

DEGAS - An Active, Temporal

Database of Autonomous Obiects

DEGAS: An active, temporal database of
autonomous objects.

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor

aan de Universiteit van Amsterdam

op gezag van de Rector Magnificus

Prof. Dr. J.J.M. Franse

ten overstaan van een door het College voor Promoties ingestelde

commissie in het openbaar te verdedigen in de Aula der

Universiteit op maandag 30 maart 1998 te 13.00 uur

door Johannes Fredericus Philippus van den Akker

geboren te Gouda.

Promotor:
Co-promotor:

Prof. Dr M.L. Kersten (CWI/UvA)
Dr A.P.J,M. Siebes (CWI)

This research was done at CWI (Centrum voor Wiskunde en Informatica), the Na­
tional Centre for Mathematics and Computer Science in the theme "Data Mining
and Knowledge Discovery" .

. ~

StON
This research was supported by the Netherlands Computer Science Research
Foundation (SION) with financial support from the Netherlands Organisation
for Scientific Research (NWO).

IIKI
SIKS Dissertation Series No. 98-1

The research reported in this thesis has been carried 0ut under the auspices of
SIKS, the Dutch Graduate School for Information and Knowledge Systems.

3

Foreword

Due to their nature, most PhD theses are rather boring stuff to read. I have done
my best to turn my thesis into a readable story, but make myself no illusions.
As I do very often myself, most people will only read the acknowledgements to
see whether they are mentioned. I hope nobody is disappointed.

First of all, I would like to thank Arno Siebes and Martin Kersten for acting as
co-promotor and promotor. Arno was a very good advisor during my career
at CWI. He stimulated by sharing the visions of the benefits that autonomous
objects could bring the world in general, and information systems in particular.
He also was a very critical reader of everything I wrote. Martin supplemented
this advice by providing the broader perspective. Furthermore, his management
of the department created a nice, stimulating environment to do research.

Of my colleagues at CWI, I would like to mention Arjan Pellenkoft, Sunil Choen­
ni, Florian Waas, Jonas Karlsson, Olaf Weber, Annette Bleeker, Peter Grunwald,
and Jeroen van Maanen for both scientific and social diversification.

I would like to thank Klaus Dittrich, Peter Apers, Reind van de Riet, Paul Klint,
Peter van Emde Boas, and Arnold Smeulders for reading the draft version of
this thesis.

Under the name Schones Wochenende Bahn hides a group of people sharing my
interest in railways. Of those people, I would like to mention in particular Twan
Laan, Marco van Uden, Robert Klein-Douwel, and Kees Smilde. The, by most
people's standards, weird habit of going to Germany or further east for the sole
purpose of riding trains provided a good escape from academic life.

My reality check was provided by my friends from university, who moved to
industry after their Masters'. Known as Arctic Breeze, an inheritance from the
time we first worked together in a Software Engineering class, the war stories
of Michiel Veen, Michel van Maastricht, Michel Knops, lrsan Widarto, Jeroen van
Rotterdam and Floris Hack prevented me from slipping into academic isolation.

Of course, I want to thank my mother and my sister. Having finished her PhD
thesis before me, Marjan could always support me in the more difficult phases

4

of my research, having been through them herself. At all important points in
my life, I think of my father. I hope he knows and is proud of me.

Finally, CWI turned out to be a lot more than a good place to do research. In my
final year at CWI, I met Mariette Godin. Some things in life are more important
than a PhD thesis ...

Amsterdam, January 21, 1998

5

Contents

1 Introduction 9

I Motivation 13

2 Software of Autonomous Components 15
2.1 Developments in Technology . 15
2.2 Developments in Business . 16
2.3 Autonomy as a Solution . 18
2.4 Defining Autonomy . 19
2.5 Conclusion . 21

3 Object Autonomy in Context 23
3.1 Active Databases . 23
3.2 Temporal Databases . 28
3.3 Object-Oriented Databases . 30
3.4 The Impact of Object Autonomy . 33
3.5 Conclusion . 40

II Model 41

4 The DEGAS Object Model 43
4.1 DEGAS Objects . 43
4.2 DEGAS by example . 47
4.3 Syntax of a DEGAS Object . 53
4.4 Querying DEGAS objects . 58
4.5 Distribution Model . 60
4.6 Conclusion . 61

5 Abstract Semantics of DEGAS 63
5.1 Typing . 63
5.2 Objects . 70
5.3 Method Semantics . 71
5.4 Time in an Autonomous Object . 73

6 CONTENTS

5.5 Interpretation
5.6 Selectors ..
5. 7 From pre-history to history ..
5.8 A DEGAS Database
5.9 Queries
5.10 Conclusion

76
79
82
89
89
91

6 Functional Specification of DEGAS 93
93
94

6.1 Preliminaries .
6.2 Objects
6.3 System Layer
6.4 Class Objects .
6.5 Addon Class Object
6.6 Relation Objects
6.7 Relation Class Objects
6.8 Site Objects
6.9 Conclusion

7 Practical Aspects of DEGAS

7.1 Implementation of DEGAS
7.2 Interface to the Outside

107
111
112
115
117
118
121

123
123
136

7.3 Programming in DEGAS . 137
7.4 Query Processing in DEGAS . 142
7.5 Conclusion . 152

III Design 15 5

8 Modelling Workflow in DEGAS 157
8.1 Design Guidelines for DEGAS . 158
8.2 Specification of workflow . 162
8.3 Designing a workflow in DEGAS . 167
8.4 Flexibility of the Workflow . 183
8.5 Conclusion

9 (Un)decidability Results for DEGAS Objects
9.1 The DEGAS- Model
9.2 Predicates
9.3 Decidability Results for DEGAs- 2 • •••••

9.4 Decidability Results for DEGAS-
9.5 Conclusion

IV Outlook and Conclusions

l0Outlook
10.1 Active Databases and Agents

186

187
188
196
199
205
214

215

217
217

CONTENTS

10.2 Ubiquitous Databases
10.3 Conclusion

11 Conclusion

Bibliography

Nederlandse Samenvatting

Curriculum Vitae

7

223
225

227

231

242

245

8 CONTENTS

9

Chapter 1

Introduction

This thesis is about a database of autonomous objects, named DEGAS. In one
sentence, DEGAS is a temporal-active object-oriented database language, based
on object autonomy. The name DEGAS stands for "Dynamic Entities Get Autono­
mous Status"1. Dynamic entities means data entities extended with the actions
on these data. In our discussion, autonomy means two things: complete encap­
sulation and freedom from central control. Complete encapsulation means a
self-contained specification of an object. Freedom from central control means
that we can construct a system without a central system element, which is po­
tentially both a bottleneck and a vulnerable part.

The aim of our research was to investigate the potential of a database based on
autonomous objects. Hence, our problem statement is:

A number of developments lead to databases based on autonomous
objects. For such a database, we have the following questions:

1. Is it easy to realise in practice?

2. Does it facilitate clean, modular application design?

3. Does it have a simple formalisation?

Overview

The answer to these questions is given in four parts. These parts discuss the
motivation for object autonomy, the DEGAS model for a database of autono­
mous objects, issues in database design in DEGAS and an outlook to the future
of active object systems.

1 In addition, we were inspired by the name of the Monet main-memory DBMS [Boncz et al.,
1996a, Boncz et al., 1996b) developed by Martin Kersten and his team. It also prolongs the tradi­
tion of naming database systems after French painters, started by Ingres [Stonebraker, 1986al.

10

Motivation Part I discusses the motivation fo r DEGAS. Chapter 2 discuss the
developments in information technology and its applications that lead to au­
tonomous objects. On the technological side, the diminishing size and cost of
computing units causes an increasing spread of computing power. Since this
also means an increasing distribution of information, database management
systems must be able to deal with extreme forms of distribution. On the appli­
cation side, integration of information systems between organisations leads to
systems of components with different owners.

Chapter 3 relates autonomous objects in DEGAS to existing research in data­
bases. In particular, we relate it to research in active databases, temporal data­
bases, and object-oriented databases. After a short overview of these areas, we
discuss the benefits of DEGAS in these areas. First, it provides a clean mod­
ularisation mechanism for active, object-oriented databases. Second, DEGAS

provides a unified formalisation of temporal and active database functional­
ity. Third, it incorporates event expressions to specify historical conditions in
queries. Fourth and last, DEGAS provides a straightforward object evolution
mechanism, that can be used to model roles.

Model Part II gives a specification of DEGAS. Chapter 4 introduces the basic
concepts of the DEGAS model. The basis of DEGAS is the object. Objects are
related to each other through relation objects, which are fully capable objects
themselves. Transient capabilities of objects, such as their roles in relations,
are specified by addons. Class and metaclass objects are present in a DEGAS

database for object management tasks. To illustrate these basic concepts, we
give an example of an application in DEGAS, a stock exchange. We also introduce
the syntax of the DEGAS language. Furthermore, DEGAS queries are introduced.

Chapter 5 then gives the formal semantic definition of DEGAS. This definition is
given from scratch, starting with the formalisation of the underlying type sys­
tem. Then, different elements of a DEGAS object are defined, that are integrated
to the full DEGAS object semantics. The formalisation of DEGAS is based on a
set-based object semantics and process algebra for the dynamic parts. An ad­
vantage of using process algebra is the direct translation from DEGAS language
syntax to semantics.

The next chapter, Chapter 6, gives a functional specification of a DEGAS data­
base system. It gives the basic actions of each component and their effects. In
fact, the complete system, besides a basic communication infrastructure, can
be specified as a DEGAS object.

Practical issues regarding DEGAS are discussed in Chapter 7. We discuss the im­
plementation techniques used in a prototype of DEGAS. Furthermore, we show
how application semantics can be programmed in DEGAS. This chapter also dis­
cusses the practical aspects of DEGAS query processing. It is designed to deal
with the specific complications of object autonomy. One of these is the estima­
tion of the quality of a query result.

11

Design Part III deals with the design applications of applications in DEGAS
Design is discussed in two chapters, reflecting two aspects of database design.
Chapter 8 discusses the path from an application to a DEGAS object design.
The example application is workflow. We show that the DEGAS design principles
lead to a design that cleanly separates concerns and that promotes flexibility.
Furthermore, the encapsulation of rules in objects and the relation and addon
mechanism of DEGAS provide a good basis for the integration of workflow in
an active database.

Chapter 9 addresses verification issues. We investigate whether we can decide
the termination and confluence of a given active object design. Due to the com­
plexity of this issue, we use a restricted version of the DEGAS model in this
chapter. We prove that deciding termination and confluence is only possible for
a very basic rule model. This consequently proves the undecidability of these
predicates for DEGAS.

Outlook The final part of this thesis provides an outlook to the future of ac­
tive object databases. This outlook is based on an extrapolation of the devel­
opments described in Chapter 2. In Chapter 10, we discuss the interrelation of
active object-based systems, like DEGAS, and intelligent agents. We discuss this
from two perspectives, viz., the usefulness of agent technology in databases
and the problem of data management in a ubiquitous, agent-based, computing
environment.

Publications

The following parts of this thesis have been published in other places:

• An early version of the DEGAS data model, discussing its application to
computer graphics, was presented at the Eurographics'95 Workshop on
Programming Paradigms in Graphics [Akker and Siebes, 199Sbl.

• A general introduction of the DEGAS data model, focussing on the DEGAS
modelling notions, i.e., objects, relations, and addons, was presented at
the CAiSE*96 conference [Akker and Siebes, l 996bl. An extended version
of this paper was published in the CAiSE*96 special issue of Information
Systems journal [Akker and Siebes, 1997bl.

• A discussion of the interaction between active rules and the historical
functionality in DEGAS was presented at the DEXA'96 workshop [Akker
and Siebes, l 996cl.

• The discussion of the possible application of agent technology in active
object database in Chapter 10 was part of the Cooperative Information
Agent'97 workshop [Akker and Siebes, 1997cl.

12

• Chapter 8 has been published separately as a CWI Report [Akker and
Siebes, l 997al.

• Chapter 9 is based on a CWI Report [Siebes et al., 19951.

Part I

Motivation

13

Chapter 2

Software of Autonomous
Components

15

As stated in the Chapter 1, the goal of our work on DEGAS is to study a data­
base based on autonomous objects. This chapter discusses the motivation for
object autonomy from the viewpoint of software architecture. A number of de­
velopments in information technology and its use in organisations promote an
architecture based on autonomous components.

Technological developments of interest are mobile computers and distributed
processing. The benefit of autonomous components under these circumstances
is found in a reduction of overhead. In the use of information technology by or­
ganisations, we see a development towards integration and sharing of informa­
tion between different organisations. Components of these integrated informa­
tion systems must retain their autonomy for reasons of ownership and control.

We show the benefits of autonomous components, given these current devel­
opments. Furthermore, we argue that the object is the most appropriate gran­
ularity for studying autonomous components. The chapter concludes with our
definition of object autonomy, that is compared to the notion of autonomy in
other areas of database research.

2.1 Developments in Technology

As we stated above, autonomy is about doing away with central control. The
motivation for this is found in a number of development foreseen in computer
systems in the near future. These developments trigger the emergence of in­
formation systems based on large, often mobile, networks. In such systems,
central control implies a large amount of overhead.

16 2.2. DEVELOPMENTS IN BUSINESS

The development of powerful mobile computers and the spread of wireless
communications makes large networks of mobile computers possible [Imie­
linski and Badrinath, 19941. A broad variety of information systems will rely on
such networks. Examples are information systems to support a large number of
sales representatives, or information systems for fleet management of ships or
aircraft. In these systems, each mobile node contains data. Ideally, we want to
access all data in such a network as one large database. For example, in the in­
formation system of an airline, the maintenance department can have access to
information about the current status of an aircraft, either to plan maintenance,
or to assist the pilot in making decisions in a problematic situation. Although
much effort has been put into making databases to inter-operate, it will be very
difficult to devise an arrangement flexible enough to keep up with the size and
volatility of such a network.

A better approach is to have inherent flexibility built into such a system. Ideally
it allows an almost arbitrary collection of objects to be a functioning database.
The collection of objects making up the database may vary over time without
the need for a system "authority" to keep up with their changes. In such a
system, an object is autonomous, because it functions largely independent of
other elements of the system.

Another example is found in massively parallel computing. To further raise
the performance of computer systems massive parallelism is seen as a promis­
ing road to travel [Bell, 1992]. An important condition for the acceptance of
such platforms for general use is the presence of DBMSs. A key problem in
such a DBMS is how to distribute data and execution over the available proces­
sors. Centralising such decisions poses a large overhead on the system. Enough
overhead to make it a considerable factor in the performance of such a system.
Therefore, we must consider distributing decisions in the system. If we do this
for all centrally controlled aspects of the DBMS, we have made a system with
autonomous components.

2.2 Developments in Business

Developments outside the area of computing also promote autonomy of system
components. Although there is a movement to increase integration of systems
between businesses, either in a chain information system 1, or through a public
information infrastructure, nobody wishes to give up control of his part of such
a system.

1 A chain information system is an information system serving a complete value chain [Porter,
19851. A value chain is a group of companies that together form a production process from raw
materials to manufactured product. For example, we have a value chain producing automobiles
from iron ore, crude oil, rubber, etc. In this process, each output of a production step is worth
more than the input. H0 nce, the producers in this chain are said to add value to their input.

2.2. DEVELOPMENTS IN BUSINESS 17

Inter-Organisation Information Systems Developments in networking have a
number of effects in the way organisations interact. For example, it enables a
manufacturer to integrate his information system with his supplier's informa­
tion systems. However, when an organisation couples its information system
with other organisations, it will not wish to give up control over its own sys­
tem. In particular, everyone wishes to control the information seen and updated
by outsiders. Although the components are under control of separate owners,
we do want to approach such a chain information system as a single (homoge­
neous) information system.

The data in the chain information system and the individual information sys­
tems overlap. In fact, the chain information system is made up from subsets
of the data in each corporate information system. Figure 2.1 show such a situ­
ation, where Terrific Tyre, Spotless Steel, Cool Car Co., and Dutch Dampers all
bring part of their information system into the chain information system, that
is depicted by the darker coloured rectangle.

0
.... --"' co
~ E
0~
0 C
U-

"' ..c §
B o
::i=
Cl .S

Figure 2.1: The integration of ISs in an inter-organisation IS

Chain
Information

System

Different collections of objects make up the corporate information systems of
the participating companies and the chain information system. It is important
to note, that a company will probably be involved in multiple value chains of
suppliers and customers at the same time. Hence, it has to export data to the
information system of each value chain.

The problem related to mobile computing, mentioned in the previous section,
resurfaces again here in another guise. Here, we do not have a set of objects
evolving over time, but different sets of objects making up different databases

18 2.3. AUTONOMY AS A SOLUTION

simultaneously. The choice is again between devising a clever scheme for a
chain information system that gets data from different composing databases,
and building in inherent flexibility at the object level. This flexibility should
allow an organisation to decide per object whether or not to make it (partly)
visible to partners in a chain information system. Thus, making objects autono­
mous facilitates integration of an organisation's data into multiple information
systems at a time.

Another example of an inter-organisation information system is the trading
system of the stock exchange. Every party in the market would like to approach
the computerised market as a whole in order to obtain information. However,
a sensible company would not hand over any control of their computerised
trading system to third parties. It would also want to have complete control
over the flow of its data to other parts of the system. Clearly, this is a system
consisting of autonomous components.

Business Modelling The introduction of information systems in an organisa­
tion is nowadays often used to reevaluate the way business is conducted by the
organisation. This activity has risen to fame in the last years under the name
Business Process Redesign or Business Process Reengineering [Hammer, 1990,
Hammer and Champy, 19931. Because of the focus on what an organisation
does, business modelling as part of the analysis phase of information systems
development has focussed on the dynamic aspects of an organisation.

Therefore, dynamic modelling, see e.g., [Loucopoulos, 1994) and [Glasson et al.,
19941, has received a considerable amount of attention. Most dynamic models
feature actors that manipulate data according to scripts or scenarios. The re­
actions of actors to events are described by rules. These actors are active and
independent of other actors. Clearly, it would be beneficial to have a model sup­
porting such autonomous entities in the phases following the modelling phase
in the development process.

2.3 Autonomy as a Solution

The developments outlined above lead one to conclude that there is a need
for systems composed of autonomous components. Section 2.1 pointed out a
number of developments in computing that make central control of a system
very difficult. These difficulties can be overcome by distributing control to parts
of the system, thus building inherent flexibility into the parts of the system. The
result will be autonomy for the components of such a system.

In Section 2.2, we indicated a development towards the sharing of data with
outsiders. Approaching data from multiple sources as one database while the
owners retain control, means autonomy of the components. Exporting data to
multiple inter-organisation information systems asks for an inherent flexibility

2.4. DEFINING AUTONOMY 19

that autonomous components can offer. It also explained, that current devel­
opments in the modelling of organisations tend to emphasise the active and
autonomous behaviour of an information system's components.

DEGAS supports the development of systems of autonomous components. This
is achieved by basing the DEGAS model on autonomous objects. We have cho­
sen the object as the level of autonomy, because of its obvious advantages in
modelling an information system. Object autonomy also has the advantage of
generality, since the complexity of the objects may be arbitrary. Hence, the
model can also be used for autonomous components at a higher abstraction
level, as long as its behaviour can be described in DEGAS. For example, an ac­
tive class of passive objects, where there is activity at the class level but not at
the object level, naturally fits this model.

Please note, that the motivation for autonomy for component systems is partly
similar to the motivation for object autonomy, as discussed earlier in this chap­
ter. [Garcia-Molina and Kogan, 1988] states the following arguments in favour
of node autonomy in a distributed database: organisational issues, diversity of
local needs, data security, lower costs, and containment of failures and bugs.
These arguments also apply to object autonomy. For example, containment of
failures and bugs means that it is desirable, that the failure of one object affects
other objects as little as possible.

2.4 Defining Autonomy

Above, we discussed the benefits of object autonomy in light of recent devel­
opments in technology and business. In this section, we give our definition of
object autonomy. It will serve as the key foundation of the work on DEGAS, pre­
sented in this thesis. After our definition of object autonomy, we compare it to
other types of autonomy in databases

Definition 1 We define object autonomy as follows:

Object autonomy is the maximal encapsulation of specification, con­
trol, and execution of an object.

This definition gives the core notion of object autonomy. Its practical conse­
quences in the DEGAS model are formulated by the following principles:

1. Every object has a separate thread of execution. All objects run in par­
allel. This is encapsulation of execution.

2. Complete encapsulation of the behaviour of an object. Every aspect
of an object's behaviour is specified on the object itself. Hence, the be­
haviour of an object, given certain stimuli from outside, is determined
locally. This is an element of encapsulation of specification.

20 2.4. DEFINING AUTONOMY

3. Strictly regulated access to an object. A DEGAS object specifies exactly
what objects have access to its actions. Relations between objects specify
exactly what data is shared, and what actions can be accessed. This is an
element of encapsulation of specification.

4. Minimal guarantees about an object's behaviour to other objects. A
DEGAS object guarantees as little as possible about its behaviour to other
objects. If it gives guarantees, these are specified explicitly. This is an
element of encapsulation of control.

5. Minimal dependency of an object on the behaviour of other objects. A
DEGAS object assumes as little as possible about the behaviour of other
objects. If it makes an assumption, it has to verify this assumption explic­
itly. This is an element of encapsulation of control.

6. Autonomy must be given up explicitly. A further guiding principle is,
that if an object gives up autonomy, then this must be explicitly specified.

These principles guide the development and use of DEGAS, as discussed in this
thesis.

The notion of autonomy is also encountered in the area of distributed and
federated database systems [Sheth and Larson, 19901. Research in federated
databases studies inter-operation of multiple database systems either as one,
distributed, database system, or as a looser federation of databases. These sys­
tems vary in the degree of freedom of the component databases. Hence, several
authors have formulated criteria of autonomy to distinguish the various sys­
tems.

[Sheth and Larson, 1990] distinguish four dimensions of autonomy for a com­
ponent database of a database federation. These are:

1. Design autonomy. The freedom to choose the design of any part of the
database, from semantic interpretation of the data to the implementation
of the database.

2. Association autonomy. The freedom to decide whether and how much
functionality the component database shares with the federation.

3. Communication autonomy. The freedom to decide when and how to
communicate with other component databases.

4. Execution autonomy. The freedom to decide when and how to execute
operations on the database.

Here, the first two dimensions are about the autonomy of the designer, while
the other two dimensions are about the autonomy of the system. Other criteria
for the autonomy of the nodes in a distributed database system were formu­
lated in [Garcia-Molina and Kogan, 1988]. They disti:iguish the following dimen­
sion of autonomy:

2.5. CONCLUSION 21

1. Heterogeneity. A component database may choose its own way to man­
age data and transactions.

2. Naming Autonomy. The freedom a component has in choosing names for
its data.

3. Setting priorities for foreign requests. The freedom to decide, whether,
when and how a request from outside is processed.

4. Transaction control autonomy. The freedom a component has in trans-
action management, i.e., scheduling, locking, and aborts.

Again, the first two dimensions are about designer autonomy, and the other two
dimensions about system autonomy. The criteria of Sheth and Larson cover a
wider area than those of Garcia-Molina and Kogan. For example, heterogeneity
and naming autonomy are included in the single category design autonomy.
Setting priorities for foreign requests and transaction control autonomy are
included in the criteria communication autonomy and execution autonomy, re­
spectively.

The applicability of Sheth and Larson's autonomy criteria for component sys­
tems to object autonomy is limited in some respects. The aim of DEGAS, for­
mulated in Chapter 1, is to study the impact of fine-grained autonomy in data­
bases. Hence, not all criteria for autonomy of component databases are useful
for the definition of object autonomy. Sheth and Larson's design autonomy for
an object means only defining a communication interface between objects, as
is done by CORBA [OMG, 19961. Their communication autonomy means for an
object, that it can decide for itself if and how to answer a message. In other
words, the sender of a message has no guarantees about the reaction of the
receiver. Execution autonomy is fully applicable to an object, since it implies
that an object decides internally, what actions to execute, and when to execute
them. Likewise, the association autonomy of an object means the freedom to
decide the visibility of its parts to other objects.

2.5 Conclusion

In this chapter, we presented the motivation for autonomy in software. The un­
derlying developments are increasing distribution and mobility of information
systems, and the increasing integration of information with different owners.
We discussed why software of autonomous components is needed under these
circumstances. For the study of autonomy in software, we take an object as
the granularity. Since objects can be loaded with arbitrary functionality, results
applicable to objects are applicable to any type of module.

This chapter closed with the presentation of object autonomy in DEGAS. Object
autonomy in DEGAS means maximal encapsulation. We discussed the impact of

22 2.5. CONCLUSION

this definition on a number of object dimensions, viz., execution, specification,
and control. A comparison of object autonomy in DEGAS with autonomy in fed­
erated databases showed a great degree of commonality. A difference is caused
by the different aims, since DEGAS is also concerned with the internals of the
objects in a system.

23

Chapter 3

Object Autonomy in Context

The previous chapter discussed the developments motivating object autonomy.
It also gave the definition of object autonomy used in the development of
DEGAS. This chapter puts the concept of object autonomy in the context of
databases. DEGAS mainly builds on work in active databases. Hence, we open
this chapter with a short overview of this area. Since object autonomy opens
new perspectives on the link of active databases with temporal databases, and
with object-oriented databases, we also give a short introduction to these two
areas.

The second half of this chapter addresses the opportunities of object auto­
nomy in active databases. The maximal encapsulation applied to rules leads to
a clean modularisation of the active database. Furthermore, the view of an au­
tonomous object as a process allows a single model formalising a database that
is both active and historical. Another innovation is the use of event specifica­
tions for temporal queries. Finally, the DEGAS object model reflects the maximal
encapsulation of object autonomy. The object specialisation mechanism is very
simple and flexible, so that an object has the capabilities it needs, when needed.

3.1 Active Databases

This section gives a short introduction to active databases. First, we give a brief
historical overview. Then, we discuss the core area of active databases, viz., rule
specification and execution. Readers interested in a more elaborate overview of
active databases are advised to read [Widom and Ceri, 1995).

3.1.1 History

The term active databases was coined in [Morgenstern, 19831. There, the term
was used to denote a database management system that automatically updates
views and derives dependent data. Hence, this proposal did not introduce a

24 3.1. ACTIVE DATABASES

separate notion of rules or triggers. These were first introduced as a separate
element in a database management system in [Stonebraker, l 986bl.

The original goal of rules was to provide a more flexible mechanism for con­
straint enforcement. Without rules, the only possible action in case of a con­
straint violation was to abort the offending transaction. In many cases, however,
more constructive actions exist. For example, a circuit design application often
has the constraint that a minimum distance between wires must be maintained.
If a new wire violating this constraint is inserted, a possibility to correct this is
to shift it, such that the minimum distance is maintained. Clearly, it would be
beneficial if the design database executes this action without user intervention.

As pointed out above, another early application of active rules is derived data.
Like for constraint maintenance, the main advantage of active rules for derived
data is increased flexibility. Active rules allow the database designer to choose
the time of derivation, e.g., either on insertion of an underlying value, or on
retrieval of the derived value.

With the advent of object databases, the incorporation in the database of be­
havioural elements of the application became accepted. Hence, it was found
that large parts of an information system can be encoded by active rules. In
particular, parts of applications that reflect an organisation's common busi­
ness practices can be implemented by active rules. In the world of information
systems modelling, these are known as the business rules of the organisation
[Herbst et al., 1994].

In recent years, a number of prototype active DBMSs have been developed.
The most important systems are HiPAC [Dayal et al., 1988a], Starburst [Widom,
1996], SAMOS [Gatziu et al., 1991] and Chimera [Ceri et al., 1996]. Of these sys­
tems, Starburst is based on an extended relational database. HiPAC and SAMOS
have an object-based data model. Chimera's data model is an object data model,
but is heavily influenced by deductive databases. In addition, a number of com­
mercial systems, such as Oracle, Sybase and Ingres, includes a trigger facility.
Furthermore, active rules are part of the SQL3 standard [ISO, 1994], which is
being formulated.

The use of active databases was classified in [Kappel and Schrefl, 1996]. It cat­
egorises applications of rules as follows:

1. maintaining static integrity constraints

2. maintaining derived data and materialised views

3. maintaining dynamic integrity constraints

4. database access authorisation

5. work step orrlering

3.1. ACTIVE DATABASES 25

6. representing permissions to act

7. representing obligations to act

Of these seven, the first four are implementations of DBMS functionality. The
fifth is relatively specific to certain applications, in particular workflow manage­
ment applications. It can be regarded as a special case of the third application.
The last two applications are forms of business rules. Business rules are a spec­
ification of company policy, or a description of the behaviour of a company.
Simple examples are rules in an inventory application, that reorder an item if
the stock falls below a certain level. More advanced business rules describes the
competence of persons in the organisation. These business rules are the rules
used to specify application functionality.

3.1.2 Rule Specification

The generally used format for rules in active databases is the Event - Condition
- Action (ECA) format. The informal meaning is, that on occurrence of event E,
if condition C is satisfied by the database, then action A is executed.

Event Event specification is based on a set of basic events and a set of event
operators. In general, the set of basic events consists of three categories: data­
base events, temporal events and external events. The set of database events
depends on the data model the active DBMS is based on. For a relational data­
base, the usual database events are Insert, Delete and Update. These denote,
respectively, the insertion, deletion and update of a tuple in a relation. Further
database events are related to transaction processing, such as commit or abort.
An object-based database offers the same database events, with objects instead
of tuples as the entities involved for Insert, Delete and Update. Since an ob­
ject based system adds behaviour to a database through methods, object-based
active database systems usually also include method calls as database events.

Temporal events are used to relate database activities to a clock. Absolute tem­
poral events, e.g. 11 FEB 1997 20: 00: 00, refer to one specific point in time.
Periodic events, e.g. every MON 05: 00: 00, can be used to schedule repeating
activities. Finally, relative temporal events specify a duration relative to another
event. An example in an object-based database is 2 weeks after Confirm,
where Confirm is a method of a database object Order. In a relational database,
an equivalent specification would be 2 weeks after Confi rmedOrders. In­
sert, where Confi rmedOrders is the relation containing the confirmed orders.

External events are used for communication with the outside world. Two pos­
sible sources of external events are interaction with the user or messages from
other applications. An example is a high-temperature message from a tem­
perature sensor in a control application.

26 3.1. ACTIVE DATABASES

Basic events can be combined to form composite event expressions through the
use of event operators. The most common event operators are sequential com­
position and alternative composition. Some active DBMSs offer a large range of
event operators, yielding a complex event language. An example is ODE [Gehani
et al., 19921. Studies of active database applications [Appelrath et al., 1996],
however, have shown that relatively simple rule languages, i.e., rule languages
with alternative and sequential composition of events, are sufficient for most
applications.

Condition The condition of a rule is a predicate on the database. If the pred­
icate is true, then the condition of the rule is satisfied. A number of systems
allow the condition to ref er to the state before and after the triggering event.
An example is the following rule, that is triggered by salary increases of more
than 25 percent:

On Update(Emp.Salary)
if Salary > 1.25 * old Salary

In this example, Salary qualified by old refers to the value of Salary before
the Update action.

Action In most active database systems, the action can be an arbitrary da­
tabase action. For example, it can include transactional commands, such as a
roll back instruction. In relational systems, we can add any relational retrieval
or update action. In object-oriented systems, method calls can be made in a
rule's action.

3.1.3 Rule Execution

The semantics of rule execution can vary on a number of dimensions. These are
the time and granularity of rule checking, the selection of rules to execute, on
which objects to execute, and the coupling between the three parts of a rule.

The first dimension of rule execution is, when the rule engine checks for trig­
gered rules. A natural point to do this is at the end of a transaction, since it
would be very difficult to enforce constraints for updates of smaller granularity.
The check generally considers the net effect of the transaction. For example, if a
tuple is inserted and then updated, the net effect is the insertion of the updated
tuple. Likewise, if a tuple is inserted and deleted later on in the transaction, the
net effect is empty. In object-oriented databases, another natural moment to
check rule triggering is after a method call. In addition, an active DBMS might
provide a primitive to force a rule checking. An example is the process rules
command in Starburst [Widom, 19961.

A further dimension of rule execution is how rules execute on the objects, or
tuples, they are triggered on. In the literature [Widom et al., 1991], set-oriented

3.1. ACTIVE DATABASES 27

and instance-oriented semantics are distinguished. Under the former, a trig­
gered rule executes simultaneously on all objects that satisfy its condition. Un­
der the latter, the triggered rule executes, non-deterministically, on one object
that satisfies this condition at a time. As we will discuss in Chapter 9, this af­
fects the result of rule execution. The execution sequence of triggered rules
can be influenced by introducing priorities between rules. High priority rules
are executed before low priority rules. The last choice in the selection of rules
to execute, is whether a system executes all triggered rules, or picks only a
single rule for execution.

Tl Al A2 A3 A4 T2

I I I I ,__ _________ _

Figure 3.1: Immediate coupling of event and condition

Since rules consist of three parts, another dimension of rule execution is the
interaction of these parts. This is known as the coupling of these three parts.
Two couplings are of importance: Event - Condition coupling and Condition
- Action coupling. Three main coupling modes are distinguished: immediate,
deferred and independent. These modes assume a flat, i.e., non-nested, trans­
action model as used in most DBMSs. An immediate coupling between event
and condition means that the condition is checked immediately on occurrence
of the event, in the same transaction. For example, in Figure 3.1, condition C is
checked immediately after the event E occurred in transaction Tl.

Tl Al A2 A3 A4 T2

I I I -------

i:.iJ ,..-._

u
'-'
~
(.)
~

..c:: u

Figure 3.2: Deferred coupling of event and condition

With deferred coupling the condition is checked in the same transaction as the
event occurred, but only at the end of the transaction, as depicted in Figure 3.2.

28 3.2. TEMPORAL DATABASES

Finally, independent coupling means that the condition is checked in a separate
transaction, as depicted in Figure 3.3. With a more advanced transaction model,
e.g., the nested transaction model of HiPAC [Dayal et al., 1988a], additional
coupling modes are possible. An example is the causally-dependent decoupled
mode in HiPAC. In this mode, the rule's action is executed in a separate sub­
transaction, that can commit only if the triggering transaction commits.

Tl Al A2 A3 A4

I
~

T2

I I -------

--u
'--'
~ u
~

..c::
u

Figure 3.3: Independent coupling of event and condition

3.2 Temporal Databases

An information system reflects the state of a part of the real world, that is sub­
ject to change. In many applications, we need facilities to consult data from the
past. For example, a bank wants insight in the amount of money flowing into
and out of your bank account during the past year to assess your creditwor­
thiness. This need to store data in relation to time is supported by temporal
databases. This is a considerable extension of DBMS functionality, due to the
complexity of temporal data. This complexity is mainly found in the many pos­
sible data models, different temporal dimensions, and interval operators. In
this section, we give a short introduction of temporal databases. The reader is
referred to [Tansel et al., 1993] for an elaborate overview of temporal databases.

Temporal Dimensions If we have data to be entered in a temporal database,
different criteria can be applied to give time stamps. One criterion is the time
the data was entered into the database. This is called transaction time. Another
criterion is the validity of the data in the real world, which is known as valid
time. For example, in the Netherlands, a new born baby can be registered with
the Registry Office up to two working days after birth. Suppose a baby is born
on Sunday, April 14th, 1997 and registered on Tue~day, April 16th, 1997. Then
in the Civic Registrv, April 14th, 1997 would be the valid time and April 16th,

3.2. TEMPORAL DATABASES 29

199 7 the transaction time of the birth. This example shows a drawback of using
transaction time only, viz., the potential lag between the time of validity and the
time of entry. Using valid time only, however, also has its disadvantage. If data
is entered incorrectly, the previously stored data is lost in a valid time database.
Although we can represent past states of the world with only valid time, we can­
not reconstruct past database states. Therefore, a full temporal data model, e.g.,
the data model underlying TSQL2 [Snodgrass, 1994), incorporates both trans­
action and valid time. Databases containing only transaction time allow us to
reconstruct past database states. Usually, these are called historical databases.

Data Models Most work on temporal databases is based on an extended re­
lational model. If a clock is available, adding timestamps to data is relatively
straightforward in this case. For example, to each tuple we add an attribute,
that indicates when this tuple was valid. This is known as tuple time-stamping.
Another approach, known as attribute time-stamping, is to record the time of
validity per attribute. An overview of temporal relational algebras, and the de­
sign decisions in defining them, is given in [McKenzie and Snodgrass, 19911.

Object-based temporal data models are less common. In [Wuu and Dayal, 1992),
it is shown how a temporal dimension can be brought into the OODAPLEX
model. In this model, every function application to an object is parameterised
with time in order to get the object state at that time. Another model that stores
past object states is Ginsburg's object history formalism [Ginsburg, 19931. Here,
the state of an object is a sequence of past states representing the history of
the object. Again, we can also record temporal data on an attribute basis. This
is proposed as a special case of versioning in [Sciore, 19911. In an object-based
temporal model, we can either have interval time-stamps or point time-stamps.
In the former case, a time-stamp gives the complete interval of validity. In the
latter case, a time-stamp gives the starting point of a value's validity. Given a
number of valuations, we can then infer the interval. Due to the lack of object
identifiers, this is not possible in a relational model.

Temporal Queries Querying a temporal database is more complex than query­
ing a database without a temporal dimension, because of operations on time
intervals. The temporal dimension influences queries in a number of different
ways.

In a temporal database, the result of a query can be a time interval. An ex­
ample of this is the query "When was the price of Philips shares higher than
80 guilders?". More complex queries for time intervals involve comparisons
between intervals. As an example, consider the query "Give the interval when
Philips shares were more than 80 guilders and IBM shares were more than 125
dollars". This query asks for the intersection between two intervals, viz., the
interval when Philips' share price was higher than 80 guilders and the interval
when IBM's share price was higher than 125 dollars. Besides intersection, the
union of two time intervals is useful to support queries for time intervals.

30 3.3. OBJECT-ORIENTED DATABASES

A query's condition can include conditions on time intervals. An example is
the query "Find the salary of Jones when Smith was his manager." Here, we
have a condition on that two intervals must overlap. The first interval is the
validity of the returned value for the salary. The second interval is the validity
of the manager attribute having value Smith. This type of queries is supported
by predicates such as BEFORE, DURING, OVERLAP, et cetera. These represent
the usual boolean functions on intervals in general.

In addition to these interval operations, a number of aggregate functions also
have temporal variants. Time can be included through the application of aggre­
gates to intervals. For example, a temporal sum operator can be used to find the
total duration of a condition's truth. A different type of function takes an inter­
val as input parameter in order to find an aggregate value for the given interval.
For example, functions like max, min, and average can be applied to intervals.
In this case, the operator max yields the maximum value of an attribute within
the specified interval.

More purely temporal operations in queries are restriction of a query's tempo­
ral scope and queries to find specific intervals. The first operation is also known
as time-slicing. A time-slice restricts the result to part of the database history.
For example, a time-slice [1992, 1995] only yields results between January 1st,
1992 and December 31st, 1995. Conceptually, this is just another temporal
predicate. For clarity, it is often put into a separate clause. The second opera­
tion, finding intervals, finds smallest or largest intervals satisfying a specified
condition. An example is a query "What is the largest interval during which the
price of Philips did not exceed fifty guilders?"

3.3 Object-Oriented Databases

Object-orientation is the combination of data and behaviour in objects that
have a close correspondence to real-world objects. It was first found in SIMULA
[Birtwistle et al., 1974) to structure computer programs for simulations. It was
taken further by languages such as Smalltalk [Goldberg and Robson, 1983], C++
[Stroustrup, 19911, and Eiffel [Meyer, 19881.

Important for the introduction of object-orientation in databases were the sys­
tems 02 [Deux, 1990] and Gemstone [Maier and Stein, 19871. In this section, we
give a short overview of object-oriented databases. For a general discussion of
the object model in databases the reader is referred to [Kim, 19951. The Story
of 02 [Bancilhon et al., 1992) gives a good overview of issues in building an
object-oriented database management system.

The first occurrence of object-oriented notions in databases is in the Entity­
Relationship model [Chen, 19761. Until the mid-eighties, object-orientation was
only found in data modelling. Implementation of an information system was

3.3. OBJECT-ORIENTED DATABASES 31

mainly done using relational databases. The broadening scope of information
systems brought to light a number of shortcomings of relational systems for ad­
vanced applications, like design databases, manufacturing databases, and office
automation systems. In such applications, an object-oriented database offers
better facilities to model complex structures. A significant advantage of object­
oriented databases is the encapsulation of operations with the data. This way,
operations shared between programs are specified and stored in a single place.
For example, most applications using a manufacturing database need to obtain
the composing parts of an assembly. In this case, it has obvious advantages
to specify a single operation for this together with the data specification of an
assembly. Furthermore, object-orientation offers better facilities to view data at
different abstraction levels. For example, we might want to view an aircraft de­
sign at the level of the complete aircraft, split up into wings, fuselage, engines
etc., or completely "exploded" into parts.

Research in object-oriented databases has not yet yielded a single, well-defined
data model, as was achieved very early for the relational model [Codd, 1970).
Hence, standardisation has been actively pursued by both the industrial and the
academic parts of the OODBMS community. This effort resulted in the ODMG
(Object Data Management Group) model [Catell, 19941. ODMG defines an inter­
face to and a data model for an OODBMS to promote portability of applications
between DBMSs.

This absence of a single well-defined data model led to the formulation of
an OODBMS' key properties in the often cited object-oriented database mani­
festo [Atkinson et al., 19891. These are:

1. Complex Objects. A complex object is an object built from simpler ones.
An example is a car object that exists of other objects, viz., part objects.
Complex objects can also be recursive. For example, in a design database,
a subassembly object can consist of other subassembly objects. This
construction of complex objects from other objects is called aggregation.

2. Object Identity. Object data models are based on identity, as opposed to
the relational model, which is value-based. In the relational model, two tu­
ples are the same, if their attribute values are equal. In an object-oriented
data model, two objects are the same if and only if their identities are the
same.

3. Encapsulation. This has two aspects. The first aspect originates in ab­
stract data types. It is concerned with the separation of interface and
implementation. Additionally, this allows us to hide private data of an
object. The second aspect is the combined specification of data and be­
haviour in an object. This is the important aspect from a database point
of view.

32 3.3. OBJECT-ORIENTED DATABASES

4. Types and Classes. Two key notions in an OODBMS are types and classes.
In an object-oriented system, a type is a specification of an object's fea­
tures. The type of an object is often given as a tuple of attribute and
method types. A class is a collection of objects, that is used to create and
store objects.

Usually, the notions of class and type are closely associated. The relation
between types and classes can be in two directions. Commonly, objects
in a class conform to the associated type, because they are instances of
that class. Another approach is that objects belong to a class, because
they conform to the associated type. This is the case in data models al­
lowing arbitrary addition and deletion of attributes, methods and other
elements of objects, such as Self [Ungar and Smith, 1987] and Goblin [Ker­
sten, 19911.

5. Class or Type Hierarchies. Classes and types are part of hierarchies,
formed by inheritance. A subclass inherits the features from a superclass,
which means that it has the same data and behaviour, possibly extended
with its own data and behaviour. Hence, the subclass is a specialisation of
the superclass. Likewise, a superclass is a generalisation of its subclasses.
Everywhere an object of the superclass is required, an object of the sub­
class can be used.

6. Overriding, Overloading, and Late Binding. With the separation of in­
terface and implementations, subclasses of a superclass might have the
interface of an operation in common, but have a different implementa­
tion. A classical example is a display operation for a g rap hi c object,
which is implemented differently by its subclasses ci rel e, triangle,
and polygon objects. Since the name display denotes different opera­
tions, it is said to be overloaded. If the graphic object implements its
own, generic, display operation, then the subclasses are said to override
this operation with their own definition.

Overloading and overriding operations means choosing an implementa­
tion to execute for each invocation of the operation. For example, if we in­
voke the display operation on a graphic object, then we would like the
system to execute the most-specific implementation, e.g., the t ri angle
implementation of display for triangle object. This is achieved by late
binding, which means that the implementation is chosen at the actual ex­
ecution time.

7. Computational Completeness. An OODBMS must allow every computable
function to be computed in its data manipulation language.

8. Extensibility. The user of the OODBMS must be able to define his own
types. Furthermore, there is no distinction in use between system-defined
types and usrr-defined types.

3.4. THE IMPACT OF OBJECT AUTONOMY 33

9. An OODBMS is a DBMS. An OODBMS must support persistence, sec­
ondary storage management, concurrency, recovery, and an ad-hoc query
facility.

The final requirement is stated as five separate requirements in the Manifesto
itself. The other requirements are on the data model, that also apply to object­
oriented programming languages. Actually, this close relation to programming
languages is one of the main advantages of an OODBMS over a relational DBMS
for complex applications. Most programming languages use a data model, that
is different from the relational model. In particular, many programming lan­
guages do not have a set-construct, while results from relational queries are
always sets. Hence, we have an impedance mismatch between the programming
language and the relational DBMS. Since an OODBMS uses the same data model
as an 00 programming language, the impedance mismatch is solved here.

3.4 The Impact of Object Autonomy

Autonomous objects build on the field of active databases. In this section, we
discuss the impact of object autonomy on an active database. Secondary themes
in the research are the links between active databases, and temporal and object
databases. Hence, the scope is the upper, darker coloured, triangle in Figure 3.4.

Active Databases

Object Databases Temporal Databases

Figure 3.4: The scope of the research in this thesis

We will discuss the impact of object autonomy on an active database in the
following four issues:

l. Modularisation of an active database.

34 3.4. THE IMPACT OF OBJECT AUTONOMY

2. A unified, process-algebraic, formalisation of active and historical data­
bases.

3. Queries in an active database.

4. Object evolution.

In these four areas the maximal encapsulation of object autonomy offers sig­
nificant advantages, which we discuss below.

3.4.1 Modularisation of Active Databases

The consequence of object autonomy for the modularisation of an active da­
tabase is the encapsulation of rules in objects. DEGAS is the first active data
model to consequently apply this object-oriented principle to an active data­
base. Other active object databases, like Chimera [Ceri et al., 1996] and SAMOS
[Gatziu et al., 1991], offer a hybrid rule model. Rules can be encapsulated, but
the separate definition of rules is still allowed.

The modularisation of rules is important, if we have a large number of rules in
a database. This is the case if we use rules to implement large parts of an ap­
plication's functionality. Clearly, in such a situation a single, flat rulebase does
not promote easy maintenance and understandability of the system. Hence, an
active database needs facilities to bring structure to the rulebase. Since the data
in a database is already structured by some means, i.e., through relations in a
relational database or through objects in an object-oriented database, rules can
either have a structure separate from the data, or have the same structure as
the data.

Separate structure for rules and data. If rules use a separate structure, the
rulebase is separate from the database, as depicted in Figure 3.5. Here, the
modularisation applied to the rules is different from that applied to the data.
In some systems with a separate rulebase, such as Starburst [Widom, 1996],
rules are grouped in rule sets. One of the main uses of these rule sets is to
activate and deactivate several rules at a time. Consequently, the main criterion
for modularisation is functional.

A number of different criteria can be used for grouping rules in sets. [Bar­
alis et al., 1996] gives three different criteria, using the term stratification1.

Behavioural stratification groups rules that together perform a given task. As­
sertional stratification groups rules that progressively establish some assertion
on the database, which is the post-condition of the stratum. Event-based speci­
fication groups rules that share a set of triggering events, or that share a set of
produced events.

1The use of this notion from deductive databases is explained by the strong influence of that
area on the work of [Baralis et al., 1996]

3.4. THE IMPACT OF OBJECT AUTONOMY 35

Another example of separate modularisation for rules is HiPAC [Dayal et al.,
1988bl. In HiPAC, rules are treated as objects. Consequently, the rulebase is it­
self an object database. According to [Dayal et al., 1988b), the advantage is the
availability of the mechanisms for manipulating data for manipulating rules.
For example, rules can be part of an inheritance hierarchy. Furthermore, they
are subject to transaction control, like any other item in the database. The struc­
ture of the rulebase, however, is unrelated to the structure of the database.

Active DBMS

Database Rulebase

Figure 3.5: Separation of Database and Rulebase

Same structure for rules and data. The other approach is that rules follow
the same modularisation as data in the database. For a relational system, this
means that rules are defined on the relations in the database. This approach is
followed by the SQL3 rules standard [ISO, 19941. In object systems, the data is
modularised according to a class hierarchy. If rules follow the object structure,
objects also encapsulate rules. An example of an active object database that
provides encapsulated rules is Chimera [Ceri et al., 19961. The modularisation
in Chimera, however, is hybrid, since it still allowed to define rules separately.

In DEGAS, we opt for the complete encapsulation of rules in objects. Hence,
the modularisation of the data is applied to the rules without any changes.
This limits the number of concepts used in the database design. Furthermore,
since rules are part of the behaviour of the data, it is a rigorous application
of object-oriented principles. This encapsulation of rules also has the advan­
tage of having all aspects of an object's behaviour defined in one place. This
independence of an object's specification is a necessary consequence of object
autonomy.

