369 research outputs found

    Gesture Based Home Automation for the Physically Disabled

    Get PDF
    Paralysis and motor-impairments can greatly reduce the autonomy and quality of life of a patient while presenting a major recurring cost in home-healthcare. Augmented with a non-invasive wearable sensor system and home-automation equipment, the patient can regain a level of autonomy at a fraction of the cost of home nurses. A system which utilizes sensor fusion, low-power digital components, and smartphone cellular capabilities can extend the usefulness of such a system to allow greater adaptivity for patients with various needs. This thesis develops such a system as a Bluetooth enabled glove device which communicates with a remote web server to control smart-devices within the home. The power consumption of the system is considered as a major component to allow the system to operate while requiring little maintenance, allowing for greater patient autonomy. The system is evaluated in terms of power consumption and accuracy to prove its viability as a home accessibility tool

    Final report on the evaluation of RRM/CRRM algorithms

    Get PDF
    Deliverable public del projecte EVERESTThis deliverable provides a definition and a complete evaluation of the RRM/CRRM algorithms selected in D11 and D15, and evolved and refined on an iterative process. The evaluation will be carried out by means of simulations using the simulators provided at D07, and D14.Preprin

    EUROPEAN CONFERENCE ON QUEUEING THEORY 2016

    Get PDF
    International audienceThis booklet contains the proceedings of the second European Conference in Queueing Theory (ECQT) that was held from the 18th to the 20th of July 2016 at the engineering school ENSEEIHT, Toulouse, France. ECQT is a biannual event where scientists and technicians in queueing theory and related areas get together to promote research, encourage interaction and exchange ideas. The spirit of the conference is to be a queueing event organized from within Europe, but open to participants from all over the world. The technical program of the 2016 edition consisted of 112 presentations organized in 29 sessions covering all trends in queueing theory, including the development of the theory, methodology advances, computational aspects and applications. Another exciting feature of ECQT2016 was the institution of the Takács Award for outstanding PhD thesis on "Queueing Theory and its Applications"

    Energy and Delay Efficient Computation Offloading Solutions for Edge Computing

    Get PDF
    This thesis collects a selective set of outcomes of a PhD course in Electronics, Telecommunications, and Information Technologies Engineering and it is focused on designing techniques to optimize computational resources in different wireless communication environments. Mobile Edge Computing (MEC) is a novel and distributed computational paradigm that has emerged to address the high users demand in 5G. In MEC, edge devices can share their resources to collaborate in terms of storage and computation. One of the computational sharing techniques is computation offloading, which brings a lot of advantages to the network edge, from lower communication, to lower energy consumption for computation. However, the communication among the devices should be managed such that the resources are exploited efficiently. To this aim, in this dissertation, computation offloading in different wireless environments with different number of users, network traffic, resource availability and devices' location are analyzed in order to optimize the resource allocation at the network edge. To better organize the dissertation, the studies are classified in four main sections. In the first section, an introduction on computational sharing technologies is given. Later, the problem of computation offloading is defined, and the challenges are introduced. In the second section, two partial offloading techniques are proposed. While in the first one, centralized and distributed architectures are proposed, in the second work, an Evolutionary Algorithm for task offloading is proposed. In the third section, the offloading problem is seen from a different perspective where the end users can harvest energy from either renewable sources of energy or through Wireless Power Transfer. In the fourth section, the MEC in vehicular environments is studied. In one work a heuristic is introduced in order to perform the computation offloading in Internet of Vehicles and in the other a learning-based approach based on bandit theory is proposed

    Proceedings of the First Karlsruhe Service Summit Workshop - Advances in Service Research, Karlsruhe, Germany, February 2015 (KIT Scientific Reports ; 7692)

    Get PDF
    Since April 2008 KSRI fosters interdisciplinary research in order to support and advance the progress in the service domain. KSRI brings together academia and industry while serving as a European research hub with respect to service science. For KSS2015 Research Workshop, we invited submissions of theoretical and empirical research dealing with the relevant topics in the context of services including energy, mobility, health care, social collaboration, and web technologies

    On the performance, availability and energy consumption modelling of clustered IoT systems

    Get PDF
    Wireless sensor networks (WSNs) form a large part of the ecosystem of the Internet of Things (IoT), hence they have numerous application domains with varying performance and availability requirements. Limited resources that include processing capability, queue capacity, and available energy in addition to frequent node and link failures degrade the performance and availability of these networks. In an attempt to efficiently utilise the limited resources and to maintain the reliable network with efficient data transmission; it is common to select a clustering approach, where a cluster head is selected among the diverse IoT devices. This study presents the stochastic performance as well as the energy evaluation model for WSNs that have both node and link failures. The model developed considers an integrated performance and availability approach. Various duty cycling schemes within the medium-access control of the WSNs are also considered to incorporate the impact of sleeping/idle states that are presented using analytical modeling. The results presented using the proposed analytical models show the effects of factors such as failures, various queue capacities and system scalability. The analytical results presented are in very good agreement with simulation results and also present an important fact that the proposed models are very useful for identification of thresholds between WSN system characteristics

    On the performance, availability and energy consumption modelling of clustered IoT systems

    Get PDF
    Wireless sensor networks (WSNs) form a large part of the ecosystem of the Internet of Things (IoT), hence they have numerous application domains with varying performance and availability requirements. Limited resources that include processing capability, queue capacity, and available energy in addition to frequent node and link failures degrade the performance and availability of these networks. In an attempt to efficiently utilise the limited resources and to maintain the reliable network with efficient data transmission; it is common to select a clustering approach, where a cluster head is selected among the diverse IoT devices. This study presents the stochastic performance as well as the energy evaluation model for WSNs that have both node and link failures. The model developed considers an integrated performance and availability approach. Various duty cycling schemes within the medium-access control of the WSNs are also considered to incorporate the impact of sleeping/idle states that are presented using analytical modeling. The results presented using the proposed analytical models show the effects of factors such as failures, various queue capacities and system scalability. The analytical results presented are in very good agreement with simulation results and also present an important fact that the proposed models are very useful for identification of thresholds between WSN system characteristics
    • …
    corecore