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Chapter 1

Synopsis

1.1 Opportunities and challenges of excessive renewable elec-
tricity generation

Electricity generation from renewable energy sources represents one option among others
to achieve climate targets like the greenhouse gas neutrality that is supposed to be reached
in Germany by 2045 (Bundesregierung 2022). With a focus on the electricity sector,
a significant generation increase from renewable energy sources has become apparent
over the last two decades. While in the year 2000, the renewable energy share of gross
electricity consumption in Germany was just about 6 %, this share increased by the
year 2021 to over 41 % (Umweltbundesamt 2022a). This share could have been even
higher as Germany faced feed-in management actions which accounted for a loss of 5,818
GWh of renewable electricity in the year 2021. 95 % of this loss originates from wind
energy as the renewable energy source most affected by feed-in management actions
(Bundesnetzagentur 2021). Feed-in management actions are countermeasures to secure
electricity grid stability by reducing or completely stopping renewable energy generation
in times of peak generation. This means that considerably more renewable electricity
could have been produced, but due to a lack of grid infrastructure, was unable to be
fed into the grid. As a consequence, in times of feed-in management actions, excessive
renewable energy is available that is not consumed but lost. To get an idea of the order
of magnitude, the average German household consumes about 2,828 kWh of electricity
per year (Statista 2022), meaning that the loss of 5,818 GWh could serve more than two
million German households.

In 2021, Germany emitted a total of about 700 million tons of CO2 (Umweltbunde-
samt 2022b). Assuming a potential use of excessive renewable energy, CO2 savings of
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Chapter 1. Synopsis

about 2.2 million tons CO2 could have been achieved. This number is based on an emis-
sion factor of 0.38 kg CO2 per kWh, which corresponds to the German electricity mix
in the year 2021 (BDEW Bundesverband der Energie- und Wasserwirtschaft e.V. 2022).
In addition to the loss of excessive renewable electricity, feed-in management actions are
also accompanied by compensation claims amounting to around 807 million Euros in
2021, which are paid to operators of renewable energy plants that were unable to feed in
their generated electricity (Bundesnetzagentur 2021).

Especially wind-abundant regions in northern Germany are affected by feed-in man-
agement actions and therefore exhibit high losses of excessive renewable electricity pro-
duction. Combining the data of the Marktstammdatenregister (Bundesnetzagentur 2022),
as the database of all power plants and power units in the German energy system, with
the published feed-in management actions (Schleswig-Holstein Netz AG 2021), one can
quantify the regional loss of excessive renewable electricity production at a district level.
The heatmap in Figure 1.1 sketches this loss of renewable electricity production for the
federal state of Schleswig-Holstein in 2021. The red color illustrates the annual loss
of renewable electricity due to feed-in management actions of about 48 GWh per dis-
trict. This figure reveals that particularly the northwestern wind-abundant region of
Schleswig-Holstein is affected by substantial feed-in management actions.

Figure 1.1: Loss of excessive renewable electricity in Schleswig-Holstein in 2021.
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Chapter 1. Synopsis

Feed-in management actions could be avoided if sufficient transmission capacity to
distant consumers would be available in the power grid. However, extensions of the
power grid infrastructure are both costly and time-consuming. One alternative approach
to counteract feed-in management actions is to temporarily increase local electricity con-
sumption. Hence, the higher electricity supply is synchronized with a corresponding
demand, such that grid bottlenecks can be avoided as far as possible and feed-in man-
agement actions can be reduced. This creates an opportunity to relieve the power grid
and extend the feed-in of renewably generated electricity.

With regard to German electricity consumption in the year 2021, the industry is the
major sector of final electricity end use and accounts for approximately 44 % of the net
electricity consumption (Destatis 2022). Trade, commerce, and services (27 %) as well
as households (26 %), and transport (2 %) constitute the remaining 55 %. In this line
of thought, the dissertation at hand comprises research on energy-aware manufacturing
decision-making. A particular focus is on measures to counteract feed-in management
actions and the loss of excessive renewable electricity through increased local industrial
consumption in times of renewable generation peaks. The ENKO platform (Schleswig-
Holstein Netz and ARGE Netz 2023) in Schleswig-Holstein provides an opportunity to
connect local electricity consumers with grid operators to match possible electricity con-
sumption flexibility with renewable energy generation in order to ensure grid stability.
The approach presented in this dissertation uses an external signal based on the ENKO
platform to guide production management decisions. It aims at synchronizing a com-
pany’s internal energy consumption profile for the availability of renewable energy and,
thus, achieving a more environmentally friendly production together with higher grid
stability as a complement to the electricity grid stability-oriented ENKO platform.

The remainder of this cumulative dissertation is structured as follows. This chapter’s
ensuing four sections complete the synopsis. Section 1.2 describes the state of research
by providing an overview of relevant literature and points out the research gap of inter-
est. Section 1.3 gives an overview of each essay’s research contribution and exhibits the
essay’s relations with one another. Section 1.4 briefly summarizes each essay’s research
in the form of an extended abstract. Section 1.5 concludes the synopsis by providing
implications and outlining future research directions and opportunities. Following the
synopsis in Chapter 1, the subsequent Chapters 2 to 5 are dedicated to the four essays.
The dissertation concludes with an authorship contribution statement to each essay and
a declaration of the originality and novelty of the submitted work.