An older system that aims to integrate active rules into objects is MOKUM [Riet,

36 3.4. THE IMPACT OF OBJECT AUTONOMY

1989]. Like DEGAS it incorporates active elements in objects. Activity in MOKUM
occurs in two elements. First, attribute definition allows derived data and con­
straint enforcement. Second, triggers occur in scripts, that define the lifecycle
of an object. A MOKUM script is a representation of a finite state machine. State
transitions in a MOKUM script are defined by triggers, that specify an action
and a state transition to be executed on an incoming event. Since MOKUM is
Prolog-based, there is no distinction between conditions and actions in a trig­
ger. Another similarity between DEGAS and MOKUM is the facility to add types
to objects. There is, however, no interaction between the scripts of different
types of an objects, as is possible with DEGAS lifecycles.

3.4.2 Formalisation of Active and Historical Databases

Object autonomy has a distinct impact on the formalisation of a database. Since
one consequence of object autonomy is that every object executes as a separate
process, the execution of a single process is the basis of the formalisation of
DEGAS. This process-centered view motivates the choice for process algebra, in
particular ACP [Baeten and Weijland, 1990], as a central element in the formal­
isation, as shown in Chapter 5. The key notion in ACP is to match a process
specification against the trace of an executed process. If we apply this to an
autonomous object, the trace is the history of method execution and process
specifications are event specifications. This clearly indicates a link between the
history of the database and its rule facility.

The inherent temporal element in active databases was also observed by [Dit­
trich and Gatziu, 1993) and [Widom and Ceri, 19951. This temporal element is
caused by the inclusion in ECA rules of event expressions composed of multiple
basic events, such as method calls [Dayal et al., 1988b, Gatziu et al., 19911, and
time events [Dayal et al., 1988a, Hanson, 1989, Gatziu et al., 19911. This also
shows that an event specification is a condition on the history of the database.

We can also see this through a more detailed look into rule triggering. In or­
der to detect complex events, we need to store the basic events occurring in
the database. Since a complex event expression usually specifies a sequence of
events, the record of basic events must store information about the order in
which events occurred, e.g., in an event queue.

This inherent temporal element in active databases raises the question of the
relation to temporal and historical databases. To that end, we examine what
temporal data needs to be stored in an active databases. Not surprisingly, this
depends on the rule language offered.

Many active datab;i.ses include time in an event expression. This can be in rela­
tive form, such as "5 days after event A" or absolute such as "every day at mid­
night". In addition to explicit time events, it is de;:;irable to refer to an event's
time of occurrence. One possible approach is that the active database gives

3.4. THE IMPACT OF OBJECT AUTONOMY 37

access to the time of occurrence in the condition, either through a specific op­
erator [Gatziu and Dittrich, 1993], or by allowing a time parameter to be bound
to each event, as is done in DEGAS. Another approach is to specify the tempo­
ral conditions on the event by putting the appropriate time events in the event
specification. This choice makes a difference in the way we check the temporal
part of the rule specification. In the former case, we can check temporal condi­
tions in the condition of the rule. In the latter case, the time events are included
in the event detection mechanism.

Since most active database management systems offer the possibility to specify
parameters of events, they also need to store the parameters of a method call,
in addition to the time it occurred. This way, a rule can be triggered on method
calls with certain values for the parameters only. For example, we may have a
rule on a bank account that is only invoked, if a debit action of more than 1000
guilders is executed.

It should be clear by now, that every extension of event specification in the def­
inition of rules beyond single basic events necessitates a partial record of the
database history. In particular, if an active DBMS offers all facilities described
above, it has to store all method calls with their parameters and timestamp.
Obviously, we can reconstruct all historical states of the database, if we have
all state transitions in the form of method calls. Hence, it is a small step from
an active database to a historical database. Since DEGAS aims to offer full active
database functionality, the state of a DEGAS object includes its history, i.e., a
record of past states and method calls. DEGAS offers a single temporal dimen­
sion, viz., transaction time, to retain a simple active database model.

Earlier research into the common ground of active and temporal databases
mainly focussed on temporal conditions in rules [Gal et al., 1996, Sistla and
Wolfson, 19951. This work extended the condition of a condition - action rule,
allowing the specification of an attribute's change over time. An example is to
trigger, if the salary of an employee doubles within a year. Since this work did
not involve events, it is limited from the standpoint of active databases. Hence,
an innovation in DEGAS is the inclusion of temporal functionality in an active
database offering full ECA rules.

The formalisation of DEGAS in process algebra has a further advantage. This is
found in the direct formulation of the semantics. In active database systems,
events are defined and specified in varied ways. Although the complexity of
event algebras varies, the algebra can usually be reduced to a small set of op­
erators [Gehani et al., 19921. Hence, the main difference of interest is in the
formalisation of the event algebras.

Two main approaches can be distinguished here. One approach is to translate
the event specification to another formalism with a well-defined semantics. For
example, in SAMOS [Gatziu and Dittrich, 1994) event expressions are translated

38 3.4. THE IMPACT OF OBJECT AUTONOMY

to Petri nets [Reisig, 19851. Then, the occurrence of events in the database is
represented by placement of tokens in the Petri net. The translation to another
formalism is a disadvantage of this approach, because it introduces an extra
step in the formalisation. An advantage is the straightforward implementation
of a Petri net.

The other approach is a more direct one. The semantics of the event algebra
is defined directly in terms of the database history. An example of this is ODE
[Gehani et al., 19921. An advantage is the directness, since the translation is not
needed.

The semantics of events in DEGAS is defined in the direct way. As stated at
the start of this section, the DEGAS event algebra is a variant of ACP [Baeten
and Weijland, 1990), a well-known specification formalism proven in practice
[Baeten, 19901. The ACP concept of matching a process definition and an action
trace can easily be translated to the triggering of an event specification by an
event trace. The reuse of an existing formalism as an event algebra is a clear ad­
vantage of DEGAS. Furthermore, it does not exclude a translation to a different
formalism for implementation purposes.

3.4.3 Queries in an Active Database

The link between active and temporal databases, discussed in Section 3.4.2,
showed that event specifications can be regarded as conditions on the history
of the database. If the history records events, as is the case in DEGAS, then they
must also be accessible for queries. Hence, DEGAS queries allow the use of event
specifications in the selector.

Event specifications facilitate the formulation of queries like: "Give all credit
cards used more than five times last Saturday" or "Give the balance of bank
accounts at the time they were debited more than DFL 10,000". Thus, we have
an additional means to specify a historical situation in the database, that is
independent of time. It is useful to specify that we are interested in a certain
situation, without requiring a specific time of occurrence.

A further advantage of the use of event specifications in queries is in the for­
malisation of the active database. An ECA rule can be considered to be a query­
action pair, thus decreasing the number of concepts required. Furthermore,
the inclusion of events in a query obviates the need for specific temporal op­
erations in the condition. In fact, the combination event-condition subsumes
the temporal conditions in, for example, mono-temporal TSQL [Navathe and
Ahmed, 1993).

We know of no earlier work involving events in temporal queries. The work
reported in [Claramunt and Theriault, 1995) involves event-oriented queries,
but events are a notion from the application, not from the database system
itself.

3.4. THE IMPACT OF OBJECT AUTONOMY 39

3.4.4 Object Evolution

One of the key features of OODBMSs, as described in Section 3.3, are classes and
types. Each object in a database belongs to a class. In most systems, an object's
membership of a class is a fixed property. Hence, an object does not migrate
from one class to another in the hierarchy. Specialisation of objects, however,
is also a dynamic phenomenon. The specialisation is dependent on the role of
an object. For example, a person object is specialised to an employee object,
because of its role in an employment relation. [Gottlob et al., 1996] discuss
the extension of object-oriented systems with roles. An extensive conceptual
study and formalisation of objects with roles is found in [Wieringa et al., 19951.
There, a distinction is made between static classes, dynamic classes and roles.
Objects cannot migrate between static classes, because a static class defines
inherent properties of the object. Dynamic classes are dynamic partitions of an
object class. Objects can migrate between dynamic classes, possibly subject to
constraints. Roles are also dynamic classes but roles do not partition an object
class. In addition, an object can play multiple roles at a time.

The relevance of roles for object modelling indicates the need in an object data­
base for a mechanism to dynamically migrate objects from one class to another.
Some work has been done in this area. For example, the database programming
language Fibonacci [Albano et al., 1993] offers an extensive role mechanism.
Roles themselves are part of a hierarchy. Hence, roles can be specialisation of
other roles, which gives a relatively complex structure.

An obvious approach is to model roles by inheritance. This is an obvious choice,
given that inheritance is the standard specialisation mechanism on most object­
based systems. Modelling roles by inheritance, however, has a strong disadvan­
tage, if an object can play multiple roles at a time. In an inheritance hierarchy,
we would need a separate class for each possible combination of object exten­
sions. Clearly, this leads to a combinatorial explosion of the number of classes
in the hierarchy [McAllester and Zabih, 19861.

To avoid this combinatorial explosion, each role can be specified separately,
while allowing addition of multiple roles at a time. An example is the work on
Aspects [Richardson and Schwarz, 19911. An aspect is a unit of data and be­
haviour that can be added dynamically to an object. Aspects, however, do not
address the link between aspects and relations, as in the employment example
at the start of this section. Furthermore, although aspects can have other as­
pects, interaction is not possible between different aspects of the same object.
Hence, we cannot model interactions between two roles of the same object. An
example would be the use by a person of information obtained through his
employee role in his investor role.

In DEGAS, we introduce a simple object extension mechanism, the addon mech­
anism. This avoids the complications of multiple inheritance. Furthermore, ac­
tive rules allow object extension to be triggered by events on the database. This

40 3.5. CONCLUSION

is especially useful to extend an object further, if a combination of addons is
present. The addon mechanism is discussed in Chapter 4.

3.5 Conclusion

This chapter presented the areas in database research that are of interest for
our research. We started with an overview of active databases, which is the area
DEGAS builds on. Object autonomy also gives new perspectives on the connec­
tion of active databases to temporal and object-oriented databases, which were
also introduced.

Further discussion in this chapter concerns the impact of object autonomy on
different issues in active object databases. The maximal encapsulation of object
autonomy promotes a consequent application of object-oriented principles to
the modularisation of rules in an active databases. Furthermore, the process­
oriented view of object autonomy on the formalisation of an active database
gives us a model that unifies active and historical databases. A further advan­
tage of this formalisation is that it gives the semantics of rules directly.

The integration of active and temporal database also sheds new light on the
specification of temporal queries. Events as temporal conditions allow the spec­
ification of historical situations independent of their exact time of occurrence.
Another contribution of the DEGAS model is the straightforward object exten­
sion mechanism, that allows the implementation of objects with roles.

The next part of this thesis introduces the DEGAS model in full. The presenta­
tion of the DEGAS model will make clear, how DEGAS fulfills the contributions
described in this chapter.

41

Part II

Model

43

Chapter 4

The DEGAS Object Model

Now that the motivation for DEGAS has been discussed in depth, its main con­
cepts can be introduced formally. The basis of DEGAS is the autonomous ob­
ject. As explained before, these objects can evolve through addons, containers
of additional, temporally present, functionality. Furthermore, objects are inter­
related through relation objects. For a good understanding of these concepts,
we use trading on a stock exchange as an on-going example. This example also
serves as an introduction of the DEGAS language.

The introduction of DEGAS concepts is topped off with the DEGAS query lan­
guage. DEGAS' event specifications offer a new way to formulate temporal con­
ditions. This adds an event specification clause to the usual SQL-like object
query format. Object autonomy also leads to the introduction of the quality of
a query result. Furthermore, we discuss the object management structures in a
DEGAS databases.

4.1 DEGAS Objects

In DEGAS, objects are instances of classes. Hence, a DEGAS object definition
specifies an instance of a class. As usual, we distinguish structure and be­
haviour in a DEGAS object. The structure of an object is determined by the
attributes. The behaviour of an object has three components: methods, lifecy­
cles, and rules. Methods specify what an object can do. The lifecycles specify
what an object might do, i.e. what methods it is willing to execute in a certain
context, by specifying sequencing of and preconditions on method execution.
Rules specify what an object will do, by specifying actual actions to be exe­
cuted in certain situations, defined in terms of events and object states. Thus,
methods and lifecycles specify potential behaviour of an object, whereas rules
describe actual behaviour. Traditionally, only potential behaviour is specified
in object-oriented databases, often limited to methods only.

44 4.1. DEGAS OBJECTS

The first section of an object specification specifies the attributes of a class.
DEGAS supports the types commonly found in object models: simple types,
tuple types and power types, i.e., sets. One of types supported is the set of
class names in the databases. Hence, other object's attributes can be referred to
through path expressions, that are translated to method calls to other objects.

As usual in an object-based model, methods specify the possible state changes
of an object. In DEGAS, methods can either change attributes in the object, or
call other methods, both local and in other objects. Method calls between ob­
jects are by way of non-blocking message passing. This will be further explained
in Chapter 6.

An object's lifecycle specifies sequencing of methods and pre-conditions on me­
thod invocations. Hence, every method call is checked against the lifecycle of
the object. A method call will only be executed, if the current state of the lifecy­
cle allows it. The formalism chosen to specify lifecycles in DEGAS is guarded ba­
sic process algebraic expressions [Baeten and Weijland, 19901. The basic actions
in such an expression are method names. Complex expressions are composed
using sequential composition, alternative composition, repetition, and parallel
merge (or indifference) operators.

Rules in DEGAS follow the usual Event-Condition-Action (ECA) format. Like life­
cycles, event specifications in DEGAS are expressed using process algebra. We
chose process algebra as an event algebra is, because it is well understood, and
has found broad application [Baeten, 19901. In addition to the operators in a
lifecycle, an event specification can use the negation of an event. This denotes
any event on the object, except the negated event. As was explained in Sec­
tion 3.1, the action of an ECA rule is executed on occurrence of the event, if the
condition is satisfied. In DEGAS, this check of event and condition is done after
every method invocation. The action of a rule is a method call, either local or to
a method in another object. Hence, the action is also subject to object lif ecycles.

Another way to define a class is generalisation. Generalisation captures com­
monalities between objects of different classes. There are no instances of a
generalisation class, since the class of an object defines its inherent, unchange­
able properties. An example is the notion of a legal entity. Both companies and
persons are legal entities, but no object exists that is only a legal entity. A lot
of relations, however, are between legal entities. Hence, we need the ability to
specify such generalisations in DEGAS.

Objects can be specialised through the addon mechanism. An addon defines
additional attributes, methods, rules and lifecycles. If an object is extended
through an addon, it gains these transient capabilities. These cannot be distin­
guished from the inherent capabilities of an object1. The capabilities specified

1 An object with introspection might keep track of its capabilities to determine which capa-

4.1. DEGAS OBJECTS 45

in an addon are lost, when the addon is removed. Since an addon only defines
an extension of an object, instances of an addon do not exist.

Addons allow the capabilities of an object to evolve over time, like those of
an object in the real world. During its life, an object is created, acquires and
loses relations, and consequently gains and loses capabilities. An example is an
employee that has different capabilities in different jobs.

In DEGAS, relations between objects are objects themselves. Thus, we have a
place for data and behaviour of a relation. Furthermore, the fact that a relation
object is an object itself, also means that it can engage in relations itself. A
more abstract motivation of this objectification is, that a relation is a kind of
contract, a view also found in, e.g., NIAM [Nijssen and Halpin, 19901.

Before two objects enter a relationship, certain preconditions will have to be
satisfied. For example, if two persons wish to marry, both must be of a differ­
ent sex and must be unmarried. Likewise, the termination of a relationship is
subject to restrictions. In relations, we often need to store data and behaviour
of the relation. An example is the bank account relation between a bank and its
clients. This information, and the capabilities to handle termination of the rela­
tionship, are stored in a relation object. The capabilities to handle the initiation
of a relationship, including the creation of the relation object, can be found in
the corresponding relation class object.

An object that engages in a relation is extended using the addon mechanism.
Through the addon it acquires the capabilities to handle the relationship. An
addon is always added, since an object must have a method to terminate the
relation. An example is a person with a bank account. If he is in this relation,
he can transfer money to other bank accounts or withdraw money through an
ATM2.

The three meta classes in DEGAS, objects, relation objects, and addons, lead
to a three-layered structure of a DEGAS database. At the lowest level, we find
the object instances. These are objects and relation objects with their addons.
Addons do not have a separate existence, since they only define an extension
of a DEGAS object. Each class of objects is represented by a class object. These
are again typed by the three meta classes. These three layers are depicted in
Figure 4.1. They can be characterised as follows:

1. Instance Level. This level is the representation of the Universe of Dis­
course of our information system. Here, objects such as persons, banks
and bank accounts can be found.

bilities are permanent and which are transient. A DEGAS object, however, is not equipped with
introspection.

2 Automated Teller Machine

46 4.1. DEGAS OBJECTS

2. Class Level. This level contains class objects, that are representations for
every object class, relation object class and addon class. Class objects
handle object creation and keep track of the objects in their class. Class
objects are DEGAS objects without the ability to engage in relations.

3. Meta Class Level. The meta classes are also represented by objects in the
system. This is the highest level in the system. The presence of meta class
objects facilitates schema evolution by creating and destroying classes, in
analogy to the creation and destruction of objects by class objects.

0
>

.£
"' "' "' 0

0
>

.£

" u
C:

~ .s

Object

Person

Relation Object AddOn

Accountholder

Account

ING

Acct522234562
ABN Amro

Figure 4.1: Structure of the Object Model

Each class in DEGAS is represented by a class object. Besides recording part of
the extent of the class, class objects serve three functions:

1. Creation of new objects

2. Information about the schema of a class

3. Schema updates.

The first two functions are purely local as long as the object schema is fixed.
Schema information about objects is necessary to check the correctness of
queries. For example, we can test whether an attribute defined in a query actu­
ally occurs in that object. Type checking for queries will be discussed in Sec­
tion 7.4 below.

4.2. DEGAS BY EXAMPLE 47

All three meta classes in DEGAS, i.e., objects, relation objects, and addons, have
class objects associated with them. These class objects maintain the extent
set of their classes. For example, we can get the set of objects that have an
account holder addon through the class object for this addon.

4.2 DEGAS by example

In this section, we introduce the DEGAS concepts by modelling a highly dynamic
application, since these are the most challenging to deal with. Trading on the
stock exchange3 is such an application with fast changing data and rapidly
evolving relations. New data emerges constantly in the form of buying and sell­
ing orders, economic news items through newsreels, et cetera. Both new and
historical data influence the behaviour of the parties in the market.

Let us briefly describe the example in more detail. Companies are owned by per­
sons. A person can buy and sell shares. He can subscribe to a newspaper spe­
cialised in news about companies of his interest. Buying and selling of shares
goes through a market-maker. If a person wants to buy or sell, he informs the
market-maker. Periodically, the market-maker determines the price that bal­
ances supply and demand. Buying and selling orders that agree with this price
are fulfilled.

We start this example with the market-maker. The market-maker matches sup­
ply and demand for his market. Hence, the actions he can execute are to accept
buying and selling orders and to try to match these. The data stored by the
market-maker is the current price of the share he deals in, which is a real num­
ber. This is specified by the DEGAS definition of attributes and methods of an
object class Marketmaker in Figure 4.2. The methods in this object only contain
actions to engage in a relation or actions to extend the object with an addon. An
object engages in a relation by sending a method call to the class object of the
relation. An example is the i ni ti ateMarketmaker message sent to the class
object of the Supply relation. The creation of a DEGAS relation is largely left to
the application designer, as is discussed in full detail in Section 7.3.

This defines the basic properties and actions, but we know more about the
market-maker. This information is specified in the lifecycle. The lifecycle of a
Marketmake r object consists of taking buying and selling orders. If both ac­
tions have occurred in an arbitrary number and sequence, he is allowed to
match supply and demand. In this process algebraic expression ; denotes se­
quence, * denotes repetition, and II denotes indifference parallelism.

The specification of the actual execution of actions by a DEGAS object is given
by its rules. The behaviour of a market-maker is to register supply and demand,

30ur example is a simplification of the stock exchange in the Netherlands.

48

Object Marketmaker
Attributes

currentPrice : real
Methods

takeSellOrder = {
SupplyClass.initiateMarketMaker

}
takeBuyOrder = {

DemandClass.initiateMarketMaker
}
makeMarket = {

Extend(SupplyDemand)
}

Llfecydes
((takeSellOrder* II takeBuyOrder*);makeMarket)*

Rules
On (takeSellOrderlltakeBuyOrder) do makeMarket

EndObject

4.2. DEGAS BY EXAMPLE

Figure 4.2: Specification of the Marketmaker object

and clear the market if both are present. A rule, that completes the definition
of the Marketmaker object, specifies this behaviour.

In our example, a person can buy shares. To do this, he should place a buying
order. If this order can be met by supply in the market, he will actually buy
the shares. If it is unsuccessful, a cancellation will be the result. In addition
to buying shares, a person can take a subscription to a newspaper in order to
obtain information. If he owns shares and also reads a newspaper, he will use
the information from the newspaper to influence decisions about his shares.
This is specified in the Person object in Figure 4.3

In the Person and Marketmaker objects, the methods define that the object
engages in relations. Relations in DEGAS are objects themselves. A relation ob­
ject can have the same kind of capabilities as an ordinary object. For example,
a share is modelled as an ownership relation between a person and a company.
In the relation object, the partners in the relation are present as implicit at­
tributes, specified in the Relation clause. These can be used like any other
attribute of the relation object. Other information present is the price of the
share when it was bought. The definition of the Share relation object in Fig­
ure 4.4 shows the use of guard conditions in the lifecycle. The action after a
condition can only be executed, if the condition is satisfied. In the Share rela­
tion object, guards are used to restrict access to its methods. Thus, in DEGAS we
are able to control access to an object's methods in greater detail than in, e.g.,
C++ [Stroustrup, 1991], where the only distinctio:1. is between private, public
and friend methods.

4.2. DEGAS BY EXAMPLE

Object Person
Attributes

name : string
birthday : time
birthplace : string

Methods
tryToBuy(company:Company, number:integer, maxPrice:real) = {

DemandClass.initiate(company,number,maxPrice)
}
readPaper(paper:Newspaper) = {

SubscriptionClass.initiatePerson(paper)
}
useNews = {

Extend(InformedOwner)
}

Llfecycles
(tryToBuy)*
((extendShareholder II extendlnf ormedPerson);useNews)*

Rules
On (Extend(Shareholder) II Extend(InformedPerson))

do useNews
EndObject

Figure 4.3: Specification of the Person object

Object Share
Relation Person, Company
Attributes

buyPrice : real
currentPrice : real
value: real

Methods
transferOwnership(newOwner:Person,price:real) = {

Person = newOwner
buyPrice = price

}
payDividend(div:real) = {

value = value + div
}

Llfecycles
([sender=Person)transferOwnership)*
([sender=Company]payDividend)*

EndObject

Figure 4.4: Specification of the Share relation object

49

50 4.2. DEGAS BY EXAMPLE

A Person object does not have the capability to deal with the share relation
built-in. Instead, it acquires these when it engages in this relation. In this exam­
ple, a person who becomes a shareholder gains capabilities to sell the shares
again. This is specified in the Shareholder addon in Figure 4.5. An addon tem­
porarily adds capabilities to a DEGAS object. These capabilities are present in
the object from the time it is extended by the addon until the addon is re­
moved. The capabilities specified in the addon cannot be distinguished from
the inherent capabilities of the object, while they are present. As was discussed
in Section 3.4.4, objects have a role in their relations. Since the role is only
needed when the object is in the relation, an important use of addons is to
model roles in connection with relations.

Addon Shareholder
Extends Person
Attributes

share : Share
Methods

tryToSell(company:Company, number:integer, minPrice:real) = {
SupplyClass.initiateShareholder(company,number,minPrice)

}
Sell(buyer,price) = {

share.transferOwnership(buyer,price)
Remove(Supply)

}
cancelSupply = {

Remove(Supply)
}

Llfecycles
(tryToSell;(Sell+cancelSupply))*

EndAddon

Figure 4.5: Specification of the Shareholder addon

The Suppl yCl ass. i ni ti ate action in this addon specification also occurred
in the specification of the Marketmaker object. A call to an i ni ti ate method
is made by an object to express its wish to engage in a relation. Since the re­
lation object does not exist at this time, i ni ti ate is a method of the rela­
tion class object. In this case, a Shareholder object sends an i ni ti ate call to
the Supply class object. In response, it sends a takeBuyOrder message to the
market-maker to ask, if it is willing to accept the relation. As we can see in the
specification of the Marketmake r object, it responds with an i ni ti ate call to
express its agreement. The Supply class object then proceeds with instantia­
tion of the relation. A further explanation of the way relations are established
can be found in Section 7.3.

As we can see in the specification of the Person object, an addon can also be

4.2. DEGAS BY EXAMPLE 51

used to link two relations. In our example, the information a person reads in
the paper influences his decisions as a shareholder. This is achieved by extend­
ing the person with a further addon, if he owns shares and reads a newspaper.
In Figure 4.6, we give the specification of the InformedPerson addon, that ex­
tends a Person object with a subscription to a newspaper.

Addon InformedPerson
Extends Person
Attributes

subscription : Subscription
transactionPrice : real

Methods
goodNews(company : Company) = {

transactionPrice = subscription.priceAdvice(company)
}
badNews(company : Company) = {

transactionPrice = subscription.priceAdvice(company)
}

Lifecycles
([sender=subscription)goodNews *)
([sender=subscription)badNews *)
(Extend(InformedPerson);Remove(InformedPerson))*

Rules
On goodNews(company)(t1);goodNews(company)(t2)

if t2 - ti ~ 7 days
do tryToBuy(company, transactionPrice)

EndAddon

Figure 4.6: Specification of the InformedPerson addon

The rule definitions in the specifications of InformedPerson and Informed­
Owner show the use of time in DEGAS. Historical values of attributes can be
referenced by a time parameter. Likewise, we can refer to the timestamp of an
event. The specification in Figure 4.7 gives an example of how the informed
shareholder deals with bad news. This addon can extend a person, if it has
both the Shareholder and the InformedPerson addons. Hence, the extends
specification gives two original object names. Please note, that this is not a form
of multiple inheritance. It simply specifies, what the addon may assume to be
present.

The diagram in Figure 4.8 shows the complete model of the stock exchange
example. In this picture, large boxes represent objects and small boxes repre­
sent addons. The dashed boxes are relation objects. Please note that the arrows
do not imply any arity constraints on the relations. Instead, the arrows simply
point to the partners in the relation.

52

Addon InformedOwner
Extends InformedPerson,Shareholder
Attributes

Key: P(subscription: Subscription, share: Share)
Llfecycles

Extend(lnformedOwner)*
Remove(InformedOwner)*

Rules
On badNews(company)(t1);badNews(company)(t2)

4.2. DEGAS BY EXAMPLE

if (t2 - ti)~ 7 days and transactionPrice(t2) ~ transactionPrice(t1)
do tryToSell(transactionPrice)

On goodNews(ti);badNews(t2)
if t2 - t 1 ~ 7 days and transactionPrice(ti) = max(transactionPrice, t 1 , t2)

do tryToSell(transactionPrice)
On Remove(ShareHolder) do Remove(InformedOwner)
On Remove(Subscription) do Remove(InformedOwner)

EndAddon

Figure 4.7: Specification of the InformedOwner addon

Demand

~---~ln_D_e_ma~nd-, ~

j
MarketMaker

.t,

~

Supply

I

Share : Subscription

Company

Gone Public

Subscribed

Newspaper

Figure 4.8: The DEGAS model for a findncial market

4.3. SYNTAX OF A DEGAS OBJECT 53

4.3 Syntax of a DEGAS Object

In this section, we give the syntax of the DEGAS data model. Since we showed a
number of example DEGAS specifications in the previous section, we only show
examples of syntactic constructs that did not occur there. The syntax is given
as a BNF grammar. Symbols from the DEGAS language are printed in teletype
font. Non-terminals are denoted by (NonTerminal) . I denotes a choice. Optional
parts are surrounded by rectangular braces: []. Other symbols in the right hand
side of a rule are terminal symbols.

Before we proceed with the syntax definition, we postulate the presence of the
following disjoint sets from which terminals are taken:

A set of basic types
A set of basic functions
A set of values for each basic type
A set of Boolean functions on the basic types
A set of attribute identifiers
A set of parameter identifiers
A set of method identifiers
A set of variable names
A set of class names
An ordered set of label identifiers
An linearly ordered set of timestamps

(BasicType)
(BasicFunction)
(BasicValue)
(BasicCondition)
(AttributeName)
(Parameter Id)
(MethodName)
(VariableName)
(ClassName)
(LabelName)
(TimeStamp)

Please note, that names of attributes and methods must be unique across a
complete DEGAS database.

Basic Types and Functions The set of basic types includes the following
types. The domains of the types are defined in Section 5.1.

Oid
Integer
Real
String
Boolean
Time

Object identifiers
Natural numbers
Real numbers
Alphanumeric strings
Truth value
Timestamp

Basic functions are defined on the basic types or on a Cartesian product of basic
types. The set of basic functions is the following:

+ Addition
Subtraction

* Multiplication
I Division

The following Boolean functions are defined on the basic types, where appro­
priate. For example, on Did only equality and inequality predicates are mean­
ingful.

54 4.3. SYNTAX OF A DEGAS OBJECT

Equality
-f. Inequality
< less than
:s; less than or equal to
> greater than
:?!: greater than or equal

Class The definition of a class has five parts, the header and four sections for
the definition of the attributes, methods, rules and lifecycles.

(Class) (ClassHeader)

(AttributeSection)

(MethodSection)

(LlfecycleSection)

(RuleSection)

(ClassEnd)

(4.1)

Types The basic types are used to construct complex types. Constant values
can be used in expressions. The possible type constructs are power types and
tuple types.

(Type) (BasicType) I 'P (Type) I (TupleType) I (ClassName) (4.2)

(TupleType) ((FieldLlst)) (4.3)

(FieldLlst) (Field) I (Field) , (FieldLlst) (4.4)

(Field) (LabelName) : (Type) (4.5)

Class Header The class header indicates the place of the class in the type
structure by giving the meta class, i.e., object, relation object, or addon. Further
information is the list of subclasses for a generalisation class. For relation ob­
ject classes, it defines the partners of the relation. In the definition of an addon
class, it gives the class it extends.

(ClassHeader) Object (ClassName) (4.6)

(ClassHeader) Object (ClassName) generalises (ClassLlst) (4.7)

(ClassHeader) Object (ClassName) (4.8)

Relation (ClassLlst)

(ClassHeader) AddOn (ClassName) (4.9)

Extends (ClassLlst)

(ClassLlst) (ClassName) , (ClassLlst) I (ClassName) (4.10)

An example of an object class that generalises other object classes is:

Object LegalEntity generalises Person, Company

4.3. SYNTAX OF A DEGAS OBJECT 55

After the class header, the capabilities of the class are specified. There are no
syntactical differences between objects, relation objects, and addons in this
specification.

Attributes Declaration of attributes is straightforward using the types defined
above. Every (relation) object class has an implicit attribute this : Oi d con­
taining the object identifier, which cannot be changed by the programmer. An
addon does not have an identifier, because it is not an autonomous object.

(AttributeSection) Attributes (4.11)

(AttributeList)

(AttributeList) (AttributeDecl) (4.12)

I (AttributeDecl) , (AttributeList}

(AttributeDecl) (AttributeName} : (Type) (4.13)

Methods The methods of an object are defined in the method section of the
class declaration. A method may either modify the object state or call other
methods. A method call can be either to an internal method or to a method of
another object. Modification of the object state can take place through assign­
ments to attributes. In addition, method calls or assignments can be executed
simultaneously on all elements of a set-valued attribute.

Methods included in every (relation) object class are those to add and remove
addons from an object. This is explained in more detail in Section 6.2.

(MethodSection)

(MethodList)

(MethodDecl)

(StatementList)

(Statement)

(Expression)

(PathExpression)

Methods

(MethodList)

(MethodDecl)

I (MethodDecl) , (MethodList}

(MethodName) ((ParameterList))=

{ (StatementList) }

(Statement)

I (Statement) ; (StatementList)

(AttributeName) : = (Expression)

I (MethodCall)

I (AttributeName) : = (MethodCall)

I (Setlteration}

I Return (Expression)

(AttributeName) I (PathExpression)

I (BasicFunction) I (BasicValue)

(PathExpression) . (AttributeName)

I (AttributeName)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

56

(Method Call)

(Setlteration)

(ActParamLlst)

(ActParam)

(Condition)

4.3. SYNTAX OF A DEGAS OBJECT

[(PathExpression) .] (MethodName) ((ActParamList))

fora 11 (VariableName) in (AttributeName)

where (Condition)

do~ { (StatementList) }

(ActParam) I (ActParam) , (ActParamList)

[(Parameterld) =] (Expression)

(BasicCondition)

I (Condition) and (Condition)

I (Condition) or (Condition)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

An example of a set iteration is the following method in a Bank object. It awards
a premium to accounts with a balance higher than a specified limit. The at­
tribute coffer represents the bank's own account.

Methods
award(premium: real, premiumLimit: real)= {

forall acct in Accounts
where acct.balance > premiumLimit
do {

}
}

coffer.debit(premium)
acct.credit(premium)

Rules The rules section defines the rules on the object. These are Event - Con­
dition - Action triples as is usual in active database systems. Event expressions
are basic process algebraic expressions. Complex expressions are defined using
sequential composition (;), alternative composition (+), repetition (*), parallel
merge (II) and non-occurrence(,) operators.

(RuleSection)

(RuleList)

(Rule)

(EventSpec)

(Event)

Rules

(RuleList)

(Rule) I (Rule) , (RuleList)

On (EventSpec)

if (Condition)

do (Action)

(Event) [(Time Window)]

(MethodName) [(ParameterList)]

I (TimeStamp)

I ((Event)+ (Event))

I ((Event) ; (Event))

I ..., (Event)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

4.3. SYNTAX OF A DEGAS OBJECT

(Time Window)

(Ti.mePairList)

(Ti.mePair)

(Action)

I (Event)*

I (Event) 11 (Event)

[(Ti.mePairList)]

(Ti.mePair) , (Ti.mePairList) I (Ti.mePair)

((TimeStamp) , (Ti.meStamp))

(Method Call)

57

(4.31)

(4.32)

(4.33)

(4.34)

Llfecycles The lifecycle of an object is defined in the lifecycle section of the
class definition. Lifecycles are guarded basic process algebraic expressions. The
basic actions are the methods of the object. The guards are conditions on the
object state. We can specify a number of expressions in the lifecycle section,
each starting on a new line. These expressions are merged into one lifecycle
through communication merge, as explained in Section 5.7.2.

Please note that, despite their similarity, lifecycles and event specifications use
different expressions. Event expressions in rules can use the negation operator,
whereas a lifecycle cannot. This difference originates in the nature of rules and
lifecycles. A lifecycle is a positive description of what an object is allowed to
do, while an event expression is basically a query on the history of an object.

(LifecycleSection)

(LifecycleList)

(Lifecycle)

Lifecycles
(LifecycleList)

(Lifecycle) I (Lifecycle) , (LifecycleList)

(MethodName) [(ParameterList)]

I ([(Condition)] (Lifecycle))

I ((Lifecycle) + (Lifecycle))

I ((Lifecycle) ; (Lifecycle))

I (Lifecycle) *

I ((Lifecycle) 11 (Lifecycle))

(4.35)

(4.36)

(4.37)

This grammar defines syntactically correct classes. More, however, is needed
to get a meaningful hierarchy. For that, we need uniqueness constraints and
referential constraints.

Uniqueness Constraints Classes, types, attributes, labels and methods must
have unique names.

Referential Constraints The references to other entities in declarations must
be correct. More specifically:

1. All methods must be well-typed. All assignments and method calls must
be correctly typed, i.e., all values must be of the same type, or a subtype

58 4.4. QUERYING DEGAS OBJECTS

of that type, as the attribute or parameter they are assigned to. Typing is
discussed further in Section 5.1.

2. All classes referred to in declarations must exist in the class hierarchy.

3. A method call must have the right number of actual parameters.

4.4 Querying DEGAS objects

A DEGAS query selects the members of a class that satisfy a specified selection
condition or selector. A novel feature in the selector is the event specification.
This allows the specification of arbitrary temporal conditions. The advantage is
in the possibility to specify conditions related independent from specific time
points. In a DEGAS query, we can express our interest in an event regardless of
the time it occurred.

The temporal dimension of DEGAS is reflected in the result of a query. Since the
state of an object includes its complete history, a query against an object state
is a query against the history of the object. Hence, it is not sufficient to only give
the object identities as a result. The time when the object satisfied the query is
also relevant. In DEGAS, a query returns a set of object-history pairs, giving the
sub-histories that matched the event specification in the query's selector. The
selector consists of two parts, an event expression and a condition. The format
of a query is:

Select from (Class)
on (EventSpecification)
if (Condition)
quality (Integer)

The full syntax definition of the DEGAS query language is given by the follow­
ing BNF grammar. Non-terminals in this definition refer to the productions in
Section 4.3.

(Query)

(Compound Condition)

An example of a DEGAS query is:

Select from A TMcards
on ChangePIN(tl);ChangePIN(t2)
if t2 - t1 ~ 1 day

Select~ from (ClassName)

on (EventSpec)

if (CompoundCondition)

quality (Percentage)

(Condition)

I Exists~ in (Query) : (Condition)

(4.38)

(4.39)

4.4. QUERYING DEGAS OBJECTS 59

This query selects all PIN cards that had their code changed twice within a day.
The timestamps associated with the events are bound to the tl and t2 param­
eters. These can be referenced in the condition of the query. The parameters
of an event can also be referenced in the query condition, as is done in the fol­
lowing example. This query selects bank accounts involved in a fast transfer of
money, hinting at potential illegal activities.

Select from BankAccount
on credit(cr ..amount)(tl);debit(db_amount)(t2)
if cr_amount > 10000 and db_amount > 10000

and t2 - t1 ~ 2 days

Since a DEGAS object records its complete history, a query also applies to the
complete history. If we wish to restrict it temporally, then we specify a time
window for the event expression. A time window restricts the part of the history
the event expression is checked against. For example, we might be interested
only in occurrences of an event during the last fortnight. Here, we are interested
in bank accounts that are overdrawn by a single large transaction:

Select from BankAccount
on debit(db..amount)(t)[l Mar 1997, 15 Mar 1997)
if db_amount > 10000 and balance(t) ~ 0

A further facility in the DEGAS query language is the nested query. A nested
query is used to specify conditions over multiple objects. This is done through
the Exists predicate, that consists of a query and a condition. The condition
joins the result of this query to objects in the root class of the query. An exam­
ple is the following query, that selects the trains with a destination that is the
location of a cycle race.

Select from Train
if

Exists in Select from Cyclerace:
Train.destination= Cyclerace.location

Above, we saw one of the novel features of DEGAS queries, viz., events to spec­
ify temporal conditions. Another new element is caused by object autonomy.
A consequence of object autonomy is that it is decided in an object, whether
to answer or not to answer a query. This depends on the object's lifecycle.
Furthermore, the inherently distributed nature of DEGAS implies that the un­
derlying network may be partially unreachable. Hence, the answer to a query in
DEGAS need not necessarily contain all objects satisfying the query. Therefore,
the result of a query is accompanied by an estimate of the quality of a query. By
the quality of a query, we mean the number of objects giving a positive answer
A relative to the total number of objects in the database satisfying the query
selector S:

A
s

60 4.5. DISTRIBUTION MODEL

Since the divisor S cannot be given with certainty due to object autonomy,
the quality measure returned with a query is an estimate. A user can specify
an expected quality for a query through the quality clause of a query. For
example, in the following query the user is satisfied with an answer including
80 percent of the relevant objects.

Select from A TMcards
on ChangePIN(tl);ChangePIN(t2)
if t2 - t1 :,; 1 day
quality 80 96

In Chapter 6, we discuss the impact of query result quality on query processing
in DEGAS.

4.5 Distribution Model

Each DEGAS object has an independent thread of control. In this respect, it
follows concurrent object-oriented languages [Agha et al., 19931. Examples of
such languages are Actors [Agha, 1986], POOL-T [America, 19871, and Procol
[Bos and Laffra, 19911. Experience in implementing a database using POOL-T
in the PRISMA/ DB project [Apers et al., 1992) learns us that a large number
of concurrent objects cannot be managed without some structure. Hence, the
large number of objects in a DEGAS database is organised in two ways: locality
and class. The distribution model describes the assumptions about locality of
objects. The organisation by class leads to the three-layered model outlined in
Section 4.1. These two structures are used to find the reach the desired objects
in DEGAS query processing.

Physically, the objects in a DEGAS database live on networked processing units.
This network consists of a number of nodes linked by network connections. In
view of the motivation for DEGAS in Chapter 2, we do not make any assumptions
about the nature of the computing units and the network connections involved.
Both can be anything, from a dedicated parallel server to a mobile phone or
from an ATM4 fibre cable to a GSM5 wireless link.

Logically, distribution in DEGAS is organised by sites. Intuitively, a site is a set of
computing units that are close to each other relative to others in the network.
The logical network a DEGAS database lives on, is represented by a graph. In
this graph, the set of vertices is the set of sites. An edge between two nodes
exists, if a connection exists between the two sites.

The topology of a network may change arbitrarily. For example, the network
may temporarily become partitioned. For any site, we define the active part of

4 Asynchronous Transfer Mode
5Global System for Mobile communications

4.6. CONCLUSION 61

the network relative to time. For a network N, time t, and site s, it is denoted
by Active(N, t,s)

Definition 2 In a network N, a site s1 is reachable from s2 at time t, if there is a
path from s2 to s1 in Active(N, t, s2).

Figure 4.9 gives an example network. In this picture, the full lines indicate the
active connections. Consequently, the darker coloured vertices represent the
sites reachable from site c.

a

e

Figure 4.9: Reachability in a network

In DEGAS, each site in the network is represented by a site object. A site object
functions as a kind of data dictionary. A site object keeps track of the objects
residing at its site. Furthermore, it keeps schema information in the form of
class objects. To assist query processing, a site object also maintains numerical
information about the fragmentation of classes over other sites in the DEGAS

database. A further discussion of the workings of site objects is postponed to
Section 6.8.

4.6 Conclusion

This chapter introduced the main concepts of the DEGAS model. Object au­
tonomy has two main results. First, every aspect of an object's behaviour is
encapsulated. Second, each object has an independent thread of control. The
model is based on three meta classes: objects, relation objects, and addons.
DEGAS class specifications encapsulate every aspect of an object. In compari­
son with existent object models, DEGAS extends an object with lifecycles and

62 4.6. CONCLUSION

rules. The stock exchange example showed how these are used to model the
dynamics of information exchange through relations.

The independent thread of control in each object has its impact on query pro­
cessing. Since it is a local decision to answer a query, the DEGAS query language
introduces the quality of a query result. This notion represents the proportion
of desired objects in the answer to the query. A further novel facility is the spec­
ification of temporal conditions through event expressions. To support query
processing a DEGAS database is organised by class and by location in order
to get structure in the large number of objects in a database. This is further
discussed in Chapter 6.

63

Chapter 5

Abstract Semantics of DEGAS

The previous chapter gave an introduction to the concepts of the DEGAS model,
including a syntax for specifying DEGAS objects. In this chapter, we define the
formal semantics of the DEGAS model. In order to give a formal definition of a
DEGAS database, a considerable amount of preparatory work is needed.

As a first foundation of the formalisation, we define the type system underlying
DEGAS. Based on this type system, we define the effects of DEGAS methods on a
tuple of attributes. Then, we discuss the use of time in DEGAS, which results in
an initial definition of the history of an object, the pre-history. The pre-history
is used to define the interpretation of a DEGAS object and a model of a DEGAS

database. The final element defined in advance is a selector, that is used in
DEGAS rules and queries.

These preparations allow the formal definition of the dynamic parts of a DEGAS

object, viz., methods and rules. In this formalisation, the history plays a central
role. For example, whether a method is allowed to execute by a lifecycle is
dependent on the history. Lifecycle and rule semantics are defined in process
algebraic terms, mapping directly to the event history of the object.

The semantics of method and rule execution lead to a number of constraints on
an object history. A database consisting of objects with a valid object history
is a valid DEGAS database. This database can be queried using the DEGAS query
language. To complete the formalisation of DEGAS, we define the semantics of
DEGAS queries.

5.1 Typing

We open the formalisation of DEGAS with the definition of the type system.
Typing of attributes and methods in DEGAS is defined following [Balsters and
Fokkinga, 19911. We first give the semantic counterpart of the syntactic con­
struction of the types in Section 4.3.

64 5.1. TYPING

We start the definition of the DEGAS type system with the basic types.

Definition 3 A set of basic types B is postulated. B contains the following types:

Oid
Integer
Real
String
Boolean

Object identifiers
Integer numbers
Real numbers
Text strings
Truth value

A hermit type 1 is introduced to cater for functions that always return the same
value. This type consists of a single element. So a function to 1 discards all its
input values, since it always returns the same value.

Definition 4 Given a set of basic types B, a hermit type 1, an ordered set of labels
L, the set of types T is defined as follows:

1. 1 ET

2. B ~ T.

3. (a- - T) ET, ifa-,T ET.

4. (a1: T1, ... , am: Tm) ET, if m EN and for I :s; i :s; m Ti ET, ai EL and
ai < ai+l ·

5. 'PT ET, ifT ET.

6. a- X T E T, if a-, T E T.

DEGAS object specifications, i.e., object, relation object, and addon definitions,
define an underlying type, which is a tuple of attributes.

Definition 5 To each object, relation object, and addon definition D we can ap­
ply an operator Type(D) that yields the underlying type (a1 : T1, ... , an: Tn)

defined by D. References to other classes are cast to the type Oid. The underly­
ing type of an object definition contains at least the attribute "this : 0 id". Given
a definition D with the following attribute section:

Attributes
a1 : T1

a 2: T 2

Then

Type(D) = (this: aid, a1 : T1, . . . , an: T n)

Additionally, a relation object contains a Re 7 a ti on clause. Given a definition D'
with the A tt ri bute section above and the following Re 7 a ti on clause:

5.1. TYPING 65

Relation 01, 02, ... , On

These are also added to the underlying type:

Type(D') =
(this: oid,01: oid,02: oid, ... ,On: oid,a1: T1, ... ,an: Tn)

As an example, we give the underlying type of a Person object, defined in Sec­
tion 4.2, if it is not extended by any addon.

(this: Oid, name : string, birthday : time, birthplace: string)

A subtyping relationship is defined on the types following [Cardelli, 1984] and
[Balsters and Fokkinga, 1991].

Definition 6 The subtyping relation~: T x T is defined as follows:

1. ifT EB, then T ~ T.

2. Integer < Real.

3. Let u = (u1 - u2) E T and T = (T1 - T2) E T. If Ti ~ ui and u2 ~ T2,
then u ~ T.

4. if u, TE T and u ~ T, then Pu~ 'PT.

5. ifui =(Li: T1, ... ,ln: Tn) ET andu2 = (m1: v1, . . . ,mk: vk) ET, such
that\li E {1, . . . ,k},3j E {1, ... ,n}: mi= L1 I\ TJ ~ vi, thenu1 ~ u2.

The domains of the basic types are given in the following definition.

Definition 7 With each basic type {3 is associated a domain D(/3). The domain of
the type String is defined by a regular expression.

D(Real)

D(Jnteger)

D(Boolean)

D(String)

D(l)

R

7L

{ true, false}

[A-Za-z0-9]+

{0}

We postulate the existence of a set of object identifiers D(Oid).

Before we define the domains of the types, we postulate the domains of the
basic functions.

Definition 8 The set of basic functions BF consists of the following functions:

66

Arithmetic
Set operations
Equality
Comparison

+-*!
Uf;CE\

=I

5.1. TYPING

For each basic function f E BF, we postulate its pre-domain Dp (f).

The domains of the types are defined following [Balsters and Fokkinga, 1991],
such that D(a) f; D(T) if a :S; T. First, we define the predomains of the types:

Definition 9 For each type T E T the predomain of T, Dp (T), is defined as
follows:

1. The predomain Dp (1) is postulated in Definition 7.

2. The predomain Dp (/3) of a basic type /3 is postulated in Definition 7.

3. Dp(PT) = PDp(T)

4. Dp((l1: T1, ... ,ln: Tn)) = W1 :a1, ... ,ln: an)lai E Dp(Td}

5. Dp(a x T) = {(s, t)ls E Dp(a) At E Dp(T)}

For the functional types a - T the predomains are defined as follows:

1. The predomain Dp (a - T) of a basic function f E BF is postulated in
Definition 8.

2. Dp(a - T) = {f · gl3p ET: f E Dp(P - T) Ag E Dp(a - p)}

3. Dp(Pa - PT)= {f*lf E Dp(a - T)}, wheref*(A) = {f(a)la EA}

4. Dp((oc1: 0-1, ... , OCn: 0-n) - (/31: T1, ... , f3m: Tm))=

{(f1,fm)lfi E Dp(P1 X ... X Pl - Td,Pi E {0-1, ... , 0-n}}

5. Dp(0-1X ... XO-n-T1X ... XTm)=

{(f1,fm)lfi E Dp(P1 X ... X Pl - Ti),Pi E {0-1, ... , 0-n}}

From these predomains, we derive the domains as follows:

Definition 10 For each type T E T the domain D (T) is constructed as follows
from the predomains:

1. D(l) = Dp(l)

2. For a basic type /3, D(/3) = Dp (/3)

3. D(PT) = P(D(T))

4. lfT = (l1: T1, ... , ln: Tn), then D(T) = Ua- s T Dp(a).

