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Chapter 1 

Introduction 

This thesis is about a database of autonomous objects, named DEGAS. In one 
sentence, DEGAS is a temporal-active object-oriented database language, based 
on object autonomy. The name DEGAS stands for "Dynamic Entities Get Autono­
mous Status"1. Dynamic entities means data entities extended with the actions 
on these data. In our discussion, autonomy means two things: complete encap­
sulation and freedom from central control. Complete encapsulation means a 
self-contained specification of an object. Freedom from central control means 
that we can construct a system without a central system element, which is po­
tentially both a bottleneck and a vulnerable part. 

The aim of our research was to investigate the potential of a database based on 
autonomous objects. Hence, our problem statement is: 

A number of developments lead to databases based on autonomous 
objects. For such a database, we have the following questions: 

1. Is it easy to realise in practice? 

2. Does it facilitate clean, modular application design? 

3. Does it have a simple formalisation? 

Overview 

The answer to these questions is given in four parts. These parts discuss the 
motivation for object autonomy, the DEGAS model for a database of autono­
mous objects, issues in database design in DEGAS and an outlook to the future 
of active object systems. 

1 In addition, we were inspired by the name of the Monet main-memory DBMS [Boncz et al., 
1996a, Boncz et al., 1996b) developed by Martin Kersten and his team. It also prolongs the tradi­
tion of naming database systems after French painters, started by Ingres [Stonebraker, 1986al. 
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Motivation Part I discusses the motivation fo r DEGAS. Chapter 2 discuss the 
developments in information technology and its applications that lead to au­
tonomous objects. On the technological side, the diminishing size and cost of 
computing units causes an increasing spread of computing power. Since this 
also means an increasing distribution of information, database management 
systems must be able to deal with extreme forms of distribution. On the appli­
cation side, integration of information systems between organisations leads to 
systems of components with different owners. 

Chapter 3 relates autonomous objects in DEGAS to existing research in data­
bases. In particular, we relate it to research in active databases, temporal data­
bases, and object-oriented databases. After a short overview of these areas, we 
discuss the benefits of DEGAS in these areas. First, it provides a clean mod­
ularisation mechanism for active, object-oriented databases. Second, DEGAS 

provides a unified formalisation of temporal and active database functional­
ity. Third, it incorporates event expressions to specify historical conditions in 
queries. Fourth and last, DEGAS provides a straightforward object evolution 
mechanism, that can be used to model roles. 

Model Part II gives a specification of DEGAS. Chapter 4 introduces the basic 
concepts of the DEGAS model. The basis of DEGAS is the object. Objects are 
related to each other through relation objects, which are fully capable objects 
themselves. Transient capabilities of objects, such as their roles in relations, 
are specified by addons. Class and metaclass objects are present in a DEGAS 

database for object management tasks. To illustrate these basic concepts, we 
give an example of an application in DEGAS, a stock exchange. We also introduce 
the syntax of the DEGAS language. Furthermore, DEGAS queries are introduced. 

Chapter 5 then gives the formal semantic definition of DEGAS. This definition is 
given from scratch, starting with the formalisation of the underlying type sys­
tem. Then, different elements of a DEGAS object are defined, that are integrated 
to the full DEGAS object semantics. The formalisation of DEGAS is based on a 
set-based object semantics and process algebra for the dynamic parts. An ad­
vantage of using process algebra is the direct translation from DEGAS language 
syntax to semantics. 

The next chapter, Chapter 6, gives a functional specification of a DEGAS data­
base system. It gives the basic actions of each component and their effects. In 
fact, the complete system, besides a basic communication infrastructure, can 
be specified as a DEGAS object. 

Practical issues regarding DEGAS are discussed in Chapter 7. We discuss the im­
plementation techniques used in a prototype of DEGAS. Furthermore, we show 
how application semantics can be programmed in DEGAS. This chapter also dis­
cusses the practical aspects of DEGAS query processing. It is designed to deal 
with the specific complications of object autonomy. One of these is the estima­
tion of the quality of a query result. 
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Design Part III deals with the design applications of applications in DEGAS 
Design is discussed in two chapters, reflecting two aspects of database design. 
Chapter 8 discusses the path from an application to a DEGAS object design. 
The example application is workflow. We show that the DEGAS design principles 
lead to a design that cleanly separates concerns and that promotes flexibility. 
Furthermore, the encapsulation of rules in objects and the relation and addon 
mechanism of DEGAS provide a good basis for the integration of workflow in 
an active database. 

Chapter 9 addresses verification issues. We investigate whether we can decide 
the termination and confluence of a given active object design. Due to the com­
plexity of this issue, we use a restricted version of the DEGAS model in this 
chapter. We prove that deciding termination and confluence is only possible for 
a very basic rule model. This consequently proves the undecidability of these 
predicates for DEGAS. 

Outlook The final part of this thesis provides an outlook to the future of ac­
tive object databases. This outlook is based on an extrapolation of the devel­
opments described in Chapter 2. In Chapter 10, we discuss the interrelation of 
active object-based systems, like DEGAS, and intelligent agents. We discuss this 
from two perspectives, viz., the usefulness of agent technology in databases 
and the problem of data management in a ubiquitous, agent-based, computing 
environment. 

Publications 

The following parts of this thesis have been published in other places: 

• An early version of the DEGAS data model, discussing its application to 
computer graphics, was presented at the Eurographics'95 Workshop on 
Programming Paradigms in Graphics [Akker and Siebes, 199Sbl. 

• A general introduction of the DEGAS data model, focussing on the DEGAS 
modelling notions, i.e., objects, relations, and addons, was presented at 
the CAiSE*96 conference [Akker and Siebes, l 996bl. An extended version 
of this paper was published in the CAiSE*96 special issue of Information 
Systems journal [Akker and Siebes, 1997bl. 

• A discussion of the interaction between active rules and the historical 
functionality in DEGAS was presented at the DEXA'96 workshop [Akker 
and Siebes, l 996cl. 

• The discussion of the possible application of agent technology in active 
object database in Chapter 10 was part of the Cooperative Information 
Agent'97 workshop [Akker and Siebes, 1997cl. 
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• Chapter 8 has been published separately as a CWI Report [Akker and 
Siebes, l 997al. 

• Chapter 9 is based on a CWI Report [Siebes et al., 19951. 
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As stated in the Chapter 1, the goal of our work on DEGAS is to study a data­
base based on autonomous objects. This chapter discusses the motivation for 
object autonomy from the viewpoint of software architecture. A number of de­
velopments in information technology and its use in organisations promote an 
architecture based on autonomous components. 

Technological developments of interest are mobile computers and distributed 
processing. The benefit of autonomous components under these circumstances 
is found in a reduction of overhead. In the use of information technology by or­
ganisations, we see a development towards integration and sharing of informa­
tion between different organisations. Components of these integrated informa­
tion systems must retain their autonomy for reasons of ownership and control. 

We show the benefits of autonomous components, given these current devel­
opments. Furthermore, we argue that the object is the most appropriate gran­
ularity for studying autonomous components. The chapter concludes with our 
definition of object autonomy, that is compared to the notion of autonomy in 
other areas of database research. 

2.1 Developments in Technology 

As we stated above, autonomy is about doing away with central control. The 
motivation for this is found in a number of development foreseen in computer 
systems in the near future. These developments trigger the emergence of in­
formation systems based on large, often mobile, networks. In such systems, 
central control implies a large amount of overhead. 
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The development of powerful mobile computers and the spread of wireless 
communications makes large networks of mobile computers possible [Imie­
linski and Badrinath, 19941. A broad variety of information systems will rely on 
such networks. Examples are information systems to support a large number of 
sales representatives, or information systems for fleet management of ships or 
aircraft. In these systems, each mobile node contains data. Ideally, we want to 
access all data in such a network as one large database. For example, in the in­
formation system of an airline, the maintenance department can have access to 
information about the current status of an aircraft, either to plan maintenance, 
or to assist the pilot in making decisions in a problematic situation. Although 
much effort has been put into making databases to inter-operate, it will be very 
difficult to devise an arrangement flexible enough to keep up with the size and 
volatility of such a network. 

A better approach is to have inherent flexibility built into such a system. Ideally 
it allows an almost arbitrary collection of objects to be a functioning database. 
The collection of objects making up the database may vary over time without 
the need for a system "authority" to keep up with their changes. In such a 
system, an object is autonomous, because it functions largely independent of 
other elements of the system. 

Another example is found in massively parallel computing. To further raise 
the performance of computer systems massive parallelism is seen as a promis­
ing road to travel [Bell, 1992]. An important condition for the acceptance of 
such platforms for general use is the presence of DBMSs. A key problem in 
such a DBMS is how to distribute data and execution over the available proces­
sors. Centralising such decisions poses a large overhead on the system. Enough 
overhead to make it a considerable factor in the performance of such a system. 
Therefore, we must consider distributing decisions in the system. If we do this 
for all centrally controlled aspects of the DBMS, we have made a system with 
autonomous components. 

2.2 Developments in Business 

Developments outside the area of computing also promote autonomy of system 
components. Although there is a movement to increase integration of systems 
between businesses, either in a chain information system 1, or through a public 
information infrastructure, nobody wishes to give up control of his part of such 
a system. 

1 A chain information system is an information system serving a complete value chain [Porter, 
19851. A value chain is a group of companies that together form a production process from raw 
materials to manufactured product. For example, we have a value chain producing automobiles 
from iron ore, crude oil, rubber, etc. In this process, each output of a production step is worth 
more than the input. H0 nce, the producers in this chain are said to add value to their input. 



2.2. DEVELOPMENTS IN BUSINESS 17 

Inter-Organisation Information Systems Developments in networking have a 
number of effects in the way organisations interact. For example, it enables a 
manufacturer to integrate his information system with his supplier's informa­
tion systems. However, when an organisation couples its information system 
with other organisations, it will not wish to give up control over its own sys­
tem. In particular, everyone wishes to control the information seen and updated 
by outsiders. Although the components are under control of separate owners, 
we do want to approach such a chain information system as a single (homoge­
neous) information system. 

The data in the chain information system and the individual information sys­
tems overlap. In fact, the chain information system is made up from subsets 
of the data in each corporate information system. Figure 2.1 show such a situ­
ation, where Terrific Tyre, Spotless Steel, Cool Car Co., and Dutch Dampers all 
bring part of their information system into the chain information system, that 
is depicted by the darker coloured rectangle. 

0 
.... --"' co 
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Figure 2.1: The integration of ISs in an inter-organisation IS 

Chain 
Information 

System 

Different collections of objects make up the corporate information systems of 
the participating companies and the chain information system. It is important 
to note, that a company will probably be involved in multiple value chains of 
suppliers and customers at the same time. Hence, it has to export data to the 
information system of each value chain. 

The problem related to mobile computing, mentioned in the previous section, 
resurfaces again here in another guise. Here, we do not have a set of objects 
evolving over time, but different sets of objects making up different databases 
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simultaneously. The choice is again between devising a clever scheme for a 
chain information system that gets data from different composing databases, 
and building in inherent flexibility at the object level. This flexibility should 
allow an organisation to decide per object whether or not to make it (partly) 
visible to partners in a chain information system. Thus, making objects autono­
mous facilitates integration of an organisation's data into multiple information 
systems at a time. 

Another example of an inter-organisation information system is the trading 
system of the stock exchange. Every party in the market would like to approach 
the computerised market as a whole in order to obtain information. However, 
a sensible company would not hand over any control of their computerised 
trading system to third parties. It would also want to have complete control 
over the flow of its data to other parts of the system. Clearly, this is a system 
consisting of autonomous components. 

Business Modelling The introduction of information systems in an organisa­
tion is nowadays often used to reevaluate the way business is conducted by the 
organisation. This activity has risen to fame in the last years under the name 
Business Process Redesign or Business Process Reengineering [Hammer, 1990, 
Hammer and Champy, 19931. Because of the focus on what an organisation 
does, business modelling as part of the analysis phase of information systems 
development has focussed on the dynamic aspects of an organisation. 

Therefore, dynamic modelling, see e.g., [Loucopoulos, 1994) and [Glasson et al., 
19941, has received a considerable amount of attention. Most dynamic models 
feature actors that manipulate data according to scripts or scenarios. The re­
actions of actors to events are described by rules. These actors are active and 
independent of other actors. Clearly, it would be beneficial to have a model sup­
porting such autonomous entities in the phases following the modelling phase 
in the development process. 

2.3 Autonomy as a Solution 

The developments outlined above lead one to conclude that there is a need 
for systems composed of autonomous components. Section 2.1 pointed out a 
number of developments in computing that make central control of a system 
very difficult. These difficulties can be overcome by distributing control to parts 
of the system, thus building inherent flexibility into the parts of the system. The 
result will be autonomy for the components of such a system. 

In Section 2.2, we indicated a development towards the sharing of data with 
outsiders. Approaching data from multiple sources as one database while the 
owners retain control, means autonomy of the components. Exporting data to 
multiple inter-organisation information systems asks for an inherent flexibility 
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that autonomous components can offer. It also explained, that current devel­
opments in the modelling of organisations tend to emphasise the active and 
autonomous behaviour of an information system's components. 

DEGAS supports the development of systems of autonomous components. This 
is achieved by basing the DEGAS model on autonomous objects. We have cho­
sen the object as the level of autonomy, because of its obvious advantages in 
modelling an information system. Object autonomy also has the advantage of 
generality, since the complexity of the objects may be arbitrary. Hence, the 
model can also be used for autonomous components at a higher abstraction 
level, as long as its behaviour can be described in DEGAS. For example, an ac­
tive class of passive objects, where there is activity at the class level but not at 
the object level, naturally fits this model. 

Please note, that the motivation for autonomy for component systems is partly 
similar to the motivation for object autonomy, as discussed earlier in this chap­
ter. [Garcia-Molina and Kogan, 1988] states the following arguments in favour 
of node autonomy in a distributed database: organisational issues, diversity of 
local needs, data security, lower costs, and containment of failures and bugs. 
These arguments also apply to object autonomy. For example, containment of 
failures and bugs means that it is desirable, that the failure of one object affects 
other objects as little as possible. 

2.4 Defining Autonomy 

Above, we discussed the benefits of object autonomy in light of recent devel­
opments in technology and business. In this section, we give our definition of 
object autonomy. It will serve as the key foundation of the work on DEGAS, pre­
sented in this thesis. After our definition of object autonomy, we compare it to 
other types of autonomy in databases 

Definition 1 We define object autonomy as follows: 

Object autonomy is the maximal encapsulation of specification, con­
trol, and execution of an object. 

This definition gives the core notion of object autonomy. Its practical conse­
quences in the DEGAS model are formulated by the following principles: 

1. Every object has a separate thread of execution. All objects run in par­
allel. This is encapsulation of execution. 

2. Complete encapsulation of the behaviour of an object. Every aspect 
of an object's behaviour is specified on the object itself. Hence, the be­
haviour of an object, given certain stimuli from outside, is determined 
locally. This is an element of encapsulation of specification. 
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3. Strictly regulated access to an object. A DEGAS object specifies exactly 
what objects have access to its actions. Relations between objects specify 
exactly what data is shared, and what actions can be accessed. This is an 
element of encapsulation of specification. 

4. Minimal guarantees about an object's behaviour to other objects. A 
DEGAS object guarantees as little as possible about its behaviour to other 
objects. If it gives guarantees, these are specified explicitly. This is an 
element of encapsulation of control. 

5. Minimal dependency of an object on the behaviour of other objects. A 
DEGAS object assumes as little as possible about the behaviour of other 
objects. If it makes an assumption, it has to verify this assumption explic­
itly. This is an element of encapsulation of control. 

6. Autonomy must be given up explicitly. A further guiding principle is, 
that if an object gives up autonomy, then this must be explicitly specified. 

These principles guide the development and use of DEGAS, as discussed in this 
thesis. 

The notion of autonomy is also encountered in the area of distributed and 
federated database systems [Sheth and Larson, 19901. Research in federated 
databases studies inter-operation of multiple database systems either as one, 
distributed, database system, or as a looser federation of databases. These sys­
tems vary in the degree of freedom of the component databases. Hence, several 
authors have formulated criteria of autonomy to distinguish the various sys­
tems. 

[Sheth and Larson, 1990] distinguish four dimensions of autonomy for a com­
ponent database of a database federation. These are: 

1. Design autonomy. The freedom to choose the design of any part of the 
database, from semantic interpretation of the data to the implementation 
of the database. 

2. Association autonomy. The freedom to decide whether and how much 
functionality the component database shares with the federation. 

3. Communication autonomy. The freedom to decide when and how to 
communicate with other component databases. 

4. Execution autonomy. The freedom to decide when and how to execute 
operations on the database. 

Here, the first two dimensions are about the autonomy of the designer, while 
the other two dimensions are about the autonomy of the system. Other criteria 
for the autonomy of the nodes in a distributed database system were formu­
lated in [Garcia-Molina and Kogan, 1988]. They disti:iguish the following dimen­
sion of autonomy: 
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1. Heterogeneity. A component database may choose its own way to man­
age data and transactions. 

2. Naming Autonomy. The freedom a component has in choosing names for 
its data. 

3. Setting priorities for foreign requests. The freedom to decide, whether, 
when and how a request from outside is processed. 

4. Transaction control autonomy. The freedom a component has in trans-
action management, i.e., scheduling, locking, and aborts. 

Again, the first two dimensions are about designer autonomy, and the other two 
dimensions about system autonomy. The criteria of Sheth and Larson cover a 
wider area than those of Garcia-Molina and Kogan. For example, heterogeneity 
and naming autonomy are included in the single category design autonomy. 
Setting priorities for foreign requests and transaction control autonomy are 
included in the criteria communication autonomy and execution autonomy, re­
spectively. 

The applicability of Sheth and Larson's autonomy criteria for component sys­
tems to object autonomy is limited in some respects. The aim of DEGAS, for­
mulated in Chapter 1, is to study the impact of fine-grained autonomy in data­
bases. Hence, not all criteria for autonomy of component databases are useful 
for the definition of object autonomy. Sheth and Larson's design autonomy for 
an object means only defining a communication interface between objects, as 
is done by CORBA [OMG, 19961. Their communication autonomy means for an 
object, that it can decide for itself if and how to answer a message. In other 
words, the sender of a message has no guarantees about the reaction of the 
receiver. Execution autonomy is fully applicable to an object, since it implies 
that an object decides internally, what actions to execute, and when to execute 
them. Likewise, the association autonomy of an object means the freedom to 
decide the visibility of its parts to other objects. 

2.5 Conclusion 

In this chapter, we presented the motivation for autonomy in software. The un­
derlying developments are increasing distribution and mobility of information 
systems, and the increasing integration of information with different owners. 
We discussed why software of autonomous components is needed under these 
circumstances. For the study of autonomy in software, we take an object as 
the granularity. Since objects can be loaded with arbitrary functionality, results 
applicable to objects are applicable to any type of module. 

This chapter closed with the presentation of object autonomy in DEGAS. Object 
autonomy in DEGAS means maximal encapsulation. We discussed the impact of 
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this definition on a number of object dimensions, viz., execution, specification, 
and control. A comparison of object autonomy in DEGAS with autonomy in fed­
erated databases showed a great degree of commonality. A difference is caused 
by the different aims, since DEGAS is also concerned with the internals of the 
objects in a system. 
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Chapter 3 

Object Autonomy in Context 

The previous chapter discussed the developments motivating object autonomy. 
It also gave the definition of object autonomy used in the development of 
DEGAS. This chapter puts the concept of object autonomy in the context of 
databases. DEGAS mainly builds on work in active databases. Hence, we open 
this chapter with a short overview of this area. Since object autonomy opens 
new perspectives on the link of active databases with temporal databases, and 
with object-oriented databases, we also give a short introduction to these two 
areas. 

The second half of this chapter addresses the opportunities of object auto­
nomy in active databases. The maximal encapsulation applied to rules leads to 
a clean modularisation of the active database. Furthermore, the view of an au­
tonomous object as a process allows a single model formalising a database that 
is both active and historical. Another innovation is the use of event specifica­
tions for temporal queries. Finally, the DEGAS object model reflects the maximal 
encapsulation of object autonomy. The object specialisation mechanism is very 
simple and flexible, so that an object has the capabilities it needs, when needed. 

3.1 Active Databases 

This section gives a short introduction to active databases. First, we give a brief 
historical overview. Then, we discuss the core area of active databases, viz., rule 
specification and execution. Readers interested in a more elaborate overview of 
active databases are advised to read [Widom and Ceri, 1995). 

3.1.1 History 

The term active databases was coined in [Morgenstern, 19831. There, the term 
was used to denote a database management system that automatically updates 
views and derives dependent data. Hence, this proposal did not introduce a 
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separate notion of rules or triggers. These were first introduced as a separate 
element in a database management system in [Stonebraker, l 986bl. 

The original goal of rules was to provide a more flexible mechanism for con­
straint enforcement. Without rules, the only possible action in case of a con­
straint violation was to abort the offending transaction. In many cases, however, 
more constructive actions exist. For example, a circuit design application often 
has the constraint that a minimum distance between wires must be maintained. 
If a new wire violating this constraint is inserted, a possibility to correct this is 
to shift it, such that the minimum distance is maintained. Clearly, it would be 
beneficial if the design database executes this action without user intervention. 

As pointed out above, another early application of active rules is derived data. 
Like for constraint maintenance, the main advantage of active rules for derived 
data is increased flexibility. Active rules allow the database designer to choose 
the time of derivation, e.g., either on insertion of an underlying value, or on 
retrieval of the derived value. 

With the advent of object databases, the incorporation in the database of be­
havioural elements of the application became accepted. Hence, it was found 
that large parts of an information system can be encoded by active rules. In 
particular, parts of applications that reflect an organisation's common busi­
ness practices can be implemented by active rules. In the world of information 
systems modelling, these are known as the business rules of the organisation 
[Herbst et al., 1994]. 

In recent years, a number of prototype active DBMSs have been developed. 
The most important systems are HiPAC [Dayal et al., 1988a], Starburst [Widom, 
1996], SAMOS [Gatziu et al., 1991] and Chimera [Ceri et al., 1996]. Of these sys­
tems, Starburst is based on an extended relational database. HiPAC and SAMOS 
have an object-based data model. Chimera's data model is an object data model, 
but is heavily influenced by deductive databases. In addition, a number of com­
mercial systems, such as Oracle, Sybase and Ingres, includes a trigger facility. 
Furthermore, active rules are part of the SQL3 standard [ISO, 1994], which is 
being formulated. 

The use of active databases was classified in [Kappel and Schrefl, 1996]. It cat­
egorises applications of rules as follows: 

1. maintaining static integrity constraints 

2. maintaining derived data and materialised views 

3. maintaining dynamic integrity constraints 

4. database access authorisation 

5. work step orrlering 
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6. representing permissions to act 

7. representing obligations to act 

Of these seven, the first four are implementations of DBMS functionality. The 
fifth is relatively specific to certain applications, in particular workflow manage­
ment applications. It can be regarded as a special case of the third application. 
The last two applications are forms of business rules. Business rules are a spec­
ification of company policy, or a description of the behaviour of a company. 
Simple examples are rules in an inventory application, that reorder an item if 
the stock falls below a certain level. More advanced business rules describes the 
competence of persons in the organisation. These business rules are the rules 
used to specify application functionality. 

3.1.2 Rule Specification 

The generally used format for rules in active databases is the Event - Condition 
- Action (ECA) format. The informal meaning is, that on occurrence of event E, 
if condition C is satisfied by the database, then action A is executed. 

Event Event specification is based on a set of basic events and a set of event 
operators. In general, the set of basic events consists of three categories: data­
base events, temporal events and external events. The set of database events 
depends on the data model the active DBMS is based on. For a relational data­
base, the usual database events are Insert, Delete and Update. These denote, 
respectively, the insertion, deletion and update of a tuple in a relation. Further 
database events are related to transaction processing, such as commit or abort. 
An object-based database offers the same database events, with objects instead 
of tuples as the entities involved for Insert, Delete and Update. Since an ob­
ject based system adds behaviour to a database through methods, object-based 
active database systems usually also include method calls as database events. 

Temporal events are used to relate database activities to a clock. Absolute tem­
poral events, e.g. 11 FEB 1997 20: 00: 00, refer to one specific point in time. 
Periodic events, e.g. every MON 05: 00: 00, can be used to schedule repeating 
activities. Finally, relative temporal events specify a duration relative to another 
event. An example in an object-based database is 2 weeks after Confirm, 
where Confirm is a method of a database object Order. In a relational database, 
an equivalent specification would be 2 weeks after Confi rmedOrders. In­
sert, where Confi rmedOrders is the relation containing the confirmed orders. 

External events are used for communication with the outside world. Two pos­
sible sources of external events are interaction with the user or messages from 
other applications. An example is a high-temperature message from a tem­
perature sensor in a control application. 
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Basic events can be combined to form composite event expressions through the 
use of event operators. The most common event operators are sequential com­
position and alternative composition. Some active DBMSs offer a large range of 
event operators, yielding a complex event language. An example is ODE [Gehani 
et al., 19921. Studies of active database applications [Appelrath et al., 1996], 
however, have shown that relatively simple rule languages, i.e., rule languages 
with alternative and sequential composition of events, are sufficient for most 
applications. 

Condition The condition of a rule is a predicate on the database. If the pred­
icate is true, then the condition of the rule is satisfied. A number of systems 
allow the condition to ref er to the state before and after the triggering event. 
An example is the following rule, that is triggered by salary increases of more 
than 25 percent: 

On Update(Emp.Salary) 
if Salary > 1.25 * old Salary 

In this example, Salary qualified by old refers to the value of Salary before 
the Update action. 

Action In most active database systems, the action can be an arbitrary da­
tabase action. For example, it can include transactional commands, such as a 
roll back instruction. In relational systems, we can add any relational retrieval 
or update action. In object-oriented systems, method calls can be made in a 
rule's action. 

3.1.3 Rule Execution 

The semantics of rule execution can vary on a number of dimensions. These are 
the time and granularity of rule checking, the selection of rules to execute, on 
which objects to execute, and the coupling between the three parts of a rule. 

The first dimension of rule execution is, when the rule engine checks for trig­
gered rules. A natural point to do this is at the end of a transaction, since it 
would be very difficult to enforce constraints for updates of smaller granularity. 
The check generally considers the net effect of the transaction. For example, if a 
tuple is inserted and then updated, the net effect is the insertion of the updated 
tuple. Likewise, if a tuple is inserted and deleted later on in the transaction, the 
net effect is empty. In object-oriented databases, another natural moment to 
check rule triggering is after a method call. In addition, an active DBMS might 
provide a primitive to force a rule checking. An example is the process rules 
command in Starburst [Widom, 19961. 

A further dimension of rule execution is how rules execute on the objects, or 
tuples, they are triggered on. In the literature [Widom et al., 1991], set-oriented 
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and instance-oriented semantics are distinguished. Under the former, a trig­
gered rule executes simultaneously on all objects that satisfy its condition. Un­
der the latter, the triggered rule executes, non-deterministically, on one object 
that satisfies this condition at a time. As we will discuss in Chapter 9, this af­
fects the result of rule execution. The execution sequence of triggered rules 
can be influenced by introducing priorities between rules. High priority rules 
are executed before low priority rules. The last choice in the selection of rules 
to execute, is whether a system executes all triggered rules, or picks only a 
single rule for execution. 

Tl Al A2 A3 A4 T2 

I I I I ,__ _________ _ 

Figure 3.1: Immediate coupling of event and condition 

Since rules consist of three parts, another dimension of rule execution is the 
interaction of these parts. This is known as the coupling of these three parts. 
Two couplings are of importance: Event - Condition coupling and Condition 
- Action coupling. Three main coupling modes are distinguished: immediate, 
deferred and independent. These modes assume a flat, i.e., non-nested, trans­
action model as used in most DBMSs. An immediate coupling between event 
and condition means that the condition is checked immediately on occurrence 
of the event, in the same transaction. For example, in Figure 3.1, condition C is 
checked immediately after the event E occurred in transaction Tl. 
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Figure 3.2: Deferred coupling of event and condition 

With deferred coupling the condition is checked in the same transaction as the 
event occurred, but only at the end of the transaction, as depicted in Figure 3.2. 



28 3.2. TEMPORAL DATABASES 

Finally, independent coupling means that the condition is checked in a separate 
transaction, as depicted in Figure 3.3. With a more advanced transaction model, 
e.g., the nested transaction model of HiPAC [Dayal et al., 1988a], additional 
coupling modes are possible. An example is the causally-dependent decoupled 
mode in HiPAC. In this mode, the rule's action is executed in a separate sub­
transaction, that can commit only if the triggering transaction commits. 

Tl Al A2 A3 A4 

I 
~ 

T2 

I I -------

--u 
'--' 
~ u 
~ 

..c:: 
u 

Figure 3.3: Independent coupling of event and condition 

3.2 Temporal Databases 

An information system reflects the state of a part of the real world, that is sub­
ject to change. In many applications, we need facilities to consult data from the 
past. For example, a bank wants insight in the amount of money flowing into 
and out of your bank account during the past year to assess your creditwor­
thiness. This need to store data in relation to time is supported by temporal 
databases. This is a considerable extension of DBMS functionality, due to the 
complexity of temporal data. This complexity is mainly found in the many pos­
sible data models, different temporal dimensions, and interval operators. In 
this section, we give a short introduction of temporal databases. The reader is 
referred to [Tansel et al., 1993] for an elaborate overview of temporal databases. 

Temporal Dimensions If we have data to be entered in a temporal database, 
different criteria can be applied to give time stamps. One criterion is the time 
the data was entered into the database. This is called transaction time. Another 
criterion is the validity of the data in the real world, which is known as valid 
time. For example, in the Netherlands, a new born baby can be registered with 
the Registry Office up to two working days after birth. Suppose a baby is born 
on Sunday, April 14th, 1997 and registered on Tue~day, April 16th, 1997. Then 
in the Civic Registrv, April 14th, 1997 would be the valid time and April 16th, 
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199 7 the transaction time of the birth. This example shows a drawback of using 
transaction time only, viz., the potential lag between the time of validity and the 
time of entry. Using valid time only, however, also has its disadvantage. If data 
is entered incorrectly, the previously stored data is lost in a valid time database. 
Although we can represent past states of the world with only valid time, we can­
not reconstruct past database states. Therefore, a full temporal data model, e.g., 
the data model underlying TSQL2 [Snodgrass, 1994), incorporates both trans­
action and valid time. Databases containing only transaction time allow us to 
reconstruct past database states. Usually, these are called historical databases. 

Data Models Most work on temporal databases is based on an extended re­
lational model. If a clock is available, adding timestamps to data is relatively 
straightforward in this case. For example, to each tuple we add an attribute, 
that indicates when this tuple was valid. This is known as tuple time-stamping. 
Another approach, known as attribute time-stamping, is to record the time of 
validity per attribute. An overview of temporal relational algebras, and the de­
sign decisions in defining them, is given in [McKenzie and Snodgrass, 19911. 

Object-based temporal data models are less common. In [Wuu and Dayal, 1992), 
it is shown how a temporal dimension can be brought into the OODAPLEX 
model. In this model, every function application to an object is parameterised 
with time in order to get the object state at that time. Another model that stores 
past object states is Ginsburg's object history formalism [Ginsburg, 19931. Here, 
the state of an object is a sequence of past states representing the history of 
the object. Again, we can also record temporal data on an attribute basis. This 
is proposed as a special case of versioning in [Sciore, 19911. In an object-based 
temporal model, we can either have interval time-stamps or point time-stamps. 
In the former case, a time-stamp gives the complete interval of validity. In the 
latter case, a time-stamp gives the starting point of a value's validity. Given a 
number of valuations, we can then infer the interval. Due to the lack of object 
identifiers, this is not possible in a relational model. 

Temporal Queries Querying a temporal database is more complex than query­
ing a database without a temporal dimension, because of operations on time 
intervals. The temporal dimension influences queries in a number of different 
ways. 

In a temporal database, the result of a query can be a time interval. An ex­
ample of this is the query "When was the price of Philips shares higher than 
80 guilders?". More complex queries for time intervals involve comparisons 
between intervals. As an example, consider the query "Give the interval when 
Philips shares were more than 80 guilders and IBM shares were more than 125 
dollars". This query asks for the intersection between two intervals, viz., the 
interval when Philips' share price was higher than 80 guilders and the interval 
when IBM's share price was higher than 125 dollars. Besides intersection, the 
union of two time intervals is useful to support queries for time intervals. 
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A query's condition can include conditions on time intervals. An example is 
the query "Find the salary of Jones when Smith was his manager." Here, we 
have a condition on that two intervals must overlap. The first interval is the 
validity of the returned value for the salary. The second interval is the validity 
of the manager attribute having value Smith. This type of queries is supported 
by predicates such as BEFORE, DURING, OVERLAP, et cetera. These represent 
the usual boolean functions on intervals in general. 

In addition to these interval operations, a number of aggregate functions also 
have temporal variants. Time can be included through the application of aggre­
gates to intervals. For example, a temporal sum operator can be used to find the 
total duration of a condition's truth. A different type of function takes an inter­
val as input parameter in order to find an aggregate value for the given interval. 
For example, functions like max, min, and average can be applied to intervals. 
In this case, the operator max yields the maximum value of an attribute within 
the specified interval. 

More purely temporal operations in queries are restriction of a query's tempo­
ral scope and queries to find specific intervals. The first operation is also known 
as time-slicing. A time-slice restricts the result to part of the database history. 
For example, a time-slice [1992, 1995] only yields results between January 1st, 
1992 and December 31st, 1995. Conceptually, this is just another temporal 
predicate. For clarity, it is often put into a separate clause. The second opera­
tion, finding intervals, finds smallest or largest intervals satisfying a specified 
condition. An example is a query "What is the largest interval during which the 
price of Philips did not exceed fifty guilders?" 

3.3 Object-Oriented Databases 

Object-orientation is the combination of data and behaviour in objects that 
have a close correspondence to real-world objects. It was first found in SIMULA 
[Birtwistle et al., 1974) to structure computer programs for simulations. It was 
taken further by languages such as Smalltalk [Goldberg and Robson, 1983], C++ 
[Stroustrup, 19911, and Eiffel [Meyer, 19881. 

Important for the introduction of object-orientation in databases were the sys­
tems 02 [Deux, 1990] and Gemstone [Maier and Stein, 19871. In this section, we 
give a short overview of object-oriented databases. For a general discussion of 
the object model in databases the reader is referred to [Kim, 19951. The Story 
of 02 [Bancilhon et al., 1992) gives a good overview of issues in building an 
object-oriented database management system. 

The first occurrence of object-oriented notions in databases is in the Entity­
Relationship model [Chen, 19761. Until the mid-eighties, object-orientation was 
only found in data modelling. Implementation of an information system was 
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mainly done using relational databases. The broadening scope of information 
systems brought to light a number of shortcomings of relational systems for ad­
vanced applications, like design databases, manufacturing databases, and office 
automation systems. In such applications, an object-oriented database offers 
better facilities to model complex structures. A significant advantage of object­
oriented databases is the encapsulation of operations with the data. This way, 
operations shared between programs are specified and stored in a single place. 
For example, most applications using a manufacturing database need to obtain 
the composing parts of an assembly. In this case, it has obvious advantages 
to specify a single operation for this together with the data specification of an 
assembly. Furthermore, object-orientation offers better facilities to view data at 
different abstraction levels. For example, we might want to view an aircraft de­
sign at the level of the complete aircraft, split up into wings, fuselage, engines 
etc., or completely "exploded" into parts. 

Research in object-oriented databases has not yet yielded a single, well-defined 
data model, as was achieved very early for the relational model [Codd, 1970). 
Hence, standardisation has been actively pursued by both the industrial and the 
academic parts of the OODBMS community. This effort resulted in the ODMG 
(Object Data Management Group) model [Catell, 19941. ODMG defines an inter­
face to and a data model for an OODBMS to promote portability of applications 
between DBMSs. 

This absence of a single well-defined data model led to the formulation of 
an OODBMS' key properties in the often cited object-oriented database mani­
festo [Atkinson et al., 19891. These are: 

1. Complex Objects. A complex object is an object built from simpler ones. 
An example is a car object that exists of other objects, viz., part objects. 
Complex objects can also be recursive. For example, in a design database, 
a subassembly object can consist of other subassembly objects. This 
construction of complex objects from other objects is called aggregation. 

2. Object Identity. Object data models are based on identity, as opposed to 
the relational model, which is value-based. In the relational model, two tu­
ples are the same, if their attribute values are equal. In an object-oriented 
data model, two objects are the same if and only if their identities are the 
same. 

3. Encapsulation. This has two aspects. The first aspect originates in ab­
stract data types. It is concerned with the separation of interface and 
implementation. Additionally, this allows us to hide private data of an 
object. The second aspect is the combined specification of data and be­
haviour in an object. This is the important aspect from a database point 
of view. 
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4. Types and Classes. Two key notions in an OODBMS are types and classes. 
In an object-oriented system, a type is a specification of an object's fea­
tures. The type of an object is often given as a tuple of attribute and 
method types. A class is a collection of objects, that is used to create and 
store objects. 

Usually, the notions of class and type are closely associated. The relation 
between types and classes can be in two directions. Commonly, objects 
in a class conform to the associated type, because they are instances of 
that class. Another approach is that objects belong to a class, because 
they conform to the associated type. This is the case in data models al­
lowing arbitrary addition and deletion of attributes, methods and other 
elements of objects, such as Self [Ungar and Smith, 1987] and Goblin [Ker­
sten, 19911. 

5. Class or Type Hierarchies. Classes and types are part of hierarchies, 
formed by inheritance. A subclass inherits the features from a superclass, 
which means that it has the same data and behaviour, possibly extended 
with its own data and behaviour. Hence, the subclass is a specialisation of 
the superclass. Likewise, a superclass is a generalisation of its subclasses. 
Everywhere an object of the superclass is required, an object of the sub­
class can be used. 

6. Overriding, Overloading, and Late Binding. With the separation of in­
terface and implementations, subclasses of a superclass might have the 
interface of an operation in common, but have a different implementa­
tion. A classical example is a display operation for a g rap hi c object, 
which is implemented differently by its subclasses ci rel e, triangle, 
and polygon objects. Since the name display denotes different opera­
tions, it is said to be overloaded. If the graphic object implements its 
own, generic, display operation, then the subclasses are said to override 
this operation with their own definition. 

Overloading and overriding operations means choosing an implementa­
tion to execute for each invocation of the operation. For example, if we in­
voke the display operation on a graphic object, then we would like the 
system to execute the most-specific implementation, e.g., the t ri angle 
implementation of display for triangle object. This is achieved by late 
binding, which means that the implementation is chosen at the actual ex­
ecution time. 

7. Computational Completeness. An OODBMS must allow every computable 
function to be computed in its data manipulation language. 

8. Extensibility. The user of the OODBMS must be able to define his own 
types. Furthermore, there is no distinction in use between system-defined 
types and usrr-defined types. 



3.4. THE IMPACT OF OBJECT AUTONOMY 33 

9. An OODBMS is a DBMS. An OODBMS must support persistence, sec­
ondary storage management, concurrency, recovery, and an ad-hoc query 
facility. 

The final requirement is stated as five separate requirements in the Manifesto 
itself. The other requirements are on the data model, that also apply to object­
oriented programming languages. Actually, this close relation to programming 
languages is one of the main advantages of an OODBMS over a relational DBMS 
for complex applications. Most programming languages use a data model, that 
is different from the relational model. In particular, many programming lan­
guages do not have a set-construct, while results from relational queries are 
always sets. Hence, we have an impedance mismatch between the programming 
language and the relational DBMS. Since an OODBMS uses the same data model 
as an 00 programming language, the impedance mismatch is solved here. 

3.4 The Impact of Object Autonomy 

Autonomous objects build on the field of active databases. In this section, we 
discuss the impact of object autonomy on an active database. Secondary themes 
in the research are the links between active databases, and temporal and object 
databases. Hence, the scope is the upper, darker coloured, triangle in Figure 3.4. 

Active Databases 

Object Databases Temporal Databases 

Figure 3.4: The scope of the research in this thesis 

We will discuss the impact of object autonomy on an active database in the 
following four issues: 

l. Modularisation of an active database. 
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2. A unified, process-algebraic, formalisation of active and historical data­
bases. 

3. Queries in an active database. 

4. Object evolution. 

In these four areas the maximal encapsulation of object autonomy offers sig­
nificant advantages, which we discuss below. 

3.4.1 Modularisation of Active Databases 

The consequence of object autonomy for the modularisation of an active da­
tabase is the encapsulation of rules in objects. DEGAS is the first active data 
model to consequently apply this object-oriented principle to an active data­
base. Other active object databases, like Chimera [Ceri et al., 1996] and SAMOS 
[Gatziu et al., 1991], offer a hybrid rule model. Rules can be encapsulated, but 
the separate definition of rules is still allowed. 

The modularisation of rules is important, if we have a large number of rules in 
a database. This is the case if we use rules to implement large parts of an ap­
plication's functionality. Clearly, in such a situation a single, flat rulebase does 
not promote easy maintenance and understandability of the system. Hence, an 
active database needs facilities to bring structure to the rulebase. Since the data 
in a database is already structured by some means, i.e., through relations in a 
relational database or through objects in an object-oriented database, rules can 
either have a structure separate from the data, or have the same structure as 
the data. 

Separate structure for rules and data. If rules use a separate structure, the 
rulebase is separate from the database, as depicted in Figure 3.5. Here, the 
modularisation applied to the rules is different from that applied to the data. 
In some systems with a separate rulebase, such as Starburst [Widom, 1996], 
rules are grouped in rule sets. One of the main uses of these rule sets is to 
activate and deactivate several rules at a time. Consequently, the main criterion 
for modularisation is functional. 

A number of different criteria can be used for grouping rules in sets. [Bar­
alis et al., 1996] gives three different criteria, using the term stratification1. 

Behavioural stratification groups rules that together perform a given task. As­
sertional stratification groups rules that progressively establish some assertion 
on the database, which is the post-condition of the stratum. Event-based speci­
fication groups rules that share a set of triggering events, or that share a set of 
produced events. 

1The use of this notion from deductive databases is explained by the strong influence of that 
area on the work of [Baralis et al., 1996] 
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Another example of separate modularisation for rules is HiPAC [Dayal et al., 
1988bl. In HiPAC, rules are treated as objects. Consequently, the rulebase is it­
self an object database. According to [Dayal et al., 1988b), the advantage is the 
availability of the mechanisms for manipulating data for manipulating rules. 
For example, rules can be part of an inheritance hierarchy. Furthermore, they 
are subject to transaction control, like any other item in the database. The struc­
ture of the rulebase, however, is unrelated to the structure of the database. 

Active DBMS 

Database Rulebase 

Figure 3.5: Separation of Database and Rulebase 

Same structure for rules and data. The other approach is that rules follow 
the same modularisation as data in the database. For a relational system, this 
means that rules are defined on the relations in the database. This approach is 
followed by the SQL3 rules standard [ISO, 19941. In object systems, the data is 
modularised according to a class hierarchy. If rules follow the object structure, 
objects also encapsulate rules. An example of an active object database that 
provides encapsulated rules is Chimera [Ceri et al., 19961. The modularisation 
in Chimera, however, is hybrid, since it still allowed to define rules separately. 

In DEGAS, we opt for the complete encapsulation of rules in objects. Hence, 
the modularisation of the data is applied to the rules without any changes. 
This limits the number of concepts used in the database design. Furthermore, 
since rules are part of the behaviour of the data, it is a rigorous application 
of object-oriented principles. This encapsulation of rules also has the advan­
tage of having all aspects of an object's behaviour defined in one place. This 
independence of an object's specification is a necessary consequence of object 
autonomy. 

An older system that aims to integrate active rules into objects is MOKUM [Riet, 
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1989]. Like DEGAS it incorporates active elements in objects. Activity in MOKUM 
occurs in two elements. First, attribute definition allows derived data and con­
straint enforcement. Second, triggers occur in scripts, that define the lifecycle 
of an object. A MOKUM script is a representation of a finite state machine. State 
transitions in a MOKUM script are defined by triggers, that specify an action 
and a state transition to be executed on an incoming event. Since MOKUM is 
Prolog-based, there is no distinction between conditions and actions in a trig­
ger. Another similarity between DEGAS and MOKUM is the facility to add types 
to objects. There is, however, no interaction between the scripts of different 
types of an objects, as is possible with DEGAS lifecycles. 