3



Chapter 1. Synopsis

1.2 State of research and research gap

Energy awareness in production environments gained increasing research attention over
the last years. The increasing awareness of energy consumption and electricity costs
has given rise to many novel decision-support-oriented publications as well as literature
review articles. The following description of the state of research is therefore divided into
two parts with regard to the individual essays’ scope of this cumulative dissertation.

The dissertation at hand focuses on energy-aware research in industrial manufac-
turing environments, with an emphasis on decision-support models that are based on
mathematical optimization. The literature reviews by Biel and Glock (2016) and Gahm
et al. (2016) are most relevant in this context due to their focus on mathematical op-
timization and decision support models. Biel and Glock (2016) examine papers related
to energy-efficiency in scheduling, capacity planning, and lot sizing, while Gahm et al.
(2016) analyze scheduling models using a classification system that aggregates them at
a higher level.

In the period from 2012 to 2021, several other literature review articles in the context
of energy awareness can be found. Giret et al. (2015) focus on sustainable schedul-
ing and categorize solution approaches in multi-objective environments. Garwood et al.
(2018) review articles that incorporate energy considerations into production settings
with a special emphasis on using simulation. Energy-oriented scheduling in combina-
tion with recent developments in machine learning is addressed by Narciso and Martins
(2020). Along with the survey of publications on energy efficiency in the manufactur-
ing system and assembly line context, Renna and Materi (2021) focus on articles that
integrate renewable energy sources in manufacturing systems and point out publications
that propose energy-saving strategies and policies. Literature on energy-oriented pro-
duction planning is reviewed by Terbrack et al. (2021), aiming to derive core properties
in energy-aware models within hierarchical production planning. There are further lit-
erature reviews that cope with energy awareness in a broader sense but do not meet
the scope of energy-aware decision-support scheduling models in industrial production
environments, see Duflou et al. (2012), Haapala et al. (2013), Weitzel and Glock (2018),
Cui and Zhou (2018), Le Hesran et al. (2019), Cardoso et al. (2020), and Rathor and
Saxena (2020).

Encouraging companies to adopt their production-related energy consumption to a
targeted demand response event is typically referred to by the term demand-side man-
agement in the literature. A distinction can be made between price-driven and event-
driven demand response approaches. Price-driven demand response means taking into
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account varying energy prices. Production-related energy consumption decisions are then
adjusted to the energy price in order to smoothen electricity consumption patterns or
reduce energy costs for instance. On the contrary, event-driven demand response aims
to take special events into consideration, such as particularly high renewable energy gen-
eration. The subsequently described state of research on novel decision-support models
will therefore differentiate price-driven and event-driven demand response approaches.

Price-driven demand response settings are considered in a vast number of publica-
tions. This literature is analyzed in detail in the first essay of this dissertation (see
Chapter 2). The ensuing summary briefly describes those contributions that fall into
this area and made a specific contribution to the field.

The following publications incorporate energy prices through time-of-use electricity
(TOU) tariffs. In a single-machine production setting, Shrouf et al. (2014) minimize
total energy consumption costs by adjusting the production schedule and Rubaiee and
Yildirim (2019) minimize both completion time and energy costs. Che et al. (2017)
study the impact of a time-of-use energy pricing system on scheduling parallel machines
in order to minimize energy costs. Hemmati Far et al. (2019) study a flexible manufactur-
ing environment including industrial robots and automated guided vehicles for material
transport. The objective minimizes production and transport costs. With regard to
unrelated parallel machines, Heydar et al. (2022) focus on energy-efficient scheduling
and propose an approach from approximate dynamic programming. The objective is to
minimize the makespan and total energy costs, including the cost of machine energy con-
sumption in processing-, and idle-states. In a price-driven demand response setting Yun
et al. (2022a) minimize production electricity costs with the additional consideration of
material handling equipment recharging decisions.

Besides the widespread use of time-of-use electricity tariffs, there are other price-
driven coordination mechanisms. Under a real-time pricing (RTP) scheme, Busse and
Rieck (2022) emphasize a flow shop machine scheduling problem using electricity price
forecasts. In a hybrid flow shop setting, Schulz et al. (2019) develop a multi-objective
mixed-integer program that incorporates three objectives which aim to minimize the
makespan, total energy costs, and peak power. In Yusta et al. (2010), the focus is
on determining a production schedule that maximizes a company’s profit, taking into
account real-time energy prices that are updated at least hourly. The profit is calculated
as the difference between sales income and the total production costs, including electricity
costs. Lu et al. (2021) propose a neural network-based RTP prediction approach in a
serial production line setting in order to minimize electricity costs and to meet production
requirements. Yun et al. (2022b) develop a real-time demand response strategy to reduce
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electricity costs in a cyber-physical system-based manufacturing environment.
With regard to peak power costs, Schulz (2018) proposes an optimization model

considering an objective function that minimizes energy consumption and peak power
while accounting for volatile prices. In a capacitated flow shop environment, Masmoudi
et al. (2017) minimize peak power as a part of the cost-oriented objective function.
Hahn-Woernle and Günthner (2018) investigate how power-load management affects the
efficiency of material-handling systems in automated warehouses, showing that limiting
power consumption can prevent energy consumption peaks while slightly decreasing the
throughput.