5. D(a x T) = {(s, t)ls E D(a) At E D(T)}

5.1. TYPING

6. D(<r - T) = Ua-'so-,T'ST Dp(<r' - T
1

)

We show that the domains reflects the subtyping relations.

Theorem I Given a two types T and <r with <r .:5 T. Then:

D(<r) ~ D(T)

67

Proof This theorem has been proved for the type system of [Balsters and
Fokkinga, 1991], to which the reader is referred. We prove the theorem for the
set of basic types B in DEGAS. Additional composite types in the DEGAS type
system are the Cartesian product and the set type. We also prove the theorem
for these two constructs.

In the set of basic types, we have Integer <Real.Since D(Integer) =~and
D(Real) =Rand~~ R , the theorem holds for the basic types.

For the proof of the theorem for set types, we assume that the theorem holds
for types other than set types. Given two types a = 'Pa' and T = 'PT', with
a .:5 T. Then, a' .:5 T'. For the domains of a and T, we have D(<r) = 'PD(<r')
and D(T) = 'PD(T'). Since a' .:5 T', D(a') ~ D(T'), which implies 'PD(<r') ~
'PD(T'). Hence, D(<r) ~ D(T).

For the proof of the theorem for Cartesian products, we assume that the theo­
rem holds for types other than Cartesian products. Given two types a = <r1 x <r2
and T = T1 x T2, with <r .:5 T. Then, <r1 .:5 T1 and <r2 .:5 Tz. For the do­
mains of <rand T, we have D(a) = {(s1,s2)/s1 E D(ai) "s2 E D(<r2)} and
D(T) = {(t1,t2)/t1 E D(Ti) /\ t2 E D(T2)}. Since <T1 .:5 T1 and <T2 .:5 Tz,
we have D(ai) ~ D(Ti) and D(a2) ~ D(T2). Consequently, for every ele­
ment (s1,s2) E D(<r), we have s1 E D(Ti) and s2 E D(Tz). Hence, every
(s1,s2) E D(a) is also an element of D(T) and D(a) ~ D(T). □

The domain of each class is a set of object identifiers.

Definition 11 Let C be a class and Oid an infinite set of distinct object identi­
fiers. The domain of C is a subset of O id, D (C) ~ 0 id, such that:

1. If C1 generalises C2, then D(C2) ~ D(C1).

2. If C1 I C2 and not C1 generalises C2 or C2 generalises C1 and BC such
thatC1 generalisesC andC2 generalisesC, thenD(Ci) nD(C2) = 0.

Methods are typed as well in DEGAS. This is done through function types, like in
TM/FM [Balsters et al., 19931. In this approach, a method is a function mapping
an object state and instantiated input parameters to a new object state and
instantiated output parameters.

68 5.1. TYPING

In our model, however, the underlying type of an object is not fixed. This is
caused by the evolution of an object through the addon mechanism. For exam­
ple, consider the attributes of a Person object before and after extension by an
Accountho l de r addon. Before the extension, the underlying type is given by
the tuple (Name : string, Birthday : date, Purse : integer}, while afterwards the
attributes are the tuple (Name : string, Birthday: date, Purse : integer, Account
: Oid}. This makes typing of methods more complicated than in the standard
case. To define the type of a method, we first define how tuple types can be
combined. The combination of tuple types is of importance for the definition
of object extension through addons. The tuple type composition operator is
defined as follows:

Definition 12 Given two tuple types T = (t1 : T1, ... , tn : Tn} and S = (s1 :

CT1, ... ,5m: CTm} with ft1, ... ,tn} n {51, ... ,sm} = 0, the composition of these
tuple types is defined as follows:

T ® S = (U1 : V1, ... , Un+m: Vn+m}

where Ui: Vi E {t1 : T1, ... , tn: Tn, 51 : CT1, ... , Sm: CTm} and Vi, 0 < i < n + m:

Ui < Ui+l·

Please note that Definition 4 required that labels are unique in DEGAS. Hence,
the requirement {ti, ... , tn} n {51, ... , Sm} = 0 is always satisfied by two tuple
types. This unicity requirement can be imposed on DEGAS' type system, because
of the absence of multiple inheritance in the language.

The composition of two types can be used in place of the composing types,
because the composition is a subtype of each composing type.

Theorem 2 Given two tuple types T and S, then:

T®S~T

Proof Recall the definition of the subtyping relation for tuple types:

if CT1 = (l1: T1, ... ,ln: Tn} E Tand CT2 = (m1 : v1, ... ,mk: Vk} ET,
such that Vi E {1, ... ,k},3j E {1, ... ,n}: mi= l1 I\ TJ ~ vi, then
CT1 ~ CT2.

From Definition 12, we have the following:

T

s
T®S

(t1:T1, . .. ,tn:Tn}

(s1: CT1, ... ,5m: CTm}

(U1 : V1, .•. , Un+m: Vn+m}

where Ui: Vi E {t1: T1, ... ,tn: Tn,S1: CT1, ... ,Sm: CTm} imposes that allele­
ments of the composition are elements of the composing tuple types. Further­
more, the requirement Vi, 0 < i < n + m: Ui < Ui+I implies that all elements
of the composition are unique. Hence:

Vi, 0 < i < n , 3j, 0 < j < n + m: ti= UJ I\ Ti= VJ

5.1. TYPING 69

This implies the subtyping relation T ® S 5 T D

Because the type of an object is not fixed, a method can only operate on those
attributes whose presence is certain. These are the inherent attributes of an
object and the attributes defined in the same addon as the method itself. The
typing of methods. however, must take the variability of an object's type into
account. The absence of a fixed underlying type of an object can be solved by
introducing a type variable representing the type context of a method [Vreeze,
19911. It is used, for example, in TM/FM to correctly type inherited methods. In
the DEGAS data model, the relevant part of the type context for a method M in
an object O is given by the class, or inherent type, of O plus, if M is defined in
an addon A, the type A The rest of the type context is represented by a type
variable. Since the rest of the current type of an object is not of importance, it
may be of any type.

Definition 13 Given a method M defined in an addon A that extends a class
C with input parameters in1 : T1, ... , inn : Tn and output parameters outi
0-1, ... , outm: CTm- The type of M is:

\/ {J E T : ~ ® {J X T1 X · · · X T n - ~ ® {J X 0-1 X · · · X 0-m

where~= Type(C) ® Type(A)

To illustrate this, consider the example of a Person object:

Object Person

that is extended through an addon

Addon AccountHolder
Extends Person

In the addon AccountHolder, the following method is defined:

GetCash(amount:integer) {
Purse := Purse + Account.giveMeMoney(amount)

}

This method takes a Person object extended with an AccountHolder addon
and an integer, yielding again a Person object extended with an Account­
Holder addon. The typing of the method GetCash is:

\/ p E T : GetCash : ~ ® p x integer - ~ ® p

where the type context of this method is

~ Type(Person) ® Type(AccountHolder)

(Name : string, Birthday: date, Purse : integer, Account: Oid}

This manner of typing methods preserves subtyping of functions. This is stated
in the following theorem:

70 5.2. OBJECTS

Theorem 3 Given two function types, T = T1 - T 2 and u = u1 - u2 with u .s; T.

Subtyping is preserved by DEGAS method typing:

'r/ p E T : ~ ® p X T1 - ~ ® p X Tz
.s;

'rl p E T : ~ ® p X U1 - ~ ® p X Uz

Proof From the definition of the subtyping relation on Cartesian products in
Definition 6, it follows clearly that given types t1 and t2:

Therefore, given

U U1 - Uz

T T1 - Tz

U .s; T

we have:

and it is straightforward that given a tuple type ~:

'rip ET :
~ ® p X T1 .:5 ~ ® p X U1

I\

~ ® p X Uz .:5 ~ ® p X Tz

This means that the subtyping relation of functions is preserved by DEGAS me­
thod typing. o

5.2 Objects

The previous section defined the type system used for the formalisation of
DEGAS. Before we define the effects of method execution in the next section, we
define a number of operators for use in the definition of the DEGAS model:

Definition 14 Given an object class or addon T:

1. Attr(T) yields the set of attributes defined in T.

2. Meth(T) yields the set of methods defined in T.

3. Cycl(T) yields the set of lifecycles defined in T .

4. Rules(T) yields the set of rules defined in T.

Similar functions are defined for an object relative to time:

5.3. METHOD SEMANTICS 71

Definition 15 Given an object O at time t:

1. Attr(O, t) yields the set of attributes of Oat time t.

2. Meth(O, t) yields the set of methods of Oat time t.

3. Cy cl (0, t) yields the set of lifecycles of O at time t.

4. Rules (0, t) yields the set of rules of O at time t.

5.3 Method Semantics

In this section, we define the first element of DEGAS' semantics, viz., the effect
of method execution on a tuple of attributes. The results from this section
are used to define the semantics of method execution by a DEGAS object in
Section 5.7.2.

The effects of method execution are defined in terms of variant interpretations
and the semantics of basic functions. Here, we use a simplified notion of an ob­
ject's interpretation. An interpretation for an object maps the object to a value
from the domain of the underlying type. Please note, that the interpretation of
an object as used in this section, does not include a temporal aspect. There­
fore, we refer to it as a snapshot interpretation. In Section 5.4, we discuss the
full interpretation of a DEGAS object, i.e., relative to time.

A snapshot interpretation of an object maps the attributes of the object to a
value in its domain.

Definition 16 A snapshot interpretation I of an object O is a function

J: Oid - D(T)

where T = (0<1 : T1, ... , O<n : T n} is the underlying type of O. I assigns values ki

to each O<i such that ki E D(Td.

A variant interpretation relates two snapshot interpretations to each other. A
variant of a snapshot interpretation I (0) is denoted by I (O) { oc = v}. J (O) { oc =

v} is the same as J(0), except for the value assigned to the attribute oc, which
is V.

The semantics of method calls is defined in terms of a function M. It yields
the interpretation of an object after method execution, given the interpretation
before execution and a method call. Hence, its type for an object of class C with
type T = Type(C) is given by

M : (Oid - D(T)) x Meth(C)

(Oid - D(T))

72 5.3. METHOD SEMANTICS

We consider as given the semantics of the basic functions on the basic types.
We start with the semantics of assignment, which is defined in terms of variant
interpretations.

Definition 17 Given a statement S and a snapshot interpretation I (0) for object
0, M (S, I(0)) returns the snapshot interpretation of 0 after execution of S on
0. The effect of an assignment statement A, denoted by M(A,/(0)), is defined
by:

1. Let ai : Ti be an attribute of 0 and v a correctly typed basic value, then

M(ai := v,I(0)) = I(0){ai = v}

2. Let ai : Ti be an attribute of O and BF (p 1, ... , Pn) a correctly typed basic
function call, then

M(ai := BF(p1, ... , Pn),I(0)) = I(0){ai = [BF(p1, ... , Pn)]}

where [] denotes the evaluation of the basic function.

3. Let ai: Ti be an attribute of 0 and m(p1, ... , Pn) a correctly typed method
call, then

M(ai := m(p1,---,Pn),I(O)) = I(0){ai = R(m(p1,-- - ,Pn))}

where R is a function yielding the return value of a method call as defined
in Definition 22.

Application of a statement to all elements of a set simultaneously amounts to
taking the map of a function on a set.

Definition 18 Let S be a statement, A : 'PT a set-valued attribute and I(A)
{ V1, •.. , Vn} its interpretation, then

M(S,I(A)) = {M(S,I(vi)), ... ,M(S,I(vn))}

Production 4.22 of the syntax definition defined set iteration:

Forall a in A
where CT
doS.

where A : 'PT is a set-valued attribute of 0, CT is a condition on a variable of
type T and S is a statement. The semantics of set iteration is defined as follows:

Definition 19 Let SI be a set iteration (A, CT, S}, where A: 'PT is a set-valued at­
tribute of O, CT is a condition on a variable of type T and S is a statement. Given
an interpretation 1(0) on an object 0 the effect of SI, denoted by M(SI, 1(0)),
is defined as

M(SI,1(0)) = M(S,I({CT(a)la EA}))

CT (a) denotes that the condition C is true for a : T.

5.4. TIME IN AN AUTONOMOUS OBJECT 73

Statements can be combined to form compound statements. The components
of a compound statement are executed in sequence.

Definition 20 Given two statements S 1 and S2, the semantics of the execution of
a compound statement Sc= S1;S2 is defined as:

M(Sc,I(O)) = M(S2,M(S1,J(O)))

The semantics of executing a method on an object is defined in terms of the
statements forming the method. The statements used in defining the semantics
of method execution are statements with the actual parameters in place of the
formal parameters.

Definition 21 Given a method m = S 1; ... ; Sk, the effect of a method call m on
object O with interpretation I (0) is given by:

M(m,J(O)) = M(S1; ... ;Sk,I(O))

Methods can also return values. In this case, we define the return value of the
method and the effect on the object executing the method.

Definition 22 Let m = S 1; ... ; S k; Return e be a method with S 1, ... , S k state­
ments and e : T an expression. The effect of executing m on object O with inter­
pretation I (0) is given by:

M(m,J(O)) = M(S1; ... ;Sk,I(O))

The result of the method call R (m) : T that is returned to the caller, is defined as

R(m) = [e]

where [e] denotes the evaluation of e after evaluation of M (m, I (0))

5.4 Time in an Autonomous Object

The aspects of the semantics discussed above are all independent of time. Since
DEGAS aims at the integration of historical database functionality in an ac­
tive database, this section proceeds with the temporal semantics of the DEGAS

data model. The requirement on the availability of historical data in DEGAS is
twofold. First, we need the historic values of attributes to be available. Second,
the method calls executed must be available in order to check for triggered
rules and to check method calls against lifecycles.

In this section, we discuss the basics of DEGAS' temporal dimension. First, we
discuss nature and source of time in a DEGAS database. Then, we give an initial
definition of a DEGAS object history. This is an initial definition, because rule
execution and lifecycle checking impose a number of constraints on a DEGAS

object history to be a valid object history. These constraints are discussed in
Section 5.7.

74 5.4. TIME IN AN AUTONOMOUS OBJECT

5.4.1 Clocks and Autonomous Objects

Time is relatively simple in DEGAS. As was discussed in Section 3.4.2, we times­
tamp once only, so there is no distinction between valid and transaction time in
this model. Since the timestamp is produced by the system, DEGAS uses trans­
action time. In our model, time in an individual object is discrete and linear.
The discreteness of time does not pose problems for applications, since we can
make the granularity of time sufficiently small for any application. Linearity of
time means that there is a strict order on all time-stamped events in an object.

Timestamps are always local. In other words, a DEGAS object only works with its
own historical view of the world. An event it has seen earlier, happened earlier
in its time. Two general rules govern the way timestamps are handed out by
a DEGAS object. First, time increase monotonically. Second, two events never
get the same timestamp. These requirements on timestamps are rather loose.
It honours one of the two requirements formulated by Lamport in [Lamport,
1978]. These requirements were formulated with help of a clock function Ci for
process Pc

1. If a and b are events in process Pi and a comes before b, then Ci (a) <
Ci(b).

2. If a is the sending of a message by process Pi and b is the receipt of the
message by process Pj, then Ci(a) < Cj(b).

In the distributed environment of a DEGAS database, it is very difficult to guar­
antee Condition 2, which constrains the relation between the clocks of different
autonomous objects. If different objects use different clocks, possibly running
at different speeds, clock synchronisation must take place. The other option
is to use one global clock for all objects, which compromises the autonomy of
objects. Hence, we do not follow requirement 2 in the DEGAS model. This leads
us to the following definition of the clock function in DEGAS:

Definition 23 The clock of an object O is a function To : N - N that takes as
input an event counter and yields as output its current time. To is an injective
increasing function.

5.4.2 Pre-history

The history of a DEGAS object records past states of the object. It does this by
recording all past states with the method calls that brought the object into the
state. Please note, that the history of a DEGAS object is not replayable, since
a value may depend on a result returned by another object. Object autonomy
implies that an object can not give guarantees on the state of another object.

5.4. TIME IN AN AUTONOMOUS OBJECT 75

State Pre-history We now have all definitions to define a state of a DEGAS
object at a certain point in time. Following temporal database terminology, this
is called the snapshot state [McKenzie and Snodgrass, 19911. A snapshot state
records the time the object entered that snapshot state, a valuation for a tuple
of attributes, as defined in Definition 16 and the method call that brought the
object into this snapshot state.

Definition 24 A snapshot state of an object O is a quadruple (t, T,/(T),MC),
where

1. t is a timestamp giving the start time of the validity of this state.

2. T is a tuple type (a 1 : T1, ... , am : Tm), the underlying type of O at time t.

3. I (T) is the interpretation of T in the interval starting at time t.

4. MC a method call.

The state history of an object records the snapshot states the object went
through in the past. Not any sequence of snapshot states is a correct state
history for a DEGAS object. A state transition can only occur in the history, if
it, e.g., respects the lifecycle specified by the programmer of that object. There­
fore, we start with the definition of a state pre-history. A state pre-history is
a sequence of snapshot states. In Section 5.7, we define the constraints that a
state pre-history must satisfy to be a correct state history.

Definition 25 The state pre-history SH of an object O is a sequence of snapshot
states

SH= SH(O);SH(l); ... ;SH(n)

where

VO sis n - 1: ti< ti+l A /(Ti+1) = M(MC+1,l(Td)

An example of a state pre-history is the following:

(13: 00: 00,
(balance: integer, week: integer, maxover: integer),
(balance = 1002, week = 130, max over = 400),
create(acct))

(13: 15: 00,
(balance : integer, week: integer, maxover: integer),
(balance = 902, week= 230, maxover = 400)
withdraw(I00))

76 5.5. INTERPRETATION

Event Pre-history In the definition of the DEGAS data model, we sometimes
only need the historical events without state information. To deal with these
definitions, we define the event history of an object. The event history is a
projection of the state history. The events occurring in a DEGAS object are the
method calls executed by the object.

Definition 26 Given a state pre-history SH = SH(0); SH(l); ... ; SH(n), we de­
fine an event pre-history EH= EH(0);EH(l); ... ;E(n) of time-event pairs, such
that:

"v'O 5 i 5 n,SH(i) = (ti, Ti,I(Ti),MCi):

EH(i) d;J' (ti,MCi)

For use in the definitions on event specification, we define the type of an event
history. For an object, the alphabet of the event history is the set of all possible
methods occurring in that object.

Definition 2 7 Given an object O of class C. The set of all addons of C is denoted
by AddonS et (C). The set of all potential methods of 0 is defined as follows:

Meth(O) ={µI(µ E Meth(y)) A (y E {C} u AddonSet(C))}

The set of methods at time t is given, using the set of addons at time t, denoted
by Addons(O, t):

Meth(O,t) ={µI(µ EMeth(y)) A (y E {C} uAddons(O,t))}

Definition 28 Given an object O of class C with set of addons Addons(C) at
time t. The type of an event history of 0, denoted by EHist(O) is a string over
the alphabet of time-event pairs:

{TE Timestampl0 5 T 5 t} x Meth(O)

5.5 Interpretation

The next step in the formalisation of DEGAS is the interpretation of a DEGAS

object. Using the definition of the interpretation, we can refer to an attribute
value of an object at a certain time point. This allows us to check the validity of
a condition on an object, which is needed to define the semantics of selectors
in Section 5.6.

As stated before, we refer to the state of a DEGAS object at a certain point in
time. Hence, an interpretation of an object is defined relative to time:

Definition 29 Given a state history SH = SH(0); ... ;SH(n) for object 0. The
interpretation of O at time t

I(0)(t) = I(T;)

5.5. INTERPRETATION

if

30 :<> i :<> n,SH(i) = (ti, Ti,I(Ti),MCi):
ti :', t

I\

Vi< j :<> n,SH(j) = (t1, TJ,/(TJ),MC1):
t < t1

77

It is now straightforward to define the value of an attribute in a DEGAS object
at a certain time point. For example, ba 1 a nee (t) gives us the value of attribute
balance at time t.

Definition 30 a(t) denotes the value of an attribute a in object O at time t.
a(t) = Va, if

I(O)(t) F l(a : a)(t) = Va

where F denotes the standard logical inference relation [Dalen, 1985].

From the interpretations of all objects in a database we construct a model for
a database relative to time.

Definition 31 Let db = { o 1, ... , On} be a set of objects.

n

[(db)(t) = LJ I(oi)(t)
i=l

is a pre-model for db.

If all object references in a pre-model exist, it is a model for a database.

Definition 32 Given a set of classes C, a pre-model for a database at time t
[(db)(t) is a model for db, iff

VI(a: a)(t): (TE C

=
3o E db: I(a: a)(t) = o

From a model of a complete DEGAS database, we get a model for the part of the
database related to a specific object. To determine this part, we need the notion
of reachability through path expressions.

Definition 33 Given two objects 01 and 02. We can reach 01 through path ex­
pressions from 02 at time t, denoted by R (02, t), if we can construct a path
expression £X1 .txz. · · · .an, such that:

£X1 E Attr(o2, t)
I\

VO< i < n: <Xi+l E Attr(tx1. ·· · .£Xi, t)
I\

£X1.£X2. • · • .<Xn = 01

78 S.S. INTERPRETATION

The set of reachable objects is use to define the model

Definition 34 [(O)(t) ~ [(db) (t) is the model induced by 0. It is defined by

[(O)(t) = LJ J(O)(t)
oER(O,t)

Theorem 4 Given two objects o1 and o2 , then:

02 E R(o1, t) ⇒ [(oz)(t) ~ [(01)(t)

Proof For every element o E R(oz, t) we can construct a path expression
oc1.ocz. · · · .ocn, such that:

oc1 E Attr(oz, t)
I\

VO< i < n: OCi+l E Attr(oc1. · · · .oci, t)
I\

OC1.0C2. · · · .OCn = 0

The fact that 02 E R(o1, t) means that we can construct a path expression
fh .fh · · · ./3m, such that

/31 E Attr(oi, t)
I\

VO< i < m: /3i+l E Attr(/31. · · · -/3i, t)
I\

/31./32. · · · -/3m = Oz

As a consequence, if o ER (o 2 , t), the path expression

/31 ./3z. · · · -/3m. OC1 . 0C2. · · · .OCn

satisfies the requirements of inclusion in R(o 1, t) formulated in Definition 33.
Thus, we have:

Vo E R(oz, t): Oz E R(o1, t) => 0 E R(o1, t)

Hence:

R(oz,t) ~R(o1,t)

which means that

UoeR(o2 ,oHo)(t) = [(oz)(t)

UoeR(o1 ,t) I(o)(t) = [(oi)(t)

□
The model of an object over an interval is obtained by taking the models at the
time points in the interval together through a direct sum, denoted by EB.

Definition 35 Given an objectO and an interval (ts tart, tend). We define a model
[(O, (tstart, tend)) for O during (tstart, tend), as follows:

[(O, (tstart, tend))= E9 [(O)(t)
LE(Lstart ,tend)

5.6. SELECTORS 79

5.6 Selectors

Selectors play an important role in two key elements of DEGAS, rules and quer­
ies. As defined in Chapter 4, a selector is an event-condition pair. An object is
selected by a selector, if the event occurs in the history and the condition is
satisfied. Since this situation can occur multiple times in the history of a DEGAS

object, a selector returns the set of sub-histories that satisfy the selector.

Clearly, the definition of selectors is based on the event history of an object,
defined in Section 5.4, and the interpretation of an object, defined in Section 5.5.
Selectors are used to define the semantics of DEGAS rules in Section 5.7.3 and
to define the semantics of DEGAS queries in Section 5.9.

5.6.1 Event Specification

An event specification consists of an event expression and a time window. An
event expression is a process algebraic expression [Baeten and Weijland, 1990)
over an alphabet, that is the union of the set of method names of the object
and timestamps.

Definition 36 An event expression is a process algebraic expression over a set of
basic actions:

'E = Meth(O)

The type of an event expression is denoted by EventExpr. An event expres­
sion matches an event history, if a sub-history exists that is a trace of the pro­
cess specified by the event expression, as defined in [Baeten and Weijland, 1990,
Chapter 7].

The process algebraic operators used, and their meaning are given in the follow­
ing table. Please note that, like in ordinary calculus, I represents a sequence of
+'s.

Sequence
Choice
Repetition
Merge
Negation

A;B
A+B
A*
AIIB = A;B + B;A
,A= I e

eE'.f\{A}

A followed by B
Aor B
One or more times A
A and B in parallel
An event that is not A

An additional operator used in an event expression, that is not an action, is
the .1 symbol. It denotes the end of the event history, i.e., an event expression
ended with .l only matches the tail of an event history.

Since multiple matching sub-histories may be found, the result of testing an
event expression on an event history is a set of matching sub-histories. As an
example, consider the event history:

(1,e); (3,f); (8,g); (10,a); (11,a); (12,a); (13, b); (14,c);
(22, d); (33, e); (34, j); (39, b); (40, c)

80 5.6. SELECTORS

Testing the event expression b; c on this event history yields the set

{(13,b);(14,c), (39,b);(40,c)}

The event expression b; c; .L is only matched by the tail of the event history. Its
result is:

{ (39, b); (40, c)}

Another example is the event expression a*; b that is matched by the set

{ (10, a); (11, a); (12, a); (13, b), (11, a); (12, a); (13, b), (12, a); (13, b)}

An event expression is extended to an event specification by adding a time win­
dow to it. A time window specifies a subset of the history by giving pairs of
timestamps that bound the intervals comprising the sub-history. Informally
speaking, its effect is that the event expression is only checked against this
part of the history.

Definition 37 The type of an interval specification is denoted by TimeSpec,
defined as:

TimeSpec = 'P(Timestamp x Timestamp)

where:

A time window is a function that yields a set of sub-histories, given an event
history and a time specification.

Definition 38 Given an object O of class C, then the time window function TW
on O is typed as follows:

TW: TimeSpec x EHist(C) - 'PEHist(C)

The result of a time window (unction's application is defined as follows:

VE: EHist(C), TS: TimeSpec,EH: EHist(C), n EN:
E = E1; ... ;En

u E TW(TS,EH)
~

3(t1, t2) E TS, Vl :5 i :5 n:
t1 :5 Ei.t :5 t2

As an example, suppose that we again have the following event history:

(1, e); (3,f); (8,g); (10,a); (11,a); (12, a); (13, b); (14,c);
(22, d); (33, e); (34, f); (39, b); (40, c)

The time specification { (1, 9)} gives us the following sub-history as a result:

(1, e); (3,f); (8,g), (9)

5.6. SELECTORS 81

Multiple elements in the time specification means that the result has multiple
elements. For example, the time specification { (1, 9), (20, 35)} gives us the fol­
lowing result

(1, e); (3,f); (8,g), (9)
(20); (22, d); (33, e); (34,f); (35)

Given these preliminary definitions, we can now turn to the definition of a com­
plete event specification. An event specification has two components, an event
expression Expr and an interval specification TS:

Expr[TS]

An event specification is triggered, if one of the sub-histories in the time win­
dow parses the event expression correctly. The reader is referred to [Baeten and
Weijland, 1990, Chapter 7) for an explanation of matching process specifica­
tions with process traces, i.e., matching event expressions with event histories.

Definition 39 Given an object 0. An event specification E = Expr[TS] is trig­
gered, if Expr matches (as defined in Definition 36) one of the sub-histories
in TW(TS,EHist(O)), where EHist(O) is the event history of 0. The function
EventTest(E, 0) returns the set of matching sub-histories of E. The type of this
function is:

EventTest: (EventExpr x TimeSpec) x C - 'PEHist(C)

For example, consider the event history given above and the following event
specification:

f;g[(l, 9), (20, 35)]

It would be triggered in the first sub-history. The function EventTest(E, 0)
returns the singleton set

{(3,f);(8,g)}

An event specification can be triggered by multiple occurrences of an event. In
this case, we will get multiple matching sub-histories. For example, the event
specification

e;f[(l, 10), (20, 35)]

yields as the result of EventTest(E, 0) the following set:

{ (1, e); (3,f), (33, e); (34,f)}

82 5.7. FROM PRE-HISTORY TO HISTORY

5.6.2 Condition

The other part of a selector is the condition. A condition is a predicate on the
model induced by the object. In other words, it can contain local attributes and
attributes of other objects, provided these are reachable through path expres­
sions. Hence, the typing is as follows:

Definition 40 A condition C defined in an addon A extending class C is a boolean
function

V p ET: Type(C) ® Type(A) ® p - {true.false}

Satisfaction of a condition by an object relative to time is then defined as fol­
lows:

Definition 41 Given a condition C on an object O and a sub-history EH of 0.
The timestamp of the first event in EH is denoted by trn,start• The timestamp of
the last event in EH is denoted by trn,end• C is satisfied by 0 during EH, denoted
by C(O, EH), iff

[(0, (tEH,start, tEH,end)) F C

where F denotes the standard logical inference relation [Dalen, 1985].

5.6.3 Selection

An object is selected by a selector, if the event specified in the On clause occurs
and the condition in the if clause is satisfied during the matching sub-history
of the event.

Definition 42 (Selection of an object) An object O of class C is selected by a
selector S = (E, C} with an event specification E and a condition C, iff

3EH E EventTest(E,0): C(O,EH)

The selection set Selected(S, 0) is defined accordingly:

Selected(S, 0) = {EH E EventTest(E, 0) I C(0, EH)}

5. 7 From pre-history to history

The work in the previous sections allows us to formalise the dynamic aspects
of a DEGAS object, viz., type evolution, method execution and rule execution. In
this section, we define their semantics building on the elements defined earlier
in this chapter. Furthermore, these semantics yield a number of constraints on
the history of a DEGAS object. These constraints lead to the definition of a valid
object history and a valid DEGAS database in Section 5.8.

5.7. FROM PRE-HISTORY TO HISTORY 83

5.7.1 Type Evolution

The type of a DEGAS object can change over time through the addon mecha­
nism. Hence, the attributes we see in the state history can vary over time. The
variation is limited by the addons defined for the inherent type of the object.

If the type of an object is extended, this must be done by an Extend action. This
is stated in the following constraint:

Constraint 1 The type of an object can only be extended through the addition
of an addon. Given a state pre-history SH= SH(O); ... ; SH(n) of an object O of
class C:

Vi,0 s i < n
SH(i) = (ti, Ti,J(Td,MC)

SH(i + 1) = (ti+l, Ti+1,J(Ti+1),MCi+1>:
oc E Add0nSet(C)/\
Ti® Type(A) = Ti+I
⇒

MCi+I = Extend(oc)

where Extend(oc) extends O with an addon oc.

The effect of Extend(oc) on the set of addons is as follows:

Definition 43 Given an object O of class C and an addon oc E AddonSet(C).
The effect of an action Extend(oc) on the set of current addons Addons is given
by:

Addons(ti+I, 0) = Addons(ti, 0) u {oc}

Likewise, the loss of attributes must be through an action to drop an addon.

Constraint 2 The type of an object can only be limited by dropping an addon.
Given a state pre-history SH= SH(O); ... ; SH(n) of an object O of class C:

Vi:0si<n
SH(i) = (ti, Ti,I(Td,MCi)
SH(i + 1) = (ti+l, Ti+1,I(Ti+d,MCi+i>;

oc E Add0nSet(C)/\
Ti = Ti+l 181 Type(oc)
⇒

MCi+I = Remove(oc)

where Remove(oc) is the action to remove addon oc.

Definition 44 Given an object O of class C and an addon oc E AddonSet(C).
The effect of an action Remove(oc) on the set of current addons Addons is
given by:

Addons(ti+I, 0) = Addons(ti, 0) \ {oc}

84 5.7. FROM PRE-HISTORY TO HISTORY

In addition, we have the constraint that the type of an object must always cor­
respond to its set of active addons.

Constraint 3 Given a state S = (t, T, I(T), MC) for an object O at time t,

A= AddOns(t, 0)

==>
T = Type(Class(O)) ® ®aEA Type(a)

5.7.2 Method Execution and Llfecycles

Execution of a method is the only way to bring a DEGAS object from one state
to another. Therefore, every state of the object must be the result of the ap­
plication of a method to the previous state. In addition, execution of methods
and rules must conform to the lifecycles. As we saw above, lifecycles are event
expressions, where an event can be guarded by a condition.

Definition 45 Given an object O of class C, a lifecycle is a guarded basic process
algebraic expression where the event alphabet :M is the set of methods defi.ned
on 0.

:M = Meth(O)

and the guard conditions are of the type defi.ned in Defi.nition 40.

The semantics of lifecycles is formulated in process algebraic terms [Baeten
and Weijland, 19901.

Definition 46 Suppose we have an object O with the following lifecycle defi.ni­
tion:

Lifecycles
C1
C2

Then O follows the process:

with communication function y defi.ned by: Va E :M : y(a, a) = a, where :M is
the event alphabet of C as defi.ned in Defi.nition 45.

In process algebra, a communication function y specifies synchronisation be­
tween two processes. y(A, B) = C means that the actions A and B have to take
place simultaneously and are replaced in the trace of the process by the single
action C. For example, if we have the process (A;B)l(C;D) and y(B,D) = E,
then a resulting trace might be: A; C;E.

5.7. FROM PRE-HISTORY TO HISTORY 85

In practical terms, the communication function defined for a DEGAS object
means, that if an action occurs in more than one lifecycle, the execution of
that action is a step forward in all lifecycles.

To define what methods are allowed to execute, we define the set of lifecycles
of an object relative to time.

Definition 4 7 Given an object O of class C. The set of lifecycles at time t is
defined as follows:

Cycl(O, t) = Cycl(C) u u Cycl(oc)
0tEAddons(O,t)

The set of lifecycles of an object is translated to a single process specification.
Method execution will be checked against this process.

Definition 48 Given Cycl(O, t), the set of lifecycles of an object O at time t.
The lifecycle of O at time t is given by:

LCo(t) = lcECyclW,nC

with communication function y defined by: V oc E :M. : y(oc, oc) = oc, where :M is
the event alphabet of C as defined in Definition 45.

Different alternatives exist for the composition of the complete lifecycle of a
DEGAS object from the set of specified lifecycles. These alternatives are identi­
fied using a number of questions on the nature of a lifecycle specification.

Composition The first question is about the composition of lifecycles. The
main issue is, how to deal with the occurrence of a method in multiple lifecy­
cles. Suppose a methodµ occurs in lifecycles C1 and C2. If a call toµ is made,
it can be a step in only one lifecycle, or in both of the lifecycles containing
the action. These two alternatives can be formalised in process algebraic terms.
Suppose we have an object O with a set of lifecycles { C 1 , C2, ... , Cn}. In the first
case, this will lead to the following compound lifecycle:

C1IIC2II ... IICn

If, in the other case, multiple lifecycles consume the same action, there will be,
in process algebraic terms, communication between the lifecycles. Thus, these
are composed using communication merge:

C1IC2I ... ICn

where the communication function y is defined by 't/ oc E :M. : y(oc, oc) oc,
where :M is the event alphabet of the lifecycle definition.

86 5.7. FROM PRE-HISTORY TO HISTORY

Lifecycle specification in addons The second issue in lifecycle composition
is the way we deal with lifecycles specified in addons. It has obvious advan­
tages to treat these lifecycles on the same footing as lifecycles specified in an
object. There are, however, problems related to the specification of lifecycles in
addons. These originate in the question whether an addon is allowed to modify
lifecycles of the original object. If this question is answered positive, how can
an addon modify the lifecycles? Another problem in that case is, what happens
if two addons modify the same lifecycle?

The main requirement on lifecycle specification in addons is, that addons must
conform to the original object. In other words, the lifecycles specified in an
addon are not allowed to violate the lifecycle of the original object. If Co is the
lifecycle of the original object O and CA the lifecycle of O extended with addon
A, we can define this using the process algebra abstraction operator as:

where His the set of methods defined in the addon. This constraint must be sat­
isfied by redefinition of lifecycles. In practical terms, this means that an addon
can only extend the original lifecycle, e.g., by interspersing its own methods.

If we use the communication merge as a composition operator, we get redefini­
tion for free. This is shown by the following example. Suppose object O has the
lifecycle:

A;B;C

If we specify in addon A the lifecycle:

A;X;B;Y;C

then the resulting lifecycle for the extended object will be:

(A;B; C)l(A;X;B; Y; C) = A;X;B; Y; C

To illustrate the potential conflicts of lifecycle redefinition, consider the follow­
ing situation, where two addons try to modify an object's lifecycle. An example
are constraints added to objects in a graphical database, as shown in [Akker
and Siebes, 1995bl. The original object O has the lifecycle:

A;B

Object O engages in a relation that demands that O must execute action C
between A and B. Thus, the addon A1 requires O to follow:

A;C;B

Now, we have a problem if we add an second addon A2, that desires an action
D to be inserted in the lifecycle of 0:

A;D;B

5.7. FROM PRE-HISTORY TO HISTORY 87

The question is what the desired lifecycle of O is, if it has both A1 and A2, and
how this should be specified. If we use parallel composition for lifecycles in
addons, we get the following lifecycle for 0:

(A; C; B) II (A; D; B)

The drawback of this behaviour is shown, if we take the viewpoint of addon
A1. It does not know of the existence of D. Hence, seen through A1 0 might
execute A; B without C occurring in between. If we use communication merge,
the result would be that O follows:

A; (CIID);B

This conforms to the original lifecycle of the 0, but each occurrence of A and
B also satisfies the lifecycles of the addons.

Our choice Communication merge as a composition operator for lifecycles
gives us inherent redefinition, which is needed by addons. If we would use the
parallel merge, redefinition would not be possible, thus putting undesirable
constraints on the design of addons. Note however, that we can still express
the other way of merging lifecycles within an object or addon specification by
explicitly using a parallel merge.

The behaviour with regard to the specification of lifecycles in addons is the
main reason for our choice of communication merge with identity as commu­
nication function as the lifecycle composition operator in DEGAS.

Llfecycle Checking A method is executed, if it does not violate the lifecycles
imposed on the object. Hence, the object state must satisfy the, possibly empty,
precondition given by the lifecycle. In addition, the method call in combination
with the event history must match the event expression given by the lifecycle.
If this is true, the method call is executed and appended to the history. If the
method call does not satisfy the lifecycle of an object, it is removed from the
method queue and discarded.

As a result of addon extension and deletion, the set of events, i.e., methods,
is not fixed over the lifetime of an object. This means that we might encounter
events in the history, that are currently not defined on the object, since they are
part of a removed addon, and consequently are not present in the current life­
cycle. To cater for the deletion of addons, the lifecycle check abstracts from the
events not currently present in the object. In other words, if an event is a me­
thod of a removed addon, then it is disregarded for the check of a method call
against the current lifecycle. Abstraction is defined using the ACP abstraction
operator a.

Definition 49 A method callm(pi, . .. , Pk) is executed on an objectO with state
history SH= SH(0); ... ;SH(n) at time t, iffaH(EH;m(p 1, ••• ,pk)) is a prefix

88 5.7. FROM PRE-HISTORY TO HISTORY

of a trace that matches the process LCo(t) and C(t, 0), where H = Meth(O, t).
The resulting new state of the object is

SH' = SH; (t, Tn,M(m(pi, ... , Pk),/(Tn)), m (pi, ... , Pk))

This requirement on method execution is translated to the following constraint
on the state history of a DEGAS object.

Constraint 4 Given a state history SH= SH(O); . .. ;SH(n) of an object 0. Each
method call MC occurring in SH at time t must follow the lifecycle Cyclo (t).

5.7.3 Rule Execution

As explained before, rules in DEGAS use the event-condition-action format. As
we described in Section 5.6, an event-condition pair is a selector. Hence, for the
definition of its semantics, a rule is considered to be a selector-action pair.

Definition 50 A rule R is a triple (S,A}, where S = (£, C} is a selector with an
event expression E and a condition C. A is a method call, as defined in Produc­
tion 4.21.

Recall that a rule R that appears in the semantics of DEGAS as (S, A}, with
S = (£, C} is written in the DEGAS syntax as:

On£
if C
do A

A rule is triggered, if the object is selected by the selector of the rule. Please
note, that encapsulation of rules means that the selector is applied to a single
object in this case.

Definition 51 A rule R = (S, A} with a selector S and an action A is triggered
on an object 0, if Selected(S, 0) I= 0 .

From this definition follows the definition of the set of triggered rules.

Definition 52 The set of triggered rules 'R at time t on object o is:

'R = {p E Rules(o, t) Ip= (S,A} /\ Selected(S, 0) ,/= 0 }

where Rules(o, t) denotes the set of rules in object o attime t .

At first sight, one would expect rule processing to result in a constraint that
one of the rules triggered by a method must be executed. The fact, however,
that actions of rules must also obey an object's lifecycle means that a rule's
action need not necessarily be executed.

5.8. A DEGAS DATABASE 89

5.8 A DEGAS Database

The preceding sections in this chapter defined everything needed to formalise
a DEGAS database. The typing system served as a foundation to the definition
of method execution. Both were used in the preliminary definition of a DEGAS

object history. In order to define the constraints on a DEGAS object history,
we formalised the interpretation of a DEGAS object, which allowed us to define
selectors in DEGAS. After this, we were able to define the semantics of method
and rule execution. These resulted in a number of constraints on the history of
a DEGAS object.

A valid object history of a DEGAS object is defined as follows:

Definition 5 3 A state pre-history SH of an object O is a state history for O, iff it
satisfies all constraints defined in this Chapter.

A DEGAS database is a collection of objects with a valid object history and
correct references between objects.

Definition 54 A collection of objects n is valid DEGAS database at time t, if:

1. Each o E n has a valid object history.

2. For each time point o ::o; T ::o; t, we have a valid model [(O) (T).

5.9 Queries

A DEGAS query collects a set of objects in the root class of a query, specified
in the select from part, that satisfies the selector. Object autonomy implies
that some objects will be in a state where they are not willing to respond to a
query. Furthermore, as a result of the volatility of the network, a query might
not reach all objects. The semantics of the DEGAS query language includes these
issues. The abstract semantics of the DEGAS query language is set-based. The
main reason to use this kind of semantics is the need to include reachability
and willingness to respond of objects in the DEGAS query semantics. These
notions cannot be included in a semantics based on an object algebra [Alhajj
and Arkun, 1993, bzsu and Straube, 1991, Shaw and Zdonik, 1990].

A query consists of a class and a selector:

Definition 5 5 A query Q is a pair (C, S), where C is a class and S is a selector
on that class.

Recall from Section 4.4, that the syntactic equivalent of a query Q = (Class, S),
with S = (E, C) is:

90

Select from Class
on£
if C

5.9. QUERIES

The selector of a query has one extension relative to the selector defined in
Section 5.6. The exists clause makes it possible to connect different classes
through a nested query. The result of this query is related to objects in the root
class of the query. The semantics of a nested query is defined as follows:

Definition 56 Given a query Q1 with a nested query:

Select from C 1

onE1
if c; and Exists in Q 2 : C (01, 0 2)

where Q2 = (C2, S2). We define two selection sets:

S1 {o E C1 I Selected((E1,Ci),o) /= 0}

S2 {o E C2 I Selected(S2,o) I= 0}

Let EH1 be a matching sub-historyof01 E S1 and EH2 a matching sub-history of
02 E S2 . The timestamps tEH1,start, tEH1 ,end, tEH2 ,start, and tEH2 ,end are defined
the same as in Definition 41. This predicate is satisfied by 0 1 and 02, iff

[(01, (tEH1,start, tEH1 ,end)) EB [(Oz, (tEH2 ,start, tEH2 ,end)) I= C(01, 02)

where 1= denotes the standard logical inference relation [Dalen, 1985] and where
EB denotes a direct sum.

Due to network failures, it is possible that a query does not reach all objects.
Hence, the set of objects the query is applied to is restricted to the set of objects
reachable from the site where the query is issued.

Definition 57 (Reachability of an object) An object o at site s1 is reachable at
time t for a query Q issued at site s2, denoted by Reachable(Q, o, t), if s1 is
reachable from s2 as defined in Definition 2.

To answer a query an object must be in a state where it is willing to an­
swer the query. This means that its lifecycle must allow the execution of the
CheckSe l ecto r method at the time it takes the method call from its message
queue.

Definition 58 (Willingness to respond) Given an object o and a query Q that
sends a CheckSe 7 ector method call q too. o is willing to respond to Q at time
t, denoted by Willing(Q, o, t), if the method call q satisfies the lifecycle of Oat
time t, where t is the time o takes the call to q from its message queue.

Using the notions of reachability and willingness, we define the result of a
query. The result is a set containing object - history pairs, where an element
(O,Hist) means that the query is satisfied by sub-history Hist of object 0. 0
must be in the set of willing and reachable objects.

5.10. CONCLUSION

Definition 59 A query Q = (S, C) issued at time tq. It is a function

ClassName x (EventExpr x TimeSpec x Condition)

'P(0id,EHist(C))

The resulting set of objects is the set

Result(Q) {(0,EH) IO EC I\ EH E Selected(S,0)

I\ Reachable(Q, 0, tq) I\ Willing(Q, 0, tq)

5.10 Conclusion

91

In this chapter, we discussed the abstract semantics of DEGAS. The fundamen­
tals are the typing of objects, the semantics of method execution, and the na­
ture of time in DEGAS. These are used to define the central notion of the DEGAS

semantics, the object history. An object history is a sequence of the past object
states. Since the history is the result of execution of method calls and rules, the
semantics of these dynamic aspects determine constraints on the history.

The use of process algebra for lifecycle and rule specification gives a straight­
forward way to define their semantics. The event history must be a trace of the
process specified by the lifecycle. Reversely, a rule is triggered if a sub-history
of the event history is a trace for the event specification in the rule's selector.

The formal definition of DEGAS queries is set-based. A novel feature is the use
of event specification as a temporal condition. The query semantics includes the
notions of reachability and willingness, that are particular to the DEGAS model.
These lead to a notion of query result quality, which is further examined along
other operational aspects of DEGAS in the next chapter.

92 5.10. CONCLUSION

Chapter 6

Functional Specification of
DEGAS

93

Chapter 5 gave the formal definition of the DEGAS model. In this chapter, we
give a functional specification of the elements needed to implement a DEGAS

database. A functioning DEGAS database requires a number of elements to be
present. Except for a layer providing basic object functionality, these are all
DEGAS objects. Hence, the specification of the basic DEGAS object is the central
element of this chapter.

A specialisation of a DEGAS object is the relation object. Its function implies a
number of additional requirements on the data it stores and the actions it im­
plements. Besides instances of objects and relation objects, a DEGAS database
needs class objects to manage objects, relation objects, and addons. Further­
more, the distribution model is implemented by site objects. For each element
of a DEGAS database, we give the data structures required, the primitive actions
offered, and their execution.

Further specification given in this chapter is a functional specification of query
processing. Here, we give the objects required to implement DEGAS query pro­
cessing following the same approach as for the other aspects of a DEGAS data­
base.

6.1 Preliminaries

Before we give the formal specification of a DEGAS database, we define short­
hands for a number of often used types. Furthermore, we define the notation
for a list. Please note, that the types in this chapter are a form of pseudo-typing,
since the specified implementation is outside the scope of the DEGAS type sys­
tem.

94 6.2. OBJECTS

A type used in this chapter is the type MethodCall. It consists of a method
name and a list of parameters:

MethodCall = string x [(parameterName,parameterValue)]

The type of parameterValue depends on the type of the method parameter.

A further type is the type of a selector, denoted by SelectorType. Recall from
Section 5.6, that it is defined as:

SelectorType = (EventExpr x TimeSpec) x Condition

A final matter of notation serves to specify the presence of a set of named
capabilities in an object, where the name is dependent on the contents of the
set. An example is the get method associated with an attribute. In this case,
the name of the attribute is part of the name of the method, because the set of
attributes is fixed for a given object specification. The notation for the presence
of named capabilities, where a part of the name fi xedpart is fixed and another
part is a variable Name over a set Set, is as follows:

* * * For each Name E Set : * * *
fixedpart <Name>

For example, a DEGAS object has a get method for every attribute. This is writ­
ten as follows:

* * * For each Attribute E Attr : * * *
get<Attri bute>

6.2 Objects

The basic building block of a DEGAS implementation is the object. In this sec­
tion, we specify the working of the basic DEGAS object. First, we specify the
information recorded in a DEGAS object. Then, we give the primitive actions of
a DEGAS object. The main result of this section is the specification of the execu­
tion cycle of an object. This cycle implements all dynamic aspects of a DEGAS
object, viz., method execution, rule execution, and query processing.