3.4.2 Formalisation of Active and Historical Databases 

Object autonomy has a distinct impact on the formalisation of a database. Since 
one consequence of object autonomy is that every object executes as a separate 
process, the execution of a single process is the basis of the formalisation of 
DEGAS. This process-centered view motivates the choice for process algebra, in 
particular ACP [Baeten and Weijland, 1990], as a central element in the formal­
isation, as shown in Chapter 5. The key notion in ACP is to match a process 
specification against the trace of an executed process. If we apply this to an 
autonomous object, the trace is the history of method execution and process 
specifications are event specifications. This clearly indicates a link between the 
history of the database and its rule facility. 

The inherent temporal element in active databases was also observed by [Dit­
trich and Gatziu, 1993) and [Widom and Ceri, 19951. This temporal element is 
caused by the inclusion in ECA rules of event expressions composed of multiple 
basic events, such as method calls [Dayal et al., 1988b, Gatziu et al., 19911, and 
time events [Dayal et al., 1988a, Hanson, 1989, Gatziu et al., 19911. This also 
shows that an event specification is a condition on the history of the database. 

We can also see this through a more detailed look into rule triggering. In or­
der to detect complex events, we need to store the basic events occurring in 
the database. Since a complex event expression usually specifies a sequence of 
events, the record of basic events must store information about the order in 
which events occurred, e.g., in an event queue. 

This inherent temporal element in active databases raises the question of the 
relation to temporal and historical databases. To that end, we examine what 
temporal data needs to be stored in an active databases. Not surprisingly, this 
depends on the rule language offered. 

Many active datab;i.ses include time in an event expression. This can be in rela­
tive form, such as "5 days after event A" or absolute such as "every day at mid­
night". In addition to explicit time events, it is de;:;irable to refer to an event's 
time of occurrence. One possible approach is that the active database gives 
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access to the time of occurrence in the condition, either through a specific op­
erator [Gatziu and Dittrich, 1993], or by allowing a time parameter to be bound 
to each event, as is done in DEGAS. Another approach is to specify the tempo­
ral conditions on the event by putting the appropriate time events in the event 
specification. This choice makes a difference in the way we check the temporal 
part of the rule specification. In the former case, we can check temporal condi­
tions in the condition of the rule. In the latter case, the time events are included 
in the event detection mechanism. 

Since most active database management systems offer the possibility to specify 
parameters of events, they also need to store the parameters of a method call, 
in addition to the time it occurred. This way, a rule can be triggered on method 
calls with certain values for the parameters only. For example, we may have a 
rule on a bank account that is only invoked, if a debit action of more than 1000 
guilders is executed. 

It should be clear by now, that every extension of event specification in the def­
inition of rules beyond single basic events necessitates a partial record of the 
database history. In particular, if an active DBMS offers all facilities described 
above, it has to store all method calls with their parameters and timestamp. 
Obviously, we can reconstruct all historical states of the database, if we have 
all state transitions in the form of method calls. Hence, it is a small step from 
an active database to a historical database. Since DEGAS aims to offer full active 
database functionality, the state of a DEGAS object includes its history, i.e., a 
record of past states and method calls. DEGAS offers a single temporal dimen­
sion, viz., transaction time, to retain a simple active database model. 

Earlier research into the common ground of active and temporal databases 
mainly focussed on temporal conditions in rules [Gal et al., 1996, Sistla and 
Wolfson, 19951. This work extended the condition of a condition - action rule, 
allowing the specification of an attribute's change over time. An example is to 
trigger, if the salary of an employee doubles within a year. Since this work did 
not involve events, it is limited from the standpoint of active databases. Hence, 
an innovation in DEGAS is the inclusion of temporal functionality in an active 
database offering full ECA rules. 

The formalisation of DEGAS in process algebra has a further advantage. This is 
found in the direct formulation of the semantics. In active database systems, 
events are defined and specified in varied ways. Although the complexity of 
event algebras varies, the algebra can usually be reduced to a small set of op­
erators [Gehani et al., 19921. Hence, the main difference of interest is in the 
formalisation of the event algebras. 

Two main approaches can be distinguished here. One approach is to translate 
the event specification to another formalism with a well-defined semantics. For 
example, in SAMOS [Gatziu and Dittrich, 1994) event expressions are translated 



38 3.4. THE IMPACT OF OBJECT AUTONOMY 

to Petri nets [Reisig, 19851. Then, the occurrence of events in the database is 
represented by placement of tokens in the Petri net. The translation to another 
formalism is a disadvantage of this approach, because it introduces an extra 
step in the formalisation. An advantage is the straightforward implementation 
of a Petri net. 

The other approach is a more direct one. The semantics of the event algebra 
is defined directly in terms of the database history. An example of this is ODE 
[Gehani et al., 19921. An advantage is the directness, since the translation is not 
needed. 

The semantics of events in DEGAS is defined in the direct way. As stated at 
the start of this section, the DEGAS event algebra is a variant of ACP [Baeten 
and Weijland, 1990), a well-known specification formalism proven in practice 
[Baeten, 19901. The ACP concept of matching a process definition and an action 
trace can easily be translated to the triggering of an event specification by an 
event trace. The reuse of an existing formalism as an event algebra is a clear ad­
vantage of DEGAS. Furthermore, it does not exclude a translation to a different 
formalism for implementation purposes. 

3.4.3 Queries in an Active Database 

The link between active and temporal databases, discussed in Section 3.4.2, 
showed that event specifications can be regarded as conditions on the history 
of the database. If the history records events, as is the case in DEGAS, then they 
must also be accessible for queries. Hence, DEGAS queries allow the use of event 
specifications in the selector. 

Event specifications facilitate the formulation of queries like: "Give all credit 
cards used more than five times last Saturday" or "Give the balance of bank 
accounts at the time they were debited more than DFL 10,000". Thus, we have 
an additional means to specify a historical situation in the database, that is 
independent of time. It is useful to specify that we are interested in a certain 
situation, without requiring a specific time of occurrence. 

A further advantage of the use of event specifications in queries is in the for­
malisation of the active database. An ECA rule can be considered to be a query­
action pair, thus decreasing the number of concepts required. Furthermore, 
the inclusion of events in a query obviates the need for specific temporal op­
erations in the condition. In fact, the combination event-condition subsumes 
the temporal conditions in, for example, mono-temporal TSQL [Navathe and 
Ahmed, 1993). 

We know of no earlier work involving events in temporal queries. The work 
reported in [Claramunt and Theriault, 1995) involves event-oriented queries, 
but events are a notion from the application, not from the database system 
itself. 
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3.4.4 Object Evolution 

One of the key features of OODBMSs, as described in Section 3.3, are classes and 
types. Each object in a database belongs to a class. In most systems, an object's 
membership of a class is a fixed property. Hence, an object does not migrate 
from one class to another in the hierarchy. Specialisation of objects, however, 
is also a dynamic phenomenon. The specialisation is dependent on the role of 
an object. For example, a person object is specialised to an employee object, 
because of its role in an employment relation. [Gottlob et al., 1996] discuss 
the extension of object-oriented systems with roles. An extensive conceptual 
study and formalisation of objects with roles is found in [Wieringa et al., 19951. 
There, a distinction is made between static classes, dynamic classes and roles. 
Objects cannot migrate between static classes, because a static class defines 
inherent properties of the object. Dynamic classes are dynamic partitions of an 
object class. Objects can migrate between dynamic classes, possibly subject to 
constraints. Roles are also dynamic classes but roles do not partition an object 
class. In addition, an object can play multiple roles at a time. 

The relevance of roles for object modelling indicates the need in an object data­
base for a mechanism to dynamically migrate objects from one class to another. 
Some work has been done in this area. For example, the database programming 
language Fibonacci [Albano et al., 1993] offers an extensive role mechanism. 
Roles themselves are part of a hierarchy. Hence, roles can be specialisation of 
other roles, which gives a relatively complex structure. 

An obvious approach is to model roles by inheritance. This is an obvious choice, 
given that inheritance is the standard specialisation mechanism on most object­
based systems. Modelling roles by inheritance, however, has a strong disadvan­
tage, if an object can play multiple roles at a time. In an inheritance hierarchy, 
we would need a separate class for each possible combination of object exten­
sions. Clearly, this leads to a combinatorial explosion of the number of classes 
in the hierarchy [McAllester and Zabih, 19861. 

To avoid this combinatorial explosion, each role can be specified separately, 
while allowing addition of multiple roles at a time. An example is the work on 
Aspects [Richardson and Schwarz, 19911. An aspect is a unit of data and be­
haviour that can be added dynamically to an object. Aspects, however, do not 
address the link between aspects and relations, as in the employment example 
at the start of this section. Furthermore, although aspects can have other as­
pects, interaction is not possible between different aspects of the same object. 
Hence, we cannot model interactions between two roles of the same object. An 
example would be the use by a person of information obtained through his 
employee role in his investor role. 

In DEGAS, we introduce a simple object extension mechanism, the addon mech­
anism. This avoids the complications of multiple inheritance. Furthermore, ac­
tive rules allow object extension to be triggered by events on the database. This 
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is especially useful to extend an object further, if a combination of addons is 
present. The addon mechanism is discussed in Chapter 4. 

3.5 Conclusion 

This chapter presented the areas in database research that are of interest for 
our research. We started with an overview of active databases, which is the area 
DEGAS builds on. Object autonomy also gives new perspectives on the connec­
tion of active databases to temporal and object-oriented databases, which were 
also introduced. 

Further discussion in this chapter concerns the impact of object autonomy on 
different issues in active object databases. The maximal encapsulation of object 
autonomy promotes a consequent application of object-oriented principles to 
the modularisation of rules in an active databases. Furthermore, the process­
oriented view of object autonomy on the formalisation of an active database 
gives us a model that unifies active and historical databases. A further advan­
tage of this formalisation is that it gives the semantics of rules directly. 

The integration of active and temporal database also sheds new light on the 
specification of temporal queries. Events as temporal conditions allow the spec­
ification of historical situations independent of their exact time of occurrence. 
Another contribution of the DEGAS model is the straightforward object exten­
sion mechanism, that allows the implementation of objects with roles. 

The next part of this thesis introduces the DEGAS model in full. The presenta­
tion of the DEGAS model will make clear, how DEGAS fulfills the contributions 
described in this chapter. 
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Chapter 4 

The DEGAS Object Model 

Now that the motivation for DEGAS has been discussed in depth, its main con­
cepts can be introduced formally. The basis of DEGAS is the autonomous ob­
ject. As explained before, these objects can evolve through addons, containers 
of additional, temporally present, functionality. Furthermore, objects are inter­
related through relation objects. For a good understanding of these concepts, 
we use trading on a stock exchange as an on-going example. This example also 
serves as an introduction of the DEGAS language. 

The introduction of DEGAS concepts is topped off with the DEGAS query lan­
guage. DEGAS' event specifications offer a new way to formulate temporal con­
ditions. This adds an event specification clause to the usual SQL-like object 
query format. Object autonomy also leads to the introduction of the quality of 
a query result. Furthermore, we discuss the object management structures in a 
DEGAS databases. 

4.1 DEGAS Objects 

In DEGAS, objects are instances of classes. Hence, a DEGAS object definition 
specifies an instance of a class. As usual, we distinguish structure and be­
haviour in a DEGAS object. The structure of an object is determined by the 
attributes. The behaviour of an object has three components: methods, lifecy­
cles, and rules. Methods specify what an object can do. The lifecycles specify 
what an object might do, i.e. what methods it is willing to execute in a certain 
context, by specifying sequencing of and preconditions on method execution. 
Rules specify what an object will do, by specifying actual actions to be exe­
cuted in certain situations, defined in terms of events and object states. Thus, 
methods and lifecycles specify potential behaviour of an object, whereas rules 
describe actual behaviour. Traditionally, only potential behaviour is specified 
in object-oriented databases, often limited to methods only. 
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The first section of an object specification specifies the attributes of a class. 
DEGAS supports the types commonly found in object models: simple types, 
tuple types and power types, i.e., sets. One of types supported is the set of 
class names in the databases. Hence, other object's attributes can be referred to 
through path expressions, that are translated to method calls to other objects. 

As usual in an object-based model, methods specify the possible state changes 
of an object. In DEGAS, methods can either change attributes in the object, or 
call other methods, both local and in other objects. Method calls between ob­
jects are by way of non-blocking message passing. This will be further explained 
in Chapter 6. 

An object's lifecycle specifies sequencing of methods and pre-conditions on me­
thod invocations. Hence, every method call is checked against the lifecycle of 
the object. A method call will only be executed, if the current state of the lifecy­
cle allows it. The formalism chosen to specify lifecycles in DEGAS is guarded ba­
sic process algebraic expressions [Baeten and Weijland, 19901. The basic actions 
in such an expression are method names. Complex expressions are composed 
using sequential composition, alternative composition, repetition, and parallel 
merge (or indifference) operators. 

Rules in DEGAS follow the usual Event-Condition-Action (ECA) format. Like life­
cycles, event specifications in DEGAS are expressed using process algebra. We 
chose process algebra as an event algebra is, because it is well understood, and 
has found broad application [Baeten, 19901. In addition to the operators in a 
lifecycle, an event specification can use the negation of an event. This denotes 
any event on the object, except the negated event. As was explained in Sec­
tion 3.1, the action of an ECA rule is executed on occurrence of the event, if the 
condition is satisfied. In DEGAS, this check of event and condition is done after 
every method invocation. The action of a rule is a method call, either local or to 
a method in another object. Hence, the action is also subject to object lif ecycles. 

Another way to define a class is generalisation. Generalisation captures com­
monalities between objects of different classes. There are no instances of a 
generalisation class, since the class of an object defines its inherent, unchange­
able properties. An example is the notion of a legal entity. Both companies and 
persons are legal entities, but no object exists that is only a legal entity. A lot 
of relations, however, are between legal entities. Hence, we need the ability to 
specify such generalisations in DEGAS. 

Objects can be specialised through the addon mechanism. An addon defines 
additional attributes, methods, rules and lifecycles. If an object is extended 
through an addon, it gains these transient capabilities. These cannot be distin­
guished from the inherent capabilities of an object1. The capabilities specified 

1 An object with introspection might keep track of its capabilities to determine which capa-
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in an addon are lost, when the addon is removed. Since an addon only defines 
an extension of an object, instances of an addon do not exist. 

Addons allow the capabilities of an object to evolve over time, like those of 
an object in the real world. During its life, an object is created, acquires and 
loses relations, and consequently gains and loses capabilities. An example is an 
employee that has different capabilities in different jobs. 

In DEGAS, relations between objects are objects themselves. Thus, we have a 
place for data and behaviour of a relation. Furthermore, the fact that a relation 
object is an object itself, also means that it can engage in relations itself. A 
more abstract motivation of this objectification is, that a relation is a kind of 
contract, a view also found in, e.g., NIAM [Nijssen and Halpin, 19901. 

Before two objects enter a relationship, certain preconditions will have to be 
satisfied. For example, if two persons wish to marry, both must be of a differ­
ent sex and must be unmarried. Likewise, the termination of a relationship is 
subject to restrictions. In relations, we often need to store data and behaviour 
of the relation. An example is the bank account relation between a bank and its 
clients. This information, and the capabilities to handle termination of the rela­
tionship, are stored in a relation object. The capabilities to handle the initiation 
of a relationship, including the creation of the relation object, can be found in 
the corresponding relation class object. 

An object that engages in a relation is extended using the addon mechanism. 
Through the addon it acquires the capabilities to handle the relationship. An 
addon is always added, since an object must have a method to terminate the 
relation. An example is a person with a bank account. If he is in this relation, 
he can transfer money to other bank accounts or withdraw money through an 
ATM2. 

The three meta classes in DEGAS, objects, relation objects, and addons, lead 
to a three-layered structure of a DEGAS database. At the lowest level, we find 
the object instances. These are objects and relation objects with their addons. 
Addons do not have a separate existence, since they only define an extension 
of a DEGAS object. Each class of objects is represented by a class object. These 
are again typed by the three meta classes. These three layers are depicted in 
Figure 4.1. They can be characterised as follows: 

1. Instance Level. This level is the representation of the Universe of Dis­
course of our information system. Here, objects such as persons, banks 
and bank accounts can be found. 

bilities are permanent and which are transient. A DEGAS object, however, is not equipped with 
introspection. 

2 Automated Teller Machine 
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2. Class Level. This level contains class objects, that are representations for 
every object class, relation object class and addon class. Class objects 
handle object creation and keep track of the objects in their class. Class 
objects are DEGAS objects without the ability to engage in relations. 

3. Meta Class Level. The meta classes are also represented by objects in the 
system. This is the highest level in the system. The presence of meta class 
objects facilitates schema evolution by creating and destroying classes, in 
analogy to the creation and destruction of objects by class objects. 
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Figure 4.1: Structure of the Object Model 

Each class in DEGAS is represented by a class object. Besides recording part of 
the extent of the class, class objects serve three functions: 

1. Creation of new objects 

2. Information about the schema of a class 

3. Schema updates. 

The first two functions are purely local as long as the object schema is fixed. 
Schema information about objects is necessary to check the correctness of 
queries. For example, we can test whether an attribute defined in a query actu­
ally occurs in that object. Type checking for queries will be discussed in Sec­
tion 7.4 below. 
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All three meta classes in DEGAS, i.e., objects, relation objects, and addons, have 
class objects associated with them. These class objects maintain the extent 
set of their classes. For example, we can get the set of objects that have an 
account holder addon through the class object for this addon. 

4.2 DEGAS by example 

In this section, we introduce the DEGAS concepts by modelling a highly dynamic 
application, since these are the most challenging to deal with. Trading on the 
stock exchange3 is such an application with fast changing data and rapidly 
evolving relations. New data emerges constantly in the form of buying and sell­
ing orders, economic news items through newsreels, et cetera. Both new and 
historical data influence the behaviour of the parties in the market. 

Let us briefly describe the example in more detail. Companies are owned by per­
sons. A person can buy and sell shares. He can subscribe to a newspaper spe­
cialised in news about companies of his interest. Buying and selling of shares 
goes through a market-maker. If a person wants to buy or sell, he informs the 
market-maker. Periodically, the market-maker determines the price that bal­
ances supply and demand. Buying and selling orders that agree with this price 
are fulfilled. 

We start this example with the market-maker. The market-maker matches sup­
ply and demand for his market. Hence, the actions he can execute are to accept 
buying and selling orders and to try to match these. The data stored by the 
market-maker is the current price of the share he deals in, which is a real num­
ber. This is specified by the DEGAS definition of attributes and methods of an 
object class Marketmaker in Figure 4.2. The methods in this object only contain 
actions to engage in a relation or actions to extend the object with an addon. An 
object engages in a relation by sending a method call to the class object of the 
relation. An example is the i ni ti ateMarketmaker message sent to the class 
object of the Supply relation. The creation of a DEGAS relation is largely left to 
the application designer, as is discussed in full detail in Section 7.3. 

This defines the basic properties and actions, but we know more about the 
market-maker. This information is specified in the lifecycle. The lifecycle of a 
Marketmake r object consists of taking buying and selling orders. If both ac­
tions have occurred in an arbitrary number and sequence, he is allowed to 
match supply and demand. In this process algebraic expression ; denotes se­
quence, * denotes repetition, and II denotes indifference parallelism. 

The specification of the actual execution of actions by a DEGAS object is given 
by its rules. The behaviour of a market-maker is to register supply and demand, 

30ur example is a simplification of the stock exchange in the Netherlands. 
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Object Marketmaker 
Attributes 

currentPrice : real 
Methods 

takeSellOrder = { 
SupplyClass.initiateMarketMaker 

} 
takeBuyOrder = { 

DemandClass.initiateMarketMaker 
} 
makeMarket = { 

Extend(SupplyDemand) 
} 

Llfecydes 
((takeSellOrder* II takeBuyOrder*);makeMarket)* 

Rules 
On (takeSellOrderlltakeBuyOrder) do makeMarket 

EndObject 

4.2. DEGAS BY EXAMPLE 

Figure 4.2: Specification of the Marketmaker object 

and clear the market if both are present. A rule, that completes the definition 
of the Marketmaker object, specifies this behaviour. 

In our example, a person can buy shares. To do this, he should place a buying 
order. If this order can be met by supply in the market, he will actually buy 
the shares. If it is unsuccessful, a cancellation will be the result. In addition 
to buying shares, a person can take a subscription to a newspaper in order to 
obtain information. If he owns shares and also reads a newspaper, he will use 
the information from the newspaper to influence decisions about his shares. 
This is specified in the Person object in Figure 4.3 

In the Person and Marketmaker objects, the methods define that the object 
engages in relations. Relations in DEGAS are objects themselves. A relation ob­
ject can have the same kind of capabilities as an ordinary object. For example, 
a share is modelled as an ownership relation between a person and a company. 
In the relation object, the partners in the relation are present as implicit at­
tributes, specified in the Relation clause. These can be used like any other 
attribute of the relation object. Other information present is the price of the 
share when it was bought. The definition of the Share relation object in Fig­
ure 4.4 shows the use of guard conditions in the lifecycle. The action after a 
condition can only be executed, if the condition is satisfied. In the Share rela­
tion object, guards are used to restrict access to its methods. Thus, in DEGAS we 
are able to control access to an object's methods in greater detail than in, e.g., 
C++ [Stroustrup, 1991], where the only distinctio:1. is between private, public 
and friend methods. 
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Object Person 
Attributes 

name : string 
birthday : time 
birthplace : string 

Methods 
tryToBuy(company:Company, number:integer, maxPrice:real) = { 

DemandClass.initiate(company,number,maxPrice) 
} 
readPaper(paper:Newspaper) = { 

SubscriptionClass.initiatePerson(paper) 
} 
useNews = { 

Extend(InformedOwner) 
} 

Llfecycles 
(tryToBuy)* 
(( extendShareholder II extendlnf ormedPerson);useNews )* 

Rules 
On (Extend(Shareholder) II Extend(InformedPerson)) 

do useNews 
EndObject 

Figure 4.3: Specification of the Person object 

Object Share 
Relation Person, Company 
Attributes 

buyPrice : real 
currentPrice : real 
value: real 

Methods 
transferOwnership(newOwner:Person,price:real) = { 

Person = newOwner 
buyPrice = price 

} 
payDividend(div:real) = { 

value = value + div 
} 

Llfecycles 
([sender=Person)transferOwnership)* 
([sender=Company]payDividend)* 

EndObject 

Figure 4.4: Specification of the Share relation object 

49 
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A Person object does not have the capability to deal with the share relation 
built-in. Instead, it acquires these when it engages in this relation. In this exam­
ple, a person who becomes a shareholder gains capabilities to sell the shares 
again. This is specified in the Shareholder addon in Figure 4.5. An addon tem­
porarily adds capabilities to a DEGAS object. These capabilities are present in 
the object from the time it is extended by the addon until the addon is re­
moved. The capabilities specified in the addon cannot be distinguished from 
the inherent capabilities of the object, while they are present. As was discussed 
in Section 3.4.4, objects have a role in their relations. Since the role is only 
needed when the object is in the relation, an important use of addons is to 
model roles in connection with relations. 

Addon Shareholder 
Extends Person 
Attributes 

share : Share 
Methods 

tryToSell(company:Company, number:integer, minPrice:real) = { 
SupplyClass.initiateShareholder(company,number,minPrice) 

} 
Sell(buyer,price) = { 

share.transferOwnership(buyer,price) 
Remove(Supply) 

} 
cancelSupply = { 

Remove(Supply) 
} 

Llfecycles 
(tryToSell;(Sell+cancelSupply))* 

EndAddon 

Figure 4.5: Specification of the Shareholder addon 

The Suppl yCl ass. i ni ti ate action in this addon specification also occurred 
in the specification of the Marketmaker object. A call to an i ni ti ate method 
is made by an object to express its wish to engage in a relation. Since the re­
lation object does not exist at this time, i ni ti ate is a method of the rela­
tion class object. In this case, a Shareholder object sends an i ni ti ate call to 
the Supply class object. In response, it sends a takeBuyOrder message to the 
market-maker to ask, if it is willing to accept the relation. As we can see in the 
specification of the Marketmake r object, it responds with an i ni ti ate call to 
express its agreement. The Supply class object then proceeds with instantia­
tion of the relation. A further explanation of the way relations are established 
can be found in Section 7.3. 

As we can see in the specification of the Person object, an addon can also be 
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used to link two relations. In our example, the information a person reads in 
the paper influences his decisions as a shareholder. This is achieved by extend­
ing the person with a further addon, if he owns shares and reads a newspaper. 
In Figure 4.6, we give the specification of the InformedPerson addon, that ex­
tends a Person object with a subscription to a newspaper. 

Addon InformedPerson 
Extends Person 
Attributes 

subscription : Subscription 
transactionPrice : real 

Methods 
goodNews(company : Company) = { 

transactionPrice = subscription.priceAdvice(company) 
} 
badNews(company : Company) = { 

transactionPrice = subscription.priceAdvice(company) 
} 

Lifecycles 
([sender=subscription)goodNews *) 
([sender=subscription)badNews *) 
(Extend(InformedPerson);Remove(InformedPerson))* 

Rules 
On goodNews(company)(t1 );goodNews(company)(t2) 

if t2 - ti ~ 7 days 
do tryToBuy( company, transactionPrice) 

EndAddon 

Figure 4.6: Specification of the InformedPerson addon 

The rule definitions in the specifications of InformedPerson and Informed­
Owner show the use of time in DEGAS. Historical values of attributes can be 
referenced by a time parameter. Likewise, we can refer to the timestamp of an 
event. The specification in Figure 4.7 gives an example of how the informed 
shareholder deals with bad news. This addon can extend a person, if it has 
both the Shareholder and the InformedPerson addons. Hence, the extends 
specification gives two original object names. Please note, that this is not a form 
of multiple inheritance. It simply specifies, what the addon may assume to be 
present. 

The diagram in Figure 4.8 shows the complete model of the stock exchange 
example. In this picture, large boxes represent objects and small boxes repre­
sent addons. The dashed boxes are relation objects. Please note that the arrows 
do not imply any arity constraints on the relations. Instead, the arrows simply 
point to the partners in the relation. 
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Addon InformedOwner 
Extends InformedPerson,Shareholder 
Attributes 

Key: P( subscription: Subscription, share: Share ) 
Llfecycles 

Extend(lnformedOwner)* 
Remove(InformedOwner)* 

Rules 
On badNews(company)(t1 );badNews(company)(t2) 

4.2. DEGAS BY EXAMPLE 

if (t2 - ti)~ 7 days and transactionPrice(t2) ~ transactionPrice(t1) 
do tryToSell(transactionPrice) 

On goodNews(ti);badNews(t2) 
if t2 - t 1 ~ 7 days and transactionPrice(ti) = max(transactionPrice, t 1 , t2 ) 

do tryToSell(transactionPrice) 
On Remove(ShareHolder) do Remove(InformedOwner) 
On Remove(Subscription) do Remove(InformedOwner) 

EndAddon 

Figure 4.7: Specification of the InformedOwner addon 
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Figure 4.8: The DEGAS model for a findncial market 
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4.3 Syntax of a DEGAS Object 

In this section, we give the syntax of the DEGAS data model. Since we showed a 
number of example DEGAS specifications in the previous section, we only show 
examples of syntactic constructs that did not occur there. The syntax is given 
as a BNF grammar. Symbols from the DEGAS language are printed in teletype 
font. Non-terminals are denoted by (NonTerminal) . I denotes a choice. Optional 
parts are surrounded by rectangular braces: []. Other symbols in the right hand 
side of a rule are terminal symbols. 

Before we proceed with the syntax definition, we postulate the presence of the 
following disjoint sets from which terminals are taken: 

A set of basic types 
A set of basic functions 
A set of values for each basic type 
A set of Boolean functions on the basic types 
A set of attribute identifiers 
A set of parameter identifiers 
A set of method identifiers 
A set of variable names 
A set of class names 
An ordered set of label identifiers 
An linearly ordered set of timestamps 

(BasicType) 
(BasicFunction) 
(BasicValue) 
(BasicCondition) 
(AttributeName) 
(Parameter Id) 
(MethodName) 
(VariableName) 
(ClassName) 
(LabelName) 
(TimeStamp) 

Please note, that names of attributes and methods must be unique across a 
complete DEGAS database. 

Basic Types and Functions The set of basic types includes the following 
types. The domains of the types are defined in Section 5.1. 

Oid 
Integer 
Real 
String 
Boolean 
Time 

Object identifiers 
Natural numbers 
Real numbers 
Alphanumeric strings 
Truth value 
Timestamp 

Basic functions are defined on the basic types or on a Cartesian product of basic 
types. The set of basic functions is the following: 

+ Addition 
Subtraction 

* Multiplication 
I Division 

The following Boolean functions are defined on the basic types, where appro­
priate. For example, on Did only equality and inequality predicates are mean­
ingful. 
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Equality 
-f. Inequality 
< less than 
:s; less than or equal to 
> greater than 
:?!: greater than or equal 

Class The definition of a class has five parts, the header and four sections for 
the definition of the attributes, methods, rules and lifecycles. 

(Class) (ClassHeader) 

(AttributeSection) 

(MethodSection) 

(LlfecycleSection) 

(RuleSection) 

(ClassEnd) 

(4.1) 

Types The basic types are used to construct complex types. Constant values 
can be used in expressions. The possible type constructs are power types and 
tuple types. 

(Type) (BasicType) I 'P (Type) I (TupleType) I (ClassName) (4.2) 

(TupleType) ( (FieldLlst)) (4.3) 

(FieldLlst) (Field) I (Field) , (FieldLlst) (4.4) 

(Field) (LabelName) : (Type) (4.5) 

Class Header The class header indicates the place of the class in the type 
structure by giving the meta class, i.e., object, relation object, or addon. Further 
information is the list of subclasses for a generalisation class. For relation ob­
ject classes, it defines the partners of the relation. In the definition of an addon 
class, it gives the class it extends. 

(ClassHeader) Object (ClassName) (4.6) 

( ClassHeader) Object (ClassName) generalises (ClassLlst) (4.7) 

(ClassHeader) Object (ClassName) (4.8) 

Relation (ClassLlst) 

(ClassHeader) AddOn (ClassName) (4.9) 

Extends (ClassLlst) 

(ClassLlst) (ClassName) , (ClassLlst) I (ClassName) (4.10) 

An example of an object class that generalises other object classes is: 

Object LegalEntity generalises Person, Company 
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After the class header, the capabilities of the class are specified. There are no 
syntactical differences between objects, relation objects, and addons in this 
specification. 

Attributes Declaration of attributes is straightforward using the types defined 
above. Every (relation) object class has an implicit attribute this : Oi d con­
taining the object identifier, which cannot be changed by the programmer. An 
addon does not have an identifier, because it is not an autonomous object. 

(AttributeSection) Attributes (4.11) 

(AttributeList) 

(AttributeList) (AttributeDecl) (4.12) 

I (AttributeDecl) , (AttributeList} 

(AttributeDecl) (AttributeName} : (Type) (4.13) 

Methods The methods of an object are defined in the method section of the 
class declaration. A method may either modify the object state or call other 
methods. A method call can be either to an internal method or to a method of 
another object. Modification of the object state can take place through assign­
ments to attributes. In addition, method calls or assignments can be executed 
simultaneously on all elements of a set-valued attribute. 

Methods included in every (relation) object class are those to add and remove 
addons from an object. This is explained in more detail in Section 6.2. 

(MethodSection) 

(MethodList) 

(MethodDecl) 

(StatementList) 

(Statement) 

(Expression) 

(PathExpression) 

Methods 

(MethodList) 

(MethodDecl) 

I (MethodDecl) , (MethodList} 

(MethodName) ( (ParameterList) )= 

{ (StatementList) } 

(Statement) 

I (Statement) ; (StatementList) 

(AttributeName) : = (Expression) 

I (MethodCall) 

I (AttributeName) : = (MethodCall) 

I (Setlteration} 

I Return (Expression) 

(AttributeName) I (PathExpression) 

I (BasicFunction) I (BasicValue) 

(PathExpression) . (AttributeName) 

I (AttributeName) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

(4.20) 
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(Method Call) 

(Setlteration) 

(ActParamLlst) 

(ActParam) 

(Condition) 
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[ (PathExpression) . ] (MethodName) ( (ActParamList)) 

fora 11 (VariableName) in (AttributeName) 

where (Condition) 

do~ { (StatementList) } 

(ActParam) I (ActParam) , (ActParamList) 

[ (Parameterld) =] (Expression) 

(BasicCondition) 

I (Condition) and (Condition) 

I (Condition) or (Condition) 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

An example of a set iteration is the following method in a Bank object. It awards 
a premium to accounts with a balance higher than a specified limit. The at­
tribute coffer represents the bank's own account. 

Methods 
award(premium: real, premiumLimit: real)= { 

forall acct in Accounts 
where acct.balance > premiumLimit 
do { 

} 
} 

coffer.debit(premium) 
acct.credit(premium) 

Rules The rules section defines the rules on the object. These are Event - Con­
dition - Action triples as is usual in active database systems. Event expressions 
are basic process algebraic expressions. Complex expressions are defined using 
sequential composition (;), alternative composition ( + ), repetition (* ), parallel 
merge (II) and non-occurrence(,) operators. 

(RuleSection) 

(RuleList) 

(Rule) 

(EventSpec) 

(Event) 

Rules 

(RuleList) 

(Rule) I (Rule) , (RuleList) 

On (EventSpec) 

if (Condition) 

do (Action) 

(Event) [ (Time Window)] 

(MethodName) [ (ParameterList)] 

I (TimeStamp) 

I ( (Event)+ (Event)) 

I ( (Event) ; (Event) ) 

I ..., (Event) 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

(4.30) 
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(Time Window) 

(Ti.mePairList) 

(Ti.mePair) 

(Action) 

I (Event)* 

I (Event) 11 (Event) 

[ (Ti.mePairList) ] 

(Ti.mePair) , (Ti.mePairList) I (Ti.mePair) 

( (TimeStamp) , (Ti.meStamp)) 

(Method Call) 
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(4.31) 

(4.32) 

(4.33) 

(4.34) 

Llfecycles The lifecycle of an object is defined in the lifecycle section of the 
class definition. Lifecycles are guarded basic process algebraic expressions. The 
basic actions are the methods of the object. The guards are conditions on the 
object state. We can specify a number of expressions in the lifecycle section, 
each starting on a new line. These expressions are merged into one lifecycle 
through communication merge, as explained in Section 5.7.2. 

Please note that, despite their similarity, lifecycles and event specifications use 
different expressions. Event expressions in rules can use the negation operator, 
whereas a lifecycle cannot. This difference originates in the nature of rules and 
lifecycles. A lifecycle is a positive description of what an object is allowed to 
do, while an event expression is basically a query on the history of an object. 

(LifecycleSection) 

(LifecycleList) 

(Lifecycle) 

Lifecycles 
(LifecycleList) 

(Lifecycle) I (Lifecycle) , (LifecycleList) 

(MethodName) [ (ParameterList)] 

I ( [(Condition)] (Lifecycle)) 

I ( (Lifecycle) + (Lifecycle) ) 

I ( (Lifecycle) ; (Lifecycle) ) 

I (Lifecycle) * 

I ( (Lifecycle) 11 (Lifecycle) ) 

(4.35) 

(4.36) 

(4.37) 

This grammar defines syntactically correct classes. More, however, is needed 
to get a meaningful hierarchy. For that, we need uniqueness constraints and 
referential constraints. 

Uniqueness Constraints Classes, types, attributes, labels and methods must 
have unique names. 

Referential Constraints The references to other entities in declarations must 
be correct. More specifically: 

1. All methods must be well-typed. All assignments and method calls must 
be correctly typed, i.e., all values must be of the same type, or a subtype 
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of that type, as the attribute or parameter they are assigned to. Typing is 
discussed further in Section 5.1. 

2. All classes referred to in declarations must exist in the class hierarchy. 

3. A method call must have the right number of actual parameters. 

4.4 Querying DEGAS objects 

A DEGAS query selects the members of a class that satisfy a specified selection 
condition or selector. A novel feature in the selector is the event specification. 
This allows the specification of arbitrary temporal conditions. The advantage is 
in the possibility to specify conditions related independent from specific time 
points. In a DEGAS query, we can express our interest in an event regardless of 
the time it occurred. 

The temporal dimension of DEGAS is reflected in the result of a query. Since the 
state of an object includes its complete history, a query against an object state 
is a query against the history of the object. Hence, it is not sufficient to only give 
the object identities as a result. The time when the object satisfied the query is 
also relevant. In DEGAS, a query returns a set of object-history pairs, giving the 
sub-histories that matched the event specification in the query's selector. The 
selector consists of two parts, an event expression and a condition. The format 
of a query is: 

Select from (Class) 
on (EventSpecification) 
if (Condition) 
quality (Integer) 

The full syntax definition of the DEGAS query language is given by the follow­
ing BNF grammar. Non-terminals in this definition refer to the productions in 
Section 4.3. 

(Query) 

( Compound Condition) 

An example of a DEGAS query is: 

Select from A TMcards 
on ChangePIN(tl);ChangePIN(t2) 
if t2 - t1 ~ 1 day 

Select~ from (ClassName) 

on (EventSpec) 

if (CompoundCondition) 

quality (Percentage) 

(Condition) 

I Exists~ in (Query) : (Condition) 

(4.38) 

(4.39) 
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This query selects all PIN cards that had their code changed twice within a day. 
The timestamps associated with the events are bound to the tl and t2 param­
eters. These can be referenced in the condition of the query. The parameters 
of an event can also be referenced in the query condition, as is done in the fol­
lowing example. This query selects bank accounts involved in a fast transfer of 
money, hinting at potential illegal activities. 

Select from BankAccount 
on credit(cr ..amount)(tl );debit(db_amount)(t2) 
if cr_amount > 10000 and db_amount > 10000 

and t2 - t1 ~ 2 days 

Since a DEGAS object records its complete history, a query also applies to the 
complete history. If we wish to restrict it temporally, then we specify a time 
window for the event expression. A time window restricts the part of the history 
the event expression is checked against. For example, we might be interested 
only in occurrences of an event during the last fortnight. Here, we are interested 
in bank accounts that are overdrawn by a single large transaction: 

Select from BankAccount 
on debit(db..amount)(t)[l Mar 1997, 15 Mar 1997) 
if db_amount > 10000 and balance(t) ~ 0 

A further facility in the DEGAS query language is the nested query. A nested 
query is used to specify conditions over multiple objects. This is done through 
the Exists predicate, that consists of a query and a condition. The condition 
joins the result of this query to objects in the root class of the query. An exam­
ple is the following query, that selects the trains with a destination that is the 
location of a cycle race. 

Select from Train 
if 

Exists in Select from Cyclerace: 
Train.destination= Cyclerace.location 

Above, we saw one of the novel features of DEGAS queries, viz., events to spec­
ify temporal conditions. Another new element is caused by object autonomy. 
A consequence of object autonomy is that it is decided in an object, whether 
to answer or not to answer a query. This depends on the object's lifecycle. 
Furthermore, the inherently distributed nature of DEGAS implies that the un­
derlying network may be partially unreachable. Hence, the answer to a query in 
DEGAS need not necessarily contain all objects satisfying the query. Therefore, 
the result of a query is accompanied by an estimate of the quality of a query. By 
the quality of a query, we mean the number of objects giving a positive answer 
A relative to the total number of objects in the database satisfying the query 
selector S: 

A 
s 
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Since the divisor S cannot be given with certainty due to object autonomy, 
the quality measure returned with a query is an estimate. A user can specify 
an expected quality for a query through the quality clause of a query. For 
example, in the following query the user is satisfied with an answer including 
80 percent of the relevant objects. 

Select from A TMcards 
on ChangePIN(tl);ChangePIN(t2) 
if t2 - t1 :,; 1 day 
quality 80 96 

In Chapter 6, we discuss the impact of query result quality on query processing 
in DEGAS. 

4.5 Distribution Model 

Each DEGAS object has an independent thread of control. In this respect, it 
follows concurrent object-oriented languages [Agha et al., 19931. Examples of 
such languages are Actors [Agha, 1986], POOL-T [America, 19871, and Procol 
[Bos and Laffra, 19911. Experience in implementing a database using POOL-T 
in the PRISMA/ DB project [Apers et al., 1992) learns us that a large number 
of concurrent objects cannot be managed without some structure. Hence, the 
large number of objects in a DEGAS database is organised in two ways: locality 
and class. The distribution model describes the assumptions about locality of 
objects. The organisation by class leads to the three-layered model outlined in 
Section 4.1. These two structures are used to find the reach the desired objects 
in DEGAS query processing. 

Physically, the objects in a DEGAS database live on networked processing units. 
This network consists of a number of nodes linked by network connections. In 
view of the motivation for DEGAS in Chapter 2, we do not make any assumptions 
about the nature of the computing units and the network connections involved. 
Both can be anything, from a dedicated parallel server to a mobile phone or 
from an ATM4 fibre cable to a GSM5 wireless link. 

Logically, distribution in DEGAS is organised by sites. Intuitively, a site is a set of 
computing units that are close to each other relative to others in the network. 
The logical network a DEGAS database lives on, is represented by a graph. In 
this graph, the set of vertices is the set of sites. An edge between two nodes 
exists, if a connection exists between the two sites. 

The topology of a network may change arbitrarily. For example, the network 
may temporarily become partitioned. For any site, we define the active part of 

4 Asynchronous Transfer Mode 
5Global System for Mobile communications 
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the network relative to time. For a network N, time t, and site s, it is denoted 
by Active(N, t,s) 

Definition 2 In a network N, a site s1 is reachable from s2 at time t, if there is a 
path from s2 to s1 in Active(N, t, s2). 

Figure 4.9 gives an example network. In this picture, the full lines indicate the 
active connections. Consequently, the darker coloured vertices represent the 
sites reachable from site c. 

a 

e 

Figure 4.9: Reachability in a network 

In DEGAS, each site in the network is represented by a site object. A site object 
functions as a kind of data dictionary. A site object keeps track of the objects 
residing at its site. Furthermore, it keeps schema information in the form of 
class objects. To assist query processing, a site object also maintains numerical 
information about the fragmentation of classes over other sites in the DEGAS 

database. A further discussion of the workings of site objects is postponed to 
Section 6.8. 

4.6 Conclusion 

This chapter introduced the main concepts of the DEGAS model. Object au­
tonomy has two main results. First, every aspect of an object's behaviour is 
encapsulated. Second, each object has an independent thread of control. The 
model is based on three meta classes: objects, relation objects, and addons. 
DEGAS class specifications encapsulate every aspect of an object. In compari­
son with existent object models, DEGAS extends an object with lifecycles and 
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rules. The stock exchange example showed how these are used to model the 
dynamics of information exchange through relations. 

The independent thread of control in each object has its impact on query pro­
cessing. Since it is a local decision to answer a query, the DEGAS query language 
introduces the quality of a query result. This notion represents the proportion 
of desired objects in the answer to the query. A further novel facility is the spec­
ification of temporal conditions through event expressions. To support query 
processing a DEGAS database is organised by class and by location in order 
to get structure in the large number of objects in a database. This is further 
discussed in Chapter 6. 
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Chapter 5 

Abstract Semantics of DEGAS 

The previous chapter gave an introduction to the concepts of the DEGAS model, 
including a syntax for specifying DEGAS objects. In this chapter, we define the 
formal semantics of the DEGAS model. In order to give a formal definition of a 
DEGAS database, a considerable amount of preparatory work is needed. 

As a first foundation of the formalisation, we define the type system underlying 
DEGAS. Based on this type system, we define the effects of DEGAS methods on a 
tuple of attributes. Then, we discuss the use of time in DEGAS, which results in 
an initial definition of the history of an object, the pre-history. The pre-history 
is used to define the interpretation of a DEGAS object and a model of a DEGAS 

database. The final element defined in advance is a selector, that is used in 
DEGAS rules and queries. 

These preparations allow the formal definition of the dynamic parts of a DEGAS 

object, viz., methods and rules. In this formalisation, the history plays a central 
role. For example, whether a method is allowed to execute by a lifecycle is 
dependent on the history. Lifecycle and rule semantics are defined in process 
algebraic terms, mapping directly to the event history of the object. 

The semantics of method and rule execution lead to a number of constraints on 
an object history. A database consisting of objects with a valid object history 
is a valid DEGAS database. This database can be queried using the DEGAS query 
language. To complete the formalisation of DEGAS, we define the semantics of 
DEGAS queries. 

5.1 Typing 

We open the formalisation of DEGAS with the definition of the type system. 
Typing of attributes and methods in DEGAS is defined following [Balsters and 
Fokkinga, 19911. We first give the semantic counterpart of the syntactic con­
struction of the types in Section 4.3. 
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We start the definition of the DEGAS type system with the basic types. 

Definition 3 A set of basic types B is postulated. B contains the following types: 

Oid 
Integer 
Real 
String 
Boolean 

Object identifiers 
Integer numbers 
Real numbers 
Text strings 
Truth value 

A hermit type 1 is introduced to cater for functions that always return the same 
value. This type consists of a single element. So a function to 1 discards all its 
input values, since it always returns the same value. 