In the context of renewable energy generation, Subramanyam et al. (2020) create
a two-stage mixed-integer model to reduce energy costs in a flow shop environment by
incorporating on-site renewable energy sources. The first stage minimizes the yearly
energy consumption while ensuring job throughput, while the second stage sizes wind
turbines and solar panels to meet hourly electricity demand. In a flow shop scheduling
problem with unpredictable wind power generation on the premise of the company and
time-of-use electricity pricing, Biel et al. (2018) seek to minimize the weighted flow time
and the expected energy costs. Zhang et al. (2018) focus on the optimal sizing of on-
site energy generation and production planning in a manufacturing system under critical
peak pricing conditions to minimize overall energy expenses.

In addition to renewable energy generation, the following publications additionally
integrate energy storage. Karimi and Kwon (2021) analyze the influence of energy-
oriented production scheduling with on-site solar energy generation in combination with
energy storage in a battery on energy cost and makespan. Additionally, Wang et al.
(2020) propose a stochastic two-stage multi-objective optimization model with time-
of-use electricity prices considering on-site renewable energy generation in combination
with an energy storage system. Materi et al. (2021) aim to reduce energy costs and
CO2 emissions by integrating a photovoltaic plant and battery storage into a production
system.

With the previous state of research, it becomes apparent that energy-aware research
in production planning almost exclusively applies price-driven demand response mecha-
nisms. However, these prices reflect the market-wide availability of renewable energy and
are unsuitable for indicating local renewable energy generation peaks. In order to coun-
teract or avoid feed-in management actions at a regional district level, an event-driven
demand response approach seems therefore more appropriate. Such an event-driven de-
mand response could be achieved by integrating a feed-in management action forecast,
like for example based on the previously mentioned ENKO platform, into an energy-aware
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machine scheduling model. From an energy-related point of view, also the integration of
additional industrial energy consumers, such as devices for material handling or produc-
tion factor supply seems reasonable and forms a further research gap. This dissertation
fills these gaps by taking a comprehensive view of production equipment heterogeneity
and proposing a flexible production coordination platform that can handle various equip-
ment types’ decision-making in an event-driven demand response setting. By doing so,
this research is dedicated to the best possible linking of local renewable energy generation
and production-related energy consumption. It aims at answering the question of how
effective decentralized planning can be designed in order to optimize energy efficiency
and CO2 reduction in manufacturing. Furthermore, it analyzes how this concept can
be evaluated within a simulation framework and what performance can be achieved in
stochastic-dynamic situations using real production and environmental data.

1.3 Overview of thesis contributions

The thesis at hand is a cumulative dissertation where each of the following chapters
represents a self-contained essay. Figure 1.2 gives an overview of the essays and indicates
how they are interrelated with one another.

As a thematic introduction, Essay 1 provides a systematic literature review that
surveys recent publications on energy-aware production decision support models. With
this essay, a systematic classification of the state of the art of energy-aware research is
provided. It then identifies current research streams, outlines promising future research
potentials, and builds a profound basis for the research of Essays 2 to 4.

The common scope throughout Essays 2 to 4 is to propose and analyze an energy-
aware production approach in an event-driven demand response setting. The essays
investigate a coordination platform for decentral decision-making of heterogeneous man-
ufacturing equipment and support devices under selected energy- and service-oriented
goals. The manufacturing environment under consideration is inspired by a medium-
sized metal processing company from northern Germany. Apart from established service-
oriented goals, the novel environmental orientation aims to integrate a forecast for feed-in
management actions in order to synchronize manufacturing and recharging activities with
excessive renewable electricity generation. Briefly sketched, Essay 2 introduces the novel
decision-making approach for machine scheduling and support device recharging. De-
rived from this, Essay 3 emphasizes support device decision-making and contrasts static
recharging policies and optimization model-based charging decisions. Finally, Essay 4
compares machine scheduling in a job shop and flow shop production environment under
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environmental-oriented goals.

Production system

comparison

Figure 1.2: Research goal and procedure of this thesis.

stochastic job arrivals for both, service and environmental objectives.
Table 1.1 provides an overview of the four essays, their titles, author(s), year, and

information about their publication status. The table also shows the ranking of the
journals according to VHB-JOURQUAL3 (2021). The journals in which the essays are
published or to which they have been submitted for possible publication are generally
associated with the subject areas of production, industrial engineering, logistics, and
operations research.

1.4 Extended abstracts

This section provides extended abstracts for each individual essay. In Subsection 1.4.1,
the conducted systematic literature review is summarized. Subsection 1.4.2 will give a
brief summary of an event-driven demand response-oriented approach to coordinate het-
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Table 1.1: Overview of the essays belonging to this thesis.

Essay Title Author(s) Year Publication
status

JQ3

Essay 1
(Chapter 2)

Energy-Aware Decision
Support Models in Pro-
duction Environments:
A Systematic Literature
Review

Kristian Bänsch,
Jan Busse,
Frank Meisel,
Julia Rieck,
Sebastian Scholz,
Thomas Volling,
Matthias G. Wichmann

2021 Computers &
Industrial
Engineering, 159:
107456.

B

Essay 2
(Chapter 3)

Coordination of het-
erogeneous production
equipment under an
external signal for sus-
tainable energy

Sebastian Scholz,
Frank Meisel

2022 Journal of
Cleaner
Production, 338:
130461.

B

Essay 3
(Chapter 4)

Decentral decision-
making for energy-
aware charging of
intralogistics equipment

Sebastian Scholz 2023 Logistics
Research, 16: 4.