6.2.1 Data Structures

A basic DEGAS object contains the following data structures:

State Hi story The object records its complete historical state, as was de­
fined in Definitions 25 and 53. It is denoted by SH.

6.2. OBJECTS 95

Query Queue The query queue is the queue for incoming query messages. In
the specification of a DEGAS object it is denoted by Q. The incoming queries are
calls to the CheckSe l ecto r method. Besides the requested selector, we record
in Q the identity of the sender and of the reply's recipient. Furthermore, a query
has an identity qid to allow the Site object to process multiple queries at a
time. This is explained further in Section 6.8. Consequently, the query queue is
specified as follows:

Q : [(sender: aid, reply To : aid,

qid: integer, selector: SelectorType}]

External Method Queue Method calls from other objects are queued in the
external method queue, denoted by .:Mext• Each entry records the sender of the
call, the reply's recipient, the name of the method called, and the list of param­
eters. The identity of the sender is used in the lifecycle, while the answer of a
method is sent to the reply's recipient. This differentiation is used to process
queries in the CheckSe l ecto r action and to efficiently evaluate path expres­
sions using the Get action. Consequently, .:Mext is specified as follows:

.:Mext : [(sender: aid, reply To: aid, MC: M ethodCall)]

Internal Method Queue Method calls from other methods in the object are
queued in the internal method queue. It is denoted by .:Mint• Otherwise, the
internal method queue is identical to the external method queue .

.:Mint [(sender: aid, reply To: aid, MC: MethodCall)]

Reply Box The answer to the evaluation of a path expression is put into the
reply box. It is denoted by 'R'B. It can contain a single value of any type.

'R'B : Value

Capability Sets Each category of capabilities is represented in the DEGAS ob­
ject by a set. To illustrate the discussion, we use the specification of a Person
object from Section 4.2. It is repeated in Figure 6.1.

Attribute Set This set contains the current attributes of the object. It is
denoted by Attr. It is the materialisation of the function Attr(O, t) defined in
Definition 15. In the unextended Person object in Figure 6.1, it is:

Attr = {name, birthday, birthplace}

Method Set This set contains the current methods of the object. It is denoted
by Meth. It is the materialisation of the function Meth(O, t) defined in Defini-

96

Object Person
Attributes

name: string
birthday : time
birthplace : string

Methods
tryToBuy(company:string, number:integer, maxPrice:real) = {

DemandClass.initiate(company,number,maxPrice)
}
readPaper(paper:string) = {

SubscriptionClass.initiatePerson(paper)
}
useNews = {

Extend(InformedOwner)
}

Llfecycles
(tryToBuy)*
((extend(Shareholder)llextend(InformedPerson));useNews)*

Rules
On (extend(Shareholder) II extend(InformedPerson))

do useNews
EndObject

6.2. OBJECTS

Figure 6.1: Specification of the Person object, given earlier in Figure 4.3.

6.2. OBJECTS 97

tion 15. In the unextended Person object in Figure 6.1, it is:

Meth = {tryToBuy, readPaper, useNews}

Lifecycle Set This set contains the current lifecycles of the object. It is de­
noted by Cycl. It is the materialisation of the function Cycl(O, t) defined in
Definition 15. In the unextended Person object in Figure 6.1, it is:

Cycl = {

(tryToBuy)* ,

((extend (Shareholder) II extend (InformedPerson)); useNews) *

}

Rule Set This set contains the current rules of the object. It is denoted by
Rules. It is the materialisation of the function Rules(O, t) defined in Defini­
tion 15. In the unextended Person object in Figure 6.1, it is:

Rules= {

On (extend(Shareholder)llextend(InformedPerson))

do useNews

This This attribute contains the object's own identity.

This: Oid

It cannot be changed, but can be referenced as a normal attribute.

6.2.2 Primitive Actions

The following actions are implemented by a DEGAS object:

CheckSelector This action checks the satisfaction of an event - condition
pair. It implements the EventTest function defined in Definition 39. The be­
haviour of CheckSe l ecto r is dependent on the sender of the action. If the
CheckSe l ecto r action is invoked from outside for query processing, it must
check whether the sender of the message is allowed access to the attributes in
the condition.

The input of CheckSe l ector is a selector, a sender and a replyTo. Its output is
a set of matching sub-histories. It is specified as follows:

SelectorType x Oid x Oid - 'PEHist

98 6.2. OBJECTS

If CheckSe l ecto r is called from outside, i.e., Sender is not the object itself, it
executes get actions to check access of Sender to the attributes in the condi­
tion. Then, the tests in CheckSe l ecto r are executed in the sequence discussed
in Section 5.6. First, the event specification is matched against the event history.
Then, the condition is tested on each matching sub-history. A call to Check­
Selector is not recorded in the history, because it is not a method.

The algorithm executed by the CheckSe l ector action is given in Figure 6.2. In
this specification, we see that the CheckSe l ecto r action is called recursively
for rule processing after execution of getAttr methods. This recursion is only
one level deep, because the Sender is always This in rule processing.

CheckSelector(Selector, Sender, ReplyTo) = {
Event, Condition - Selector

}

if Sender ! This
then {

Allowed:= 0
foreach Attr in Attr(Condition)
where MethodAllowed(getAttr(), Sender)
do Allowed := Allowed u { Attr }

if Allowed! Attr(Condition)
then Exit()

foreach Attr in Attr(Condition)
do {

}
}

ExecuteMethod(getAttr(), Sender, Self)
* * * Rule Processing * * *
'R = {RE Rules IR= (S,A) A CheckSelector(S, Self)! 0}
(S, A) - Pick random from 'R

Matching Set - EventTest(Event)
Evaluate Condition on Matching Set
Return Matching Subhistories

Note: Attr(Condition) denotes the set of attributes occurring in Condition.

Figure 6.2: The algorithm executed by CheckSelector.

The use of CheckSe l ector reflects the two uses of selectors in DEGAS. Queries
are sent to objects as calls to CheckSe l ecto r, which are queued in the query
queue Q. The selector of a rule is also checked using CheckSe l ector. These
calls are made directly by the object itself, as is shown in Section 6.2.4.

6.2. OBJECTS 99

MethodAllowed This action checks a given method call against the current
lifecycle of the object, as defined in Definition 49. The input parameters are the
sender of the call, the name of the method, and the input parameters of the call.
MethodA 11 owed is a Boolean function, that can only be invoked from inside the
object. Hence, its type is:

MethodAllowed: oid x MethodCall - Boolean

Invocations of MethodA 11 owed are not recorded in the object's history.

ExecuteMethod This action executes a method. Its effect is given by the func­
tion M defined in Section 5.3. The effect of ExecuteMethod on the object is
as defined in Definition 49. In a method, we can have three kinds of actions,
viz., modifications of attributes, calls to methods within the object, and calls to
methods in other objects. These are discussed in turn below.

We start with the effect of attribute modifications on the object itself. Given a
state history SH= SH(O); ... ;SH(n) at time t, where

SH(n) = (tn, Tn,HTn), m)

The new state history SH' as a result of ExecuteMethod with a method call
µ(q1, ... , qk) is:

SH' = SH; (t, T n, M(m(q1, ... , qk), l(Tn)), µ(q1, ... , qk))

Please note that ExecuteMethod itself is not recorded in the history.

Alternatively, a method can make calls to other methods. If the call MC is to
a method of the object itself, then it is added to the internal method queue of
the object:

.M~nt =.Mint+ MC

where .M~nt denotes .Mint after execution of the call. Calls to methods in other
objects are sent off to other objects using the sendMessage action provided by
the system layer, that is discussed in Section 6.3 . For a method call Path.MC,
where Path is a path expression evaluating to an object identity Obj, the fol­
lowing is executed:

sendMessage(Obj, MC)

The evaluation of path expressions in an object is translated to calls to get
methods. The object awaits the answer to the get calls. Hence, this is a form of
blocking communication. The answer to the get calls is delivered by a send­
Reply action of the system layer (see Section 6.3) in the reply box of the object.
Assignment from the reply box 'R'B blocks the object until the reply box is
filled with a result. To prevent the object form blocking infinitely, a time-out is
built in. If the block is timed out, the action is aborted and not recorded in the
history.

ExecuteMethod is invoked from inside the object. It is not recorded in the
object's history.

100 6.2. OBJECTS

6.2.3 Standard Methods

The following methods are present in a DEGAS object. Like the primitive actions,
they implement basic DEGAS functionality. Unlike the primitive actions, they are
subject to the lifecycle specification. Since they are methods, they are recorded
in an object's history.

getPathExpr This method evaluates a path expression given as parameter.
If the path expression is an attribute of the object itself, then the appropriate
get method is invoked. Otherwise, the head of the path expression is evalu­
ated to serve as the destination of a getPathExpr message containing the tail
of the path expression. As a consequence, the evaluation of a path expression
requires a sequence of messages between objects. An example is shown in Fig­
ure 6.3. There, we see the use of the rep l yTo field of a message. Access to the
successive attributes in the path expression is dependent on the access rights
of the previous object in the evaluation chain, that is the sender of the method.
The answer, however, must be returned to the original sender of the complete
path expression, object A in Figure 6.3. This is achieved by including its iden­
tity as the ReplyTo object. The final object in the evaluation chain, object Zin
Figure 6.3, executes a return statement in its getAm method, which returns the
value of Am to the Rep l yTo object, i.e., object A.

The algorithm executed by getPathExpr method is the following:

getPathExpr(pathexpr) = {

}

if 3 attribute E Attr: pathexpr =attribute
then

.'.Mext := .'.Mext + (sender=Sender, replyTo=ReplyTo, getattri bute)
else

sendMessage(Dest=head(pathexpr), sender=Sender,
replyTo=ReplyTo, Mesg=getPathExpr(pathExpr))

fl

get A get action is defined for every attribute of the object. For the attribute
Attr, the associated actions is named getAttr. It is used to specify access to
attributes from outside. The attributes of a DEGAS object are accessible from
outside in two manners: queries and path expressions. In both cases, a refer­
ence to an attribute is treated as a call to the associated get method. Since it is
a method, every call to getAttr is entered in the history of the DEGAS object.

For a query, the sender of the get method is set to the sender of the query.
For example, suppose the following query on the class Employee is issue by the
object Taxman:

Select from Employee
if Salary 2::: 70000

6.2. OBJECTS

Object A

Object B

Al= Object C

Object C

A2 = Object D

Object Y

Am-1 = Object Z

ObjectZ

Am= value(Am)

getAm()
ReplyTo: Object A
Sender: Object Z

getPathExpr(Al.A2 . A3 .. Am-1 . Am)
ReplyTo: Object A
Sender: Object A

getPathExpr(A2.A3 .. Am-1.Am)
ReplyTo: Object A
Sender: Object B

getPathExpr(Am)
ReplyTo: Object A
Sender: Object Y

Figure 6.3: Evaluation of a DEGAS path expression.

101

102 6.2. OBJECTS

To check this condition CheckSelector executes the method getSalary with
sender= Taxman. Hence, the lifecycle checks whether Taxman has access
to the attribute Salary. Likewise, the evaluation of path expressions also leads
to calls to get. The evaluation of a path expression is discussed above in the
specification of getPathExpr.

The default lifecycle of a get method is to allow everyone to call it. Hence, if
the programmer does not specify a lifecycle for the getSa l ary method, then it
is:

Llfecycle
getSalary*

If we wish to restrict the access to an attribute, we specify a guard for this
method. For example, the following lifecycle restricts access to salary to the
tax inspector.

Llfecycle
[sender= Taxman)getSalary*

Of course, any other restriction on the execution of getSa l ary is possible. The
composition of lifecycles using the communication merge operator I, discussed
in Section 5. 7.2, ensures that these specifications are orthogonal to the rest of
the lifecycle specification.

Extend This action extends the object with an addon. The name of the addon
is given as a parameter. Given a call to Extend with addon .'A. as a parameter.
The capabilities defined by .'A. are given by the following sets:

Attr(.'A.), M eth(.'A.), Cycl(.'A.), Rules(.'A.)

The effect on the object of executing Extend (.'A.) is given by

Attr'

Meth'

Cycl'

Rules'

Attr u Attr(.'A.)

Meth u Meth(.'A.)

Cycl u Cycl(.'A.)

Rules u Rules(.'A.)

where Attr' denotes the set of attributes after execution of Extend. The mean­
ing of Meth', Cycl', and Rules' is similar. Please note, that we assume unique
names for attributes and methods, as stated in Section 4.3.

The lifecycle of the object after execution, denoted by LC', is:

LC' = l>.eCycl' ,\

where I denotes communication merge with communication function y (µ, µ) =
µ for allµ E Meth'.

6.2. OBJECTS 103

To implement the extension with an addon, an object requests the appropriate
schema information from the addon class object. The capabilities in the addon
are then added to the capabilities of the object. The addon class object is re­
ferred to through the name of the addon. The actions of the addon class object
are specified in Section 6.5.

Remove This action removes an addon from an object. The name of the addon
is given as a parameter. Given a call to Remove with addon ..'A as a parameter.
The capabilities defined by ..'A are given by the following sets:

Attr(..'A), M eth(..'A), Cycl(..'A), Rules (..'A)

The effect on the object of executing Remove (..'A) is given by

Attr'

Meth'

Cycl'

Rules'

Attr \ Attr(..'A)

Meth\ Meth(..'A)

Cycl \ Cycl(..'A)

Rules\ Rules(..'A)

where Attr' denotes the set of attributes after execution of Remove. The mean­
ing of Meth', Cycl', and Rules' is similar. The lifecycle of the object after
execution, denoted by LC', is:

LC'= li\eCycl',\

where I denotes communication merge with communication function }' (µ, µ) =
µ for allµ E Meth'.

Kill The Kill action terminates the existence of an object. By default, it can
only be executed by the class object and the object itself. Hence, its default
lifecycle specification is:

Llfecycle
[sender=ClassObject or Sender=Self] Kill

Default Lifecycle In the specification of a DEGAS objects' actions, we referred
a number of times to the default lifecycle of a DEGAS object. Actions that can
be invoked from outside and that are recorded in the object's history, must be
specified in the lifecyle of an object. This is the case for the following actions:
get, Extend, Remove, and Kill.

Llfecycle
* * * For each Attribute E Attr: * * *
get<Attri bute>*
Extend*
Remove*
[Sender=ClassObject or Sender=This) Kill

104 6.2. OBJECTS

6.2.4 Execution

The functionality of a DEGAS object is implemented by an execution cycle that
uses the actions defined in the previous subsection. Basically, the object cycles
through two activities, viz., processing queries and executing method calls. Rule
execution is done as part of method execution. The execution cycle is depicted
in Figure 6.4.

Process Queries f-,,1 - - - - - - Query Queue

r I
Queries in queue Query Queue E mpty

1

i-
Execute Method

- - - - - - Internal Method Queue

i- - - - - - - External Method Queue

Generate set of
triggered rules

Figure 6.4: Execution Cycle of a DEGAS Object

The exact actions of the object are given in the algorithm in Figure 6.5. In the
query processing stage, the object process the complete query queue Q. If Q is
empty, then it proceeds with method execution. Here, method calls from inside
the object take precedence over method calls from outside. Hence, the object
only takes a method call MC from :Mext, if :Mint is empty. The call MC is then
checked against the lifecycle of the object. If it is not allowed it is discarded. It
MC is allowed, then MC is executed.

After execution of a method, the set of triggered rules is generated. One rule is
then picked at random for execution. Execution of the rule's action means that
the call is made. In the case of an internal method call, it is appended to :Mint•

If it is a call to another object, it is sent to that object.

6.2. OBJECTS

* * * Execution Cycle of a DEGAS object * * *
Repeat

* * * Query Processing * * *
While Q not empty do

od

(Sender, ReplyTo, Query ID, Selector) - Head(Q)
Result:= CheckSelector(Selector, Sender)
ReplyTo.queryResult(QuerylD, Result)

* * * Method Execution * * *
Repeat

if Jvt.int not empty
Sender,ReplyTo,MC - Head(Jvt.ind
Jvt.int - tail(Jvt.int)

else

fi

Sender,ReplyTo,MC - Head(Jvt.,xi)
Jvt.,xt - tail(Jvt.,xd

Until MethAllowed(Sender,M C)
ExecuteMethod(M C)
Return answer to ReplyTo, if necessary

* * * Rule Processing * * *
'.R = {R E Rules IR = (S,A) A CheckSelector(S, Self) I 0}
(S, A) - Pick random from '.R
* * * The action is executed * * *
Send message A

Until The End of this Object

Figure 6.5: The Execution of a DEGAS Object

105

106 6.2. OBJECTS

Action of the object Event History Internal Method Queue
EH :Mint

Execute µ1 µl [µ2, µ3]
R 1 triggered [µ2,µ3, cxi]
Query processing
Execute µ2 µ1;µ2 [µ3, cxi]
R2 triggered [µ3, £X1, £X2]
Query processing
Execute µ3 µ1;µ2;µ3 [£X1, £X2]
Query processing
Execute £X1 µ1;µ2;µ3;£X1 [£X2]
Query processing
Execute cx2 µ1; µ2; µ3; £X1; £X2 []

Figure 6.6: An example execution by a DEGAS object

As an illustration of this algorithm, we show an example execution of a DEGAS

object 0. In this example, we abstract from the data in O in order to focus on
the dynamic aspects. The object has five methods, µ1, µ2, µ3, £X1, and £X2. All
methods manipulate data except µ 1, which calls µz and µ3. The lifecycle of 0
is:

Furthermore, 0 has two rules:

We show a short snapshot of O's execution in Figure 6.6. It starts with the
execution of µ 1. We do not show the checks against the lifecycle, since it is
obvious that this execution satisfies O's lifecycle.

In DEGAS rule processing, non-executed triggered rules are discarded by the
object. In combination with the negation operator, this gives the application
programmer a great degree of flexibility in the interaction of rules and lifecy­
cles. If the action of a rule is not executed, we have two options, viz., to leave
the rule unexecuted or to retry it at a later time. A rule is left unexecuted in
situations where only a timely reaction is useful. An example is found in au­
tomatic trading in financial markets. There, our reaction to a falling price of
shares might be that we buy a number of them. This is only profitable if we
do it immediately, because otherwise the price may already have risen again.

6.3. SYSTEM LAYER 107

A rule is retried, if the action must always be executed once a rule has been
triggered. Rules that maintain integrity constraints will use such a strategy.

Both strategies can be programmed in DEGAS through the negation operator • ·
Suppose an object must react to the occurrence of the event A; B with an action
µ. If we only want an immediate reaction, we will use the standard behaviour
and specify the rule as:

OnA;B
doµ

On the other hand, if we want the action always to be executed after the event,
we will specify the following rule:

OnA;B;(,µ) *
doµ

This rule is triggered, as long as no µ action is execute after the occurrence of
A;B.

We can also characterise the DEGAS execution model using the dimensions of
rule execution in active databases, discussed in Section 3.1. Since rules are en­
capsulated in an object, and an object executes as a separate thread, rule ex­
ecution in DEGAS is instance-oriented. Furthermore, the coupling of event and
condition is immediate, since they are checked as a unit by CheckSe 1 ecto r.
The action of a rule is queued into the internal method queue :Mint• Hence,
condition - action coupling is deferred.

6.3 System Layer

The basic DEGAS object is built on top of a system layer. It provides the lowest
level implementation of objects, i.e., an abstraction of the physical object level.
The two functions implemented by the system layer are creation of new objects
and communication between objects.

Empty DEGAS objects created by the system layer implement the functionality
defined in Section 6.2, but does not contain any capabilities. Hence, a class
object has to add these in order to make the object an instance of its class.

Communication between objects in DEGAS can take place in two ways:

1. Point-to-point asynchronous. This kind of communication is through me­
thod calls. These are sent off by an object to a specified other object with­
out expecting an answer.

2. Point-to-point synchronous. This kind of communication is used to eval­
uate path expressions. The object evaluating the expression awaits the
result from another object.

108 6.3. SYSTEM LAYER

3. Broadcast. The broadcast facility offered by the DEGAS system layer sends
a message to all objects in a class. An example of its use is in query
processing, as discussed in Section 7.2.

The communication primitives defined in this section act directly on the data
structures specified for the basic DEGAS object.

The recipient of a message is specified by its identity. The point-to-point com­
munications action additionally accept names as destination objects. The name
is resolved to an object identity by the system layer.

In the following definition of the system layer, we consider this layer as one
entity. In Chapter 7, we discuss the implementation of the system layer in a
distributed environment.

6.3.1 Data Structures

The system layer records a directory of all objects and their addresses.

Object Di rectory This contains all objects in the DEGAS database with their
physical addresses. It is denoted by ObjDir. The pseudo-type of ObjDir is:

ObjDir: 'P(Oid x PhysAddr)

ObjDir is only used internally by the system layer to deliver messages to
DEGAS objects.

Name Di rectory This directory records the identities of named objects. It
maps names to object identities. It is specified as follows:

NameDir: 'P(String x Oid)

NameDir is used internally by the system layer to support communication
to named objects. Objects recorded in NameDi r can be specified by name as a
destination. NameDir contains the following objects:

1. Class objects

2. Relation Class objects

3. Addon Class objects

4. A site object

The former three categories are referenced by the name of the class with Cl ass
appended. For example, the class object of Person is known as PersonCl ass.
The latter is referenced by the name Site.

6.3. SYSTEM LAYER 109

6.3.2 Actions

Here, we specify the actions offered by the system layer in terms of their effects
on the data in the system layer and the objects involved.

NewEmptyObject This action creates a new empty DEGAS object. A call to
NewEmptyObject results in an empty DEGAS object with identity NewOid at
physical address NewAddr. Hence, the type of NewEmptyObject is:

NewEmptyObject: 1 - Oid x PhysAddr

The new object directory Obj Dir' after execution of this action is:

ObjDir' = ObjDir u {NewOid x NewAddr}

The action NewEmptyObject can be invoked by class objects. NewOid, the
identity of the new object, is returned to the sender of the action. Its use by the
class object is explained in Section 6.4.

sendMessage This action implements asynchronous point-to-point commu­
nication. It sends a message from an object to another object. Messages are
always method calls in DEGAS. The parameters of sendMessage are the follow­
ing:

Destination object
Sending object
Recipient of reply
Message

Dest
Sender
replyTo
Mesg

Oid
Oid
Oid
MethodCall

The destination of sendMessage can also be specified by a name. The effect of
sendMessage is that the message Mesg is added to the external method queue
.'.Mext of Dest. The external method queue after execution is denoted by .'.M~xt:

Dest . .'.M~xt = Dest . .'.Mext + Mesg

Any object can invoke sendMessage.

sendQuery This action implements another form of asynchronous point-to­
point communication. It sends a query from an object to another object. The
parameters of sendQuery are the following:

Destination object
Sending object
Recipient of reply
Query Identity
Selector

Dest
Sender
replyTo
QueryID
Sel

Oid
Oid
Oid
integer
SelectorType

110 6.3. SYSTEM LAYER

The destination of sendQuery can also be specified by a name. The effect of
invocation of sendQuery by an object 01 on behalf of an object 02 is that a
tuple Query added to the query queue Q of Dest, where

Query (sender= 01, reply To = 02,

qid = QueryID,Selector = Sel)

The query queue after execution is denoted by Q':

Dest.Q' = Dest.Q + Query

Any object can invoke sendQuery.

sendReply This action implements synchronous point-to-point communica­
tion. It is used to return a value to an object. The parameters of send Reply are
the following:

Destination object Dest Oid
Reply Answer value

The destination of send Reply can also be specified by a name. The effect of
sendReply is that the value Answer is put into the reply box 'R'B of Dest. The
reply box after execution is denoted by 'R'B':

'R'B' = Answer

Broadcast This action sends a message to all objects in a class. The parame­
ters of Broadcast are a class name DestClass and a method call Mesg:

Destination class
Sending object
Recipient of reply
Message

DestClass
Sender
replyTo
Mesg

Classname
Oid
Oid
MethodCall

Execution of Broadcast effects the external method queues :lvt.ext of all ob­
jects in class DestClass. The external method queue :Jvt.~xt after execution is
as follows:

VO E DestClass: O.:Jvt.~xt = 0.:lvt.ext + Mesg

Any object can invoke Broadcast.

6.3.3 Execution

The execution of the system layer is completely driven by requests from DEGAS
objects. Calls to actions in the system layer are executed on a First Corne, First
Served basis. This is the only place in DEGAS, where object autonomy is com­
promised by introducing a form of synchronisation. Clearly, this is necessary
to allow objects to communicate.

6.4. CLASS OBJECTS 111

6.4 Class Objects

Class objects implement a major part of object management. They are respon­
sible for the creation of new object instances of their class. As a consequence,
a class object keeps a record of existing instances. Furthermore, a class object
provides schema information.

6.4.1 Data Structures

The following data is recorded in a class object, in addition to the data recorded
as standard in a DEGAS object.

Extent This set contains the identities of the objects in the extent of the class
managed by the class object. Because the system layer provides an abstraction
from physical addresses, the type of Extent is:

Extent : 'POid

Class Attribute Set This set contains the attributes specified for the class.
It is denoted by ClassAttr.

Cl ass Method Set This set contains the methods specified for the class. It is
denoted by ClassMeth.

Cl ass Li fecycl e Set This set contains the lifecycles specified for the class.
It is denoted by ClassCycl.

Cl ass Rule Set This set contains the rules specified for the class. It is de­
noted by ClassRules.

6.4.2 Actions

A class object provides all actions of a DEGAS object. In addition, it provides
actions to create new objects and actions to provide schema information.

New This action produces a new object in the class. First, a new empty DEGAS

object is requested form the system layer. Then, this object is filled with the
capabilities specified for the class. The created object is added to the extent of
the class.

After the first phase, the following conditions hold:

NewOid

NewOid.Attr

NewEmptyObject()

0

112

NewOid.Meth

NewOid.Cycl

New Did.Rules

0

0

0

6.5. ADDON CLASS OBJECT

Filling the object means that the following post-conditions are satisfied, where
Extent' denotes the value of Extent after execution of New.

Extent'

NewOid.Attr

NewOid.Meth

NewOid.Cycl

NewOid.Rules

Extent u {NewOid}

ClassAttr

ClassMeth

ClassCycl

Class Rules

getExtent This action returns the extent managed by the class object.

getExtent : 1 - 'POid

This action can be invoked by a Site object.

IsAttribute This is a Boolean function to check for the presence of an at­
tribute in a class. IsAttri bute is used to check the correctness of queries, as
is discussed in Section 7.2. As parameters, it takes the name and type of an
attribute. It is typed:

IsAttribute: String x Type - Boolean

The IsAttribute action can be called by Site objects.

IsMethod This is a Boolean function to check for the presence of a method in
a class. IsMethod is used for type checking. As parameters, it takes the name
of the method and its parameters. It is typed:

IsMethod: String x [(name: string, Type)] - Boolean

The IsMethod action can be called by Site objects.

6.5 Addon Class Object

Information about addons is stored in addon class objects. An addon class ob­
ject is similar to a class object. The only difference is the absence of an action
to create a new object. Since an addon extending an object does not have object
identity, an addon class object only adds and removes existing object identi­
fiers to and from its extent. The class extended by !he addon, specified in the
Extends clause in the addon definition, is denoted by BaseClass.

6.5. ADDON CLASS OBJECT

Object PersonClass
Attributes

Extent :POid
ClassAttr: P(Name, Type)
ClassMeth: P(Name, Type)
ClassCycl
ClassRules
NewOid: Oid
attr : (Name, Type)
meth : (Name, Type)
site: oid

Methods
New= {

}

NewOid := NewEmptyObject()
Extent : = Extent u {NewOid}
NewOid.Attr := ClassAttr
NewOid.Meth := ClassMeth
NewOid.Cycl := ClassCycl
NewOid.Rules := ClassRules
Return NewOid

getExtent = {
return Extent

}
IsAttribute(Name, Type) = {

Foreach attr in ClassAttr

}

where attr.name =Name and attr.type = Type
do return True

IsMethod(Name, Type) = {
Foreach meth in ClassAttr
where attr.name =Name and attr.type = Type
do return True

}
Llfecycle

New*
[sender=site)getExtent*
[sender=site)isAttribute*
[sender=site)isMethod*

Rules
EndObject

Figure 6. 7: An example DEGAS class object.

113

114 6.5. ADDON CLASS OBJECT

6.5.1 Data Structures

The following data is recorded in an addon class object, in addition to the data
recorded as standard in a DEGAS object.

Extent This set contains the identities of the objects extended with the addon
managed by the addon class object. Hence, it has a slightly different meaning
than Extent in a class object. The type of Extent is:

Extent : 'POid

Addon Attribute Set This set contains the attributes specified for the ad­
don. It is denoted by AddonAttr.

Addon Method Set This set contains the methods specified for the addon. It
is denoted by AddonMeth.

Addon Li fecycl e Set This set contains the lifecycles specified for the ad­
don. It is denoted by AddonCycl.

Addon Rule Set This set contains the rules specified for the addon. It is de­
noted by AddonRules.

6.5.2 Actions

The actions of an addon class object are to provide information about the ca­
pabilities of an object.

getExtent This action returns the objects extended by the addon of the ad­
don class object, i.e., the value of Extent.

getExtent: I - 'POid

This action can be invoked by a site object.

regi sterExtent This action registers the extension of an object with the ad­
don. It does not have any parameters, because the message is sent by the ex­
tended object. The execution of regi sterExtent results in the addition of the
sender's identity to Extent. Extent' denotes the extent of the addon class
after execution:

Extent' = Extent u {Sender}

The action regi sterExtent can be called by objects in BaseClass.

6.6. RELATION OBJECTS 115

removeExtent This action informs the addon class object of the removal of
an addon. It does not take any parameters, because the message is sent by the
object the addon is removed from. The execution of removeExtent results in
the removal of the sender's identity from Extent. Extent' denotes the extent
of the addon class after execution:

Extent' =Extent\ {Sender}

The action removeExtent can be called by objects in BaseClass.

IsAttribute This is a Boolean function to check for the presence of an at­
tribute in a class. IsAttri bute is used to check the correctness of queries, as
is discussed in Section 7.2. As parameters, it takes the name and type of an
attribute. It is typed:

IsAttribute: String x Type - Boolean

The IsAttri bute action can be called by Site objects.

IsMethod This is a Boolean function to check for the presence of a method in
a class. IsMethod is used for type checking. As parameters, it takes the name
of the method and its parameters. It is typed:

IsMethod: String x [(name: string, Type)] - Boolean

The IsMethod action can be called by Site objects.

Default Llfecycle The default lifecycle of an addon class object ensures that
the actions to extend an object are executed in the right sequence. In particular,
this lifecycle guarantees that an object can only register with the addon, if it has
executed the necessary action for extension.

Llfecyde
[sender E BaseClass)registerExtent*
[sender E Extent)removeExtent*
[sender = site)getExtent*

6.6 Relation Objects

A relation object is also a DEGAS object. Hence, it contains all data structures
and actions defined in Section 6.2. In addition, a relation object always has
attributes to record the identities of the partners in the relation. Furthermore,
the involvement of partners means that terminating a relation is more complex
than simply killing the relation object.

6.6.1 Data Structures

Additional attributes provided by the relation object contain the identities of
the partners in the relation.

116 6.6. RELATION OBJECTS

Partners The specification of a relation object specifies the partners in the
relation in the Relation clause. For example, consider the Rel at ion clause in
a Share relation:

Object Share
Relation Company, Shareholder

As a result the Share relation object contains the attributes Shareholder and
Company. Furthermore, the partners in the relation are recorded as a set in the
attribute Partners. In general, consider a relation object R with the following
header:

Object R
Relation Pi, P2, . .. , Pn

Then we have the following elements in the attribute set of R:

V 1 :S; i :S; n : Pi : oid E Attr
Partners : '.POid E Attr

The partner objects in the relation are stored a second time in a set to be able
to send a message to all partner object at the same time through a set iteration.

6.6.2 Actions

An action to terminate the relation is provided in addition to the straight ki 11
in a DEGAS object.

Terminate This action implements termination of the relation. As a result of
Terminate the relation object ceases to exist. Furthermore, the partners in the
relation must be informed of the end of the relation.

Methods

Terminate = {

}
Rules

* * *For each Part E Partners ***
Part.terminate<Part>O

On Terminate do Kill

6.7. RELATION CLASS OBJECTS 117

6. 7 Relation Class Objects

A relation class object is a class object. Hence, it contains all capabilities of a
class object and, by implication, all capabilities of a DEGAS object. The main role
of a relation class object is to match partners for a relation. The way this takes
place is dependent on the application semantics of the relation. Hence, this sec­
tion only gives a standard interface for initiating relations. Possible scenarios
for use in applications are discussed in Section 7.3.

6.7.1 Data Structures

The additional data structures in a relation class object relative to a class ob­
ject serve to record data about prospective partners in relations that are being
formed.

Prospect This attribute records prospective partners in a relation. It is de­
noted by Prospect. Since the result of the matching process are relations, the
prospective partners are recorded as tuples of objects. The set of partners in a
relation is denoted by Partners.

\f Part E Partners: Prospect: '.P(<Part>: oid)

A tuple in this set denotes a potential combination of objects to form a relation.
The missing partners in a combination of prospects are represented by a Null
value in the tuple. For example, suppose we have a three way relation Schedule
with partners Teacher, Course, and Room. An example Prospect set in the
relation class object is:

{(Teacher: 123, Course: 345, Room: Null),
(Teacher: 135,Course: 368,Room: Null),
(Teacher: Null, Course: 369, Room: 981)}

This relation class object has two teacher - course pairs looking for a room and
one course - room pair lacking a teacher.

6. 7.2 Actions

The following actions are defined in addition to the actions of a class object.

initiate This action is used by prospective partners to express interest in
engaging in a relation. There is an i ni ti ate action for each partner in the
relation. Let Meth be the method set of a relation class object RC, then:

\f Part E Partners: initiate<Part> E RC.Meth

In the example of the Schedule relation class object, we have the following
actions:

118

initiateTeacher
initiateCourse
initiateRoom

6.8. SITE OBJECTS

An i ni ti ate method can have parameters, for example containing the desired
partner in the relation. The exact actions of these methods are dependent on the
application, as will be discussed in Section 7.3. As a consequence, the relation
class object is specified by the application programmer.

instantiateRelation This action does the actual instantiation of the rela­
tion. This means that it creates the relation object and instructs the partners
to extend themselves with the appropriate addon. Furthermore, it removes the
tuple of partners from Prospects.

Methods
* * *v'Part E Partners:***
instantiateRelation(<Part> : oid) = {

Part.extend(<Part>)

}

Relation := new()
Part.initialise(Relation)
Foreach p in Prospects
where p.<Part> = <Part>
do Prospects := Prospects - p

This action can only be invoked by the object itself.

Default Lifecycle The default lifecycle of the i ni ti ate actions allows their
execution at any time.

Llfecycle
* * * For each <Part> E Partners* * *
Initiate<Part>*
[Sender=Self] instantiateRelation *

6.8 Site Objects

A Site object facilitates object management, as discussed in Section 4.5. It has
a number of class objects, that provide schema information and record the
local extent of their class. The main activity of a Site object is related to query
processing.

6.8.1 Data structures

Data stored by the Site object are the classes known by the site and interme­
diate results of queries.

6.8. SITE OBJECTS 119

ClassesOnSite This attribute contains the set of classes on the site. For each
class object, the Site object records name and identity.

ClassesOnSite: P(ClassName: String, ClassObj: Oid}

The local extent of the class, i.e., the part of the class extent at this site, is stored
by the class object, as discussed in Section 6.4

QResul ts This attribute contains the results of queries processed by the Site
object. The result of a single query is a set of object - history pairs. Its type is
denoted by QueryResultType

QueryResultType = P(Object: Oid,EH: £Hist}

Please note that £Hist denotes the type of an event history, as defined in Defi­
nition 28.

Because a Site object must have the ability to process multiple queries at a
time, it also records a query identity and the query generating object.

QResults:
P(Qid: integer,Issuer: Oid,Result: QueryResultType}

The query identity serves to distinguish multiple queries processed at the same
time by the Site object. It is also sent with the CheckSe 1 ecto r request, as we
saw in Section 6.2.

NextQid This is a numerical attribute containing the next query identity to be
handed out:

NextQid: integer

It is simply a number, that is increased each time a query is distributed by the
Site object.

6.8.2 Actions

The actions of a Site object are mainly concerned with query processing. It
offers facilities to distribute a query over a class, collect the results from the
instances, and ship the result back to the object issuing the query.

DistributeQuery This action is used to distribute a query over the instances
of a class. As parameters it takes the identity of the query, the name of the class
and the query to be distributed.

Class: ClassName
Query: (sender: oid, Selector: SelectorType}

120 6.8. SITE OBJECTS

To distribute the query, the site object first assigns an identity to the query.
Then, it obtains the local extent of the class from the class object. After that,
the Site object sends the query to all objects in the extent using the sendQuery
primitive of the system layer (see Section 6.3).

distributeQuery(Class : String, Query : QueryType) = {
if not Class.isAttribute(Attributes in Selector)

}

or not Class.isAttribute(Events in Selector)
then exit

qid := NextQid
NextQid := NextQid + 1
extent := Class.getExtent()
foreach o in extent
do sendQuery(dest=o, sender=Query.Sender, replyTo=This,

QueryID= qid, Sel = Query.Selector)

In this specification QueryType is shorthand for the type of a query, as given
above.

queryResul t This action is used to collect the results of a query. It adds a
given result for an individual object to the set of query results QResults stored
in the object. The parameters of queryResul tare the identity of the query and
the set of matching sub-histories in the object history.

Qid : integer
LocalResult: PEHist

The effect of this action is that the local result is added to the set of query
results.

QR E QResults :
QR.Qid
QR.Result'

Qid
QR.Result u

{(object= Object/D,EH = hist) I
Object/D = Sender I\ hist E LocalResult}

The action queryResul t can be invoked by any object.

shipResul t This action sends the result of a query to the object issuing the
query. The result of a query q is taken from QResults. After it is shipped, the
result of q is removed from QResults. It's actions are specified as follows in
DEGAS:

shipResult(Qid : integer) = {
Foreach qr in QResult
where qr.qid = Qid
do {

6.9. CONCLUSION

}
}

sendMessage(qr.lssuer, This, This, answerQuery(qr.Result))
QResults := QResults - qr

The action shi pResul t can only be invoked by the Site object itself.

121

Default Llfecycle The lifecycle of a Site object prescribes the correct se­
quence for query processing. First, the object distributes the query. Then, it
receives the answers from the object instances. Finally, it ships the result back
to the sender of the query:

Llfecycle
I (distributeQuery;queryResult* ;shipResult) *

6.9 Conclusion

In this chapter, we gave a functional specification of DEGAS as an intermediate
step between the abstract semantics and an implementation. To that end, we
identified for each element needed to implement a DEGAS database, what data
is stored and what actions are required.

As a foundation, a system layer offers communication and object creation ser­
vices. These are necessary for the basic DEGAS object, which implements all ob­
ject capabilities, viz., attributes, methods, lifecycles, and rules, using a number
of primitive actions. These actions are executed as part of a cycle, that pro­
cesses query requests, then executes a method, and processes triggered rules.

All further elements of a DEGAS database are specified as DEGAS objects them­
selves. For these objects, we specified the actions required for a DEGAS data­
base. Relation objects must offer actions to terminate the relation. Class ob­
jects, relation class objects, and addon class objects all take care of creating
instances in their class. The messages to handle this are standardised. Site ob­
jects do not implement part of the data model. Instead, their main task is to
facilitate query processing

122 6.9. CONCLUSION

123

Chapter 7

Practical Aspects of DEGAS

This chapter addresses a number of issues in the realisation of a DEGAS da­
tabase. First, we discuss the prototype of a DEGAS implementation. In the in­
troduction of Chapter 6, we positioned the functional specification as half way
between the abstract semantics of DEGAS, specified in Chapter 5, and a DEGAS

implementation. Hence, this chapter discusses the implementation of the sys­
tem specified in the previous chapter. Additionally, we shortly discuss the in­
terface of DEGAS to the outside world.

Furthermore, the specification given in Chapter 6 gave only a specification of
a standard interface for creating new objects and new relation objects. In this
chapter, we discuss how application dependent semantics can be programmed
in DEGAS using this standard interface. Furthermore, we discuss how the ac­
tions specified in Chapter 6 are used to implement query processing in DEGAS.

This discussion includes the maintenance of a data dictionary and the approxi­
mation of query result quality in the context of DEGAS object autonomy.

7.1 Implementation of DEGAS

The implementation of a DEGAS database is explained by showing how to im­
plement each element of the functional specification. For this discussion, we
draw on our experience with the implementation of an early DEGAS prototype
in Python. In this section, we first motivate our choice for Python as the imple­
mentation language. Then, we explain the implementation of the key elements
of a DEGAS database. These are the basic DEGAS object and the system layer.
Other elements of a DEGAS database are themselves DEGAS objects. Therefore,
we can implement these, if we can implement a basic DEGAS object.

124 7.1. IMPLEMENTATION OF DEGAS

7.1.1 The Implementation Language

The aim of the prototype DEGAS implementation was to provide a proof of con­
cept for the model defined in this thesis. The prototype is meant to show that
a DEGAS database can be implemented. This lead to the following requirements
on the implementation language:

1. Object support. Besides the obvious advantages of object orientation in
software development, the presence of objects makes implementation an
object-based system like DEGAS easier.

2. Facility for threads or processes. DEGAS objects run concurrently. Hence,
the implementation platform must support concurrency.

3. Made for Prototyping. Since the prototype is only meant to provide a
proof-of-concept, quick implementation is more important than optimal
performance.

We chose Python [Lutz, 1996) as the implementation platform for a DEGAS
prototype. Python1 is an object-oriented scripting language developed at CWI
[Rossum, 1995b, Rossum, 199Scl. It is especially suitable for rapid prototyping,
since it draws on earlier experience with ABC [Geurts et al., 1990], designed
from the viewpoint of a programming language as a user interface. Python has
a number of features that were of particular use in writing a DEGAS prototype.
It has a large number of built-in data structures, such as list and dictionaries. A
Python dictionary has the usual structure of a key followed by an entry. As an
example, suppose we enter the following in the Python interpreter:

>>> telefoon = {}
>>> telefoon['Johan'] = 4134
>>> telefoon['Arno'] = 4139
>>> telefoon['Arjan'J = 4054

Then, the contents of tel efoon are as follows:

>>> telefoon
{ 'Arjan': 4054, 'Johan': 4134, 'Arno': 4139}

Elements are deleted from a dictionary using the de l statement:

>>> del telefoon['Arjan'J
>>> telefoon
{'Johan': 4134, 'Arno': 4139}

A dictionary offers a structure of variable size and content to store a DEGAS ob­
ject's capability sets. For example, the attribute values of an object are stored
in a dictionary indexed by name. This allows easy addition and deletion of at­
tributes, as is discussed in Section 7.1.2.

Furthermore, Python allows references to functions by name. This is a very
useful feature for the implementation of the addon mechanism. To illustrate
this, suppose we have defined the following function in the Python interpreter:

1 An extensive source of information on Python is the web site www. python. org.

7.1. IMPLEMENTATION OF DEGAS

>>> def multiply(parameter):
number= parameter* 2
return number

Then we assign:

>>> naam = multiply

Calling naam leads to the execution of multiply:

»> naam(45)
90

125

This feature, together with dictionaries, facilitates easy implementation of a
DEGAS object's variable method set. The implementation of a method is stored
as a Python function. Each DEGAS object has a dictionary storing references
to these Python functions indexed by method name, as discussed further in
Section 7.1.2.

An additional attractive feature of Python is the extensive library [Rossum,
1995a) of modules available in the standard distribution. The modules in the
library present their functionality as abstract data types. For example, the soc­
ket module implements Unix inter-process communication by a socket object
with socket operations as methods. In the DEGAS prototype, we use several
modules, that implement threads, locking, and inter-process communication.
The thread module is used to implement a DEGAS object's separate thread of
control. This module also implements simple locks to prevent conflicts between
DEGAS objects and the system layer in the implementation of communication
primitives. Finally, inter-process communication through sockets was used in
the prototype implementation for communication between the DEGAS database
and the user interface.

We also considered C++ [Stroustrup, 1991) as an implementation language. It
satisfies our first two requirements, support for objects and for concurrency.
It scores lower, however, on its fitness for prototyping. This is mainly due to
the lack of higher level data structures in C++. Especially dictionaries and the
various library modules of Python are easier to use than similar C++ facilities.
These arguments also apply to Java. Furthermore, we did not have any porta­
bility requirements that could be fulfilled by Java.

7.1.2 The Basic DEGAS Object

This section discusses the implementation of the basic DEGAS object. It is imple­
mented by a Python object. In this object, the data structures are attributes. The
basic actions are method calls of the Python object implementing the DEGAS ob­
ject.. The execution cycle in Figure 6.4 is also a method. To achieve concurrent
execution of DEGAS objects, this method is executed in a separate thread for
each object.

126 7.1. IMPLEMENTATION OF DEGAS

Storage

A basic DEGAS object records an object's capabilities, as specified in Section 6.2.
Here, we look at the storage of these data in an implementation.

State Hi story The state history of an object is stored as a dictionary with
the time as a key. This allows fast retrieval of historical attribute values. Hence,
the following data are recorded in a tuple:

1. Ti me Stamp. The time of the method call is represented by an integer.

2. Attribute. A dictionary containing name and values of the object's at­
tribute set at the time indicated. The attribute name is the key of this
dictionary.

3. Method Name. A string containing the name of the method call causing
the state change.

4. Method Parameters. A list containing the parameters of the method call.

Queues The three queues of a DEGAS object are FIFO queues implemented by
lists. These lists contains tuples representing the messages. The head of the list
is the earliest message. The attributes of a message is dependent of the queue.
The following attributes are used:

1. Sender. The object identity of the sender.

2. Rep l yTo. The recipient of the message's response.

3. Event. This contains the encoded event expression of the selector. The
encoding of event expressions is discussed in Section 7.1.2.

4. Condi ti on. A selection condition is represented by a function testing it.
This attribute of a query tuple contains a reference to this function.

5. Method name. A string containing the name of the method.

6. Param. A list of actual parameters of the method call.

The table below indicates the attributes of tuples in each queue of a DEGAS

object.

Query Queue
External Method Queue
Internal Method Queue

✓ ✓ ✓ ✓

✓ ✓ ✓ ✓

✓ ✓ ✓ ✓

7.1. IMPLEMENTATION OF DEGAS 127

The external queues, i.e., the query queue and the external method queue, are
guarded by a lock, to avoid conflicts between the system layer and the object
itself in modifying the external method queue. The list and the lock are encap­
sulated in a separate object.

Reply Box The Reply Box is a value.

Capability Sets The capability sets of a DEGAS object are stored in dictio­
naries. For each capability, attributes, methods, lifecycles, and rules, an object
has a dictionary. Attributes and methods are stored indexed by their name,
while rules and lifecycles are indexed by the name of their class or addon. This
choices of indices is motivated by their most common use. Attributes and meth­
ods are always referenced by their names. Modifications of the lifecycle and
rule dictionaries take place when the DEGAS object is extended by an addon or
when an addon is removed. In these situations, the elements of the dictionary
are accessed through the name of the defining addon.

As a result, the Python implementation of a DEGAS object has the following
attributes:

1. Attributes. The (Python) attribute attr is the dictionary containing the
object's current attributes and their values.

2. Methods. The attribute meth is the dictionary of methods. For every me­
thod of the DEGAS object, it contains a pointer to the Python function
implementing the action.

3. Lifecycles. The attribute cycl is the dictionary containing the current life­
cycle elements of the object. These are all lines from the lifecycle specifi­
cations in the class definition and the definitions of the addons currently
present.

4. Rule Set. The attribute ru 1 e is the dictionary containing the event, the
condition, and the action of all rules currently defined in the DEGAS ob­
ject. The event is encoded as a finite state machine, as explained in Sec­
tion 7.1.2. The condition is stored as a Boolean function checking it. The
action is a method call.

Li fecycl e The attribute Li feCycl e is a dictionary containing the current
lif ecycle of the DEGAS object. It contains the finite state machine for the current
lifecycle. The encoding of the state machine is explained in Section 7.1.2. It is
constructed by combining the elements stored in the lifecycle dictionary cycl
using the communication merge as explained in Section 5. 7.2.

128 7.1. IMPLEMENTATION OF DEGAS

This The identity of an object is a logical address provided on creation by the
DEGAS system layer. Hence, the attribute This in the DEGAS object is different
from the self reference self of the Python object, which contains the physical
address of the object.

Actions

The primitive actions of a basic DEGAS object are implemented by methods of
the Python object. Here, we shortly give the techniques used by each primitive
action.

ExecuteMethod A method is executed by looking up the reference to its Py­
thon translation in the Meth dictionary by its name. Then, the function con­
taining the Python translation is executed. After that, the new object state is
appended to the history. All constructs in a DEGAS method have a straight­
forward translation to Python code. The Foreach ... in ... where ... do
... can be implemented using the Python For iterator [Rossum, 1995b], that
applies a program block to all elements of a set.

