycle
setFirst*
setSecond*
total*

EndAddon

Figure 7.1: The specification of the Extra addon

def ExtendExtra(self) :

Attr['first’] =0
Attr[’second’] =0
Meth[’'setFirst’] = P_setFirst
Meth[’setSecond’] = P_setSecond

Meth[’total’] = P_total
Cyc1[’Extra’] P_LifecycleExtra
sendMessage (ExtraClass, this, this,registerExtent)

The name of ExtendExtra is passed to O by the addon class object of Extra
for execution. Removal of capabilities in a Remove action proceeds analogously
to an Extend action. For the deletion of the addon from an object O, the addon
class object of Extra passes the name of RemoveExtra to O:

def RemoveExtra(self) :
del Attr[’'first’]
del Attr[’second’]
del Meth[’setFirst’]
del Meth[’setSecond’]
del Meth[’total’]
del CycT[’Extra’]
sendMessage (ExtraClass,this,this, removeExtent)
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Checking Event Expressions

Event expressions occur in lifecycles and in selectors. In both cases, we must
check (a part of) the event history against a process algebraic expression [Baeten
and Weijland, 1990]. Here, we show that these checks are easy implementable.
In fact, a finite automaton is sufficient to match the event history with an event
expression. This also means that lifecycles in a DEGAS object have similar ex-
pression power as finite automata used to model the dynamic aspects of objects
in OMT [Rumbaugh and others, 1991].

Proposition 1 An event expression can be implemented by a finite state machine
with conditions on the transitions.

Proof Follows from the fact that the event expressions are a regular language
[Lewis and Papadimitriou, 1981]. The transitions in a lifecycle-checking au-
tomaton are labelled by the preconditions and the method names. A lifecycle
checking automaton is brought to the next state by a method execution. In an
event-checking automaton they are labelled by an event name only. An event-
checking automaton parses the event history for an event expression. The non-
occurrence of events is handled by rewriting them to the equivalent alternative
composition. O

For each operator, we can give a simple automaton that checks this expression.
These are shown in Figure 7.2. Please recall, that the negation operator — can be
rewritten to an alternative composition +. If an object O has action A, B, C, and
D, then -C = A + B + D. Furthermore, the merge operation can be expanded to
an alternative composition. The axioms of merge are as follows:

xlly = xly+ylx
axly = a(xly)

allb = ab+ba
(xlIy)liz = xl(ylz)

As an example of a finite automaton to check a more complicated event expres-
sion, we give the automaton associated with the event expression A; (B; ~C; D)*
in Figure 7.3.

The implementation of these automata in Python is straightforward. Each state
of the automaton is numbered. For each state, we record the possible tran-
sitions to other states. A transition is characterised by a state number and a
method name. Consider the automaton in Figure 7.4, which implements the
event expression A; (B||[answer = 42]C). In state 2 of this automaton, we have
two possible transitions: To state 3 by method B and to state 4 by method C, if
precondition answer = 42 is satisfied.
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Figure 7.2: Finite automata for process algebraic operators
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O State
@ Accepting state

Figure 7.3: Finite automaton to check the event expression A; (B; ~C;D)*.

A N B
Ol 2 3

[answer = 42]C [answer = 42]C

O
4 3

O State
@ Accepting state

Figure 7.4: Finite automaton to check the event expression A;(B|/[answer =
42]0).
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Merging lifecycles from multiple specifications is a straightforward affair. In
Section 5.7.2, we saw that lifecycles are composed using communication merge.
Like simple parallel merge, communication merge is defined by the same ax-
ioms as parallel merge, with the addition of a communication function y. This
means that communication merge is associative, i.e., (x|y)|z = x|(y]z). As a
consequence, the sequence of lifecycle composition is arbitrary.

7.1.3 The System Layer

The underlying infrastructure of a DEGAS database is provided by the system
layer specified in Section 6.3. Services provided are object creation and inter-
object communication. The system layer is implemented by a Python object
DegasSystem. Each site has an instance to implement the system layer. Its
identity is known to every Python object in the implementation of the DEGAS
database.

Attributes

The attributes of the DegasSystem object contain the data stored in the system
layer, as specified in Section 6.3. This contains the directory of objects in two
dictionaries. One maps DEGAS identities to Python identities. The other maps
names to DEGAS identities.

ObjDir This is a dictionary mapping DEGAS object identities to Python object
references. Object identities are represented by integers.

NameDir This is a dictionary mapping names of DEGAS objects to DEGAS ob-
ject identities. Names are represented by strings, while DEGAS object identities
are again represented by integers.

Object Creation

The creation of an empty DEGAS object is a straightforward process. We de-
fine a Python class DegasObject, that contains the capabilities of an empty
DEGAS object, as specified in Section 6.2 and 7.1.2. The primitive newObject is
a method of DegasSystem that yields a new instance of DegasObject. A DEGAS
identity is assigned to the object, which is entered in a dictionary mapping
DEGAS object identities to Python object references.

Inter-Object Communication

The DEGAS communication primitives were specified in Section 6.3. In particu-
lar, the effect of the primitives on the data structures of the destination object
was specified. The implementation of these data structures, i.e., the query and
method queues, was given in Section 7.1.2. The main task of the DegasSystem
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object in communication actions, is to find the destination object. First, the
destination must be resolved to a DEGAS object identity, if a name is given as
destination. The name is resolved to an identity using NameDir. Second, the
DEGAS identity must be resolved to a Python object reference in order to insert
the message in the appropriate queue of the destination object. If the desti-
nation object is at the same site, the DegasSystem object will find its Python
object reference in ObjDir. Otherwise, it needs to find out the location of the
object in order to pass the message to the site of the object.