C

Essay 4
(Chapter 5)

Energy-aware coordina-
tion of manufacturing
equipment in flow shop
and job shop produc-
tion environments with
stochastic job arrival

Sebastian Scholz,
Frank Meisel

2023 Submitted to
Computers &
Industrial
Engineering

B

erogeneous production equipment in terms of machines and support devices. Based on
that, Subsection 1.4.3 will take up this approach and focus on support device recharg-
ing decisions. Finally, the extended abstract in Subsection 1.4.4 emphasizes machine
processing in different production environments with stochastic job arrival.

1.4.1 Essay 1

Energy-Aware Decision Support Models in Production Environments: A Sys-
tematic Literature Review
Kristian Bänsch, Jan Busse, Frank Meisel, Julia Rieck, Sebastian Scholz, Thomas Volling,
and Matthias G. Wichmann

As a starting point for this thesis, an introductory publication on the state of research
on energy-aware production planning and control has been worked out (Bänsch et al.
2021). It is the result of the scientific cooperation of research groups from the Technical
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University Berlin (TU Berlin), the University of Hildesheim, the Technical University
Chemnitz (TU Chemnitz), and the Kiel University (Christian-Albrechts-Universität zu
Kiel). This essay provides a well-founded introduction and a comprehensive overview of
the research on energy-aware production planning up to that time.

The considerable energy consumption by industrial production has led to a large
number of scientific publications that include environmental aspects and increased energy
awareness into production management. Nowadays, approaches that promote sustain-
able energy sources like wind or solar energy, in combination with evolving technologies
for on-site energy generation and energy storage, open up a variety of new opportu-
nities to make industrial energy consumption more environmentally friendly. Building
on previous scientific literature reviews, the research objective of this essay is to ana-
lyze and systematize recent publications from the years 2016 to 2020 with respect to
environmentally-oriented mathematical decision support models.

In detail, nearly 200 relevant scientific articles are systematically analyzed in the areas
of machine scheduling, lot-sizing, and other energy-intensive production processes. With
the scope and the limits of the production system under investigation determined, estab-
lished literature databases are searched with selected keywords. The classification of the
literature is based on a developed ten-dimensional scheme, which is used to identify re-
search areas that already received substantial scientific attention and areas that received
less attention. Furthermore, it actively addresses topics of future research that are men-
tioned in previous literature review articles and shows to what extent these research gaps
are covered by recent publications.

As a result of an initial quantitative evaluation of all identified articles, the survey
deduces that the vast majority of publications consider classical energy supply through
a power grid, while on-site generation, for example by wind turbines on the company
premise, is hardly taken into account. In addition, the price of energy as a coordination
mechanism for determining the best time for energy consumption is only discussed in
about half of the articles. The essay works out that the distinction between price-
driven and event-driven demand response approaches exists in theory but event-driven
demand response approaches clearly lack consideration in the analyzed literature. In
contrast to the energy price, event-driven demand response approaches aim to account
for particular environmental conditions that can occur. As expected, nearly half of the
articles under review deal with energy costs and energy consumption in the objective
function. Another part considers objective functions with time components, such as
minimizing the maximum tardiness of production orders or minimizing the completion
time. Peak power and environmental objectives are less likely to be included in the
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models than assumed. The quantitative perspective of the survey is supplemented by a
content analysis in order to highlight current developments and future research potentials.
Likewise, the presentation of concrete case studies from practice makes it possible to
point out specific industries in which energy-aware planning is frequently used. As a
result of the content analysis, current research streams and future research potentials are
identified.

In conclusion, this literature review focuses on articles that bring topics of sustainable
energy generation, energy storage, and energy consumption into operational production
planning problems. The essay provides a detailed analysis of current research streams and
actively addresses and discusses future research of interest mentioned in earlier literature
reviews. Furthermore, it presents in detail six research streams that can be identified
in the recent literature. For each of these streams, it reveals those articles that already
contribute to them so far and identifies associated fields for future research. Among the
other areas, event-driven demand response environments state a field for future research.
Through this, the survey contributes to the further development of energy-aware decision-
making in production environments.

1.4.2 Essay 2

Energy-aware coordination of heterogeneous production equipment under an
external signal for sustainable energy
Sebastian Scholz and Frank Meisel

This essay focuses on event-driven demand response (Scholz and Meisel 2022). While
power grid operators face the challenge of ensuring grid stability, energy-intensive indus-
trial manufacturing companies need to take care of their internal load management in
order to avoid overloading the company’s internal energy infrastructure and to prevent
high energy costs. These two aspects are brought together in Essay 2. The novelty
is to take into account heterogeneous manufacturing equipment with their individual
decision-making processes. Machine production scheduling as well as charging decisions
of inventory-oriented support devices, like electrified forklift trucks, are coordinated in
such a way that a company’s internal load management is included. Through this, in-
creased local energy consumption during feed-in management action periods counteracts
the loss of excessive renewable energy generation and ensures grid stability.

