67 research outputs found

    Amazon hydrology from space : scientific advances and future challenges

    Get PDF
    As the largest river basin on Earth, the Amazon is of major importance to the world's climate and water resources. Over the past decades, advances in satellite-based remote sensing (RS) have brought our understanding of its terrestrial water cycle and the associated hydrological processes to a new era. Here, we review major studies and the various techniques using satellite RS in the Amazon. We show how RS played a major role in supporting new research and key findings regarding the Amazon water cycle, and how the region became a laboratory for groundbreaking investigations of new satellite retrievals and analyses. At the basin-scale, the understanding of several hydrological processes was only possible with the advent of RS observations, such as the characterization of "rainfall hotspots" in the Andes-Amazon transition, evapotranspiration rates, and variations of surface waters and groundwater storage. These results strongly contribute to the recent advances of hydrological models and to our new understanding of the Amazon water budget and aquatic environments. In the context of upcoming hydrology-oriented satellite missions, which will offer the opportunity for new synergies and new observations with finer space-time resolution, this review aims to guide future research agenda toward integrated monitoring and understanding of the Amazon water from space. Integrated multidisciplinary studies, fostered by international collaborations, set up future directions to tackle the great challenges the Amazon is currently facing, from climate change to increased anthropogenic pressure

    Inundações em múltiplas escalas na América do Sul : de áreas úmidas a áreas de risco

    Get PDF
    South America hosts some of the major river systems on Earth, often associated with large floodplains that are inundated every year, such as the Pantanal and many Amazon wetlands. Interfluvial wetland complexes are also found across the continent, with particular geomorphic settings and unique savanna or grassland vegetation. South American wetlands can provide distinctive ecosystem services such as biodiversity supporting, food provision and flood attenuation. On the other hand, humans have settled around wetlands for millennia, benefiting from all resources they provide, and have adapted to its flood regime as well adapted its landscape, defining what has been called human-water systems. Yet, an increasing number of South American people have been negatively affected by extreme floods. Moving from continental to local scales, this thesis invites the readers to a journey across major South American wetland systems and their unique hydrological dynamics, under the light of the satellite era and the breakthrough advances on hydrologic-hydrodynamic modeling in the last decades. This work is founded on the proposition of a continental wetland research agenda, and based on a comparative hydrology approach. Floods are studied through both natural wetland processes and hazard dimensions. The first part presents a set of studies on the Amazon basin wetlands, from the development of 1D and 2D models to simulate hydrological processes in contrasting wetland types in the Negro river basin to the basin-wide intercomparison of 29 inundation products and assessment of long-term inundation trends. While most wetland studies have been conducted over the central Amazon floodplains, major knowledge gaps remain for understanding the hydrological dynamics of interfluvial areas such as the Llanos de Moxos and Negro savannas, where the inundation is less predictable and shallower. The second part of the thesis leverages satellite-based datasets of multiple hydrological variables (water levels, total water storage, inundation extent, precipitation and evapotranspiration) to address the hydrology of 12 large wetland systems in the continent. It shows the major differences among river floodplains and interfluvial wetlands on the water level annual amplitude, time lag between precipitation and inundation, and evapotranspiration dynamics. Finally, the third part addresses the flood hazard component of human-wetland interactions through large-scale assessments of flood hazard dynamics and effects of built infrastructure (dams) on flood attenuation. The dynamics of the great 1983 floods, one of the most extreme years ever recorded in the continent, is assessed with a continental hydrological