Below, we give the Python code implementing ExecuteMethod. The lines pre­
ceded by# indicate comments explaining the actions. First, the current attribute
values are copied. After that, the actual execution takes place. The expression
self. meth [name] resolves to the name of the Python implementation stored
in the dictionary meth. The parameters taken by the Python function are the
parameters of the DEGAS method and the current attributes. The presence of
self as a parameter to the method call is a Python feature to indicate a func­
tion of a Python object. After execution of the method, the new attribute values
are inserted in the object history.

def executeMethod(self,name,parameters):

Copy attributes to local attribute diet

attri buut = {}
lastattr = self.stateHist[max(self .stateHist.keys())]
for i in lastattr.keys():

attribuut[i] = lastattr[i]

Execute the method

self.meth[name](self, parameters, attribuut)

Append the local attribute diet to the state history

self.stateHist[self.count] = (attribuut,name)

7.1. IMPLEMENTATION OF DEGAS 129

CheckSelector The implementation of this action first checks the event ex­
pression using the techniques explained in Section 7.1.2. Then, satisfaction of
the condition by the matching sub histories is checked. The condition is en­
coded as a Boolean function testing the condition.

MethodA 11 owed The implementation of this action takes the lifecycle stored
as a finite automaton in Li fecycl e. It checks the tail of the event history to­
gether with the proposed method call against the automaton. This is explained
in Section 7.1.2.

get This is implemented by a generic Get method in the Python object, that
returns the current value from the Attr dictionary.

Extend This action manipulates the capabilities sets, i.e., Attr, Meth, Rules,
and Cyc 1, as specified in Section 6.2. A new automaton for Li fecyc 1 e is con­
structed using the compositions described in Section 7.1.2. A further explana­
tion of the implementation of the addon mechanism is given below.

Remove This action is implemented analogously to the Extend action.

Kil 1 Termination of an object means terminating its execution cycle. This is
implemented by terminating the thread executing the object. The result is that
the object is still around in the database, but that nothing is added to its history
anymore. The object is available for historical queries.

Addon Extension

The implementation of the addon mechanism is supported by the storage of ca­
pabilities in dictionaries. Furthermore, the possibility of referencing functions
by name allows an object access to functions that were not pre-defined in the
object.

Recall the specification of the addon class object in Section 6.5. There, we saw
that an object O executing an Extend (A) action requests the capabilities of ad­
don A from the addon class object of A. References to functions simplify this
process. The addon class object simply returns the name of a function contain­
ing the extension actions, i.e., the appropriate assignments to the capabilities
sets. This function is executed by O to achieve the desired extension.

For example, suppose we have the specification of the addon Extra in Fig­
ure 7.1. For brevity, assume that the Python implementations of the methods
represented by the functions P_setFi rst, P_setSecond, and P_total, respec­
tively. Furthermore, the encoding of the lifecycle is stored in P _Li fecycl e­
Extra. This results in the following function to extend a Standard object O
with the addon Extra.

130

Addon Extra
Extends Standard
Attributes

first : integer
second : integer

Methods
setFirst(no :integer) = {

first:= no
}
setSecond(no :integer) = {

second:= no
}
total= {

return first+ second
}

Llfecycle
setFirst*
setSecond*
total*

EndAddon

7.1. IMPLEMENTATION OF DEGAS

Figure 7.1: The specification of the Extra addon

def ExtendExtra(self)
Attr['first'] 0
Attr['second'] 0
Meth ['set First'] P _setFi rst
Meth['setSecond'] P_setSecond
Meth['total'] P_total
Cycl['Extra'] P_LifecycleExtra
sendMessage(ExtraClass,this,this,registerExtent)

The name of ExtendExtra is passed to Oby the addon class object of Extra
for execution. Removal of capabilities in a Remove action proceeds analogously
to an Extend action. For the deletion of the addon from an object 0, the addon
class object of Extra passes the name of RemoveExtra to 0:

def RemoveExtra(self) :
del Attr['first']
del Attr['second']
del Meth['setFirst']
del Meth['setSecond']
del Meth['total']
del Cycl['Extra']
sendMessage(ExtraClass,this,this,removeExtent)

7.1. IMPLEMENTATION OF DEGAS 131

Checking Event Expressions

Event expressions occur in lifecycles and in selectors. In both cases, we must
check (a part of) the event history against a process algebraic expression [Baeten
and Weijland, 19901. Here, we show that these checks are easy implementable.
In fact, a finite automaton is sufficient to match the event history with an event
expression. This also means that lifecycles in a DEGAS object have similar ex­
pression power as finite automata used to model the dynamic aspects of objects
in OMT [Rumbaugh and others, 19911.

Proposition 1 An event expression can be implemented by a finite state machine
with conditions on the transitions.

Proof Follows from the fact that the event expressions are a regular language
[Lewis and Papadimitriou, 19811. The transitions in a lifecycle-checking au­
tomaton are labelled by the preconditions and the method names. A lifecycle
checking automaton is brought to the next state by a method execution. In an
event-checking automaton they are labelled by an event name only. An event­
checking automaton parses the event history for an event expression. The non­
occurrence of events is handled by rewriting them to the equivalent alternative
composition. □

For each operator, we can give a simple automaton that checks this expression.
These are shown in Figure 7.2. Please recall, that the negation operator, can be
rewritten to an alternative composition+. If an object O has action A, B, C, and
D, then ,C =A+ B + D. Furthermore, the merge operation can be expanded to
an alternative composition. The axioms of merge are as follows:

xlly

ax~y

allb

(xlly)llz

x~y + y~x

a(xlly)

ab+ba

xll(yllz)

As an example of a finite automaton to check a more complicated event expres­
sion, we give the automaton associated with the event expression A; (B; ,C;D)*
in Figure 7.3.

The implementation of these automata in Python is straightforward. Each state
of the automaton is numbered. For each state, we record the possible tran­
sitions to other states. A transition is characterised by a state number and a
method name. Consider the automaton in Figure 7.4, which implements the
event expression A; (Bll[answer = 42]C). In state 2 of this automaton, we have
two possible transitions: To state 3 by method B and to state 4 by method C, if
precondition answer = 42 is satisfied.

132 7.1. IMPLEMENTATION OF DEGAS

A
A

Qr-------•@

A A;B Q.-----·O B ·@

A
A+B ()=: ____ _ :@

B

A

AIIB

B

0
A

0 State

@ Accepting state

Figure 7.2: Finite automata for process algebraic operators

7.1. IMPLEMENTATION OF DEGAS 133

A
B

B

D
Q State

@ Accepting state

Figure 7.3: Finite automaton to check the event expression A; (B; ,C; D) *.

A B

2 3

[answer= 42]C [answer= 42]C

B
-------- 0
4 5 0 State

@ Accepting state

Figure 7.4: Finite automaton to check the event expression A; (BIi [answer
42]C).

134 7.1. IMPLEMENTATION OF DEGAS

Merging lifecycles from multiple specifications is a straightforward affair. In
Section 5. 7.2, we saw that lifecycles are composed using communication merge.
Like simple parallel merge, communication merge is defined by the same ax­
ioms as parallel merge, with the addition of a communication function y. This
means that communication merge is associative, i.e., (xly) lz = xi (y lz). As a
consequence, the sequence of lifecycle composition is arbitrary.

7.1.3 The System Layer

The underlying infrastructure of a DEGAS database is provided by the system
layer specified in Section 6.3. Services provided are object creation and inter­
object communication. The system layer is implemented by a Python object
DegasSystem. Each site has an instance to implement the system layer. Its
identity is known to every Python object in the implementation of the DEGAS
database.

Attributes

The attributes of the DegasSystem object contain the data stored in the system
layer, as specified in Section 6.3. This contains the directory of objects in two
dictionaries. One maps DEGAS identities to Python identities. The other maps
names to DEGAS identities.

Obj Dir This is a dictionary mapping DEGAS object identities to Python object
references. Object identities are represented by integers.

NameDi r This is a dictionary mapping names of DEGAS objects to DEGAS ob­
ject identities. Names are represented by strings, while DEGAS object identities
are again represented by integers.

Object Creation

The creation of an empty DEGAS object is a straightforward process. We de­
fine a Python class Degas0bject, that contains the capabilities of an empty
DEGAS object, as specified in Section 6.2 and 7. 1.2. The primitive newObj ect is
a method of DegasSystem that yields a new instance of Degas0bject. A DEGAS
identity is assigned to the object, which is entered in a dictionary mapping
DEGAS object identities to Python object references.

Inter-Object Communication

The DEGAS communication primitives were specified in Section 6.3. In particu­
lar, the effect of the primitives on the data structures of the destination object
was specified. The implementation of these data structures, i.e., the query and
method queues, was given in Section 7.1.2. The main task of the DegasSystem

7.1. IMPLEMENTATION OF DEGAS 135

object in communication actions, is to find the destination object. First, the
destination must be resolved to a DEGAS object identity, if a name is given as
destination. The name is resolved to an identity using NameDi r . Second, the
DEGAS identity must be resolved to a Python object reference in order to insert
the message in the appropriate queue of the destination object. If the desti­
nation object is at the same site, the DegasSystem object will find its Python
object reference in Obj Dir. Otherwise, it needs to find out the location of the
object in order to pass the message to the site of the object.

Object autonomy implies that a there is no centralised directory of all objects
in the DEGAS database. Hence, a DEGAS database must implement a mechanism
to find out the location of an object from the information at a site. A number
of alternative schemes exist for this. A simple broadcast of a non-local message
leads to a high load of the network. Alternatively, message for other sites can
be posted on a "bulletin board", that is regularly checked by all sites. Although
this reduces network traffic, it introduces a centralised resource, that forms a
potential bottleneck in the system.

A problem analogous to locating objects also occurs in mobile computing [Imie­
linski and Badrinath, 19941. Commonly, a mobile computing system is based on
a cellular communication network. This raises the problem of determining in
which cell a mobile computing node is. A number of schemes are proposed
to solve this problem, e.g., in [Imielinski and Badrinath, 19921. To examine the
applicability of these to our problem, we translate these schemes to a DEGAS
database.

An improvement on broadcasting proposed by [Imielinski and Badrinath, 1992]
is to partition the network and record the partition an object is in. Thus, only
a subset of the sites in the network needs to be consulted to find out the lo­
cation of the destination object. Please note, however, that this requires the
DegasSystem object to record object identities of all objects not present at its
site. The same drawback applies to the two other approaches proposed. One
approach is to list for each site the probability that an object is located there.
To reach an object, these sites are tried by order of probability. The second
approach creates a chain of pointers for each object. If an object leaves a site,
the new location of the object is recorded. A message to an object follows these
pointers. Although we can detect and remove cycles in such a chain, it still im­
plies relatively long transit times for messages. It also leaves the problem, how
a site determines the location of an object that never visited it. Moreover, the
problem of locating objects occurred in the first place, because of the autonomy
of objects not to inform the system of its whereabouts.

To stay in line with object autonomy, the task of tracing objects must be with
the DegasSystem objects. It maintains a routing table by inspecting the mes­
sage flow passing through. Recall from Section 4.5 that we assume for DEGAS
a network based on links between sites. Furthermore, there is a DegasSystem

136 7.2. INTERFACE TO THE OUTSIDE

object at each site. If a message arrives at a site, it arrives over a specific link.
Since each message contains its sender, the DegasSystem object can associate
links with object identities in order to build a routing table. If an object identity
is not found in the routing table, then the message is broadcast. This broadcast
message is used to create the initial entry in the routing table2. If a DEGAS ob­
ject moves to another site, the routing table might become outdated. This fact
is identified if a site on the route does not know the destination object of the
message. In this case, a new broadcast by the originating site is necessary.

7.1.4 Other Objects

All other required objects in a DEGAS database are DEGAS objects themselves.
Their functionality is specified in the DEGAS programming language. Hence, the
DEGAS object and the system layer are everything needed for the implementa­
tion of a DEGAS database.

7.2 Interface to the Outside

The specification in the previous chapter only discussed the components of the
DEGAS system itself. It did not discuss the interfaces to the outside world, either
human users or other systems. These interfaces are implemented by an object,
whose interactions with DEGAS can be specified in DEGAS. In other words, it
sends DEGAS messages to DEGAS objects and can receive DEGAS messages from
DEGAS objects. Since this object must also communicate in another language
than DEGAS, it will not be implemented in DEGAS itself.

To illustrate the interactions of DEGAS, we discuss two interactions with the
environment, viz., data entry and queries.

Data Entry New objects are created by the action New in the class object, as
specified in Section 6.4. The actual creation of objects and relation objects is
identical. The creation of a DEGAS object is the way data is entered in a DEGAS

database. This subsection shortly discusses the entry of data in a DEGAS data­
base, i.e., its interface to the outside world. The creation of a relation object is
part of establishing a relation, which is discussed in Section 7.3.

The requirement on interface objects are relatively loose. The object entering
data, the Data Entering Object or DEO, only has to meet certain requirements

2The appropriate implementation of broadcast guarantees that the broadcast will yield the
fastest route between two sites. This implementation means that a site forwards a broadcast
message to all neighbours, except the one sending the message. The message identity is used to
discard a message already seen. Obviously, a message reaches a site first over the fastest route.
For an elaborate discussion of computer networks, the reader is referred to, e.g., [Tanenbaum,
19961.

7.3. PROGRAMMING IN DEGAS 137

regarding its interface with the DEGAS database. The other aspects of the DEO
are indifferent to DEGAS, meaning that it can implement any kind of interface
to a user, or to other software. If a DEO wishes to create an object of a class
ClassName, it simply sends a new message to the class object. For example,
the following message is sent to create a Person object:

NewOid := PersonClass.new()

The identity of the object is returned in NewOi d, so that the DEO can enter data
in the new object.

Query Interface Query requests are processed by the Site objects and the
object instances, as specified in Sections 6.8 and 6.2. These requests are issued
by a query generating object (or QGO). The only requirement on a QGO regards
its interface to the DEGAS database. Apart from this, a QGO can implement any
kind of query interface, be it a forms package, an SQL interface or a data mining
client.

A query is distributed over all reachable sites in the networks by broadcasting
a call to di stri buteQuery to all Site objects. To start processing a query
Q = (C, S}, where C is a class and Sa selector, the QGO makes the following
call:

Broadcast(Site, Self, Self, DistributeQuery(C,S))

To receive the answer to a query it issued, a QGO must implement the method
answerQuery. This action receives the answer to a query from a Site object.
As a parameter it takes the result of the site, which a set of object - history
pairs.

SiteResult : 'P(Object: Oid,EH: EHist}

This method can be invoked by Site objects.

Prototype To further explain DEGAS' interface to the outside world, we shortly
describe the user interface of our prototype. It is implemented as a separate
process from the DEGAS database. The user interface is represented in the
DEGAS database by the DEGAS UI object. The user interface sends text com­
mands to the DEGAS UI object over a socket. These are then handed over as
DEGAS messages to the system layer. Likewise, the answers to method calls or
the results of queries are sent back by the DEGAS UI object as text. This setup
is depicted in Figure 7.5.

7.3 Programming in DEGAS

The previous chapter specified requirements on the various parts of the DEGAS
system. For relations, only a framework was specified, leaving the exact imple­
mentation to the application programmer. In order to give a further explanation
of DEGAS relations, this section discusses programming in DEGAS.

138 7.3. PROGRAMMING IN DEGAS

DEGAS Database

DEGAS object

User Inierface DeGASUOO>~

DEGAS
Messages

)
DEGAS object

DEGAS object

DEGAS object

User DEGAS object

: __ I

Figure 7.5: User interface of the DEGAS prototype.

7.3. PROGRAMMING IN DEGAS 139

The requirements DEGAS puts on the creation of a relation, are specified by the
actions required in a relation class object in Section 6. 7. As a consequence, the
relation class object must collect the prospective partners and create the rela­
tion object. Other requirements on the creation of a relation are dependent on
the semantics of the application. Hence, these are specified by the application
programmer in the relation class object.

Initiative All applications have in common that the initiative for a relation is
taken by an object. It indicates its intention to enter a relationship by sending
an i ni ti ate message to the class object of the desired relation. The sender
is recorded in the set Prospects. The relation is established, if the tuple in
Prospects is completed. The relation class object tries to complete the tuple
by obtaining i ni ti atePartner messages from all prospective partners in a
relation. The way Prospects tuples are completed is application dependent.
The variations are:

1. One of the partners in the relation is fixed. An object expressing interest
always engages in a relation with the same object.

2. An object expresses interest to engage in a relation with a specific partner
object. The relation class object tries to establish a relation between the
two specified object. The exact proceedings depends on whether prior
agreement exists between prospective partners or not.

3. The relation class object matches partners. An object indicating interest
in engaging in the relation is indifferent to its partner.

If one of the partners is fixed in the relation, the initiative is with the variable
partner. The reaction of the relation class object to its i ni ti ate message is to
send a message to the fixed partner. An example is found in the stock exchange
scenario in Section 4.2. On receipt of an i ni ti ateShareho l der message, the
relation class object of the Supply relation will ask a known MarketMake r ob­
ject to take the order. This is specified by the following rule:

Rules
On initiateShareholder
do myMarketMaker.takeBuyOrder(sender)

In the specification of the Marketmaker object, we see that a MarketMaker
object returns an i ni ti ateMarketMake r message in the takeBuy0rder me­
thod. This means that it always accepts Supply relations. On receipt of the
i ni ti ateMarketMaker message the Supply class object will go ahead to create
the relation, if all preconditions are satisfied. The specification of preconditions
in a relation class object is discussed below.

140 7.3. PROGRAMMING IN DEGAS

The next variant is that one of the prospective partners expresses a desired
partner. The difference with the previous case is, that the relation class object
sends a request to that specific object. Suppose that we have a relation with
partners First and Second, where the initiative is always with First. The me­
thod i ni ti ate First then becomes:

Methods
initiateFirst(desiredPartner : oid) = {

Prospects := Prospects + (First = sender, Second = Null }
}

The following rule sends a request to the desired partner:

Rules
On initiateFirst(desiredPartner)
do desiredPartner.requestRelation(sender)

The i ni ti ateSecond message confirms the relation:

Methods
initiateSecond(partner : oid) = {

Foreach p in Prospects
where p.First = partner
do {

}
}

Prospects := Prospects - p
instantiateRelation(p.First, sender)

The instantiate Relation message then creates the relation, as specified in
Section 6.7.

The last kind of relation lacks all preferences. Hence, both partners can take
the initiative for a relation. Furthermore, neither partner has a preference for
a specific partner. In this case, the matching process is relatively simple. Since
this case is symmetrical, we now name the roles Left and Right. We explain it
for the Left partner only.

The i ni ti ate Left method checks for the presence of unmatched Right pros­
pects. These are collected in the set Ri ghtProspects.

7.3. PROGRAMMING IN DEGAS

Methods
initiateLeft() = {

RightProspects = II
Foreach p in Prospects

}

where p.Left = Null and p.Right ,fo Null
do RightProspects := RightProspects + p

Then, the check on prospects of the other class is done by two rules:

Rules
On initiateLeft

if RightProspects = 0
do enterProspectsLeft(sender)

On initiateLeft
if RightProspects ,fo 0
do pickRight(sender)

141

If there are no current prospective Right partners, then EnterProspects­
Left adds the sender of i ni ti ateleft to Prospects. Otherwise, a partners
is picked from Ri ghtProspects by the method pi ckRi ght. These two actions
are specified as follows:

Methods
enterProspectsLeft(prospectLeft : oid) = {

Prospects := Prospects + (Left = prospectLeft, Right = Null)
}
pickRight(prospectLeft : oid) = {

}

p := head(RightProspects)
p.Left := prospectLeft
instantiateRelation(prospectLeft, p.Right)

Preconditions Besides the agreement of the partners, a relation can have other
preconditions. These are checked by the relation class object. If the precondi­
tions are satisfied, the relation can be created by the instantiate Relation
method.

To specify the preconditions of a relation, we can use the DEGAS lifecycle mech­
anism. In the lifecycle of a relation class object, the relation's preconditions

142 7.4. QUERY PROCESSING IN DEGAS

would be the guard conditions to the action that creates the relation object. This
specification of a relation's preconditions, however, leaves us with the question
what happens, if the preconditions are not satisfied. In this case, the relation
class object must inform the prospective partners. In short, an instantiation
action must be executed, if the preconditions are satisfied, while a cancella­
tion action must be invoked, if the preconditions are not satisfied. Hence, the
preconditions are better specified by rules.

Llfecycles
(initiateShareholder;initiateMarketMaker;

(instantiateRelation+cancellnitialisation))*
Rules

On initiateMarketMaker
if Preconditions
do instantiateRelation

On initiateMarketMaker
if not Preconditions
do cancellnitialisation

Termination In a DEGAS database, relations will be terminated at some point
in time. Like the creation of a relation, the termination procedure is specified by
the application programmer. This specification, however, is located in the rela­
tion object instead of the relation class object. Usually, this proceeds analogous
to the creation: One of the partners indicates that it wishes to end the relation.
Dependent on the relation, the other partner is asked whether he agrees. Possi­
ble conditions on the termination of a relation can be checked in the lifecycle
of the relation object.

Example To conclude this discussion, we return to the stock exchange exam­
ple from Section 4.2. Figure 7.6 gives the complete DEGAS specification of the
Supply relation class object from the stock exchange example. The attribute
Suppl ySet contains all current instances of the Supply relation.

The script in Figure 7.7 shows the messages exchanged in order to create
a Supply relation between a Shareholder S and a MarketMaker M via the
Supply class object SC.

7.4 Query Processing in DEGAS

Chapter 6 specified the actions of various objects that facilitate query process­
ing. In this section, we explain how these actions are related by showing the

7.4. QUERY PROCESSING IN DEGAS

Object SupplyClass
Attributes

Extent : '.POid
Prospects: '.P(Shareholder: Oid, MarketMaker: Oid)
myMarketMaker : oid
Relationld : Oid

Methods
initiateShareholder = {

Prospects:= Prospects+ (Shareholder= Sender, MarketMaker = Null)
}
initiateMarketMaker(Shareholder : Oid) = {

Foreach p in Prospects
where p.Shareholder = Shareholder
do {

p.MarketMaker := Sender
instantiateRelation(Shareholder, Sender)

}
}
instantiateRelation(Shareholder : oid, MarketMaker : oid) = {

Shareholder.extend(ForSale)
MarketMaker.extend(Supplied)

}

Relationld := new()
Shareholder.initialiseForSale(Relationld)
MarketMaker.initialiseSupplied(Relationld)
Foreach p in Prospects
where p.Shareholder = Shareholder and p.MarketMaker = MarketMaker
do Prospects := Prospects - p

cancellnitialisation(Shareholder:oid) = {
Foreach p in Prospects

}

where p.Shareholder = Shareholder
do {

Prospects := Prospects - p
Shareholder.cancelSupply

Lifecycles
(initiateShareholder;initiateMarketMaker;

(instantiateRelation+cancellnitialisation))*
Rules

On initiateShareholder
do marketMaker. takeBuyOrder(Sender)

On initiateShareholder(Time);Time + 30 min
do cancellnitialisation(Sender)

EndObject

Figure 7.6: DEGAS specification of the Supply relation class object.

143

144 7.4. QUERY PROCESSING IN DEGAS

s M SC

SC.initiateShareholder
M. takeBuyOrder

SC .ini tia teMarketMaker
instantiateRelation(S ,M)
S .extend(ForSale)
M .extend(Supplied)
Relld = new()
S .initialiseForSale(RelJ d)
M .initialiseSupplied(Re lI d)

Figure 7.7: Script to create a Supply relation

execution of a query. Object autonomy is a complicating factor in query pro­
cessing. DEGAS does not honour a number of assumptions usually made in
distributed query process, as stated by [Stonebraker et al., 1996]:

• Exact knowledge of the data fragmentation of the database.

• A fixed allocation of the data in the database.

• Uniformity of the nodes and their connections.

In particular, DEGAS' object autonomy not only means that objects are free to
move between sites, but also, and more importantly, that they need not neces­
sarily answer every query received.

In this section, we discuss the resulting method for processing a query in
DEGAS. Furthermore, we discuss how we can derive the information needed
to maintain a data dictionary using data from query results. Finally, we discuss
the approximation of a query result's quality.

7.4.1 Processing a Query

As a consequence of object autonomy, there is no central directory of objects in
a class. This means that a query cannot be sent directly to the objects. Instead,
it is sent to the sites for local distribution. It is up to the DEGAS objects to
decide whether to answer the query or not.

Recall from Section 5.9, that a query Q is a pair (C, S) of a class C and a selector
S. A query Q = (C, S) is issued by a QGO, which was discussed in Section 7.2.
The QGO broadcasts the query to all Site objects. Each Site object checks the
existence of the attributes and methods in the selector using the i sAttri bute
and i sMethod methods of the class object/ Then, it collects the local extent
L of C and sends the query to all elements of L. These return their results to

7.4. QUERY PROCESSING IN DEGAS

I

: Obj :

: Obj

,
' '

,'

QGO

\ Que
',

Result at Site

◄

: Obj

◄ · ····· · ····· · · ..

Figure 7.8: The information flow in DEGAS query processing

145

the Site object, which collects them for shipment to the QGO. This flow of
information is depicted by Figure 7.8.

As an illustration, consider the following query selecting bank accounts that
were overdrawn by a single large transaction:

Select from BankAccount
on debit(db..amount)(t)[l Mar 1997, 15 Mar 1997]
if db..amount > 10000 and balance(t) ~ 0

The QGO for this query makes the following call to send the query to the sites:

Broadcast(Site,
DistributeQuery(BankAccount,

(debit(db..amount)(t)[l Mar 1997, 15 Mar 1997],
db..amount > 10000 and balance(t) ~ 0)

)

Then, each Site object executes the method di stri buteQuery, which, after
checking the type correctness, assigns an identity qid to the query and then
forwards it to each BankAccount object at the site. Each object executes a
checkSe 1 ector for the selector consisting of event

debit(db..amount)(t)[l Mar 1997, 15 Mar 1997]

146 7.4. QUERY PROCESSING IN DEGAS

and condition

db_amount > 10000 and balance(t) :5 0)

The result is a set of matching sub-histories. In this case, these are occurrences
of the debit event satisfying the condition. These are collected in a result R,
which is sent back to the Site object by the following call:

Site.queryResult(qid,R)

The Site object collects the results from the individual objects in a local re­
sult LR. The complete result is sent back to the QGO by executing the method
shipResult of the Site object, which calls the method answerQuery in the
QGO. The call to shi pResul tis commonly triggered by a rule monitoring the
time elapsed after execution of di stri buteQuery. To return the local result
L'R. to the QGO, the following call is made by shi pResu l t:

QGO.answerQuery(L'R..)

The table in Figure 7.9 summarises the calls made in query processing

I QGO I ~ite I ~lass Object I ~stances

S .distributeQuery
C .isAttribute(...)

return true to S
C.isMethod(...)

return true to S
C.getExtent

return L to S
VJ EL: J.sendQuery

checkSelector
S.queryResult

shipResult
QGO .answerQuery

Figure 7.9: Calls made in DEGAS query processing

7.4.2 Maintaining a Data Dictionary

A practical element of a database management system is the data dictionary.
Object autonomy in DEGAS has a significant impact on the maintenance of a
data dictionary. First, the distributed nature of DEGAS implies a distributed
data dictionary. Second, object autonomy means that the data dictionary must
actively collect the required (meta)data. A natural place to maintain a data dic­
tionary is the site. Hence, a Site object is responsible for maintaining the data
dictionary.

7.4. QUERY PROCESSING IN DEGAS 147

The contents of a data dictionary consists of schema information and fragmen­
tation data. In Section 6.4, we saw that schema information is maintained in
class objects. At each site, if an object of class C is present on the site, then a
class object for class C must be present on the site. The reverse need not be
true. Hence, we maintain schema information about at least the local schema.
Since class objects have been specified in Section 6.4, we do not discuss this
further in this section.

The fragmentation data in the data dictionary contains information on the num­
ber of objects on other sites. For each class in the local schema, i.e., for each
class it knows, it stores the number of objects in the class extent at each known
site. Hence, the data dictionary is a table with sites as rows and classes as
columns. An example is the following table:

Employee Customer Article ...
db1 123 343 456 ...
db3 22 238 309 ...
db4 32 394 234 ...
db7 56 387 105 ...

Since there is no directory of connected sites in a DEGAS database, the only
means to enquire for dictionary information is by a broadcast. Due to network
failures, periodical broadcasts by each site are no guarantee for the complete­
ness of the information it acquires. Hence, for reasons of efficiency, we piggy­
back the information exchange to the query results returned by the sites. The
query results can be accompanied with information about itself, which is then
used to fill the data dictionary. Hence, no overhead is added and the frequency
of updates to the data dictionary reflects the intensity of use. The piggybacking
strategy also ensures that frequent queries on a site mean frequent updates to
the data dictionary.

In the piggybacking strategy, the following information is sent with a query
result:

• Site identity.

• Time the query arrived at site.

• Number of relevant objects at site.

• Number of relevant objects at site that answered.

• Number of objects in the query result

148 7.4. QUERY PROCESSING IN DEGAS

This information is then passed to the site of the QGO, i.e., the originating site
of the query, to update the data dictionary.

To show the effect of a query result on the data dictionary, we give an example.
Suppose that at time t1 we have the left hand entry given in Figure 7.10 for the
Employee class in the data dictionary.

site #Employee site #Employee
sl 23 sl 21
s2 145 s2 55
s4 12 s4 17
s6 234 s6 34

slO 34 slO 35
sl2 9 sl2 9
s23 322 s23 332

Figure 7.10: Data dictionary entry for class Employee at time t1 (left) and t2
(right)

The information in this histogram is based on the results returned by the sites
in the left hand column. At a later time t2 we get an answer to a query for
Employee objects from sites sl,s2,s4,sl0 and s23. The data dictionary is up­
dated to contain the data, resulting in the right hand entry in Figure 7.10

Now, the data on s6 and sl2 dates from t1, while the rest of the data dates from
t2. Thus, the histogram represents different time points for different sites. In
general, however, the entries of most sites will be within a reasonable range
from each other. Furthermore, at a query-intensive site, queries will be issued
often enough to ensure small time differences between sites, unless a site is
off-line for a long time.

7.4.3 Approximating Quality

In Section 4.4, we briefly touched on the notion of query quality. Here, we dis­
cuss a method to approximate the quality of a query result. For this approxima­
tion, we use the information in the data dictionary and the update information
returned with the queries. Intuitively, the quality of a query result is the num­
ber of objects that is retrieved relative to the number of objects satisfying the
query. Hence, calculating the quality of a query result means estimating:

7.4. QUERY PROCESSING IN DEGAS 149

where R + denotes the number of objects returned by the query as satisfying the
selector and c+ denotes the actual number of objects in the database satisfying
the selector. In this fraction, c+ is the number to be estimated.

In DEGAS query processing, there are two sources of uncertainty, that may lead
to missing objects satisfying a query. The first source is found at the site level.
Due to object autonomy, a number of objects may not answer the query. The
second source of uncertainty is the state of the network. If the network is par­
titioned, some sites, and the objects at those sites, may be unreachable. These
two sources are reflected in the way we estimate the quality of a query. First,
the quality of the query result is calculated for each answering site. Then, this
data together with the data from the data dictionary of the originating site is
used to estimate the total quality of the query result.

For each site, we can split up the objects in the local class extent into the fol­
lowing three categories:

A+ #objects that answer and satisfy the selector
A - #objects that answer and do not satisfy the selector
NA+ #objects that do not answer and satisfy the selector
NA- #objects that do not answer and do not satisfy the selector

This also gives us A = A+ + A - , the total number of objects that answer, and
NA = NA+ +NA-, the total number of objects that do not answer. In addition,
we denote the number of objects in the local class extent by S. In analogy to
A, we denote by s+ and s- the number of objects in the local class extent
respectively satisfying and not satisfying the query selector.

The quality of the result at the site now is:

A+ A+
Qs = S+ =A++ NA+

Since s+ = A+ + NA+, we have to estimate NA+ . To estimate this number, we
assume that answering a query is independent of satisfying the query selector.
In practical terms, this means that the proportion of the non-answering objects
satisfying the query selector is equal to the same proportion for answering
objects. This proportion is given by A+/ A. The estimation for NA+ is:

NA+= A+· NA
A

The quality Qs then becomes:

A+ A+ A+
A+ = A + A+ -S

A++ A· NA A++ A· (S-A) --;;r-
Qs

A
s

150 7.4. QUERY PROCESSING IN DEGAS

The next step in the estimation of query quality is the combination of the per­
site qualities, taking the unreachable sites into account. Here, we use the fol­
lowing numbers:

NS #objects at non-answering sites
NS+ #objects at non-answering sites that satisfy query selector
Svv #objects at site according to the data dictionary

The quality for the complete query is calculated by taking the weighted average
of the per-site qualities. Since we are interested in the set of objects satisfying
the query, we use the number of objects satisfying the query as the weights.
This means s+ for reachable (i.e., answering) sites and NS+ for non-reachable
sites. Ns+ is unknown, which means that we have to estimate it. To make this
estimation, we assume that the proportion of objects satisfying the query at
non-answering sites is equal to the average of same proportion at answering
sites.

Then:

. s+
Vt E p: Pi= S

NS+ -
-=P
NS

where P denotes the average of all Pi. To give an estimate of Ns+ for each
unreachable site, we use the data dictionary. There, we can look up the latest
number we have for S, which is denoted by Svv- Hence, the estimate for NS+
becomes:

Ns+ = P · Svv

We denote the set of reachable sites by p and the set of non-reachable sites
by -,p_ Since we do not obtain any objects from unreachable sites, the result
quality of these sites equals zero. Hence, the total quality Q becomes:

Q

LiEp st + LJE~p NS(

LiEpAt

LiEp st + LJE~p P · s1.vv

LiEpAt

LiEp st + P · LJE~p s1.vv

7.4. QUERY PROCESSING IN DEGAS 151

This nicely corresponds to the notion that the quality of a query result is the
proportion of objects returned from the total number of objects satisfying the
query.

R+
Q= c+

where R+ is the total number of objects returned and c+ is the total number of
objects in the root class of the query satisfying the query selector.

R+ I At
iEp

c+ Is;+ I NSJ
iEp Je~p

Example Suppose we have the following simple query in a DEGAS database,
where the data dictionary entry for Employee is the one given in Figure 7.10.

Select from Employee
where salary > 150000

The data dictionary entry for class Employee at the originating site of query is
as follows:

Class Employee
site number

sl 21
s2 55
s4 17
s6 34

slO 35
s12 9
s23 332

We get an answer from all sites, except s4 and s10. The following number of
objects are reported in the query result:

Site i Si Ai A+
t

sl 25 20 4
s2 155 132 34
s6 243 243 49

sl2 9 9 2
s23 342 298 53

Now, we can give the following estimates for Pi and s;:
Site Pi s+

t

sl 0.200 5
s2 0.258 40
s6 0.202 49

sl2 0.222 2
s23 0.178 61

152 7.5. CONCLUSION

Further, we can calculate that P = 0.212. The entries for s4 and slO in the data
dictionary give us Ss4,DD = 17 and S5 1o,vv = 35. Hence, the quality of this result
is estimated to be:

4 + 34 + 49 + 2 + 53 142 = 0.845
Q= (5+40+49+2+61)+(0.212-(17+35)) 157+11

More complex cases In general, a number of classes can be involved in a
query. There are two ways to involve more than one class in a query. The first
is to include path expressions to other object classes in a query. The second is
to combine two classes using a nested query.

The quality of the result of a path expression is measured through the root class
of the path expression. If one of the objects on the path does not answer, the
root object will not return a value for the path expression. Hence, the quality
of a path expression is the proportion of objects of the root class that answers.
Formally, if we have a path expression

then the quality is given by:

Qc
Qt

where Qc is the number of answering objects of class c and Qt the estimated
number of objects in class c.

In the case of a nested query, we do not calculate a composite quality measure.
The inner query is a complete query, so a user can separately specify a desired
quality for it. The specification of a combined quality would imply less control
for the user than desirable. For example, if we combined the quality by multi­
plying the qualities of the inner and the outer query, then we would equate a
quality of 25% times 80% with a quality of 40% times 50%. The latter may be
more acceptable, since it is based on a more balanced sample of the database.

7.5 Conclusion

This chapter discussed a number of practical issues in constructing a DEGAS

database. The first was the implementation of DEGAS. We motivated the choice
of Python as an implementation language, based on its object-oriented features
and its suitability for prototyping. This facilitates easy implementation of a
basic DEGAS object. The variable sets of capabilities in a DEGAS object are im­
plemented using dictionaries storing the capabilities by name. The thread of
execution of an object is provided by the Python threads library.

The implementation of local communication on a site is straightforward using
a simple object directory. Objects at other sites are located, taking object au­
tonomy into account, through routing tables based on the observations of the

7.5. CONCLUSION 153

DegasSystem objects. Other required objects in a DEGAS database are DEGAS

objects themselves. Hence, the feasibility of implementing DEGAS object implies
the feasibility of their implementation.

A further issue addressed in this chapter concerned the interaction of DEGAS

with users or other systems. These are represented by objects, whose interac­
tions with DEGAS are specified in DEGAS. An example discussed was the Query
Generating Object. Furthermore, this chapter discussed programming in DEGAS.

In particular, we discussed how different application semantics of initiating re­
lations are programmed. The functional specification in Chapter 6 defined a
framework, that can be filled in in a number of ways. We showed how rules and
lifecycles are used for this purpose.

Finally, we discussed query processing in DEGAS. Object autonomy has its con­
sequences on the way we calculate the result of a query. In particular, it leads
to an approach based on broadcasting. Furthermore, the maintenance of a data
dictionary is based on information piggybacked on query responses. Since ob­
ject autonomy gives an object the freedom not to answer a query, the propor­
tion of objects responding becomes important. This is captured in the notion
of the quality of a query's result, which is approximated using data returned
with the query and data recorded in the data dictionary.

154 7.5. CONCLUSION

Part III

Design

155

157

Chapter 8

Modelling Work.flow in DEGAS

In Section 3.1.1, we pointed out the use of active rules to encode large parts of
an information system's dynamics. Hence, the specification of rules becomes
an integral part of information system and database design. In this chapter,
we discuss the design of a DEGAS database. Here, the most important aspect
is the modularisation of data and behaviour. Modularisation is generally ac­
cepted as a necessary tool for the design and understanding of computer soft­
ware. Naturally, this also applies to rules in active databases. As we discussed
in Section 3.4.1, there are two approaches to the modularisation of rules. Ei­
ther specific modularisation mechanisms are applied to the rules orthogonal to
other modularisation, or one integral modularisation mechanism is applied to
all elements of the database.

Research on active database design has mainly focussed on analysing rule sets
in order to check desirable properties, such as termination and confluence. In
this area, modularisation has also been addressed, e.g., in [Baralis et al., 19961.
This work, however, focussed on partitioning a given rule set. Relatively little
attention has been paid to the question, how we get a rule set for a certain
application in the first place. In this chapter, we investigate this issue. In par­
ticular, we look at the elements of an object-oriented design method, such as
OMT [Rumbaugh and others, 1991], that are of importance to the derivation of
rules in an application.

As an example in this chapter, we use workflow. A workflow is an activity
involving the coordinated execution of multiple tasks performed by different
processing entities [Rusinkiewicz and Sheth, 19951. The work of many organi­
sations is centered around workflows. Classical examples of workflow are the
processing of insurance claims and processing of loan requests. Current im­
plementations of workflow are mostly in separate workflow management sys­
tems (WFMS). Since most workflow management involves large amounts of data,
heavy interaction takes place between the WFMS and the database. At the same
time, the Event-Condition-Action rules of active databases add to a database

158 8.1. DESIGN GUIDELINES FOR DEGAS

management system the kind of reactive capabilities also found in a WFMS.
Hence, we expect the integration of workflow management into active database
management systems to be beneficial.

Previous work on workflows in active databases is reported in [Casati et al.,
1996a] and [Jasper et al., 19951. In general, the use of an active database im­
proves the data handling capabilities in the workflow. This pertains to the ap­
plication data, as well as to the workflow management data. Hence, approaches
to workflow based on active databases such as [Casati et al., 1996a] provide
models of the data involved in the workflow. This is in contrast with work such
as reported in [Aalst et al., 19941, based on Petri nets, with an inherent focus
on the specification of the dynamics of a workflow.

A drawback of the approach in [Casati et al., 1996a] is the lack of modularisa­
tion in the rulebase. A large set of rules is generated for a workflow, which is
only partitioned afterwards for analysis purposes. Hence, a separate modular­
isation is applied to the rules. Furthermore, this modularisation is not used in
the design phase. In this chapter, we consider the design of a workflow with
the other of the two approaches to rule modularisation mentioned above. In
addition, we make the modularisation during the design of the application, us­
ing design principles formulated in this chapter. We show that DEGAS allows
us to modularise workflow management in a way that separates concerns and
that promotes flexibility. In particular, it offers a framework to implement the
workflow evolution policies described in [Casati et al., 1996bl.

We state the DEGAS database design principles in Section 8.1. The next section,
Section 8.2, discusses the specification of a workflow. In Section 8.3, we ap­
ply the guidelines to develop a design for workflow enactment. The following
section, Section 8.4, shows that this design offers the necessary flexibility for
evolution of the workflow. As usual, the last section contains conclusions.

8.1 Design Guidelines for DEGAS

In modelling applications for DEGAS, we need a number of guidelines. Since
object autonomy is a central notion in DEGAS, we first recapitulate the criteria
for object autonomy given in Section 2.4:

• Every object has a separate thread of execution.

• Complete encapsulation of an object's behaviour.

• Strictly regulated access to an object.

• Minimal guarantees about an object's behaviour towards other objects.

• Minimal dependency of an object on the behaviour of other object.

8.1. DESIGN GUIDELINES FOR DEGAS 159

• Autonomy must be given up explicitly.

These criteria were used to guide the development of the DEGAS data model,
introduced in Chapter 4. Naturally, they have their consequences on DEGAS da­
tabase design. In one sentence, we can say that DEGAS objects combine minimal
capabilities with maximal encapsulation.

Minimal capabilities means, that at any time an object only possesses the capa­
bilities it needs. This applies to both time and place of information storage. An
object gets information only when it needs it. Likewise, if it needs information
from another object, it will request that information when needed. An applica­
tion of this principle is, that an object is extended with extra capabilities, when
it enters a relation, as explained in Section 4.1. If it is not in a relation, the
object does not have the information associated with that relation.

Maximal encapsulation means, that everything is defined on the object itself. It
is one of the main consequences of object autonomy, introduced in Section 4.1.
Every aspect of the behaviour of an object is defined on the object itself, in­
cluding rules. The modularisation primitives for the rules are the notions of
object-orientation, that are also applied to attributes, methods, and lifecycles.

In database design terms, the guiding principle can be rephrased as follows: An
object gets only the information it needs, but it does get all the information
it needs. This has the additional advantage, that NULL-values have only one
meaning in DEGAS: It means that the value of the attribute is unknown. It does
not mean that the attribute is not defined, since attributes exist only during the
time they are needed.

These design principles are applied to a database design process. Design in
DEGAS encompasses four dependent phases, that follow from the architecture
of the DEGAS model. In particular, each phase focuses on one category of DEGAS
object capabilities, i.e., attributes, methods, rules, and lifecycles.

1. Identify objects in the application and the information they possess.

2. The actions of an object

3. The activation of each action (with static constraints)

4. The lifecycle of an object (i.e. dynamic constraints)

Each phase in DEGAS database design is executed iteratively. First, the inherent
capabilities of objects are addressed. Then, we specify the capabilities of ad­
dons. This iteration originates in the semantics of DEGAS addons. In the specifi­
cation of an addon, we can use those capabilities of the object being extended,
that we are certain to be present. In other words, an addon can use the capa­
bilities inherent to the object it extends, and the addons it assumes present,
as declared in the extends specification. If we assume a directed edge from

160 8.1. DESIGN GUIDELINES FOR DEGAS

each relation to its partner objects, then a DEGAS database design is a Directed
Acyclic Graph (DAG) with the objects as the leaves, as is depicted in Figure 8.1.
Hence, we can start out from the leaves in the DAG and then progress towards
the highest level relations.

Phase I The first phase of database design in DEGAS is concerned with the
static part. It consists of the identification of the objects and their relations, and
the determination of the information contained in them. The identification of
objects and relation objects in a DEGAS database design is not radically different
from usual object-oriented design techniques [Rumbaugh and others, 19911.
Next, we determine the data in each object. Here, we have to make a distinction
between the data that is always present, and the data that is dependent on the
presence of a relation with another object.

As was discussed in Section 3.4.4, the part of an object associated with a cer­
tain relation is generally called its role in the relation. The concept of roles in
an object-oriented context is elaborately discussed in [Wieringa et al., 1995).
The capabilities an object has to deal with a certain relation are modelled by
a role. Since these capabilities are only needed when the object is involved in
the relation, these are called transient in contrast with the object's permanently
present inherent capabilities. In DEGAS, transient capabilities of objects are de­
fined in addons. Hence, all information associated with a role is implemented
by an addon.

A guideline in determining relations between objects is given by their infor­
mation exchanges. If an object gets information from another object, it must
have a relation with it. The other way round is also true: An object can only
communicate through its relations. Hence, we use the information flow in an
application to determine the relations in the application domain. Moreover, the
exchanges of information determines the capabilities of the relation object.

The result of this design phase is a static DEGAS object model. We have defined
the objects, their relation and associated addons. Furthermore, we have defined
the attributes in each of these.

Phase 2 After the specification of the information, we look at the dynamics of
the objects. This means that we have to identify the actions that can be executed
on the information in the objects. In addition to this, engaging and disengaging
in relations are also actions. In the resulting DEGAS database, these actions are
the methods of the objects.

Initially, the approach to finding the methods is a "shopping list" approach, as
it is called by [Meyer, 19881. The actions of an object can be either services to
the outside world, or internal state transitions. In phase 2, this distinction is
not of importance.

8.1. DESIGN GIBDELINES FOR DEGAS 161

~-------

Object 2

' :
: Relation J •
I _______ __; __

' '

'-\ ______ ' /i;~::~:;::
, Relation 3 /
' ' .. _________ ,

Figure 8.1: A DEGAS database design as a Directed Acyclic Graph

This phase gives us information to check the result of the previous phase. For
each of the actions, we can determine the information it needs. This informa­
tion must be either available in the object itself, in the form of an attribute, or
it is obtained through a relation. Hence, we can check whether we have speci­
fied all attributes of an object. Furthermore, there must be a relation for every
information exchange between objects. Vice versa, we can check whether every
relation is used to exchange information between objects.

Phase 3 Having specified the actions an object can execute, we have to specify
when these actions are executed. We do this by specifying the situations that
trigger the actions. The specification formalism of these situations is up to the
designer. He can use a graphical formalism, such as the situation diagrams
introduced in [Lang et al., 1996], or another formalism. The only requirement
is, that it has a clear translation to ECA rules.

In this phase, we first specify the activation conditions inherent in an object,
i.e., an object without any addons. After that, we specify the interaction sce­
nario for each relation in an appropriate formalism, e.g., the event trace and
event flow diagrams of OMT [Rumbaugh and others, 19911. The interaction sce­
nario describes the communication between the partners in the relation and the
relation object. From this scenario, we derive the activation conditions for the
actions of the objects. Please note, that these interaction scenarios can involve
inherent actions of a partner object, since these are available to addons.

Activation conditions thus derived can be either local to an object or the result
of actions of another object. The first category is found back in rules in the
object itself. The second category means invocation of a method from another
object, either by a rule or by a method of that object.

162 8.2. SPECIFICATION OF WORKFLOW

For some methods, we are not be able to specify an activation condition within
the application. This is the case for activations either by users or by other soft­
ware components. In these cases, we also specify an interaction scenario for
the interface relation to these agents. This interaction scenario specifies what
actions can be invoked by a user, or by another piece of software.

The result of this phase is the specification of an activation condition for each
object's actions. These activation conditions are translated to rules. Further­
more, we can validate the list of actions specified in the previous phase using
the interaction scenarios. If we are not able to formulate an activation condition
for an action, it is most probably not needed in the current application.

Phase 4 The specification of the temporal ordering of actions forms the last
phase in the design of a DEGAS database. These are meant to express the ways
an object can execute actions. The result of this phase is the lifecycle of an
object. The lifecycle specified for an addon conforms to the lifecycle of the in­
herent object by the use of the communication merge to merge the lifecycles of
objects and addons, as discussed in Section 5.7.2. In terms of OMT, the lifecycle
gives the dynamic model of the application, without the activations of the state
transitions.

The lifecycle provides a check on the activation conditions of the previous
phase. If the activation condition contains an event expression, then this event
expression must comply to the lifecycle specified in Phase 4. A conflict here
means that either the activation or the lifecycle is incorrect.