In this context, the company under consideration receives a forecast signal of neces-
sary local feed-in management actions for upcoming periods. These feed-in management
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actions imply the occurrence of excessive renewable energy. The essay proposes two op-
timization models to take this forecast into consideration when making scheduling and
charging decisions for heterogeneous production equipment. Lexicographically ordered
objective functions minimize the total job tardiness, maximize energy consumption dur-
ing feed-in management periods, and minimize the company’s internal peak loads. Since
it seems unrealistic to consider the heterogeneous consumers of a complex production
system within a single, holistic mathematical decision model with regard to the different
decision-makers of a company, a self-control concept in the form of a production coor-
dination platform (PCP) for decentralized decision-making is developed. The PCP does
not make decisions itself but calls the associated mathematical optimization models for
the heterogenous manufacturing equipment units on demand. In this way, it coordinates
the decisions and is able to account for a large number of heterogeneous production
equipment types that are orchestrated with each other. The PCP continuously keeps
track of the state of the entire production system, especially the load profile from the
previously made production decisions, registers all decision-making requests, initiates
the decision-making, and reports the decisions made to the relevant equipment. In this
way, the platform incrementally creates a holistic operations plan for the production and
support processes under consideration.

Computational experiments are based on a manufacturing system consisting of two
heterogeneous production equipment types with two machines and two inventory-oriented
support devices each. These experimental results show that the coordination platform
makes equivalent decisions compared to a holistic and integrated optimization model that
serves as a benchmark. It is also shown that the signal-driven coordination platform can
achieve significant reductions in production-related CO2 emissions. For this purpose,
the role of various feed-in management scenarios is investigated to study the impact
of different frequencies of feed-in management actions and the resulting environmental
impact. Additionally, the conflict of objectives regarding peak load minimization on the
one hand and counteracting feed-in management actions, on the other hand, becomes
apparent.

Eventually, a newly proposed objective function for shifting production and charging
processes into periods with feed-in management actions is shown to offer the possibil-
ity to minimize the loss of available renewable energy and to significantly reduce CO2

emissions. The other two objective functions for minimizing the total job tardiness and
minimizing peak loads show significantly higher energy consumption rates in periods
without feed-in management actions and are consequently associated with higher CO2

emissions. Furthermore, sensitivity analyses of crucial influencing parameters show how
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different degrees of information availability affect the performance of the PCP.

1.4.3 Essay 3

Decentral decision-making for energy-aware charging of intralogistics equip-
ment
Sebastian Scholz

In addition to machines that process jobs in an industrial company, corresponding
intralogistics-related support devices are another significant energy consumer (Scholz
2023). They are responsible, for example, for supplying materials to the machines by
means of electric forklifts. However, the consideration of electricity-intensive intralogistics
has hardly been taken into account in research on energy-aware production planning and
builds this essay’s research scope. The coordination platform, introduced in Essay 2,
is therefore adapted and extended to replicate established static charging policies in
contrast to optimization-model-based decision-making.

Principally, charging policies are divided into periodic charging procedures (t,q-policy,
t,S-policy) and continuous procedures (s,q-policy, s,S-policy). In the case of periodic
charging procedures, charging takes place at specific and fixed time intervals t, whereby
either a fixed amount q is charged or charging is conducted until an order-up-to level S
is reached. In contrast, in continuous charging procedures, charging is initiated when the
state of charge falls below a defined threshold, the order point s. At this point, either a
fixed amount q is charged or charging goes up to the order-up-to level S. In a simulation
study based on real production data of a metal-processing company from Schleswig-
Holstein, the role of intralogistics charging decisions is analyzed. In this simulation,
four static charging policies are compared with each other and to an optimization model
specially developed for the charging decisions of intralogistics devices.

In general, the static charging policies’ order point s, order-up-to level S, and charge
amount q are important parameters but assumed to be given due to intralogistics equip-
ment’s technical restrictions. Apart from this, the charge interval t is within the scope
of a company’s decision-making authority and influences the production scheduling seg-
ment. This is because sufficient inventory of intralogistics is required to maintain machine
production. The mandatory parameterization for the subsequent computational experi-
ments defines the charging interval t. This guarantees adequate intralogistics inventory
to achieve the highest possible job processing rate when using a static charging policy.
It can be stated that all static charging policies reveal electricity consumption in both
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types of periods, with and without feed-in management actions, since they strictly follow
the given time regime. Only the optimization model approach is able to entirely shift in-
tralogistics charging decisions into periods with feed-in management actions. In addition
to the comparison of the five different charging policies, the impact of different intralo-
gistics demand durations is analyzed. By varying the length over which the demand is
applied, the simulation study also investigates changes in the demand for intralogistics
fulfillment. The results state that the job processing rate decreases with an increasing
demand length. Additionally, the analysis contrasts a forklift selection by highest inven-
tory to a consistent forklift selection mechanism. The computational experiments show
that the general findings do not differ for these alternative forklift deployment strategies.

In conclusion, only the optimization approach reasonably anticipates excessive renew-
able electricity generation during periods of feed-in management actions. This gives the
decision makers of a company the opportunity to reduce the loss of excessive renewable
electricity generation and thereby contribute to a reduction of CO2 emissions.

1.4.4 Essay 4

Energy-aware coordination of manufacturing equipment in flow shop and job
shop production environments with stochastic job arrival
Sebastian Scholz and Frank Meisel

The concept of energy-aware coordination of heterogeneous manufacturing equipment
was initially investigated in Essay 2 based on a production environment with a prede-
termined job set and without machine precedence relations. In that paper, it was only
necessary that each job is processed on each machine, regardless of the machine order.
The research objective of Essay 4 is to compare in more detail job shop and flow shop
production environments also accounting for stochastic job arrival (Scholz and Meisel
2023). In this setting, production jobs are unknown in advance and arrive in the course
of time.