Definition 4 Given a set of basic types B, a hermit type 1, an ordered set of labels 
L, the set of types T is defined as follows: 

1. 1 ET 

2. B ~ T. 

3. (a- - T) ET, ifa-,T ET. 

4. (a1: T1, ... , am: Tm) ET, if m EN and for I :s; i :s; m Ti ET, ai EL and 
ai < ai+l · 

5. 'PT ET, ifT ET. 

6. a- X T E T, if a-, T E T. 

DEGAS object specifications, i.e., object, relation object, and addon definitions, 
define an underlying type, which is a tuple of attributes. 

Definition 5 To each object, relation object, and addon definition D we can ap­
ply an operator Type(D) that yields the underlying type (a1 : T1, ... , an: Tn) 

defined by D. References to other classes are cast to the type Oid. The underly­
ing type of an object definition contains at least the attribute "this : 0 id". Given 
a definition D with the following attribute section: 

Attributes 
a1 : T1 

a 2: T 2 

Then 

Type(D) = (this: aid, a1 : T1, . . . , an: T n) 

Additionally, a relation object contains a Re 7 a ti on clause. Given a definition D' 
with the A tt ri bute section above and the following Re 7 a ti on clause: 
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Relation 01, 02, ... , On 

These are also added to the underlying type: 

Type(D') = 
(this: oid,01: oid,02: oid, ... ,On: oid,a1: T1, ... ,an: Tn) 

As an example, we give the underlying type of a Person object, defined in Sec­
tion 4.2, if it is not extended by any addon. 

(this: Oid, name : string, birthday : time, birthplace: string) 

A subtyping relationship is defined on the types following [Cardelli, 1984] and 
[Balsters and Fokkinga, 1991]. 

Definition 6 The subtyping relation~: T x T is defined as follows: 

1. ifT EB, then T ~ T. 

2. Integer < Real. 

3. Let u = (u1 - u2) E T and T = (T1 - T2) E T. If Ti ~ ui and u2 ~ T2, 
then u ~ T. 

4. if u, TE T and u ~ T, then Pu~ 'PT. 

5. ifui =(Li: T1, ... ,ln: Tn) ET andu2 = (m1: v1, . . . ,mk: vk) ET, such 
that\li E {1, . . . ,k},3j E {1, ... ,n}: mi= L1 I\ TJ ~ vi, thenu1 ~ u2. 

The domains of the basic types are given in the following definition. 

Definition 7 With each basic type {3 is associated a domain D(/3). The domain of 
the type String is defined by a regular expression. 

D(Real) 

D(Jnteger) 

D(Boolean) 

D(String) 

D(l) 

R 

7L 

{ true, false} 

[A-Za-z0-9]+ 

{0} 

We postulate the existence of a set of object identifiers D(Oid). 

Before we define the domains of the types, we postulate the domains of the 
basic functions. 

Definition 8 The set of basic functions BF consists of the following functions: 
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Arithmetic 
Set operations 
Equality 
Comparison 

+-*! 
Uf;CE\ 

=I 
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For each basic function f E BF, we postulate its pre-domain Dp (f). 

The domains of the types are defined following [Balsters and Fokkinga, 1991], 
such that D(a) f; D(T) if a :S; T. First, we define the predomains of the types: 

Definition 9 For each type T E T the predomain of T, Dp ( T), is defined as 
follows: 

1. The predomain Dp (1) is postulated in Definition 7. 

2. The predomain Dp (/3) of a basic type /3 is postulated in Definition 7. 

3. Dp(PT) = PDp(T) 

4. Dp((l1: T1, ... ,ln: Tn)) = W1 :a1, ... ,ln: an)lai E Dp(Td} 

5. Dp(a x T) = {(s, t)ls E Dp(a) At E Dp(T)} 

For the functional types a - T the predomains are defined as follows: 

1. The predomain Dp (a - T) of a basic function f E BF is postulated in 
Definition 8. 

2. Dp(a - T) = {f · gl3p ET: f E Dp(P - T) Ag E Dp(a - p)} 

3. Dp(Pa - PT)= {f*lf E Dp(a - T)}, wheref*(A) = {f(a)la EA} 

4. Dp((oc1: 0-1, ... , OCn: 0-n) - (/31: T1, ... , f3m: Tm))= 

{(f1, ... .fm)lfi E Dp(P1 X ... X Pl - Td,Pi E {0-1, ... , 0-n}} 

5. Dp(0-1X ... XO-n-T1X ... XTm)= 

{(f1, ... .fm)lfi E Dp(P1 X ... X Pl - Ti),Pi E {0-1, ... , 0-n}} 

From these predomains, we derive the domains as follows: 

Definition 10 For each type T E T the domain D ( T) is constructed as follows 
from the predomains: 

1. D(l) = Dp(l) 

2. For a basic type /3, D(/3) = Dp (/3) 

3. D(PT) = P(D(T)) 

4. lfT = (l1: T1, ... , ln: Tn), then D(T) = Ua- s T Dp(a). 

5. D(a x T) = {(s, t)ls E D(a) At E D(T)} 
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6. D(<r - T) = Ua-'so-,T'ST Dp(<r' - T
1

) 

We show that the domains reflects the subtyping relations. 

Theorem I Given a two types T and <r with <r .:5 T. Then: 

D(<r) ~ D(T) 
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Proof This theorem has been proved for the type system of [Balsters and 
Fokkinga, 1991], to which the reader is referred. We prove the theorem for the 
set of basic types B in DEGAS. Additional composite types in the DEGAS type 
system are the Cartesian product and the set type. We also prove the theorem 
for these two constructs. 

In the set of basic types, we have Integer <Real.Since D(Integer) =~and 
D(Real) =Rand~~ R , the theorem holds for the basic types. 

For the proof of the theorem for set types, we assume that the theorem holds 
for types other than set types. Given two types a = 'Pa' and T = 'PT', with 
a .:5 T. Then, a' .:5 T'. For the domains of a and T, we have D(<r) = 'PD(<r') 
and D(T) = 'PD(T'). Since a' .:5 T', D(a') ~ D(T'), which implies 'PD(<r') ~ 
'PD(T'). Hence, D(<r) ~ D(T). 

For the proof of the theorem for Cartesian products, we assume that the theo­
rem holds for types other than Cartesian products. Given two types a = <r1 x <r2 
and T = T1 x T2, with <r .:5 T. Then, <r1 .:5 T1 and <r2 .:5 Tz. For the do­
mains of <rand T, we have D(a) = {(s1,s2)/s1 E D(ai) "s2 E D(<r2)} and 
D(T) = {(t1,t2)/t1 E D(Ti) /\ t2 E D(T2)}. Since <T1 .:5 T1 and <T2 .:5 Tz, 
we have D(ai) ~ D(Ti) and D(a2) ~ D(T2). Consequently, for every ele­
ment (s1,s2) E D(<r), we have s1 E D(Ti) and s2 E D(Tz). Hence, every 
(s1,s2) E D(a) is also an element of D(T) and D(a) ~ D(T). □ 

The domain of each class is a set of object identifiers. 

Definition 11 Let C be a class and Oid an infinite set of distinct object identi­
fiers. The domain of C is a subset of O id, D ( C) ~ 0 id, such that: 

1. If C1 generalises C2, then D(C2) ~ D(C1). 

2. If C1 I C2 and not C1 generalises C2 or C2 generalises C1 and BC such 
thatC1 generalisesC andC2 generalisesC, thenD(Ci) nD(C2 ) = 0. 

Methods are typed as well in DEGAS. This is done through function types, like in 
TM/FM [Balsters et al., 19931. In this approach, a method is a function mapping 
an object state and instantiated input parameters to a new object state and 
instantiated output parameters. 
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In our model, however, the underlying type of an object is not fixed. This is 
caused by the evolution of an object through the addon mechanism. For exam­
ple, consider the attributes of a Person object before and after extension by an 
Accountho l de r addon. Before the extension, the underlying type is given by 
the tuple (Name : string, Birthday : date, Purse : integer}, while afterwards the 
attributes are the tuple (Name : string, Birthday: date, Purse : integer, Account 
: Oid}. This makes typing of methods more complicated than in the standard 
case. To define the type of a method, we first define how tuple types can be 
combined. The combination of tuple types is of importance for the definition 
of object extension through addons. The tuple type composition operator is 
defined as follows: 

Definition 12 Given two tuple types T = (t1 : T1, ... , tn : Tn} and S = (s1 : 

CT1, ... ,5m: CTm} with ft1, ... ,tn} n {51, ... ,sm} = 0, the composition of these 
tuple types is defined as follows: 

T ® S = (U1 : V1, ... , Un+m: Vn+m} 

where Ui: Vi E {t1 : T1, ... , tn: Tn, 51 : CT1, ... , Sm: CTm} and Vi, 0 < i < n + m: 

Ui < Ui+l· 

Please note that Definition 4 required that labels are unique in DEGAS. Hence, 
the requirement {ti, ... , tn} n {51, ... , Sm} = 0 is always satisfied by two tuple 
types. This unicity requirement can be imposed on DEGAS' type system, because 
of the absence of multiple inheritance in the language. 

The composition of two types can be used in place of the composing types, 
because the composition is a subtype of each composing type. 

Theorem 2 Given two tuple types T and S, then: 

T®S~T 

Proof Recall the definition of the subtyping relation for tuple types: 

if CT1 = (l1: T1, ... ,ln: Tn} E Tand CT2 = (m1 : v1, ... ,mk: Vk} ET, 
such that Vi E {1, ... ,k},3j E {1, ... ,n}: mi= l1 I\ TJ ~ vi, then 
CT1 ~ CT2. 

From Definition 12, we have the following: 

T 

s 
T®S 

(t1:T1, . .. ,tn:Tn} 

(s1: CT1, ... ,5m: CTm} 

(U1 : V1, .•. , Un+m: Vn+m} 

where Ui: Vi E {t1: T1, ... ,tn: Tn,S1: CT1, ... ,Sm: CTm} imposes that allele­
ments of the composition are elements of the composing tuple types. Further­
more, the requirement Vi, 0 < i < n + m: Ui < Ui+I implies that all elements 
of the composition are unique. Hence: 

Vi, 0 < i < n , 3j, 0 < j < n + m: ti= UJ I\ Ti= VJ 
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This implies the subtyping relation T ® S 5 T D 

Because the type of an object is not fixed, a method can only operate on those 
attributes whose presence is certain. These are the inherent attributes of an 
object and the attributes defined in the same addon as the method itself. The 
typing of methods. however, must take the variability of an object's type into 
account. The absence of a fixed underlying type of an object can be solved by 
introducing a type variable representing the type context of a method [Vreeze, 
19911. It is used, for example, in TM/FM to correctly type inherited methods. In 
the DEGAS data model, the relevant part of the type context for a method M in 
an object O is given by the class, or inherent type, of O plus, if M is defined in 
an addon A, the type A The rest of the type context is represented by a type 
variable. Since the rest of the current type of an object is not of importance, it 
may be of any type. 

Definition 13 Given a method M defined in an addon A that extends a class 
C with input parameters in1 : T1, ... , inn : Tn and output parameters outi 
0-1, ... , outm: CTm- The type of M is: 

\/ {J E T : ~ ® {J X T1 X · · · X T n - ~ ® {J X 0-1 X · · · X 0-m 

where~= Type(C) ® Type(A) 

To illustrate this, consider the example of a Person object: 

Object Person 

that is extended through an addon 

Addon AccountHolder 
Extends Person 

In the addon AccountHolder, the following method is defined: 

GetCash(amount:integer) { 
Purse := Purse + Account.giveMeMoney(amount) 

} 

This method takes a Person object extended with an AccountHolder addon 
and an integer, yielding again a Person object extended with an Account­
Holder addon. The typing of the method GetCash is: 

\/ p E T : GetCash : ~ ® p x integer - ~ ® p 

where the type context of this method is 

~ Type(Person) ® Type(AccountHolder) 

(Name : string, Birthday: date, Purse : integer, Account: Oid} 

This manner of typing methods preserves subtyping of functions. This is stated 
in the following theorem: 
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Theorem 3 Given two function types, T = T1 - T 2 and u = u1 - u2 with u .s; T. 

Subtyping is preserved by DEGAS method typing: 

'r/ p E T : ~ ® p X T1 - ~ ® p X Tz 
.s; 

'rl p E T : ~ ® p X U1 - ~ ® p X Uz 

Proof From the definition of the subtyping relation on Cartesian products in 
Definition 6, it follows clearly that given types t1 and t2: 

Therefore, given 

U U1 - Uz 

T T1 - Tz 

U .s; T 

we have: 

and it is straightforward that given a tuple type ~: 

'rip ET : 
~ ® p X T1 .:5 ~ ® p X U1 

I\ 

~ ® p X Uz .:5 ~ ® p X Tz 

This means that the subtyping relation of functions is preserved by DEGAS me­
thod typing. o 

5.2 Objects 

The previous section defined the type system used for the formalisation of 
DEGAS. Before we define the effects of method execution in the next section, we 
define a number of operators for use in the definition of the DEGAS model: 

Definition 14 Given an object class or addon T: 

1. Attr(T) yields the set of attributes defined in T. 

2. Meth(T) yields the set of methods defined in T. 

3. Cycl(T) yields the set of lifecycles defined in T . 

4. Rules(T) yields the set of rules defined in T. 

Similar functions are defined for an object relative to time: 
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Definition 15 Given an object O at time t: 

1. Attr(O, t) yields the set of attributes of Oat time t. 

2. Meth(O, t) yields the set of methods of Oat time t. 

3. Cy cl ( 0, t) yields the set of lifecycles of O at time t. 

4. Rules ( 0, t) yields the set of rules of O at time t. 

5.3 Method Semantics 

In this section, we define the first element of DEGAS' semantics, viz., the effect 
of method execution on a tuple of attributes. The results from this section 
are used to define the semantics of method execution by a DEGAS object in 
Section 5.7.2. 

The effects of method execution are defined in terms of variant interpretations 
and the semantics of basic functions. Here, we use a simplified notion of an ob­
ject's interpretation. An interpretation for an object maps the object to a value 
from the domain of the underlying type. Please note, that the interpretation of 
an object as used in this section, does not include a temporal aspect. There­
fore, we refer to it as a snapshot interpretation. In Section 5.4, we discuss the 
full interpretation of a DEGAS object, i.e., relative to time. 

A snapshot interpretation of an object maps the attributes of the object to a 
value in its domain. 

Definition 16 A snapshot interpretation I of an object O is a function 

J: Oid - D(T) 

where T = ( 0<1 : T1, ... , O<n : T n} is the underlying type of O. I assigns values ki 

to each O<i such that ki E D(Td. 

A variant interpretation relates two snapshot interpretations to each other. A 
variant of a snapshot interpretation I ( 0) is denoted by I ( O) { oc = v}. J ( O) { oc = 

v} is the same as J( 0), except for the value assigned to the attribute oc, which 
is V. 

The semantics of method calls is defined in terms of a function M. It yields 
the interpretation of an object after method execution, given the interpretation 
before execution and a method call. Hence, its type for an object of class C with 
type T = Type(C) is given by 

M : (Oid - D(T)) x Meth(C) 

(Oid - D(T)) 



72 5.3. METHOD SEMANTICS 

We consider as given the semantics of the basic functions on the basic types. 
We start with the semantics of assignment, which is defined in terms of variant 
interpretations. 

Definition 17 Given a statement S and a snapshot interpretation I ( 0) for object 
0, M (S, I( 0)) returns the snapshot interpretation of 0 after execution of S on 
0. The effect of an assignment statement A, denoted by M(A,/(0)), is defined 
by: 

1. Let ai : Ti be an attribute of 0 and v a correctly typed basic value, then 

M(ai := v,I(0)) = I(0){ai = v} 

2. Let ai : Ti be an attribute of O and BF ( p 1, ... , Pn) a correctly typed basic 
function call, then 

M(ai := BF(p1, ... , Pn),I(0)) = I(0){ai = [BF(p1, ... , Pn)]} 

where [ ] denotes the evaluation of the basic function. 

3. Let ai: Ti be an attribute of 0 and m(p1, ... , Pn) a correctly typed method 
call, then 

M(ai := m(p1,---,Pn),I(O)) = I(0){ai = R(m(p1,-- - ,Pn))} 

where R is a function yielding the return value of a method call as defined 
in Definition 22. 

Application of a statement to all elements of a set simultaneously amounts to 
taking the map of a function on a set. 

Definition 18 Let S be a statement, A : 'PT a set-valued attribute and I(A) 
{ V1, •.. , Vn} its interpretation, then 

M(S,I(A)) = {M(S,I(vi)), ... ,M(S,I(vn))} 

Production 4.22 of the syntax definition defined set iteration: 

Forall a in A 
where CT 
doS. 

where A : 'PT is a set-valued attribute of 0, CT is a condition on a variable of 
type T and S is a statement. The semantics of set iteration is defined as follows: 

Definition 19 Let SI be a set iteration (A, CT, S}, where A: 'PT is a set-valued at­
tribute of O, CT is a condition on a variable of type T and S is a statement. Given 
an interpretation 1(0) on an object 0 the effect of SI, denoted by M(SI, 1(0) ), 
is defined as 

M(SI,1(0)) = M(S,I( {CT(a)la EA})) 

CT (a) denotes that the condition C is true for a : T. 
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Statements can be combined to form compound statements. The components 
of a compound statement are executed in sequence. 

Definition 20 Given two statements S 1 and S2, the semantics of the execution of 
a compound statement Sc= S1;S2 is defined as: 

M(Sc,I(O)) = M(S2,M(S1,J(O))) 

The semantics of executing a method on an object is defined in terms of the 
statements forming the method. The statements used in defining the semantics 
of method execution are statements with the actual parameters in place of the 
formal parameters. 

Definition 21 Given a method m = S 1; ... ; Sk, the effect of a method call m on 
object O with interpretation I ( 0) is given by: 

M(m,J(O)) = M(S1; ... ;Sk,I(O)) 

Methods can also return values. In this case, we define the return value of the 
method and the effect on the object executing the method. 

Definition 22 Let m = S 1; ... ; S k; Return e be a method with S 1, ... , S k state­
ments and e : T an expression. The effect of executing m on object O with inter­
pretation I ( 0) is given by: 

M(m,J(O)) = M(S1; ... ;Sk,I(O)) 

The result of the method call R ( m) : T that is returned to the caller, is defined as 

R(m) = [e] 

where [ e] denotes the evaluation of e after evaluation of M ( m, I ( 0)) 

5.4 Time in an Autonomous Object 

The aspects of the semantics discussed above are all independent of time. Since 
DEGAS aims at the integration of historical database functionality in an ac­
tive database, this section proceeds with the temporal semantics of the DEGAS 

data model. The requirement on the availability of historical data in DEGAS is 
twofold. First, we need the historic values of attributes to be available. Second, 
the method calls executed must be available in order to check for triggered 
rules and to check method calls against lifecycles. 

In this section, we discuss the basics of DEGAS' temporal dimension. First, we 
discuss nature and source of time in a DEGAS database. Then, we give an initial 
definition of a DEGAS object history. This is an initial definition, because rule 
execution and lifecycle checking impose a number of constraints on a DEGAS 

object history to be a valid object history. These constraints are discussed in 
Section 5.7. 
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5.4.1 Clocks and Autonomous Objects 

Time is relatively simple in DEGAS. As was discussed in Section 3.4.2, we times­
tamp once only, so there is no distinction between valid and transaction time in 
this model. Since the timestamp is produced by the system, DEGAS uses trans­
action time. In our model, time in an individual object is discrete and linear. 
The discreteness of time does not pose problems for applications, since we can 
make the granularity of time sufficiently small for any application. Linearity of 
time means that there is a strict order on all time-stamped events in an object. 

Timestamps are always local. In other words, a DEGAS object only works with its 
own historical view of the world. An event it has seen earlier, happened earlier 
in its time. Two general rules govern the way timestamps are handed out by 
a DEGAS object. First, time increase monotonically. Second, two events never 
get the same timestamp. These requirements on timestamps are rather loose. 
It honours one of the two requirements formulated by Lamport in [Lamport, 
1978]. These requirements were formulated with help of a clock function Ci for 
process Pc 

1. If a and b are events in process Pi and a comes before b, then Ci (a) < 
Ci(b). 

2. If a is the sending of a message by process Pi and b is the receipt of the 
message by process Pj, then Ci(a) < Cj(b). 

In the distributed environment of a DEGAS database, it is very difficult to guar­
antee Condition 2, which constrains the relation between the clocks of different 
autonomous objects. If different objects use different clocks, possibly running 
at different speeds, clock synchronisation must take place. The other option 
is to use one global clock for all objects, which compromises the autonomy of 
objects. Hence, we do not follow requirement 2 in the DEGAS model. This leads 
us to the following definition of the clock function in DEGAS: 

Definition 23 The clock of an object O is a function To : N - N that takes as 
input an event counter and yields as output its current time. To is an injective 
increasing function. 

5.4.2 Pre-history 

The history of a DEGAS object records past states of the object. It does this by 
recording all past states with the method calls that brought the object into the 
state. Please note, that the history of a DEGAS object is not replayable, since 
a value may depend on a result returned by another object. Object autonomy 
implies that an object can not give guarantees on the state of another object. 
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State Pre-history We now have all definitions to define a state of a DEGAS 
object at a certain point in time. Following temporal database terminology, this 
is called the snapshot state [McKenzie and Snodgrass, 19911. A snapshot state 
records the time the object entered that snapshot state, a valuation for a tuple 
of attributes, as defined in Definition 16 and the method call that brought the 
object into this snapshot state. 

Definition 24 A snapshot state of an object O is a quadruple (t, T,/(T),MC), 
where 

1. t is a timestamp giving the start time of the validity of this state. 

2. T is a tuple type (a 1 : T1, ... , am : Tm), the underlying type of O at time t. 

3. I ( T) is the interpretation of T in the interval starting at time t. 

4. MC a method call. 

The state history of an object records the snapshot states the object went 
through in the past. Not any sequence of snapshot states is a correct state 
history for a DEGAS object. A state transition can only occur in the history, if 
it, e.g., respects the lifecycle specified by the programmer of that object. There­
fore, we start with the definition of a state pre-history. A state pre-history is 
a sequence of snapshot states. In Section 5.7, we define the constraints that a 
state pre-history must satisfy to be a correct state history. 

Definition 25 The state pre-history SH of an object O is a sequence of snapshot 
states 

SH= SH(O);SH(l); ... ;SH(n) 

where 

VO sis n - 1: ti< ti+l A /(Ti+1) = M(MC+1,l(Td) 

An example of a state pre-history is the following: 

(13: 00: 00, 
(balance: integer, week: integer, maxover: integer), 
(balance = 1002, week = 130, max over = 400), 
create(acct)) 

(13: 15: 00, 
(balance : integer, week: integer, maxover: integer), 
(balance = 902, week= 230, maxover = 400) 
withdraw(I00)) 
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Event Pre-history In the definition of the DEGAS data model, we sometimes 
only need the historical events without state information. To deal with these 
definitions, we define the event history of an object. The event history is a 
projection of the state history. The events occurring in a DEGAS object are the 
method calls executed by the object. 

Definition 26 Given a state pre-history SH = SH(0); SH(l); ... ; SH(n), we de­
fine an event pre-history EH= EH(0);EH(l); ... ;E(n) of time-event pairs, such 
that: 

"v'O 5 i 5 n,SH(i) = (ti, Ti,I(Ti),MCi): 

EH(i) d;J' (ti,MCi) 

For use in the definitions on event specification, we define the type of an event 
history. For an object, the alphabet of the event history is the set of all possible 
methods occurring in that object. 

Definition 2 7 Given an object O of class C. The set of all addons of C is denoted 
by AddonS et ( C). The set of all potential methods of 0 is defined as follows: 

Meth(O) ={µI(µ E Meth(y)) A (y E {C} u AddonSet(C))} 

The set of methods at time t is given, using the set of addons at time t, denoted 
by Addons(O, t): 

Meth(O,t) ={µI(µ EMeth(y)) A (y E {C} uAddons(O,t))} 

Definition 28 Given an object O of class C with set of addons Addons(C) at 
time t. The type of an event history of 0, denoted by EHist(O) is a string over 
the alphabet of time-event pairs: 

{TE Timestampl0 5 T 5 t} x Meth(O) 

5.5 Interpretation 

The next step in the formalisation of DEGAS is the interpretation of a DEGAS 

object. Using the definition of the interpretation, we can refer to an attribute 
value of an object at a certain time point. This allows us to check the validity of 
a condition on an object, which is needed to define the semantics of selectors 
in Section 5.6. 

As stated before, we refer to the state of a DEGAS object at a certain point in 
time. Hence, an interpretation of an object is defined relative to time: 

Definition 29 Given a state history SH = SH(0); ... ;SH(n) for object 0. The 
interpretation of O at time t 

I(0)(t) = I(T;) 
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if 

30 :<> i :<> n,SH(i) = (ti, Ti,I(Ti),MCi): 
ti :', t 

I\ 

Vi< j :<> n,SH(j) = (t1, TJ,/(TJ),MC1): 
t < t1 
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It is now straightforward to define the value of an attribute in a DEGAS object 
at a certain time point. For example, ba 1 a nee ( t) gives us the value of attribute 
balance at time t. 

Definition 30 a(t) denotes the value of an attribute a in object O at time t. 
a(t) = Va, if 

I(O)(t) F l(a : a)(t) = Va 

where F denotes the standard logical inference relation [Dalen, 1985]. 

From the interpretations of all objects in a database we construct a model for 
a database relative to time. 

Definition 31 Let db = { o 1, ... , On} be a set of objects. 

n 

[(db)(t) = LJ I(oi)(t) 
i=l 

is a pre-model for db. 

If all object references in a pre-model exist, it is a model for a database. 

Definition 32 Given a set of classes C, a pre-model for a database at time t 
[(db)( t) is a model for db, iff 

VI(a: a)(t): (TE C 

= 
3o E db: I(a: a)(t) = o 

From a model of a complete DEGAS database, we get a model for the part of the 
database related to a specific object. To determine this part, we need the notion 
of reachability through path expressions. 

Definition 33 Given two objects 01 and 02. We can reach 01 through path ex­
pressions from 02 at time t, denoted by R ( 02, t), if we can construct a path 
expression £X1 .txz. · · · .an, such that: 

£X1 E Attr(o2, t) 
I\ 

VO< i < n: <Xi+l E Attr(tx1. ·· · .£Xi, t) 
I\ 

£X1.£X2. • · • .<Xn = 01 
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The set of reachable objects is use to define the model 

Definition 34 [(O )(t) ~ [(db) (t) is the model induced by 0. It is defined by 

[(O)(t) = LJ J(O)(t) 
oER(O,t) 

Theorem 4 Given two objects o1 and o2 , then: 

02 E R(o1, t) ⇒ [(oz)(t) ~ [(01)(t) 

Proof For every element o E R(oz, t) we can construct a path expression 
oc1.ocz. · · · .ocn, such that: 

oc1 E Attr(oz, t) 
I\ 

VO< i < n: OCi+l E Attr(oc1. · · · .oci, t) 
I\ 

OC1.0C2. · · · .OCn = 0 

The fact that 02 E R(o1, t) means that we can construct a path expression 
fh .fh · · · ./3m, such that 

/31 E Attr(oi, t) 
I\ 

VO< i < m: /3i+l E Attr(/31. · · · -/3i, t) 
I\ 

/31./32. · · · -/3m = Oz 

As a consequence, if o ER (o 2 , t), the path expression 

/31 ./3z. · · · -/3m. OC1 . 0C2. · · · .OCn 

satisfies the requirements of inclusion in R(o 1, t) formulated in Definition 33. 
Thus, we have: 

Vo E R(oz, t): Oz E R(o1, t) => 0 E R(o1, t) 

Hence: 

R(oz,t) ~R(o1,t) 

which means that 

UoeR(o2 ,oHo)(t) = [(oz)(t) 

UoeR(o1 ,t) I(o)(t) = [(oi)(t) 

□ 
The model of an object over an interval is obtained by taking the models at the 
time points in the interval together through a direct sum, denoted by EB. 

Definition 35 Given an objectO and an interval (ts tart, tend). We define a model 
[(O, (tstart, tend)) for O during (tstart, tend), as follows: 

[(O, (tstart, tend))= E9 [(O)(t) 
LE(Lstart ,tend) 
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5.6 Selectors 

Selectors play an important role in two key elements of DEGAS, rules and quer­
ies. As defined in Chapter 4, a selector is an event-condition pair. An object is 
selected by a selector, if the event occurs in the history and the condition is 
satisfied. Since this situation can occur multiple times in the history of a DEGAS 

object, a selector returns the set of sub-histories that satisfy the selector. 

Clearly, the definition of selectors is based on the event history of an object, 
defined in Section 5.4, and the interpretation of an object, defined in Section 5.5. 
Selectors are used to define the semantics of DEGAS rules in Section 5.7.3 and 
to define the semantics of DEGAS queries in Section 5.9. 

5.6.1 Event Specification 

An event specification consists of an event expression and a time window. An 
event expression is a process algebraic expression [Baeten and Weijland, 1990) 
over an alphabet, that is the union of the set of method names of the object 
and timestamps. 

Definition 36 An event expression is a process algebraic expression over a set of 
basic actions: 

'E = Meth(O) 

The type of an event expression is denoted by EventExpr. An event expres­
sion matches an event history, if a sub-history exists that is a trace of the pro­
cess specified by the event expression, as defined in [Baeten and Weijland, 1990, 
Chapter 7]. 

The process algebraic operators used, and their meaning are given in the follow­
ing table. Please note that, like in ordinary calculus, I represents a sequence of 
+'s. 

Sequence 
Choice 
Repetition 
Merge 
Negation 

A;B 
A+B 
A* 
AIIB = A;B + B;A 
,A= I e 

eE'.f\{A} 

A followed by B 
Aor B 
One or more times A 
A and B in parallel 
An event that is not A 

An additional operator used in an event expression, that is not an action, is 
the .1 symbol. It denotes the end of the event history, i.e., an event expression 
ended with .l only matches the tail of an event history. 

Since multiple matching sub-histories may be found, the result of testing an 
event expression on an event history is a set of matching sub-histories. As an 
example, consider the event history: 

(1,e); (3,f); (8,g); (10,a); (11,a); (12,a); (13, b); (14,c); 
(22, d); (33, e); (34, j); (39, b); (40, c) 
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Testing the event expression b; c on this event history yields the set 

{(13,b);(14,c), (39,b);(40,c)} 

The event expression b; c; .L is only matched by the tail of the event history. Its 
result is: 

{ (39, b); (40, c)} 

Another example is the event expression a*; b that is matched by the set 

{ (10, a); (11, a); (12, a); (13, b), (11, a); (12, a); (13, b), (12, a); (13, b)} 

An event expression is extended to an event specification by adding a time win­
dow to it. A time window specifies a subset of the history by giving pairs of 
timestamps that bound the intervals comprising the sub-history. Informally 
speaking, its effect is that the event expression is only checked against this 
part of the history. 

Definition 37 The type of an interval specification is denoted by TimeSpec, 
defined as: 

TimeSpec = 'P(Timestamp x Timestamp) 

where: 

A time window is a function that yields a set of sub-histories, given an event 
history and a time specification. 

Definition 38 Given an object O of class C, then the time window function TW 
on O is typed as follows: 

TW: TimeSpec x EHist(C) - 'PEHist(C) 

The result of a time window (unction's application is defined as follows: 

VE: EHist(C), TS: TimeSpec,EH: EHist(C), n EN: 
E = E1; ... ;En 

u E TW(TS,EH) 
~ 

3(t1, t2) E TS, Vl :5 i :5 n: 
t1 :5 Ei.t :5 t2 

As an example, suppose that we again have the following event history: 

(1, e); (3,f); (8,g); (10,a); (11,a); (12, a); (13, b); (14,c); 
(22, d); (33, e); (34, f); (39, b); (40, c) 

The time specification { (1, 9)} gives us the following sub-history as a result: 

(1, e); (3,f); (8,g), (9) 
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Multiple elements in the time specification means that the result has multiple 
elements. For example, the time specification { (1, 9), (20, 35)} gives us the fol­
lowing result 

(1, e); (3,f); (8,g), (9) 
(20); (22, d); (33, e); (34,f); (35) 

Given these preliminary definitions, we can now turn to the definition of a com­
plete event specification. An event specification has two components, an event 
expression Expr and an interval specification TS: 

Expr[TS] 

An event specification is triggered, if one of the sub-histories in the time win­
dow parses the event expression correctly. The reader is referred to [Baeten and 
Weijland, 1990, Chapter 7) for an explanation of matching process specifica­
tions with process traces, i.e., matching event expressions with event histories. 

Definition 39 Given an object 0. An event specification E = Expr[TS] is trig­
gered, if Expr matches (as defined in Definition 36) one of the sub-histories 
in TW(TS,EHist(O)), where EHist(O) is the event history of 0. The function 
EventTest(E, 0) returns the set of matching sub-histories of E. The type of this 
function is: 

EventTest: (EventExpr x TimeSpec) x C - 'PEHist(C) 

For example, consider the event history given above and the following event 
specification: 

f;g[(l, 9), (20, 35)] 

It would be triggered in the first sub-history. The function EventTest(E, 0) 
returns the singleton set 

{(3,f);(8,g)} 

An event specification can be triggered by multiple occurrences of an event. In 
this case, we will get multiple matching sub-histories. For example, the event 
specification 

e;f[(l, 10), (20, 35)] 

yields as the result of EventTest(E, 0) the following set: 

{ (1, e); (3,f), (33, e); (34,f)} 
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5.6.2 Condition 

The other part of a selector is the condition. A condition is a predicate on the 
model induced by the object. In other words, it can contain local attributes and 
attributes of other objects, provided these are reachable through path expres­
sions. Hence, the typing is as follows: 

Definition 40 A condition C defined in an addon A extending class C is a boolean 
function 

V p ET: Type(C) ® Type(A) ® p - {true.false} 

Satisfaction of a condition by an object relative to time is then defined as fol­
lows: 

Definition 41 Given a condition C on an object O and a sub-history EH of 0. 
The timestamp of the first event in EH is denoted by trn,start• The timestamp of 
the last event in EH is denoted by trn,end• C is satisfied by 0 during EH, denoted 
by C(O, EH), iff 

[(0, (tEH,start, tEH,end)) F C 

where F denotes the standard logical inference relation [Dalen, 1985]. 

5.6.3 Selection 

An object is selected by a selector, if the event specified in the On clause occurs 
and the condition in the if clause is satisfied during the matching sub-history 
of the event. 

Definition 42 (Selection of an object) An object O of class C is selected by a 
selector S = (E, C} with an event specification E and a condition C, iff 

3EH E EventTest(E,0): C(O,EH) 

The selection set Selected(S, 0) is defined accordingly: 

Selected(S, 0) = {EH E EventTest(E, 0) I C(0, EH)} 

5. 7 From pre-history to history 

The work in the previous sections allows us to formalise the dynamic aspects 
of a DEGAS object, viz., type evolution, method execution and rule execution. In 
this section, we define their semantics building on the elements defined earlier 
in this chapter. Furthermore, these semantics yield a number of constraints on 
the history of a DEGAS object. These constraints lead to the definition of a valid 
object history and a valid DEGAS database in Section 5.8. 
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5.7.1 Type Evolution 

The type of a DEGAS object can change over time through the addon mecha­
nism. Hence, the attributes we see in the state history can vary over time. The 
variation is limited by the addons defined for the inherent type of the object. 

If the type of an object is extended, this must be done by an Extend action. This 
is stated in the following constraint: 

Constraint 1 The type of an object can only be extended through the addition 
of an addon. Given a state pre-history SH= SH(O); ... ; SH(n) of an object O of 
class C: 

Vi,0 s i < n 
SH(i) = (ti, Ti,J(Td,MC) 

SH(i + 1) = (ti+l, Ti+1,J(Ti+1),MCi+1>: 
oc E Add0nSet(C)/\ 
Ti® Type(A) = Ti+I 
⇒ 

MCi+I = Extend(oc) 

where Extend(oc) extends O with an addon oc. 

The effect of Extend(oc) on the set of addons is as follows: 

Definition 43 Given an object O of class C and an addon oc E AddonSet(C). 
The effect of an action Extend(oc) on the set of current addons Addons is given 
by: 

Addons(ti+I, 0) = Addons(ti, 0) u {oc} 

Likewise, the loss of attributes must be through an action to drop an addon. 

Constraint 2 The type of an object can only be limited by dropping an addon. 
Given a state pre-history SH= SH(O); ... ; SH(n) of an object O of class C: 

Vi:0si<n 
SH(i) = (ti, Ti,I(Td,MCi) 
SH(i + 1) = (ti+l, Ti+1,I(Ti+d,MCi+i>; 

oc E Add0nSet(C)/\ 
Ti = Ti+l 181 Type(oc) 
⇒ 

MCi+I = Remove(oc) 

where Remove(oc) is the action to remove addon oc. 

Definition 44 Given an object O of class C and an addon oc E AddonSet(C). 
The effect of an action Remove(oc) on the set of current addons Addons is 
given by: 

Addons(ti+I, 0) = Addons(ti, 0) \ {oc} 
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In addition, we have the constraint that the type of an object must always cor­
respond to its set of active addons. 

Constraint 3 Given a state S = ( t, T, I( T), MC) for an object O at time t, 

A= AddOns(t, 0) 

==> 
T = Type(Class(O)) ® ®aEA Type(a) 

5.7.2 Method Execution and Llfecycles 

Execution of a method is the only way to bring a DEGAS object from one state 
to another. Therefore, every state of the object must be the result of the ap­
plication of a method to the previous state. In addition, execution of methods 
and rules must conform to the lifecycles. As we saw above, lifecycles are event 
expressions, where an event can be guarded by a condition. 

Definition 45 Given an object O of class C, a lifecycle is a guarded basic process 
algebraic expression where the event alphabet :M is the set of methods defi.ned 
on 0. 

:M = Meth(O) 

and the guard conditions are of the type defi.ned in Defi.nition 40. 

The semantics of lifecycles is formulated in process algebraic terms [Baeten 
and Weijland, 19901. 

Definition 46 Suppose we have an object O with the following lifecycle defi.ni­
tion: 

Lifecycles 
C1 
C2 

Then O follows the process: 

with communication function y defi.ned by: Va E :M : y(a, a) = a, where :M is 
the event alphabet of C as defi.ned in Defi.nition 45. 

In process algebra, a communication function y specifies synchronisation be­
tween two processes. y(A, B) = C means that the actions A and B have to take 
place simultaneously and are replaced in the trace of the process by the single 
action C. For example, if we have the process (A;B)l(C;D) and y(B,D) = E, 
then a resulting trace might be: A; C;E. 
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In practical terms, the communication function defined for a DEGAS object 
means, that if an action occurs in more than one lifecycle, the execution of 
that action is a step forward in all lifecycles. 

To define what methods are allowed to execute, we define the set of lifecycles 
of an object relative to time. 

Definition 4 7 Given an object O of class C. The set of lifecycles at time t is 
defined as follows: 

Cycl(O, t) = Cycl(C) u u Cycl(oc) 
0tEAddons(O,t) 

The set of lifecycles of an object is translated to a single process specification. 
Method execution will be checked against this process. 

Definition 48 Given Cycl(O, t), the set of lifecycles of an object O at time t. 
The lifecycle of O at time t is given by: 

LCo(t) = lcECyclW,nC 

with communication function y defined by: V oc E :M. : y(oc, oc) = oc, where :M is 
the event alphabet of C as defined in Definition 45. 

Different alternatives exist for the composition of the complete lifecycle of a 
DEGAS object from the set of specified lifecycles. These alternatives are identi­
fied using a number of questions on the nature of a lifecycle specification. 

Composition The first question is about the composition of lifecycles. The 
main issue is, how to deal with the occurrence of a method in multiple lifecy­
cles. Suppose a methodµ occurs in lifecycles C1 and C2. If a call toµ is made, 
it can be a step in only one lifecycle, or in both of the lifecycles containing 
the action. These two alternatives can be formalised in process algebraic terms. 
Suppose we have an object O with a set of lifecycles { C 1 , C2, ... , Cn}. In the first 
case, this will lead to the following compound lifecycle: 

C1IIC2II ... IICn 

If, in the other case, multiple lifecycles consume the same action, there will be, 
in process algebraic terms, communication between the lifecycles. Thus, these 
are composed using communication merge: 

C1IC2I ... ICn 

where the communication function y is defined by 't/ oc E :M. : y(oc, oc) oc, 
where :M is the event alphabet of the lifecycle definition. 
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Lifecycle specification in addons The second issue in lifecycle composition 
is the way we deal with lifecycles specified in addons. It has obvious advan­
tages to treat these lifecycles on the same footing as lifecycles specified in an 
object. There are, however, problems related to the specification of lifecycles in 
addons. These originate in the question whether an addon is allowed to modify 
lifecycles of the original object. If this question is answered positive, how can 
an addon modify the lifecycles? Another problem in that case is, what happens 
if two addons modify the same lifecycle? 

The main requirement on lifecycle specification in addons is, that addons must 
conform to the original object. In other words, the lifecycles specified in an 
addon are not allowed to violate the lifecycle of the original object. If Co is the 
lifecycle of the original object O and CA the lifecycle of O extended with addon 
A, we can define this using the process algebra abstraction operator as: 

where His the set of methods defined in the addon. This constraint must be sat­
isfied by redefinition of lifecycles. In practical terms, this means that an addon 
can only extend the original lifecycle, e.g., by interspersing its own methods. 

If we use the communication merge as a composition operator, we get redefini­
tion for free. This is shown by the following example. Suppose object O has the 
lifecycle: 

A;B;C 

If we specify in addon A the lifecycle: 

A;X;B;Y;C 

then the resulting lifecycle for the extended object will be: 

(A;B; C)l(A;X;B; Y; C) = A;X;B; Y; C 

To illustrate the potential conflicts of lifecycle redefinition, consider the follow­
ing situation, where two addons try to modify an object's lifecycle. An example 
are constraints added to objects in a graphical database, as shown in [Akker 
and Siebes, 1995bl. The original object O has the lifecycle: 

A;B 

Object O engages in a relation that demands that O must execute action C 
between A and B. Thus, the addon A1 requires O to follow: 

A;C;B 

Now, we have a problem if we add an second addon A2, that desires an action 
D to be inserted in the lifecycle of 0: 

A;D;B 
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The question is what the desired lifecycle of O is, if it has both A1 and A2, and 
how this should be specified. If we use parallel composition for lifecycles in 
addons, we get the following lifecycle for 0: 

(A; C; B) II (A; D; B ) 

The drawback of this behaviour is shown, if we take the viewpoint of addon 
A1. It does not know of the existence of D. Hence, seen through A1 0 might 
execute A; B without C occurring in between. If we use communication merge, 
the result would be that O follows: 

A; (CIID);B 

This conforms to the original lifecycle of the 0, but each occurrence of A and 
B also satisfies the lifecycles of the addons. 

Our choice Communication merge as a composition operator for lifecycles 
gives us inherent redefinition, which is needed by addons. If we would use the 
parallel merge, redefinition would not be possible, thus putting undesirable 
constraints on the design of addons. Note however, that we can still express 
the other way of merging lifecycles within an object or addon specification by 
explicitly using a parallel merge. 

The behaviour with regard to the specification of lifecycles in addons is the 
main reason for our choice of communication merge with identity as commu­
nication function as the lifecycle composition operator in DEGAS. 

Llfecycle Checking A method is executed, if it does not violate the lifecycles 
imposed on the object. Hence, the object state must satisfy the, possibly empty, 
precondition given by the lifecycle. In addition, the method call in combination 
with the event history must match the event expression given by the lifecycle. 
If this is true, the method call is executed and appended to the history. If the 
method call does not satisfy the lifecycle of an object, it is removed from the 
method queue and discarded. 

As a result of addon extension and deletion, the set of events, i.e., methods, 
is not fixed over the lifetime of an object. This means that we might encounter 
events in the history, that are currently not defined on the object, since they are 
part of a removed addon, and consequently are not present in the current life­
cycle. To cater for the deletion of addons, the lifecycle check abstracts from the 
events not currently present in the object. In other words, if an event is a me­
thod of a removed addon, then it is disregarded for the check of a method call 
against the current lifecycle. Abstraction is defined using the ACP abstraction 
operator a. 

Definition 49 A method callm(pi, . .. , Pk) is executed on an objectO with state 
history SH= SH(0); ... ;SH(n) at time t, iffaH(EH;m(p 1, ••• ,pk)) is a prefix 
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of a trace that matches the process LCo(t) and C(t, 0), where H = Meth(O, t). 
The resulting new state of the object is 

SH' = SH; (t, Tn,M(m(pi, ... , Pk),/(Tn)), m (pi, ... , Pk )) 

This requirement on method execution is translated to the following constraint 
on the state history of a DEGAS object. 