8.2 Specification of workflow

The example to show the DEGAS design process is workflow management. A
workflow is a coordinated activity of multiple processing agents. Each agent
executes a task, that is a part of the activity. Since the activity is usually em­
bodied by an information object passed from one agent to another, e.g., a form
in a paper-based workflow, the order of task execution is called the routing
of an activity. In the specification of workflow, routing of an activity is our
main concern. This specification is called the schema of the workflow. For each
processing phase, we store the immediately preceding and succeeding tasks.
This specification of workflow routing allows us to specify the conditions to
start each processing phase in the workflow. These conditions depend on the
way the phase is related to its predecessors. The different types of relations
between tasks are called routing elements.

The set of preceding tasks of a task Tis denoted by the set pred(T). Likewise,
the set of succeeding tasks is denoted by succ(T) . As an example consider the
workflow in Figure 8.2, which gives the workflow for billing an order. A bill is

8.2. SPECIFICATION OF WORKFLOW

(9
30 days

SendBill

ReceivePayment

Predecessor relation

----► Inhibitor relation

' ' /

'<.
/ '

/,,,,, '"'

Cancel Order

~---- DeliverOrder

163

Figure 8.2: Part of an order processing workflow with a clock and task inhibition

sent to the customer. If we do not receive payment in 30 days, the order is
cancelled. Otherwise, the order is delivered.

In this workflow, we have the following predecessor and successor tasks:

succ (sendBill) = { timer(30), ReceivePayment}
succ(timer(30)) = {CancelOrder}
succ(ReceivePayment) = {DeliverOrder}
succ(CancelOrder) = 0
succ(DeliverOrder) = 0

pred(sendBill) = 0
pred(timer(30)) = {sendBill)}
pred(ReceivePayment) = {sendBill}
pred(CancelOrder) = {timer(30)}
pred(DeliverOrder) = {ReceivePayment}

Besides positive predecessors, we need the notion of negative predecessors,
or inhibitors for a task. These are tasks, that prevent the execution of another
task. In the above example, we cancel an order of a customer who has not paid
his bill in 30 days. Clearly, this task is inhibited by the payment of the bill. To
specify this, each task T has a set of inhibiting tasks denoted by Inhib(T). In
the example in Figure 8.2 we have:

Inhib(CancelOrder) = {ReceivePayment}
Jnhib(DeliverOrder) = {timer(30)}

Other tasks have an empty set of inhibiting tasks. A task cannot be executed, if
one of its inhibiting task is finished before its start.

The example in Figure 8.2 also contains a special kind of task, viz., a timer.
A timer is simply a task that is completed at the specified time past its start.

164 8.2. SPECIFICATION OF WORKFLOW

In this example, the effect is that the ReceivePayment task only inhibits the
cancellation of an order, if it is completed before 30 days are over.

Inhibitors are not the only means to prevent the execution of a task. There
might be certain conditions associated with the execution of a task on a job.
One of the main uses of conditions is as a criterion to choose between a num­
ber of successor. For example, the billing procedure of a mail order company
might make a difference between new customers and known customers. Hence,
each task T has an associated precondition Precond(T). If T has no specific
precondition, precond(T) = True.

The formalisation given above can specify all possible routings in workflow
management. All possible routings can be composed from a finite number of
routing elements. The Workflow Management Coalition1 [Workflow Manage­
ment Coalition, 1996) distinguishes five routing elements, apart from simple
sequential routing. These are AND-split, AND-join, OR-split, OR-join, and itera­
tion. We show that these routing elements can be formalised in terms of pre­
decessor and successor tasks, and preconditions. Hence, our formalisation can
specify all routings composed from these routing elements. Furthermore, we
give a translation in terms of active rules to start each succeeding task.

Theorem 5 All routing elements defined by the Workflow Management Coalition
can be specified by DEGAS rules.

Proof The Workflow Management Coalition identifies five different routing el­
ements:

1. AND split

2. AND join

3. OR split

4. ORjoin

5. Iteration

A split means that a task has multiple successors, while a join means multi­
ple predecessors. AND means that all successors or predecessors are involved.
Likewise, OR means that only one of the successors or predecessors is involved.
We show that all these elements can be specified by DEGAS rules by giving these
rules.

An AND split means that a task has a number of successors, which are all
started up simultaneously. In the following picture, this means that the tasks
fh, /32, ... , 13n are started simultaneously after oc has finished.

1 Information about the Workflow Management Coalition can be found on www. wfmc . org.

8.2. SPECIFICATION OF WORKFLOW

The associated conditions for the execution of the tasks /31 to /3n are:

oc E Completed(A)
I\

Inhib(/3) n Completed(A) = 0
I\

Precond(/3d

On End(oc)
do Start(/3i)

On End(oc)
do Start(/3n)

165

An AND-join specifies that a task may start only if a number of preceding tasks
have all been completed. Here, /3 is started after oc1, oc2, ... , OCn have all been
completed.

The condition for the start of task /3 is:

Pred(T) ~ Completed(A)
I\

Inhib(T) n Completed(A) = 0
I\

Precond(T)

On lli=l...n End(ocd
do Start(/3)

The previous two routing elements specified tasks that executed in parallel. We
can also specify the selection of a subset of successor tasks, so that not all
successor tasks need to be executed.

166 8.2. SPECIFICATION OF WORKFLOW

(X

If we formalise the workflow in terms of preconditions, predecessors, succes­
sors, and inhibitors, this case is not different from the AND-split. The condition
for the start of each f3i again is:

oc E Completed(A)
I\

Inhib(/3) n Completed(A) = 0
I\

Precond(/3d

On End(oc)
if C1
do Start(/31)

On End(oc)
ifCn
do Start(/3n)

The difference between an OR-join and an AND-join is, that only one of the
predecessors needs to be completed to start the task. In the following picture,
f3 can be started on completion of either oc1, oc2, or OCn,

Hence, the set of predecessors of f3 needs not be a subset of the set of com­
pleted tasks:

8.3. DESIGNING A WORK.FLOW IN DEGAS

Pred(~) n Completed(A) -/, 0
I\

Inhib(m n Completed(A) = 0
I\

Precond(~)

On End(ai)
do Start(8)

On End(an)
do Start(8)

167

The final routing element defined by the WfMC is iteration. Iteration means that
a task a is repeated until a condition c is satisfied. If c is satisfied, the activity
proceeds with the next task ~-

Iteration can be formalised as an OR-split, with a as a successor to itself with
,c as a precondition and with c as a precondition for ~-

To start a:

To start a:
(X E Completed(A) I\ •C

I\

Inhib(a) n Completed(A) = 0

On End(a)
ifC
do Start(a)

To start~:
(XE Completed(A) I\ C

I\

Inhib(~) n Completed(A) = 0

On End(a)
if ,C
do Start(8)

8.3 Designing a workflow in DEGAS

D

In this section, we apply the design guidelines from Section 8.1 to the exam­
ple of workflow management. The minimal capability and maximal encapsu­
lation principle leads to a modularised approach to workflow management in
active databases. Contrariwise, current approaches are all more or less global.

168 8.3. DESIGNING A WORKFLOW IN DEGAS

We show that the DEGAS approach to active database design leads to a clean
database design for workflow management.

In the following discussion, we will first consider workflow in abstracto. Then,
this discussion will be illustrated by a concrete example, which is an order
processing flow. The billing task specified in the previous section is part of this
order processing. This flow is depicted in Figure 8.3

InventoryCheck Inventory< NumberOrdered

Delivery

Inventory < NumberOrdered

Inventory >= NumberOrdered

OrderBilling

(9
/ 30days

---- SendBill ~ n __

ReceivePayment

OrderDelivery

RequestDelivery

, ,

, , ,

Cancel Order

"------- DeliverOrder

ReceiveConfirmation -----

Figure 8.3: The workflow for order processing

8.3. DESIGNING A WORKFLOW IN DEGAS 169

8.3.1 Phase 1: Identifying the Objects

A workflow management system exists to support a Job getting done. This job
follows a certain activity or schema. This schema defines how the job is pro­
cessed by the system. It consists of a number of processing phases, or tasks,
that must be executed in a certain order. These tasks are executed by agents.
An agent can be a person or a computer program.

The job object contains the application data. In traditional, physical, workflows
this would be a form. For example, in our order processing workflow, it is the
software equivalent of an order form. Hence, it contains attributes like the item
on order, the quantity and the negotiated price. We will use the following at­
tribute specification:

Object job
Attributes

item : string
number : integer
price: real
currentTask : number

The agent objects2 implement the application functionality of the workflow.
This means that they can represent anything from a piece of software process­
ing the job, to an interface to a person. Thus, agent objects form the interface
to the outside world. In our example, one of the agents is the Inventory Con­
troller, which stores the number of items in stock and the reserved part of the
stock.

Object InventoryControl
Attributes

Inventory : integer
Reserved : integer

The third important piece of information in a workflow is routing information,
embodied by schemata. A workflow schema describes the way a certain activity
is completed. Such an activity is composed of a number of tasks that need to
be executed in a certain order. Thus, the schema class is an additional class in
our design. These objects store workflow schemata in terms of successors and
predecessors to each task.

The relations between these three classes of objects are mainly determined
by their information exchange. In our example, we have three pairs of object
classes, which means three potential binary relations. We briefly consider these
three pairs. During the execution of a task of a job by an agent, the agent

2Not to be mistaken for any kind of intelligent agents, that will appear in Chapter 10.

170 8.3. DESIGNING A WORKFLOW IN DEGAS

object needs information from the job object. Hence, a job object has a rela­
tion with the agent object executing its current task. We call this relation the
TaskExecuti on relation. The role of the agent is that of processor, while the
job is processed. As a consequence of the minimality principle, explained in
the previous section, this relation is only present while the agent executes the
task. Once the task is completed, the relation is deleted again. In our example,
the InventoryCheck relation is an example of a TaskExecuti on relation. Its
only attributes are the partners in the relation, Job and Schema, that are spec­
ified in the relation clause. Other instances of TaskExecuti on in our example
are the 0rderBil ling and 0rderDe livery relations.

The next pair is job and schema objects. Every job is routed according to
some schema. Therefore, a job must be provided with routing information by
a schema. This leads to a relation between a job and a schema object, named
the JobFl ow relation. In this relation, the schema has the role of router. The
job is routedBy the relation. The job engages in this relation, as soon as it is
started. Again, the Job Fl ow relation object does not store any information.

The remaining pair, schema and agent do not have a meaningful information
exchange. The schema object contains information about the way jobs can be
routed. This information is not necessary for an agent. Moreover, an agent can
be used in multiple workflow schemas.

The result of this design phase in terms of generic workflow objects is depicted
in Figure 8.4. Our concrete example is shown in Figure 8.5. Please note again,
that the arrows do not imply any arity constraints on the relations. Instead,
they point to the partner objects, on which the relation object depends for its
existence. In DEGAS database design, the objects pointed to are specified earlier
in the design iteration.

8.3.2 Phase 2: The actions in a workflow

The next phase in the design of a workflow in DEGAS is to specify the actions
of the different objects.

Inherent actions of objects

Each agent has actions to start its task and to signal the completion of its task.
Further actions of an agent are dependent on the kind of agent. For example,
the InventoryContro l agent has actions to reserve stock for an order and to
put newly arrived stock in the inventory. The attributes increased in these meth­
ods are decreased, when the order is delivered in the 0rde rDe livery phase.

Methods
reserve(number:integer) = {

8.3. DESIGNING A WORKFLOW IN DEGAS

Job Agent

Processed ' '
: TaskExecution :

Processor

' '

JobFlow

Router

Schema

Figure 8.4: DEGAS object schema of a generic workflow

Reserved = Reserved + number
}
newstuff(number:integer) = {

Inventory = Inventory + number
}

171

The only inherent action of a job object is the action to execute a certain
schema. This action means that the job enters a Job Fl ow relation with a Schema
object. Other actions may be defined for other purposes, but these are not rele­
vant in this example. Since the Extend action is built-in in every DEGAS object,
we do not see it back in the specification of the order object.

The services of a schema object are to provide information about the flow it
defines. Its inherent action is the implementation of the succ function defined
in Section 8.2. This means that it can answer the question, what comes after
a specific task. The answer is provided by way of an addon, that implements
the routing decision to be made after each task. Hence, the only information
a job needs to provide to get an answer is the job it has just finished. This
is a consequence of the minimality of information principle. For example, in
the workflow shown in Figure 8.5, if a job has finished the InventoryCheck, it
requests the next task from the Job Fl ow relation object. It forwards the request
to the Schema object, that replies with the name of the addon implementing the
0rderBi 11 i ng phase

Transient actions of objects

Having defined the actions in the objects, we proceed to specify the actions
in relations and their associated addons. With regard to a relation the most

172 8.3. DESIGNING A WORKFLOW IN DEGAS

I I

-----,
1

JnventoryCh€ck :, ------- r
lnvenJoryBeingCh«Ud

OrderBilling

Ro,aedBy OrderDelivery
1

DeliveringOrder

JobFlow

Rower

Schema

Legend

(~]
Object Relation object Addon Link

Figure 8.5: The object schema for an order processing workflow

8.3. DESIGNING A WORKFLOW IN DEGAS 173

important issue is, what a relation enables the partners to do. From this, we
can derive the actions of the relation itself.

The JobFlow relation enables the job to follow a certain workflow. Through
JobFlow it requests information on what task to execute next. The RoutedBy
addon forwards a request for the next processing phase to the Job Fl ow relation
object. The identity of the relation object is stored in the attribute j obfl ow of
the RoutedBy addon.

Addon RoutedBy
extends Order

Methods
nextPhase(current:string) = {

jobflow.whatNext(current)
}

The Job Fl ow relation object contains an action to inform the job partner of
its next task. The answer is given by instructing the job object to extend itself
with an addon that contains the actions of the next task. A further action is to
replace the Schema object in the relation with a new object to facilitate schema
evolution, which is discussed in Section 8.4.

Object JobFlow

Methods
whatNext(task : string) = {

}

succ = Schema.successor(task)
Job.Extend(succ)

replaceSchema(newSchema:oid) = {
Schema.remove(Router)

}

Schema = newSchema
Schema.Extend(Router)

The Router addon provides access to the routing information in the Schema
object.

Addon Router
extends Schema

Methods
successor(task:string) = {

return succ(task)
}

174 8.3. DESIGNING A WORKFLOW IN DEGAS

In our order processing example, the InventoryCheck relation is a specialisa­
tion of the TaskExecuti on relation. We first explain TaskExecuti on in general.
A TaskExecution relation allows a job to be processed by an agent. The job
is extended by a Processed addon. The agent is extended by a Processor ad­
don. The existence of the relation means that the task will be executed, but it is
not started immediately after the creation of the relation. Hence, the Processed
addon contains the necessary actions to start the task. In addition, it contains
actions that give the agent the information necessary to execute its task. The
Processor addon contains the actions, that are specific to this task.

The InventoryCheck relation object implements the first processing phase
which is done by the InventoryContro l agent. The InventoryCheck relation
object implements actions to start and to finish the processing phase.

Object InventoryCheck
Relation InventoryControl, Order

Methods
Start(number : integer) = {

InventoryControl.request(number)
}
Finish()= {

Order.EndlnventoryCheck
}

An order object can only be a partner in the InventoryCheck relation, if it is
routed by some workflow schema. Hence, the InventoryBei ngChecked addon
extends an order object, that is already extended by a RoutedBy addon. This
is specified in the Extends clause of the addon specification. The only action in
this addon contains the functionality to end the phase.

Addon InventoryBeingChecked
extends RoutedBy

Methods
EndlnventoryCheck = {

nextPhase
}

Since the InventoryControl object is the agent for the InventoryCheck task,
the Checki ngOrder addon contains most functionality. This consists of actions
to request the number of items required for the order and to reserve the items,
if they can be supplied.

Addon CheckingOrder
extends InventoryControl

Methods

8.3. DESIGNING A WORKFLOW IN DEGAS

request(number : integer, dest : oid) = {
noOfltems = number

}
getit(number : integer, dest : oid) = {

reserve(number)
}

8.3.3 Phase 3: Activation of action

175

In the third phase of the DEGAS database design, we specify when the different
actions of an object are executed. Hence, we first specify the internal activations
in the objects, which are derived from the static constraints of the objects.
Then, we formulate the interaction scenario for each relation, which leads to
activation of actions in the partners of the relation, as well as in the relation
object itself.

Inherently, an object does not have relations with other objects. Hence, busi­
ness rules are not inherently present. For our workflow application, there are
no integrity constraints on the objects, job, agent, and schema. The inherent
actions may be used, however, in the addons that extend objects.

The interaction scenario for the Job Fl ow relation is depicted in Figure 8.6. The
job object, in our example the order object, requests the next task on comple­
tion of a task. The whatNext action of the JobFl ow object gets this information
by a call to the successor function of the Schema object. On receipt of the
answer, the Job Fl ow object sends a message back to the order object. This is
an extend action to add the addon implementing the next task, in this case the
0rderBi 11 i ng task.

Route dBy JobFlow

nextPhase --------------- wha
1
~

I
I , _______
• extend

Router

successor

Legend - Coomunication

- - - -► Elapse of ti me

Figure 8.6: The interaction scenario for the Job Fl ow relation.

176 8.3. DESIGNING A WORKFLOW IN DEGAS

The interaction scenario for the InventoryCheck relation is shown in Fig­
ure 8.7. The goal of this task is to check, if the inventory suffices to deliver
the order. The InventoryBei ngChecked addon invokes the start action of
the InventoryCheck object. At its turn, it sends a request message to the
InventoryControl object. When the inventory check is successful, the getit
action is executed by the InventoryContro l object. This action invokes the
Fini sh action of the InventoryCheck, which leads to execution of the End­
InventoryCheck action of the order object.

I nven toryBeingCh ecked I nventoryCheck Check ingOrd er

Start ---- Start --- request

nextPhase Finish -------- getit

Figure 8.7: The interaction scenario for the InventoryCheck relation

The internal processing of the InventoryContro l object is an iteration of the
request action. As is shown in the workflow, the required number is requested
from the stock. If this number cannot be reserved, the request is repeated each
time new inventory arrives.

This design phase leads to the activations of the different actions shown in
Table 8.1.

8.3.4 Phase 4: Constraints on actions

The final phase of the design process is the specification of the order of the
actions. This leads to a lifecycle for each object, that embodies its dynamic
constraints. Please recall, that the lifecycle of an addon can include inherent
actions of the object it extends.

The order object does not have any inherent actions, so its lifecycle is empty.
With regard to the JobFl ow relation, it can enter one of the relations. During the
existence of the relation, the order object can go to a next phase an arbitrary
number of times. Hence, the lifecycle of the Routed By addon is:

lifecycle
Extend(RoutedBy);nextPhase* ;Remove(RoutedBy)

The actions of an order object in the InventoryCheck relation are again lim­
ited. It enters the relation and executes one action to end the relation. Hence,
the lifecycle of the InventoryBei ngChecked addon becomes:

8.3. DESIGNING A WORKFLOW IN DEGAS 177

Object or addon specification
Action Activation

order
I No actions specified

RoutedBy
nextPhase - invoked by EndinventoryCheck

InventoryBeingChecked
EndlnventoryCheck - invoked by InventoryCheck. Fini sh

InventoryControl
reserve - invoked by geti t
newstuff - invoked from outside scope of example

Checking0rder
request - invoked by InventoryCheck. Start

- invoked by occurrence of newstuff
getit - invoked when a request occurs and

- the inventory is sufficient.
InventoryCheck

Start - invoked on
order.extend(InventoryBeingChecked)

Finish - invoked on Checki ng0rder. getit

JobFlow
whatNext - invoked by RoutedBy. nextPhase
ReplaceSchema - invoked from outside scope of example

Router
successor - invoked by JobFlow.whatNext

Table 8.1: Activations of actions in the workflow example

178 8.3. DESIGNING A WORK.FLOW IN DEGAS

Llfecycle
Extend(InventoryBeingChecked);

EndinventoryCheck;Remove(InventoryBeingChecked)

The inherent actions of the Invento ryCont ro 1 object can be executed in any
desired order. Hence, the lifecycle is:

Lifecycle
reserve*
newstuff*

The order of the actions that pertain to the InventoryCheck relation reflects
the scenario of the relation. A request action can be executed a number of
times before a geti t action is executed. Furthermore, the request call is only
accepted from the object itself and the InventoryCheck relation object. The
lifecycle of the Checki ngOrder addon is:

Lifecycle
request* ;geti t
([sender=InventoryCheck]request)*
([sender=self]request)*

The other relation in our example is the JobFlow relation. The relation object
only has two actions, whatNext and rep 1 aceSchema. These can be executed in
any order, but the whatNext action is only accepted from the job object, in our
example the order object:

Llfecycle
(sender=Job)whatNext*
replaceSchema*

The schema side of this relation is very simple. The only action is the suc­
cessor action, that can be executed any number of times:

Llfecycle
successor*

Complete Application This completes the design of our workflow example.
We now give the complete DEGAS specifications of the objects discussed in this
example.

8.3. DESIGNING A WORKFLOW IN DEGAS

Object Order
Attributes

number : integer
price : real
currentTask : number

Methods
Lifecycle
Rules
EndObject

Figure 8.8: DEGAS specification of the order object

Addon InventoryBeingChecked
extends RoutedBy
Attributes
Methods

EndlnventoryCheck = {
nextPhase

}
Lifecycle

Extend(InventoryBeingChecked);
EndlnventoryCheck;Remove(InventoryBeingChecked)

Rules
On Extend(InventoryBeingChecked)

do InventoryCheck.Start(number)
On EndlnventoryCheck

do InventoryCheckClass. terminateRelation
EndObject

Figure 8.9: DEGAS specification of the InventoryBei ngChecked addon

179

180

Object InventoryCheck
Relation InventoryControl, Order
Attributes
Methods

8.3. DESIGNING A WORKFLOW IN DEGAS

Start(number : integer) = {
InventoryControl.request(number)

}
Finish()= {

Order.EndinventoryCheck
}

Llfecycle
Start;Finish

Rules
EndObject

Figure 8.10: DEGAS specification of the InventoryCheck relation object

Object InventoryControl
Attributes

Inventory : integer
Reserved : integer

Methods
reserve(number:integer) = {

Reserved = Reserved + number
}
newstuff(number:integer) = {

Inventory = Inventory + number
}

Llfecycle
reserve*
newstuff*

Rules
EndObject

Figure 8.11: DEGAS specification of the InventoryCont ro l object

8.3. DESIGNING A WORKFLOW IN DEGAS

Addon CheckingOrder
extends InventoryControl
Attributes

InventoryCheck : Oid
noOfltems : integer

Methods
request(number : integer, <lest : oid) = {

noOfltems = number
}
getit(number : integer, <lest : oid) = {

reserve(number)
}

Llfecycle
request* ;getit
([sender=lnventoryCheck)request)*
([sender=self)request)*

Rules
On request(number,dest)

if number :$ Inventory - Reserved
do getit(number,dest)

On request(_,dest);newstuff;, getit(_,dest)
do request(noOfltems,dest)

On getit(number,dest)
do <lest.Finish

EndObject

Figure 8.12: DEGAS specification of the Checki ngOrder addon

Addon RoutedBy
extends Order
Attributes

jobflow : Oid
CurrentTask : string

Methods
nextPhase(current:string) = {

jobflow.whatNext(current)

Llfecycle
Extend(RoutedBy);nextPhase* ;Remove(RoutedBy)

Rules
EndObject

Figure 8.13: DEGAS specification of the RoutedBy addon

181

182

Addon Router
extends Schema
Attributes

jobflow : JobFlow
Methods

successor(task:string) = {
return succ(task)

}
Lifecycle

successor*
Rules
EndObject

8.3. DESIGNING A WORK.FLOW IN DEGAS

Figure 8.14: DEGAS specification of the Router addon

Object JobFlow
Relation Schema, Job
Attributes
Methods

whatNext(task : string) = {

}

succ = Schema.successor(task)
Job.Extend(succ)

replaceSchema(newSchema:Schema) = {
Schema.remove(Router)

}

Schema = newSchema
newSchema.extend(Router)

Lifecycle
(sender=Job)whatNext*
replaceSchema *

Rules
EndObject

Figure 8.15: DEGAS specification of the JobFlow relation object

8.4. FLEXIBILITY OF THE WORKFLOW 183

8.4 Flexibility of the Workflow

One of the chief characteristics to judge a workflow implementation is its flexi­
bility. In particular, it must be easy to change elements of the workflow. These
elements can be either the routing of a workflow, or the way a task is executed.
In this section, we show that the workflow design of the previous section, using
the DEGAS minimality principle, provides the necessary flexibility.

8.4.1 Evolution of the Workflow Schema

Over time, the schema of a workflow may evolve. The causes of workflow evolu­
tion can be very diverse. They might be optimisations due to an analysis of the
process, new legal requirements on a production process, et cetera. In this sub­
section, we look at the effects of workflow evolution on the workflow schema,
i.e., the changes it causes in the routing of the workflow. Changes can be addi­
tion or deletion of tasks to or from a workflow, and changes in the sequence of
tasks in a workflow.

In the workflow design of the previous section, routing information is stored in
the schema object. Hence, a change in the workflow routing will lead to a new
schema object. This new object might be generated in a number of ways, by
transformation from an existing object or by design from scratch. The creation
of this new schema object is not of interest here, we only consider different
schema evolution policies given new or modified schema objects.

An extensive discussion of schema evolution in workflow is found in [Casati et
al., l 996bl. The authors give a number of different policies to deal with activ­
ities in an evolving schema. The goal of these policies is to gracefully handle
ongoing activities, that follow a schema being modified. In brief, the following
policies are identified:

1. Abort. All activities following the old schema are aborted and restarted
following the new schema.

2. Flush. Ongoing activities are completed according to the old schema,
while new activities are started following the new schema.

3. Progressive policies. In these policies, ongoing activities are upgraded to
a new schema without restarting.

To cater for the Abort policy, we must provide a number of facilities in the
different objects. First, the job object must provide an action to abort its activ­
ities. This action must roll the object back to the state it was in, when it started.
Since a DEGAS object contains its complete history, this is relatively easy to im­
plement. A workflow, however, also has effects in the real world. Since agents
are responsible for the interactions with the real world, they also provide the
compensating actions. Roll-back of actions is discussed in the next subsection.

184 8.4. FLEXIBILITY OF THE WORKFLOW

Since routing information is communicated to the job object as late as possible,
this roll-back can be completely transparent to the job object. After each task,
the job object requests its next task. Instead of answering with the next task
to complete the activity, the schema object replies with the next compensating
task to roll the job object back to its initial state.

The Flush strategy is very easy to implement in any system. In our design, every
job has a relation to a schema object. If a new schema project is created for
an activity, the job objects that are already being processed simply keep their
relation with the old schema object. If a new job object is entered into the
activity, it gets a relation with the new schema object.

The term progressive policies covers a number of different policies, which have
in common that an activity is finished following a modified schema without a
complete rollback of the old schema. The modified schema may or may not be
the same as the new schema. A job can be switched over to the new schema,
if the completed part of the old schema conforms to the new schema. In this
case, we can simply change the schema object in the j obfl ow relation to the
new schema.

Other progressive policies involve a special transition schema, that is only used
to complete ongoing activities. A transition schema can implement a number
of different methods. For example, it can contain a partial rollback, to get the
job in a state, where its completed work conforms to the new schema. Another
possibility is to append some special tasks at the end of the flow in order to get
the same result as produced by the new schema. This approach is especially
useful in manufacturing, where it can be used to retrofit the product with a
modification.

All these approaches imply that a schema object, containing this transitional
schema, is created. Since a job object does not contain any advance information
about its routing, the change of schema can be enacted by a simple change of
Job Fl ow relation. This is a distinct benefit of the DEGAS maximal encapsulation
principle. Furthermore, the translation of workflow routing elements given in
Section 8.2 makes the definition of a schema object a straightforward affair.

A final remark is, that the DEGAS approach also facilitates a truly ad-hoc way of
dealing with schema evolution not mentioned by [Casati et al., 1996bl. We can
relate a job object to an interactive schema object, that prompts the workflow
administrator for the next task on completion of each task in the activity. This
might be useful for cases, where we only have a small number of job objects
needing a transition schema.

8.4.2 Undoing tasks

In order to abort jobs or to apply progressive policies to jobs, we need the abil­
ity to roll back tasks. Aborting a task means that we have to reinstate the initial

8.4. FLEXIBILITY OF THE WORK.FLOW 185

state of the job object. Furthermore, some progressive policies may involve a
partial roll-back to a previous state. Here, we look at the problem of rolling back
tasks in the workflow design discussed in this chapter.

As we explained in Section 5.4, previous states of a DEGAS object are stored as
part of its history, together with the actions that brought the object into that
state. Hence, all information to bring back the job object to its original state
is found in the object itself. Rolling back the actions with regard to the tasks
that were executed, is basically a question of removing these actions from the
history of the object. Since the current state is the latest state in the history,
the current state of the object will then be automatically set to the state before
execution of the rolled-back action.

Removing actions from the history of an object only rolls back changes in the
object itself. It does not undo the effects of interactions with the environment.
The interactions with the physical environment of the workflow application are
through the agent objects. In addition, the job object might have relations
with other objects than the agent and schema objects. Hence, the roll-back is
a responsibility of both partners in the Tas kExecuti on. As a consequence a
workflow designer must provide compensation for each phase. The job objects
cannot distinguish these compensating tasks from ordinary tasks. If a job fol­
lows a transitional schema, the schema object will simply give compensating
tasks first as successor tasks.

Compensating tasks are analogous to the concept of compensating transac­
tions used for sagas [Garcia-Molina and Salem, 19871. A saga consists of a se­
quence of sub-transactions T1, ... , Tn. It is either completely executed, or com­
pletely undone. Suppose that for each sub-transaction Ti we have a compensat­
ing transaction Ci. Then, we execute either T1; T2; ... ; Tn or T1; ... ; Ti; Ci; ... ; C1.
Instead, we define a partial order on tasks, that may be extended. Thus, we do
not need to roll back a transaction completely to its start, but we can roll back
only part of its actions. Hence, we relax the requirement on a saga. Suppose
we have a partially ordered set of tasks T, where each Ti E T has an associ­
ated compensating action Pi- In addition, we have a function Compensate(T),
that yields the compensating task of task T. Please note that a task undoes its
compensating task, so the compensation of a task itself is its compensating
task and Compensate(Compensate(T)) = T. Then, we have the following
requirements on two subsequent tasks:

Ti; Tj Ti < Tj/\ /31.Jl ET: Ti< 1./1 < Tj

Ti;Pi Pi= Compensate(Td

Pi;Pi Compensate(pd > Compensate(pj)

/\ /31.Jl ET: Compensate(pd >I.JI> Compensate(pj)

Pi; Tj 3(/1 E T: I.JI < Compensate(pd /\ I.JI < Tj

/\ /3</, E T: <f, > I.JI/\ <f, < Compensate(pi) /\ <f, < Tj

186 8.5. CONCLUSION

8.4.3 Changing Task Execution

The other main source of evolution in a workflow lies in the way tasks are ex­
ecuted. In our design, the execution of tasks is a concern separated from rout­
ing, since tasks are executed by agent objects. The interaction between agent
and job objects is specified in the TaskExecuti on relation. As a consequence,
changes in task execution are easily separated.

A new way of executing a task might be completely transparent, in the sense
that no additional information is needed from the job object. In this case, the
only changes necessary are in the agent object. Hence, a job entering the ex­
ecution of the changed tasks gets the same relation with the modified agent
object. If the change in task execution requires additional interaction between
job and agent objects, the TaskExecution relation and its associated addons
also need to be modified.

Whatever the type of change, the modularisation of workflow in this paper guar­
antees, that a task is always executed according to the latest version. This is
achieved by separating task execution from the jobs, so that a job object gets
the necessary information as late as possible. Again, this is an application of
the DEGAS maximal encapsulation principle.

8.5 Conclusion

In this chapter, we discussed an approach to designing an active database in
DEGAS. We described how database design in DEGAS is guided by two princi­
ples: Minimality of information and maximality of encapsulation. The minimal
information principle is a guideline for the designer, which is facilitated by the
relation and addon mechanisms. The maximal encapsulation principle is part of
the DEGAS model. An advantage relative to other active databases is the use of
the ordinary object-oriented notions for modularisation of the rulebase. Hence,
we do not need additional concepts, such as a rulebase.

The DEGAS design guidelines were applied to the example of workflow manage­
ment. Although active databases are in general well suited for the implemen­
tation of workflow management, there is a need for clearly modularised active
database designs for this application. We have shown that the DEGAS design
guidelines lead to a design with clearly separated responsibilities of the differ­
ent objects. Furthermore, we have shown that it facilitates a straightforward
implementation of workflow evolution strategies.

Chapter 9

(Un)decidability Results for
DEGAS Objects

187

The first phase of information systems design is the specification of a model,
which was discussed in the previous chapter. After this, the design must be
verified against the user and system requirements. The verification of user re­
quirements has given rise to the research area of requirements engineering
[Wieringa, 1996, IEEE, 19941. However, we do not discuss it here. Instead, we fo­
cus on the verification of desirable system properties. In particular, we examine
system properties specific to active databases.

The additional functionality of an active database leads to new aspects in the
behaviour of such a system. These are caused by the interactions within a set
of rules. For example, members of the set may mutually activate or deactivate
each other. Because the autonomous nature of DEGAS objects, their behaviour
is controlled through their definition only. A design theory defines properties
on sets of rules and, if possible, provides algorithms to detect such properties.

Properties of rule sets studied in the literature are termination and confluence.
A set of rules terminates if, starting with any initial database state, the selectors
of all the rules become false in a finite number of steps. That is, the database
converges to a final state. A terminating set of rules is called confluent, if the
final state is determined completely by the initial state and the rule set.

As was discussed in Section 6.2.4, the rule semantics of DEGAS are instance­
oriented. In order to generalise the results of this chapter, we also look into
rules executing under set-oriented semantics. Recall from Section 3.1, that un­
der instance-oriented semantics a rule executes, non-deterministically, on one
object that satisfies this condition. Under set-oriented semantics, a rule exe­
cutes simultaneously on all objects that satisfy its selector. In this chapter, we
shall abbreviate the terms to set semantics and instance semantics.

188 9.1. THE DEGAS- MODEL

The two types of semantics suggest a third property, which we call indifference,
that relates the two semantics. A rule set that is confluent under both semantics
is indifferent, if the unique state under the two semantics is identical. This
property is of interest for comparing the execution of a rule set in DEGAS with
its execution in another system.

The development of a design theory for rules has been advanced by targeting
on either sufficient conditions or on decidability. Examples of the former ap­
proach are [Simon and de Maindreville, 1988, Aiken et al., 19921. In the context
of the RDL rule system, [Simon and de Maindreville, 1988) formulates a condi­
tion under which set and instance based rule execution coincide. [Widom and
Finkelstein, 1990) and [Widom et al., 1991] defined a production rule language
for the Starburst database system. In [Aiken et al., 1992) sufficient conditions
for both termination and confluence of these production rules are formulated.
An important foundation of our results is the work on decidability reported in
[Voort, 19941. A property is called decidable, if there exists an algorithm that,
given a set of rules as input, decides in finite time, whether this set satisfies the
property or not. Examples of this approach are [Abiteboul and Simon, 1991),
[Voort, 1994] and this chapter.

Due to the complexity of the subject, we use a restricted DEGAS model in this
chapter, named DEGAS- . The main restriction is the omission of events. Fur­
thermore, the action of a rule is restricted to the modification of an object's
attributes. In this chapter, we show that termination and confluence are already
undecidable for very limited rule models. These properties are decidable for an
even more restricted DEGAs- 2 model, that contains rules with local conditions
and constant assignment only. The addition of path expressions to conditions
in DEGAS- makes it possible to emulate a Turing Machine. Hence, termination
and confluence are undecidable in DEGAS- .

9.1 The DEGAS- Model

In this section, we define the DEGAS- model, that is a restricted DEGAS model.
The restrictions are the following:

1. Event specifications are omitted from rules.

2. Lifecycles are omitted.

3. Relation objects and addons are not considered.

4. Methods can only make assignments.

5. The only types for attributes are integer and object id.

In order to compare set and instance semantics, the semantics of the DEGAS­
model are defined different from the semantics of DEGAS in Section 5

9.1. THE DEGAS- MODEL 189

9.1.1 Syntax

For clarity, we give the full syntax definition of the DEGAS- model in Figure
9.1 and Figure 9.2. It is a subset of the DEGAS syntax as given in Section 4.3.
Uniqueness constraints and referential constraints apply, like in the full DEGAS

model.

(Class)

(AttributeSection)

(Attributelist)

(AttributeDecl)

(Type)

(Type)

(MethodSection)

(Methodlist)

(MethodDecl)

(Statementlist)

(Statement)

(BasicExpression)

(ActPararnLlst)

(ActParam)

Object (ClassName)

(AttributeSection)

(MethodSection)

(RuleSection)

EndClass

Attributes

(Attributelist)

(AttributeDecl)

I (AttributeDecl) , (Attributelist)

(AttributeName) : (Type)

Integer

(ClassName)

Methods

(Methodlist)

(MethodDecl)

I (MethodDecl) , (Methodlist)

(MethodName) ((Parameterlist))= {

(Statementlist)

}

(Statement)

I (Statement) ; (Statementlist)

(AttributeName) : = (BasicExpression)

O 111 ...
I (AttributeName)

(ActParam)

I (ActParam) , (ActPararnLlst)

(Parameterld) = (Expression)

Figure 9.1: The DEGAS - syntax.

(9.1)

(9.2)

(9.3)

(9.4)

(9.5)

(9.6)

(9.7)

(9.8)

(9.9)

(9.10)

(9.11)

(9.12)

(9.13)

(9.14)

An example DEGAS- object is given below. It has a method multiply _no that
does what its name suggest. Furthermore, it contains a rule, that selects cells

190 9.1. THE DEGAS- MODEL

(RuleSection)

(RuleList)

(Rule)

(Action)

(SelectionCondition)

(SelectionCondition)

(SelectionCondition)

(SelectExpr)

(SelectExpr)

(SelectExpr)

Rules
(RuleList)

(Rule) I (Rule) , (RuleList)

if (SelectionCondition}

do (Action}

(MethodCall}

(SelectionCondition)

A (SelectionCondition}

(SelectionCondition)

v (SelectionCondition)

(SelectExpr} = (SelectExpr)

(AttributeID}

o I 11 ...
(SelectExpr) . (SelectExpr)

Figure 9.2: The DEGAS- syntax continued.

with ten as a value of no and multiplies it by two.

Object cell
Attributes

no: Integer
neighbour : cell

Methods
multiply..no(factor:lnteger) = {

no:=no*factor
}

Rules
If no=lO
do multiply_by(2)

EndObject

9.1.2 Semantics

(9.15)

(9.16)

(9.17)

(9.18)

(9.19)

(9.20)

(9.21)

(9.22)

(9.23)

(9.24)

The semantics of the DEGAS- model are defined differently than the semantics
of the full DEGAS model in order to enable a comparison between instance
semantics and set semantics for rule execution. This allows us to generalise
the results of this chapter to active databases in general, in addition to DEGAS.

Since the semantics of DEGAS are object-centered, both instance semantics and
set semantics make little sense.

The DEGAS- semantics assigns objects and values to the database as a whole.

9.1. THE DEGAS- MODEL 191

An instance of a database is determined by an extension and an interpretation.
The extension assigns objects to each class in the database. The interpretation
assigns values to the attributes.

The extension of a database assigns a set of objects to each class. An object is
identified by a unique object identifier. Therefore, we assume the existence of
a set of object identifiers Oid. The extension function then assigns a subset of
Oid to each class, such that all object identifiers are assigned to one class only.

Definition 60 Let H be a DEGAS- schema, i.e., a set of DEGAS- object definitions.
An extension Ext : H - 'PO id assigns to each class of H a set of objects such
thatifC1,C2 EH andC1 I= C2, thenExt(C1) nExt(C2) = 0.

The type Integer has the obvious extension:

Definition 61 The extension of the type Integer is the set of natural numbers N.

The extension of the database gives us the sets of objects in each class. The
contents of the objects are defined by the interpretation, that assigns values
to all the attributes in the database. Please note, that a DEGAS- interpretation
assigns values to a complete database at once contrary to the object-centered
approach of a DEGAS interpretation. The DEGAS- interpretation gives a table for
every attribute in the database schema. This table has two columns, the first
containing object identifiers, and the second the value of the attribute in the
object represented by this identifier. An example is the following interpretation
for the attribute no of the class ce 17 defined above.

Oid Value
345 3
874 25
902 16

In this example, we have three objects. The value of the attribute no for object
874 is 25. The interpretation of an attribute is a function from the extension
of the class it belongs to, to the extension of the type of the attribute. The
extension of the type itself is either a class extension, or the extension of the
type Integer.

Definition 62 Let Ext be an extension of a database schema H. An interpreta­
tion I for Ext and H assigns to each type declaration a : T a function I(a: T) :

Ext(C) - Ext(T).

A database for a schema is a pair of an extension and an interpretation.

Definition 63 A database for a schema H is a pair (Ext,!) where Ext is an
extension for H and I an interpretation for Ext and H. The universe of all da­
tabases is denoted by DBH. Individual database states are denoted by db, db1,
db2,

192 9.1. THE DEGAS- MODEL

The semantics of method execution in DEGAS- relates two interpretations to
each other. To be precise, we describe the interpretation of the database after
the method execution in terms of the interpretation before the method execu­
tion. This is captured by the notion of a variant interpretation. A variant of an
interpretation I is denoted by I{v/(a: T)(o)}. The variant is the same as I,
except when I(a: T) is applied to the object o, where it yields v. A property
of variants is the independence of variants on different objects, which we state
without proof.

Proposition 2 Given an extension Ext and an interpretation I for a DEGAS­

schema. Then:

Vo1,02 E Ext:
01 1' 02
==>
J{vi/(a: T)(oi)} {v2/(a: T)(o2)}

= I{v2/(a: T)(o2)}{vi/(a: T)(oi)}

The function M that defines the semantics of method execution gives us a new
interpretation of the database, that is variant on the attributes modified. It is
defined as follows:

Definition 64 Given a method of class C E H:

m(l1 :T1, ... ,ln:Tn) = {
ai := li
succ(bj)

for i = 1 ... n, j = 1 ... m, where:

Vi E {1, ... ' n} : "ai: Ti'' E Attr(C)
V j E {1, ... , m}: "bi: a/' E Attr(C)
{ "a1 : T1 ", ... ,"an: Tn '1 n { "b1 : CTi ", ... , "bm: CTm "} = 0

If o is an object in Ext(C) and m(li = vi, ... , ln = Vn) a correct method call,
then the function M is defined for the execution of m by o in the database (Ext, I)
as:

M(m(li =Vi, ... , ln = Vn)(o)(Ext,I)) =
(Ext,I{vi/(ai: Ti)(o)}, ... , {Vn/(an: Tn)(o)},

{(J(bi: CTi) + 1)/(bi: CTi)(o)},

{(J(bm: CTm) + 1)/(bm: CTm)(o)})

9.1.3 The DEGAs-2 Model

In our discussion of decidability results, we first consider a restriction of DE­
GAS-, which is named DEGAs-2. We restrict the selection condition of a query
to local attributes only, which means that production 9.24 is omitted from the
syntax definition. An example of a class definition DEGAs-2 is:

9.1. THE DEGAS- MODEL

Object cell
Attributes

no: Integer
neighbour : cell

Methods
new_value(number:Integer) = {

no:=number
}

Rules
If no=IO
do new_value(S)

EndObject

9.1.4 Rule Semantics

193

Rules can be applied to a database in two different ways [Simon and de Main­
dreville, 1988]. This results in two different semantics for rule execution. With
set semantics the action is executed on all objects satisfying the rule condition
simultaneously. Instance semantics means that the action is executed one at
the time on these objects. First, we define the set of object satisfying a rule's
selection condition. In the following definition, the result of rule R applied to
a database db under set semantics is denoted by M(s)(R,db). Under instance
semantics, this is denoted by M(i)(R, db). The execution of a rule, like a me­
thod execution, changes the interpretation of the database. Therefore, we can
define the resulting interpretation in terms of the variants induced by the rule.

Definition 65 Let R = (Q,M(l1 = b1, ... , 4t = bn)) be a trigger in a schema H
withM definedasM(li: T1, ... ,4t: Tn) = {a1 := l1; ... ;an := ln}. Furthermore,
we have:

db= (Ext,[)
Select((Ext, I), R)

Pick: 'POid - Oid

Var(oil

a database for H .
the set of objects in db satisfying the
condition of rule R.
a function that arbitrarily selects an ob­
ject from a set of objects.
the variant of Di induced by trigger R.

The execution of R under set semantics is defined by:

M(s)(R, (Ext,/)) -{

(Ext,I{Var(o1) ... Var(om)}
ifSelect((Ext,I),R) = {01, ... ,0m}

(Ext,[)
if Select((Ext,I),R) = 0

The execution of R under instance semantics is defined in two phases in order to

194 9.1. THE DEGAS- MODEL

separate out the random selection of an object to execute on.

l
M; o Pick(Select((Ext,J),R))

if Select((Ext,J),R) I 0
M(i)(R,(Ext,J)) = whereM;((R,o),(Ext,J)) = (Ext,I{Var(o)})

M(i)(R, (Ext,!))= (Ext,/)
ifSelect((Ext,J),R) = 0

The above definition defines the result of a single rule application. If a set of
rules is present on the database, we have an execution cycle. This cycle executes
as long as there are rules applicable to the database. During the cycle one of the
set of applicable rules is randomly chosen for execution and executed. After
that the next iteration starts. Please note, that the DEGAS- execution cycle is
defined for the complete database, contrary to the execution cycle of a single
DEGAS object.

Definition 66 Let 'R be a set of rules of the form R = (~,MR) with an initial
database db. Then the behaviour of'R under semantics semis defined by:

Execute('R,db,sem) {

}

While 3R E 'R: Extdb(~)-/= 0 do

od

T := choose({RIR E 'RI\ Extdb(~)-/= 0)
db:= M(sem)(R, db)

return db

The process Execute ('R, db, sem) induces a set of execution sequences. An
execution sequence gives a trace of rule execution. In the case of set semantics,
it is a sequence of rules. In the case of instance semantics, we also include the
information, which object the rule was executed on. A sequence is defined as
a function from the set of natural numbers to the set of rules. The function
assigns a rule to each position in the sequence. If the function is total, i.e., it
assigns a rule to each position, then it is a sequence.

Definition 67 'R is a set of rules for a schema H. If Sq : N+ - 'R is a par­
tial function whose support is a contiguous set starting at 1, then Sq E Seq(s),
length(Sq) = ISupport(Sq) I. Sq is written as a list [Sq(l); ... ; Sq(n)].

The ith element of a sequence Sq, denoted by Sqi, is a rule Ri

Under instance semantics, a sequence also states to which object a rule is ap­
plied at each place in the sequence.

Definition 68 'Risa set of triggers for a schema H. If Sq: N+ - 'R x Oid is a
partial function whose support is a contiguous set starting at 1, then Sq E Seq(i),
length(Sq) = ISupport(Sq)I. Sq is written as a list [Sq(l); ... ;Sq(n)].

9.1. THE DEGAS- MODEL 195

Here, Seu is a pair of a rule and an object (Ri, od.

The execution of a rule sequence is defined inductively in the following way:

Definition 69 'R is a set of triggers for a schema H. The execution of a sequence
Sq E Seq(s) on a database db, where Seq(s) is the set of sequences over 'R
under set semantics, is defined as:

1. if Sq= [Sq(l); ... ;Sq(n)]
then M(s)(Sq, db) = M(s)([Sq(2); ... ; Sq(n)], M(s) (Sq (1), db))

2. if Sq = [Sq(l); Sq(2); ...]
then M(s)(Sq,db) = M(s)([Sq(2); ...],M(s)(Sq(l),db))

The execution of a sequence Sq E Seq(i) on a database db, where Seq(i) is the
set of sequences over 'R under instance semantics, is defined as:

1. if Sq=[Sq(l); ... ;Sq(n)]
then M(i)(Sq, db) = M(i) ([Sq(2); ... ; Sq(n)], M' (i) (Sq (1), db))

2. if Sq= [Sq(l);Sq(2); .. .]
then M(i)(Sq,db) = M(i)([Sq(2); ...],M(i)'(Sq(l),db))

A valid execution sequence must satisfy a number of requirements. A sequence
[Sq(l); ... ;Sq(n)] is an execution sequence, if each rule Sq(i + 1) is activated
after the execution of [Sq(l); ... ; Sq(i)]. If the sequence is finite, no rules are
activated after the last rule of a sequence.