More precisely, each job now persists of a set of operations that have to be processed
by several machines and in a given machine routing. The study makes use of the basic
decentralized decision-making platform concept from Essay 2 to coordinate different types
of production and intralogistics equipment. By accounting for exponentially distributed
job inter-arrival times it is capable to consider stochastic job arrivals. Different job
arrival scenarios are represented by varying job inter-arrival times, which range from a
starving up to an overloaded production system. In this context, a starving production
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system is represented by a relatively low number of job arrivals and a corresponding
low machine utilization rate. An overloaded production system is characterized by a
high number of job arrivals and is accompanied by a high machine utilization rate. This
variation enables the analysis of the production coordination platform’s performance
under various job arrival conditions. In a simulation based on real-world data from
a metal-processing mid-size company from northern Germany, the essay examines the
impact of different production environments on PCP performance indicators. Thereby,
jobs exhibit consistent operation sequences in a flow shop setting due to the fabrication
of homogeneous products and, hence, result in identical machine sequences, whereas the
job shop environment is characterized by job-specific machine and operation sequences
focusing on the fabrication of heterogeneous products.

The study can demonstrate that the PCP is capable to handle stochastic job arrivals
in both production environments and that a too-high job release rate exerts a negative
impact on the overall job processing rate. Thereby, it is shown that the released job
amount per scheduling run is an important parameter to keep production at a preferable
level and strongly influences the PCP’s performance. It can be seen that the flow shop
processing rate is principally lower compared to the job shop setting for an identical
job inter-arrival time. This is somewhat unexpected but due to the higher number of
operations per job, as processing necessarily takes place on all machines for each job in the
flow shop environment. Furthermore, the paper introduces and investigates operation-
specific due dates compared to job-specific due dates in order to reduce tardiness in the
rolling horizon planning of the decentral decision-making process. As a benchmark, all
machines are provided with the final job due dates, which results in the highest total
tardiness. With the equal division, an operation-specific due date is introduced that is
calculated for each machine operation individually. There, the processing time window
between the arrival date and the due date is equally shared among all operations and each
machine receives an individual due date with regard to the operation order. Furthermore,
the weighted division takes differences in the processing times of operations into account,
such that a longer processing operation receives a larger share of the processing time
window. The computational results demonstrate that the introduced operation-specific
due dates are beneficial as they reduce the total tardiness in a job shop environment as
well as a flow shop environment under various objective combinations.

In conclusion, the essay reveals that the proposed PCP is capable to handle complex
jobs with stochastic job arrivals and given machine precedence relations in both job shop
and flow shop environments. The energy-aware orientation is still capable to counteract
excessive renewable energy generation in these settings, even though it comes at the
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expense of high job tardiness values.

1.5 Implications and future research

The synopsis concludes with implications derived from the essays and a brief description
of promising future research directions.

A clear implication of this work is that event-driven demand response in produc-
tion environments constitutes a promising and little-researched area of interest. This
comes into effect, especially in the context of the energy transition with increasing re-
newable energy integration. The thesis lays the foundation for further investigations by
proposing a first optimization model-based approach to counteract feed-in management
actions. Essay 1 outlines that decision-support models in production environments are
subject of particular attention over the last few years. At the same time, current research
gaps as well as future research potentials are identified and indicate that event-driven
demand response approaches lack consideration in the literature. Considering an inte-
grated environmental perspective, it appears logical to follow a combined perspective
of energy-intensive intralogistics in combination with production-related job scheduling.
The results of Essay 2 suggest that decentral decision-making for heterogeneous produc-
tion equipment in an event-driven demand response environment can become an effective
production planning concept to cope with the availability of excessive renewable energy.
The integration of production scheduling with intralogistics charging decision-making ap-
pears as a holistic way to account for a company’s most relevant energy consumers. Essay
3 indicates that the little-studied research field of intralogistics recharging decisions also
contributes to substantially counteracting feed-in management actions. Finally, Essay
4 has shown that the proposed production coordination approach is capable to handle
stochastic job arrivals with complex job structures and machine precedence relations in
different production environments. This essay opens up research paths for alternative
job characteristics, e.g., preemptive production environments.

An important direction for future research relates to the development of adequate
incentive systems, that motivate companies to adapt their manufacturing electricity con-
sumption to the occurrence of feed-in management actions beyond the environmental
aspect. In this context, Essay 2 suggests that a peak load determination only in times
without feed-in management actions would constitute a monetary incentive for companies
to increase electricity production in times of excessive renewable electricity generation.

Another direction for future research puts emphasis on the coordination mechanisms
of demand response schemes. As price-driven demand response approaches are predom-
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inant in the literature compared to the rarely considered event-driven demand response,
further investigations on event-driven concepts or suitable combinations of both are de-
sirable. For this, Essays 2, 3, and 4, have contributed to a better understanding of
event-driven demand response strategies. Further extensions of the proposed approach,
in the sense of negotiations of types of equipment that participate on the platform, are
plausible.