Object autonomy implies that a there is no centralised directory of all objects
in the DEGAS database. Hence, a DEGAS database must implement a mechanism
to find out the location of an object from the information at a site. A number
of alternative schemes exist for this. A simple broadcast of a non-local message
leads to a high load of the network. Alternatively, message for other sites can
be posted on a “bulletin board”, that is regularly checked by all sites. Although
this reduces network traffic, it introduces a centralised resource, that forms a
potential bottleneck in the system.

A problem analogous to locating objects also occurs in mobile computing [Imie-
linski and Badrinath, 1994]. Commonly, a mobile computing system is based on
a cellular communication network. This raises the problem of determining in
which cell a mobile computing node is. A number of schemes are proposed
to solve this problem, e.g., in [Imielinski and Badrinath, 1992]. To examine the
applicability of these to our problem, we translate these schemes to a DEGAS
database.

An improvement on broadcasting proposed by [Imielinski and Badrinath, 1992]
is to partition the network and record the partition an object is in. Thus, only
a subset of the sites in the network needs to be consulted to find out the lo-
cation of the destination object. Please note, however, that this requires the
DegasSystem object to record object identities of all objects not present at its
site. The same drawback applies to the two other approaches proposed. One
approach is to list for each site the probability that an object is located there.
To reach an object, these sites are tried by order of probability. The second
approach creates a chain of pointers for each object. If an object leaves a site,
the new location of the object is recorded. A message to an object follows these
pointers. Although we can detect and remove cycles in such a chain, it still im-
plies relatively long transit times for messages. It also leaves the problem, how
a site determines the location of an object that never visited it. Moreover, the
problem of locating objects occurred in the first place, because of the autonomy
of objects not to inform the system of its whereabouts.

To stay in line with object autonomy, the task of tracing objects must be with
the DegasSystem objects. It maintains a routing table by inspecting the mes-
sage flow passing through. Recall from Section 4.5 that we assume for DEGAS
a network based on links between sites. Furthermore, there is a DegasSystem
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object at each site. If a message arrives at a site, it arrives over a specific link.
Since each message contains its sender, the DegasSystem object can associate
links with object identities in order to build a routing table. If an object identity
is not found in the routing table, then the message is broadcast. This broadcast
message is used to create the initial entry in the routing table2. If a DEGAS ob-
ject moves to another site, the routing table might become outdated. This fact
is identified if a site on the route does not know the destination object of the
message. In this case, a new broadcast by the originating site is necessary.

7.1.4 Other Objects

All other required objects in a DEGAS database are DEGAS objects themselves.
Their functionality is specified in the DEGAS programming language. Hence, the
DEGAS object and the system layer are everything needed for the implementa-
tion of a DEGAS database.

7.2 Interface to the Outside

The specification in the previous chapter only discussed the components of the
DEGAS system itself. It did not discuss the interfaces to the outside world, either
human users or other systems. These interfaces are implemented by an object,
whose interactions with DEGAS can be specified in DEGAS. In other words, it
sends DEGAS messages to DEGAS objects and can receive DEGAS messages from
DEGAS objects. Since this object must also communicate in another language
than DEGAS, it will not be implemented in DEGAS itself.

To illustrate the interactions of DEGAS, we discuss two interactions with the
environment, viz., data entry and queries.

Data Entry New objects are created by the action New in the class object, as
specified in Section 6.4. The actual creation of objects and relation objects is
identical. The creation of a DEGAS object is the way data is entered in a DEGAS
database. This subsection shortly discusses the entry of data in a DEGAS data-
base, i.e., its interface to the outside world. The creation of a relation object is
part of establishing a relation, which is discussed in Section 7.3.

The requirement on interface objects are relatively loose. The object entering
data, the Data Entering Object or DEO, only has to meet certain requirements

2The appropriate implementation of broadcast guarantees that the broadcast will yield the
fastest route between two sites. This implementation means that a site forwards a broadcast
message to all neighbours, except the one sending the message. The message identity is used to
discard a message already seen. Obviously, a message reaches a site first over the fastest route.
For a]n elaborate discussion of computer networks, the reader is referred to, e.g., [Tanenbaum,
1996].
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regarding its interface with the DEGAS database. The other aspects of the DEO
are indifferent to DEGAS, meaning that it can implement any kind of interface
to a user, or to other software. If a DEO wishes to create an object of a class
ClassName, it simply sends a new message to the class object. For example,
the following message is sent to create a Person object:

NewOid := PersonClass.new()

The identity of the object is returned in New0O1id, so that the DEO can enter data
in the new object.

Query Interface Query requests are processed by the Site objects and the
object instances, as specified in Sections 6.8 and 6.2. These requests are issued
by a query generating object (or QGO). The only requirement on a QGO regards
its interface to the DEGAS database. Apart from this, a QGO can implement any
kind of query interface, be it a forms package, an SQL interface or a data mining
client.

A query is distributed over all reachable sites in the networks by broadcasting
a call to distributeQuery to all Site objects. To start processing a query
Q = (C,S), where C is a class and S a selector, the QGO makes the following
call:

Broadcast(Site, Self, Self, DistributeQuery(C,S))

To receive the answer to a query it issued, a QGO must implement the method
answerQuery. This action receives the answer to a query from a Site object.
As a parameter it takes the result of the site, which a set of object - history
pairs.

SiteResult : P(Object : Oid,EH : EHist)

This method can be invoked by Site objects.

Prototype To further explain DEGAS’ interface to the outside world, we shortly
describe the user interface of our prototype. It <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>