Definition 70 Let 'R be a set of rules for a schema H, let db be a database, and
let Seq(s) and Seq(i) be the sets of sequences over 'R. The set Seq(s)('R, db) of
execution sequences over 'R is db under set semantics is defined as follows:

if Sq E Seq(s)
/\

Select(db, Sq(l)) -I= 0
/\

ViE{2, ... ,n}:
Select(M(s)([Sq(l); .. . ;Sq(i-1)]),Sq(i)) -f= 0

/\

VR E 'R:
Select(M(s)(Sq,db),R) = 0

then Sq E Seq(s)('R, db)

The set of execution sequences under instance semantics Seq(i)('R, db) is de-

196

fined analogously as follows:

if Sq E Seq(i)
I\

Oi E Select(db,Sq(l).R)
I\

ViE{2, ... ,n}:

9.2. PREDICATES

Oi E Select(M(i)([Sq(l); ... ;Sq(i - l)]),Sq(i).R)
I\

VR E 'R:
Select(M(i)(Sq,db),R) = 0

then Sq E Seq(i)('R,db)

9.2 Predicates

In the previous section, we defined the DEGAS- model's syntax and semantics.
In this section, we address the predicates on rule sets that we examine in this
chapter.

9.2.1 Termination

Termination means that all executions of a rule set terminate on all possible
database states. Hence, all execution sequences on all databases must be finite.

Definition 71 (Termination) Let 'R be a set of rules for a schema H. Let sem
denote either set or instance semantics.

Terminate('R, sem) d~

Vdb E DBH, VSq E Seq(sem)('R,db), 3n EN+:

length(Sq) = n

9.2.2 Confluence

Confluence means that all possible executions of a rule set yield the same fi­
nal database state. Because a non-terminating execution does not yield a final
database state, a preliminary requirement for confluence is, that the rule set is
terminating. In terms of execution sequences, confluence means that the result­
ing database state is invariant under the choice of an execution sequence.

Definition 72 (Confluence) Let 'R be a set of triggers for a schema H. Let sem
denote either set or instance semantics.

Confluent('R,sem) d~

Vdb E DBH, VSq E Seq(sem)('R,db):
M(sem)(Sq1, db) = M(sem)(Sqz, db)

I\

Terminate('R, sem)

9.2. PREDICATES 197

9.2.3 Termination inn steps

In most rule models, termination is an undecidable property. Therefore, we
are interested in a stronger predicate than termination, viz., termination in a
certain number of steps. This predicate is stronger than termination, because a
rule set not terminating inn steps might terminate inn+ 33 steps.

To define termination in n steps, we need to define a step. Under set semantics,
we simply take one execution of a rule as one step. We cannot do this under
instance semantics, since a rule application only executes on one object at the
time. Because we do not wish to make our choice of n dependent of the size
of the database, we count the number of rule applications to one object. Thus,
under set semantics n denotes the maximum number of times a rule may ex­
ecute. Under instance semantics, n denotes the maximum number of times a
trigger may execute on one object.

Definition 73 If 'R is a set of rules for a schema H and n a natural number,
then

Terminate(n, 'R, s) ~
Vdb E DBH, VSq E Seq(s)('R,db), VR E 'R:

I {ilSq(i) = R} I :s; n

Terminate(n, 'R, i) ~
Vdb E DBH, Vo E Extdb, VSq E Seq(i)('R,db), VR E 'R:

l{ilSq(i) = (R,o)}I :s; n

The execution sequences are finite, because all rule sets and all databases are
finite. Thus, rule sets that terminate in n steps terminate.

Proposition 3 If 'R is a set of rules for a schema H and sem denotes either set
or instance semantics, then

Terminate(n, 'R, sem) = Terminate('R, sem)

Proof Obvious. D

9.2.4 Independence

Like we defined termination inn steps as a stronger alternative for termination,
we can define a stronger alternative for confluence. This stronger predicate is
independence. Instead of looking at a complete rule set, we examine a pair of
rules at the time. A pair is said to be independent, if the two rules commute.
This means that the result of their execution is the same for both possible or­
ders of execution. A set of rules is independent, if all pairs in the set commute.

198

Definition 74 If'R is a set of triggers for a schema H, then:

def
Independent('R, set) =

VRi,Rj E 'R, '</db E DBH:
M(s) (Ri, M(s) (Rj, db))

M(s) (Rj, M(s)(Ri, db))

Independent('R, instance) d:f
VRi,Rj E 'R, '</db E DBH, Vok,Ot E Extdb:

M(i) (Ri(Ok), M(i) (Rj (oi), db))

9.2. PREDICATES

A useful property of an independent rule set is, that execution sequences can
be rearranged. This comes in handy in a number of proofs. An example is the
proof that independence implies confluence for terminating rule sets [Aiken et
al., 19921.

Proposition 4 If 'R is a set of rules and sem denotes either instance or set se­
mantics, then:

Terminate('R, sem) I\ Independent('R, sem)
~

Confluent('R, sem)

Proof We have to prove that:

'</db E DBH, VSq1,Sq2 E Seq(sem)('R,db):

M(sem)(Sq1,db) = M(sem)(Sq2,db)

Since both Sq1 and Sq2 are execution sequences, no rule is activated after their
execution. Thus, for all database states

M(sem)(Sq1;Sq2,db) = M(sem)(Sq1,db)

and likewise

M(sem)(Sq2;Sq1,db) = M(sem)(Sq2,db)

With all rules pairwise independent, we can rearrange Sq2;Sq1 into Sq1;Sq2.
Thus, we have

and

M(sem)(Sq1,db) = M(sem)(Sq2,db)

□

9.3. DECIDABILITY RESULTS FOR DEGAS-2 199

9.2.5 Decidability

The last definition needed in this chapter is that of decidability. For this, we use
the standard notion of the existence of a decision procedure (see, e.g., [Lewis
and Papadimitriou, 1981)).

Definition 75 A predicate is decidable, iff there exists an algorithm that on all
possible input:

1. terminates

2. on termination gives the correct answer with regard to the truth of the
predicate relative to the input.

9.3 Decidability Results for DEGAs- 2

In this section, we discuss decidability of rule predicates in the DEGAs-2 model.
Recall, that this model only allows local conditions and replacement of at­
tributes by constants. As can be expected in such a simple model, both ter­
mination and confluence are decidable properties of rule sets in DEGAs- 2 •

We first look at termination and confluence of a single rule. Since the effect of
a rule's action is idempotent, these are decidable predicates.

Theorem 6 In the DEGAs-2 model, given a singleton rule set 'R = {R}, R =
(QR,MR) and semantics sem. In this case, we have the decidable predicates
Terminate('R, sem) and Confluent('R, sem).

Proof To prove the decidability of termination and confluence, we show that
we can construct a finite database state to represent all possible database
states, as was first explained in [Voort, 19941. This database state is called the
typical database state. The typical database state is constructed relative to a
rule definition. From the attributes of the class schema, the constants in the
selection conditions and the methods, we construct a finite set of partition con­
ditions. Every object in all of the possible database states satisfies one of these
conditions. In addition, method execution gives a uniform transition between
these conditions. Based on this knowledge, we construct a graph that enables
us to decide termination and confluence.

We start by defining a set EC of elementary conditions on the attributes. Let A

be the set of all attributes in the class on which R is defined. CR is the set of all
constants appearing in QR and MR. The set of elementary conditions EC with
regard to R is defined by the following grammar:

(Econd)

(BasicExpr)

(Attr) = (BasicExpr)

(Attr) I (Const)

200 9.3. DECIDABILITY RESULTS FOR DEGAs- 2

where the non-terminal (Attr) yields all elements of A and (Const) yields all
elements of CR.

Obviously EC does not take the types of attributes and constants into account.
Therefore, we restrict EC to the set of well-typed elementary conditions WEC
as follows:

Vx:T,y : T:
x = y EEC
⇒

x =y E WEC

The elementary conditions only express equalities of one or two attributes at
a time. To be able to express arbitrary conditions on an object, we obtain all
composite conditions in the set Cond.

If CE WEC then CE Cond
If c1, c2 E Cond then c1 /\ c 2 E Cond

This definition yields a set that also contains inconsistent conditions. We are,
however, able to decide what conditions are consistent. This is stated by the
following claim, that is proven below.

Claim 6.1 Determining the consistency of a condition </> E Cond is decidable.
If </> is consistent, we can construct a database state that contains an object
satisfying</>.

Knowing that the consistency of a condition is decidable, we can restrict our
conditions to the set CCond of consistent conditions.

CCond = {c E Condie is consistent}

Multiple conditions are satisfied by an object, because most conditions do not
take all attributes of an object into account. To characterise an object, we want
those conditions that specify equalities of all attributes. To that end, we define
a partial order on CCond:

V</>, 1/J E CCond, </> = </>1 /\ ... /\ <Pk, 1/J = 1/11 /\ ... /\ 1/Jt:

ViE {1. .. k}3j E {1. .. l}: </>i ⇒ 1/lj

=

It is easy to see that this defines a partial order. In this order, the maxima are
those conditions that incorporate all attribute-attribute and attribute-constant
relations. The existence of these maxima follows from the finite size of the
attribute set, implying the finite size of CCond. Therefore, we use these condi­
tions as partitioning conditions.

PCond = {c E CCondlc is maximal}

9.3. DECIDABILITY RESULTS FOR DEGAs-2 201

The partition conditions characterise all possible objects in all possible data­
bases relative to this rule. Uniform transitions exist between partition condi­
tions to represent the effect of method execution. These two properties are
expressed in the following claim:

Claim 6.2 Partition conditions satisfy the following properties:

1. VdbEDB,VoEdb:
3!pc E PCond: pc(o, db)

2. Vdb1,db2 E DB, Vo1 E db1, Vo2 E db2:
pc(o1,db1) I\ pc(o2,db2)

=
3pc' E PCond:

pc' (01, Execute(R, db1, set))
I\

pc' (02, Execute(R, db2, set))

under set semantics and

Vdb1, db2 E DB, Vo1 E db1, Vo2 E db2:
pc(o1, dbi) I\ pc(o2, db2)

=
3pc' E PCond:

pc' (01,Execute(R (01), db1, instance))
I\

pc' (02, Execute(R(o2), db2, instance))

under instance semantics.

where pc(o, db) denotes that pc is a partitioning condition characterising o in
db.

Claim 6.1 said that for each consistent condition we can construct a database
state satisfying that condition. Because we may assume without loss of general­
ity that object identifiers are unique over all db,p, we can construct a database
state db= U,pEPCond db,p, that is typical, i.e., Ve E PCond, 3o E db: c(o, db) .

We have shown that partition conditions represent all possible object states.
Further, we have shown that the effect of method application is uniformly rep­
resented by a transition from one partition condition to another. We now pro­
ceed by constructing a graph, that represents these transitions for all partitions.
The graphs SG and IG are defined as follows, for set and instance semantics
respectively:

Nodes(SG) = Nodes(IG) = PCond

202 9.3. DECIDABILITY RESULTS FOR DEGAs- 2

Vc1,C2 E PCond:

3o E QR (db) I\ ci(o, db) I\ c2 (o, Execute(R , db, set))

=
(C1, C2) E Edges(SG)

3o E QR (db) I\ ci(o, db) I\ c2 (o, Execute(R (o), db, instance))

=
(C1,C2) E Edges(JG)

Using this graph, we can reduce the problem of termination to the problem of
cycle detection, which is a decidable problem. Confluence reduces to finding a
unique sink from each node in the graph, which is also a decidable problem.

Left to be proven are Claim 6.1 regarding the decidability of consistency of a
condition, and Claim 6.2 regarding the properties of partition conditions. □

Proof of Claim 6.1 We give an algorithm that checks a condition</>= Af=1 <Pi
for consistency. Without loss of generality, we assume that the <Pi are ordered
according to the following criteria:

1. Attribute-constant equalities before attribute-attribute equalities.

2. The attribute-constant equalities are sorted by attribute.

3. The attribute-attribute equalities are put in the form ai = a i such that
i < j and then sorted lexicographically by the pairs (ai, a i).

The algorithm proceeds by constructing an object o with attributes a 1 , ... , an,
that satisfies the condition <J>. For the construction, we need a set of dummy
variables Dummy with the following properties:

Dummy= {D1, .. ,,Dn}

such that (1) i !- j ⇒ Di !- Di

(2) ai : T ⇒ Di : T

The algorithm is given in Figure 9.3.

Successful termination of this algorithm means, that it was able to construct
an object satisfying the given condition </>, implying consistency of <J>. If the
algorithm terminates unsuccessfully, then the condition is inconsistent. If the
condition is consistent, we can construct a database state from the object and
the set of dummy values.

The algorithm works in two phases. First (lines 3-10), conditions of equality
of attributes to constants are checked. Constants are assigned to attributes for
which such conditions exist. Other attributes are assigned dummy values. The

9.3. DECIDABILITY RESULTS FOR DEGAs- 2

Algorithm consistency-check
Begin

5

Check 'It a; E A:
Case 3Ct,Cz E CR: ai = Ct 11. ai = c2:

Exit(Unsuccessfully)
Case 3!Ct E CR: ai = c1:

o.a1 := Ct

Otherwise:
o.ai :=Di

10 Endcheck

15

20

25

Check '1c/>1t of the form ai = a{
case o.aj = er 11. o.ai = c2 11. er I= c2:

Exit(Unsuccessfully)
Case o.aj = Ct 11. o.ai = c2 11. c1 = c2:

Next
Case o,ai = er 11. o.ai = Di:

aj := C1

Case o,ai = Di 11. o.ai = er:
ai := C1

ReplaceAll(Di, Ct)

Case ai = ai 11. o.ai = Di 11. o.ai = Df
ai := Di

Endcheck

Exit(Successfully)

End.

Figure 9.3: Algorithm to check the consistency of a local condition

203

204 9.3. DECIDABILITY RESULTS FOR DEGAS-2

next part (lines 12-24) tries to satisfy equalities between attributes. Here, the
order on the equalities prevents costly Rep 1 aceA 11 actions for dummy vari­
ables, by completing assignment of dummies to lower-indexed attributes first.

To prove the correctness of the algorithm, we show that if it exits unsuccess­
fully, it has constructed an inconsistent state.

Line 5 In this case, the condition requires an attribute to
have two different values. Clearly, this is inconsis­
tent.

Line 14 In this case, the condition requires two attributes to
be equal, while at the same time it requires equality
of both attributes to two unequal constants. Clearly,
this is inconsistent.

Proof of Claim 6.2 The first part of this claim was

VdbEDB,VoEdb:
3!pc E PCond: pc(o, db)

□

The existence of a pc E PCond is obvious from the fact that all possible equal­
ities between attributes and constants are included in WEC, from which the
partition conditions are constructed. The existence of a unique pc E PCond
follows from the maximality of the partition conditions, because maximality of
pc means ?-,pc' E PCond: pc' ⇒ pc.

The second part of the claim was that

Vdb1,db2 E DB, Vo1 E db1, \102 E db2:
pc(o1,dbi) A pc(o2,db2)
=⇒

3pc' E PCond:
pc' (01, Execute(R, db1, set))
I\

pc' (02, Execute(R, db2, set))

under set semantics and

Vdb1,db2 E DB, Vo1 E db1, \102 E db2:
pc(o1,db1) "pc(o2,db2)
=⇒

3pc' E PCond:
pc' (01, Execute(R (oi), db1, instance))
I\

pc' (02, Execute(R (02), db2, instance))

under instance semantics.

9.4. DECIDABILITY RESULTS FOR DEGAS- 205

This claim follows from the uniqueness of the partition conditions and the fact
that the changes made by MR are identical to both objects. □

The method used for deciding termination of a singleton trigger set can be
extended to a trigger set with more than one trigger. The method used is the
same, except that we must construct a graph using more than one trigger.

Theorem 7 In the DEGAs-2 model, given a trigger set '.R and semantics sem,
the predicates Terminate('.R, sem) and Confluence('.R, sem) are decidable.

Proof Since the conditions and actions of the triggers are local to an object, we
can treat this problem for each class separately. For each class C, we construct
a set of partition conditions PCondc using the method used in the proof of
Theorem 6. We then take the union of these sets into one set of partition con­
ditions PCond = Uc PCondc. Clearly, since each PCondc induces a typical
database state tdbc, their union PCond also induces a typical database state
tdb = Uc tdbc, see [Voort, 1994, Chapter SI for details.

After construction of the typical database state, we proceed with the construc­
tion of a graph. The presence of more than one trigger has some effect on the
drawing of the graph. The graphs SG for set semantics and JG for instance
semantics are defined as:

Nodes(SG) = Nodes(IG) = PCond

Vc1,C2 EPCond:

3R E '.R, 3o E ~(db): ci(o,db) I\ c2(0,Execute(R,db))

==>

Vc1,c2 E PCond:

3R E '.R, 3o E ~ (db) : ci(o, db) I\ c2 (o, Execute(R(o), db))

==>

Again deciding termination reduces to cycle detection and deciding confluence
reduces to finding a unique sink for each node. □

9.4 Decidability Results for DEGAS-

In this section, we look into decidability of the predicates in DEGAS-. The only
difference between DEGAS- and DEGAs-2 is that DEGAS- allows path expres­
sions in a rule's condition. This is sufficient to make termination an undecid-

206 9.4. DECIDABILITY RESULTS FOR DEGAS-

able property. Some stronger properties, however, are decidable, such as termi­
nation in n steps and independence.

First, we consider termination of a singleton trigger set. This is a decidable
predicate in DEGAS-.

Theorem 8 In DEGAS-, given a singleton rule set 'R and semantics sem the
predicate Terminate('R, sem) is decidable.

Proof We show that we can construct a typical database state in this model. A
complication is, that the number of possible conditions is infinite.

Since path expressions are allowed in the condition of a rule, the set of elemen­
tary conditions EC is generated by the following grammar:

(Econd)

(BasicExpr)

(AttrExpr)

(AttrExpr) = (BasicExpr)

(AttrExpr) I (Const)

(Attr) I (Attr) . (AttrExpr)

where the non-terminal (Attr) yields all attributes in the schema. (Const) yields
all constants used in the rule set. We use the obvious typing rules to restrict EC
to the set of well-typed elementary conditions WEC. We collect all possible
conditions with conjunction and disjunction into the set Cond.

Because of the complexity of conditions with path expressions, we introduce
the length of a condition. Intuitively, this is a measure of the distance of the
attributes of interest to the condition from the local object. The length of a
condition is recursively defined as:

1. length(e) = 1, where e is an attribute identifier or a constant.

2. length(a.e) = length(e) + 1, where a is an attribute and e is a path
expression.

3. length(Ai V i(ewf)ii) = max({ max(length(e), length(!)) }ij),

where e is a path expression and f a path expression or a constant.

Condn denotes the set of conditions of maximum length n.

Consistency of a condition can be checked by a slight modification of the al­
gorithm in the proof of Theorem 6. The difference in the conditions is the
possibility to refer to other objects. Hence, in order to show that a database
satisfying the condition exists, we need to construct more than one object. In
fact, we construct all objects referred to in the condition. Using this consistency
check and a partial order as defined previously, we obtain at the set of partition
condition of length n:

PCondn = {c E Condnlc is consistent" c is maximal wrt >}

9.4. DECIDABILITY RESULTS FOR DEGAS- 207

As before, this set induces a typical database state tdbn, that can be con­
structed using the consistency checking algorithm.

Now, we can again construct a graph to encode the execution of a rule. A com­
plication is that an object can move from one partition condition to another,
because of a change in another object. Therefore, we label the transition to
indicate, whether it is a direct or an indirect transition. A direct transition, la­
belled da, is caused by the direct application of a rule to the object. An indirect
transition, labelled in, is caused by the execution of a rule on another object.

We construct a graph for instance semantics IGn.'R and set semantics SGn,'R,
separately.

1. Vn EN: Nodes(SGn,'R) = NodesUGn,'R) = PCondn

2. Vn EN, Vc1, c2 E PCondn:
3o E Q.JI (tdbn) :

C1 (o, tdbn) A c2 (o, Execute(R, tdbn, set))

=
(c1, c2, da) E Edges(SGn,'R)

3o E Q.JI (tdbn) :
c1 (o, tdbn) A c2(0, Execute(R(o), tdbn, instance))

=
(c1,c2,da) E EdgesUGn,'R)

3. Vn EN, Vc1,C2 E PCondn:
3o </:. QJI (tdbn) :

C1 (o, tdbn) I\ c2 (o, Execute(R, tdbn, set))

=
(c1,c2, in) E Edges(SGn,'R)

301 E QJl(tdbn):

=

c1 (o, tdbn)
I\

302 E tdbn:
02 E QJl(tdbn) A 011' 02
I\

c2 (01, Execute(R (02), tdbn, instance)

(c1,c2, in) E EdgesUGn:r)

This graph encodes the evolution of an object under the execution of the sin­
gleton rule set 'R = {R}, if we taken= length(CR), This graph has the useful
property, that:

208 9.4. DECIDABILITY RESULTS FOR DEGAS-

Claim 8.1 In the graphs SGn,'R and IGn,'R, there are no cycles of a length greater
than 1.

Thus, deciding termination amounts to the detection of da-cycles of length
1, since this indicates the possibility of infinite application of a trigger to an
object. This is a decidable problem. Confluence of a trigger set can be decided
by checking whether each object has a unique sink. □

Proof of Claim 8.1 The first thing to be noted, is that we have taken the value
of n, such that any change seen by an object through the trigger condition is
included in the partition condition. In addition, the use of disjunction in the
partition conditions means that other objects' states that are indifferent to the
local object are included in the partition condition. We should also keep in
mind, that application of the action to an object is idempotent.

There are three possible configurations for cycles of length greater than 1:

1. Cycle consisting of da-edges only

2. Cycle consisting of in-edges only

3. Cycle consisting of at least one da-edge with the other edges in-edges.

Because of the idempotence of rule application, cycles consisting only of da­
edges must be of length 1. A cycle consisting of more than one da-edge would
mean, that the local state of the object changes after the first application of the
rule to that object. This is in contradiction to the idempotence of rule applica­
tion in DEGAS-.

The value of n is chosen in such a way, that all variables of importance to the
object are incorporated in the partition conditions. Since there is no change
in the local state during an in-transition, there must be another object that
changes. However, the local state of any object changes at most once during
any rule execution. Therefore, it is not possible that an object's state returns
to its initial state after the first rule application to it. This also implies the
impossibility that all objects referring to a partition condition return to their
initial states. This is exactly what would happen, if an in-cycle were present in
the graph. Therefore, a cycle of more than one in-edge cannot exist.

For the next case, we first show that we need only consider mixed da-in-cycles
with one da-edge. Suppose a mixed cycle contains more than one da-edge, one
from c1 to c2 and the second from Ci to Ci+l· The local state of the object does
not change with the second application of the rule. Therefore, there must be
a da-edge from c1 to Ci+l· This means that there always is a shorter cycle, if
there are more than one da-edge.

Now, we consider a cycle consisting of one da-edge from c1 to c2 and of in­
edges otherwise. The argument for the non-existence of such a cycle is the

9.4. DECIDABILITY RESULTS FOR DEGAS- 209

same as for the non-existence of a cycle of only in-edges. This is also obvi­
ous, because the existence of such a mixed cycle requires that the object itself
reverts to its initial state.

Thus, every cycle in the graph must be of length 1. As a result of this, we can
construct a database for each path through the graph. It is obvious that a data­
base can be constructed for a single transition in the graph. The method used
is the consistency checking algorithm mentioned earlier. This can be extended
in a straightforward way for an acyclic graph. It is also obvious that we can
construct a database that follows a cycle of length 1. □

Although termination is decidable for a singleton trigger set, it is not for a set
of more than one trigger. The reason is, that the DEGAS- model is powerful
enough to simulate a Turing Machine. In a Turing Machine, all replacements of
values on the tape is by constant symbols. Only in moving the head, we need
communication between cells, which can be done by reading a status attribute
at the neighbouring cell.

We first show, how a Turing Machine is emulated using DEGAS- objects. The
specification of a cell, without the rules, is given in Figure 9.4. Each cell on the
tape is represented by an object. It contains the identities of its neighbouring
cells in the attributes left-neighbour and right-neighbour. The attribute
value contains the symbol on the tape in this cell. The state of the Turing Ma­
chine is recorded in the attribute state, if the head is on this cell. The attribute
current indicates whether the head is on this cell. The other two attributes,
next and from, are used during movement of the head.

In this attribute specification, the types Symbol, State and all finite sets can be
considered subsets of Integer, with the constants denoting a certain number.
No extra functionality is added to DEGAS- by using these types.

The transition table is recorded in the rules that each record one entry of the
transition table. These rules are activated, when a cell becomes the current cell.
To make sure the right cell is designated as the current cell, we need a number
of bookkeeping rules, two each for moving the head to the left and the right.
Please note, that we have labelled the rules for ease of discussion.

The execution of a transition is triggered on a cell, when the cell is current
and the previous cell is finished. Thus, the execution rule for the transition
determined by the state s and value v becomes:

/*** Execute(s, v) *** I
If current=yes /\ from.next=neutral /\ from.state=s /\ value=v
do execute(x1 = c1,x2 = c2,X3 = C3)

where c1 denotes the new symbol for the cell, c2 the direction the head moves
to and c3 the new state of the Turing Machine.

210

Object Cell
Attributes

left-neighbour : Cell
right-neighbour : Cell
value : Symbol
state : State
next : { left, right, neutral }
current : { yes, no }
from: Cell

Methods

9.4. DECIDABILITY RESULTS FOR DEGAS-

execute(x1:Symbol, xi:{left,right}, x 3:State) = {
value:=x1
next:=x2
state:=x3

}
become-current-left()= {

from:= right-neighbour
current:=yes

}
become-current-right() = {

from:= left-neighbour
current:=yes

}
not-current-anymore() = {

current:=no
next:=neutral

}
Rules

EndObject

Figure 9.4: Specification of a cell in the DEGAS - Turing Machine emulation

9.4. DECIDABILITY RESULTS FOR DEGAS- 211

After the transition is executed, the head must be moved to the next cell. If
the head moves to the left, the cell that is next, must change its status to cur­
rent. It knows it may do this, if its right neighbour has recorded that the head
moves left. The action to be taken is the method become-current- left This
is specified by the following rule:

/ *** To-be-current-le~ *** I
If right-neighbour.next=left /\ right-neighbour.current=yes
do become-current-left

When the destination cell has registered that it is the current cell, the previous
cell must set current to no and erase the movement data in next.

/ *** Was-current-le~ *** I
If next=left A current=yes /\ left-neighbour.current=yes
do not-current-anymore

The latter two rules are also defined for a head movement to the right. Their
definition is analogous to the rules for the left movement, with the appropriate
substitutions of left and right.

To give a better insight in the emulation of a Turing machine by these rules,
we show how these rules achieve the movement of the head to the left. The
two ce 11 objects of interest are shown with their contents. We start right after
the application of an Execute rule on the right cell. At that time, the attribute
valuations are as follows:

Oid=Newcell Oid=Oldcell
current=no current=yes
next=neutral next=left
from=? from=?
state=? state=s
value=v1 value=v2
right-neighbour=O1dcel/ right-neighbour=?
left-neighbour=? left-neighbour=Newce11

Object Newcell satisfies the condition of to-be-current- left, so the method
become-current-left is executed on this object. This results in the following
attribute valuations:

Oid=Newcell Oid=Oldcel/
current=yes current=yes
next=neutral next=left
from=Oldcel/ from=?
state=? state=s
value=v1 value=v2
right-neighbour=O1dcel/ right-neighbour=?
left-neighbour=? left-neighbour=Newcell

Now, Newcell's current attribute has been set. Hence, current must be set
to no in Oldcell. This is done by the rule Was-current- left, that executes on
Oldcell. The result is:

212 9.4. DECIDABILITY RESULTS FOR DEGAS-

Oid=Newcell Oid=Oldcell
current=yes current=no
next=neutral next=neutral
from=Oldcell from=?
state=? state=s
value=v1 value=v2
right-neighbour=Oldcell right-neighbour=?
left-neighbour=? left-neighbour=Newce/1

Now, the condition for the rule Execute(s, v 1) is satisfied and its action is
executed. After that, the head is again moved by the bookkeeping triggers.

A final note on the emulation of a Turing Machine by a DEGAS- database is
on starting the Turing Machine. The Execute (s, v) rules are triggered by the
neutral state of the previous cell in the execution. However, there is no previous
cell at the start. Therefore, we need an extra cell, that is not part of the tape
and has its next attribute set to neutral. The from attribute of the starting cell,
i.e., the cell where the head is positioned at the start of the execution, is set to
this extra cell.

It is obvious that the given bookkeeping rules correctly implement the head
movement. For each entry in the transition table of the Turing Machine, we can
define an Execute rule. A transition consists of a tape symbol and a state of
the machine, resulting in writing a new value on the tape, moving the head left
or right and a new state. These can be translated to triggers by filling in these
values for s, v, c1, c2 and c3, respectively.

In order to show that this emulation of a Turing Machine is the same under
instance and set semantics, we have to show that no rule is executed on more
than one object at the same time. The attributes governing rule application are
current and next. If we start with a correct input state, only one eel l ob­
ject will have current set to yes and all next attributes will be set to neutral.
Obviously, as long as only one object has current set to yes, any rule is only
executed on one object. The only time cur rent equals yes in two objects si­
multaneously is during the movement of the head. This, however, immediately
triggers the Was-current-{left, right} rule, that sets the current attribute
of the previous cell to no. No other rule is triggered in this situation.

Lemma I For each Turing Machine TM exists a pair ('.R, db) with 'R a rule set
and db a database state, such that ('R, db) implements TM under both instance
and set semantics.

The possible emulation a Turing Machine in DEGAS- gives a clear indication of
the decidability of termination of a rule set. The halting problem for Turing
Machines is known to be undecidable. Therefore, termination of a set of rules
in DEGAS - is also an undecidable problem.

Theorem 9 Let 'R be a trigger set in DEGAS- and let sem denote either instance
or set semantics. Terminate('R, sem) and Confluent('R, sem) are undecid­
able predicates in this case.

9.4. DECIDABILITY RESULTS FOR DEGAS- 213

Proof According to Lemma 1, everything that can be computed on a Turing
machine, can be computed by using DEGAS- rules. Suppose we could decide
termination of a set of rules in DEGAS-. Then, we could solve the problem
whether a Turing Machines terminates on every input by translating the Turing
Machine to a DEGAS- database. Termination, however, is undecidable for Turing
Machines (see, e.g., [Lewis and Papadimitriou, 1981]). Therefore, termination of
a set of rules in this model must be undecidable.

Since

Confluent('R,sem) ⇒ Terminate('R,sem)

and Terminate('R, sem) is undecidable, Confluent('R, sem) is also unde­
cidable. □

The possibility of simulating a Turing Machine points us to a stronger predicate,
that is decidable for Turing Machines, viz., termination of a set of rules in n
steps. The restriction to a limited number of steps imposes an upper bound on
the time a decision procedure can take. We can simply run the rule set on a
typical database state of sufficient length, until we reach the maximum number
of steps. We then check whether rule execution has terminated or not.

A similar strategy is applied to solve a stronger predicate than confluence, pair­
wise independence of rules. This means that the both possible sequences for
two rules yield the same database state. If all rules are pairwise independent,
and the rule set is terminating, then the rule set is confluent. We can test this
on the typical database state by running both possible executions of each pair
and comparing the result. Thus, we have the following theorem:

Theorem 10 For a rule set 'R, semantics sem and an integer number n > 0 the
predicates Terminate(n, 'R, sem) and Independent('R, sem) are decidable
DEGAS-.

As a consequence, termination and confluence are decidable for independent
rule sets.

Corollary 1 Terminate('R, sem) and Confluent('R, sem) are decidable pre­
dicates for an independent rule set 'Rand semantics sem.

Proof If all rules in 'R are independent, we can rearrange an execution se­
quence of 'Rat will. Let 'R = {R1, ... ,Rn}- Any execution sequence of 'R can be
rearranged into the form R1; ... ;R1;R2; ... ;R2; . . . ;Rn; ... ;Rn}. For each Ri E 'R
individually, we can decide termination. If each Ri E 'R terminates individually,
then it is obvious that 'R terminates.

Because we can rearrange an execution sequence of an independent trigger set
'R at will, 'R is obviously confluent. □

214 9.5. CONCLUSION

9. 5 Conclusion

In this chapter, we have explored the decidability of active rules in two re­
stricted version of DEGAS, DEGAS - and DEGAs- 2. In the simplest language, DE­

GAs-2, termination and confluence are decidable properties. The mere addition
of path expression in the selection condition, in DEGAS-, makes these proper­
ties already undecidable. Additionally, the emulation of a Turing machine by a
very simple rule language shows the power of the active rule paradigm. Since
an event-condition-action language is a superset of a condition-action language,
the undecidability results for termination and confluence also apply to ECA
rules.

A consequence of these undecidability results for DEGAS - , termination and con­
fluence are also undecidable for the full DEGAS model. In fact, termination of a
single DEGAS rule is already undecidable, because we can translate the Turing
Machine emulation of Section 9.4 to a single DEGAS rule and method using the
fora 11 ... in ... where ... do construct.

Most practically useful active database systems need to incorporate a more
complex rule language than those considered in this chapter. Therefore, we
need to find other ways to obtain the desired properties of trigger sets. One of
the approaches to guarantee termination and confluence are sufficient condi­
tions. It is possible to formulate conditions on rule sets, that guaranteed termi­
nation and confluence of the set. Not all terminating rule sets, however, satisfy
a sufficient condition for termination. Thus, a number of terminating rule sets
will be rejected for use. Alternatively, we can take a purely empirical path and
monitor the active database system in use. If the number of successive rule
applications exceeds a preset limit, we cancel rule execution. This prevents a
system from getting stuck in rule execution, but it does nothing to prevent
the re-occurrence of the non-terminating rule application. Another problem of
monitoring is, that we cannot monitor a property like confluence. To detect
non-confluence, rule application would have to be repeated twice in exactly the
same database state.

To overcome the drawbacks of both mentioned approaches, we need a more
sophisticated method. We propose to build a learning capability into the active
objects. Thus, an object is able to learn to avoid the situation where it gets into,
for example, a non-terminating rule application. In order to avoid such situa­
tions, an active object will be able to change its rules. This requires a different
specification of the active object's functionality, possibly borrowing from the
area of intelligent agents as discussed in Chapter 10. This kind of strategy,
however, does not solve the problem of confluence.

215

Part IV

Outlook and Conclusions

217

Chapter 10

Outlook

Previous chapters of this thesis introduced and formalised the DEGAS model
for a database of autonomous objects. Furthermore, we discussed the design
and verification of DEGAS database. This chapter takes a brief look at future
directions of computing environments based on autonomous objects. Here, we
assume the move towards increased distribution of computing already men­
tioned in Section 2.1. A model for distributed computing that has generated
much interest in the research community is the notion of intelligent agents
[Shoham, 1993, CACM, 1994). Hence, we combine databases and agents in two
ways in this chapter. First, we examine the opportunities of agent technology
in active databases. Second, we look at a data management environment based
on agents.

10.1 Active Databases and Agents

The ongoing miniaturisation of computers is leading us to a world, where com­
puters are omnipresent. This phenomenon has become widely known under
the name ubiquitous computing [Weiser, 1993, Abowd, 19961. Although this de­
velopment is still in its early stages, there is already some consensus on the

· software architecture for ubiquitous computing. This consensus considers in­
telligent agents [Shoham, 1993, CACM, 1994) the most promising paradigm for
future information systems. In this paradigm, software consists of a number of
entities collaborating towards a common goal, functioning autonomously with
little intervention. Hence, it is reasonable to expect that, in future computing
environments, information systems will be based on a large number of cooper­
ating agents.

At the same time, research in databases, the traditional foundation of an infor­
mation system, has addressed the inclusion of additional modelling notions in
databases. This has lead, among other things, to active databases, i.e., databases

218 10.1. ACTIVE DATABASES AND AGENTS

that include production rules. This allows databases to react autonomously to
certain situations in the database.

Since databases are the current foundation and agents a future foundation of
information systems, the question rises how information systems might evolve
from databases to agents. Since active databases are the first step in this evo­
lution, we examine the role agent technology can play in an active database.
The possibility of integrating agents in active databases was earlier mentioned
in [Bailey et al., 19951, which compared active databases and agent systems. Its
main focus, however, was on the similarity of concepts in both areas, whereas
we look into the opportunities agent technology offers active databases.

In this section, we first identify the "level of agency" in DEGAS. Then, we present
our view on the benefits the addition of further features of agent technology can
bring to active databases.

10.1.1 Agency in Active databases

Research on agents generally distinguishes weak and strong agency. A software
system is said to have weak agency, if it possesses the following four properties
[Wooldridge and Jenning, 1995):

• autonomy

• social ability

• reactivity

• pro-activeness

Object autonomy is one of the base assumptions in DEGAS. Each DEGAS object
is itself a process. Furthermore, its dependence on other objects is as small
as possible through complete encapsulation and minimal assumptions about
the behaviour of other objects. Hence, the criterion of autonomy is satisfied by
DEGAS objects. Social ability means that agents interact with other agents in the
system through an agent communication language. DEGAS objects pass mes­
sages to other objects and engage in relations with them. DEGAS objects react
to their environment by answering messages. Furthermore, rules also specify
reactions to situations that occur in the DEGAS database. Pro-activeness means
that agents can take the initiative to achieve certain goals. Although goals are
not explicit in a DEGAS object, active rules are instrumental to achieving a goal.

There is less consensus over stronger levels of agency. In general, strong agency
is concerned with mentalistic notions. For the discussion in this paper, we take
the four dimensions formulated by Shoham [Shoham, 1993):

• knowledge

• belief

10.1. ACTIVE DATABASES AND AGENTS 219

• intention

• obligation

These notions are not explicitly supported by DEGAS objects. Although rules
can be used to express obligations, they are not formulated as such. An obliga­
tion of an agent is specified by a goal that must be achieved. Instead, an ECA
rule is just an instruction to execute a certain action in a specified situation,
although this action will be instrumental in fulfilling the obligation.

Likewise, intention is only implicitly present and, as far as it is present, not
arrived at by the DEGAS object itself. We could say, that a rule to maintain a
database constraint expresses the intention to maintain that constraint. Inten­
tion and instrument to realise this intention, however, are fixed to each other.
If intention is an independent notion to an agent, it first derives its intention
and then reasons about the actions to realise it.

Knowledge and belief are unknown notions in an active database. Although a lot
of information is stored, the way to process these data is fixed by the methods
and rules specified. Furthermore, a database usually lacks the ability to reason
with and about the information it contains in a general way.

10.1.2 Extending Agency in an Active Database

In the previous section, we saw that DEGAS supports weak agency. In addition,
limited representation of obligation and intention are present. In this section,
we look at the potential results of extending the level of agency in an active da­
tabase, taking DEGAS as a starting point. In particular, we consider the benefits
of stronger agency for general database functionality.

Stronger agency is introduced in an active database by extending the capabil­
ities of the objects in the database. While DEGAS currently is a database of
autonomous objects, we would then have a database of agents. The agents in
such a database1 each manage a part of real world data, like an object repre­
sents a piece of data. This means that an agent contains a piece of data, and
additionally possesses a number of goals it has to achieve or maintain. Further­
more, a data agent will have a number of obligations. In part, these will exist to
facilitate DBMS functionality, e.g., an obligation to answer queries. Another part
of the obligations will be to other agents, caused by relations between agents.

The key advantage of the promotion of autonomous objects to agents lies in
the reasoning ability of agents. This allows a more abstract specification of the
database, both in application modelling and in implementing database func­
tionality. Triggers implement a tight binding between goals and means, so that

1or would we have to call it a data management society?

220 10.1. ACTIVE DATABASES AND AGENTS

an object has only one means to achieve a specific goal. By formulating goals
and means separately, more flexible solutions are possible for information sys­
tem functionality.

A prime example of the additional flexibility provided by separate goals and
means is given by constraints. In Chapter 3, we mentioned that triggers were
originally devised to deal with constraints more flexibly. The improvement trig­
gers offered over existing mechanisms was, that we could use different strate­
gies to maintain different constraints, instead of a single strategy for all con­
straints. Strong agency, by separating goals and means, gives us additional flex­
ibility by allowing multiple strategies to maintain a single constraint. The agent
can then infer which strategy is optimal in the current situation. In addition,
the presence of general problem-solving strategies in the database obviates the
need for specialised compilers, e.g., to produce rules to maintain constraints
[Ceri and Widom, 19901.

As an example consider the limit on the negative balance of a bank account. A
limit of 2000 in the red is specified by the constraint:

balance 2 -2000

Suppose now that a requested payment violates this constraint. In this situa­
tion, we have a number of strategies to enforce this constraint, of which we
mention four:

1. Refuse the payment

2. Transfer funds from a savings account

3. Sell some shares

4. Arrange a temporary loan

If we were to use triggers, we can specify only one strategy to enforce the limit
on this account. With its enhanced reasoning capabilities, an agent can choose
the best strategy to enforce this constraint, given its other goals, such as the
quality of its relation with the customer, income in the near future etc.

Another advantage of stronger agency over triggers, is found in the problem
of deciding termination of trigger sets. As we saw in Chapter 9, this is decid­
able only for very simple rule languages. Hence, we must find another way of
dealing with this problem than deciding it in advance or imposing conservative
pre-conditions on trigger sets. Stronger agency can help counter the problem of
non-termination in two ways. First, the separation of multiple means to achieve
the goal of a trigger, allows an agent to choose another means to achieve its
goal, if the means originally chosen has undesirable side-effects. Second, not
every possible execution of a non-terminating trigger set is non-terminating.
This means, that the agents can cooperate to avoid the non-terminating execu­
tion sequence of their triggered actions.

10.1. ACTIVE DAT ABASES AND AGENTS 221

As an example, consider the trigger activation graph given in Figure 10.1. In this
graph, the nodes are database states and the edges are trigger executions. For
example, in database state c trigger t3 is triggered, whose execution brings the
database in state e. The trigger set in this graph is non-terminating, since there
exists a cycle of triggers t2 and tl in this activation graph, which keeps the
database shuttling between database states band c. We can easily see, however,
that there is also a terminating execution sequence for this trigger set, viz., the
sequence tl; t3; t2; tl that leads to the stable state f.

a

ti

b d

t3

12 ti t2

C

t3

Figure 10.1: A trigger activation graph

The advantages given above of strong agency over the weak agency in an active
database also apply to dynamic database constraints. In DEGAS, the dynamic
constraints of an autonomous object are given by the lifecycles. This lifecycle
is fixed. Hence, a message that does not fit in the lifecycle is rejected outright. If
an autonomous object had higher level reasoning facilities, it would be possible
to negotiate a deal with the sending agent. For example, the receiving object
might give an indication of the time when it will be able to execute the requested
action. The sending object can then decide, depending on its other goals and
obligations, whether it can wait or take another course to achieve its goal.

If negotiations between agents are to take place between different agents in the
databases, we need, besides a language to conduct the negotiations in, a mea­
sure of the value of the different propositions being negotiated. This implies
the use of a monetary model. The use of such a model is experimented in a
somewhat different context in the Mariposa system [Stonebraker et al., 19961.
Here, the allocation of data storage and query processing in a distributed da­
tabase is managed through a bidding system. The fixed bidding protocol in
Mariposa, however, leads to undesirable effects in the allocation of data. In

222 10.1. ACTIVE DAT ABASES AND AGENTS

fact, it turns out that the richest site will end up with all the data, which means
that it only gets richer by consequently under-bidding the other sites for query
processing. Clearly, more sophisticated bidding and negotiation protocols are
needed, which leaves the components (agents) in the database more room for
manoeuvring to avoid undesired outcomes. For example, in the example of the
richest site taking all data, the other sites might temporarily adopt a "dumping"
strategy, i.e., working at a loss in order to gain back work and data.

The examples given of agents working out solutions for databases problems
by negotiating between themselves, can only work under certain assumptions
about their intentions. As research in game theory has shown [Rosenschein and
Zlotkin, 1994), it is difficult to come up with strategies without undesirable
outcomes, if not all players are cooperative. Therefore, agent research often as­
sumes, as [Shoham, 1993) does, the veracity and benevolence of agents towards
each other. This assumption cannot be held if agents in our information sys­
tem must interact with agents owned by other people or organisations. Hence,
agent research must find a solution for dealing with uncooperative, lying and
malevolent agents in order to be able to form the foundation of an information
system, or an information infrastructure in general.

Further potential of agent technology in databases is found on the architectural
side. If agent technology matures enough to form the basis of a database man­
agement system, this will implicate a large gain in flexibility of a DBMS. The dif­
ferent components of a DBMS, such as query optimiser, storage manager, etc.,
can each be an agent with its own goals and strategies. Besides the increased
flexibility of the individual components, this also means increased freedom for
a systems designer to choose the components constituting his DBMS.

10.1.3 Conclusions

In this section, we discussed the autonomous behaviour that active databases
add to traditional databases. We saw that DEGAS implements weak agency, since
DEGAS objects interact with each other, react to their environment, and au­
tonomously pursue their defined goals. These functions, however, are limited
by their fixed, pre-programmed character.

The extension of autonomous DEGAS objects to stronger agents with general
purpose reasoning abilities greatly increases the adaptability and flexibility of
an active database system. The improvements originate in the ability to adapt
strategies to the actual situation, and the ability of agents to cooperate with
each other. Hence, the incorporation of agent technology in databases opens
up new perspective in tackling long-standing database issues. Increased cou­
pling and inter-operation of information systems, however, also poses some
new challenges for agent technology in order to deal with lying or malicious
agents from outside.

10.2. UBIQUITOUS DATABASES 223

10.2 Ubiquitous Databases

As already mentioned in Section 10.1, we see a move towards ubiquitous com­
puting [Weiser, 1993, Abowd, 19961. In a ubiquitous computing environment,
computers are everywhere and blend seamlessly into the physical environment.
This kind of computing environment is stimulated by the ever decreasing cost
of processing power and memory. This section discusses the impact of ubiqui­
tous computing on data management.

As a general rule, information recorded by computers is data previously re­
corded on paper. Initially, computers were used to store large paper file col­
lections in centralised databases, mainly in administrative applications. Nowa­
days, there is hardly an organisation recording and processing large volumes
of data that does not use computers. Relational database management systems
are particularly suited for managing large volumes of simply structured data.

From applications with bulk data, the use of computerised data storage spread
to applications with more complex data. Additionally, the diversity in structure
of the data is much higher. An example are computer-aided design systems. The
elaborate modelling concepts in object-oriented databases make them highly
suitable to manage the complexly structured data in this type of application.

As a next step, the World Wide Web, including intranets and extranets, is a
prime example of the increasing use of computers to store less-structured
data. Information previously distributed and stored on paper is nowadays dis­
tributed and stored electronically. Furthermore, almost every piece of informa­
tion in this environment has a different structure, meaning a further increase
in diversity of data stored.

Extrapolating the development of data storage, all written information will ul­
timately be stored in electronic form. Furthermore, we see an increasing popu­
larity of mobile computing and communication devices. As a result of these de­
velopments, we will see an increasing demand for information to be available in
computerised form everywhere. In such a situation, the model of a centralised
database is not tenable anymore. The low cost and widespread distribution of
computing power means that the best place to store data on artifacts in the real
world will be these artifacts themselves.

An application area where a move towards ubiquitous computing might be ben­
eficial is the shipment of maritime containers. Currently, the physical flow of
goods and the information flow are separated. For example, the information
needed to compile the bill of lading, describing a ship's cargo, is taken from
the transport orders of each container. In a paper-based system, the transport
order is sent to the container terminal in advance of the container's arrival by
train or lorry at the terminal. Although this might be handled by an Electronic

224 10.2. UBIQUITOUS DATABASES

Data Interchange system, the actual arrival of the container still needs to con­
firmed manually.

Suppose now, that each container has its own small computer with a wireless
networking capability. All necessary information about the container and its
load are recorded on this computer. Then, a ship's bill of lading is generated
simply by aggregating these data from all containers on the ship. The moment a
container is loaded onto the ship, it is added to the bill of lading. Furthermore,
this functionality increases the efficiency of the terminal. If a lorry loaded with
a container arrives at the port, the driver no longer needs to hand over the
container manually. Instead, the container's arrival is registered automatically
at the gate and the required information is transferred to the terminal man­
agement system. The driver can then immediately be directed to the place to
unload the lorry.

What are the requirements on a model for a ubiquitous computing environ­
ment? The assumptions underlying DEGAS we gave in Section 2.4 also apply to
the objects in a ubiquitous computing environment:

1. Every object has a separate thread of execution.

2. Complete encapsulation of the behaviour of an object.

3. Strictly regulated access to an object.

4. Minimal guarantees about an object's behaviour to other objects.

5. Minimal dependency of an object on the behaviour of other objects.

6. Autonomy must be given up explicitly.

As a result of these assumptions, DEGAS object function autonomously on an
infrastructure that facilitates object creation and communication. Two main
modifications need to be made to make the DEGAS model fit for ubiquitous
data management. First, objects need to be aware of their location. Second, the
class structure must be changed to conformance-based model.