model. Then, the capabilities of continental models to simulate the river-floodplain-reservoir continuum that exists across large river basins are assessed with case studies for major river basins affected by human intervention (Itajaí-Açu and upper Paraná river basins in Brazil). While this thesis enlightens some relevant hydrological processes regarding South American floods and their positive and negative effects to human societies and ecosystems in general, major knowledge gaps persist and provide great research opportunities for the near future. The launching of many hydrology-oriented satellite missions, and an ever-growing computational capacity, make the continental hydrology agenda related to wetlands and floods a great research topic for the upcoming years.A América do Sul abriga alguns dos maiores sistemas hídricos do planeta, frequentemente associados a grandes planícies de inundação, como o Pantanal e várias áreas da Amazônia. Áreas úmidas (AU’s) interfluviais são também encontrados no continente, com características geomorfológicas particulares, e vegetações de savana e gramíneas únicas. As AU’s da América do Sul provêm diversos serviços ecossistêmicos, como suporte à biodiversidade, provisão de alimento e atenuação de cheias. Humanos têm se estabelecido ao redor de AU’s por milênios, se beneficiando dos recursos providos por elas. Eles se adaptaram ao seu regime de inundação, e adaptaram sua paisagem, definindo o que tem sido chamado de sistemas sociedade-água. Por outro lado, um número crescente de pessoas têm sido negativamente afetado por cheias extremas. Da escala continental à local, esta tese convida o leitor a uma jornada através de importantes AU’s da América do Sul e suas particulares dinâmicas de inundação, sob a luz da era dos satélites e dos grandes avanços em modelagem hidrológica-hidrodinâmica das últimas décadas. Este trabalho é baseado na proposta de uma escala continental de pesquisa sobre AU’s, e é baseado em uma abordagem de hidrologia comparativa. Inundações são estudadas em múltiplas dimensões, de processos de AU’s naturais à questão do perigo para humanos. A primeira parte apresenta uma série de estudos sobre as AU’s da bacia amazônica, desde o desenvolvimento de modelos 1D e 2D para simular processos hidrológicos em tipos contrastantes de AU’s na bacia do Rio Negro, até a intercomparação de 29 produtos de inundação e avaliação de tendências de inundações de longo prazo para a escala da bacia amazônica. Enquanto a maioria dos estudos de AU’s foi conduzida nas várzeas do rio Amazonas, importantes lacunas do conhecimento permanecem para a compreensão da dinâmica hidrológica de áreas interfluviais como Llanos de Moxos e as savanas do rio Negro, onde a inundação é menos previsível e mais rasa. A segunda parte da tese utiliza dados oriundos de satélites relacionados a múltiplas variáveis hidrológicas (níveis d’água, armazenamento total de água, extensão de áreas inundadas, precipitação e evapotranspiração) para estudar a hidrologia de 12 grandes sistemas de AU’s do continente. São destacadas as grandes diferenças entre planícies de inundação e AU’s interfluviais em termos de amplitude anual de níveis d’água, defasagem entre precipitação e inundação, e dinâmica de evapotranspiração. Por fim, a última parte da tese aborda o componente de perigo de inundação das interações sociedade-água através de avaliações em grande escala da dinâmica de inundação e dos efeitos de infraestruturas construídas (como barragens) na atenuação de cheias. A dinâmica das grandes cheias de 1983, um dos anos mais extremos já registrados no continente, é avaliada com um modelo hidrológico continental. Depois, a capacidade de modelos continentais para simular o continuum entre rios, planícies de inundação e reservatórios que existe em grandes bacias hidrográficas é avaliada com estudos de casos para importantes bacias afetadas pela intervenção humana (bacia dos rios Paraná e Itajaí-Açu). Enquanto esta tese avança a compreensão de relevantes processos hidrológicos relacionados a inundações na América do Sul em múltiplas escalas, bem como seus efeitos positivos e negativos nas sociedades humanas e ecossistemas em geral, importantes lacunas do conhecimento persistem e fomentam importantes oportunidades de pesquisa futuras. O lançamento de várias missões satelitais orientadas a hidrologia, e uma cada vez mais crescente capacidade computacional, faz da agenda continental de hidrologia relacionada a AU’s e inundações um grande tópico de pesquisa para os próximos anos