A further direction for future research aims at a district-based analysis of feed-in
management actions. Figure 1.1 already revealed fundamental regional differences re-
garding feed-in management actions and the resulting loss due to excessive renewable
electricity. In this context, a regional and district-based analysis of feed-in management
actions could reveal beneficial insights for managers as well as grid operators to conduct
operational changes regarding the duration or time of the day of feed-in management
actions or to regionally classify necessary feed-in management actions. Such an analysis
could serve as a helpful basis for practitioners to be able to assess feed-in management
actions in their company site-related district.

Further, implications for practitioners are that companies can clearly contribute to
reducing feed-in management actions by adjusting their electricity consumption. How-
ever, the conflicting objectives of service- and energy-oriented goals must be considered
here to trade off customer satisfaction and environmental orientation. An economic and
political implication is that there is a need to develop incentive mechanisms to make it
attractive for manufacturing companies to adapt their operations to the availability of
renewable energy.
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Abstract The substantial amount of energy consumed through industrial production has
given rise to a large number of research papers that incorporate environmental aspects
and increased energy-awareness into production management. Nowadays, initiatives that
push sustainable energy sources like wind and solar power together with new technologies
for on-site power generation and energy storage open up a multitude of new options for
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making industrial energy consumption more environmental friendly. With this paper,
we review the recent literature that attempts to reflect these options within industrial
decision support models. We conduct a systematic literature review that identifies rel-
evant papers from fields like machine scheduling, lot sizing, and other energy-intensive
processes. For classifying the literature, a multi-dimensional scheme is developed that
helps identifying areas that already received substantial scientific interest and areas that
are not yet well understood. To this end, we actively address areas of future research
that were mentioned in earlier review papers and show to what extent these gaps where
closed by recent publications. Through this, we observe substantial progress with regard
to various aspects such as pushing system boundaries, coming up with advanced concep-
tual approaches, and striving for more practical relevance. Nevertheless, there remains a
substantial number of issues that have not yet been approached thoroughly.

Keywords Energy-awareness, production planning, scheduling, lot sizing, literature re-
view, decision support models

2.1 Introduction

According to the U. S. Energy Information Administration (2016), about 54 % of the
total delivered energy worldwide is consumed by the industry sector. In the context
of production planning and scheduling, particularly energy-intensive manufacturing pro-
cesses (e.g., in the iron and steel, paper, or chemical industry) are of major interest.
Here, a considerable amount of energy is required for running the machines, aiming at
transforming input (i.e., raw materials) into desired output (i.e., final products). With
an expected average growth rate of 1.3 % per year during the period from 2012 to 2040,
electricity is the second fastest growing energy source right after natural gas (U. S. En-
ergy Information Administration 2016), indicating the continuously increasing demand
for industrial applications. Looking at China as an example, about 50 % of the total pro-
duced electricity is consumed by the manufacturing industry (Liu et al. 2014). In many
industries, electricity costs make up by far the largest proportion of production-related
energy costs (Wichmann et al. 2019a).

Within the last couple of years, the increasing awareness of energy demand and elec-
tricity costs, respectively, has given rise to a large number of publications in manufactur-
ing environments, which resulted in a multitude of review papers. Early review articles
tried to structure the field, delivering a high level description with a focus on concepts

24



Chapter 2. Energy-Aware Decision Support Models in Production Environments

and technologies (Duflou et al. 2012, Haapala et al. 2013). With more and more articles
being published, subsequent reviews dealt with specific sub-aspects of energy-aware pro-
duction planning. Giret et al. (2015) examine sustainable scheduling in a broader sense,
focusing on categorising solution approaches in multi-objective environments. Cui and
Zhou (2018) address power load scheduling in demand response programs, but schedul-
ing is not discussed in detail. Garwood et al. (2018) review articles that use simulation
to include energy aspects into production settings. Weitzel and Glock (2018) structure
methods for the planning of electrical storage systems, while industrial applications are
outside their scope of investigation. Le Hesran et al. (2019) specifically consider articles
that deal with waste minimisation, where energy is integrated as a side aspect. Cardoso
et al. (2020) study demand response programs, including only companies in the service
sector. Narciso and Martins (2020) structure the new advances of machine learning into
energy-oriented scheduling applications. Finally, Rathor and Saxena (2020) take up the
topic of smart grid energy management, without explicitly covering industrial aspects.

The main focus of the systematic literature review conduced in this paper is on
energy-related research in manufacturing environments, but with a strong focus on de-
cision support models based on mathematical optimisation. The approach of the review
at hand is closely related to the earlier surveys of Biel and Glock (2016b) as well as
of Gahm et al. (2016). Following the above mentioned surveys, the literature search
only encompasses decision support models that are based on mathematical optimisation.
Other approaches like statistical investigations or models based on artificial intelligence
are beyond the scope of this literature review and form a basis for further independent
studies. In Biel and Glock (2016b), papers linked to energy-efficient scheduling, capacity
planning, and lot sizing are considered, and in Gahm et al. (2016), articles are discussed
that focus on the analysis of scheduling models at an aggregated classification level. In
this line of thought, the paper at hand combines both approaches and can be further
regarded as an essential update and extension of the aforementioned overviews. On the
one hand, our literature search covers a wide range of possible energy-related challenges
in manufacturing (e.g., scheduling, sequencing, lot sizing, multiple modes, and multiple
objectives). In order to structure the field, we provide an extensive classification scheme
that allows for comprehensive comparisons and, in particular, takes up recent develop-
ments in the energy sector. On the other hand, we specifically look into open research
areas that have already been identified by Gahm et al. (2016) as well as Biel and Glock
(2016b). Thereby, we discuss articles that address or fill open areas. Such open areas of
research can be assigned to the main categories system boundary, conceptualisation, and
practical relevance. Here, ‘system boundary’ refers to approaches that deal, e.g., with
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on-site generation and storage or with increasing the efficiency of upstream processes
of energy supply. The category ‘conceptualisation’ includes, e.g., stochastic dynamic
environmental approaches or approaches of machine learning. Finally, the ‘practical rel-
evance’ contains, e.g., realistic model formulations or real-life case studies. We take up
these categories in the later part of this paper and show what other papers contribute
to these less investigated areas of research. In addition, we identify and present further
innovative streams of research, where we point out remaining blind spots that might be
fruitful areas for future research.