Addition of location awareness happens both at the hardware and at the soft­
ware side of a computing unit. A computing unit must have hardware to deter­
mine its position. This may be based on a cellular system or on a GPS-based2

device. On the software side, every object has a standard attribute location
recording its location. This attribute is fed by the hardware part of the comput­
ing unit. Location information can then be used to establish relations based on
nearness. For example, a container has a relation with the ship it is on, which is
established at the time the container is loaded onto the ship. In a cellular sys­
tem an object always has a relation with the cell it is in. As part of this relation,

2Global Positioning System. See [Hofmann-Wellenhof et al., 1994) for details.

10.3. CONCLUSION 225

the cell can inform other objects of the object's presence. For example, the cell
representing the container terminal's area informs the terminal management
system of new container objects entering the cell. This kind of functionality is
well-suited to be modelled by ECA rules.

To cater for the diversity of data in a ubiquitous computing environment, the
class structure of DEGAS needs to be loosened. Instead of creating objects as
instances of a class, classes become classifications of objects. An object belongs
to a class, if it has the capabilities defined by the class. It can, however, have
additional capabilities not present in other instances in the class. This kind of
object classification was proposed in, among others, the Goblin database pro­
gramming language [Kersten, 19911. In such a system, objects can be created by
cloning. Furthermore, it means a generalisation of the DEGAS addon mechanism
to arbitrary additions of individual capabilities.

10.3 Conclusion

In this chapter, we provided an outlook on future evolution of DEGAS. The key
notion in this outlook is agency. In Section 10.1, we discussed the impact of
agents on active databases. We showed that an active object-oriented database,
like DEGAS, already implements weak agency. Furthermore, stronger agency in
an active database will allow increased flexibility in dealing with application
constraints. It also offers new opportunities to solve long-standing issues in
active databases.

Section 10.2 took the reverse view. It discussed data management in ubiquitous
computing environments based on agents. From this discussion, we learned
that incremental modifications of the DEGAS model yield a model for a ubiqui­
tous computing environment, viz., addition of location awareness and a looser
class structure.

226 10.3. CONCLUSION

227

Chapter 11

Conclusion

In this thesis, we formulated DEGAS, a database of autonomous objects, which
positively answered the research questions in the problem statement in Chap­
ter 1. The formulation and application of DEGAS led to the following answers:

1. A DEGAS database is easy implementable, since an implementation re­
quires only two entities, a basic DEGAS object and a system layer, as was
discussed in Chapter 7.

2. DEGAS facilitates a clean, modularised application design, as was shown
in Chapter 8. The application designs are characterised by small units of
functionality, that facilitates easy understanding of the design.

3. DEGAS has a direct, straightforward formalisation {given in Chapter 5),
that has the additional advantage of formalising a historical object data­
base.

Furthermore, DEGAS contributes to research in active, temporal, and object­
oriented databases in a number of ways. The main contributions of DEGAS to
database research can be summed up as follows, in order of importance:

1. Modularisation of an active database. A wider application of active rules
leads to large rule sets. To manage these rule sets some form of mod­
ularisation is needed. In DEGAS, rules are encapsulated in objects. Fur­
thermore, encapsulation of rules is a consequent application of object­
oriented principles to active databases. Chapter 8 showed how this en­
capsulation facilitates a clear application design, showing the quality of
the DEGAS modelling primitives.

2. Object evolution. DEGAS' addon mechanism provides a straightforward
mechanism for object evolution. This mechanism is well-suited to imple­
ment object roles. Furthermore, the combination of the addon mechanism
with rule encapsulation facilitates a clear modularisation with just-in-time
availability of capabilities, as was shown through the workflow example
in Chapter 8.

228

3. A process-algebraic, formalisation and integration of active and histor­
ical databases. The formalisation of DEGAS semantics by process algebra
has two main advantages. First, it shows that active and historical da­
tabases can be specified by a single semantics. In particular, active rule
semantics are defined relative to an object's history. Second, the use of
process algebra for event expressions allows a direct definition of the se­
mantics without intermediate translations.

4. Queries in an active database. The event detection facility to support
rules in an active database can also be used to specify temporal condi­
tions. Hence, the defined query model for DEGAS has an event-condition
combination as the selector of a query. This gives us novel ways to specify
temporal conditions. An added advantage is that the semantics of rules
and queries share the event-condition part.

5. Undecidability results for rules. We showed that termination and conflu­
ence are undecidable predicates for rule sets in a subset of DEGAS. Hence,
these are predicates are also undecidable for DEGAS

The development of DEGAS learned us that a database of autonomous objects
is a feasible proposition in a number of aspects. The formalisation of a da­
tabase at an object level shows clear advantages, especially in the integration
of active and historical dimensions. The straightforward implementation of a
DEGAS database based on just two primitive elements, the basic DEGAS object
and a system layer, contributes to the practical attractiveness of DEGAS. From
the design of a workflow application we learned that the DEGAS model leads to
easy-to-understand and flexible object designs for applications.

Furthermore, DEGAS offers its innovations in a model that is an evolution of ex­
isting object models. A standard object design using only attributes and meth­
ods can be translated to DEGAS without any modification besides the addition
of a lifecycle. Hence, DEGAS facilitates a gradual migration path from traditional
object models.

A number of DEGAS' aspects offer perspective for further research. These con­
cern the formalisation of object semantics, the facilities for evolution, and the
looser coupling of capabilities and objects.

One of the innovative aspects of DEGAS is the integrated formalisation of ac­
tive and historical databases. In DEGAS, this combination arose from a careful
analysis of an active database's requirements. A generalisation of this model to
temporal databases with multiple temporal dimensions raises some interesting
issues. These are mainly related to the possibility of inserting events with past
valid timestamps. Additional rule triggering modes are necessary, since trigger­
ing a rule on an event with a past valid time will not always be sensible in an
application. A further complication in this situation is the lifecycle. Insertion
of an event with a past valid time can cause a violation of the lifecycle by a

229

sequence of past events. Since history cannot be undone, lifecycles must also
specify what happens in case of violations. Clearly, this requires a more so­
phisticated specification formalism than process algebra, possibly some form
of deontic logic [Von Wright, 1972, Meyer and Wieringa, 19911.

The current facilities for evolution in DEGAS only allow object evolution. These
facilities can be extended to the class level of DEGAS to implement an aspect of
schema evolution, viz., changes of a class' capabilities. Class evolution is more
complicated than object evolution due to the number of objects involved, viz.,
all instances of a class. Enforcement of schema changes is mainly complicated
by the existence of multiple class objects. Application of a voting protocol is
necessary to avoid schema conflicts between class objects. A further extension
of evolution facilities will probably fit better with class membership based on
type conformance. The introduction of DEGAS-style schema evolution facilities
in a model with conformance-based class membership for autonomous objects
forms an interesting proposition. In such an environment, a class informs its
members of the update to the class' schema. As a consequence of object auto­
nomy, each member gets the opportunity to respond, whether it will follow the
schema update and remain a member of the class, or not.

DEGAS' application designs add capabilities to an object at the time they are
needed. This is a consequence of the distinction between inherent and tran­
sient capabilities. A further feature of DEGAS is that relation objects are exis­
tentially dependent on other objects. Hence, their existence is inherently tempo­
ral, meaning that a relation object is also a temporal grouping of capabilities.
Furthermore, data stored in relations will often be derived from its partners'
data. These features all imply a looser coupling of data and the entities group­
ing data. This coupling might be further loosened by dropping the distinction
between objects and queries. This would lead to a model with primitive data
items, as small a single capabilities, and higher level groupings of data. These
groupings define a small "schema" of information, that is assembled from prim­
itive data in the system. These data groupings are similar to DEGAS queries in
their definition of data derived from primitive data. Leaving the distinction be­
tween objects and queries means that queries become autonomous objects too.
Hence, the objects representing data groupings assemble the data themselves,
like DEGAS relation objects obtain data from the partners in the relation.

Summing up this thesis, we conclude that a database of autonomous objects is
a good proposition. It leads to a clean object model, is founded on a straight­
forward formalisation, and can be implemented on a small base of primitives.
Furthermore, it opens up new perspectives for further developments of object­
based systems.

230

231

Bibliography

!Aalst et al., 1994) W.M.P. van der Aalst, K.M. van Hee, and G.J. Houben. Modelling
workflow management systems with high-level Petri nets. In G. De Michelis, C. Ellis,
and G. Memmi, editors, Proceedings of the Second Workshop on Computer-Supported
Cooperative Work, Petri nets and related formalisms, pages 31-50, 1994.

!Abiteboul and Simon, 1991) Serge Abiteboul and Eric Simon. Fundamental properties
of deterministic and non-deterministic extensions of datalog. Journal of Theoretical
Computer Science, 78:137-158, 1991.

[Abowd, 1996) Gregory Abowd. Software engineering and programming language con·
siderations for ubiquitous computing. ACM Computing Surveys, 28(4):190, 1996.

[Agha et al., 1993] Gul Agha, Peter Wegner, and Akinori Yonezawa. Research Directions
in Concurrent Object-Oriented Programming. MIT Press, Cambridge, MA, USA, 1993.

[Agha, 1986) Gul A. Agha. ACTORS: A Model of Concurrent Computation in Distributed
Systems. The MIT Press, Cambridge, MA, USA, 1986.

!Aiken et al., 1992] Alexander Aiken, Jennifer Widom, and Joseph M. Hellerstein. Be·
havior of database production rules:termination, confluence, and observable deter·
minism. In Proceedings of the 1992 ACM SIGMOD International Conference on the
Management of Data, pages 59-68, 1992.

IAkker and Siebes, 1995a) J.F.P. van den Akker and A.P.).M. Siebes. A data model for
autonomous objects. Technical Report CS·R9539, CWI, Centre for Mathematics and
Computer Science, Amsterdam, The Netherlands, 1995. Available through WWW
from www . cwi . n l .

[Akker and Siebes, 1995b) Johan van den Akker and Arno Siebes. Applying an ad·
vanced data model to graphic constraint handling. In Remco Veltkamp and Ed·
win Blake, editors, Proceedings of the 5th Eurographics Workshop on Programming
Paradigms in Graphics, pages 1-16, Maastricht, The Netherlands, September 1995.

[Akker and Siebes, 1996a) J.F.P. van den Akker and A.P.JM. Siebes. DEGAS: A tempo·
ral active data model based on object autonomy. Technical Report CS·R9608, CWI,
Amsterdam, The Netherlands, 1996. Available through WWW from www. cwi . n l.

IAkker and Siebes, 1996b) Johan van den Akker and Arno Siebes. DEGAS: Capturing
dynamics in objects. In P. Constantopoulos, J. Mylopoulos, and Y. Vassiliou, edi·
tors, Advanced Informations Systems Engineering · Proc. of CAiSE'96, pages 82-98,
Heraklion, Crete, Greece, May 1996. Springer. LNCS 1080.

IAkker and Siebes, 1996cl Johan van den Akker and Arno Siebes. Object histories as
a foundation for an active OODB. In R. Wagner and H. Thoma, editors, Proceed·
ings of the 7th International Workshop on Database and Expert Systems Applications
(DEXA'96), pages 2-8, Zurich, Switzerland, 1996. IEEE Computer Society.

232 BIBLIOGRAPHY

[Akker and Siebes, 1997a) J.F.P. van den Akker and A.P.J.M. Siebes. Designing active
objects in DEGAS. Technical Report INS-R9702, CWI, Centre for Mathematics and
Computer Science, Amsterdam, The Netherlands, 1997. Available through WWW
www.cwi.nl.

[Akker and Siebes, 1997b) Johan van den Akker and Arno Siebes. DEGAS: A database
of autonomous objects. Information Systems, 22(2 & 3):121-138, 1997.

IAkker and Siebes, l 997cl Johan van den Akker and Arno Siebes. Enriching active data­
bases with agent technology. In Peter Kandzia and Matthias Klusch, editors, Proceed­
ings of the First International Workshop on Cooperative Information Agents (CIA '97),
pages 116-125, Kiel, Germany, 1997. Springer. LNAI 1202.

[Albano et al., 1993) A. Albano, R. Bergamini, G. Ghelli, and R. Orsini. An object data
model with roles. In Rakesh Agrawal, Sean Baker, and David Bell, editors, Proc. of the
19th Intl. Conf on Very Large Data Bases (VWB), Dublin, Ireland, 1993.

[Alhajj and Arkun, 1993) Reda Alhajj and M. Erol Arkun. A query model for object­
oriented databases. In AK. Elmargarmid and E.J. Neuhold, editors, Proc. of the 9th
Intl. Conf on Data Engineering (ICDE'93), pages 163-172, Wien, Austria, 1993.

[America, 1987] Pierre America. POOL-T: A parallel object-oriented language. In
A. Yonezawa and M. Tokoro, editors, Object-Oriented Concurrent Programming,
pages 199-220. MIT Press, Cambridge, MA, USA, 1987.

[Apers et al., 1992] P.M.G. Apers, C.A. van den Berg, P.W.P.J. Grefen, M.L. Kersten, and
A.N. Wilschut. PRISMA/DB: a parallel main-memory relational dbms. IEEE Transac­
tions on Knowledge and Data Engineering, December 1992.

[Appelrath et al., 1996) H.-J. Appelrath, H. Behrends, H. Jaspe, and 0. Zukunft. Case
studies in active database applications. In R. Wagner and H. Thoma, editors, Proceed­
ings of the 7th International Conference on Database and Expert Systems Applications
(DEXA'96), pages 69-78. Springer, 1996. LNCS 1134.

[Atkinson et al., 1989] Malcolm Atkinson, Franr;ois Bancilhon, David DeWitt, Klaus Ditt­
rich, David Maier, and Stanley Zdonik. The object-oriented database system mani­
festo. In Won Kim, Jean-Marie Nicolas, and Shojiro Nishio, editors, Deductive and
Object-Oriented Databases: Proc. of the 1st Intl. Conf(DOOD'B9), pages 223-240, Ky­
oto, Japan, 1989. North-Holland.

[Baeten and Weijland, 1990] J.C.M. Baeten and W.P. Weijland. Process Algebra. Num­
ber 18 in Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press, Cambridge, UK, 1990.

[Baeten, 1990] J.C.M. Baeten. Applications of Process Algebra. Number 17 in Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge, UK,
1990.

[Bailey et al., 1995] James Bailey, Michael Georgeff, David B. Kemp, David Kinny, and
Kotagiri Ramamohanarao. Active databases and agent systems - a comparison. In
Timos Sellis, editor, Proc. of the 2nd Intl. Workshop on Rules in Databases (RIDS'95),
pages 342-356, Athens, Greece, 1995. Springer. LNCS 985.

[Balsters and Fokkinga, 1991) Herman Balsters and Maarten M. Fokkinga. Subtyping
can have a simple semantics. Theoretical Computer Science, 87:81- 96, 1991.

[Balsters et al., 1993) Herman Balsters, Rolf A. de By, and Roberto Zicari. Typed sets
as a basis for object-oriented database schemas. In Proceedings of the 7th European
Conference on Object-Oriented Programming, 1993.

BIBLIOGRAPHY 233

[Bancilhon et al., 1992] Frani;:ois Bancilhon, Claude Delobel, and Paris Kanellakis. Build­
ing an Object-Oriented Database System: The Story of 0 2 . Morgan Kaufmann, San
Mateo, CA, USA, 1992.

[Baralis et al., 1996) Elena Baralis, Stefano Ceri, and Stefano Paraboschi. Modulariza­
tion techniques for active rules design. ACM Transactions on Database Systems,
21(1):1-29, 1996.

[Bell, 1992) Gordon Bell. Ultracomputers: a teraflop before its time. Communications
of the ACM, 35(8):26-47, 1992.

[Birtwistle et al., 197 4) G.M. Birtwistle, 0.-J. Dahl, and B. Myhrhaug. SIMULA begin. Stu­
dentlitteratur, Lund, Sweden, 1974.

[Boncz et al., 1996a] Peter A. Boncz, Fred Kwakkel, and Martin L. Kersten. High perfor­
mance support for 00 traversals in Monet. In R. Morrison and J. Kennedy, editors,
Advances in Databases: 14th British National Conference on Databases (BNCOD14),
pages 152-169, Edinburgh, UK, 1996. Springer. LNCS 1094.

[Boncz et al., 1996b) Peter A. Boncz, Wilko Quak, and Martin L. Kersten. Monet and
its geographic extensions: a novel approach to high performance GIS processing. In
P. Apers, M. Bouzeghoub, and G. Gardarin, editors, Advances in database technology
-EDBT '96, pages 147-166, Avignon, France, 1996. Springer. LNCS 1057.

[Bos and Laffra, 1991) Jan van den Bos and Chris Laffra. PROCOL: A concurrent object­
language with protocols, delegation and persistence. Acta Informatica, 28:511-538,
September 1991.

[CACM, 1994] Special issue on intelligent agents. Communications of the ACM, 37(7),
July 1994.

[Cardelli, 1984) Luca Cardelli. A semantics of multiple inheritance. In G. Kahn, D.B.
MacQueen, and G. Plotkin, editors, Proceedings of the International Symposium on
the Semantics of Data Types, pages 51-68, Berlin, Germany, 1984. Springer.

[Casati et al., 1996a) F. Casati, C. Ceri, B. Pernici, and G. Pozzi. Deriving active rules
for workflow enactment. In R. Wagner and H. Thoma, editors, Proceedings of the 7th
International Conference on Database and Expert Systems Applications (DEXA '96),
pages 94-115, Zurich, Switzerland, 1996. Springer. LNCS 1134.

[Casati et al., 1996b] F. Casati, C. Ceri, B. Pernici, and G. Pozzi. Workflow evolution. In
Bernhard Thalheim, editor, Conceptual Modelling - Proceedings of the 15th ER Con­
ference (ER'96), pages 438-455, Cottbus, Brandenburg, Germany, 1996. Springer.

[Catell, 1994) R.G.G. Catell. The Object Database Standard: ODMG-93. Morgan Kauf­
mann, San Mateo, CA, USA, 1994.

[Ceri and Widom, 1990] Stefano Ceri and Jennifer Widom. Deriving production rules
for constraint maintenance. In D. Macleod, R. Sacks-Davis, and H. Schek, editors,
Proceedings of the 16th International Conference on Very Large Data Bases, pages
566-577, 1990.

[Ceri et al., 1996) Stefano Ceri, Pietro Fraternali, Stefano Paraboschi, and Letizia Bran­
ca. Active Rule Management in Chimera, chapter 6 in [Widom and Ceri, 19951. 1996.

[Chen, 1976] Peter Chen. The entity-relationship model: Towards a unified view of
data. ACM Transactions on Database Systems, 1(1):9-36, 1976.

234 BIBLIOGRAPHY

[Choenni et al., 1996) R. Choenni, M.L. Kersten,].F.P. van den Akker, and A. Saad. On
multi-query optimization. Technical Report CS-R9638, CWI, Centre for Mathematics
and Computer Science, Amsterdam, The Netherlands, 1996. Available through WWW
from www . cwi . n l .

[Claramunt and Theriault, 1995] Christophe Claramunt and Marius Theriault. Man­
aging time in gis: An event-oriented approach. 1n James Clifford and Alexander
Tuzhilin, editors, Recent Advances in Temporal Databases -Proc. of the Intl. Workshop
on Temporal Databases, Workshops in Computing, pages 23-42. Springer, 1995.

[Codd, 1970] E.F. Codd. A relational model for large shared data banks. Communica­
tions of the ACM, 13(6):377-387, 1970.

[Dalen, 1985) D. van Dalen. Logic and Structure. Springer, Berlin, Germany, 2nd edition,
1985.

[Dayal et al., 1988a) U. Dayal, B. Blaustein, A. Buchmann, U. Chakravarthy, M. Hsu,
R. Ledin, D. McCarthy, A. Rosenthal, and S. Sarin. The HiPAC project: Combining
active databases and timing constraints. SIGMOD Record, 17(1):51-70, March 1988.

[Dayal et al., 1988b) Umeshwar Dayal, Alejandro P. Buchmann, and Dennis R. Mc­
Carthy. Rules are objects too: A knowledge model for an active, object-oriented
database system. In Advances in Object-Oriented Database Systems, pages 129-143,
Berlin, Germany, September 1988. 2nd International Workshop on Object-Oriented
Database Systems, Springer.

[Deux, 1990) 0 . Deux. The story of 0 2• IEEE Transactions on Knowledge and Data
Engineering, 2(1):91-108, 1990.

[Dittrich and Gatziu, 1993) Klaus R. Dittrich and Stella Gatziu. Time issues in active
database systems. 1n Proc. of the Intl. Workshop on an Infrastructure for Temporal
Databases, Arlington, TX, USA, 1993.

[Gal et al., 1996] Avigdor Gal, Opher Etzion, and Arie Segev. TALE: A temporal active
language and execution model. 1n P. Constantopoulos, J. Mylopoulos, and Y. Vassil­
iou, editors, Advanced Informations Systems Engineering - Proc. of CAiSE'96, pages
60-81, Heraklion, Crete, Greece, May 1996. Springer. LNCS 1080.

[Garcia-Molina and Kogan, 1988] Hector Garcia-Molina and Boris Kogan. Node auto­
nomy in distributed systems. 1n Sushi! Jajodia, Won Kim, and Abraham Silberschatz,
editors, Proc. of the Intl. Symposium on Databases in Parallel and Distributed Systems,
pages 158-166, Austin, TX, USA, 1988.

[Garcia-Molina and Salem, 1987) Hector Garcia-Molina and Kenneth Salem. Sagas. In
Proc. of the 1987 SIGMOD Intl. Con{. on the Management of Data, pages 249-259,
1987.

[Gatziu and Dittrich, 1993) Stella Gatziu and Klaus R. Dittrich. Events in an active
object-oriented database system. 1n Norman W. Paton and M. Howard Williams, edi­
tors, Rules in Database Systems, Proc. of the 1st Intl. Workshop (RIDS'93), Workshops
in Computing, pages 23-39, Edinburg, Scotland, UK, 1993. Springer.

[Gatziu and Dittrich, 1994) Stella Gatziu and Klaus R. Dittrich. Detecting composite
events in active database systems using Petri nets. 1n Proc. of the 4th Intl. Work­
shop on Research Issues in Data Engineering (RIDE-ADS'94), pages 2-9, Houston, USA,
1994.

BIBLIOGRAPHY 235

[Gatziu et al., 1991] Stella Gatziu, Andreas Geppert, and Klaus R. Dittrich. Integrating
active concepts into an object-oriented database system. In Paris Kanellakis and
Joachim W. Schmidt, editors, The Third International Workshop on Database Pro­
gramming Languages: Bulk Types and Persistent Data, pages 399-415. Morgan Kauf­
mann, 1991.

[Gehani et al., 1992] N.H. Gehani, H.V. Jagadish, and 0. Shmueli. Event specification
in an active object-oriented database. In M. Stonebraker, editor, Proc. of the 1992
ACM SIGMOD International Conference on the Management of Data, pages 81-90,
San Diego, USA, 1992.

[Geurts et al., 1990] Leo Geurts, Lambert Meertens, and Steven Pemberton. ABC Pro­
grammers Handbook. Prentice Hall International (UK) Ltd., Hemel Hempstead, UK,
1990.

[Ginsburg, 1993] Seymour Ginsburg. Object and Spreadsheet Histories, chapter 12 in
[Tansel et al., 19931 1993.

[Glasson et al., 1994) Bernard C. Glasson, Igor T. Hawryszkiewycz, and B. Alan Under­
wood, editors. Business process re-engineering: information systems opportunties and
challenges - Proc. of the IFIP TCB open conference, IFIP transactions A: computer sci­
ence and technology, Gold Coast, Queensland, Australia, 1994. North-Holland.

[Goldberg and Robson, 1983] Adele Goldberg and David Robson. Smalltalk-BO: the lan­
guage and its implementation. Addison-Wesley, Reading, MA, USA, 1983.

[Gottlob et al., 1996] Georg Gottlob, Michael Schrefl, and Brigitte Rock. Extending
object-oriented systems with roles. ACM Transactions on Information Systems,
14(3):268-296, July 1996.

[Hammer and Champy, 1993] Michael Hammer and James Champy. Reengineering the
Corporation: A Manifesto for Business Revolution. Harper-Collins, 1993.

[Hammer, 1990] Michaeli Hammer. Re-engineering work: Don't automate, obliterate!
Harvard Business Review, July 1990.

[Hanson, 1989] Eric N. Hanson. An initial report on the design of Ariel: A dbms with an
integrated production rule system. SIGMOD Record, 18(3):12-19, September 1989.

[Herbst et al., 1994] H. Herbst, G. Knolmayer, T. Myrach, and M. Schlesinger. The spec­
ification of business rules: A comparison of selected methodologies. In A.A. Verrijn­
Stuart and T.-W. Olle, editors, Methods and Associated Tools for the Information Sys­
tem Life Cycle, pages 29-46, Amsterdam, the Netherlands, 1994. Elsevier.

[Hofmann-Wellenhof et al., 1994) B. Hofmann-Wellenhof, H. Lichtenegger, and J. Col­
lins. Global Positioning System : Theory and Practice. Springer, third edition, 1994.

[IEEE, 1994] IEEE Computer Society. Proc. of the 1st Intl. Con{. on Requirements Engi­
neering, Colorado Springs, CO, USA, 1994.

[Imielinski and Badrinath, 1992) T. Imielinski and B.R. Badrinath. Querying in highly
mobil distributed environments. In Proc. of the 18th Con{. on Very Large Data Bases
(VWB'92), pages 41-52, Barcelona, Spain, 1992.

[Imielinski and Badrinath, 1994) Tomasz Imielinski and B.R. Badrinath. Mobile wireless
computing: Challenges in data management. Communications of the ACM, 37(10):19-
28, October 1994.

[ISO, 1994] International Standards Organisation. ISO-ANSI Working Draft: Database
Language SQL3, 1994. X3H2/ 94/080 and SOU/ 003.

236 BIBLIOGRAPHY

lJasper et al., 1995) Heinrich Jasper, Olaf Zukunft, and Helge Behrends. Time issues
in advanced work.flow management applications of active databases. In Active and
Real-Time Database Systems (ARTDB-95), Workshops in Computing, pages 65-81.
Springer, 1995.

[Kappel and Schrefl, 1996) Gerti Kappel and Michael Schrefl. Modeling object behavior:
To use methods or rules or both? In R. Wagner and H. Thoma, editors, Proceedings
of the 7th International Conference on Database and Expert Systems Applications
(DEXA'96), pages 584-602. Springer, 1996. LNCS 1134.

[Kersten, 1991) Martin L. Kersten. Goblin: a DBPL designed for advanced database ap­
plications. In Dimitris Karagiannis, editor, Database and Expert Systems Applications,
Proceedings of the International Conference, pages 354- 349, Berlin, Germany, 1991.
Springer.

[Kim, 1995) Won Kim. Modern Database Systems: The Object Model, Interoperability,
and Beyond. ACM Press/ Addison-Wesley, New York, USA, 1995.

[Lamport, 1978) Leslie Lamport. Time, clocks, and the ordering of events in a dis­
tributed system. Communications of the ACM, 21(7):558-565, July 1978.

[Lang et al., 1996) P. Lang, W. Obermair, and M. Schrefl. Situation diagrams. In R. Wag­
ner and H. Thoma, editors, Proceedings of the 7th International Conference on Da­
tabase and Expert Systems Applications (DEXA'96), pages 400-421. Springer, 1996.
LNCS 1134.

[Lewis and Papadimitriou, 1981) Harry R. Lewis and Christos H. Papadirnitriou. Ele­
ments of the Theory of Computation. Prentice Hall, Englewood Cliffs, USA, 1981.

[Loucopoulos, 1994) P. Loucopoulos, editor. Entity-Relationship Approach -ER '94 : busi­
ness modeling and re-engineering, Manchester, UK, 1994. Springer. LNCS 881.

[Lutz, 1996) Mark Lutz. Programming Python. O'Reilly & Associates, 1996.

[Maier and Stein, 1987) David Maier and Jacob Stein. Development and implementation
of an object-oriented dbms. In Bruce Shriver and Peter Wegner, editors, Research
Directions in Object-Oriented Programming. MIT Press, 1987.

[McAllester and Zabih, 1986) David McAllester and Ramin Zabih. Boolean classes. In
M. Meyrowitz, editor, Proceedings OOPSLA '86, pages 417-423, 1986.

[McKenzie and Snodgrass, 1991) L. Edwin McKenzie, Jr. and Richard T. Snodgrass. Eval­
uation of relational algebras incorporating the time dimension in databases. ACM
Computing Surveys, 23(4):501-543, December 1991.

[Meyer and Wieringa, 1991) John-Jules Meyer and Roel J. Wieringa, editors. Deontic
logic in computer science : normative system specification (selected papers from the
first international workshop on deontic logic in computer science (DEON'91)), Chich­
ester, UK, 1991. Wiley.

[Meyer, 1988) Bertrand Meyer. Object-oriented Software Construction. Prentice Hall
International, 1988.

[Morgenstern, 1983) M. Morgenstern. Active databases as a paradigm for enhanced
computing environments. In Proc. of the 9th Intl. Conf on Very Large Data Bases
(VLDB'83), pages 34-42, Firenze, Italy, 1983.

[Navathe and Ahmed, 1993] Shamkant B. Navathe and Rafi Ahmed. Temporal Exten­
sions to the Relational Model and SQL, chapter 4 in [Tansel et al., 19931. 1993.

BIBLIOGRAPHY 237

[Nijssen and Halpin, 1990) G.M. Nijssen and T.A. Halpin. Conceptual schema and rela­
tional database design: a fact oriented approach. Prentice-Hall, New York, USA, third
edition, 1990.

[OMG, 1996) The Common Object Request Broker: Architecture and Specification - ver­
sion 2.0. Technical Report PTC/96-08-04, Object Management Group, July 1996.

[Ozsu and Straube, 1991) Tamer Ozsu and Dave D. Straube. Issues in query model de­
sign in object-oriented database systems. Computer Standards & Interfaces, 13:157-
167, 1991.

[Porter, 1985) Michael E. Porter. Competitive Advantage: Creating and Sustaining Supe­
rior Performance. Free Press, 1985.

[Reisig, 1985] Wolfgang Reisig. Petri Nets: An Introduction. Monographs in Theoretical
Computer Science. Springer, Berlin, Germany, 1985.

[Richardson and Schwarz, 1991) Joel Richardson and Peter Schwarz. Aspects: Extend­
ing objects to support multiple, independent roles. In Proceedings of the ACM SIG­
MOD International Conference on the Management of Data, pages 298-307, 1991.

[Riet, 1989) R.P. van de Riet. MOKUM: An object-oriented active knowledge base sys­
tem. Data and Knowledge Engineering, 4:21-42, 1989.

[Rossum, 1995a) Guido van Rossum. Python library reference. Technical Report CS­
R9524, CWI, Amsterdam. The Netherlands, 1995. Available through the World Wide
Web fromwww.cwi.nl.

[Rossum, 1995b) Guido van Rossum. Python reference manual. Technical Report CS­
R9525, CWI, Amsterdam. The Netherlands, 1995. Available through the World Wide
Web fromwww.cwi.nl.

[Rossum, 1995cl Guido van Rossum. Python tutorial. Technical Report CS-R9526, CWI,
Amsterdam. The Netherlands, 1995. Available through the World Wide Web from
www.cwi.nl.

[Rosenschein and Zlatkin, 1994) Jeffrey S. Rosenschein and Gilad Zlotkin. Designing
conventions for automated negotiation. AI Magazine, 15(3):29-46, 1994.

[Rumbaugh and others, 1991) James Rumbaugh et al. Object-oriented Modeling and
Design. Prentice-Hall, Englewood Cliffs, USA, 1991.

[Rusinkiewicz and Sheth, 1995) Marek Rusinkiewicz and Amit Sheth. Specification and
execution of transactional workflows. In Won Kim, editor, Modem Database Systems:
The Object Model, Interoperability, and Beyond, chapter 29, pages 592-620. Addison­
Wesley, 1995.

[Sciore, 1991) Edward Sciore. Using annotations to support multiple kinds of version­
ing in an object-oriented database system. ACM Transactions on Database Systems,
16(3):417-438, 1991.

[Shaw and Zdonik, 1990) Gail M. Shaw and Stanley B. Zdonik. A query algebra for
object-oriented databases. In M.T. Liu, editor, Proc. of the 6th Intl. Con{. on Data
Engineering (ICDE'90), Los Angeles, CA, USA, 1990.

[Sheth and Larson, 1990) Amit P. Sheth and James A. Larson. Federated database sys­
tems for managing distributed, heterogeneous, and autonomous databases. ACM
Computing Surveys, 22(3):183-236, 1990.

[Shoham, 1993) Yoav Shoham. Agent-oriented programming. Artificial Intelligence,
60:51-92, 1993.

238 BIBLIOGRAPHY

[Siebes et al., 1995] A.P.J.M. Siebes, J.F.P. van den Akker, and M.H. van der Voort.
(un)decidability results for trigger design theories. Technical Report CS-R9556, CWI,
Amsterdam, The Netherlands, 1995. Available through WWW from www.cwi.nl.

[Simon and de Maindreville, 1988] Eric Simon and Christophe de Maindreville. Decid­
ing whether a production rule is relational computable. In Proceedings of the !CDT
BB, LNCS 326, pages 205-222. Springer, 1988.

[Sistla and Wolfson, 1995] A. Prasad Sistla and Ouri Wolfson. Temporal conditions and
integrity constraints in active databases. In Proc. of the 1995 SIGMOD International
Conference on the Management of Data, pages 269-280, San Jose, CA, USA, 1995.

[Snodgrass, 1994] Richard T. Snodgrass, (chair). TSQL2 language specification, 1994.
Available by FTP from ftp.cs.arizona.edu.

[Stonebraker et al., 1996] Michael Stonebraker, Paul M. Aoki, Witold Litwin, Avi Pfeffer,
Adam Sah, Jeff Sidell, Carl Staelin, and Andrew Yu. Mariposa: A wide-area distributed
database system. VLDB Journal, 5(1):48-63, 1996.

[Stonebraker, 1986a] Michael Stonebraker. The INGRES papers: anatomy of a relational
databases system. Addison-Wesley, 1986.

[Stonebraker, 1986b] Michael Stonebraker. Triggers and inference in database systems.
In M.L. Brodie and J. Mylopoulos, editors, On Knowledge Base Management Systems,
chapter 22, pages 297-314. Springer, 1986.

[Stroustrup, 1991] Bjarne Stroustrup. The C++ Programming Language. Addison­
Wesley, Reading, MA, USA, second edition, 1991.

[Tanenbaum, 1996] Andrew S. Tanenbaum. Computer Networks. Prentice Hall, Engle­
wood Cliffs, NJ, USA, third edition, 1996.

[Tansel et al., 1993] Abdullah Tansel, James Clifford, Shashi Gadia, Sushil Jajodia, Arie
Segev, and Richard Snodgrass. Temporal Databases: Theory, Design, and Implemen­
tation. Benjamin/Cummings, Redwood City, CA, USA, 1993.

[Ungar and Smith, 1987] David Ungar and Randall B. Smith. Self: The power of simplic­
ity. In Norman K. Meyrowitz, editor, Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA '87), volume 22 of SIGPLAN Notices,
pages 227-242, Orlando, FL, USA, December 1987.

[Von Wright, 1972] Georg Henrik Von Wright. An essay in deontic logic and the general
theory of action. North-Holland, Amsterdam, The Netherlands, 1972.

[Voort, 1994] M.H. van der Voort. A Design Theory for Database Triggers. PhD thesis,
Universiteit van Amsterdam, The Netherlands, September 1994.

[Vreeze, 1991] C.C. de Vreeze. Formalization of inheritance of methods in an object­
oriented data model. Technical Report M90-76, Dept of Computer Science, Univer­
siteit Twente, The Netherlands, 1991.

[Weiser, 1993] Mark Weiser. Some conputer science issues in ubiquitous computing.
Communications of the ACM, 36(7):74-84, July 1993.

[Widom and Ceri, 1995] Jennifer Widom and Stefano Ceri. Active Database Systems:
Triggers and Rules for Advanced Database Processing. Morgan Kaufmann, San Fran­
cisco, CA, USA, 1995.

[Widom and Finkelstein, 1990] J. Widom and S.J. Finkelstein. Set-oriented production
rules in relational database systems. In Proceedings of the 1990 ACM SIGMOD Con­
ference on the Management of Data, pages 259-270, 1990.

BIBLIOGRAPHY 239

[Widom et al., 1991) J. Widom, R.J. Cochrane, and B.G. Lindsay. Implementing set­
oriented production rules as an extension to Starburst. In Proceedings of the 17th
International Conference on Very Large Data Bases, pages 275-285, 1991.

[Widom, 1996) Jennifer Widom. The Starburst Rule System, chapter 4 in [Widom and
Ceri, 199 5 I. 1996.

[Wieringa et al., 1995) Roel Wieringa, Wiebren deJonge, and Paul Spruit. Using dynamic
classes and role classes to model object migration. Theory and Practice of Object
Systems, 1(1):61-83, 1995.

[Wieringa, 1996) R.J. Wieringa. Requirements Engineering: Frameworks for Understand­
ing. John Wiley & Sons, 1996.

[Wooldridge and Jenning, 1995) Michael Wooldridge and Nicholas R. Jenning. Intelli­
gent agents: theory and practice. The Knowledge Engineering Review, 10(2): 115-152,
1995.

[Workflow Management Coalition, 1996) Workflow Management Coalition. Terminol­
ogy and Glossary WFMC-TC-1011 2.0. Available through WWW at www.wfmc.org,
June 1996.

[Wuu and Dayal, 1992) Gene T.J. Wuu and Umeshwar Dayal. A uniform model for tem­
poral object-oriented databases. In F. Golshani, editor, Proceedings of the 8th Inter­
national Conference on Data Engineering, pages 584-593. IEEE, 1992.

240

Index

Broadcast, 110
CheckSelector,97, 129
DistributeQuery, 119
ExecuteMethod,99, 128
Extend, 102,129
Kill, 103, 129
MethodAllowed,99, 129
NewEmptyObject, 109
New, 111
Remove, 103,129,130
getPathExpr, 100
get, 100,129
initiate, 117
queryResult, 120
sendMessage, 109
sendQuery, 109
sendReply, 110
shipResult, 120

active databases, 23
active DBMS prototypes, 24
addon,44
addon class object, 112
addon dropping, 83
addon extension, 83, 129
addon set, 83
assignment, 72
attribute set, 95, 127
attribute value, 77
attributes, 44, 55
autonomy.node, 19
autonomy, object, 19

basic DEGAS object, 94, 125
basic functions, 53
basic types, 53, 64
business process reengineering, 18
business rules, 25

chain information system, 16

class header, 54
class object, 45, 111
clock, 74
compensating tasks, 185
complex objects, 31
compound statement, 73
condition, 82
confluence, 196
coupling modes, 27

DEGAS acronym, 9
DEGAS database, 89
DEGAS implementation, 123
DEGAS object, 43
DEGAS query, 58, 89
DEGAS syntax, 53
DEGAS system layer, 107, 134
DEGAS- model, 188
DEGAs- 2 model, 192
data dictionary, 146
data entry, 136
decidability, 199
design theory, 187
distribution model, 60
domains, 65

ECA format, 2 5
encapsulation, 31
encapsulation of control, 20
encapsulation of execution, 19
encapsulation of specification, 19
encapsulation, maximal, 19
event detection, 131
event expression, 79
event specification, 25
event triggering, 81
execution cycle, 104

federated databases, 20
fragmentation data, 147

INDEX

generalisation, 44
guard condition, 48

hermit type, 64
historical databases, 29
history, event, 76
history, state, 75, 94, 126
history, valid object, 89

impedance mismatch, 33
independence, 197
inherent capabilities, 44
instance-oriented semantics, 27
intelligent agents, 217
interpretation, 76

lifecycle, 44, 57, 84, 127
lifecycle checking, 87
lifecycle composition, 85
lifecycle semantics, 84
lifecycle set, 97, 127

massively parallel computing, 16
matching sub-history, 79
meta class, 45
method queue, external, 95, 127
method queue, internal, 95, 127
method semantics, 71
method set, 95, 127
method typing, 67
methods, 44, 55
mobile computing, 16
model for a database, 77
modularisation, 34, 15 7

nested query, 59, 90
network,60

object communication, 134
object creation, 134
object identity, 31
object-oriented databases, 30

problem statement, 9
process algebra, 36
Python, 124

query interface, 13 7
query processing, 142
query quality, 59, 148
query queue, 95, 127

query result, 90

reachability, 90
relation class object, 117
relation creation, 139
relation object, 115
relation objects, 45
reply box, 95, 127
role, 39
rule execution, 26, 106
rule set, 97, 127
rule triggering, 88
rulebase, 34
rules, 44, 56, 88

schema information, 147
selector, 58, 79
set iteration, 72
set-oriented semantics, 26
site, 60
site object, 61, 118
snapshot interpretation, 71
snapshot state, 75
SQL3, 35
strong agency, 218
subtyping, 65

temporal databases, 28
temporal dimensions, 28
termination, 196
termination inn steps, 197
time window, 59, 80
times tamp, 7 4
transient capabilities, 44
tuple type composition, 68
type context, 69
type system, 63
typical database state, 199

ubiquitous computing, 217, 223
underlying type, 64

variant interpretation, 71

weak agency, 218
willingness, 90
workflow, 157, 162
workflow evolution, 183

241

workflow management systems, 15 7
workflow routing, 162, 164
workflow schema, 162

242

Nederlandse Samenvatting

Het onderzoek gerapporteerd in dit proefschrift vond plaats op het gebied van
databases, ofwel gegevensbanken. De centrale vraagstelling ging over een data­
base met maximale autonomie voor de componenten:

1. Is een dergelijk database model eenvoudig te realiseren?

2. Is het hanteerbaar voor de ontwerper van een applicatie?

3. Is het op heldere wijze te formaliseren?

Deze vraagstelling wordt in alle aspecten positief beantwoord door de construe­
tie van DEGAS, een database taal gebaseerd op autonome objecten.

De behoefte aan systemen van autonome componenten ontstaat door een aan­
tal ontwikkelingen. In de informatietechnologie zien wij een ontwikkeling naar
systemen gebaseerd op netwerken van mobiele computers. Bovendien ontstaan
er grote systemen, die draaien op computers met een groot aantal processoren.
In dit soort omgevingen zal het zeer moeilijk zijn centrale coordinatie te voeren
over alle componenten. Daarnaast verandert de manier waarop organisaties in­
formatiesystemen gebruiken. In toenemende mate worden informatiesystemen
van verschillende organisaties gemtegreerd. Als gevolg daarvan ontstaan syste­
men waarvan de onderdelen verschillende eigenaars hebben.

Deze ontwikkelingen leiden er toe dat centrale coordinatie hetzij niet mogelijk
is, hetzij niet wenselijk is. Daarom is er een behoefte aan systemen gebaseerd
op autonome objecten. Dit zijn gegevensobjecten, waar alle kennis over een
object in het object zelf gedefinieerd is. Bovendien is een autonoom object niet
onderworpen aan enige vorm van centrale controle.

Deze aanname vormt de basis van DEGAS. Een DEGAS database bestaat uit objec­
ten. Ieder object bevat de definitie van een element uit het toepassingsdomein
van de database, bijvoorbeeld een bankrekening. Een object heeft bepaalde at­
tributen, die de gegevens over het object bevatten. Voorbeelden voor een bank­
rekening object zijn het saldo en de maximum limiet voor een negatief saldo.
Daarnaast wordt het gedrag van het object gedefinieerd. Dit gedrag bestaat uit
de mogelijke acties van het object, methoden genoemd. Voor een bankrekening
zijn dit acties als het crediteren en debiteren van de rekening.

DEGAS voegt nog een tweetal dimensies van gedrag toe aan traditionele object­
georienteerde databases. De "lifecycle" definieert een ordening en condities op
de uitvoering van acties door het object. Een voorbeeld is de eis dat er nooit
meer dan een keer per maand geld mag worden opgenomen van een spaarreke­
ning.

Daarnaast specificeren regels dat bepaalde acties moeten worden uitgevoerd
in reactie op een bepaalde situatie. Deze is gedefinieerd door een "event", de

243

uitvoering van bepaalde acties door het object, en door een conditie op de toe­
stand van de database. Een voorbeeld is een automatische overschrijving van
een betaalrekening naar een spaarrekening, als het saldo van de bankrekening
groter dan Hfl.10.000 is. Gezamenlijk noemen wij attributen, methoden, lifecy­
cle en regels ook wel de capaciteiten van het object.

Verbanden tussen objecten worden gemodelleerd door relaties. Een relatie is
zelf ook een object, om gegevens en gedrag van de relatie te kunnen opslaan in
de database. Een voorbeeld van een relatie tussen een persoon en een bank is
de bankrekening.

De capaciteiten van een DEGAS object kunnen worden uitgebreid met behulp
van "addons". Een addon definieert een aantal capaciteiten, die toegevoegd kun­
nen worden aan een object, tijdens zijn bestaan. Het voornaamste gebruik van
addons is het modelleren van de rollen van objecten in relaties. Een relatie geeft
een object nieuwe capaciteiten. Zo geeft een bankrekening een persoon de mo­
gelijkheid giraal te betalen. Een persoon object zal daarom worden uitgebreid
met een rekeninghouder addon, als het een bankrekening opent.

De bijdragen van DEGAS aan de ontwikkeling van database management syste­
men kunnen als volgt samengevat worden:

1. Modularisatie van actieve databases. Door de consequente toepassing
van het encapsulatie principe zijn regels in de database op dezelfde ma­
nier gemodulariseerd als de data. Dit zorgt voor een beter inzicht in de
gedefinieerde regels.

2. Object Evolutie. In veel toepassing zal een object zich tijdens zijn levens­
duur ontwikkelen. Dit betekent dat er dynamisch capaciteiten toegevoegd
en weggelaten moeten kunnen worden. DEGAS biedt hiervoor een faciliteit
in de vorm van het addon-mechanisme.

3. Formalisatie en integratie van actieve en historische databases. Het ge­
bruik van proces algebra voor zowel de specificatie van event expressies,
als de specificatie van de historie, leidt tot een formalisatie van actieve
en historische databases. Met name de directe definitie van de semantiek
van regels in termen van de historie is een voordeel.

4. Queries in een actieve database. De functionaliteit in actieve databases
om event patronen te herkennen in de geschiedenis van een object kan
ook gebruikt worden om vragen te stellen aan de database. Dit maakt
het mogelijk om te refereren aan historische situaties zonder het tijdstip
daarvan precies te hoeven weten.

5. Onbeslisbaarheid resultaten voor regels. In dit proefschrift hebben wij
bewezen, dat terminatie en confluentie van regelverzamelingen onbeslis­
bare predicaten zijn voor een subtaal van DEGAS. Dit betekent dat deze
predicaten ook onbeslisbaar zijn voor DEGAS zelf.

244

De voordelen van DEGAS bij het modelleren van toepassingen laten wij zien
door middel van een voorbeeld. Het gekozen voorbeeld is "workflow manage­
ment", het sturen van gecomputeriseerde gegevensstromen binnen een organi­
satie. DEGAS voldoet om alle internationaal gestandardiseerde elementen van
workflow management te modelleren. Bovendien zorgen de modelleerconcep­
ten van DEGAS voor een flexibel model, waar de benodigde sturings- en toepas­
singsinformatie op het juiste moment beschikbaar is.

Een antler aspect van het ontwerpen van actieve databases is het verifieren van
gewenste eigenschappen van verzamelingen regels. Een voorbeeld van zo'n ei­
genschap is terminatie, dat wil zeggen, de eigenschap dat elke executie van een
verzameling regels eindig is. In dit proefschrift laten wij zien dat het reeds voor
zeer eenvoudige regels niet meer mogelijk is om deze eigenschap te voorspel­
len.

Tenslotte geven wij aan het einde van dit proefschrift nog een vooruitblik op de
toekomst van actieve databases. Deze zal liggen in een verwevenheid met zo­
genaamde intelligente agenten, zelfstandig functionerende software voorzien
van kunstmatige intelligentie. Het toepassen van deze technologie in databases
biedt interessante voordelen. Verder laten wij zien dat beperkte uitbreidingen
voldoen om DEGAS te laten functioneren als programmeertaal voor intelligente
agenten.

245

Curriculum Vitae

Johan van den Akker was born on October 9th, 1969 in Gouda. He did his final
exam Gymnasium f3 at Rythovius College in Eersel in 1988. Johan studied Busi­
ness Oriented Computer Science at Erasmus University in Rotterdam from 1988
to 1993. He wrote his Master's thesis on a paraconsistent default logic, advised
by Dr Yao Hua Tan. Results from this thesis were published at the Dutch Artifi­
cial Intelligence Conference, the Brazilian Artificial Intelligence Symposium and
in the journal Logique et Analyse.

After his graduation, Johan went to the Department of Algorithmics and Ar­
chitecture (later transformed to the Department of Information Systems) of the
Centrum voor Wiskunde en Informatica, the Dutch National Centre for Mathe­
matics and Computer Science. As an Onderzoeker in Opleiding, he did research
into active object databases, that led to this thesis. He currently works as a
Research Consultant for ID Research, a consulting firm in Gouda, the Nether­
lands.