Constraint 4 Given a state history SH= SH(O); . .. ;SH(n) of an object 0. Each 
method call MC occurring in SH at time t must follow the lifecycle Cyclo (t). 

5.7.3 Rule Execution 

As explained before, rules in DEGAS use the event-condition-action format. As 
we described in Section 5.6, an event-condition pair is a selector. Hence, for the 
definition of its semantics, a rule is considered to be a selector-action pair. 

Definition 50 A rule R is a triple (S,A}, where S = (£, C} is a selector with an 
event expression E and a condition C. A is a method call, as defined in Produc­
tion 4.21. 

Recall that a rule R that appears in the semantics of DEGAS as (S, A}, with 
S = (£, C} is written in the DEGAS syntax as: 

On£ 
if C 
do A 

A rule is triggered, if the object is selected by the selector of the rule. Please 
note, that encapsulation of rules means that the selector is applied to a single 
object in this case. 

Definition 51 A rule R = (S, A} with a selector S and an action A is triggered 
on an object 0, if Selected(S, 0) I= 0 . 

From this definition follows the definition of the set of triggered rules. 

Definition 52 The set of triggered rules 'R at time t on object o is: 

'R = {p E Rules(o, t) Ip= (S,A} /\ Selected(S, 0) ,/= 0 } 

where Rules(o, t) denotes the set of rules in object o attime t . 

At first sight, one would expect rule processing to result in a constraint that 
one of the rules triggered by a method must be executed. The fact, however, 
that actions of rules must also obey an object's lifecycle means that a rule's 
action need not necessarily be executed. 
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5.8 A DEGAS Database 

The preceding sections in this chapter defined everything needed to formalise 
a DEGAS database. The typing system served as a foundation to the definition 
of method execution. Both were used in the preliminary definition of a DEGAS 

object history. In order to define the constraints on a DEGAS object history, 
we formalised the interpretation of a DEGAS object, which allowed us to define 
selectors in DEGAS. After this, we were able to define the semantics of method 
and rule execution. These resulted in a number of constraints on the history of 
a DEGAS object. 

A valid object history of a DEGAS object is defined as follows: 

Definition 5 3 A state pre-history SH of an object O is a state history for O, iff it 
satisfies all constraints defined in this Chapter. 

A DEGAS database is a collection of objects with a valid object history and 
correct references between objects. 

Definition 54 A collection of objects n is valid DEGAS database at time t, if: 

1. Each o E n has a valid object history. 

2. For each time point o ::o; T ::o; t, we have a valid model [(O) (T). 

5.9 Queries 

A DEGAS query collects a set of objects in the root class of a query, specified 
in the select from part, that satisfies the selector. Object autonomy implies 
that some objects will be in a state where they are not willing to respond to a 
query. Furthermore, as a result of the volatility of the network, a query might 
not reach all objects. The semantics of the DEGAS query language includes these 
issues. The abstract semantics of the DEGAS query language is set-based. The 
main reason to use this kind of semantics is the need to include reachability 
and willingness to respond of objects in the DEGAS query semantics. These 
notions cannot be included in a semantics based on an object algebra [Alhajj 
and Arkun, 1993, bzsu and Straube, 1991, Shaw and Zdonik, 1990]. 

A query consists of a class and a selector: 

Definition 5 5 A query Q is a pair ( C, S), where C is a class and S is a selector 
on that class. 

Recall from Section 4.4, that the syntactic equivalent of a query Q = (Class, S), 
with S = (E, C) is: 
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Select from Class 
on£ 
if C 

5.9. QUERIES 

The selector of a query has one extension relative to the selector defined in 
Section 5.6. The exists clause makes it possible to connect different classes 
through a nested query. The result of this query is related to objects in the root 
class of the query. The semantics of a nested query is defined as follows: 

Definition 56 Given a query Q1 with a nested query: 

Select from C 1 

onE1 
if c; and Exists in Q 2 : C (01, 0 2) 

where Q2 = ( C2, S2). We define two selection sets: 

S1 {o E C1 I Selected((E1,Ci),o) /= 0} 

S2 {o E C2 I Selected(S2,o) I= 0} 

Let EH1 be a matching sub-historyof01 E S1 and EH2 a matching sub-history of 
02 E S2 . The timestamps tEH1,start, tEH1 ,end, tEH2 ,start, and tEH2 ,end are defined 
the same as in Definition 41. This predicate is satisfied by 0 1 and 02, iff 

[(01, (tEH1,start, tEH1 ,end)) EB [(Oz, (tEH2 ,start, tEH2 ,end)) I= C(01, 02) 

where 1= denotes the standard logical inference relation [Dalen, 1985] and where 
EB denotes a direct sum. 

Due to network failures, it is possible that a query does not reach all objects. 
Hence, the set of objects the query is applied to is restricted to the set of objects 
reachable from the site where the query is issued. 

Definition 57 (Reachability of an object) An object o at site s1 is reachable at 
time t for a query Q issued at site s2, denoted by Reachable(Q, o, t), if s1 is 
reachable from s2 as defined in Definition 2. 

To answer a query an object must be in a state where it is willing to an­
swer the query. This means that its lifecycle must allow the execution of the 
CheckSe l ecto r method at the time it takes the method call from its message 
queue. 

Definition 58 (Willingness to respond) Given an object o and a query Q that 
sends a CheckSe 7 ector method call q too. o is willing to respond to Q at time 
t, denoted by Willing(Q, o, t), if the method call q satisfies the lifecycle of Oat 
time t, where t is the time o takes the call to q from its message queue. 

Using the notions of reachability and willingness, we define the result of a 
query. The result is a set containing object - history pairs, where an element 
(O,Hist) means that the query is satisfied by sub-history Hist of object 0. 0 
must be in the set of willing and reachable objects. 
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Definition 59 A query Q = (S, C) issued at time tq. It is a function 

ClassName x (EventExpr x TimeSpec x Condition) 

'P(0id,EHist(C)) 

The resulting set of objects is the set 

Result(Q) {(0,EH) IO EC I\ EH E Selected(S,0) 

I\ Reachable(Q, 0, tq) I\ Willing(Q, 0, tq) 

5.10 Conclusion 
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In this chapter, we discussed the abstract semantics of DEGAS. The fundamen­
tals are the typing of objects, the semantics of method execution, and the na­
ture of time in DEGAS. These are used to define the central notion of the DEGAS 

semantics, the object history. An object history is a sequence of the past object 
states. Since the history is the result of execution of method calls and rules, the 
semantics of these dynamic aspects determine constraints on the history. 

The use of process algebra for lifecycle and rule specification gives a straight­
forward way to define their semantics. The event history must be a trace of the 
process specified by the lifecycle. Reversely, a rule is triggered if a sub-history 
of the event history is a trace for the event specification in the rule's selector. 

The formal definition of DEGAS queries is set-based. A novel feature is the use 
of event specification as a temporal condition. The query semantics includes the 
notions of reachability and willingness, that are particular to the DEGAS model. 
These lead to a notion of query result quality, which is further examined along 
other operational aspects of DEGAS in the next chapter. 
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Chapter 6 

Functional Specification of 
DEGAS 
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Chapter 5 gave the formal definition of the DEGAS model. In this chapter, we 
give a functional specification of the elements needed to implement a DEGAS 

database. A functioning DEGAS database requires a number of elements to be 
present. Except for a layer providing basic object functionality, these are all 
DEGAS objects. Hence, the specification of the basic DEGAS object is the central 
element of this chapter. 

A specialisation of a DEGAS object is the relation object. Its function implies a 
number of additional requirements on the data it stores and the actions it im­
plements. Besides instances of objects and relation objects, a DEGAS database 
needs class objects to manage objects, relation objects, and addons. Further­
more, the distribution model is implemented by site objects. For each element 
of a DEGAS database, we give the data structures required, the primitive actions 
offered, and their execution. 

Further specification given in this chapter is a functional specification of query 
processing. Here, we give the objects required to implement DEGAS query pro­
cessing following the same approach as for the other aspects of a DEGAS data­
base. 

6.1 Preliminaries 

Before we give the formal specification of a DEGAS database, we define short­
hands for a number of often used types. Furthermore, we define the notation 
for a list. Please note, that the types in this chapter are a form of pseudo-typing, 
since the specified implementation is outside the scope of the DEGAS type sys­
tem. 
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A type used in this chapter is the type MethodCall. It consists of a method 
name and a list of parameters: 

MethodCall = string x [(parameterName,parameterValue)] 

The type of parameterValue depends on the type of the method parameter. 

A further type is the type of a selector, denoted by SelectorType. Recall from 
Section 5.6, that it is defined as: 

SelectorType = (EventExpr x TimeSpec) x Condition 

A final matter of notation serves to specify the presence of a set of named 
capabilities in an object, where the name is dependent on the contents of the 
set. An example is the get method associated with an attribute. In this case, 
the name of the attribute is part of the name of the method, because the set of 
attributes is fixed for a given object specification. The notation for the presence 
of named capabilities, where a part of the name fi xedpart is fixed and another 
part is a variable Name over a set Set, is as follows: 

* * * For each Name E Set : * * * 
fixedpart <Name> 

For example, a DEGAS object has a get method for every attribute. This is writ­
ten as follows: 

* * * For each Attribute E Attr : * * * 
get<Attri bute> 

6.2 Objects 

The basic building block of a DEGAS implementation is the object. In this sec­
tion, we specify the working of the basic DEGAS object. First, we specify the 
information recorded in a DEGAS object. Then, we give the primitive actions of 
a DEGAS object. The main result of this section is the specification of the execu­
tion cycle of an object. This cycle implements all dynamic aspects of a DEGAS 
object, viz., method execution, rule execution, and query processing. 

6.2.1 Data Structures 

A basic DEGAS object contains the following data structures: 

State Hi story The object records its complete historical state, as was de­
fined in Definitions 25 and 53. It is denoted by SH. 
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Query Queue The query queue is the queue for incoming query messages. In 
the specification of a DEGAS object it is denoted by Q. The incoming queries are 
calls to the CheckSe l ecto r method. Besides the requested selector, we record 
in Q the identity of the sender and of the reply's recipient. Furthermore, a query 
has an identity qid to allow the Site object to process multiple queries at a 
time. This is explained further in Section 6.8. Consequently, the query queue is 
specified as follows: 

Q : [(sender: aid, reply To : aid, 

qid: integer, selector: SelectorType}] 

External Method Queue Method calls from other objects are queued in the 
external method queue, denoted by .:Mext• Each entry records the sender of the 
call, the reply's recipient, the name of the method called, and the list of param­
eters. The identity of the sender is used in the lifecycle, while the answer of a 
method is sent to the reply's recipient. This differentiation is used to process 
queries in the CheckSe l ecto r action and to efficiently evaluate path expres­
sions using the Get action. Consequently, .:Mext is specified as follows: 

.:Mext : [(sender: aid, reply To: aid, MC: M ethodCall)] 

Internal Method Queue Method calls from other methods in the object are 
queued in the internal method queue. It is denoted by .:Mint• Otherwise, the 
internal method queue is identical to the external method queue . 

.:Mint [(sender: aid, reply To: aid, MC: MethodCall)] 

Reply Box The answer to the evaluation of a path expression is put into the 
reply box. It is denoted by 'R'B. It can contain a single value of any type. 

'R'B : Value 

Capability Sets Each category of capabilities is represented in the DEGAS ob­
ject by a set. To illustrate the discussion, we use the specification of a Person 
object from Section 4.2. It is repeated in Figure 6.1. 

Attribute Set This set contains the current attributes of the object. It is 
denoted by Attr. It is the materialisation of the function Attr(O, t) defined in 
Definition 15. In the unextended Person object in Figure 6.1, it is: 

Attr = {name, birthday, birthplace} 

Method Set This set contains the current methods of the object. It is denoted 
by Meth. It is the materialisation of the function Meth(O, t) defined in Defini-
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Object Person 
Attributes 

name: string 
birthday : time 
birthplace : string 

Methods 
tryToBuy(company:string, number:integer, maxPrice:real) = { 

DemandClass.initiate(company,number,maxPrice) 
} 
readPaper(paper:string) = { 

SubscriptionClass.initiatePerson(paper) 
} 
useNews = { 

Extend(InformedOwner) 
} 

Llfecycles 
(tryToBuy)* 
((extend(Shareholder)llextend(InformedPerson));useNews)* 

Rules 
On ( extend(Shareholder) II extend(InformedPerson)) 

do useNews 
EndObject 

6.2. OBJECTS 

Figure 6.1: Specification of the Person object, given earlier in Figure 4.3. 
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tion 15. In the unextended Person object in Figure 6.1, it is: 

Meth = {tryToBuy, readPaper, useNews} 

Lifecycle Set This set contains the current lifecycles of the object. It is de­
noted by Cycl. It is the materialisation of the function Cycl(O, t) defined in 
Definition 15. In the unextended Person object in Figure 6.1, it is: 

Cycl = { 

(tryToBuy)* , 

((extend (Shareholder) II extend (InformedPerson) ); useNews) * 

} 

Rule Set This set contains the current rules of the object. It is denoted by 
Rules. It is the materialisation of the function Rules(O, t) defined in Defini­
tion 15. In the unextended Person object in Figure 6.1, it is: 

Rules= { 

On (extend(Shareholder)llextend(InformedPerson)) 

do useNews 

This This attribute contains the object's own identity. 

This: Oid 

It cannot be changed, but can be referenced as a normal attribute. 

6.2.2 Primitive Actions 

The following actions are implemented by a DEGAS object: 

CheckSelector This action checks the satisfaction of an event - condition 
pair. It implements the EventTest function defined in Definition 39. The be­
haviour of CheckSe l ecto r is dependent on the sender of the action. If the 
CheckSe l ecto r action is invoked from outside for query processing, it must 
check whether the sender of the message is allowed access to the attributes in 
the condition. 

The input of CheckSe l ector is a selector, a sender and a replyTo. Its output is 
a set of matching sub-histories. It is specified as follows: 

SelectorType x Oid x Oid - 'PEHist 
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If CheckSe l ecto r is called from outside, i.e., Sender is not the object itself, it 
executes get actions to check access of Sender to the attributes in the condi­
tion. Then, the tests in CheckSe l ecto r are executed in the sequence discussed 
in Section 5.6. First, the event specification is matched against the event history. 
Then, the condition is tested on each matching sub-history. A call to Check­
Selector is not recorded in the history, because it is not a method. 

The algorithm executed by the CheckSe l ector action is given in Figure 6.2. In 
this specification, we see that the CheckSe l ecto r action is called recursively 
for rule processing after execution of getAttr methods. This recursion is only 
one level deep, because the Sender is always This in rule processing. 

CheckSelector(Selector, Sender, ReplyTo) = { 
Event, Condition - Selector 

} 

if Sender ! This 
then { 

Allowed:= 0 
foreach Attr in Attr(Condition) 
where MethodAllowed(getAttr(), Sender) 
do Allowed := Allowed u { Attr } 

if Allowed! Attr(Condition) 
then Exit() 

foreach Attr in Attr(Condition) 
do { 

} 
} 

ExecuteMethod(getAttr(), Sender, Self) 
* * * Rule Processing * * * 
'R = {RE Rules IR= (S,A) A CheckSelector(S, Self)! 0} 
(S, A) - Pick random from 'R 

Matching Set - EventTest(Event) 
Evaluate Condition on Matching Set 
Return Matching Subhistories 

Note: Attr(Condition) denotes the set of attributes occurring in Condition. 

Figure 6.2: The algorithm executed by CheckSelector. 

The use of CheckSe l ector reflects the two uses of selectors in DEGAS. Queries 
are sent to objects as calls to CheckSe l ecto r, which are queued in the query 
queue Q. The selector of a rule is also checked using CheckSe l ector. These 
calls are made directly by the object itself, as is shown in Section 6.2.4. 
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MethodAllowed This action checks a given method call against the current 
lifecycle of the object, as defined in Definition 49. The input parameters are the 
sender of the call, the name of the method, and the input parameters of the call. 
MethodA 11 owed is a Boolean function, that can only be invoked from inside the 
object. Hence, its type is: 

MethodAllowed: oid x MethodCall - Boolean 

Invocations of MethodA 11 owed are not recorded in the object's history. 

ExecuteMethod This action executes a method. Its effect is given by the func­
tion M defined in Section 5.3. The effect of ExecuteMethod on the object is 
as defined in Definition 49. In a method, we can have three kinds of actions, 
viz., modifications of attributes, calls to methods within the object, and calls to 
methods in other objects. These are discussed in turn below. 

We start with the effect of attribute modifications on the object itself. Given a 
state history SH= SH(O); ... ;SH(n) at time t, where 

SH(n) = (tn, Tn,HTn), m) 

The new state history SH' as a result of ExecuteMethod with a method call 
µ(q1, ... , qk) is: 

SH' = SH; (t, T n, M(m(q1, ... , qk), l(Tn) ), µ(q1, ... , qk)) 

Please note that ExecuteMethod itself is not recorded in the history. 

Alternatively, a method can make calls to other methods. If the call MC is to 
a method of the object itself, then it is added to the internal method queue of 
the object: 

.M~nt =.Mint+ MC 

where .M~nt denotes .Mint after execution of the call. Calls to methods in other 
objects are sent off to other objects using the sendMessage action provided by 
the system layer, that is discussed in Section 6.3 . For a method call Path.MC, 
where Path is a path expression evaluating to an object identity Obj, the fol­
lowing is executed: 

sendMessage(Obj, MC) 

The evaluation of path expressions in an object is translated to calls to get 
methods. The object awaits the answer to the get calls. Hence, this is a form of 
blocking communication. The answer to the get calls is delivered by a send­
Reply action of the system layer (see Section 6.3) in the reply box of the object. 
Assignment from the reply box 'R'B blocks the object until the reply box is 
filled with a result. To prevent the object form blocking infinitely, a time-out is 
built in. If the block is timed out, the action is aborted and not recorded in the 
history. 

ExecuteMethod is invoked from inside the object. It is not recorded in the 
object's history. 
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6.2.3 Standard Methods 

The following methods are present in a DEGAS object. Like the primitive actions, 
they implement basic DEGAS functionality. Unlike the primitive actions, they are 
subject to the lifecycle specification. Since they are methods, they are recorded 
in an object's history. 

getPathExpr This method evaluates a path expression given as parameter. 
If the path expression is an attribute of the object itself, then the appropriate 
get method is invoked. Otherwise, the head of the path expression is evalu­
ated to serve as the destination of a getPathExpr message containing the tail 
of the path expression. As a consequence, the evaluation of a path expression 
requires a sequence of messages between objects. An example is shown in Fig­
ure 6.3. There, we see the use of the rep l yTo field of a message. Access to the 
successive attributes in the path expression is dependent on the access rights 
of the previous object in the evaluation chain, that is the sender of the method. 
The answer, however, must be returned to the original sender of the complete 
path expression, object A in Figure 6.3. This is achieved by including its iden­
tity as the ReplyTo object. The final object in the evaluation chain, object Zin 
Figure 6.3, executes a return statement in its getAm method, which returns the 
value of Am to the Rep l yTo object, i.e., object A. 

The algorithm executed by getPathExpr method is the following: 

getPathExpr(pathexpr) = { 

} 

if 3 attribute E Attr: pathexpr =attribute 
then 

.'.Mext := .'.Mext + ( sender=Sender, replyTo=ReplyTo, getattri bute ) 
else 

sendMessage(Dest=head(pathexpr), sender=Sender, 
replyTo=ReplyTo, Mesg=getPathExpr(pathExpr)) 

fl 

get A get action is defined for every attribute of the object. For the attribute 
Attr, the associated actions is named getAttr. It is used to specify access to 
attributes from outside. The attributes of a DEGAS object are accessible from 
outside in two manners: queries and path expressions. In both cases, a refer­
ence to an attribute is treated as a call to the associated get method. Since it is 
a method, every call to getAttr is entered in the history of the DEGAS object. 

For a query, the sender of the get method is set to the sender of the query. 
For example, suppose the following query on the class Employee is issue by the 
object Taxman: 

Select from Employee 
if Salary 2::: 70000 
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Object A 

Object B 

Al= Object C 

Object C 

A2 = Object D 

Object Y 

Am-1 = Object Z 

ObjectZ 

Am= value(Am) 

getAm() 
ReplyTo: Object A 
Sender: Object Z 

getPathExpr(Al.A2 . A3 .. Am-1 . Am) 
ReplyTo: Object A 
Sender: Object A 

getPathExpr(A2.A3 .. Am-1.Am) 
ReplyTo: Object A 
Sender: Object B 

getPathExpr(Am) 
ReplyTo: Object A 
Sender: Object Y 

Figure 6.3: Evaluation of a DEGAS path expression. 
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To check this condition CheckSelector executes the method getSalary with 
sender= Taxman. Hence, the lifecycle checks whether Taxman has access 
to the attribute Salary. Likewise, the evaluation of path expressions also leads 
to calls to get. The evaluation of a path expression is discussed above in the 
specification of getPathExpr. 

The default lifecycle of a get method is to allow everyone to call it. Hence, if 
the programmer does not specify a lifecycle for the getSa l ary method, then it 
is: 

Llfecycle 
getSalary* 

If we wish to restrict the access to an attribute, we specify a guard for this 
method. For example, the following lifecycle restricts access to salary to the 
tax inspector. 

Llfecycle 
[sender= Taxman)getSalary* 

Of course, any other restriction on the execution of getSa l ary is possible. The 
composition of lifecycles using the communication merge operator I, discussed 
in Section 5. 7.2, ensures that these specifications are orthogonal to the rest of 
the lifecycle specification. 

Extend This action extends the object with an addon. The name of the addon 
is given as a parameter. Given a call to Extend with addon .'A. as a parameter. 
The capabilities defined by .'A. are given by the following sets: 

Attr(.'A.), M eth(.'A.), Cycl(.'A.), Rules(.'A.) 

The effect on the object of executing Extend (.'A.) is given by 

Attr' 

Meth' 

Cycl' 

Rules' 

Attr u Attr(.'A.) 

Meth u Meth(.'A.) 

Cycl u Cycl(.'A.) 

Rules u Rules(.'A.) 

where Attr' denotes the set of attributes after execution of Extend. The mean­
ing of Meth', Cycl', and Rules' is similar. Please note, that we assume unique 
names for attributes and methods, as stated in Section 4.3. 

The lifecycle of the object after execution, denoted by LC', is: 

LC' = l>.eCycl' ,\ 

where I denotes communication merge with communication function y (µ, µ) = 
µ for allµ E Meth'. 
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To implement the extension with an addon, an object requests the appropriate 
schema information from the addon class object. The capabilities in the addon 
are then added to the capabilities of the object. The addon class object is re­
ferred to through the name of the addon. The actions of the addon class object 
are specified in Section 6.5. 

Remove This action removes an addon from an object. The name of the addon 
is given as a parameter. Given a call to Remove with addon ..'A as a parameter. 
The capabilities defined by ..'A are given by the following sets: 

Attr(..'A), M eth(..'A), Cycl(..'A), Rules (..'A) 

The effect on the object of executing Remove (..'A) is given by 

Attr' 

Meth' 

Cycl' 

Rules' 

Attr \ Attr(..'A) 

Meth\ Meth(..'A) 

Cycl \ Cycl(..'A) 

Rules\ Rules(..'A) 

where Attr' denotes the set of attributes after execution of Remove. The mean­
ing of Meth', Cycl', and Rules' is similar. The lifecycle of the object after 
execution, denoted by LC', is: 

LC'= li\eCycl',\ 

where I denotes communication merge with communication function }' (µ, µ) = 
µ for allµ E Meth'. 

Kill The Kill action terminates the existence of an object. By default, it can 
only be executed by the class object and the object itself. Hence, its default 
lifecycle specification is: 

Llfecycle 
[sender=ClassObject or Sender=Self] Kill 

Default Lifecycle In the specification of a DEGAS objects' actions, we referred 
a number of times to the default lifecycle of a DEGAS object. Actions that can 
be invoked from outside and that are recorded in the object's history, must be 
specified in the lifecyle of an object. This is the case for the following actions: 
get, Extend, Remove, and Kill. 

Llfecycle 
* * * For each Attribute E Attr: * * * 
get<Attri bute>* 
Extend* 
Remove* 
[Sender=ClassObject or Sender=This) Kill 
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6.2.4 Execution 

The functionality of a DEGAS object is implemented by an execution cycle that 
uses the actions defined in the previous subsection. Basically, the object cycles 
through two activities, viz., processing queries and executing method calls. Rule 
execution is done as part of method execution. The execution cycle is depicted 
in Figure 6.4. 

Process Queries f-,,1 - - - - - - Query Queue 

r I 
Queries in queue Query Queue E mpty 

1 

i-
Execute Method 

- - - - - - Internal Method Queue 

i- - - - - - - External Method Queue 

Generate set of 
triggered rules 

Figure 6.4: Execution Cycle of a DEGAS Object 

The exact actions of the object are given in the algorithm in Figure 6.5. In the 
query processing stage, the object process the complete query queue Q. If Q is 
empty, then it proceeds with method execution. Here, method calls from inside 
the object take precedence over method calls from outside. Hence, the object 
only takes a method call MC from :Mext, if :Mint is empty. The call MC is then 
checked against the lifecycle of the object. If it is not allowed it is discarded. It 
MC is allowed, then MC is executed. 

After execution of a method, the set of triggered rules is generated. One rule is 
then picked at random for execution. Execution of the rule's action means that 
the call is made. In the case of an internal method call, it is appended to :Mint• 

If it is a call to another object, it is sent to that object. 



6.2. OBJECTS 

* * * Execution Cycle of a DEGAS object * * * 
Repeat 

* * * Query Processing * * * 
While Q not empty do 

od 

(Sender, ReplyTo, Query ID, Selector) - Head(Q) 
Result:= CheckSelector(Selector, Sender) 
ReplyTo.queryResult(QuerylD, Result) 

* * * Method Execution * * * 
Repeat 

if Jvt.int not empty 
Sender,ReplyTo,MC - Head(Jvt.ind 
Jvt.int - tail(Jvt.int) 

else 

fi 

Sender,ReplyTo,MC - Head(Jvt.,xi) 
Jvt.,xt - tail(Jvt.,xd 

Until MethAllowed(Sender,M C) 
ExecuteMethod(M C) 
Return answer to ReplyTo, if necessary 

* * * Rule Processing * * * 
'.R = {R E Rules IR = (S,A) A CheckSelector(S, Self) I 0} 
(S, A) - Pick random from '.R 
* * * The action is executed * * * 
Send message A 

Until The End of this Object 

Figure 6.5: The Execution of a DEGAS Object 
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Action of the object Event History Internal Method Queue 
EH :Mint 

Execute µ1 µl [µ2, µ3] 
R 1 triggered [µ2,µ3, cxi] 
Query processing 
Execute µ2 µ1;µ2 [µ3, cxi] 
R2 triggered [µ3, £X1, £X2] 
Query processing 
Execute µ3 µ1;µ2;µ3 [£X1, £X2] 
Query processing 
Execute £X1 µ1;µ2;µ3;£X1 [ £X2] 
Query processing 
Execute cx2 µ1; µ2; µ3; £X1; £X2 [] 

Figure 6.6: An example execution by a DEGAS object 

As an illustration of this algorithm, we show an example execution of a DEGAS 

object 0. In this example, we abstract from the data in O in order to focus on 
the dynamic aspects. The object has five methods, µ1, µ2, µ3, £X1, and £X2. All 
methods manipulate data except µ 1, which calls µz and µ3. The lifecycle of 0 
is: 

Furthermore, 0 has two rules: 

We show a short snapshot of O's execution in Figure 6.6. It starts with the 
execution of µ 1. We do not show the checks against the lifecycle, since it is 
obvious that this execution satisfies O's lifecycle. 

In DEGAS rule processing, non-executed triggered rules are discarded by the 
object. In combination with the negation operator, this gives the application 
programmer a great degree of flexibility in the interaction of rules and lifecy­
cles. If the action of a rule is not executed, we have two options, viz., to leave 
the rule unexecuted or to retry it at a later time. A rule is left unexecuted in 
situations where only a timely reaction is useful. An example is found in au­
tomatic trading in financial markets. There, our reaction to a falling price of 
shares might be that we buy a number of them. This is only profitable if we 
do it immediately, because otherwise the price may already have risen again. 
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A rule is retried, if the action must always be executed once a rule has been 
triggered. Rules that maintain integrity constraints will use such a strategy. 

Both strategies can be programmed in DEGAS through the negation operator • · 
Suppose an object must react to the occurrence of the event A; B with an action 
µ. If we only want an immediate reaction, we will use the standard behaviour 
and specify the rule as: 

OnA;B 
doµ 

On the other hand, if we want the action always to be executed after the event, 
we will specify the following rule: 

OnA;B;(,µ) * 
doµ 

This rule is triggered, as long as no µ action is execute after the occurrence of 
A;B. 

We can also characterise the DEGAS execution model using the dimensions of 
rule execution in active databases, discussed in Section 3.1. Since rules are en­
capsulated in an object, and an object executes as a separate thread, rule ex­
ecution in DEGAS is instance-oriented. Furthermore, the coupling of event and 
condition is immediate, since they are checked as a unit by CheckSe 1 ecto r. 
The action of a rule is queued into the internal method queue :Mint• Hence, 
condition - action coupling is deferred. 

6.3 System Layer 

The basic DEGAS object is built on top of a system layer. It provides the lowest 
level implementation of objects, i.e., an abstraction of the physical object level. 
The two functions implemented by the system layer are creation of new objects 
and communication between objects. 

Empty DEGAS objects created by the system layer implement the functionality 
defined in Section 6.2, but does not contain any capabilities. Hence, a class 
object has to add these in order to make the object an instance of its class. 

Communication between objects in DEGAS can take place in two ways: 

1. Point-to-point asynchronous. This kind of communication is through me­
thod calls. These are sent off by an object to a specified other object with­
out expecting an answer. 

2. Point-to-point synchronous. This kind of communication is used to eval­
uate path expressions. The object evaluating the expression awaits the 
result from another object. 
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3. Broadcast. The broadcast facility offered by the DEGAS system layer sends 
a message to all objects in a class. An example of its use is in query 
processing, as discussed in Section 7.2. 

The communication primitives defined in this section act directly on the data 
structures specified for the basic DEGAS object. 

The recipient of a message is specified by its identity. The point-to-point com­
munications action additionally accept names as destination objects. The name 
is resolved to an object identity by the system layer. 

In the following definition of the system layer, we consider this layer as one 
entity. In Chapter 7, we discuss the implementation of the system layer in a 
distributed environment. 

6.3.1 Data Structures 

The system layer records a directory of all objects and their addresses. 

Object Di rectory This contains all objects in the DEGAS database with their 
physical addresses. It is denoted by ObjDir. The pseudo-type of ObjDir is: 

ObjDir: 'P(Oid x PhysAddr) 

ObjDir is only used internally by the system layer to deliver messages to 
DEGAS objects. 

Name Di rectory This directory records the identities of named objects. It 
maps names to object identities. It is specified as follows: 

NameDir: 'P(String x Oid) 

NameDir is used internally by the system layer to support communication 
to named objects. Objects recorded in NameDi r can be specified by name as a 
destination. NameDir contains the following objects: 

1. Class objects 

2. Relation Class objects 

3. Addon Class objects 

4. A site object 

The former three categories are referenced by the name of the class with Cl ass 
appended. For example, the class object of Person is known as PersonCl ass. 
The latter is referenced by the name Site. 
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6.3.2 Actions 

Here, we specify the actions offered by the system layer in terms of their effects 
on the data in the system layer and the objects involved. 

NewEmptyObject This action creates a new empty DEGAS object. A call to 
NewEmptyObject results in an empty DEGAS object with identity NewOid at 
physical address NewAddr. Hence, the type of NewEmptyObject is: 

NewEmptyObject: 1 - Oid x PhysAddr 

The new object directory Obj Dir' after execution of this action is: 

ObjDir' = ObjDir u {NewOid x NewAddr} 

The action NewEmptyObject can be invoked by class objects. NewOid, the 
identity of the new object, is returned to the sender of the action. Its use by the 
class object is explained in Section 6.4. 

sendMessage This action implements asynchronous point-to-point commu­
nication. It sends a message from an object to another object. Messages are 
always method calls in DEGAS. The parameters of sendMessage are the follow­
ing: 

Destination object 
Sending object 
Recipient of reply 
Message 

Dest 
Sender 
replyTo 
Mesg 

Oid 
Oid 
Oid 
MethodCall 

The destination of sendMessage can also be specified by a name. The effect of 
sendMessage is that the message Mesg is added to the external method queue 
.'.Mext of Dest. The external method queue after execution is denoted by .'.M~xt: 

Dest . .'.M~xt = Dest . .'.Mext + Mesg 

Any object can invoke sendMessage. 

sendQuery This action implements another form of asynchronous point-to­
point communication. It sends a query from an object to another object. The 
parameters of sendQuery are the following: 

Destination object 
Sending object 
Recipient of reply 
Query Identity 
Selector 

Dest 
Sender 
replyTo 
QueryID 
Sel 

Oid 
Oid 
Oid 
integer 
SelectorType 
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The destination of sendQuery can also be specified by a name. The effect of 
invocation of sendQuery by an object 01 on behalf of an object 02 is that a 
tuple Query added to the query queue Q of Dest, where 

Query (sender= 01, reply To = 02, 

qid = QueryID,Selector = Sel) 

The query queue after execution is denoted by Q': 

Dest.Q' = Dest.Q + Query 

Any object can invoke sendQuery. 

sendReply This action implements synchronous point-to-point communica­
tion. It is used to return a value to an object. The parameters of send Reply are 
the following: 

Destination object Dest Oid 
Reply Answer value 

The destination of send Reply can also be specified by a name. The effect of 
sendReply is that the value Answer is put into the reply box 'R'B of Dest. The 
reply box after execution is denoted by 'R'B': 

'R'B' = Answer 

Broadcast This action sends a message to all objects in a class. The parame­
ters of Broadcast are a class name DestClass and a method call Mesg: 

Destination class 
Sending object 
Recipient of reply 
Message 

DestClass 
Sender 
replyTo 
Mesg 

Classname 
Oid 
Oid 
MethodCall 

Execution of Broadcast effects the external method queues :lvt.ext of all ob­
jects in class DestClass. The external method queue :Jvt.~xt after execution is 
as follows: 

VO E DestClass: O.:Jvt.~xt = 0.:lvt.ext + Mesg 

Any object can invoke Broadcast. 

6.3.3 Execution 

The execution of the system layer is completely driven by requests from DEGAS 
objects. Calls to actions in the system layer are executed on a First Corne, First 
Served basis. This is the only place in DEGAS, where object autonomy is com­
promised by introducing a form of synchronisation. Clearly, this is necessary 
to allow objects to communicate. 
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6.4 Class Objects 

Class objects implement a major part of object management. They are respon­
sible for the creation of new object instances of their class. As a consequence, 
a class object keeps a record of existing instances. Furthermore, a class object 
provides schema information. 

6.4.1 Data Structures 

The following data is recorded in a class object, in addition to the data recorded 
as standard in a DEGAS object. 

Extent This set contains the identities of the objects in the extent of the class 
managed by the class object. Because the system layer provides an abstraction 
from physical addresses, the type of Extent is: 

Extent : 'POid 

Class Attribute Set This set contains the attributes specified for the class. 
It is denoted by ClassAttr. 

Cl ass Method Set This set contains the methods specified for the class. It is 
denoted by ClassMeth. 

Cl ass Li fecycl e Set This set contains the lifecycles specified for the class. 
It is denoted by ClassCycl. 

Cl ass Rule Set This set contains the rules specified for the class. It is de­
noted by ClassRules. 

6.4.2 Actions 

A class object provides all actions of a DEGAS object. In addition, it provides 
actions to create new objects and actions to provide schema information. 

New This action produces a new object in the class. First, a new empty DEGAS 

object is requested form the system layer. Then, this object is filled with the 
capabilities specified for the class. The created object is added to the extent of 
the class. 

After the first phase, the following conditions hold: 

NewOid 

NewOid.Attr 

NewEmptyObject() 

0 
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NewOid.Meth 

NewOid.Cycl 

New Did.Rules 

0 

0 

0 

6.5. ADDON CLASS OBJECT 

Filling the object means that the following post-conditions are satisfied, where 
Extent' denotes the value of Extent after execution of New. 

Extent' 

NewOid.Attr 

NewOid.Meth 

NewOid.Cycl 

NewOid.Rules 

Extent u {NewOid} 

ClassAttr 

ClassMeth 

ClassCycl 

Class Rules 

getExtent This action returns the extent managed by the class object. 

getExtent : 1 - 'POid 

This action can be invoked by a Site object. 

IsAttribute This is a Boolean function to check for the presence of an at­
tribute in a class. IsAttri bute is used to check the correctness of queries, as 
is discussed in Section 7.2. As parameters, it takes the name and type of an 
attribute. It is typed: 

IsAttribute: String x Type - Boolean 

The IsAttribute action can be called by Site objects. 

IsMethod This is a Boolean function to check for the presence of a method in 
a class. IsMethod is used for type checking. As parameters, it takes the name 
of the method and its parameters. It is typed: 

IsMethod: String x [(name: string, Type)] - Boolean 

The IsMethod action can be called by Site objects. 

6.5 Addon Class Object 

Information about addons is stored in addon class objects. An addon class ob­
ject is similar to a class object. The only difference is the absence of an action 
to create a new object. Since an addon extending an object does not have object 
identity, an addon class object only adds and removes existing object identi­
fiers to and from its extent. The class extended by !he addon, specified in the 
Extends clause in the addon definition, is denoted by BaseClass. 
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Object PersonClass 
Attributes 

Extent :POid 
ClassAttr: P( Name, Type) 
ClassMeth: P( Name, Type) 
ClassCycl 
ClassRules 
NewOid: Oid 
attr : ( Name, Type ) 
meth : ( Name, Type ) 
site: oid 

Methods 
New= { 

} 

NewOid := NewEmptyObject() 
Extent : = Extent u {NewOid} 
NewOid.Attr := ClassAttr 
NewOid.Meth := ClassMeth 
NewOid.Cycl := ClassCycl 
NewOid.Rules := ClassRules 
Return NewOid 

getExtent = { 
return Extent 

} 
IsAttribute(Name, Type) = { 

Foreach attr in ClassAttr 

} 

where attr.name =Name and attr.type = Type 
do return True 

IsMethod(Name, Type) = { 
Foreach meth in ClassAttr 
where attr.name =Name and attr.type = Type 
do return True 

} 
Llfecycle 

New* 
[sender=site)getExtent* 
[sender=site)isAttribute* 
[sender=site)isMethod* 

Rules 
EndObject 

Figure 6. 7: An example DEGAS class object. 
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6.5.1 Data Structures 

The following data is recorded in an addon class object, in addition to the data 
recorded as standard in a DEGAS object. 

Extent This set contains the identities of the objects extended with the addon 
managed by the addon class object. Hence, it has a slightly different meaning 
than Extent in a class object. The type of Extent is: 

Extent : 'POid 

Addon Attribute Set This set contains the attributes specified for the ad­
don. It is denoted by AddonAttr. 

Addon Method Set This set contains the methods specified for the addon. It 
is denoted by AddonMeth. 

Addon Li fecycl e Set This set contains the lifecycles specified for the ad­
don. It is denoted by AddonCycl. 

Addon Rule Set This set contains the rules specified for the addon. It is de­
noted by AddonRules. 

6.5.2 Actions 

The actions of an addon class object are to provide information about the ca­
pabilities of an object. 

getExtent This action returns the objects extended by the addon of the ad­
don class object, i.e., the value of Extent. 

getExtent: I - 'POid 

This action can be invoked by a site object. 

regi sterExtent This action registers the extension of an object with the ad­
don. It does not have any parameters, because the message is sent by the ex­
tended object. The execution of regi sterExtent results in the addition of the 
sender's identity to Extent. Extent' denotes the extent of the addon class 
after execution: 

Extent' = Extent u {Sender} 

The action regi sterExtent can be called by objects in BaseClass. 
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removeExtent This action informs the addon class object of the removal of 
an addon. It does not take any parameters, because the message is sent by the 
object the addon is removed from. The execution of removeExtent results in 
the removal of the sender's identity from Extent. Extent' denotes the extent 
of the addon class after execution: 

Extent' =Extent\ {Sender} 

The action removeExtent can be called by objects in BaseClass. 

IsAttribute This is a Boolean function to check for the presence of an at­
tribute in a class. IsAttri bute is used to check the correctness of queries, as 
is discussed in Section 7.2. As parameters, it takes the name and type of an 
attribute. It is typed: 

IsAttribute: String x Type - Boolean 

The IsAttri bute action can be called by Site objects. 

IsMethod This is a Boolean function to check for the presence of a method in 
a class. IsMethod is used for type checking. As parameters, it takes the name 
of the method and its parameters. It is typed: 

IsMethod: String x [(name: string, Type)] - Boolean 

The IsMethod action can be called by Site objects. 

Default Llfecycle The default lifecycle of an addon class object ensures that 
the actions to extend an object are executed in the right sequence. In particular, 
this lifecycle guarantees that an object can only register with the addon, if it has 
executed the necessary action for extension. 

Llfecyde 
[sender E BaseClass)registerExtent* 
[sender E Extent)removeExtent* 
[sender = site)getExtent* 

6.6 Relation Objects 

A relation object is also a DEGAS object. Hence, it contains all data structures 
and actions defined in Section 6.2. In addition, a relation object always has 
attributes to record the identities of the partners in the relation. Furthermore, 
the involvement of partners means that terminating a relation is more complex 
than simply killing the relation object. 

6.6.1 Data Structures 

Additional attributes provided by the relation object contain the identities of 
the partners in the relation. 
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Partners The specification of a relation object specifies the partners in the 
relation in the Relation clause. For example, consider the Rel at ion clause in 
a Share relation: 

Object Share 
Relation Company, Shareholder 

As a result the Share relation object contains the attributes Shareholder and 
Company. Furthermore, the partners in the relation are recorded as a set in the 
attribute Partners. In general, consider a relation object R with the following 
header: 

Object R 
Relation Pi, P2, . .. , Pn 

Then we have the following elements in the attribute set of R: 

V 1 :S; i :S; n : Pi : oid E Attr 
Partners : '.POid E Attr 

The partner objects in the relation are stored a second time in a set to be able 
to send a message to all partner object at the same time through a set iteration. 

6.6.2 Actions 

An action to terminate the relation is provided in addition to the straight ki 11 
in a DEGAS object. 

Terminate This action implements termination of the relation. As a result of 
Terminate the relation object ceases to exist. Furthermore, the partners in the 
relation must be informed of the end of the relation. 

Methods 

Terminate = { 

} 
Rules 

* * *For each Part E Partners *** 
Part.terminate<Part>O 

On Terminate do Kill 
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6. 7 Relation Class Objects 

A relation class object is a class object. Hence, it contains all capabilities of a 
class object and, by implication, all capabilities of a DEGAS object. The main role 
of a relation class object is to match partners for a relation. The way this takes 
place is dependent on the application semantics of the relation. Hence, this sec­
tion only gives a standard interface for initiating relations. Possible scenarios 
for use in applications are discussed in Section 7.3. 

6.7.1 Data Structures 

The additional data structures in a relation class object relative to a class ob­
ject serve to record data about prospective partners in relations that are being 
formed. 

Prospect This attribute records prospective partners in a relation. It is de­
noted by Prospect. Since the result of the matching process are relations, the 
prospective partners are recorded as tuples of objects. The set of partners in a 
relation is denoted by Partners. 

\f Part E Partners: Prospect: '.P(<Part>: oid) 

A tuple in this set denotes a potential combination of objects to form a relation. 
The missing partners in a combination of prospects are represented by a Null 
value in the tuple. For example, suppose we have a three way relation Schedule 
with partners Teacher, Course, and Room. An example Prospect set in the 
relation class object is: 

{(Teacher: 123, Course: 345, Room: Null), 
(Teacher: 135,Course: 368,Room: Null), 
(Teacher: Null, Course: 369, Room: 981)} 

This relation class object has two teacher - course pairs looking for a room and 
one course - room pair lacking a teacher. 