    Hydrologie du bassin amazonien : compréhension et prévision fondées sur la modélisation hydrologique-hydrodynamique et la télédétection

    Get PDF
    Le bassin Amazonien est connu comme le plus grand système hydrologique du monde et pour son rôle important sur le système terre, influençant le cycle du carbone et le climat global. Les pressions anthropiques récentes, telles que la déforestation, les changements climatiques, la construction de barrage hydro-électriques, ainsi que l'augmentation des crues et sècheresse extrêmes qui se produisent dans cette région, motivent l'étude de l'hydrologie du bassin Amazonien. Dans le même temps, des méthodes hydrologiques de modélisation et de surveillance par observation satellitaire ont été développées qui peuvent fournir les bases techniques à cette fin. Ce travail a eu pour objectif la compréhension et la prévision du régime hydrologique du bassin Amazonien. Nous avons développé et évaluer des techniques de modélisation hydrologique-hydrodynamique de grande échelle, d'assimilation de données in situ et spatiales et de prévision hydrologique. L'ensemble de ces techniques nous a permis d'explorer le fonctionnement du bassin Amazonien en terme de processus physiques et de prévisibilité hydrologique. Nous avons utilisé le modèle hydrologique-hydrodynamique de grande échelle MGB-IPH pour simuler le bassin, le forçage précipitation étant fourni par l'observation spatiale. Les résultats de la modélisation sont satisfaisants lorsque validés à partir de données in situ de débit et de hauteurs d'eau mais également de données dérivées de l'observation spatiale incluant les niveaux d'eau déduits de l'altimètrie radar, le contenu en eau total issu de la gravimétrie satellitaire, l'extension des zones inondées. Nous avons montré que les eaux superficielles sont responsables en grande partie de la variation du stock total d'eau, l'influence des grands plans d'eau sur la variabilité spatiale des précipitations et l'influence des plaines d'inondation et des effets de remous sur la propagation des ondes de crues. Nos analyses ont montré le rôle prépondérant des conditions initiales, en particulier des eaux superficielles, pour la prévisibilité des grands fleuves Amazoniens, la connaissance des précipitations futures n'ayant qu'une influence secondaire. Ainsi, pour améliorer l'estimation des variables d'état hydrologiques, nous avons développé, pour la première fois, un schéma d'assimilation de donnèes pour un modéle hydrologique-hydrodynamique de grande échelle, pour l'assimilation de donnèes de jaugeages in situ et dérivées de l'altimètrie radar (dèbit et hauteur d'eau), dont les résultats se sont montrés satisfaisants. Nous avons également développé un prototype de système de prévision des débits pour le bassin Amazonien, basé sur le modèle initialisé avec les conditions initiales optimales fournies par le schéma d'assimilation de données, et en utilisant la pluie estimée par satellite disponible en temps réel. Les résultats ont été prometteurs, le modèle étant capable de prévoir les débits dans les principaux fleuves Amazoniens avec une antécédence importante (entre 1 et 3 mois), permettant d'anticiper, par exemple, la sècheresse extrême de 2005. Ces résultats démontrent le potentiel de la modélisation hydrologique appuyé par l'observation spatiale pour la prévision des débits avec une grande antécédence dans les grands bassins versant mondiaux.The Amazon basin is known as the world's main hydrological system and by its important role in the earth system, carbon cycle and global climate. Recent anthropogenic pressure, such as deforestation, climate change and the construction of hydropower dams, together with increasing extreme floods and droughts, encourage the research on the hydrology of the Amazon basin. On the other hand, hydrological methods for modeling and remotely sensed observation are being developed, and can be used for this goal. This work aimed at understanding and forecasting the hydrology of the Amazon River basin. We developed and evaluated techniques for large scale hydrologic-hydrodynamic modeling, data assimilation of both in situ and remote sensing data and hydrological forecasting. By means of these techniques, we explored the functioning of the Amazon River basin, in terms of its physical processes and its hydrological predictability. We used the MGB-IPH large scale hydrologichydrodynamic model forced by satellite-based precipitation. The model had a good performance when extensively validated against in situ discharge and stage measurements and also remotely sensed data, including radar altimetry-based water levels, gravimetric-based terrestrial water storage and flood inundation extent. We showed that surface waters governs most of the terrestrial water storage changes, the influence of large water bodies on precipitation spatial variability and the importance of the floodplains and backwater effects on the routing of the Amazon floodwaves. Analyses showed the dominant role of hydrological initial conditions, mainly surface waters, on hydrological predictability on the main Amazon Rivers, while the knowledge of future precipitation may be secondary. Aiming at the optimal estimation of these hydrological states, we developed, for the first time, a data assimilation scheme for both gauged and satellite altimetry-based discharge and water levels into a large scale hydrologic-hydrodynamic model, and it showed a good performance. We also developed a forecast system prototype, where the model is based on initial conditions gathered by the data assimilation scheme and forced by satellite-based precipitation. Results are promising and the model was able to provide accurate discharge forecasts in the main Amazon rivers even for very large lead times (~1 to 3 months), predicting, for example, the historical 2005 drought. These results point to the potential of large scale hydrological models supported with remote sensing information for providing hydrological forecasts well in advance at world's large rivers and poorly monitored regions

    A Study of Types of Sensors used in Remote Sensing

    Get PDF
    Of late, the science of Remote Sensing has been gaining a lot of interest and attention due to its wide variety of applications. Remotely sensed data can be used in various fields such as medicine, agriculture, engineering, weather forecasting, military tactics, disaster management etc. only to name a few. This article presents a study of the two categories of sensors namely optical and microwave which are used for remotely sensing the occurrence of disasters such as earthquakes, floods, landslides, avalanches, tropical cyclones and suspicious movements. The remotely sensed data acquired either through satellites or through ground based- synthetic aperture radar systems could be used to avert or mitigate a disaster or to perform a post-disaster analysis

