4,721 research outputs found

    A novel flexible model for lot sizing and scheduling with non-triangular, period overlapping and carryover setups in different machine configurations

    Get PDF
    © 2017, Springer Science+Business Media New York. This paper develops and tests an efficient mixed integer programming model for capacitated lot sizing and scheduling with non-triangular and sequence-dependent setup times and costs incorporating all necessary features of setup carryover and overlapping on different machine configurations. The model’s formulation is based on the asymmetric travelling salesman problem and allows multiple lots of a product within a period. The model conserves the setup state when no product is being processed over successive periods, allows starting a setup in a period and ending it in the next period, permits ending a setup in a period and starting production in the next period(s), and enforces a minimum lot size over multiple periods. This new comprehensive model thus relaxes all limitations of physical separation between the periods. The model is first developed for a single machine and then extended to other machine configurations, including parallel machines and flexible flow lines. Computational tests demonstrate the flexibility and comprehensiveness of the proposed models

    Solving Lotsizing Problems on Parallel Identical Machines Using Symmetry Breaking Constraints

    Get PDF
    Production planning on multiple parallel machines is an interesting problem, both from a theoretical and practical point of view. The parallel machine lotsizing problem consists of finding the optimal timing and level of production and the best allocation of products to machines. In this paper we look at how to incorporate parallel machines in a Mixed Integer Programming model when using commercial optimization software. More specifically, we look at the issue of symmetry. When multiple identical machines are available, many alternative optimal solutions can be created by renumbering the machines. These alternative solutions lead to difficulties in the branch-and-bound algorithm. We propose new constraints to break this symmetry. We tested our approach on the parallel machine lotsizing problem with setup costs and times, using a network reformulation for this problem. Computational tests indicate that several of the proposed symmetry breaking constraints substantially improve the solution time, except when used for solving the very easy problems. The results highlight the importance of creative modeling in solving Mixed Integer Programming problems.Mixed Integer Programming;Formulations;Symmetry;Lotsizing

    Integrated capacitated lot sizing and scheduling problems in a flexible flow line

    Get PDF
    The lot sizing and scheduling problem in a Flexible Flow Line (FFL) has extensive real-world applications in many industries. An FFL consists of several production stages in series with parallel machines at each stage. The decisions to be taken are the determination of production quantities (lots), machine assignments and production sequences (schedules) on each machine at each stage in an FFL. Lot sizing and scheduling problems are closely interrelated. Solving them separately and then coordinating their interdependencies is often ineffective. However due to their complexity, there is a lack of mathematical modelling and solution procedures in the literature to combine and jointly solve them.Up to now most research has been focused on combining lotsizing and scheduling for the single machine configuration, and research on other configurations like FFL is sparse. This thesis presents several mathematical models with practical assumptions and appropriate algorithms, along with experimental test problems, for simultaneously lotsizing and scheduling in FFL. This problem, called the ‘General Lot sizing and Scheduling Problem in a Flexible Flow Line’ (GLSP-FFL). The objective is to satisfy varying demand over a finite planning horizon with minimal inventory, backorder and production setup costs. The problem is complex as any product can be processed on any machine, but these have different processing rates and sequence-dependent setup times & costs. As a result, even finding a feasible solution of large problems in reasonable time is impossible. Therefore the heuristic solution procedure named Adaptive Simulated Annealing (ASA), with four well-designed initial solutions, is designed to solve GLSP-FFL.A further original contribution of this study is to design linear mixed-integer programming (MILP) formulations for this problem, incorporating all necessary features of setup carryovers, setup overlapping, non-triangular setup while allowing multiple lot production per periods, lot splitting and sequencing through ATSP-adaption based on a variety of subtour elimination

    Modeling Industrial Lot Sizing Problems: A Review

    Get PDF
    In this paper we give an overview of recent developments in the field of modeling single-level dynamic lot sizing problems. The focus of this paper is on the modeling various industrial extensions and not on the solution approaches. The timeliness of such a review stems from the growing industry need to solve more realistic and comprehensive production planning problems. First, several different basic lot sizing problems are defined. Many extensions of these problems have been proposed and the research basically expands in two opposite directions. The first line of research focuses on modeling the operational aspects in more detail. The discussion is organized around five aspects: the set ups, the characteristics of the production process, the inventory, demand side and rolling horizon. The second direction is towards more tactical and strategic models in which the lot sizing problem is a core substructure, such as integrated production-distribution planning or supplier selection. Recent advances in both directions are discussed. Finally, we give some concluding remarks and point out interesting areas for future research

    Clips: a capacity and lead time integrated procedure for scheduling.

    Get PDF
    We propose a general procedure to address real life job shop scheduling problems. The shop typically produces a variety of products, each with its own arrival stream, its own route through the shop and a given customer due date. The procedure first determines the manufacturing lot sizes for each product. The objective is to minimize the expected lead time and therefore we model the production environment as a queueing network. Given these lead times, release dates are set dynamically. This in turn creates a time window for every manufacturing order in which the various operations have to be sequenced. The sequencing logic is based on a Extended Shifting Bottleneck Procedure. These three major decisions are next incorporated into a four phase hierarchical operational implementation scheme. A small numerical example is used to illustrate the methodology. The final objective however is to develop a procedure that is useful for large, real life shops. We therefore report on a real life application.Model; Models; Applications; Product; Scheduling;

    Industrial insights into lot sizing and schedulingmodeling

    Get PDF
    © 2015 Brazilian Operations Research Society. Lot sizing and scheduling by mixed integer programming has been a hot research topic inthe last 20 years. Researchers have been trying to develop stronger formulations, as well as to incorporatereal-world requirements from different applications. This paper illustrates some of these requirements anddemonstrates how small- and big-bucket models have been adapted and extended. Motivation comes fromdifferent industries, especially from process and fast-moving consumer goods industries

    Energy-aware coordination of machine scheduling and support device recharging in production systems

    Get PDF
    Electricity generation from renewable energy sources is crucial for achieving climate targets, including greenhouse gas neutrality. Germany has made significant progress in increasing renewable energy generation. However, feed-in management actions have led to losses of renewable electricity in the past years, primarily from wind energy. These actions aim to maintain grid stability but result in excess renewable energy that goes unused. The lost electricity could have powered a multitude of households and saved CO2 emissions. Moreover, feed-in management actions incurred compensation claims of around 807 million Euros in 2021. Wind-abundant regions like Schleswig-Holstein are particularly affected by these actions, resulting in substantial losses of renewable electricity production. Expanding the power grid infrastructure is a costly and time-consuming solution to avoid feed-in management actions. An alternative approach is to increase local electricity consumption during peak renewable generation periods, which can help balance electricity supply and demand and reduce feed-in management actions. The dissertation focuses on energy-aware manufacturing decision-making, exploring ways to counteract feed-in management actions by increasing local industrial consumption during renewable generation peaks. The research proposes to guide production management decisions, synchronizing a company's energy consumption profile with renewable energy availability for more environmentally friendly production and improved grid stability
    corecore