6. 7.2 Actions 

The following actions are defined in addition to the actions of a class object. 

initiate This action is used by prospective partners to express interest in 
engaging in a relation. There is an i ni ti ate action for each partner in the 
relation. Let Meth be the method set of a relation class object RC, then: 

\f Part E Partners: initiate<Part> E RC.Meth 

In the example of the Schedule relation class object, we have the following 
actions: 
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initiateTeacher 
initiateCourse 
initiateRoom 

6.8. SITE OBJECTS 

An i ni ti ate method can have parameters, for example containing the desired 
partner in the relation. The exact actions of these methods are dependent on the 
application, as will be discussed in Section 7.3. As a consequence, the relation 
class object is specified by the application programmer. 

instantiateRelation This action does the actual instantiation of the rela­
tion. This means that it creates the relation object and instructs the partners 
to extend themselves with the appropriate addon. Furthermore, it removes the 
tuple of partners from Prospects. 

Methods 
* * *v'Part E Partners:*** 
instantiateRelation( <Part> : oid ) = { 

Part.extend( <Part>) 

} 

Relation := new() 
Part.initialise(Relation) 
Foreach p in Prospects 
where p.<Part> = <Part> 
do Prospects := Prospects - p 

This action can only be invoked by the object itself. 

Default Lifecycle The default lifecycle of the i ni ti ate actions allows their 
execution at any time. 

Llfecycle 
* * * For each <Part> E Partners* * * 
Initiate<Part>* 
[Sender=Self] instantiateRelation * 

6.8 Site Objects 

A Site object facilitates object management, as discussed in Section 4.5. It has 
a number of class objects, that provide schema information and record the 
local extent of their class. The main activity of a Site object is related to query 
processing. 

6.8.1 Data structures 

Data stored by the Site object are the classes known by the site and interme­
diate results of queries. 
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ClassesOnSite This attribute contains the set of classes on the site. For each 
class object, the Site object records name and identity. 

ClassesOnSite: P(ClassName: String, ClassObj: Oid} 

The local extent of the class, i.e., the part of the class extent at this site, is stored 
by the class object, as discussed in Section 6.4 

QResul ts This attribute contains the results of queries processed by the Site 
object. The result of a single query is a set of object - history pairs. Its type is 
denoted by QueryResultType 

QueryResultType = P(Object: Oid,EH: £Hist} 

Please note that £Hist denotes the type of an event history, as defined in Defi­
nition 28. 

Because a Site object must have the ability to process multiple queries at a 
time, it also records a query identity and the query generating object. 

QResults: 
P(Qid: integer,Issuer: Oid,Result: QueryResultType} 

The query identity serves to distinguish multiple queries processed at the same 
time by the Site object. It is also sent with the CheckSe 1 ecto r request, as we 
saw in Section 6.2. 

NextQid This is a numerical attribute containing the next query identity to be 
handed out: 

NextQid: integer 

It is simply a number, that is increased each time a query is distributed by the 
Site object. 

6.8.2 Actions 

The actions of a Site object are mainly concerned with query processing. It 
offers facilities to distribute a query over a class, collect the results from the 
instances, and ship the result back to the object issuing the query. 

DistributeQuery This action is used to distribute a query over the instances 
of a class. As parameters it takes the identity of the query, the name of the class 
and the query to be distributed. 

Class: ClassName 
Query: (sender: oid, Selector: SelectorType} 
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To distribute the query, the site object first assigns an identity to the query. 
Then, it obtains the local extent of the class from the class object. After that, 
the Site object sends the query to all objects in the extent using the sendQuery 
primitive of the system layer (see Section 6.3). 

distributeQuery(Class : String, Query : QueryType ) = { 
if not Class.isAttribute(Attributes in Selector) 

} 

or not Class.isAttribute(Events in Selector) 
then exit 

qid := NextQid 
NextQid := NextQid + 1 
extent := Class.getExtent() 
foreach o in extent 
do sendQuery(dest=o, sender=Query.Sender, replyTo=This, 

QueryID= qid, Sel = Query.Selector) 

In this specification QueryType is shorthand for the type of a query, as given 
above. 

queryResul t This action is used to collect the results of a query. It adds a 
given result for an individual object to the set of query results QResults stored 
in the object. The parameters of queryResul tare the identity of the query and 
the set of matching sub-histories in the object history. 

Qid : integer 
LocalResult: PEHist 

The effect of this action is that the local result is added to the set of query 
results. 

QR E QResults : 
QR.Qid 
QR.Result' 

Qid 
QR.Result u 

{(object= Object/D,EH = hist) I 
Object/D = Sender I\ hist E LocalResult} 

The action queryResul t can be invoked by any object. 

shipResul t This action sends the result of a query to the object issuing the 
query. The result of a query q is taken from QResults. After it is shipped, the 
result of q is removed from QResults. It's actions are specified as follows in 
DEGAS: 

shipResult(Qid : integer) = { 
Foreach qr in QResult 
where qr.qid = Qid 
do { 
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} 
} 

sendMessage(qr.lssuer, This, This, answerQuery(qr.Result)) 
QResults := QResults - qr 

The action shi pResul t can only be invoked by the Site object itself. 
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Default Llfecycle The lifecycle of a Site object prescribes the correct se­
quence for query processing. First, the object distributes the query. Then, it 
receives the answers from the object instances. Finally, it ships the result back 
to the sender of the query: 

Llfecycle 
I ( distributeQuery;queryResult* ;shipResult) * 

6.9 Conclusion 

In this chapter, we gave a functional specification of DEGAS as an intermediate 
step between the abstract semantics and an implementation. To that end, we 
identified for each element needed to implement a DEGAS database, what data 
is stored and what actions are required. 

As a foundation, a system layer offers communication and object creation ser­
vices. These are necessary for the basic DEGAS object, which implements all ob­
ject capabilities, viz., attributes, methods, lifecycles, and rules, using a number 
of primitive actions. These actions are executed as part of a cycle, that pro­
cesses query requests, then executes a method, and processes triggered rules. 

All further elements of a DEGAS database are specified as DEGAS objects them­
selves. For these objects, we specified the actions required for a DEGAS data­
base. Relation objects must offer actions to terminate the relation. Class ob­
jects, relation class objects, and addon class objects all take care of creating 
instances in their class. The messages to handle this are standardised. Site ob­
jects do not implement part of the data model. Instead, their main task is to 
facilitate query processing 
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Chapter 7 

Practical Aspects of DEGAS 

This chapter addresses a number of issues in the realisation of a DEGAS da­
tabase. First, we discuss the prototype of a DEGAS implementation. In the in­
troduction of Chapter 6, we positioned the functional specification as half way 
between the abstract semantics of DEGAS, specified in Chapter 5, and a DEGAS 

implementation. Hence, this chapter discusses the implementation of the sys­
tem specified in the previous chapter. Additionally, we shortly discuss the in­
terface of DEGAS to the outside world. 

Furthermore, the specification given in Chapter 6 gave only a specification of 
a standard interface for creating new objects and new relation objects. In this 
chapter, we discuss how application dependent semantics can be programmed 
in DEGAS using this standard interface. Furthermore, we discuss how the ac­
tions specified in Chapter 6 are used to implement query processing in DEGAS. 

This discussion includes the maintenance of a data dictionary and the approxi­
mation of query result quality in the context of DEGAS object autonomy. 

7.1 Implementation of DEGAS 

The implementation of a DEGAS database is explained by showing how to im­
plement each element of the functional specification. For this discussion, we 
draw on our experience with the implementation of an early DEGAS prototype 
in Python. In this section, we first motivate our choice for Python as the imple­
mentation language. Then, we explain the implementation of the key elements 
of a DEGAS database. These are the basic DEGAS object and the system layer. 
Other elements of a DEGAS database are themselves DEGAS objects. Therefore, 
we can implement these, if we can implement a basic DEGAS object. 
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7.1.1 The Implementation Language 

The aim of the prototype DEGAS implementation was to provide a proof of con­
cept for the model defined in this thesis. The prototype is meant to show that 
a DEGAS database can be implemented. This lead to the following requirements 
on the implementation language: 

1. Object support. Besides the obvious advantages of object orientation in 
software development, the presence of objects makes implementation an 
object-based system like DEGAS easier. 

2. Facility for threads or processes. DEGAS objects run concurrently. Hence, 
the implementation platform must support concurrency. 

3. Made for Prototyping. Since the prototype is only meant to provide a 
proof-of-concept, quick implementation is more important than optimal 
performance. 

We chose Python [Lutz, 1996) as the implementation platform for a DEGAS 
prototype. Python1 is an object-oriented scripting language developed at CWI 
[Rossum, 1995b, Rossum, 199Scl. It is especially suitable for rapid prototyping, 
since it draws on earlier experience with ABC [Geurts et al., 1990], designed 
from the viewpoint of a programming language as a user interface. Python has 
a number of features that were of particular use in writing a DEGAS prototype. 
It has a large number of built-in data structures, such as list and dictionaries. A 
Python dictionary has the usual structure of a key followed by an entry. As an 
example, suppose we enter the following in the Python interpreter: 

>>> telefoon = {} 
>>> telefoon['Johan'] = 4134 
>>> telefoon['Arno'] = 4139 
>>> telefoon['Arjan'J = 4054 

Then, the contents of tel efoon are as follows: 

>>> telefoon 
{ 'Arjan': 4054, 'Johan': 4134, 'Arno': 4139} 

Elements are deleted from a dictionary using the de l statement: 

>>> del telefoon['Arjan'J 
>>> telefoon 
{'Johan': 4134, 'Arno': 4139} 

A dictionary offers a structure of variable size and content to store a DEGAS ob­
ject's capability sets. For example, the attribute values of an object are stored 
in a dictionary indexed by name. This allows easy addition and deletion of at­
tributes, as is discussed in Section 7.1.2. 

Furthermore, Python allows references to functions by name. This is a very 
useful feature for the implementation of the addon mechanism. To illustrate 
this, suppose we have defined the following function in the Python interpreter: 

1 An extensive source of information on Python is the web site www. python. org. 
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>>> def multiply(parameter): 
number= parameter* 2 
return number 

Then we assign: 

>>> naam = multiply 

Calling naam leads to the execution of multiply: 

»> naam(45) 
90 
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This feature, together with dictionaries, facilitates easy implementation of a 
DEGAS object's variable method set. The implementation of a method is stored 
as a Python function. Each DEGAS object has a dictionary storing references 
to these Python functions indexed by method name, as discussed further in 
Section 7.1.2. 

An additional attractive feature of Python is the extensive library [Rossum, 
1995a) of modules available in the standard distribution. The modules in the 
library present their functionality as abstract data types. For example, the soc­
ket module implements Unix inter-process communication by a socket object 
with socket operations as methods. In the DEGAS prototype, we use several 
modules, that implement threads, locking, and inter-process communication. 
The thread module is used to implement a DEGAS object's separate thread of 
control. This module also implements simple locks to prevent conflicts between 
DEGAS objects and the system layer in the implementation of communication 
primitives. Finally, inter-process communication through sockets was used in 
the prototype implementation for communication between the DEGAS database 
and the user interface. 

We also considered C++ [Stroustrup, 1991) as an implementation language. It 
satisfies our first two requirements, support for objects and for concurrency. 
It scores lower, however, on its fitness for prototyping. This is mainly due to 
the lack of higher level data structures in C++. Especially dictionaries and the 
various library modules of Python are easier to use than similar C++ facilities. 
These arguments also apply to Java. Furthermore, we did not have any porta­
bility requirements that could be fulfilled by Java. 

7.1.2 The Basic DEGAS Object 

This section discusses the implementation of the basic DEGAS object. It is imple­
mented by a Python object. In this object, the data structures are attributes. The 
basic actions are method calls of the Python object implementing the DEGAS ob­
ject.. The execution cycle in Figure 6.4 is also a method. To achieve concurrent 
execution of DEGAS objects, this method is executed in a separate thread for 
each object. 
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Storage 

A basic DEGAS object records an object's capabilities, as specified in Section 6.2. 
Here, we look at the storage of these data in an implementation. 

State Hi story The state history of an object is stored as a dictionary with 
the time as a key. This allows fast retrieval of historical attribute values. Hence, 
the following data are recorded in a tuple: 

1. Ti me Stamp. The time of the method call is represented by an integer. 

2. Attribute. A dictionary containing name and values of the object's at­
tribute set at the time indicated. The attribute name is the key of this 
dictionary. 

3. Method Name. A string containing the name of the method call causing 
the state change. 

4. Method Parameters. A list containing the parameters of the method call. 

Queues The three queues of a DEGAS object are FIFO queues implemented by 
lists. These lists contains tuples representing the messages. The head of the list 
is the earliest message. The attributes of a message is dependent of the queue. 
The following attributes are used: 

1. Sender. The object identity of the sender. 

2. Rep l yTo. The recipient of the message's response. 

3. Event. This contains the encoded event expression of the selector. The 
encoding of event expressions is discussed in Section 7.1.2. 

4. Condi ti on. A selection condition is represented by a function testing it. 
This attribute of a query tuple contains a reference to this function. 

5. Method name. A string containing the name of the method. 

6. Param. A list of actual parameters of the method call. 

The table below indicates the attributes of tuples in each queue of a DEGAS 

object. 

Query Queue 
External Method Queue 
Internal Method Queue 

✓ ✓ ✓ ✓ 

✓ ✓ ✓ ✓ 

✓ ✓ ✓ ✓ 
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The external queues, i.e., the query queue and the external method queue, are 
guarded by a lock, to avoid conflicts between the system layer and the object 
itself in modifying the external method queue. The list and the lock are encap­
sulated in a separate object. 

Reply Box The Reply Box is a value. 

Capability Sets The capability sets of a DEGAS object are stored in dictio­
naries. For each capability, attributes, methods, lifecycles, and rules, an object 
has a dictionary. Attributes and methods are stored indexed by their name, 
while rules and lifecycles are indexed by the name of their class or addon. This 
choices of indices is motivated by their most common use. Attributes and meth­
ods are always referenced by their names. Modifications of the lifecycle and 
rule dictionaries take place when the DEGAS object is extended by an addon or 
when an addon is removed. In these situations, the elements of the dictionary 
are accessed through the name of the defining addon. 

As a result, the Python implementation of a DEGAS object has the following 
attributes: 

1. Attributes. The (Python) attribute attr is the dictionary containing the 
object's current attributes and their values. 

2. Methods. The attribute meth is the dictionary of methods. For every me­
thod of the DEGAS object, it contains a pointer to the Python function 
implementing the action. 

3. Lifecycles. The attribute cycl is the dictionary containing the current life­
cycle elements of the object. These are all lines from the lifecycle specifi­
cations in the class definition and the definitions of the addons currently 
present. 

4. Rule Set. The attribute ru 1 e is the dictionary containing the event, the 
condition, and the action of all rules currently defined in the DEGAS ob­
ject. The event is encoded as a finite state machine, as explained in Sec­
tion 7.1.2. The condition is stored as a Boolean function checking it. The 
action is a method call. 

Li fecycl e The attribute Li feCycl e is a dictionary containing the current 
lif ecycle of the DEGAS object. It contains the finite state machine for the current 
lifecycle. The encoding of the state machine is explained in Section 7.1.2. It is 
constructed by combining the elements stored in the lifecycle dictionary cycl 
using the communication merge as explained in Section 5. 7.2. 
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This The identity of an object is a logical address provided on creation by the 
DEGAS system layer. Hence, the attribute This in the DEGAS object is different 
from the self reference self of the Python object, which contains the physical 
address of the object. 

Actions 

The primitive actions of a basic DEGAS object are implemented by methods of 
the Python object. Here, we shortly give the techniques used by each primitive 
action. 

ExecuteMethod A method is executed by looking up the reference to its Py­
thon translation in the Meth dictionary by its name. Then, the function con­
taining the Python translation is executed. After that, the new object state is 
appended to the history. All constructs in a DEGAS method have a straight­
forward translation to Python code. The Foreach ... in ... where ... do 
... can be implemented using the Python For iterator [Rossum, 1995b], that 
applies a program block to all elements of a set. 

Below, we give the Python code implementing ExecuteMethod. The lines pre­
ceded by# indicate comments explaining the actions. First, the current attribute 
values are copied. After that, the actual execution takes place. The expression 
self. meth [name] resolves to the name of the Python implementation stored 
in the dictionary meth. The parameters taken by the Python function are the 
parameters of the DEGAS method and the current attributes. The presence of 
self as a parameter to the method call is a Python feature to indicate a func­
tion of a Python object. After execution of the method, the new attribute values 
are inserted in the object history. 

def executeMethod(self,name,parameters): 
# 
# Copy attributes to local attribute diet 
# 
attri buut = {} 
lastattr = self.stateHist[max(self .stateHist.keys())] 
for i in lastattr.keys(): 

attribuut[i] = lastattr[i] 
# 
# Execute the method 
# 

self.meth[name](self, parameters, attribuut) 
# 
# Append the local attribute diet to the state history 
# 

self.stateHist[self.count] = (attribuut,name) 
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CheckSelector The implementation of this action first checks the event ex­
pression using the techniques explained in Section 7.1.2. Then, satisfaction of 
the condition by the matching sub histories is checked. The condition is en­
coded as a Boolean function testing the condition. 

MethodA 11 owed The implementation of this action takes the lifecycle stored 
as a finite automaton in Li fecycl e. It checks the tail of the event history to­
gether with the proposed method call against the automaton. This is explained 
in Section 7.1.2. 

get This is implemented by a generic Get method in the Python object, that 
returns the current value from the Attr dictionary. 

Extend This action manipulates the capabilities sets, i.e., Attr, Meth, Rules, 
and Cyc 1, as specified in Section 6.2. A new automaton for Li fecyc 1 e is con­
structed using the compositions described in Section 7.1.2. A further explana­
tion of the implementation of the addon mechanism is given below. 

Remove This action is implemented analogously to the Extend action. 

Kil 1 Termination of an object means terminating its execution cycle. This is 
implemented by terminating the thread executing the object. The result is that 
the object is still around in the database, but that nothing is added to its history 
anymore. The object is available for historical queries. 

Addon Extension 

The implementation of the addon mechanism is supported by the storage of ca­
pabilities in dictionaries. Furthermore, the possibility of referencing functions 
by name allows an object access to functions that were not pre-defined in the 
object. 

Recall the specification of the addon class object in Section 6.5. There, we saw 
that an object O executing an Extend (A) action requests the capabilities of ad­
don A from the addon class object of A. References to functions simplify this 
process. The addon class object simply returns the name of a function contain­
ing the extension actions, i.e., the appropriate assignments to the capabilities 
sets. This function is executed by O to achieve the desired extension. 

For example, suppose we have the specification of the addon Extra in Fig­
ure 7.1. For brevity, assume that the Python implementations of the methods 
represented by the functions P_setFi rst, P_setSecond, and P_total, respec­
tively. Furthermore, the encoding of the lifecycle is stored in P _Li fecycl e­
Extra. This results in the following function to extend a Standard object O 
with the addon Extra. 
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Addon Extra 
Extends Standard 
Attributes 

first : integer 
second : integer 

Methods 
setFirst(no :integer) = { 

first:= no 
} 
setSecond(no :integer) = { 

second:= no 
} 
total= { 

return first+ second 
} 

Llfecycle 
setFirst* 
setSecond* 
total* 

EndAddon 
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Figure 7.1: The specification of the Extra addon 

def ExtendExtra(self) 
Attr['first'] 0 
Attr['second'] 0 
Meth ['set First'] P _setFi rst 
Meth['setSecond'] P_setSecond 
Meth['total'] P_total 
Cycl['Extra'] P_LifecycleExtra 
sendMessage(ExtraClass,this,this,registerExtent) 

The name of ExtendExtra is passed to Oby the addon class object of Extra 
for execution. Removal of capabilities in a Remove action proceeds analogously 
to an Extend action. For the deletion of the addon from an object 0, the addon 
class object of Extra passes the name of RemoveExtra to 0: 

def RemoveExtra(self) : 
del Attr['first'] 
del Attr['second'] 
del Meth['setFirst'] 
del Meth['setSecond'] 
del Meth['total'] 
del Cycl['Extra'] 
sendMessage(ExtraClass,this,this,removeExtent) 
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Checking Event Expressions 

Event expressions occur in lifecycles and in selectors. In both cases, we must 
check (a part of) the event history against a process algebraic expression [Baeten 
and Weijland, 19901. Here, we show that these checks are easy implementable. 
In fact, a finite automaton is sufficient to match the event history with an event 
expression. This also means that lifecycles in a DEGAS object have similar ex­
pression power as finite automata used to model the dynamic aspects of objects 
in OMT [Rumbaugh and others, 19911. 

Proposition 1 An event expression can be implemented by a finite state machine 
with conditions on the transitions. 

Proof Follows from the fact that the event expressions are a regular language 
[Lewis and Papadimitriou, 19811. The transitions in a lifecycle-checking au­
tomaton are labelled by the preconditions and the method names. A lifecycle 
checking automaton is brought to the next state by a method execution. In an 
event-checking automaton they are labelled by an event name only. An event­
checking automaton parses the event history for an event expression. The non­
occurrence of events is handled by rewriting them to the equivalent alternative 
composition. □ 

For each operator, we can give a simple automaton that checks this expression. 
These are shown in Figure 7.2. Please recall, that the negation operator, can be 
rewritten to an alternative composition+. If an object O has action A, B, C, and 
D, then ,C =A+ B + D. Furthermore, the merge operation can be expanded to 
an alternative composition. The axioms of merge are as follows: 

xlly 

ax~y 

allb 

(xlly)llz 

x~y + y~x 

a(xlly) 

ab+ba 

xll(yllz) 

As an example of a finite automaton to check a more complicated event expres­
sion, we give the automaton associated with the event expression A; (B; ,C;D)* 
in Figure 7.3. 

The implementation of these automata in Python is straightforward. Each state 
of the automaton is numbered. For each state, we record the possible tran­
sitions to other states. A transition is characterised by a state number and a 
method name. Consider the automaton in Figure 7.4, which implements the 
event expression A; (Bll[answer = 42]C). In state 2 of this automaton, we have 
two possible transitions: To state 3 by method B and to state 4 by method C, if 
precondition answer = 42 is satisfied. 
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AIIB 

B 

0 
A 

0 State 

@ Accepting state 

Figure 7.2: Finite automata for process algebraic operators 
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A 
B 

B 

D 
Q State 

@ Accepting state 

Figure 7.3: Finite automaton to check the event expression A; (B; ,C; D) *. 

A B 

2 3 

[answer= 42]C [answer= 42]C 

B 
-------- 0 
4 5 0 State 

@ Accepting state 

Figure 7.4: Finite automaton to check the event expression A; (BIi [answer 
42]C). 
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Merging lifecycles from multiple specifications is a straightforward affair. In 
Section 5. 7.2, we saw that lifecycles are composed using communication merge. 
Like simple parallel merge, communication merge is defined by the same ax­
ioms as parallel merge, with the addition of a communication function y. This 
means that communication merge is associative, i.e., (xly) lz = xi (y lz). As a 
consequence, the sequence of lifecycle composition is arbitrary. 

7.1.3 The System Layer 

The underlying infrastructure of a DEGAS database is provided by the system 
layer specified in Section 6.3. Services provided are object creation and inter­
object communication. The system layer is implemented by a Python object 
DegasSystem. Each site has an instance to implement the system layer. Its 
identity is known to every Python object in the implementation of the DEGAS 
database. 

Attributes 

The attributes of the DegasSystem object contain the data stored in the system 
layer, as specified in Section 6.3. This contains the directory of objects in two 
dictionaries. One maps DEGAS identities to Python identities. The other maps 
names to DEGAS identities. 

Obj Dir This is a dictionary mapping DEGAS object identities to Python object 
references. Object identities are represented by integers. 

NameDi r This is a dictionary mapping names of DEGAS objects to DEGAS ob­
ject identities. Names are represented by strings, while DEGAS object identities 
are again represented by integers. 

Object Creation 

The creation of an empty DEGAS object is a straightforward process. We de­
fine a Python class Degas0bject, that contains the capabilities of an empty 
DEGAS object, as specified in Section 6.2 and 7. 1.2. The primitive newObj ect is 
a method of DegasSystem that yields a new instance of Degas0bject. A DEGAS 
identity is assigned to the object, which is entered in a dictionary mapping 
DEGAS object identities to Python object references. 

Inter-Object Communication 

The DEGAS communication primitives were specified in Section 6.3. In particu­
lar, the effect of the primitives on the data structures of the destination object 
was specified. The implementation of these data structures, i.e., the query and 
method queues, was given in Section 7.1.2. The main task of the DegasSystem 
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object in communication actions, is to find the destination object. First, the 
destination must be resolved to a DEGAS object identity, if a name is given as 
destination. The name is resolved to an identity using NameDi r . Second, the 
DEGAS identity must be resolved to a Python object reference in order to insert 
the message in the appropriate queue of the destination object. If the desti­
nation object is at the same site, the DegasSystem object will find its Python 
object reference in Obj Dir. Otherwise, it needs to find out the location of the 
object in order to pass the message to the site of the object. 

Object autonomy implies that a there is no centralised directory of all objects 
in the DEGAS database. Hence, a DEGAS database must implement a mechanism 
to find out the location of an object from the information at a site. A number 
of alternative schemes exist for this. A simple broadcast of a non-local message 
leads to a high load of the network. Alternatively, message for other sites can 
be posted on a "bulletin board", that is regularly checked by all sites. Although 
this reduces network traffic, it introduces a centralised resource, that forms a 
potential bottleneck in the system. 

A problem analogous to locating objects also occurs in mobile computing [Imie­
linski and Badrinath, 19941. Commonly, a mobile computing system is based on 
a cellular communication network. This raises the problem of determining in 
which cell a mobile computing node is. A number of schemes are proposed 
to solve this problem, e.g., in [Imielinski and Badrinath, 19921. To examine the 
applicability of these to our problem, we translate these schemes to a DEGAS 
database. 

An improvement on broadcasting proposed by [Imielinski and Badrinath, 1992] 
is to partition the network and record the partition an object is in. Thus, only 
a subset of the sites in the network needs to be consulted to find out the lo­
cation of the destination object. Please note, however, that this requires the 
DegasSystem object to record object identities of all objects not present at its 
site. The same drawback applies to the two other approaches proposed. One 
approach is to list for each site the probability that an object is located there. 
To reach an object, these sites are tried by order of probability. The second 
approach creates a chain of pointers for each object. If an object leaves a site, 
the new location of the object is recorded. A message to an object follows these 
pointers. Although we can detect and remove cycles in such a chain, it still im­
plies relatively long transit times for messages. It also leaves the problem, how 
a site determines the location of an object that never visited it. Moreover, the 
problem of locating objects occurred in the first place, because of the autonomy 
of objects not to inform the system of its whereabouts. 

To stay in line with object autonomy, the task of tracing objects must be with 
the DegasSystem objects. It maintains a routing table by inspecting the mes­
sage flow passing through. Recall from Section 4.5 that we assume for DEGAS 
a network based on links between sites. Furthermore, there is a DegasSystem 
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object at each site. If a message arrives at a site, it arrives over a specific link. 
Since each message contains its sender, the DegasSystem object can associate 
links with object identities in order to build a routing table. If an object identity 
is not found in the routing table, then the message is broadcast. This broadcast 
message is used to create the initial entry in the routing table2. If a DEGAS ob­
ject moves to another site, the routing table might become outdated. This fact 
is identified if a site on the route does not know the destination object of the 
message. In this case, a new broadcast by the originating site is necessary. 

7.1.4 Other Objects 

All other required objects in a DEGAS database are DEGAS objects themselves. 
Their functionality is specified in the DEGAS programming language. Hence, the 
DEGAS object and the system layer are everything needed for the implementa­
tion of a DEGAS database. 

7.2 Interface to the Outside 

The specification in the previous chapter only discussed the components of the 
DEGAS system itself. It did not discuss the interfaces to the outside world, either 
human users or other systems. These interfaces are implemented by an object, 
whose interactions with DEGAS can be specified in DEGAS. In other words, it 
sends DEGAS messages to DEGAS objects and can receive DEGAS messages from 
DEGAS objects. Since this object must also communicate in another language 
than DEGAS, it will not be implemented in DEGAS itself. 

To illustrate the interactions of DEGAS, we discuss two interactions with the 
environment, viz., data entry and queries. 

Data Entry New objects are created by the action New in the class object, as 
specified in Section 6.4. The actual creation of objects and relation objects is 
identical. The creation of a DEGAS object is the way data is entered in a DEGAS 

database. This subsection shortly discusses the entry of data in a DEGAS data­
base, i.e., its interface to the outside world. The creation of a relation object is 
part of establishing a relation, which is discussed in Section 7.3. 

The requirement on interface objects are relatively loose. The object entering 
data, the Data Entering Object or DEO, only has to meet certain requirements 

2The appropriate implementation of broadcast guarantees that the broadcast will yield the 
fastest route between two sites. This implementation means that a site forwards a broadcast 
message to all neighbours, except the one sending the message. The message identity is used to 
discard a message already seen. Obviously, a message reaches a site first over the fastest route. 
For an elaborate discussion of computer networks, the reader is referred to, e.g., [Tanenbaum, 
19961. 
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regarding its interface with the DEGAS database. The other aspects of the DEO 
are indifferent to DEGAS, meaning that it can implement any kind of interface 
to a user, or to other software. If a DEO wishes to create an object of a class 
ClassName, it simply sends a new message to the class object. For example, 
the following message is sent to create a Person object: 

NewOid := PersonClass.new() 

The identity of the object is returned in NewOi d, so that the DEO can enter data 
in the new object. 

Query Interface Query requests are processed by the Site objects and the 
object instances, as specified in Sections 6.8 and 6.2. These requests are issued 
by a query generating object (or QGO). The only requirement on a QGO regards 
its interface to the DEGAS database. Apart from this, a QGO can implement any 
kind of query interface, be it a forms package, an SQL interface or a data mining 
client. 

A query is distributed over all reachable sites in the networks by broadcasting 
a call to di stri buteQuery to all Site objects. To start processing a query 
Q = (C, S}, where C is a class and Sa selector, the QGO makes the following 
call: 

Broadcast(Site, Self, Self, DistributeQuery(C,S)) 

To receive the answer to a query it issued, a QGO must implement the method 
answerQuery. This action receives the answer to a query from a Site object. 
As a parameter it takes the result of the site, which a set of object - history 
pairs. 

SiteResult : 'P(Object: Oid,EH: EHist} 

This method can be invoked by Site objects. 

Prototype To further explain DEGAS' interface to the outside world, we shortly 
describe the user interface of our prototype. It is implemented as a separate 
process from the DEGAS database. The user interface is represented in the 
DEGAS database by the DEGAS UI object. The user interface sends text com­
mands to the DEGAS UI object over a socket. These are then handed over as 
DEGAS messages to the system layer. Likewise, the answers to method calls or 
the results of queries are sent back by the DEGAS UI object as text. This setup 
is depicted in Figure 7.5. 

7.3 Programming in DEGAS 

The previous chapter specified requirements on the various parts of the DEGAS 
system. For relations, only a framework was specified, leaving the exact imple­
mentation to the application programmer. In order to give a further explanation 
of DEGAS relations, this section discusses programming in DEGAS. 
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Figure 7.5: User interface of the DEGAS prototype. 
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The requirements DEGAS puts on the creation of a relation, are specified by the 
actions required in a relation class object in Section 6. 7. As a consequence, the 
relation class object must collect the prospective partners and create the rela­
tion object. Other requirements on the creation of a relation are dependent on 
the semantics of the application. Hence, these are specified by the application 
programmer in the relation class object. 

Initiative All applications have in common that the initiative for a relation is 
taken by an object. It indicates its intention to enter a relationship by sending 
an i ni ti ate message to the class object of the desired relation. The sender 
is recorded in the set Prospects. The relation is established, if the tuple in 
Prospects is completed. The relation class object tries to complete the tuple 
by obtaining i ni ti atePartner messages from all prospective partners in a 
relation. The way Prospects tuples are completed is application dependent. 
The variations are: 

1. One of the partners in the relation is fixed. An object expressing interest 
always engages in a relation with the same object. 

2. An object expresses interest to engage in a relation with a specific partner 
object. The relation class object tries to establish a relation between the 
two specified object. The exact proceedings depends on whether prior 
agreement exists between prospective partners or not. 

3. The relation class object matches partners. An object indicating interest 
in engaging in the relation is indifferent to its partner. 

If one of the partners is fixed in the relation, the initiative is with the variable 
partner. The reaction of the relation class object to its i ni ti ate message is to 
send a message to the fixed partner. An example is found in the stock exchange 
scenario in Section 4.2. On receipt of an i ni ti ateShareho l der message, the 
relation class object of the Supply relation will ask a known MarketMake r ob­
ject to take the order. This is specified by the following rule: 

Rules 
On initiateShareholder 
do myMarketMaker.takeBuyOrder(sender) 

In the specification of the Marketmaker object, we see that a MarketMaker 
object returns an i ni ti ateMarketMake r message in the takeBuy0rder me­
thod. This means that it always accepts Supply relations. On receipt of the 
i ni ti ateMarketMaker message the Supply class object will go ahead to create 
the relation, if all preconditions are satisfied. The specification of preconditions 
in a relation class object is discussed below. 
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The next variant is that one of the prospective partners expresses a desired 
partner. The difference with the previous case is, that the relation class object 
sends a request to that specific object. Suppose that we have a relation with 
partners First and Second, where the initiative is always with First. The me­
thod i ni ti ate First then becomes: 

Methods 
initiateFirst(desiredPartner : oid) = { 

Prospects := Prospects + ( First = sender, Second = Null } 
} 

The following rule sends a request to the desired partner: 

Rules 
On initiateFirst(desiredPartner) 
do desiredPartner.requestRelation(sender) 

The i ni ti ateSecond message confirms the relation: 

Methods 
initiateSecond(partner : oid) = { 

Foreach p in Prospects 
where p.First = partner 
do { 

} 
} 

Prospects := Prospects - p 
instantiateRelation(p.First, sender) 

The instantiate Relation message then creates the relation, as specified in 
Section 6.7. 

The last kind of relation lacks all preferences. Hence, both partners can take 
the initiative for a relation. Furthermore, neither partner has a preference for 
a specific partner. In this case, the matching process is relatively simple. Since 
this case is symmetrical, we now name the roles Left and Right. We explain it 
for the Left partner only. 

The i ni ti ate Left method checks for the presence of unmatched Right pros­
pects. These are collected in the set Ri ghtProspects. 
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Methods 
initiateLeft() = { 

RightProspects = II 
Foreach p in Prospects 

} 

where p.Left = Null and p.Right ,fo Null 
do RightProspects := RightProspects + p 

Then, the check on prospects of the other class is done by two rules: 

Rules 
On initiateLeft 

if RightProspects = 0 
do enterProspectsLeft(sender) 

On initiateLeft 
if RightProspects ,fo 0 
do pickRight(sender) 
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If there are no current prospective Right partners, then EnterProspects­
Left adds the sender of i ni ti ateleft to Prospects. Otherwise, a partners 
is picked from Ri ghtProspects by the method pi ckRi ght. These two actions 
are specified as follows: 

Methods 
enterProspectsLeft(prospectLeft : oid) = { 

Prospects := Prospects + ( Left = prospectLeft, Right = Null ) 
} 
pickRight(prospectLeft : oid) = { 

} 

p := head(RightProspects) 
p.Left := prospectLeft 
instantiateRelation(prospectLeft, p.Right) 

Preconditions Besides the agreement of the partners, a relation can have other 
preconditions. These are checked by the relation class object. If the precondi­
tions are satisfied, the relation can be created by the instantiate Relation 
method. 

To specify the preconditions of a relation, we can use the DEGAS lifecycle mech­
anism. In the lifecycle of a relation class object, the relation's preconditions 
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would be the guard conditions to the action that creates the relation object. This 
specification of a relation's preconditions, however, leaves us with the question 
what happens, if the preconditions are not satisfied. In this case, the relation 
class object must inform the prospective partners. In short, an instantiation 
action must be executed, if the preconditions are satisfied, while a cancella­
tion action must be invoked, if the preconditions are not satisfied. Hence, the 
preconditions are better specified by rules. 

Llfecycles 
(initiateShareholder;initiateMarketMaker; 

(instantiateRelation+cancellnitialisation))* 
Rules 

On initiateMarketMaker 
if Preconditions 
do instantiateRelation 

On initiateMarketMaker 
if not Preconditions 
do cancellnitialisation 

Termination In a DEGAS database, relations will be terminated at some point 
in time. Like the creation of a relation, the termination procedure is specified by 
the application programmer. This specification, however, is located in the rela­
tion object instead of the relation class object. Usually, this proceeds analogous 
to the creation: One of the partners indicates that it wishes to end the relation. 
Dependent on the relation, the other partner is asked whether he agrees. Possi­
ble conditions on the termination of a relation can be checked in the lifecycle 
of the relation object. 

Example To conclude this discussion, we return to the stock exchange exam­
ple from Section 4.2. Figure 7.6 gives the complete DEGAS specification of the 
Supply relation class object from the stock exchange example. The attribute 
Suppl ySet contains all current instances of the Supply relation. 

The script in Figure 7.7 shows the messages exchanged in order to create 
a Supply relation between a Shareholder S and a MarketMaker M via the 
Supply class object SC. 

7.4 Query Processing in DEGAS 

Chapter 6 specified the actions of various objects that facilitate query process­
ing. In this section, we explain how these actions are related by showing the 
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Object SupplyClass 
Attributes 

Extent : '.POid 
Prospects: '.P( Shareholder: Oid, MarketMaker: Oid) 
myMarketMaker : oid 
Relationld : Oid 

Methods 
initiateShareholder = { 

Prospects:= Prospects+ (Shareholder= Sender, MarketMaker = Null ) 
} 
initiateMarketMaker(Shareholder : Oid ) = { 

Foreach p in Prospects 
where p.Shareholder = Shareholder 
do { 

p.MarketMaker := Sender 
instantiateRelation(Shareholder, Sender) 

} 
} 
instantiateRelation(Shareholder : oid, MarketMaker : oid) = { 

Shareholder.extend(ForSale) 
MarketMaker.extend(Supplied) 

} 

Relationld := new() 
Shareholder.initialiseForSale(Relationld) 
MarketMaker.initialiseSupplied(Relationld) 
Foreach p in Prospects 
where p.Shareholder = Shareholder and p.MarketMaker = MarketMaker 
do Prospects := Prospects - p 

cancellnitialisation(Shareholder:oid) = { 
Foreach p in Prospects 

} 

where p.Shareholder = Shareholder 
do { 

Prospects := Prospects - p 
Shareholder.cancelSupply 

Lifecycles 
(initiateShareholder;initiateMarketMaker; 

(instantiateRelation+cancellnitialisation))* 
Rules 

On initiateShareholder 
do marketMaker. takeBuyOrder(Sender) 

On initiateShareholder(Time);Time + 30 min 
do cancellnitialisation(Sender) 

EndObject 

Figure 7.6: DEGAS specification of the Supply relation class object. 
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s M SC 

SC.initiateShareholder 
M. takeBuyOrder 

SC .ini tia teMarketMaker 
instantiateRelation(S ,M) 
S .extend(ForSale) 
M .extend(Supplied) 
Relld = new() 
S .initialiseForSale(RelJ d) 
M .initialiseSupplied(Re lI d) 

Figure 7.7: Script to create a Supply relation 

execution of a query. Object autonomy is a complicating factor in query pro­
cessing. DEGAS does not honour a number of assumptions usually made in 
distributed query process, as stated by [Stonebraker et al., 1996]: 

• Exact knowledge of the data fragmentation of the database. 

• A fixed allocation of the data in the database. 

• Uniformity of the nodes and their connections. 

In particular, DEGAS' object autonomy not only means that objects are free to 
move between sites, but also, and more importantly, that they need not neces­
sarily answer every query received. 

In this section, we discuss the resulting method for processing a query in 
DEGAS. Furthermore, we discuss how we can derive the information needed 
to maintain a data dictionary using data from query results. Finally, we discuss 
the approximation of a query result's quality. 

7.4.1 Processing a Query 

As a consequence of object autonomy, there is no central directory of objects in 
a class. This means that a query cannot be sent directly to the objects. Instead, 
it is sent to the sites for local distribution. It is up to the DEGAS objects to 
decide whether to answer the query or not. 

Recall from Section 5.9, that a query Q is a pair (C, S) of a class C and a selector 
S. A query Q = (C, S) is issued by a QGO, which was discussed in Section 7.2. 
The QGO broadcasts the query to all Site objects. Each Site object checks the 
existence of the attributes and methods in the selector using the i sAttri bute 
and i sMethod methods of the class object/ Then, it collects the local extent 
L of C and sends the query to all elements of L. These return their results to 
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Figure 7.8: The information flow in DEGAS query processing 
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the Site object, which collects them for shipment to the QGO. This flow of 
information is depicted by Figure 7.8. 

As an illustration, consider the following query selecting bank accounts that 
were overdrawn by a single large transaction: 

Select from BankAccount 
on debit(db..amount)(t)[l Mar 1997, 15 Mar 1997] 
if db..amount > 10000 and balance(t) ~ 0 

The QGO for this query makes the following call to send the query to the sites: 

Broadcast(Site, 
DistributeQuery(BankAccount, 

(debit(db..amount)(t)[l Mar 1997, 15 Mar 1997], 
db..amount > 10000 and balance(t) ~ 0 ) 

) 

Then, each Site object executes the method di stri buteQuery, which, after 
checking the type correctness, assigns an identity qid to the query and then 
forwards it to each BankAccount object at the site. Each object executes a 
checkSe 1 ector for the selector consisting of event 

debit(db..amount)(t)[l Mar 1997, 15 Mar 1997] 
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and condition 

db_amount > 10000 and balance(t) :5 0 ) 

The result is a set of matching sub-histories. In this case, these are occurrences 
of the debit event satisfying the condition. These are collected in a result R, 
which is sent back to the Site object by the following call: 

Site.queryResult(qid,R) 

The Site object collects the results from the individual objects in a local re­
sult LR. The complete result is sent back to the QGO by executing the method 
shipResult of the Site object, which calls the method answerQuery in the 
QGO. The call to shi pResul tis commonly triggered by a rule monitoring the 
time elapsed after execution of di stri buteQuery. To return the local result 
L'R. to the QGO, the following call is made by shi pResu l t: 

QGO.answerQuery(L'R..) 

The table in Figure 7.9 summarises the calls made in query processing 

I QGO I ~ite I ~lass Object I ~stances 

S .distributeQuery 
C .isAttribute( ... ) 

return true to S 
C.isMethod( ... ) 

return true to S 
C.getExtent 

return L to S 
VJ EL: J.sendQuery 

checkSelector 
S.queryResult 

shipResult 
QGO .answerQuery 

Figure 7.9: Calls made in DEGAS query processing 

7.4.2 Maintaining a Data Dictionary 

A practical element of a database management system is the data dictionary. 
Object autonomy in DEGAS has a significant impact on the maintenance of a 
data dictionary. First, the distributed nature of DEGAS implies a distributed 
data dictionary. Second, object autonomy means that the data dictionary must 
actively collect the required (meta)data. A natural place to maintain a data dic­
tionary is the site. Hence, a Site object is responsible for maintaining the data 
dictionary. 
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The contents of a data dictionary consists of schema information and fragmen­
tation data. In Section 6.4, we saw that schema information is maintained in 
class objects. At each site, if an object of class C is present on the site, then a 
class object for class C must be present on the site. The reverse need not be 
true. Hence, we maintain schema information about at least the local schema. 
Since class objects have been specified in Section 6.4, we do not discuss this 
further in this section. 

The fragmentation data in the data dictionary contains information on the num­
ber of objects on other sites. For each class in the local schema, i.e., for each 
class it knows, it stores the number of objects in the class extent at each known 
site. Hence, the data dictionary is a table with sites as rows and classes as 
columns. An example is the following table: 

Employee Customer Article ... 
db1 123 343 456 ... 
db3 22 238 309 ... 
db4 32 394 234 ... 
db7 56 387 105 ... 

Since there is no directory of connected sites in a DEGAS database, the only 
means to enquire for dictionary information is by a broadcast. Due to network 
failures, periodical broadcasts by each site are no guarantee for the complete­
ness of the information it acquires. Hence, for reasons of efficiency, we piggy­
back the information exchange to the query results returned by the sites. The 
query results can be accompanied with information about itself, which is then 
used to fill the data dictionary. Hence, no overhead is added and the frequency 
of updates to the data dictionary reflects the intensity of use. The piggybacking 
strategy also ensures that frequent queries on a site mean frequent updates to 
the data dictionary. 

In the piggybacking strategy, the following information is sent with a query 
result: 

• Site identity. 

• Time the query arrived at site. 

• Number of relevant objects at site. 

• Number of relevant objects at site that answered. 

• Number of objects in the query result 
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This information is then passed to the site of the QGO, i.e., the originating site 
of the query, to update the data dictionary. 