    Mapping Regional Inundation with Spaceborne L-Band SAR

    Full text link
    Shortly after the launch of ALOS PALSAR L-band SAR by the Japan Space Exploration Agency (JAXA), a program to develop an Earth Science Data Record (ESDR) for inundated wetlands was funded by NASA. Using established methodologies, extensive multi-temporal L-band ALOS ScanSAR data acquired bi-monthly by the PALSAR instrument onboard ALOS were used to classify the inundation state for South America for delivery as a component of this Inundated Wetlands ESDR (IW-ESDR) and in collaboration with JAXA’s ALOS Kyoto and Carbon Initiative science programme. We describe these methodologies and the final classification of the inundation state, then compared this with results derived from dual-season data acquired by the JERS-1 L-band SAR mission in 1995 and 1996, as well as with estimates of surface water extent measured globally every 10 days by coarser resolution sensors. Good correspondence was found when comparing open water extent classified from multi-temporal ALOS ScanSAR data with surface water fraction identified from coarse resolution sensors, except in those regions where there may be differences in sensitivity to widespread and shallow seasonal flooding event, or in areas that could be excluded through use of a continental-scale inundatable mask. It was found that the ALOS ScanSAR classification of inundated vegetation was relatively insensitive to inundated herbaceous vegetation. Inundation dynamics were examined using the multi-temporal ALOS ScanSAR acquisitions over the Pacaya-Samiria and surrounding areas in the Peruvian Amazon

    Holocene land cover change in south-western Amazonia inferred from paleoflood archives

    Get PDF
    This study provides new data on the evolution of the landscape in south-western Amazonia during the Holocene and the impact of climate change and fluvial dynamics on the region's ecosystems. South-western Amazonia is covered by an extensive seasonally flooded savannah, known as the Llanos de Moxos. Severe drought during the southern hemisphere winter, followed by months of permanent waterlogging, means that forests only grow on the most elevated parts of the landscape, mostly river and paleoriver levees and crevasse splays. Paleoclimate reconstructions from surrounding areas show that a shift to wetter conditions at around 4 kyr BP caused an increase in forest cover. However, the impact that this change in climate had on the landscape of the Llanos de Moxos is unknown. Published lacustrine archives from the area only cover the last 2 kyr. Here we present new data from the analysis of paleosols located along a 300 km transect across the central Llanos. The analyses of stable carbon isotopes, from 36 paleosols, and biogenic silica, from 29 paleosols, show that the patchwork of forests and savannahs that we see today was established after the 4 kyr BP climate change. During the dry period between 8 and 4 kyr BP, most of the central Llanos de Moxos, nowadays covered with seasonally flooded savannah, were covered by Cerrado-like savannah in the west and by forest in the east. However, results also suggest that, at both regional and local scales, vegetation cover has been influenced by changes in topography resulting from the region's river dynamics

    Evidence of Sea Level Rise At the Peruvian Coast (1942-2019)

    Get PDF
    The present work aims to analyze the variability of the sea level of the Peruvian coast with time series over a long observation period (Seventy-eight years, from 1942 to 2019). Data came from the Talara, Callao and Matarani tide gauge stations located at the north, center and south of the coast. Variations of sea level as well as air and seawater surface temperature were analyzed. Among the different scenarios studied, a sea level rise of 6.79, 4.21 and 5.16 mm/year for Talara, Callao and Matarani, respectively was found during the 1979–1997 nodal cycle. However, these results decreased significantly during the next cycle (1998–2016) until values of 1.53, 2.16 and 1.0 mm/year for Talara, Callao and Matarani, respectively. Thus, it has been demonstrated that sea level rise are highly dependent on the time interval chosen. Moreover, large interannual changes of up to 200 mm/year are observed, due to recurring phenomena, such as “El Niño”. On the other hand, the trends obtained are slightly lower than those shown by the IPCC up until 2006 but significantly higher values have been observed. Finally, the results presented herein show the necessity of a local study of the sea level variability at the coastal areas

    Comparison of sea-ice freeboard distributions from aircraft data and cryosat-2

    Get PDF
    The only remote sensing technique capable of obtain- ing sea-ice thickness on basin-scale are satellite altime- ter missions, such as the 2010 launched CryoSat-2. It is equipped with a Ku-Band radar altimeter, which mea- sures the height of the ice surface above the sea level. This method requires highly accurate range measure- ments. During the CryoSat Validation Experiment (Cry- oVEx) 2011 in the Lincoln Sea, Cryosat-2 underpasses were accomplished with two aircraft, which carried an airborne laser-scanner, a radar altimeter and an electro- magnetic induction device for direct sea-ice thickness re- trieval. Both aircraft flew in close formation at the same time of a CryoSat-2 overpass. This is a study about the comparison of the sea-ice freeboard and thickness dis- tribution of airborne validation and CryoSat-2 measure- ments within the multi-year sea-ice region of the Lincoln Sea in spring, with respect to the penetration of the Ku- Band signal into the snow
    corecore