To show the effect of a query result on the data dictionary, we give an example. 
Suppose that at time t1 we have the left hand entry given in Figure 7.10 for the 
Employee class in the data dictionary. 

site #Employee site #Employee 
sl 23 sl 21 
s2 145 s2 55 
s4 12 s4 17 
s6 234 s6 34 

slO 34 slO 35 
sl2 9 sl2 9 
s23 322 s23 332 

Figure 7.10: Data dictionary entry for class Employee at time t1 (left) and t2 
(right) 

The information in this histogram is based on the results returned by the sites 
in the left hand column. At a later time t2 we get an answer to a query for 
Employee objects from sites sl,s2,s4,sl0 and s23. The data dictionary is up­
dated to contain the data, resulting in the right hand entry in Figure 7.10 

Now, the data on s6 and sl2 dates from t1, while the rest of the data dates from 
t2. Thus, the histogram represents different time points for different sites. In 
general, however, the entries of most sites will be within a reasonable range 
from each other. Furthermore, at a query-intensive site, queries will be issued 
often enough to ensure small time differences between sites, unless a site is 
off-line for a long time. 

7.4.3 Approximating Quality 

In Section 4.4, we briefly touched on the notion of query quality. Here, we dis­
cuss a method to approximate the quality of a query result. For this approxima­
tion, we use the information in the data dictionary and the update information 
returned with the queries. Intuitively, the quality of a query result is the num­
ber of objects that is retrieved relative to the number of objects satisfying the 
query. Hence, calculating the quality of a query result means estimating: 
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where R + denotes the number of objects returned by the query as satisfying the 
selector and c+ denotes the actual number of objects in the database satisfying 
the selector. In this fraction, c+ is the number to be estimated. 

In DEGAS query processing, there are two sources of uncertainty, that may lead 
to missing objects satisfying a query. The first source is found at the site level. 
Due to object autonomy, a number of objects may not answer the query. The 
second source of uncertainty is the state of the network. If the network is par­
titioned, some sites, and the objects at those sites, may be unreachable. These 
two sources are reflected in the way we estimate the quality of a query. First, 
the quality of the query result is calculated for each answering site. Then, this 
data together with the data from the data dictionary of the originating site is 
used to estimate the total quality of the query result. 

For each site, we can split up the objects in the local class extent into the fol­
lowing three categories: 

A+ #objects that answer and satisfy the selector 
A - #objects that answer and do not satisfy the selector 
NA+ #objects that do not answer and satisfy the selector 
NA- #objects that do not answer and do not satisfy the selector 

This also gives us A = A+ + A - , the total number of objects that answer, and 
NA = NA+ +NA-, the total number of objects that do not answer. In addition, 
we denote the number of objects in the local class extent by S. In analogy to 
A, we denote by s+ and s- the number of objects in the local class extent 
respectively satisfying and not satisfying the query selector. 

The quality of the result at the site now is: 

A+ A+ 
Qs = S+ =A++ NA+ 

Since s+ = A+ + NA+, we have to estimate NA+ . To estimate this number, we 
assume that answering a query is independent of satisfying the query selector. 
In practical terms, this means that the proportion of the non-answering objects 
satisfying the query selector is equal to the same proportion for answering 
objects. This proportion is given by A+/ A. The estimation for NA+ is: 

NA+= A+· NA 
A 

The quality Qs then becomes: 

A+ A+ A+ 
A+ = A + A+ -S 

A++ A· NA A++ A· (S-A) --;;r-
Qs 

A 
s 
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The next step in the estimation of query quality is the combination of the per­
site qualities, taking the unreachable sites into account. Here, we use the fol­
lowing numbers: 

NS #objects at non-answering sites 
NS+ #objects at non-answering sites that satisfy query selector 
Svv #objects at site according to the data dictionary 

The quality for the complete query is calculated by taking the weighted average 
of the per-site qualities. Since we are interested in the set of objects satisfying 
the query, we use the number of objects satisfying the query as the weights. 
This means s+ for reachable (i.e., answering) sites and NS+ for non-reachable 
sites. Ns+ is unknown, which means that we have to estimate it. To make this 
estimation, we assume that the proportion of objects satisfying the query at 
non-answering sites is equal to the average of same proportion at answering 
sites. 

Then: 

. s+ 
Vt E p: Pi= S 

NS+ -
-=P 
NS 

where P denotes the average of all Pi. To give an estimate of Ns+ for each 
unreachable site, we use the data dictionary. There, we can look up the latest 
number we have for S, which is denoted by Svv- Hence, the estimate for NS+ 
becomes: 

Ns+ = P · Svv 

We denote the set of reachable sites by p and the set of non-reachable sites 
by -,p_ Since we do not obtain any objects from unreachable sites, the result 
quality of these sites equals zero. Hence, the total quality Q becomes: 

Q 

LiEp st + LJE~p NS( 

LiEpAt 

LiEp st + LJE~p P · s1.vv 

LiEpAt 

LiEp st + P · LJE~p s1.vv 
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This nicely corresponds to the notion that the quality of a query result is the 
proportion of objects returned from the total number of objects satisfying the 
query. 

R+ 
Q= c+ 

where R+ is the total number of objects returned and c+ is the total number of 
objects in the root class of the query satisfying the query selector. 

R+ I At 
iEp 

c+ Is;+ I NSJ 
iEp Je~p 

Example Suppose we have the following simple query in a DEGAS database, 
where the data dictionary entry for Employee is the one given in Figure 7.10. 

Select from Employee 
where salary > 150000 

The data dictionary entry for class Employee at the originating site of query is 
as follows: 

Class Employee 
site number 

sl 21 
s2 55 
s4 17 
s6 34 

slO 35 
s12 9 
s23 332 

We get an answer from all sites, except s4 and s10. The following number of 
objects are reported in the query result: 

Site i Si Ai A+ 
t 

sl 25 20 4 
s2 155 132 34 
s6 243 243 49 

sl2 9 9 2 
s23 342 298 53 

Now, we can give the following estimates for Pi and s;: 
Site Pi s+ 

t 

sl 0.200 5 
s2 0.258 40 
s6 0.202 49 

sl2 0.222 2 
s23 0.178 61 
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Further, we can calculate that P = 0.212. The entries for s4 and slO in the data 
dictionary give us Ss4,DD = 17 and S5 1o,vv = 35. Hence, the quality of this result 
is estimated to be: 

4 + 34 + 49 + 2 + 53 142 = 0.845 
Q= (5+40+49+2+61)+(0.212-(17+35)) 157+11 

More complex cases In general, a number of classes can be involved in a 
query. There are two ways to involve more than one class in a query. The first 
is to include path expressions to other object classes in a query. The second is 
to combine two classes using a nested query. 

The quality of the result of a path expression is measured through the root class 
of the path expression. If one of the objects on the path does not answer, the 
root object will not return a value for the path expression. Hence, the quality 
of a path expression is the proportion of objects of the root class that answers. 
Formally, if we have a path expression 

then the quality is given by: 

Qc 
Qt 

where Qc is the number of answering objects of class c and Qt the estimated 
number of objects in class c. 

In the case of a nested query, we do not calculate a composite quality measure. 
The inner query is a complete query, so a user can separately specify a desired 
quality for it. The specification of a combined quality would imply less control 
for the user than desirable. For example, if we combined the quality by multi­
plying the qualities of the inner and the outer query, then we would equate a 
quality of 25% times 80% with a quality of 40% times 50%. The latter may be 
more acceptable, since it is based on a more balanced sample of the database. 

7.5 Conclusion 

This chapter discussed a number of practical issues in constructing a DEGAS 

database. The first was the implementation of DEGAS. We motivated the choice 
of Python as an implementation language, based on its object-oriented features 
and its suitability for prototyping. This facilitates easy implementation of a 
basic DEGAS object. The variable sets of capabilities in a DEGAS object are im­
plemented using dictionaries storing the capabilities by name. The thread of 
execution of an object is provided by the Python threads library. 

The implementation of local communication on a site is straightforward using 
a simple object directory. Objects at other sites are located, taking object au­
tonomy into account, through routing tables based on the observations of the 
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DegasSystem objects. Other required objects in a DEGAS database are DEGAS 

objects themselves. Hence, the feasibility of implementing DEGAS object implies 
the feasibility of their implementation. 

A further issue addressed in this chapter concerned the interaction of DEGAS 

with users or other systems. These are represented by objects, whose interac­
tions with DEGAS are specified in DEGAS. An example discussed was the Query 
Generating Object. Furthermore, this chapter discussed programming in DEGAS. 

In particular, we discussed how different application semantics of initiating re­
lations are programmed. The functional specification in Chapter 6 defined a 
framework, that can be filled in in a number of ways. We showed how rules and 
lifecycles are used for this purpose. 

Finally, we discussed query processing in DEGAS. Object autonomy has its con­
sequences on the way we calculate the result of a query. In particular, it leads 
to an approach based on broadcasting. Furthermore, the maintenance of a data 
dictionary is based on information piggybacked on query responses. Since ob­
ject autonomy gives an object the freedom not to answer a query, the propor­
tion of objects responding becomes important. This is captured in the notion 
of the quality of a query's result, which is approximated using data returned 
with the query and data recorded in the data dictionary. 
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Chapter 8 

Modelling Work.flow in DEGAS 

In Section 3.1.1, we pointed out the use of active rules to encode large parts of 
an information system's dynamics. Hence, the specification of rules becomes 
an integral part of information system and database design. In this chapter, 
we discuss the design of a DEGAS database. Here, the most important aspect 
is the modularisation of data and behaviour. Modularisation is generally ac­
cepted as a necessary tool for the design and understanding of computer soft­
ware. Naturally, this also applies to rules in active databases. As we discussed 
in Section 3.4.1, there are two approaches to the modularisation of rules. Ei­
ther specific modularisation mechanisms are applied to the rules orthogonal to 
other modularisation, or one integral modularisation mechanism is applied to 
all elements of the database. 

Research on active database design has mainly focussed on analysing rule sets 
in order to check desirable properties, such as termination and confluence. In 
this area, modularisation has also been addressed, e.g., in [Baralis et al., 19961. 
This work, however, focussed on partitioning a given rule set. Relatively little 
attention has been paid to the question, how we get a rule set for a certain 
application in the first place. In this chapter, we investigate this issue. In par­
ticular, we look at the elements of an object-oriented design method, such as 
OMT [Rumbaugh and others, 1991], that are of importance to the derivation of 
rules in an application. 

As an example in this chapter, we use workflow. A workflow is an activity 
involving the coordinated execution of multiple tasks performed by different 
processing entities [Rusinkiewicz and Sheth, 19951. The work of many organi­
sations is centered around workflows. Classical examples of workflow are the 
processing of insurance claims and processing of loan requests. Current im­
plementations of workflow are mostly in separate workflow management sys­
tems (WFMS). Since most workflow management involves large amounts of data, 
heavy interaction takes place between the WFMS and the database. At the same 
time, the Event-Condition-Action rules of active databases add to a database 
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management system the kind of reactive capabilities also found in a WFMS. 
Hence, we expect the integration of workflow management into active database 
management systems to be beneficial. 

Previous work on workflows in active databases is reported in [Casati et al., 
1996a] and [Jasper et al., 19951. In general, the use of an active database im­
proves the data handling capabilities in the workflow. This pertains to the ap­
plication data, as well as to the workflow management data. Hence, approaches 
to workflow based on active databases such as [Casati et al., 1996a] provide 
models of the data involved in the workflow. This is in contrast with work such 
as reported in [Aalst et al., 19941, based on Petri nets, with an inherent focus 
on the specification of the dynamics of a workflow. 

A drawback of the approach in [Casati et al., 1996a] is the lack of modularisa­
tion in the rulebase. A large set of rules is generated for a workflow, which is 
only partitioned afterwards for analysis purposes. Hence, a separate modular­
isation is applied to the rules. Furthermore, this modularisation is not used in 
the design phase. In this chapter, we consider the design of a workflow with 
the other of the two approaches to rule modularisation mentioned above. In 
addition, we make the modularisation during the design of the application, us­
ing design principles formulated in this chapter. We show that DEGAS allows 
us to modularise workflow management in a way that separates concerns and 
that promotes flexibility. In particular, it offers a framework to implement the 
workflow evolution policies described in [Casati et al., 1996bl. 

We state the DEGAS database design principles in Section 8.1. The next section, 
Section 8.2, discusses the specification of a workflow. In Section 8.3, we ap­
ply the guidelines to develop a design for workflow enactment. The following 
section, Section 8.4, shows that this design offers the necessary flexibility for 
evolution of the workflow. As usual, the last section contains conclusions. 

8.1 Design Guidelines for DEGAS 

In modelling applications for DEGAS, we need a number of guidelines. Since 
object autonomy is a central notion in DEGAS, we first recapitulate the criteria 
for object autonomy given in Section 2.4: 

• Every object has a separate thread of execution. 

• Complete encapsulation of an object's behaviour. 

• Strictly regulated access to an object. 

• Minimal guarantees about an object's behaviour towards other objects. 

• Minimal dependency of an object on the behaviour of other object. 
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• Autonomy must be given up explicitly. 

These criteria were used to guide the development of the DEGAS data model, 
introduced in Chapter 4. Naturally, they have their consequences on DEGAS da­
tabase design. In one sentence, we can say that DEGAS objects combine minimal 
capabilities with maximal encapsulation. 

Minimal capabilities means, that at any time an object only possesses the capa­
bilities it needs. This applies to both time and place of information storage. An 
object gets information only when it needs it. Likewise, if it needs information 
from another object, it will request that information when needed. An applica­
tion of this principle is, that an object is extended with extra capabilities, when 
it enters a relation, as explained in Section 4.1. If it is not in a relation, the 
object does not have the information associated with that relation. 

Maximal encapsulation means, that everything is defined on the object itself. It 
is one of the main consequences of object autonomy, introduced in Section 4.1. 
Every aspect of the behaviour of an object is defined on the object itself, in­
cluding rules. The modularisation primitives for the rules are the notions of 
object-orientation, that are also applied to attributes, methods, and lifecycles. 

In database design terms, the guiding principle can be rephrased as follows: An 
object gets only the information it needs, but it does get all the information 
it needs. This has the additional advantage, that NULL-values have only one 
meaning in DEGAS: It means that the value of the attribute is unknown. It does 
not mean that the attribute is not defined, since attributes exist only during the 
time they are needed. 

These design principles are applied to a database design process. Design in 
DEGAS encompasses four dependent phases, that follow from the architecture 
of the DEGAS model. In particular, each phase focuses on one category of DEGAS 
object capabilities, i.e., attributes, methods, rules, and lifecycles. 

1. Identify objects in the application and the information they possess. 

2. The actions of an object 

3. The activation of each action (with static constraints) 

4. The lifecycle of an object (i.e. dynamic constraints) 

Each phase in DEGAS database design is executed iteratively. First, the inherent 
capabilities of objects are addressed. Then, we specify the capabilities of ad­
dons. This iteration originates in the semantics of DEGAS addons. In the specifi­
cation of an addon, we can use those capabilities of the object being extended, 
that we are certain to be present. In other words, an addon can use the capa­
bilities inherent to the object it extends, and the addons it assumes present, 
as declared in the extends specification. If we assume a directed edge from 
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each relation to its partner objects, then a DEGAS database design is a Directed 
Acyclic Graph (DAG) with the objects as the leaves, as is depicted in Figure 8.1. 
Hence, we can start out from the leaves in the DAG and then progress towards 
the highest level relations. 

Phase I The first phase of database design in DEGAS is concerned with the 
static part. It consists of the identification of the objects and their relations, and 
the determination of the information contained in them. The identification of 
objects and relation objects in a DEGAS database design is not radically different 
from usual object-oriented design techniques [Rumbaugh and others, 19911. 
Next, we determine the data in each object. Here, we have to make a distinction 
between the data that is always present, and the data that is dependent on the 
presence of a relation with another object. 

As was discussed in Section 3.4.4, the part of an object associated with a cer­
tain relation is generally called its role in the relation. The concept of roles in 
an object-oriented context is elaborately discussed in [Wieringa et al., 1995). 
The capabilities an object has to deal with a certain relation are modelled by 
a role. Since these capabilities are only needed when the object is involved in 
the relation, these are called transient in contrast with the object's permanently 
present inherent capabilities. In DEGAS, transient capabilities of objects are de­
fined in addons. Hence, all information associated with a role is implemented 
by an addon. 

A guideline in determining relations between objects is given by their infor­
mation exchanges. If an object gets information from another object, it must 
have a relation with it. The other way round is also true: An object can only 
communicate through its relations. Hence, we use the information flow in an 
application to determine the relations in the application domain. Moreover, the 
exchanges of information determines the capabilities of the relation object. 

The result of this design phase is a static DEGAS object model. We have defined 
the objects, their relation and associated addons. Furthermore, we have defined 
the attributes in each of these. 

Phase 2 After the specification of the information, we look at the dynamics of 
the objects. This means that we have to identify the actions that can be executed 
on the information in the objects. In addition to this, engaging and disengaging 
in relations are also actions. In the resulting DEGAS database, these actions are 
the methods of the objects. 

Initially, the approach to finding the methods is a "shopping list" approach, as 
it is called by [Meyer, 19881. The actions of an object can be either services to 
the outside world, or internal state transitions. In phase 2, this distinction is 
not of importance. 
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Figure 8.1: A DEGAS database design as a Directed Acyclic Graph 

This phase gives us information to check the result of the previous phase. For 
each of the actions, we can determine the information it needs. This informa­
tion must be either available in the object itself, in the form of an attribute, or 
it is obtained through a relation. Hence, we can check whether we have speci­
fied all attributes of an object. Furthermore, there must be a relation for every 
information exchange between objects. Vice versa, we can check whether every 
relation is used to exchange information between objects. 

Phase 3 Having specified the actions an object can execute, we have to specify 
when these actions are executed. We do this by specifying the situations that 
trigger the actions. The specification formalism of these situations is up to the 
designer. He can use a graphical formalism, such as the situation diagrams 
introduced in [Lang et al., 1996], or another formalism. The only requirement 
is, that it has a clear translation to ECA rules. 

In this phase, we first specify the activation conditions inherent in an object, 
i.e., an object without any addons. After that, we specify the interaction sce­
nario for each relation in an appropriate formalism, e.g., the event trace and 
event flow diagrams of OMT [Rumbaugh and others, 19911. The interaction sce­
nario describes the communication between the partners in the relation and the 
relation object. From this scenario, we derive the activation conditions for the 
actions of the objects. Please note, that these interaction scenarios can involve 
inherent actions of a partner object, since these are available to addons. 

Activation conditions thus derived can be either local to an object or the result 
of actions of another object. The first category is found back in rules in the 
object itself. The second category means invocation of a method from another 
object, either by a rule or by a method of that object. 
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For some methods, we are not be able to specify an activation condition within 
the application. This is the case for activations either by users or by other soft­
ware components. In these cases, we also specify an interaction scenario for 
the interface relation to these agents. This interaction scenario specifies what 
actions can be invoked by a user, or by another piece of software. 

The result of this phase is the specification of an activation condition for each 
object's actions. These activation conditions are translated to rules. Further­
more, we can validate the list of actions specified in the previous phase using 
the interaction scenarios. If we are not able to formulate an activation condition 
for an action, it is most probably not needed in the current application. 

Phase 4 The specification of the temporal ordering of actions forms the last 
phase in the design of a DEGAS database. These are meant to express the ways 
an object can execute actions. The result of this phase is the lifecycle of an 
object. The lifecycle specified for an addon conforms to the lifecycle of the in­
herent object by the use of the communication merge to merge the lifecycles of 
objects and addons, as discussed in Section 5.7.2. In terms of OMT, the lifecycle 
gives the dynamic model of the application, without the activations of the state 
transitions. 

The lifecycle provides a check on the activation conditions of the previous 
phase. If the activation condition contains an event expression, then this event 
expression must comply to the lifecycle specified in Phase 4. A conflict here 
means that either the activation or the lifecycle is incorrect. 

8.2 Specification of workflow 

The example to show the DEGAS design process is workflow management. A 
workflow is a coordinated activity of multiple processing agents. Each agent 
executes a task, that is a part of the activity. Since the activity is usually em­
bodied by an information object passed from one agent to another, e.g., a form 
in a paper-based workflow, the order of task execution is called the routing 
of an activity. In the specification of workflow, routing of an activity is our 
main concern. This specification is called the schema of the workflow. For each 
processing phase, we store the immediately preceding and succeeding tasks. 
This specification of workflow routing allows us to specify the conditions to 
start each processing phase in the workflow. These conditions depend on the 
way the phase is related to its predecessors. The different types of relations 
between tasks are called routing elements. 

The set of preceding tasks of a task Tis denoted by the set pred(T). Likewise, 
the set of succeeding tasks is denoted by succ(T) . As an example consider the 
workflow in Figure 8.2, which gives the workflow for billing an order. A bill is 
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Figure 8.2: Part of an order processing workflow with a clock and task inhibition 

sent to the customer. If we do not receive payment in 30 days, the order is 
cancelled. Otherwise, the order is delivered. 

In this workflow, we have the following predecessor and successor tasks: 

succ (sendBill) = { timer(30), ReceivePayment} 
succ(timer(30)) = {CancelOrder} 
succ(ReceivePayment) = {DeliverOrder} 
succ(CancelOrder) = 0 
succ(DeliverOrder) = 0 

pred(sendBill) = 0 
pred(timer(30)) = {sendBill)} 
pred(ReceivePayment) = {sendBill} 
pred(CancelOrder) = {timer(30)} 
pred(DeliverOrder) = {ReceivePayment} 

Besides positive predecessors, we need the notion of negative predecessors, 
or inhibitors for a task. These are tasks, that prevent the execution of another 
task. In the above example, we cancel an order of a customer who has not paid 
his bill in 30 days. Clearly, this task is inhibited by the payment of the bill. To 
specify this, each task T has a set of inhibiting tasks denoted by Inhib(T). In 
the example in Figure 8.2 we have: 

Inhib(CancelOrder) = {ReceivePayment} 
Jnhib(DeliverOrder) = {timer(30)} 

Other tasks have an empty set of inhibiting tasks. A task cannot be executed, if 
one of its inhibiting task is finished before its start. 

The example in Figure 8.2 also contains a special kind of task, viz., a timer. 
A timer is simply a task that is completed at the specified time past its start. 
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In this example, the effect is that the ReceivePayment task only inhibits the 
cancellation of an order, if it is completed before 30 days are over. 

Inhibitors are not the only means to prevent the execution of a task. There 
might be certain conditions associated with the execution of a task on a job. 
One of the main uses of conditions is as a criterion to choose between a num­
ber of successor. For example, the billing procedure of a mail order company 
might make a difference between new customers and known customers. Hence, 
each task T has an associated precondition Precond(T). If T has no specific 
precondition, precond(T) = True. 

The formalisation given above can specify all possible routings in workflow 
management. All possible routings can be composed from a finite number of 
routing elements. The Workflow Management Coalition1 [Workflow Manage­
ment Coalition, 1996) distinguishes five routing elements, apart from simple 
sequential routing. These are AND-split, AND-join, OR-split, OR-join, and itera­
tion. We show that these routing elements can be formalised in terms of pre­
decessor and successor tasks, and preconditions. Hence, our formalisation can 
specify all routings composed from these routing elements. Furthermore, we 
give a translation in terms of active rules to start each succeeding task. 

Theorem 5 All routing elements defined by the Workflow Management Coalition 
can be specified by DEGAS rules. 

Proof The Workflow Management Coalition identifies five different routing el­
ements: 

1. AND split 

2. AND join 

3. OR split 

4. ORjoin 

5. Iteration 

A split means that a task has multiple successors, while a join means multi­
ple predecessors. AND means that all successors or predecessors are involved. 
Likewise, OR means that only one of the successors or predecessors is involved. 
We show that all these elements can be specified by DEGAS rules by giving these 
rules. 

An AND split means that a task has a number of successors, which are all 
started up simultaneously. In the following picture, this means that the tasks 
fh, /32, ... , 13n are started simultaneously after oc has finished. 

1 Information about the Workflow Management Coalition can be found on www. wfmc . org. 
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The associated conditions for the execution of the tasks /31 to /3n are: 

oc E Completed(A) 
I\ 

Inhib(/3) n Completed(A) = 0 
I\ 

Precond(/3d 

On End(oc) 
do Start(/3i) 

On End(oc) 
do Start(/3n) 
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An AND-join specifies that a task may start only if a number of preceding tasks 
have all been completed. Here, /3 is started after oc1, oc2, ... , OCn have all been 
completed. 

The condition for the start of task /3 is: 

Pred(T) ~ Completed(A) 
I\ 

Inhib(T) n Completed(A) = 0 
I\ 

Precond(T) 

On lli=l...n End(ocd 
do Start(/3) 

The previous two routing elements specified tasks that executed in parallel. We 
can also specify the selection of a subset of successor tasks, so that not all 
successor tasks need to be executed. 
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(X 

If we formalise the workflow in terms of preconditions, predecessors, succes­
sors, and inhibitors, this case is not different from the AND-split. The condition 
for the start of each f3i again is: 

oc E Completed(A) 
I\ 

Inhib(/3) n Completed(A) = 0 
I\ 

Precond(/3d 

On End(oc) 
if C1 
do Start(/31) 

On End(oc) 
ifCn 
do Start(/3n) 

The difference between an OR-join and an AND-join is, that only one of the 
predecessors needs to be completed to start the task. In the following picture, 
f3 can be started on completion of either oc1, oc2, or OCn, 

Hence, the set of predecessors of f3 needs not be a subset of the set of com­
pleted tasks: 
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Pred(~) n Completed(A) -/, 0 
I\ 

Inhib(m n Completed(A) = 0 
I\ 

Precond(~) 

On End(ai) 
do Start(8) 

On End(an) 
do Start(8) 
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The final routing element defined by the WfMC is iteration. Iteration means that 
a task a is repeated until a condition c is satisfied. If c is satisfied, the activity 
proceeds with the next task ~-

Iteration can be formalised as an OR-split, with a as a successor to itself with 
,c as a precondition and with c as a precondition for ~-

To start a: 

To start a: 
(X E Completed(A) I\ •C 

I\ 

Inhib(a) n Completed(A) = 0 

On End(a) 
ifC 
do Start(a) 

To start~: 
(XE Completed(A) I\ C 

I\ 

Inhib(~) n Completed(A) = 0 

On End(a) 
if ,C 
do Start(8) 

8.3 Designing a workflow in DEGAS 

D 

In this section, we apply the design guidelines from Section 8.1 to the exam­
ple of workflow management. The minimal capability and maximal encapsu­
lation principle leads to a modularised approach to workflow management in 
active databases. Contrariwise, current approaches are all more or less global. 
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We show that the DEGAS approach to active database design leads to a clean 
database design for workflow management. 

In the following discussion, we will first consider workflow in abstracto. Then, 
this discussion will be illustrated by a concrete example, which is an order 
processing flow. The billing task specified in the previous section is part of this 
order processing. This flow is depicted in Figure 8.3 

InventoryCheck Inventory< NumberOrdered 

Delivery 

Inventory < NumberOrdered 

Inventory >= NumberOrdered 

OrderBilling 

(9 
/ 30days 

---- SendBill ~ n __ 

ReceivePayment 

OrderDelivery 

RequestDelivery 

, , 

, , , 

Cancel Order 

"------- DeliverOrder 

ReceiveConfirmation -----

Figure 8.3: The workflow for order processing 
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8.3.1 Phase 1: Identifying the Objects 

A workflow management system exists to support a Job getting done. This job 
follows a certain activity or schema. This schema defines how the job is pro­
cessed by the system. It consists of a number of processing phases, or tasks, 
that must be executed in a certain order. These tasks are executed by agents. 
An agent can be a person or a computer program. 

The job object contains the application data. In traditional, physical, workflows 
this would be a form. For example, in our order processing workflow, it is the 
software equivalent of an order form. Hence, it contains attributes like the item 
on order, the quantity and the negotiated price. We will use the following at­
tribute specification: 

Object job 
Attributes 

item : string 
number : integer 
price: real 
currentTask : number 

The agent objects2 implement the application functionality of the workflow. 
This means that they can represent anything from a piece of software process­
ing the job, to an interface to a person. Thus, agent objects form the interface 
to the outside world. In our example, one of the agents is the Inventory Con­
troller, which stores the number of items in stock and the reserved part of the 
stock. 

Object InventoryControl 
Attributes 

Inventory : integer 
Reserved : integer 

The third important piece of information in a workflow is routing information, 
embodied by schemata. A workflow schema describes the way a certain activity 
is completed. Such an activity is composed of a number of tasks that need to 
be executed in a certain order. Thus, the schema class is an additional class in 
our design. These objects store workflow schemata in terms of successors and 
predecessors to each task. 

The relations between these three classes of objects are mainly determined 
by their information exchange. In our example, we have three pairs of object 
classes, which means three potential binary relations. We briefly consider these 
three pairs. During the execution of a task of a job by an agent, the agent 

2Not to be mistaken for any kind of intelligent agents, that will appear in Chapter 10. 
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object needs information from the job object. Hence, a job object has a rela­
tion with the agent object executing its current task. We call this relation the 
TaskExecuti on relation. The role of the agent is that of processor, while the 
job is processed. As a consequence of the minimality principle, explained in 
the previous section, this relation is only present while the agent executes the 
task. Once the task is completed, the relation is deleted again. In our example, 
the InventoryCheck relation is an example of a TaskExecuti on relation. Its 
only attributes are the partners in the relation, Job and Schema, that are spec­
ified in the relation clause. Other instances of TaskExecuti on in our example 
are the 0rderBil ling and 0rderDe livery relations. 

The next pair is job and schema objects. Every job is routed according to 
some schema. Therefore, a job must be provided with routing information by 
a schema. This leads to a relation between a job and a schema object, named 
the JobFl ow relation. In this relation, the schema has the role of router. The 
job is routedBy the relation. The job engages in this relation, as soon as it is 
started. Again, the Job Fl ow relation object does not store any information. 

The remaining pair, schema and agent do not have a meaningful information 
exchange. The schema object contains information about the way jobs can be 
routed. This information is not necessary for an agent. Moreover, an agent can 
be used in multiple workflow schemas. 

The result of this design phase in terms of generic workflow objects is depicted 
in Figure 8.4. Our concrete example is shown in Figure 8.5. Please note again, 
that the arrows do not imply any arity constraints on the relations. Instead, 
they point to the partner objects, on which the relation object depends for its 
existence. In DEGAS database design, the objects pointed to are specified earlier 
in the design iteration. 

8.3.2 Phase 2: The actions in a workflow 

The next phase in the design of a workflow in DEGAS is to specify the actions 
of the different objects. 

Inherent actions of objects 

Each agent has actions to start its task and to signal the completion of its task. 
Further actions of an agent are dependent on the kind of agent. For example, 
the InventoryContro l agent has actions to reserve stock for an order and to 
put newly arrived stock in the inventory. The attributes increased in these meth­
ods are decreased, when the order is delivered in the 0rde rDe livery phase. 

Methods 
reserve(number:integer) = { 
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Job Agent 

Processed ' ' 
: TaskExecution : 

Processor 

' ' 

JobFlow 

Router 

Schema 

Figure 8.4: DEGAS object schema of a generic workflow 

Reserved = Reserved + number 
} 
newstuff(number:integer) = { 

Inventory = Inventory + number 
} 
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The only inherent action of a job object is the action to execute a certain 
schema. This action means that the job enters a Job Fl ow relation with a Schema 
object. Other actions may be defined for other purposes, but these are not rele­
vant in this example. Since the Extend action is built-in in every DEGAS object, 
we do not see it back in the specification of the order object. 

The services of a schema object are to provide information about the flow it 
defines. Its inherent action is the implementation of the succ function defined 
in Section 8.2. This means that it can answer the question, what comes after 
a specific task. The answer is provided by way of an addon, that implements 
the routing decision to be made after each task. Hence, the only information 
a job needs to provide to get an answer is the job it has just finished. This 
is a consequence of the minimality of information principle. For example, in 
the workflow shown in Figure 8.5, if a job has finished the InventoryCheck, it 
requests the next task from the Job Fl ow relation object. It forwards the request 
to the Schema object, that replies with the name of the addon implementing the 
0rderBi 11 i ng phase 

Transient actions of objects 

Having defined the actions in the objects, we proceed to specify the actions 
in relations and their associated addons. With regard to a relation the most 
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Figure 8.5: The object schema for an order processing workflow 
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important issue is, what a relation enables the partners to do. From this, we 
can derive the actions of the relation itself. 

The JobFlow relation enables the job to follow a certain workflow. Through 
JobFlow it requests information on what task to execute next. The RoutedBy 
addon forwards a request for the next processing phase to the Job Fl ow relation 
object. The identity of the relation object is stored in the attribute j obfl ow of 
the RoutedBy addon. 

Addon RoutedBy 
extends Order 

Methods 
nextPhase(current:string) = { 

jobflow.whatNext(current) 
} 

The Job Fl ow relation object contains an action to inform the job partner of 
its next task. The answer is given by instructing the job object to extend itself 
with an addon that contains the actions of the next task. A further action is to 
replace the Schema object in the relation with a new object to facilitate schema 
evolution, which is discussed in Section 8.4. 

Object JobFlow 

Methods 
whatNext(task : string) = { 

} 

succ = Schema.successor(task) 
Job.Extend(succ) 

replaceSchema(newSchema:oid) = { 
Schema.remove(Router) 

} 

Schema = newSchema 
Schema.Extend(Router) 

The Router addon provides access to the routing information in the Schema 
object. 

Addon Router 
extends Schema 

Methods 
successor(task:string) = { 

return succ(task) 
} 
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In our order processing example, the InventoryCheck relation is a specialisa­
tion of the TaskExecuti on relation. We first explain TaskExecuti on in general. 
A TaskExecution relation allows a job to be processed by an agent. The job 
is extended by a Processed addon. The agent is extended by a Processor ad­
don. The existence of the relation means that the task will be executed, but it is 
not started immediately after the creation of the relation. Hence, the Processed 
addon contains the necessary actions to start the task. In addition, it contains 
actions that give the agent the information necessary to execute its task. The 
Processor addon contains the actions, that are specific to this task. 

The InventoryCheck relation object implements the first processing phase 
which is done by the InventoryContro l agent. The InventoryCheck relation 
object implements actions to start and to finish the processing phase. 

Object InventoryCheck 
Relation InventoryControl, Order 

Methods 
Start(number : integer) = { 

InventoryControl.request(number) 
} 
Finish()= { 

Order.EndlnventoryCheck 
} 

An order object can only be a partner in the InventoryCheck relation, if it is 
routed by some workflow schema. Hence, the InventoryBei ngChecked addon 
extends an order object, that is already extended by a RoutedBy addon. This 
is specified in the Extends clause of the addon specification. The only action in 
this addon contains the functionality to end the phase. 

Addon InventoryBeingChecked 
extends RoutedBy 

Methods 
EndlnventoryCheck = { 

nextPhase 
} 

Since the InventoryControl object is the agent for the InventoryCheck task, 
the Checki ngOrder addon contains most functionality. This consists of actions 
to request the number of items required for the order and to reserve the items, 
if they can be supplied. 

Addon CheckingOrder 
extends InventoryControl 

Methods 
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request(number : integer, dest : oid) = { 
noOfltems = number 

} 
getit(number : integer, dest : oid) = { 

reserve(number) 
} 

8.3.3 Phase 3: Activation of action 
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In the third phase of the DEGAS database design, we specify when the different 
actions of an object are executed. Hence, we first specify the internal activations 
in the objects, which are derived from the static constraints of the objects. 
Then, we formulate the interaction scenario for each relation, which leads to 
activation of actions in the partners of the relation, as well as in the relation 
object itself. 

Inherently, an object does not have relations with other objects. Hence, busi­
ness rules are not inherently present. For our workflow application, there are 
no integrity constraints on the objects, job, agent, and schema. The inherent 
actions may be used, however, in the addons that extend objects. 

The interaction scenario for the Job Fl ow relation is depicted in Figure 8.6. The 
job object, in our example the order object, requests the next task on comple­
tion of a task. The whatNext action of the JobFl ow object gets this information 
by a call to the successor function of the Schema object. On receipt of the 
answer, the Job Fl ow object sends a message back to the order object. This is 
an extend action to add the addon implementing the next task, in this case the 
0rderBi 11 i ng task. 

Route dBy JobFlow 

nextPhase --------------- wha
1
~ 

I 
I , _______ 
• extend 

Router 

successor 

Legend - Coomunication 

- - - -► Elapse of ti me 

Figure 8.6: The interaction scenario for the Job Fl ow relation. 
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The interaction scenario for the InventoryCheck relation is shown in Fig­
ure 8.7. The goal of this task is to check, if the inventory suffices to deliver 
the order. The InventoryBei ngChecked addon invokes the start action of 
the InventoryCheck object. At its turn, it sends a request message to the 
InventoryControl object. When the inventory check is successful, the getit 
action is executed by the InventoryContro l object. This action invokes the 
Fini sh action of the InventoryCheck, which leads to execution of the End­
InventoryCheck action of the order object. 

I nven toryBeingCh ecked I nventoryCheck Check ingOrd er 

Start ---- Start --- request 

nextPhase Finish -------- getit 

Figure 8.7: The interaction scenario for the InventoryCheck relation 

The internal processing of the InventoryContro l object is an iteration of the 
request action. As is shown in the workflow, the required number is requested 
from the stock. If this number cannot be reserved, the request is repeated each 
time new inventory arrives. 

This design phase leads to the activations of the different actions shown in 
Table 8.1. 

8.3.4 Phase 4: Constraints on actions 

The final phase of the design process is the specification of the order of the 
actions. This leads to a lifecycle for each object, that embodies its dynamic 
constraints. Please recall, that the lifecycle of an addon can include inherent 
actions of the object it extends. 

The order object does not have any inherent actions, so its lifecycle is empty. 
With regard to the JobFl ow relation, it can enter one of the relations. During the 
existence of the relation, the order object can go to a next phase an arbitrary 
number of times. Hence, the lifecycle of the Routed By addon is: 

lifecycle 
Extend(RoutedBy);nextPhase* ;Remove(RoutedBy) 

The actions of an order object in the InventoryCheck relation are again lim­
ited. It enters the relation and executes one action to end the relation. Hence, 
the lifecycle of the InventoryBei ngChecked addon becomes: 
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Object or addon specification 
Action Activation 

order 
I No actions specified 

RoutedBy 
nextPhase - invoked by EndinventoryCheck 

InventoryBeingChecked 
EndlnventoryCheck - invoked by InventoryCheck. Fini sh 

InventoryControl 
reserve - invoked by geti t 
newstuff - invoked from outside scope of example 

Checking0rder 
request - invoked by InventoryCheck. Start 

- invoked by occurrence of newstuff 
getit - invoked when a request occurs and 

- the inventory is sufficient. 
InventoryCheck 

Start - invoked on 
order.extend(InventoryBeingChecked) 

Finish - invoked on Checki ng0rder. getit 

JobFlow 
whatNext - invoked by RoutedBy. nextPhase 
ReplaceSchema - invoked from outside scope of example 

Router 
successor - invoked by JobFlow.whatNext 

Table 8.1: Activations of actions in the workflow example 



178 8.3. DESIGNING A WORK.FLOW IN DEGAS 

Llfecycle 
Extend(InventoryBeingChecked); 

EndinventoryCheck;Remove(InventoryBeingChecked) 

The inherent actions of the Invento ryCont ro 1 object can be executed in any 
desired order. Hence, the lifecycle is: 

Lifecycle 
reserve* 
newstuff* 

The order of the actions that pertain to the InventoryCheck relation reflects 
the scenario of the relation. A request action can be executed a number of 
times before a geti t action is executed. Furthermore, the request call is only 
accepted from the object itself and the InventoryCheck relation object. The 
lifecycle of the Checki ngOrder addon is: 

Lifecycle 
request* ;geti t 
([sender=InventoryCheck]request)* 
([sender=self]request)* 

The other relation in our example is the JobFlow relation. The relation object 
only has two actions, whatNext and rep 1 aceSchema. These can be executed in 
any order, but the whatNext action is only accepted from the job object, in our 
example the order object: 

Llfecycle 
(sender=Job)whatNext* 
replaceSchema* 

The schema side of this relation is very simple. The only action is the suc­
cessor action, that can be executed any number of times: 

Llfecycle 
successor* 

Complete Application This completes the design of our workflow example. 
We now give the complete DEGAS specifications of the objects discussed in this 
example. 
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Object Order 
Attributes 

number : integer 
price : real 
currentTask : number 

Methods 
Lifecycle 
Rules 
EndObject 

Figure 8.8: DEGAS specification of the order object 

Addon InventoryBeingChecked 
extends RoutedBy 
Attributes 
Methods 

EndlnventoryCheck = { 
nextPhase 

} 
Lifecycle 

Extend(InventoryBeingChecked); 
EndlnventoryCheck;Remove(InventoryBeingChecked) 

Rules 
On Extend(InventoryBeingChecked) 

do InventoryCheck.Start(number) 
On EndlnventoryCheck 

do InventoryCheckClass. terminateRelation 
EndObject 

Figure 8.9: DEGAS specification of the InventoryBei ngChecked addon 
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Object InventoryCheck 
Relation InventoryControl, Order 
Attributes 
Methods 
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Start(number : integer) = { 
InventoryControl.request(number) 

} 
Finish()= { 

Order.EndinventoryCheck 
} 

Llfecycle 
Start;Finish 

Rules 
EndObject 

Figure 8.10: DEGAS specification of the InventoryCheck relation object 

Object InventoryControl 
Attributes 

Inventory : integer 
Reserved : integer 

Methods 
reserve(number:integer) = { 

Reserved = Reserved + number 
} 
newstuff(number:integer) = { 

Inventory = Inventory + number 
} 

Llfecycle 
reserve* 
newstuff* 

Rules 
EndObject 

Figure 8.11: DEGAS specification of the InventoryCont ro l object 
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Addon CheckingOrder 
extends InventoryControl 
Attributes 

InventoryCheck : Oid 
noOfltems : integer 

Methods 
request(number : integer, <lest : oid) = { 

noOfltems = number 
} 
getit(number : integer, <lest : oid) = { 

reserve(number) 
} 

Llfecycle 
request* ;getit 
([sender=lnventoryCheck)request)* 
([sender=self)request)* 

Rules 
On request(number,dest) 

if number :$ Inventory - Reserved 
do getit(number,dest) 

On request(_,dest);newstuff;, getit(_,dest) 
do request(noOfltems,dest) 

On getit(number,dest) 
do <lest.Finish 

EndObject 

Figure 8.12: DEGAS specification of the Checki ngOrder addon 

Addon RoutedBy 
extends Order 
Attributes 

jobflow : Oid 
CurrentTask : string 

Methods 
nextPhase(current:string) = { 

jobflow.whatNext(current) 

Llfecycle 
Extend(RoutedBy);nextPhase* ;Remove(RoutedBy) 

Rules 
EndObject 

Figure 8.13: DEGAS specification of the RoutedBy addon 
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Addon Router 
extends Schema 
Attributes 

jobflow : JobFlow 
Methods 

successor(task:string) = { 
return succ(task) 

} 
Lifecycle 

successor* 
Rules 
EndObject 

8.3. DESIGNING A WORK.FLOW IN DEGAS 

Figure 8.14: DEGAS specification of the Router addon 

Object JobFlow 
Relation Schema, Job 
Attributes 
Methods 

whatNext(task : string) = { 

} 

succ = Schema.successor(task) 
Job.Extend(succ) 

replaceSchema(newSchema:Schema) = { 
Schema.remove(Router) 

} 

Schema = newSchema 
newSchema.extend(Router) 

Lifecycle 
(sender=Job)whatNext* 
replaceSchema * 

Rules 
EndObject 

Figure 8.15: DEGAS specification of the JobFlow relation object 



8.4. FLEXIBILITY OF THE WORKFLOW 183 

8.4 Flexibility of the Workflow 

One of the chief characteristics to judge a workflow implementation is its flexi­
bility. In particular, it must be easy to change elements of the workflow. These 
elements can be either the routing of a workflow, or the way a task is executed. 
In this section, we show that the workflow design of the previous section, using 
the DEGAS minimality principle, provides the necessary flexibility. 

8.4.1 Evolution of the Workflow Schema 

Over time, the schema of a workflow may evolve. The causes of workflow evolu­
tion can be very diverse. They might be optimisations due to an analysis of the 
process, new legal requirements on a production process, et cetera. In this sub­
section, we look at the effects of workflow evolution on the workflow schema, 
i.e., the changes it causes in the routing of the workflow. Changes can be addi­
tion or deletion of tasks to or from a workflow, and changes in the sequence of 
tasks in a workflow. 

In the workflow design of the previous section, routing information is stored in 
the schema object. Hence, a change in the workflow routing will lead to a new 
schema object. This new object might be generated in a number of ways, by 
transformation from an existing object or by design from scratch. The creation 
of this new schema object is not of interest here, we only consider different 
schema evolution policies given new or modified schema objects. 

An extensive discussion of schema evolution in workflow is found in [Casati et 
al., l 996bl. The authors give a number of different policies to deal with activ­
ities in an evolving schema. The goal of these policies is to gracefully handle 
ongoing activities, that follow a schema being modified. In brief, the following 
policies are identified: 

1. Abort. All activities following the old schema are aborted and restarted 
following the new schema. 

2. Flush. Ongoing activities are completed according to the old schema, 
while new activities are started following the new schema. 

3. Progressive policies. In these policies, ongoing activities are upgraded to 
a new schema without restarting. 

To cater for the Abort policy, we must provide a number of facilities in the 
different objects. First, the job object must provide an action to abort its activ­
ities. This action must roll the object back to the state it was in, when it started. 
Since a DEGAS object contains its complete history, this is relatively easy to im­
plement. A workflow, however, also has effects in the real world. Since agents 
are responsible for the interactions with the real world, they also provide the 
compensating actions. Roll-back of actions is discussed in the next subsection. 
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Since routing information is communicated to the job object as late as possible, 
this roll-back can be completely transparent to the job object. After each task, 
the job object requests its next task. Instead of answering with the next task 
to complete the activity, the schema object replies with the next compensating 
task to roll the job object back to its initial state. 

The Flush strategy is very easy to implement in any system. In our design, every 
job has a relation to a schema object. If a new schema project is created for 
an activity, the job objects that are already being processed simply keep their 
relation with the old schema object. If a new job object is entered into the 
activity, it gets a relation with the new schema object. 

The term progressive policies covers a number of different policies, which have 
in common that an activity is finished following a modified schema without a 
complete rollback of the old schema. The modified schema may or may not be 
the same as the new schema. A job can be switched over to the new schema, 
if the completed part of the old schema conforms to the new schema. In this 
case, we can simply change the schema object in the j obfl ow relation to the 
new schema. 

Other progressive policies involve a special transition schema, that is only used 
to complete ongoing activities. A transition schema can implement a number 
of different methods. For example, it can contain a partial rollback, to get the 
job in a state, where its completed work conforms to the new schema. Another 
possibility is to append some special tasks at the end of the flow in order to get 
the same result as produced by the new schema. This approach is especially 
useful in manufacturing, where it can be used to retrofit the product with a 
modification. 

All these approaches imply that a schema object, containing this transitional 
schema, is created. Since a job object does not contain any advance information 
about its routing, the change of schema can be enacted by a simple change of 
Job Fl ow relation. This is a distinct benefit of the DEGAS maximal encapsulation 
principle. Furthermore, the translation of workflow routing elements given in 
Section 8.2 makes the definition of a schema object a straightforward affair. 

A final remark is, that the DEGAS approach also facilitates a truly ad-hoc way of 
dealing with schema evolution not mentioned by [Casati et al., 1996bl. We can 
relate a job object to an interactive schema object, that prompts the workflow 
administrator for the next task on completion of each task in the activity. This 
might be useful for cases, where we only have a small number of job objects 
needing a transition schema. 

8.4.2 Undoing tasks 

In order to abort jobs or to apply progressive policies to jobs, we need the abil­
ity to roll back tasks. Aborting a task means that we have to reinstate the initial 
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state of the job object. Furthermore, some progressive policies may involve a 
partial roll-back to a previous state. Here, we look at the problem of rolling back 
tasks in the workflow design discussed in this chapter. 

As we explained in Section 5.4, previous states of a DEGAS object are stored as 
part of its history, together with the actions that brought the object into that 
state. Hence, all information to bring back the job object to its original state 
is found in the object itself. Rolling back the actions with regard to the tasks 
that were executed, is basically a question of removing these actions from the 
history of the object. Since the current state is the latest state in the history, 
the current state of the object will then be automatically set to the state before 
execution of the rolled-back action. 

Removing actions from the history of an object only rolls back changes in the 
object itself. It does not undo the effects of interactions with the environment. 
The interactions with the physical environment of the workflow application are 
through the agent objects. In addition, the job object might have relations 
with other objects than the agent and schema objects. Hence, the roll-back is 
a responsibility of both partners in the Tas kExecuti on. As a consequence a 
workflow designer must provide compensation for each phase. The job objects 
cannot distinguish these compensating tasks from ordinary tasks. If a job fol­
lows a transitional schema, the schema object will simply give compensating 
tasks first as successor tasks. 

Compensating tasks are analogous to the concept of compensating transac­
tions used for sagas [Garcia-Molina and Salem, 19871. A saga consists of a se­
quence of sub-transactions T1, ... , Tn. It is either completely executed, or com­
pletely undone. Suppose that for each sub-transaction Ti we have a compensat­
ing transaction Ci. Then, we execute either T1; T2; ... ; Tn or T1; ... ; Ti; Ci; ... ; C1. 
Instead, we define a partial order on tasks, that may be extended. Thus, we do 
not need to roll back a transaction completely to its start, but we can roll back 
only part of its actions. Hence, we relax the requirement on a saga. Suppose 
we have a partially ordered set of tasks T, where each Ti E T has an associ­
ated compensating action Pi- In addition, we have a function Compensate(T), 
that yields the compensating task of task T. Please note that a task undoes its 
compensating task, so the compensation of a task itself is its compensating 
task and Compensate(Compensate(T)) = T. Then, we have the following 
requirements on two subsequent tasks: 

Ti; Tj Ti < Tj/\ /31.Jl ET: Ti< 1./1 < Tj 

Ti;Pi Pi= Compensate(Td 

Pi;Pi Compensate(pd > Compensate(pj) 

/\ /31.Jl ET: Compensate(pd >I.JI> Compensate(pj) 

Pi; Tj 3(/1 E T: I.JI < Compensate(pd /\ I.JI < Tj 

/\ /3</, E T: <f, > I.JI/\ <f, < Compensate(pi) /\ <f, < Tj 
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8.4.3 Changing Task Execution 

The other main source of evolution in a workflow lies in the way tasks are ex­
ecuted. In our design, the execution of tasks is a concern separated from rout­
ing, since tasks are executed by agent objects. The interaction between agent 
and job objects is specified in the TaskExecuti on relation. As a consequence, 
changes in task execution are easily separated. 

A new way of executing a task might be completely transparent, in the sense 
that no additional information is needed from the job object. In this case, the 
only changes necessary are in the agent object. Hence, a job entering the ex­
ecution of the changed tasks gets the same relation with the modified agent 
object. If the change in task execution requires additional interaction between 
job and agent objects, the TaskExecution relation and its associated addons 
also need to be modified. 

Whatever the type of change, the modularisation of workflow in this paper guar­
antees, that a task is always executed according to the latest version. This is 
achieved by separating task execution from the jobs, so that a job object gets 
the necessary information as late as possible. Again, this is an application of 
the DEGAS maximal encapsulation principle. 

8.5 Conclusion 

In this chapter, we discussed an approach to designing an active database in 
DEGAS. We described how database design in DEGAS is guided by two princi­
ples: Minimality of information and maximality of encapsulation. The minimal 
information principle is a guideline for the designer, which is facilitated by the 
relation and addon mechanisms. The maximal encapsulation principle is part of 
the DEGAS model. An advantage relative to other active databases is the use of 
the ordinary object-oriented notions for modularisation of the rulebase. Hence, 
we do not need additional concepts, such as a rulebase. 

The DEGAS design guidelines were applied to the example of workflow manage­
ment. Although active databases are in general well suited for the implemen­
tation of workflow management, there is a need for clearly modularised active 
database designs for this application. We have shown that the DEGAS design 
guidelines lead to a design with clearly separated responsibilities of the differ­
ent objects. Furthermore, we have shown that it facilitates a straightforward 
implementation of workflow evolution strategies. 
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The first phase of information systems design is the specification of a model, 
which was discussed in the previous chapter. After this, the design must be 
verified against the user and system requirements. The verification of user re­
quirements has given rise to the research area of requirements engineering 
[Wieringa, 1996, IEEE, 19941. However, we do not discuss it here. Instead, we fo­
cus on the verification of desirable system properties. In particular, we examine 
system properties specific to active databases. 

The additional functionality of an active database leads to new aspects in the 
behaviour of such a system. These are caused by the interactions within a set 
of rules. For example, members of the set may mutually activate or deactivate 
each other. Because the autonomous nature of DEGAS objects, their behaviour 
is controlled through their definition only. A design theory defines properties 
on sets of rules and, if possible, provides algorithms to detect such properties. 

Properties of rule sets studied in the literature are termination and confluence. 
A set of rules terminates if, starting with any initial database state, the selectors 
of all the rules become false in a finite number of steps. That is, the database 
converges to a final state. A terminating set of rules is called confluent, if the 
final state is determined completely by the initial state and the rule set. 

As was discussed in Section 6.2.4, the rule semantics of DEGAS are instance­
oriented. In order to generalise the results of this chapter, we also look into 
rules executing under set-oriented semantics. Recall from Section 3.1, that un­
der instance-oriented semantics a rule executes, non-deterministically, on one 
object that satisfies this condition. Under set-oriented semantics, a rule exe­
cutes simultaneously on all objects that satisfy its selector. In this chapter, we 
shall abbreviate the terms to set semantics and instance semantics. 
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The two types of semantics suggest a third property, which we call indifference, 
that relates the two semantics. A rule set that is confluent under both semantics 
is indifferent, if the unique state under the two semantics is identical. This 
property is of interest for comparing the execution of a rule set in DEGAS with 
its execution in another system. 

The development of a design theory for rules has been advanced by targeting 
on either sufficient conditions or on decidability. Examples of the former ap­
proach are [Simon and de Maindreville, 1988, Aiken et al., 19921. In the context 
of the RDL rule system, [Simon and de Maindreville, 1988) formulates a condi­
tion under which set and instance based rule execution coincide. [Widom and 
Finkelstein, 1990) and [Widom et al., 1991] defined a production rule language 
for the Starburst database system. In [Aiken et al., 1992) sufficient conditions 
for both termination and confluence of these production rules are formulated. 
An important foundation of our results is the work on decidability reported in 
[Voort, 19941. A property is called decidable, if there exists an algorithm that, 
given a set of rules as input, decides in finite time, whether this set satisfies the 
property or not. Examples of this approach are [Abiteboul and Simon, 1991), 
[Voort, 1994] and this chapter. 

Due to the complexity of the subject, we use a restricted DEGAS model in this 
chapter, named DEGAS- . The main restriction is the omission of events. Fur­
thermore, the action of a rule is restricted to the modification of an object's 
attributes. In this chapter, we show that termination and confluence are already 
undecidable for very limited rule models. These properties are decidable for an 
even more restricted DEGAs- 2 model, that contains rules with local conditions 
and constant assignment only. The addition of path expressions to conditions 
in DEGAS- makes it possible to emulate a Turing Machine. Hence, termination 
and confluence are undecidable in DEGAS- . 

9.1 The DEGAS- Model 

In this section, we define the DEGAS- model, that is a restricted DEGAS model. 
The restrictions are the following: 

1. Event specifications are omitted from rules. 

2. Lifecycles are omitted. 

3. Relation objects and addons are not considered. 

4. Methods can only make assignments. 

5. The only types for attributes are integer and object id. 

In order to compare set and instance semantics, the semantics of the DEGAS­
model are defined different from the semantics of DEGAS in Section 5 
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9.1.1 Syntax 

For clarity, we give the full syntax definition of the DEGAS- model in Figure 
9.1 and Figure 9.2. It is a subset of the DEGAS syntax as given in Section 4.3. 
Uniqueness constraints and referential constraints apply, like in the full DEGAS 

model. 

(Class) 

(AttributeSection) 

(Attributelist) 

(AttributeDecl) 

(Type) 

(Type) 

(MethodSection) 

(Methodlist) 

(MethodDecl) 

(Statementlist) 

(Statement) 

(BasicExpression) 

(ActPararnLlst) 

(ActParam) 

Object (ClassName) 

(AttributeSection) 

(MethodSection) 

(RuleSection) 

EndClass 

Attributes 

(Attributelist) 

(AttributeDecl) 

I (AttributeDecl) , (Attributelist) 

(AttributeName) : (Type) 

Integer 

(ClassName) 

Methods 

(Methodlist) 

(MethodDecl) 

I (MethodDecl) , (Methodlist) 

(MethodName) ( (Parameterlist) )= { 

(Statementlist) 

} 

(Statement) 

I (Statement) ; (Statementlist) 

(AttributeName) : = (BasicExpression) 

O 111 ... 
I (AttributeName) 

(ActParam) 

I (ActParam) , (ActPararnLlst) 

(Parameterld) = (Expression) 

Figure 9.1: The DEGAS - syntax. 

(9.1) 

(9.2) 

(9.3) 

(9.4) 

(9.5) 

(9.6) 

(9.7) 

(9.8) 

(9.9) 

(9.10) 

(9.11) 

(9.12) 

(9.13) 

(9.14) 

An example DEGAS- object is given below. It has a method multiply _no that 
does what its name suggest. Furthermore, it contains a rule, that selects cells 
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(RuleSection) 

(RuleList) 

(Rule) 

(Action) 

(SelectionCondition) 

(SelectionCondition) 

(SelectionCondition) 

( SelectExpr) 

( SelectExpr) 

(SelectExpr) 

Rules 
(RuleList) 

(Rule) I (Rule) , (RuleList) 

if (SelectionCondition} 

do (Action} 

(MethodCall} 

(SelectionCondition) 

A (SelectionCondition} 

(SelectionCondition) 

v (SelectionCondition) 

(SelectExpr} = (SelectExpr) 

(AttributeID} 

o I 11 ... 
(SelectExpr) . (SelectExpr) 

Figure 9.2: The DEGAS- syntax continued. 

with ten as a value of no and multiplies it by two. 

Object cell 
Attributes 

no: Integer 
neighbour : cell 

Methods 
multiply..no(factor:lnteger) = { 

no:=no*factor 
} 

Rules 
If no=lO 
do multiply_by(2) 

EndObject 

9.1.2 Semantics 

(9.15) 

(9.16) 

(9.17) 

(9.18) 

(9.19) 

(9.20) 

(9.21) 

(9.22) 

(9.23) 

(9.24) 

The semantics of the DEGAS- model are defined differently than the semantics 
of the full DEGAS model in order to enable a comparison between instance 
semantics and set semantics for rule execution. This allows us to generalise 
the results of this chapter to active databases in general, in addition to DEGAS. 

Since the semantics of DEGAS are object-centered, both instance semantics and 
set semantics make little sense. 

The DEGAS- semantics assigns objects and values to the database as a whole. 
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An instance of a database is determined by an extension and an interpretation. 
The extension assigns objects to each class in the database. The interpretation 
assigns values to the attributes. 

The extension of a database assigns a set of objects to each class. An object is 
identified by a unique object identifier. Therefore, we assume the existence of 
a set of object identifiers Oid. The extension function then assigns a subset of 
Oid to each class, such that all object identifiers are assigned to one class only. 

Definition 60 Let H be a DEGAS- schema, i.e., a set of DEGAS- object definitions. 
An extension Ext : H - 'PO id assigns to each class of H a set of objects such 
thatifC1,C2 EH andC1 I= C2, thenExt(C1) nExt(C2) = 0. 

The type Integer has the obvious extension: 

Definition 61 The extension of the type Integer is the set of natural numbers N. 

The extension of the database gives us the sets of objects in each class. The 
contents of the objects are defined by the interpretation, that assigns values 
to all the attributes in the database. Please note, that a DEGAS- interpretation 
assigns values to a complete database at once contrary to the object-centered 
approach of a DEGAS interpretation. The DEGAS- interpretation gives a table for 
every attribute in the database schema. This table has two columns, the first 
containing object identifiers, and the second the value of the attribute in the 
object represented by this identifier. An example is the following interpretation 
for the attribute no of the class ce 17 defined above. 

Oid Value 
345 3 
874 25 
902 16 

In this example, we have three objects. The value of the attribute no for object 
874 is 25. The interpretation of an attribute is a function from the extension 
of the class it belongs to, to the extension of the type of the attribute. The 
extension of the type itself is either a class extension, or the extension of the 
type Integer. 

Definition 62 Let Ext be an extension of a database schema H. An interpreta­
tion I for Ext and H assigns to each type declaration a : T a function I(a: T) : 

Ext(C) - Ext(T). 

A database for a schema is a pair of an extension and an interpretation. 

Definition 63 A database for a schema H is a pair (Ext,!) where Ext is an 
extension for H and I an interpretation for Ext and H. The universe of all da­
tabases is denoted by DBH. Individual database states are denoted by db, db1, 
db2, .... 
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The semantics of method execution in DEGAS- relates two interpretations to 
each other. To be precise, we describe the interpretation of the database after 
the method execution in terms of the interpretation before the method execu­
tion. This is captured by the notion of a variant interpretation. A variant of an 
interpretation I is denoted by I{v/(a: T)(o)}. The variant is the same as I, 
except when I(a: T) is applied to the object o, where it yields v. A property 
of variants is the independence of variants on different objects, which we state 
without proof. 

Proposition 2 Given an extension Ext and an interpretation I for a DEGAS­

schema. Then: 

Vo1,02 E Ext: 
01 1' 02 
==> 
J{vi/(a: T)(oi)} {v2/(a: T)(o2)} 

= I{v2/(a: T)(o2)}{vi/(a: T)(oi)} 

The function M that defines the semantics of method execution gives us a new 
interpretation of the database, that is variant on the attributes modified. It is 
defined as follows: 

Definition 64 Given a method of class C E H: 

m(l1 :T1, ... ,ln:Tn) = { 
ai := li 
succ(bj) 

for i = 1 ... n, j = 1 ... m, where: 

Vi E {1, ... ' n} : "ai: Ti'' E Attr(C) 
V j E {1, ... , m}: "bi: a/' E Attr(C) 
{ "a1 : T1 ", ... ,"an: Tn '1 n { "b1 : CTi ", ... , "bm: CTm "} = 0 

If o is an object in Ext(C) and m(li = vi, ... , ln = Vn) a correct method call, 
then the function M is defined for the execution of m by o in the database (Ext, I) 
as: 

M(m(li =Vi, ... , ln = Vn)(o)(Ext,I)) = 
(Ext,I{vi/(ai: Ti)(o)}, ... , {Vn/(an: Tn)(o)}, 

{(J(bi: CTi) + 1)/(bi: CTi)(o)}, 

{(J(bm: CTm) + 1)/(bm: CTm)(o)}) 

9.1.3 The DEGAs-2 Model 

In our discussion of decidability results, we first consider a restriction of DE­
GAS-, which is named DEGAs-2. We restrict the selection condition of a query 
to local attributes only, which means that production 9.24 is omitted from the 
syntax definition. An example of a class definition DEGAs-2 is: 
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Object cell 
Attributes 

no: Integer 
neighbour : cell 

Methods 
new_value(number:Integer) = { 

no:=number 
} 

Rules 
If no=IO 
do new_value(S) 

EndObject 

9.1.4 Rule Semantics 
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Rules can be applied to a database in two different ways [Simon and de Main­
dreville, 1988]. This results in two different semantics for rule execution. With 
set semantics the action is executed on all objects satisfying the rule condition 
simultaneously. Instance semantics means that the action is executed one at 
the time on these objects. First, we define the set of object satisfying a rule's 
selection condition. In the following definition, the result of rule R applied to 
a database db under set semantics is denoted by M(s)(R,db). Under instance 
semantics, this is denoted by M(i)(R, db). The execution of a rule, like a me­
thod execution, changes the interpretation of the database. Therefore, we can 
define the resulting interpretation in terms of the variants induced by the rule. 

Definition 65 Let R = (Q,M(l1 = b1, ... , 4t = bn)) be a trigger in a schema H 
withM definedasM(li: T1, ... ,4t: Tn) = {a1 := l1; ... ;an := ln}. Furthermore, 
we have: 

db= (Ext,[) 
Select( (Ext, I), R) 

Pick: 'POid - Oid 

Var(oil 

a database for H . 
the set of objects in db satisfying the 
condition of rule R. 
a function that arbitrarily selects an ob­
ject from a set of objects. 
the variant of Di induced by trigger R. 

The execution of R under set semantics is defined by: 

M(s)(R, (Ext,/)) -{ 

(Ext,I{Var(o1) ... Var(om)} 
ifSelect((Ext,I),R) = {01, ... ,0m} 

(Ext,[) 
if Select((Ext,I),R) = 0 

The execution of R under instance semantics is defined in two phases in order to 
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separate out the random selection of an object to execute on. 

l 
M; o Pick(Select((Ext,J),R)) 

if Select((Ext,J),R) I 0 
M(i)(R,(Ext,J)) = whereM;((R,o),(Ext,J)) = (Ext,I{Var(o)}) 

M(i)(R, (Ext,!))= (Ext,/) 
ifSelect((Ext,J),R) = 0 

The above definition defines the result of a single rule application. If a set of 
rules is present on the database, we have an execution cycle. This cycle executes 
as long as there are rules applicable to the database. During the cycle one of the 
set of applicable rules is randomly chosen for execution and executed. After 
that the next iteration starts. Please note, that the DEGAS- execution cycle is 
defined for the complete database, contrary to the execution cycle of a single 
DEGAS object. 

Definition 66 Let 'R be a set of rules of the form R = (~,MR) with an initial 
database db. Then the behaviour of'R under semantics semis defined by: 

Execute('R,db,sem) { 

} 

While 3R E 'R: Extdb(~)-/= 0 do 

od 

T := choose({RIR E 'RI\ Extdb(~)-/= 0) 
db:= M(sem)(R, db) 

return db 

The process Execute ('R, db, sem) induces a set of execution sequences. An 
execution sequence gives a trace of rule execution. In the case of set semantics, 
it is a sequence of rules. In the case of instance semantics, we also include the 
information, which object the rule was executed on. A sequence is defined as 
a function from the set of natural numbers to the set of rules. The function 
assigns a rule to each position in the sequence. If the function is total, i.e., it 
assigns a rule to each position, then it is a sequence. 

Definition 67 'R is a set of rules for a schema H. If Sq : N+ - 'R is a par­
tial function whose support is a contiguous set starting at 1, then Sq E Seq(s), 
length(Sq) = ISupport(Sq) I. Sq is written as a list [Sq(l); ... ; Sq(n) ]. 

The ith element of a sequence Sq, denoted by Sqi, is a rule Ri 

Under instance semantics, a sequence also states to which object a rule is ap­
plied at each place in the sequence. 

Definition 68 'Risa set of triggers for a schema H. If Sq: N+ - 'R x Oid is a 
partial function whose support is a contiguous set starting at 1, then Sq E Seq(i), 
length(Sq) = ISupport(Sq)I. Sq is written as a list [Sq(l); ... ;Sq(n)]. 
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Here, Seu is a pair of a rule and an object (Ri, od. 

The execution of a rule sequence is defined inductively in the following way: 

Definition 69 'R is a set of triggers for a schema H. The execution of a sequence 
Sq E Seq(s) on a database db, where Seq(s) is the set of sequences over 'R 
under set semantics, is defined as: 

1. if Sq= [Sq(l); ... ;Sq(n)] 
then M(s)(Sq, db) = M(s)([Sq(2); ... ; Sq(n) ], M(s) (Sq (1), db)) 

2. if Sq = [Sq(l); Sq(2); ... ] 
then M(s)(Sq,db) = M(s)([Sq(2); ... ],M(s)(Sq(l),db)) 

The execution of a sequence Sq E Seq(i) on a database db, where Seq(i) is the 
set of sequences over 'R under instance semantics, is defined as: 

1. if Sq=[Sq(l); ... ;Sq(n)] 
then M(i)(Sq, db) = M(i) ([Sq(2); ... ; Sq(n) ], M' (i) (Sq (1), db)) 

2. if Sq= [Sq(l);Sq(2); .. . ] 
then M(i)(Sq,db) = M(i)([Sq(2); ... ],M(i)'(Sq(l),db)) 

A valid execution sequence must satisfy a number of requirements. A sequence 
[Sq(l); ... ;Sq(n)] is an execution sequence, if each rule Sq(i + 1) is activated 
after the execution of [Sq(l); ... ; Sq(i) ]. If the sequence is finite, no rules are 
activated after the last rule of a sequence. 

Definition 70 Let 'R be a set of rules for a schema H, let db be a database, and 
let Seq(s) and Seq(i) be the sets of sequences over 'R. The set Seq(s)('R, db) of 
execution sequences over 'R is db under set semantics is defined as follows: 

if Sq E Seq(s) 
/\ 

Select(db, Sq(l)) -I= 0 
/\ 

ViE{2, ... ,n}: 
Select(M(s)([Sq(l); .. . ;Sq(i-1)]),Sq(i)) -f= 0 

/\ 

VR E 'R: 
Select(M(s)(Sq,db),R) = 0 

then Sq E Seq(s)('R, db) 

The set of execution sequences under instance semantics Seq(i)('R, db) is de-
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fined analogously as follows: 

if Sq E Seq(i) 
I\ 

Oi E Select(db,Sq(l).R) 
I\ 

ViE{2, ... ,n}: 

9.2. PREDICATES 

Oi E Select(M(i)([Sq(l); ... ;Sq(i - l)]),Sq(i).R) 
I\ 

VR E 'R: 
Select(M(i)(Sq,db),R) = 0 

then Sq E Seq(i)('R,db) 

9.2 Predicates 

In the previous section, we defined the DEGAS- model's syntax and semantics. 
In this section, we address the predicates on rule sets that we examine in this 
chapter. 

9.2.1 Termination 

Termination means that all executions of a rule set terminate on all possible 
database states. Hence, all execution sequences on all databases must be finite. 

Definition 71 (Termination) Let 'R be a set of rules for a schema H. Let sem 
denote either set or instance semantics. 

Terminate('R, sem) d~ 

Vdb E DBH, VSq E Seq(sem)('R,db), 3n EN+: 

length(Sq) = n 

9.2.2 Confluence 

Confluence means that all possible executions of a rule set yield the same fi­
nal database state. Because a non-terminating execution does not yield a final 
database state, a preliminary requirement for confluence is, that the rule set is 
terminating. In terms of execution sequences, confluence means that the result­
ing database state is invariant under the choice of an execution sequence. 

Definition 72 (Confluence) Let 'R be a set of triggers for a schema H. Let sem 
denote either set or instance semantics. 

Confluent('R,sem) d~ 

Vdb E DBH, VSq E Seq(sem)('R,db): 
M(sem)(Sq1, db) = M(sem)(Sqz, db) 

I\ 

Terminate('R, sem) 
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9.2.3 Termination inn steps 

In most rule models, termination is an undecidable property. Therefore, we 
are interested in a stronger predicate than termination, viz., termination in a 
certain number of steps. This predicate is stronger than termination, because a 
rule set not terminating inn steps might terminate inn+ 33 steps. 

To define termination in n steps, we need to define a step. Under set semantics, 
we simply take one execution of a rule as one step. We cannot do this under 
instance semantics, since a rule application only executes on one object at the 
time. Because we do not wish to make our choice of n dependent of the size 
of the database, we count the number of rule applications to one object. Thus, 
under set semantics n denotes the maximum number of times a rule may ex­
ecute. Under instance semantics, n denotes the maximum number of times a 
trigger may execute on one object. 

Definition 73 If 'R is a set of rules for a schema H and n a natural number, 
then 

Terminate(n, 'R, s) ~ 
Vdb E DBH, VSq E Seq(s)('R,db), VR E 'R: 

I {ilSq(i) = R} I :s; n 

Terminate(n, 'R, i) ~ 
Vdb E DBH, Vo E Extdb, VSq E Seq(i)('R,db), VR E 'R: 

l{ilSq(i) = (R,o)}I :s; n 

The execution sequences are finite, because all rule sets and all databases are 
finite. Thus, rule sets that terminate in n steps terminate. 

Proposition 3 If 'R is a set of rules for a schema H and sem denotes either set 
or instance semantics, then 

Terminate(n, 'R, sem) = Terminate('R, sem) 

Proof Obvious. D 

9.2.4 Independence 

Like we defined termination inn steps as a stronger alternative for termination, 
we can define a stronger alternative for confluence. This stronger predicate is 
independence. Instead of looking at a complete rule set, we examine a pair of 
rules at the time. A pair is said to be independent, if the two rules commute. 
This means that the result of their execution is the same for both possible or­
ders of execution. A set of rules is independent, if all pairs in the set commute. 
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Definition 74 If'R is a set of triggers for a schema H, then: 

def 
Independent('R, set) = 

VRi,Rj E 'R, '</db E DBH: 
M(s) (Ri, M(s) (Rj, db)) 

M(s) (Rj, M(s)(Ri, db)) 

Independent('R, instance) d:f 
VRi,Rj E 'R, '</db E DBH, Vok,Ot E Extdb: 

M(i) (Ri(Ok), M(i) (Rj (oi), db)) 

9.2. PREDICATES 

A useful property of an independent rule set is, that execution sequences can 
be rearranged. This comes in handy in a number of proofs. An example is the 
proof that independence implies confluence for terminating rule sets [Aiken et 
al., 19921. 

Proposition 4 If 'R is a set of rules and sem denotes either instance or set se­
mantics, then: 

Terminate('R, sem) I\ Independent('R, sem) 
~ 

Confluent('R, sem) 

Proof We have to prove that: 

'</db E DBH, VSq1,Sq2 E Seq(sem)('R,db): 

M(sem)(Sq1,db) = M(sem)(Sq2,db) 

Since both Sq1 and Sq2 are execution sequences, no rule is activated after their 
execution. Thus, for all database states 

M(sem)(Sq1;Sq2,db) = M(sem)(Sq1,db) 

and likewise 

M(sem)(Sq2;Sq1,db) = M(sem)(Sq2,db) 

With all rules pairwise independent, we can rearrange Sq2;Sq1 into Sq1;Sq2. 
Thus, we have 

and 

M(sem)(Sq1,db) = M(sem)(Sq2,db) 

□ 
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9.2.5 Decidability 

The last definition needed in this chapter is that of decidability. For this, we use 
the standard notion of the existence of a decision procedure (see, e.g., [Lewis 
and Papadimitriou, 1981)). 

Definition 75 A predicate is decidable, iff there exists an algorithm that on all 
possible input: 

1. terminates 

2. on termination gives the correct answer with regard to the truth of the 
predicate relative to the input. 

9.3 Decidability Results for DEGAs- 2 

In this section, we discuss decidability of rule predicates in the DEGAs-2 model. 
Recall, that this model only allows local conditions and replacement of at­
tributes by constants. As can be expected in such a simple model, both ter­
mination and confluence are decidable properties of rule sets in DEGAs- 2 • 

We first look at termination and confluence of a single rule. Since the effect of 
a rule's action is idempotent, these are decidable predicates. 

Theorem 6 In the DEGAs-2 model, given a singleton rule set 'R = {R}, R = 
(QR,MR) and semantics sem. In this case, we have the decidable predicates 
Terminate('R, sem) and Confluent('R, sem). 

Proof To prove the decidability of termination and confluence, we show that 
we can construct a finite database state to represent all possible database 
states, as was first explained in [Voort, 19941. This database state is called the 
typical database state. The typical database state is constructed relative to a 
rule definition. From the attributes of the class schema, the constants in the 
selection conditions and the methods, we construct a finite set of partition con­
ditions. Every object in all of the possible database states satisfies one of these 
conditions. In addition, method execution gives a uniform transition between 
these conditions. Based on this knowledge, we construct a graph that enables 
us to decide termination and confluence. 

We start by defining a set EC of elementary conditions on the attributes. Let A 

be the set of all attributes in the class on which R is defined. CR is the set of all 
constants appearing in QR and MR. The set of elementary conditions EC with 
regard to R is defined by the following grammar: 

(Econd) 

(BasicExpr) 

(Attr) = (BasicExpr) 

(Attr) I (Const) 
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where the non-terminal (Attr) yields all elements of A and (Const) yields all 
elements of CR. 

Obviously EC does not take the types of attributes and constants into account. 
Therefore, we restrict EC to the set of well-typed elementary conditions WEC 
as follows: 

Vx:T,y : T: 
x = y EEC 
⇒ 

x =y E WEC 

The elementary conditions only express equalities of one or two attributes at 
a time. To be able to express arbitrary conditions on an object, we obtain all 
composite conditions in the set Cond. 

If CE WEC then CE Cond 
If c1, c2 E Cond then c1 /\ c 2 E Cond 

This definition yields a set that also contains inconsistent conditions. We are, 
however, able to decide what conditions are consistent. This is stated by the 
following claim, that is proven below. 

Claim 6.1 Determining the consistency of a condition </> E Cond is decidable. 
If </> is consistent, we can construct a database state that contains an object 
satisfying</>. 

Knowing that the consistency of a condition is decidable, we can restrict our 
conditions to the set CCond of consistent conditions. 

CCond = {c E Condie is consistent} 

Multiple conditions are satisfied by an object, because most conditions do not 
take all attributes of an object into account. To characterise an object, we want 
those conditions that specify equalities of all attributes. To that end, we define 
a partial order on CCond: 

V</>, 1/J E CCond, </> = </>1 /\ ... /\ <Pk, 1/J = 1/11 /\ ... /\ 1/Jt: 

ViE {1. .. k}3j E {1. .. l}: </>i ⇒ 1/lj 

= 

It is easy to see that this defines a partial order. In this order, the maxima are 
those conditions that incorporate all attribute-attribute and attribute-constant 
relations. The existence of these maxima follows from the finite size of the 
attribute set, implying the finite size of CCond. Therefore, we use these condi­
tions as partitioning conditions. 

PCond = {c E CCondlc is maximal} 
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The partition conditions characterise all possible objects in all possible data­
bases relative to this rule. Uniform transitions exist between partition condi­
tions to represent the effect of method execution. These two properties are 
expressed in the following claim: 

Claim 6.2 Partition conditions satisfy the following properties: 

1. VdbEDB,VoEdb: 
3!pc E PCond: pc(o, db) 

2. Vdb1,db2 E DB, Vo1 E db1, Vo2 E db2: 
pc(o1,db1) I\ pc(o2,db2) 

= 
3pc' E PCond: 

pc' (01, Execute(R, db1, set)) 
I\ 

pc' (02, Execute(R, db2, set)) 

under set semantics and 

Vdb1, db2 E DB, Vo1 E db1, Vo2 E db2: 
pc(o1, dbi) I\ pc(o2, db2) 

= 
3pc' E PCond: 

pc' (01,Execute(R (01 ), db1, instance)) 
I\ 

pc' (02, Execute(R(o2), db2, instance)) 

under instance semantics. 

where pc(o, db) denotes that pc is a partitioning condition characterising o in 
db. 

Claim 6.1 said that for each consistent condition we can construct a database 
state satisfying that condition. Because we may assume without loss of general­
ity that object identifiers are unique over all db,p, we can construct a database 
state db= U,pEPCond db,p, that is typical, i.e., Ve E PCond, 3o E db: c(o, db) . 

We have shown that partition conditions represent all possible object states. 
Further, we have shown that the effect of method application is uniformly rep­
resented by a transition from one partition condition to another. We now pro­
ceed by constructing a graph, that represents these transitions for all partitions. 
The graphs SG and IG are defined as follows, for set and instance semantics 
respectively: 

Nodes(SG) = Nodes(IG) = PCond 
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Vc1,C2 E PCond: 

3o E QR (db) I\ ci(o, db) I\ c2 (o, Execute(R , db, set)) 

= 
(C1, C2) E Edges(SG) 

3o E QR (db) I\ ci(o, db) I\ c2 (o, Execute(R (o), db, instance)) 

= 
(C1,C2) E Edges(JG) 

Using this graph, we can reduce the problem of termination to the problem of 
cycle detection, which is a decidable problem. Confluence reduces to finding a 
unique sink from each node in the graph, which is also a decidable problem. 

Left to be proven are Claim 6.1 regarding the decidability of consistency of a 
condition, and Claim 6.2 regarding the properties of partition conditions. □ 

Proof of Claim 6.1 We give an algorithm that checks a condition</>= Af=1 <Pi 
for consistency. Without loss of generality, we assume that the <Pi are ordered 
according to the following criteria: 

1. Attribute-constant equalities before attribute-attribute equalities. 

2. The attribute-constant equalities are sorted by attribute. 

3. The attribute-attribute equalities are put in the form ai = a i such that 
i < j and then sorted lexicographically by the pairs ( ai, a i). 

The algorithm proceeds by constructing an object o with attributes a 1 , ... , an, 
that satisfies the condition <J>. For the construction, we need a set of dummy 
variables Dummy with the following properties: 

Dummy= {D1, .. ,,Dn} 

such that ( 1) i !- j ⇒ Di !- Di 

(2) ai : T ⇒ Di : T 

The algorithm is given in Figure 9.3. 

Successful termination of this algorithm means, that it was able to construct 
an object satisfying the given condition </>, implying consistency of <J>. If the 
algorithm terminates unsuccessfully, then the condition is inconsistent. If the 
condition is consistent, we can construct a database state from the object and 
the set of dummy values. 

The algorithm works in two phases. First (lines 3-10), conditions of equality 
of attributes to constants are checked. Constants are assigned to attributes for 
which such conditions exist. Other attributes are assigned dummy values. The 
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Algorithm consistency-check 
Begin 

5 

Check 'It a; E A: 
Case 3Ct,Cz E CR: ai = Ct 11. ai = c2: 

Exit(Unsuccessfully) 
Case 3!Ct E CR: ai = c1: 

o.a1 := Ct 

Otherwise: 
o.ai :=Di 

10 Endcheck 

15 

20 

25 

Check '1c/>1t of the form ai = a{ 
case o.aj = er 11. o.ai = c2 11. er I= c2: 

Exit(Unsuccessfully) 
Case o.aj = Ct 11. o.ai = c2 11. c1 = c2: 

Next 
Case o,ai = er 11. o.ai = Di: 

aj := C1 

Case o,ai = Di 11. o.ai = er: 
ai := C1 

ReplaceAll(Di, Ct) 

Case ai = ai 11. o.ai = Di 11. o.ai = Df 
ai := Di 

Endcheck 

Exit(Successfully) 

End. 

Figure 9.3: Algorithm to check the consistency of a local condition 

203 
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next part (lines 12-24) tries to satisfy equalities between attributes. Here, the 
order on the equalities prevents costly Rep 1 aceA 11 actions for dummy vari­
ables, by completing assignment of dummies to lower-indexed attributes first. 

To prove the correctness of the algorithm, we show that if it exits unsuccess­
fully, it has constructed an inconsistent state. 

Line 5 In this case, the condition requires an attribute to 
have two different values. Clearly, this is inconsis­
tent. 

Line 14 In this case, the condition requires two attributes to 
be equal, while at the same time it requires equality 
of both attributes to two unequal constants. Clearly, 
this is inconsistent. 

Proof of Claim 6.2 The first part of this claim was 

VdbEDB,VoEdb: 
3!pc E PCond: pc(o, db) 

□ 

The existence of a pc E PCond is obvious from the fact that all possible equal­
ities between attributes and constants are included in WEC, from which the 
partition conditions are constructed. The existence of a unique pc E PCond 
follows from the maximality of the partition conditions, because maximality of 
pc means ?-,pc' E PCond: pc' ⇒ pc. 

The second part of the claim was that 

Vdb1,db2 E DB, Vo1 E db1, \102 E db2: 
pc(o1,dbi) A pc(o2,db2) 
=⇒ 

3pc' E PCond: 
pc' (01, Execute(R, db1, set)) 
I\ 

pc' (02, Execute(R, db2, set)) 

under set semantics and 

Vdb1,db2 E DB, Vo1 E db1, \102 E db2: 
pc(o1,db1) "pc(o2,db2) 
=⇒ 

3pc' E PCond: 
pc' (01, Execute(R (oi), db1, instance)) 
I\ 

pc' (02, Execute(R (02), db2, instance)) 

under instance semantics. 
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This claim follows from the uniqueness of the partition conditions and the fact 
that the changes made by MR are identical to both objects. □ 

The method used for deciding termination of a singleton trigger set can be 
extended to a trigger set with more than one trigger. The method used is the 
same, except that we must construct a graph using more than one trigger. 

Theorem 7 In the DEGAs-2 model, given a trigger set '.R and semantics sem, 
the predicates Terminate('.R, sem) and Confluence('.R, sem) are decidable. 

Proof Since the conditions and actions of the triggers are local to an object, we 
can treat this problem for each class separately. For each class C, we construct 
a set of partition conditions PCondc using the method used in the proof of 
Theorem 6. We then take the union of these sets into one set of partition con­
ditions PCond = Uc PCondc. Clearly, since each PCondc induces a typical 
database state tdbc, their union PCond also induces a typical database state 
tdb = Uc tdbc, see [Voort, 1994, Chapter SI for details. 

After construction of the typical database state, we proceed with the construc­
tion of a graph. The presence of more than one trigger has some effect on the 
drawing of the graph. The graphs SG for set semantics and JG for instance 
semantics are defined as: 

Nodes(SG) = Nodes(IG) = PCond 

Vc1,C2 EPCond: 

3R E '.R, 3o E ~(db): ci(o,db) I\ c2(0,Execute(R,db)) 

==> 

Vc1,c2 E PCond: 

3R E '.R, 3o E ~ (db) : ci(o, db) I\ c2 (o, Execute(R(o), db)) 

==> 

Again deciding termination reduces to cycle detection and deciding confluence 
reduces to finding a unique sink for each node. □ 

9.4 Decidability Results for DEGAS-

In this section, we look into decidability of the predicates in DEGAS-. The only 
difference between DEGAS- and DEGAs-2 is that DEGAS- allows path expres­
sions in a rule's condition. This is sufficient to make termination an undecid-



206 9.4. DECIDABILITY RESULTS FOR DEGAS-

able property. Some stronger properties, however, are decidable, such as termi­
nation in n steps and independence. 

First, we consider termination of a singleton trigger set. This is a decidable 
predicate in DEGAS-. 

Theorem 8 In DEGAS-, given a singleton rule set 'R and semantics sem the 
predicate Terminate('R, sem) is decidable. 

Proof We show that we can construct a typical database state in this model. A 
complication is, that the number of possible conditions is infinite. 

Since path expressions are allowed in the condition of a rule, the set of elemen­
tary conditions EC is generated by the following grammar: 

(Econd) 

(BasicExpr) 

(AttrExpr) 

(AttrExpr) = (BasicExpr) 

(AttrExpr) I (Const) 

(Attr) I (Attr) . (AttrExpr) 

where the non-terminal (Attr) yields all attributes in the schema. (Const) yields 
all constants used in the rule set. We use the obvious typing rules to restrict EC 
to the set of well-typed elementary conditions WEC. We collect all possible 
conditions with conjunction and disjunction into the set Cond. 

Because of the complexity of conditions with path expressions, we introduce 
the length of a condition. Intuitively, this is a measure of the distance of the 
attributes of interest to the condition from the local object. The length of a 
condition is recursively defined as: 

1. length(e) = 1, where e is an attribute identifier or a constant. 

2. length(a.e) = length(e) + 1, where a is an attribute and e is a path 
expression. 

3. length(Ai V i(ewf)ii) = max( { max(length(e), length(!)) }ij ), 

where e is a path expression and f a path expression or a constant. 

Condn denotes the set of conditions of maximum length n. 

Consistency of a condition can be checked by a slight modification of the al­
gorithm in the proof of Theorem 6. The difference in the conditions is the 
possibility to refer to other objects. Hence, in order to show that a database 
satisfying the condition exists, we need to construct more than one object. In 
fact, we construct all objects referred to in the condition. Using this consistency 
check and a partial order as defined previously, we obtain at the set of partition 
condition of length n: 

PCondn = {c E Condnlc is consistent" c is maximal wrt >} 
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As before, this set induces a typical database state tdbn, that can be con­
structed using the consistency checking algorithm. 

Now, we can again construct a graph to encode the execution of a rule. A com­
plication is that an object can move from one partition condition to another, 
because of a change in another object. Therefore, we label the transition to 
indicate, whether it is a direct or an indirect transition. A direct transition, la­
belled da, is caused by the direct application of a rule to the object. An indirect 
transition, labelled in, is caused by the execution of a rule on another object. 

We construct a graph for instance semantics IGn.'R and set semantics SGn,'R, 
separately. 

1. Vn EN: Nodes(SGn,'R) = NodesUGn,'R) = PCondn 

2. Vn EN, Vc1, c2 E PCondn: 
3o E Q.JI (tdbn) : 

C1 (o, tdbn) A c2 (o, Execute(R, tdbn, set)) 

= 
(c1, c2, da) E Edges(SGn,'R) 

3o E Q.JI (tdbn) : 
c1 (o, tdbn) A c2(0, Execute(R(o), tdbn, instance)) 

= 
(c1,c2,da) E EdgesUGn,'R) 

3. Vn EN, Vc1,C2 E PCondn: 
3o </:. QJI (tdbn) : 

C1 (o, tdbn) I\ c2 (o, Execute(R, tdbn, set)) 

= 
(c1,c2, in) E Edges(SGn,'R) 

301 E QJl(tdbn): 

= 

c1 (o, tdbn) 
I\ 

302 E tdbn: 
02 E QJl(tdbn) A 011' 02 
I\ 

c2 (01, Execute(R (02), tdbn, instance) 

(c1,c2, in) E EdgesUGn:r) 

This graph encodes the evolution of an object under the execution of the sin­
gleton rule set 'R = {R}, if we taken= length(CR), This graph has the useful 
property, that: 
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Claim 8.1 In the graphs SGn,'R and IGn,'R, there are no cycles of a length greater 
than 1. 

Thus, deciding termination amounts to the detection of da-cycles of length 
1, since this indicates the possibility of infinite application of a trigger to an 
object. This is a decidable problem. Confluence of a trigger set can be decided 
by checking whether each object has a unique sink. □ 

Proof of Claim 8.1 The first thing to be noted, is that we have taken the value 
of n, such that any change seen by an object through the trigger condition is 
included in the partition condition. In addition, the use of disjunction in the 
partition conditions means that other objects' states that are indifferent to the 
local object are included in the partition condition. We should also keep in 
mind, that application of the action to an object is idempotent. 

There are three possible configurations for cycles of length greater than 1: 

1. Cycle consisting of da-edges only 

2. Cycle consisting of in-edges only 

3. Cycle consisting of at least one da-edge with the other edges in-edges. 

Because of the idempotence of rule application, cycles consisting only of da­
edges must be of length 1. A cycle consisting of more than one da-edge would 
mean, that the local state of the object changes after the first application of the 
rule to that object. This is in contradiction to the idempotence of rule applica­
tion in DEGAS-. 

The value of n is chosen in such a way, that all variables of importance to the 
object are incorporated in the partition conditions. Since there is no change 
in the local state during an in-transition, there must be another object that 
changes. However, the local state of any object changes at most once during 
any rule execution. Therefore, it is not possible that an object's state returns 
to its initial state after the first rule application to it. This also implies the 
impossibility that all objects referring to a partition condition return to their 
initial states. This is exactly what would happen, if an in-cycle were present in 
the graph. Therefore, a cycle of more than one in-edge cannot exist. 

For the next case, we first show that we need only consider mixed da-in-cycles 
with one da-edge. Suppose a mixed cycle contains more than one da-edge, one 
from c1 to c2 and the second from Ci to Ci+l· The local state of the object does 
not change with the second application of the rule. Therefore, there must be 
a da-edge from c1 to Ci+l· This means that there always is a shorter cycle, if 
there are more than one da-edge. 

Now, we consider a cycle consisting of one da-edge from c1 to c2 and of in­
edges otherwise. The argument for the non-existence of such a cycle is the 
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same as for the non-existence of a cycle of only in-edges. This is also obvi­
ous, because the existence of such a mixed cycle requires that the object itself 
reverts to its initial state. 

Thus, every cycle in the graph must be of length 1. As a result of this, we can 
construct a database for each path through the graph. It is obvious that a data­
base can be constructed for a single transition in the graph. The method used 
is the consistency checking algorithm mentioned earlier. This can be extended 
in a straightforward way for an acyclic graph. It is also obvious that we can 
construct a database that follows a cycle of length 1. □ 

Although termination is decidable for a singleton trigger set, it is not for a set 
of more than one trigger. The reason is, that the DEGAS- model is powerful 
enough to simulate a Turing Machine. In a Turing Machine, all replacements of 
values on the tape is by constant symbols. Only in moving the head, we need 
communication between cells, which can be done by reading a status attribute 
at the neighbouring cell. 

We first show, how a Turing Machine is emulated using DEGAS- objects. The 
specification of a cell, without the rules, is given in Figure 9.4. Each cell on the 
tape is represented by an object. It contains the identities of its neighbouring 
cells in the attributes left-neighbour and right-neighbour. The attribute 
value contains the symbol on the tape in this cell. The state of the Turing Ma­
chine is recorded in the attribute state, if the head is on this cell. The attribute 
current indicates whether the head is on this cell. The other two attributes, 
next and from, are used during movement of the head. 

In this attribute specification, the types Symbol, State and all finite sets can be 
considered subsets of Integer, with the constants denoting a certain number. 
No extra functionality is added to DEGAS- by using these types. 

The transition table is recorded in the rules that each record one entry of the 
transition table. These rules are activated, when a cell becomes the current cell. 
To make sure the right cell is designated as the current cell, we need a number 
of bookkeeping rules, two each for moving the head to the left and the right. 
Please note, that we have labelled the rules for ease of discussion. 

The execution of a transition is triggered on a cell, when the cell is current 
and the previous cell is finished. Thus, the execution rule for the transition 
determined by the state s and value v becomes: 

/*** Execute(s, v) *** I 
If current=yes /\ from.next=neutral /\ from.state=s /\ value=v 
do execute(x1 = c1,x2 = c2,X3 = C3) 

where c1 denotes the new symbol for the cell, c2 the direction the head moves 
to and c3 the new state of the Turing Machine. 
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Object Cell 
Attributes 

left-neighbour : Cell 
right-neighbour : Cell 
value : Symbol 
state : State 
next : { left, right, neutral } 
current : { yes, no } 
from: Cell 

Methods 

9.4. DECIDABILITY RESULTS FOR DEGAS-

execute(x1:Symbol, xi:{left,right}, x 3:State) = { 
value:=x1 
next:=x2 
state:=x3 

} 
become-current-left()= { 

from:= right-neighbour 
current:=yes 

} 
become-current-right() = { 

from:= left-neighbour 
current:=yes 

} 
not-current-anymore() = { 

current:=no 
next:=neutral 

} 
Rules 

EndObject 

Figure 9.4: Specification of a cell in the DEGAS - Turing Machine emulation 
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After the transition is executed, the head must be moved to the next cell. If 
the head moves to the left, the cell that is next, must change its status to cur­
rent. It knows it may do this, if its right neighbour has recorded that the head 
moves left. The action to be taken is the method become-current- left This 
is specified by the following rule: 

/ *** To-be-current-le~ *** I 
If right-neighbour.next=left /\ right-neighbour.current=yes 
do become-current-left 

When the destination cell has registered that it is the current cell, the previous 
cell must set current to no and erase the movement data in next. 

/ *** Was-current-le~ *** I 
If next=left A current=yes /\ left-neighbour.current=yes 
do not-current-anymore 

The latter two rules are also defined for a head movement to the right. Their 
definition is analogous to the rules for the left movement, with the appropriate 
substitutions of left and right. 

To give a better insight in the emulation of a Turing machine by these rules, 
we show how these rules achieve the movement of the head to the left. The 
two ce 11 objects of interest are shown with their contents. We start right after 
the application of an Execute rule on the right cell. At that time, the attribute 
valuations are as follows: 

Oid=Newcell Oid=Oldcell 
current=no current=yes 
next=neutral next=left 
from=? from=? 
state=? state=s 
value=v1 value=v2 
right-neighbour=O1dcel/ right-neighbour=? 
left-neighbour=? left-neighbour=Newce11 

Object Newcell satisfies the condition of to-be-current- left, so the method 
become-current-left is executed on this object. This results in the following 
attribute valuations: 

Oid=Newcell Oid=Oldcel/ 
current=yes current=yes 
next=neutral next=left 
from=Oldcel/ from=? 
state=? state=s 
value=v1 value=v2 
right-neighbour=O1dcel/ right-neighbour=? 
left-neighbour=? left-neighbour=Newcell 

Now, Newcell's current attribute has been set. Hence, current must be set 
to no in Oldcell. This is done by the rule Was-current- left, that executes on 
Oldcell. The result is: 
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Oid=Newcell Oid=Oldcell 
current=yes current=no 
next=neutral next=neutral 
from=Oldcell from=? 
state=? state=s 
value=v1 value=v2 
right-neighbour=Oldcell right-neighbour=? 
left-neighbour=? left-neighbour=Newce/1 

Now, the condition for the rule Execute(s, v 1) is satisfied and its action is 
executed. After that, the head is again moved by the bookkeeping triggers. 

A final note on the emulation of a Turing Machine by a DEGAS- database is 
on starting the Turing Machine. The Execute (s, v) rules are triggered by the 
neutral state of the previous cell in the execution. However, there is no previous 
cell at the start. Therefore, we need an extra cell, that is not part of the tape 
and has its next attribute set to neutral. The from attribute of the starting cell, 
i.e., the cell where the head is positioned at the start of the execution, is set to 
this extra cell. 

It is obvious that the given bookkeeping rules correctly implement the head 
movement. For each entry in the transition table of the Turing Machine, we can 
define an Execute rule. A transition consists of a tape symbol and a state of 
the machine, resulting in writing a new value on the tape, moving the head left 
or right and a new state. These can be translated to triggers by filling in these 
values for s, v, c1, c2 and c3, respectively. 

In order to show that this emulation of a Turing Machine is the same under 
instance and set semantics, we have to show that no rule is executed on more 
than one object at the same time. The attributes governing rule application are 
current and next. If we start with a correct input state, only one eel l ob­
ject will have current set to yes and all next attributes will be set to neutral. 
Obviously, as long as only one object has current set to yes, any rule is only 
executed on one object. The only time cur rent equals yes in two objects si­
multaneously is during the movement of the head. This, however, immediately 
triggers the Was-current-{left, right} rule, that sets the current attribute 
of the previous cell to no. No other rule is triggered in this situation. 

Lemma I For each Turing Machine TM exists a pair ('.R, db) with 'R a rule set 
and db a database state, such that ('R, db) implements TM under both instance 
and set semantics. 

The possible emulation a Turing Machine in DEGAS- gives a clear indication of 
the decidability of termination of a rule set. The halting problem for Turing 
Machines is known to be undecidable. Therefore, termination of a set of rules 
in DEGAS - is also an undecidable problem. 

Theorem 9 Let 'R be a trigger set in DEGAS- and let sem denote either instance 
or set semantics. Terminate('R, sem) and Confluent('R, sem) are undecid­
able predicates in this case. 
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Proof According to Lemma 1, everything that can be computed on a Turing 
machine, can be computed by using DEGAS- rules. Suppose we could decide 
termination of a set of rules in DEGAS-. Then, we could solve the problem 
whether a Turing Machines terminates on every input by translating the Turing 
Machine to a DEGAS- database. Termination, however, is undecidable for Turing 
Machines (see, e.g., [Lewis and Papadimitriou, 1981]). Therefore, termination of 
a set of rules in this model must be undecidable. 

Since 

Confluent('R,sem) ⇒ Terminate('R,sem) 

and Terminate('R, sem) is undecidable, Confluent('R, sem) is also unde­
cidable. □ 

The possibility of simulating a Turing Machine points us to a stronger predicate, 
that is decidable for Turing Machines, viz., termination of a set of rules in n 
steps. The restriction to a limited number of steps imposes an upper bound on 
the time a decision procedure can take. We can simply run the rule set on a 
typical database state of sufficient length, until we reach the maximum number 
of steps. We then check whether rule execution has terminated or not. 

A similar strategy is applied to solve a stronger predicate than confluence, pair­
wise independence of rules. This means that the both possible sequences for 
two rules yield the same database state. If all rules are pairwise independent, 
and the rule set is terminating, then the rule set is confluent. We can test this 
on the typical database state by running both possible executions of each pair 
and comparing the result. Thus, we have the following theorem: 

Theorem 10 For a rule set 'R, semantics sem and an integer number n > 0 the 
predicates Terminate(n, 'R, sem) and Independent('R, sem) are decidable 
DEGAS-. 

As a consequence, termination and confluence are decidable for independent 
rule sets. 

Corollary 1 Terminate('R, sem) and Confluent('R, sem) are decidable pre­
dicates for an independent rule set 'Rand semantics sem. 

Proof If all rules in 'R are independent, we can rearrange an execution se­
quence of 'Rat will. Let 'R = {R1, ... ,Rn}- Any execution sequence of 'R can be 
rearranged into the form R1; ... ;R1;R2; ... ;R2; . . . ;Rn; ... ;Rn}. For each Ri E 'R 
individually, we can decide termination. If each Ri E 'R terminates individually, 
then it is obvious that 'R terminates. 

Because we can rearrange an execution sequence of an independent trigger set 
'R at will, 'R is obviously confluent. □ 
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9. 5 Conclusion 

In this chapter, we have explored the decidability of active rules in two re­
stricted version of DEGAS, DEGAS - and DEGAs- 2. In the simplest language, DE­

GAs-2, termination and confluence are decidable properties. The mere addition 
of path expression in the selection condition, in DEGAS-, makes these proper­
ties already undecidable. Additionally, the emulation of a Turing machine by a 
very simple rule language shows the power of the active rule paradigm. Since 
an event-condition-action language is a superset of a condition-action language, 
the undecidability results for termination and confluence also apply to ECA 
rules. 

A consequence of these undecidability results for DEGAS - , termination and con­
fluence are also undecidable for the full DEGAS model. In fact, termination of a 
single DEGAS rule is already undecidable, because we can translate the Turing 
Machine emulation of Section 9.4 to a single DEGAS rule and method using the 
fora 11 ... in ... where ... do construct. 

Most practically useful active database systems need to incorporate a more 
complex rule language than those considered in this chapter. Therefore, we 
need to find other ways to obtain the desired properties of trigger sets. One of 
the approaches to guarantee termination and confluence are sufficient condi­
tions. It is possible to formulate conditions on rule sets, that guaranteed termi­
nation and confluence of the set. Not all terminating rule sets, however, satisfy 
a sufficient condition for termination. Thus, a number of terminating rule sets 
will be rejected for use. Alternatively, we can take a purely empirical path and 
monitor the active database system in use. If the number of successive rule 
applications exceeds a preset limit, we cancel rule execution. This prevents a 
system from getting stuck in rule execution, but it does nothing to prevent 
the re-occurrence of the non-terminating rule application. Another problem of 
monitoring is, that we cannot monitor a property like confluence. To detect 
non-confluence, rule application would have to be repeated twice in exactly the 
same database state. 

To overcome the drawbacks of both mentioned approaches, we need a more 
sophisticated method. We propose to build a learning capability into the active 
objects. Thus, an object is able to learn to avoid the situation where it gets into, 
for example, a non-terminating rule application. In order to avoid such situa­
tions, an active object will be able to change its rules. This requires a different 
specification of the active object's functionality, possibly borrowing from the 
area of intelligent agents as discussed in Chapter 10. This kind of strategy, 
however, does not solve the problem of confluence. 
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Chapter 10 

Outlook 

Previous chapters of this thesis introduced and formalised the DEGAS model 
for a database of autonomous objects. Furthermore, we discussed the design 
and verification of DEGAS database. This chapter takes a brief look at future 
directions of computing environments based on autonomous objects. Here, we 
assume the move towards increased distribution of computing already men­
tioned in Section 2.1. A model for distributed computing that has generated 
much interest in the research community is the notion of intelligent agents 
[Shoham, 1993, CACM, 1994). Hence, we combine databases and agents in two 
ways in this chapter. First, we examine the opportunities of agent technology 
in active databases. Second, we look at a data management environment based 
on agents. 

10.1 Active Databases and Agents 

The ongoing miniaturisation of computers is leading us to a world, where com­
puters are omnipresent. This phenomenon has become widely known under 
the name ubiquitous computing [Weiser, 1993, Abowd, 19961. Although this de­
velopment is still in its early stages, there is already some consensus on the 

· software architecture for ubiquitous computing. This consensus considers in­
telligent agents [Shoham, 1993, CACM, 1994) the most promising paradigm for 
future information systems. In this paradigm, software consists of a number of 
entities collaborating towards a common goal, functioning autonomously with 
little intervention. Hence, it is reasonable to expect that, in future computing 
environments, information systems will be based on a large number of cooper­
ating agents. 

At the same time, research in databases, the traditional foundation of an infor­
mation system, has addressed the inclusion of additional modelling notions in 
databases. This has lead, among other things, to active databases, i.e., databases 
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that include production rules. This allows databases to react autonomously to 
certain situations in the database. 

Since databases are the current foundation and agents a future foundation of 
information systems, the question rises how information systems might evolve 
from databases to agents. Since active databases are the first step in this evo­
lution, we examine the role agent technology can play in an active database. 
The possibility of integrating agents in active databases was earlier mentioned 
in [Bailey et al., 19951, which compared active databases and agent systems. Its 
main focus, however, was on the similarity of concepts in both areas, whereas 
we look into the opportunities agent technology offers active databases. 

In this section, we first identify the "level of agency" in DEGAS. Then, we present 
our view on the benefits the addition of further features of agent technology can 
bring to active databases. 

10.1.1 Agency in Active databases 

Research on agents generally distinguishes weak and strong agency. A software 
system is said to have weak agency, if it possesses the following four properties 
[Wooldridge and Jenning, 1995): 

• autonomy 

• social ability 

• reactivity 

• pro-activeness 

Object autonomy is one of the base assumptions in DEGAS. Each DEGAS object 
is itself a process. Furthermore, its dependence on other objects is as small 
as possible through complete encapsulation and minimal assumptions about 
the behaviour of other objects. Hence, the criterion of autonomy is satisfied by 
DEGAS objects. Social ability means that agents interact with other agents in the 
system through an agent communication language. DEGAS objects pass mes­
sages to other objects and engage in relations with them. DEGAS objects react 
to their environment by answering messages. Furthermore, rules also specify 
reactions to situations that occur in the DEGAS database. Pro-activeness means 
that agents can take the initiative to achieve certain goals. Although goals are 
not explicit in a DEGAS object, active rules are instrumental to achieving a goal. 

There is less consensus over stronger levels of agency. In general, strong agency 
is concerned with mentalistic notions. For the discussion in this paper, we take 
the four dimensions formulated by Shoham [Shoham, 1993): 

• knowledge 

• belief 
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• intention 

• obligation 

These notions are not explicitly supported by DEGAS objects. Although rules 
can be used to express obligations, they are not formulated as such. An obliga­
tion of an agent is specified by a goal that must be achieved. Instead, an ECA 
rule is just an instruction to execute a certain action in a specified situation, 
although this action will be instrumental in fulfilling the obligation. 

Likewise, intention is only implicitly present and, as far as it is present, not 
arrived at by the DEGAS object itself. We could say, that a rule to maintain a 
database constraint expresses the intention to maintain that constraint. Inten­
tion and instrument to realise this intention, however, are fixed to each other. 
If intention is an independent notion to an agent, it first derives its intention 
and then reasons about the actions to realise it. 

Knowledge and belief are unknown notions in an active database. Although a lot 
of information is stored, the way to process these data is fixed by the methods 
and rules specified. Furthermore, a database usually lacks the ability to reason 
with and about the information it contains in a general way. 

10.1.2 Extending Agency in an Active Database 

In the previous section, we saw that DEGAS supports weak agency. In addition, 
limited representation of obligation and intention are present. In this section, 
we look at the potential results of extending the level of agency in an active da­
tabase, taking DEGAS as a starting point. In particular, we consider the benefits 
of stronger agency for general database functionality. 

Stronger agency is introduced in an active database by extending the capabil­
ities of the objects in the database. While DEGAS currently is a database of 
autonomous objects, we would then have a database of agents. The agents in 
such a database1 each manage a part of real world data, like an object repre­
sents a piece of data. This means that an agent contains a piece of data, and 
additionally possesses a number of goals it has to achieve or maintain. Further­
more, a data agent will have a number of obligations. In part, these will exist to 
facilitate DBMS functionality, e.g., an obligation to answer queries. Another part 
of the obligations will be to other agents, caused by relations between agents. 

The key advantage of the promotion of autonomous objects to agents lies in 
the reasoning ability of agents. This allows a more abstract specification of the 
database, both in application modelling and in implementing database func­
tionality. Triggers implement a tight binding between goals and means, so that 

1or would we have to call it a data management society? 
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an object has only one means to achieve a specific goal. By formulating goals 
and means separately, more flexible solutions are possible for information sys­
tem functionality. 

A prime example of the additional flexibility provided by separate goals and 
means is given by constraints. In Chapter 3, we mentioned that triggers were 
originally devised to deal with constraints more flexibly. The improvement trig­
gers offered over existing mechanisms was, that we could use different strate­
gies to maintain different constraints, instead of a single strategy for all con­
straints. Strong agency, by separating goals and means, gives us additional flex­
ibility by allowing multiple strategies to maintain a single constraint. The agent 
can then infer which strategy is optimal in the current situation. In addition, 
the presence of general problem-solving strategies in the database obviates the 
need for specialised compilers, e.g., to produce rules to maintain constraints 
[Ceri and Widom, 19901. 

As an example consider the limit on the negative balance of a bank account. A 
limit of 2000 in the red is specified by the constraint: 

balance 2 -2000 

Suppose now that a requested payment violates this constraint. In this situa­
tion, we have a number of strategies to enforce this constraint, of which we 
mention four: 

1. Refuse the payment 

2. Transfer funds from a savings account 

3. Sell some shares 

4. Arrange a temporary loan 

If we were to use triggers, we can specify only one strategy to enforce the limit 
on this account. With its enhanced reasoning capabilities, an agent can choose 
the best strategy to enforce this constraint, given its other goals, such as the 
quality of its relation with the customer, income in the near future etc. 

Another advantage of stronger agency over triggers, is found in the problem 
of deciding termination of trigger sets. As we saw in Chapter 9, this is decid­
able only for very simple rule languages. Hence, we must find another way of 
dealing with this problem than deciding it in advance or imposing conservative 
pre-conditions on trigger sets. Stronger agency can help counter the problem of 
non-termination in two ways. First, the separation of multiple means to achieve 
the goal of a trigger, allows an agent to choose another means to achieve its 
goal, if the means originally chosen has undesirable side-effects. Second, not 
every possible execution of a non-terminating trigger set is non-terminating. 
This means, that the agents can cooperate to avoid the non-terminating execu­
tion sequence of their triggered actions. 
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As an example, consider the trigger activation graph given in Figure 10.1. In this 
graph, the nodes are database states and the edges are trigger executions. For 
example, in database state c trigger t3 is triggered, whose execution brings the 
database in state e. The trigger set in this graph is non-terminating, since there 
exists a cycle of triggers t2 and tl in this activation graph, which keeps the 
database shuttling between database states band c. We can easily see, however, 
that there is also a terminating execution sequence for this trigger set, viz., the 
sequence tl; t3; t2; tl that leads to the stable state f. 

a 

ti 

b d 

t3 

12 ti t2 

C 

t3 

Figure 10.1: A trigger activation graph 

The advantages given above of strong agency over the weak agency in an active 
database also apply to dynamic database constraints. In DEGAS, the dynamic 
constraints of an autonomous object are given by the lifecycles. This lifecycle 
is fixed. Hence, a message that does not fit in the lifecycle is rejected outright. If 
an autonomous object had higher level reasoning facilities, it would be possible 
to negotiate a deal with the sending agent. For example, the receiving object 
might give an indication of the time when it will be able to execute the requested 
action. The sending object can then decide, depending on its other goals and 
obligations, whether it can wait or take another course to achieve its goal. 

If negotiations between agents are to take place between different agents in the 
databases, we need, besides a language to conduct the negotiations in, a mea­
sure of the value of the different propositions being negotiated. This implies 
the use of a monetary model. The use of such a model is experimented in a 
somewhat different context in the Mariposa system [Stonebraker et al., 19961. 
Here, the allocation of data storage and query processing in a distributed da­
tabase is managed through a bidding system. The fixed bidding protocol in 
Mariposa, however, leads to undesirable effects in the allocation of data. In 
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fact, it turns out that the richest site will end up with all the data, which means 
that it only gets richer by consequently under-bidding the other sites for query 
processing. Clearly, more sophisticated bidding and negotiation protocols are 
needed, which leaves the components (agents) in the database more room for 
manoeuvring to avoid undesired outcomes. For example, in the example of the 
richest site taking all data, the other sites might temporarily adopt a "dumping" 
strategy, i.e., working at a loss in order to gain back work and data. 

The examples given of agents working out solutions for databases problems 
by negotiating between themselves, can only work under certain assumptions 
about their intentions. As research in game theory has shown [Rosenschein and 
Zlotkin, 1994), it is difficult to come up with strategies without undesirable 
outcomes, if not all players are cooperative. Therefore, agent research often as­
sumes, as [Shoham, 1993) does, the veracity and benevolence of agents towards 
each other. This assumption cannot be held if agents in our information sys­
tem must interact with agents owned by other people or organisations. Hence, 
agent research must find a solution for dealing with uncooperative, lying and 
malevolent agents in order to be able to form the foundation of an information 
system, or an information infrastructure in general. 

Further potential of agent technology in databases is found on the architectural 
side. If agent technology matures enough to form the basis of a database man­
agement system, this will implicate a large gain in flexibility of a DBMS. The dif­
ferent components of a DBMS, such as query optimiser, storage manager, etc., 
can each be an agent with its own goals and strategies. Besides the increased 
flexibility of the individual components, this also means increased freedom for 
a systems designer to choose the components constituting his DBMS. 

10.1.3 Conclusions 

In this section, we discussed the autonomous behaviour that active databases 
add to traditional databases. We saw that DEGAS implements weak agency, since 
DEGAS objects interact with each other, react to their environment, and au­
tonomously pursue their defined goals. These functions, however, are limited 
by their fixed, pre-programmed character. 

The extension of autonomous DEGAS objects to stronger agents with general 
purpose reasoning abilities greatly increases the adaptability and flexibility of 
an active database system. The improvements originate in the ability to adapt 
strategies to the actual situation, and the ability of agents to cooperate with 
each other. Hence, the incorporation of agent technology in databases opens 
up new perspective in tackling long-standing database issues. Increased cou­
pling and inter-operation of information systems, however, also poses some 
new challenges for agent technology in order to deal with lying or malicious 
agents from outside. 
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10.2 Ubiquitous Databases 

As already mentioned in Section 10.1, we see a move towards ubiquitous com­
puting [Weiser, 1993, Abowd, 19961. In a ubiquitous computing environment, 
computers are everywhere and blend seamlessly into the physical environment. 
This kind of computing environment is stimulated by the ever decreasing cost 
of processing power and memory. This section discusses the impact of ubiqui­
tous computing on data management. 

As a general rule, information recorded by computers is data previously re­
corded on paper. Initially, computers were used to store large paper file col­
lections in centralised databases, mainly in administrative applications. Nowa­
days, there is hardly an organisation recording and processing large volumes 
of data that does not use computers. Relational database management systems 
are particularly suited for managing large volumes of simply structured data. 

From applications with bulk data, the use of computerised data storage spread 
to applications with more complex data. Additionally, the diversity in structure 
of the data is much higher. An example are computer-aided design systems. The 
elaborate modelling concepts in object-oriented databases make them highly 
suitable to manage the complexly structured data in this type of application. 

As a next step, the World Wide Web, including intranets and extranets, is a 
prime example of the increasing use of computers to store less-structured 
data. Information previously distributed and stored on paper is nowadays dis­
tributed and stored electronically. Furthermore, almost every piece of informa­
tion in this environment has a different structure, meaning a further increase 
in diversity of data stored. 

Extrapolating the development of data storage, all written information will ul­
timately be stored in electronic form. Furthermore, we see an increasing popu­
larity of mobile computing and communication devices. As a result of these de­
velopments, we will see an increasing demand for information to be available in 
computerised form everywhere. In such a situation, the model of a centralised 
database is not tenable anymore. The low cost and widespread distribution of 
computing power means that the best place to store data on artifacts in the real 
world will be these artifacts themselves. 

An application area where a move towards ubiquitous computing might be ben­
eficial is the shipment of maritime containers. Currently, the physical flow of 
goods and the information flow are separated. For example, the information 
needed to compile the bill of lading, describing a ship's cargo, is taken from 
the transport orders of each container. In a paper-based system, the transport 
order is sent to the container terminal in advance of the container's arrival by 
train or lorry at the terminal. Although this might be handled by an Electronic 
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Data Interchange system, the actual arrival of the container still needs to con­
firmed manually. 

Suppose now, that each container has its own small computer with a wireless 
networking capability. All necessary information about the container and its 
load are recorded on this computer. Then, a ship's bill of lading is generated 
simply by aggregating these data from all containers on the ship. The moment a 
container is loaded onto the ship, it is added to the bill of lading. Furthermore, 
this functionality increases the efficiency of the terminal. If a lorry loaded with 
a container arrives at the port, the driver no longer needs to hand over the 
container manually. Instead, the container's arrival is registered automatically 
at the gate and the required information is transferred to the terminal man­
agement system. The driver can then immediately be directed to the place to 
unload the lorry. 

What are the requirements on a model for a ubiquitous computing environ­
ment? The assumptions underlying DEGAS we gave in Section 2.4 also apply to 
the objects in a ubiquitous computing environment: 

1. Every object has a separate thread of execution. 

2. Complete encapsulation of the behaviour of an object. 

3. Strictly regulated access to an object. 

4. Minimal guarantees about an object's behaviour to other objects. 

5. Minimal dependency of an object on the behaviour of other objects. 

6. Autonomy must be given up explicitly. 

As a result of these assumptions, DEGAS object function autonomously on an 
infrastructure that facilitates object creation and communication. Two main 
modifications need to be made to make the DEGAS model fit for ubiquitous 
data management. First, objects need to be aware of their location. Second, the 
class structure must be changed to conformance-based model. 

Addition of location awareness happens both at the hardware and at the soft­
ware side of a computing unit. A computing unit must have hardware to deter­
mine its position. This may be based on a cellular system or on a GPS-based2 

device. On the software side, every object has a standard attribute location 
recording its location. This attribute is fed by the hardware part of the comput­
ing unit. Location information can then be used to establish relations based on 
nearness. For example, a container has a relation with the ship it is on, which is 
established at the time the container is loaded onto the ship. In a cellular sys­
tem an object always has a relation with the cell it is in. As part of this relation, 

2Global Positioning System. See [Hofmann-Wellenhof et al., 1994) for details. 
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the cell can inform other objects of the object's presence. For example, the cell 
representing the container terminal's area informs the terminal management 
system of new container objects entering the cell. This kind of functionality is 
well-suited to be modelled by ECA rules. 

To cater for the diversity of data in a ubiquitous computing environment, the 
class structure of DEGAS needs to be loosened. Instead of creating objects as 
instances of a class, classes become classifications of objects. An object belongs 
to a class, if it has the capabilities defined by the class. It can, however, have 
additional capabilities not present in other instances in the class. This kind of 
object classification was proposed in, among others, the Goblin database pro­
gramming language [Kersten, 19911. In such a system, objects can be created by 
cloning. Furthermore, it means a generalisation of the DEGAS addon mechanism 
to arbitrary additions of individual capabilities. 

10.3 Conclusion 

In this chapter, we provided an outlook on future evolution of DEGAS. The key 
notion in this outlook is agency. In Section 10.1, we discussed the impact of 
agents on active databases. We showed that an active object-oriented database, 
like DEGAS, already implements weak agency. Furthermore, stronger agency in 
an active database will allow increased flexibility in dealing with application 
constraints. It also offers new opportunities to solve long-standing issues in 
active databases. 

Section 10.2 took the reverse view. It discussed data management in ubiquitous 
computing environments based on agents. From this discussion, we learned 
that incremental modifications of the DEGAS model yield a model for a ubiqui­
tous computing environment, viz., addition of location awareness and a looser 
class structure. 



226 10.3. CONCLUSION 



227 

Chapter 11 

Conclusion 

In this thesis, we formulated DEGAS, a database of autonomous objects, which 
positively answered the research questions in the problem statement in Chap­
ter 1. The formulation and application of DEGAS led to the following answers: 

1. A DEGAS database is easy implementable, since an implementation re­
quires only two entities, a basic DEGAS object and a system layer, as was 
discussed in Chapter 7. 

2. DEGAS facilitates a clean, modularised application design, as was shown 
in Chapter 8. The application designs are characterised by small units of 
functionality, that facilitates easy understanding of the design. 

3. DEGAS has a direct, straightforward formalisation {given in Chapter 5), 
that has the additional advantage of formalising a historical object data­
base. 

Furthermore, DEGAS contributes to research in active, temporal, and object­
oriented databases in a number of ways. The main contributions of DEGAS to 
database research can be summed up as follows, in order of importance: 

1. Modularisation of an active database. A wider application of active rules 
leads to large rule sets. To manage these rule sets some form of mod­
ularisation is needed. In DEGAS, rules are encapsulated in objects. Fur­
thermore, encapsulation of rules is a consequent application of object­
oriented principles to active databases. Chapter 8 showed how this en­
capsulation facilitates a clear application design, showing the quality of 
the DEGAS modelling primitives. 

2. Object evolution. DEGAS' addon mechanism provides a straightforward 
mechanism for object evolution. This mechanism is well-suited to imple­
ment object roles. Furthermore, the combination of the addon mechanism 
with rule encapsulation facilitates a clear modularisation with just-in-time 
availability of capabilities, as was shown through the workflow example 
in Chapter 8. 
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3. A process-algebraic, formalisation and integration of active and histor­
ical databases. The formalisation of DEGAS semantics by process algebra 
has two main advantages. First, it shows that active and historical da­
tabases can be specified by a single semantics. In particular, active rule 
semantics are defined relative to an object's history. Second, the use of 
process algebra for event expressions allows a direct definition of the se­
mantics without intermediate translations. 

4. Queries in an active database. The event detection facility to support 
rules in an active database can also be used to specify temporal condi­
tions. Hence, the defined query model for DEGAS has an event-condition 
combination as the selector of a query. This gives us novel ways to specify 
temporal conditions. An added advantage is that the semantics of rules 
and queries share the event-condition part. 

5. Undecidability results for rules. We showed that termination and conflu­
ence are undecidable predicates for rule sets in a subset of DEGAS. Hence, 
these are predicates are also undecidable for DEGAS 

The development of DEGAS learned us that a database of autonomous objects 
is a feasible proposition in a number of aspects. The formalisation of a da­
tabase at an object level shows clear advantages, especially in the integration 
of active and historical dimensions. The straightforward implementation of a 
DEGAS database based on just two primitive elements, the basic DEGAS object 
and a system layer, contributes to the practical attractiveness of DEGAS. From 
the design of a workflow application we learned that the DEGAS model leads to 
easy-to-understand and flexible object designs for applications. 

Furthermore, DEGAS offers its innovations in a model that is an evolution of ex­
isting object models. A standard object design using only attributes and meth­
ods can be translated to DEGAS without any modification besides the addition 
of a lifecycle. Hence, DEGAS facilitates a gradual migration path from traditional 
object models. 

A number of DEGAS' aspects offer perspective for further research. These con­
cern the formalisation of object semantics, the facilities for evolution, and the 
looser coupling of capabilities and objects. 

One of the innovative aspects of DEGAS is the integrated formalisation of ac­
tive and historical databases. In DEGAS, this combination arose from a careful 
analysis of an active database's requirements. A generalisation of this model to 
temporal databases with multiple temporal dimensions raises some interesting 
issues. These are mainly related to the possibility of inserting events with past 
valid timestamps. Additional rule triggering modes are necessary, since trigger­
ing a rule on an event with a past valid time will not always be sensible in an 
application. A further complication in this situation is the lifecycle. Insertion 
of an event with a past valid time can cause a violation of the lifecycle by a 
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sequence of past events. Since history cannot be undone, lifecycles must also 
specify what happens in case of violations. Clearly, this requires a more so­
phisticated specification formalism than process algebra, possibly some form 
of deontic logic [Von Wright, 1972, Meyer and Wieringa, 19911. 

The current facilities for evolution in DEGAS only allow object evolution. These 
facilities can be extended to the class level of DEGAS to implement an aspect of 
schema evolution, viz., changes of a class' capabilities. Class evolution is more 
complicated than object evolution due to the number of objects involved, viz., 
all instances of a class. Enforcement of schema changes is mainly complicated 
by the existence of multiple class objects. Application of a voting protocol is 
necessary to avoid schema conflicts between class objects. A further extension 
of evolution facilities will probably fit better with class membership based on 
type conformance. The introduction of DEGAS-style schema evolution facilities 
in a model with conformance-based class membership for autonomous objects 
forms an interesting proposition. In such an environment, a class informs its 
members of the update to the class' schema. As a consequence of object auto­
nomy, each member gets the opportunity to respond, whether it will follow the 
schema update and remain a member of the class, or not. 

DEGAS' application designs add capabilities to an object at the time they are 
needed. This is a consequence of the distinction between inherent and tran­
sient capabilities. A further feature of DEGAS is that relation objects are exis­
tentially dependent on other objects. Hence, their existence is inherently tempo­
ral, meaning that a relation object is also a temporal grouping of capabilities. 
Furthermore, data stored in relations will often be derived from its partners' 
data. These features all imply a looser coupling of data and the entities group­
ing data. This coupling might be further loosened by dropping the distinction 
between objects and queries. This would lead to a model with primitive data 
items, as small a single capabilities, and higher level groupings of data. These 
groupings define a small "schema" of information, that is assembled from prim­
itive data in the system. These data groupings are similar to DEGAS queries in 
their definition of data derived from primitive data. Leaving the distinction be­
tween objects and queries means that queries become autonomous objects too. 
Hence, the objects representing data groupings assemble the data themselves, 
like DEGAS relation objects obtain data from the partners in the relation. 

Summing up this thesis, we conclude that a database of autonomous objects is 
a good proposition. It leads to a clean object model, is founded on a straight­
forward formalisation, and can be implemented on a small base of primitives. 
Furthermore, it opens up new perspectives for further developments of object­
based systems. 
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Nederlandse Samenvatting 

Het onderzoek gerapporteerd in dit proefschrift vond plaats op het gebied van 
databases, ofwel gegevensbanken. De centrale vraagstelling ging over een data­
base met maximale autonomie voor de componenten: 

1. Is een dergelijk database model eenvoudig te realiseren? 

2. Is het hanteerbaar voor de ontwerper van een applicatie? 

3. Is het op heldere wijze te formaliseren? 

Deze vraagstelling wordt in alle aspecten positief beantwoord door de construe­
tie van DEGAS, een database taal gebaseerd op autonome objecten. 

De behoefte aan systemen van autonome componenten ontstaat door een aan­
tal ontwikkelingen. In de informatietechnologie zien wij een ontwikkeling naar 
systemen gebaseerd op netwerken van mobiele computers. Bovendien ontstaan 
er grote systemen, die draaien op computers met een groot aantal processoren. 
In dit soort omgevingen zal het zeer moeilijk zijn centrale coordinatie te voeren 
over alle componenten. Daarnaast verandert de manier waarop organisaties in­
formatiesystemen gebruiken. In toenemende mate worden informatiesystemen 
van verschillende organisaties gemtegreerd. Als gevolg daarvan ontstaan syste­
men waarvan de onderdelen verschillende eigenaars hebben. 

Deze ontwikkelingen leiden er toe dat centrale coordinatie hetzij niet mogelijk 
is, hetzij niet wenselijk is. Daarom is er een behoefte aan systemen gebaseerd 
op autonome objecten. Dit zijn gegevensobjecten, waar alle kennis over een 
object in het object zelf gedefinieerd is. Bovendien is een autonoom object niet 
onderworpen aan enige vorm van centrale controle. 

Deze aanname vormt de basis van DEGAS. Een DEGAS database bestaat uit objec­
ten. Ieder object bevat de definitie van een element uit het toepassingsdomein 
van de database, bijvoorbeeld een bankrekening. Een object heeft bepaalde at­
tributen, die de gegevens over het object bevatten. Voorbeelden voor een bank­
rekening object zijn het saldo en de maximum limiet voor een negatief saldo. 
Daarnaast wordt het gedrag van het object gedefinieerd. Dit gedrag bestaat uit 
de mogelijke acties van het object, methoden genoemd. Voor een bankrekening 
zijn dit acties als het crediteren en debiteren van de rekening. 

DEGAS voegt nog een tweetal dimensies van gedrag toe aan traditionele object­
georienteerde databases. De "lifecycle" definieert een ordening en condities op 
de uitvoering van acties door het object. Een voorbeeld is de eis dat er nooit 
meer dan een keer per maand geld mag worden opgenomen van een spaarreke­
ning. 

Daarnaast specificeren regels dat bepaalde acties moeten worden uitgevoerd 
in reactie op een bepaalde situatie. Deze is gedefinieerd door een "event", de 
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uitvoering van bepaalde acties door het object, en door een conditie op de toe­
stand van de database. Een voorbeeld is een automatische overschrijving van 
een betaalrekening naar een spaarrekening, als het saldo van de bankrekening 
groter dan Hfl.10.000 is. Gezamenlijk noemen wij attributen, methoden, lifecy­
cle en regels ook wel de capaciteiten van het object. 

Verbanden tussen objecten worden gemodelleerd door relaties. Een relatie is 
zelf ook een object, om gegevens en gedrag van de relatie te kunnen opslaan in 
de database. Een voorbeeld van een relatie tussen een persoon en een bank is 
de bankrekening. 

De capaciteiten van een DEGAS object kunnen worden uitgebreid met behulp 
van "addons". Een addon definieert een aantal capaciteiten, die toegevoegd kun­
nen worden aan een object, tijdens zijn bestaan. Het voornaamste gebruik van 
addons is het modelleren van de rollen van objecten in relaties. Een relatie geeft 
een object nieuwe capaciteiten. Zo geeft een bankrekening een persoon de mo­
gelijkheid giraal te betalen. Een persoon object zal daarom worden uitgebreid 
met een rekeninghouder addon, als het een bankrekening opent. 

De bijdragen van DEGAS aan de ontwikkeling van database management syste­
men kunnen als volgt samengevat worden: 

1. Modularisatie van actieve databases. Door de consequente toepassing 
van het encapsulatie principe zijn regels in de database op dezelfde ma­
nier gemodulariseerd als de data. Dit zorgt voor een beter inzicht in de 
gedefinieerde regels. 

2. Object Evolutie. In veel toepassing zal een object zich tijdens zijn levens­
duur ontwikkelen. Dit betekent dat er dynamisch capaciteiten toegevoegd 
en weggelaten moeten kunnen worden. DEGAS biedt hiervoor een faciliteit 
in de vorm van het addon-mechanisme. 

3. Formalisatie en integratie van actieve en historische databases. Het ge­
bruik van proces algebra voor zowel de specificatie van event expressies, 
als de specificatie van de historie, leidt tot een formalisatie van actieve 
en historische databases. Met name de directe definitie van de semantiek 
van regels in termen van de historie is een voordeel. 

4. Queries in een actieve database. De functionaliteit in actieve databases 
om event patronen te herkennen in de geschiedenis van een object kan 
ook gebruikt worden om vragen te stellen aan de database. Dit maakt 
het mogelijk om te refereren aan historische situaties zonder het tijdstip 
daarvan precies te hoeven weten. 

5. Onbeslisbaarheid resultaten voor regels. In dit proefschrift hebben wij 
bewezen, dat terminatie en confluentie van regelverzamelingen onbeslis­
bare predicaten zijn voor een subtaal van DEGAS. Dit betekent dat deze 
predicaten ook onbeslisbaar zijn voor DEGAS zelf. 
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De voordelen van DEGAS bij het modelleren van toepassingen laten wij zien 
door middel van een voorbeeld. Het gekozen voorbeeld is "workflow manage­
ment", het sturen van gecomputeriseerde gegevensstromen binnen een organi­
satie. DEGAS voldoet om alle internationaal gestandardiseerde elementen van 
workflow management te modelleren. Bovendien zorgen de modelleerconcep­
ten van DEGAS voor een flexibel model, waar de benodigde sturings- en toepas­
singsinformatie op het juiste moment beschikbaar is. 

Een antler aspect van het ontwerpen van actieve databases is het verifieren van 
gewenste eigenschappen van verzamelingen regels. Een voorbeeld van zo'n ei­
genschap is terminatie, dat wil zeggen, de eigenschap dat elke executie van een 
verzameling regels eindig is. In dit proefschrift laten wij zien dat het reeds voor 
zeer eenvoudige regels niet meer mogelijk is om deze eigenschap te voorspel­
len. 

Tenslotte geven wij aan het einde van dit proefschrift nog een vooruitblik op de 
toekomst van actieve databases. Deze zal liggen in een verwevenheid met zo­
genaamde intelligente agenten, zelfstandig functionerende software voorzien 
van kunstmatige intelligentie. Het toepassen van deze technologie in databases 
biedt interessante voordelen. Verder laten wij zien dat beperkte uitbreidingen 
voldoen om DEGAS te laten functioneren als programmeertaal voor intelligente 
agenten. 
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