The remainder of this paper is organised as follows. In Section 2.2, we describe our
systematic literature search process and the derived scheme for classifying the relevant
articles. In Section 2.3, we provide a brief quantitative analysis of the research field, which
is followed by a structured and detailed discussion of recent research in the various areas
of machine scheduling and lot sizing in Section 2.4. In Section 2.5, we explicitly discuss
how recent research contributes to open research questions mentioned in previous survey
papers. Moreover, we identify and describe upcoming streams of recent developments
and we outline topics for future research. Finally, Section 2.6 concludes the paper.

2.2 Literature search

In order to describe our literature search, we first present the search process methodology
in Section 2.2.1 together with a brief overview of the number of articles found in different
journals. We then present a classification scheme in Section 2.2.2 that is used afterwards
for structuring the field of research.

2.2.1 Scope and literature search process

Figure 2.1 illustrates the generic framework which we use to define the scope of our liter-
ature review. The framework’s core element relies on the production environment within
a manufacturing company (‘system boundary’), including (but not limited to) machines
and supporting processes (e.g., transportation) that require electricity to perform or to
assist the production. These ‘energy-intensive processes’ typically obtain their required
amount of electricity from the grid (‘energy market’). Due to the continuous expansion
of renewable energies such as wind and solar power along with their uncertain genera-
tion capacities, a rising imbalance of electricity supply and demand can be observed. As
a result, energy suppliers encourage companies to adapt their production processes to
the power generation by introducing time-varying electricity prices such as time-of-use
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Figure 2.1: Boundaries and scope of considered system.

(TOU) tariffs. Moreover, electricity may also be purchased on spot markets (e.g., day-
ahead markets), where supply contracts are being fulfilled in the very short-term and on
an hourly basis (real-time pricing, RTP). In both cases, physical delivery of electricity
is carried out through an external grid. By contrast, ‘on-site generation’ enables manu-
facturing companies to reduce their dependence on external energy supply by installing
on-site power generation devices such as wind turbines or combined heat and power
plants. In combination with energy ‘storage systems’, manufacturing companies gain a
high level of flexibility, since generated electricity may be stored for later usage. In order
to make optimal economic use of a storage system, companies can also buy electricity and
fill the storage when market prices are low or they can sell stored electricity when market
prices are sufficiently high. Additionally, waste heat from energy-intensive production
processes may also be recovered by storage systems for later provision. Particularly, the
consideration of on-site generation and energy storage systems has not been covered in
the previous review articles by Biel and Glock (2016b) and Gahm et al. (2016). How-
ever, current research such as Liu (2016), Ruiz Duarte et al. (2020), Fazli Khalaf and
Wang (2018), or Wichmann et al. (2019b) clearly point out that these issues need to be
incorporated into decision making.

Based on the methodology proposed by Vom Brocke et al. (2009), Figure 2.2 visualises
our literature search process and the development of a classification scheme. A key
component of a survey is the definition of its literature research scope (step 1) as shown
in Figure 2.1. The entry into the iterative process (steps 2 to 5 are passed several times)
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Figure 2.2: Literature search process (Vom Brocke et al. 2009).

is given by the initial conceptualisation (step 2). After having specified the topic of
interest in principle, we have defined three categories of keywords; see Table 2.1. The
first keyword category is related to production planning approaches, the second category
is related to energy, and the third category corresponds to optimisation models. To
account for any relevant article, the keywords are formulated in a generic manner. We
combine all keywords to generate a final list of keyword combinations. Please note that
the third category is extended to nine keywords for the actual search, as we incorporate
American and British English.

Table 2.1: Overview of search keywords.

Keyword category 1 Keyword category 2 Keyword category 3

– Production planning

– Scheduling

– Manufacturing system

– Industrial system

– Lot sizing

– Energy

– Electricity

– Load management

– Demand side management

– Mathematical model

– Mathematical optimisation

– Optimisation model

– Optimisation problem

– Heuristic

– MIP model

The first literature search (step 3a) is conducted using the scholarly database Scopus
which contains peer-reviewed articles. During the search, care was taken to ensure that
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keyword combinations were included in the title, abstract, or list of keywords and that
the articles were published from 2016 up to 2020. Assuming that high quality research is
published in academic journals, we limit ourselves to journals and especially to those in
the field of management-oriented operations research. The literature relevance selection
process (step 4) analyses each article’s relevance by checking its title, abstract, keywords,
and main text. To classify an article as relevant, it must fulfil the following criteria: The
first criterion arises from the third keyword category that reveals the decision support
focus comprising mathematical optimisation models. The second criterion demonstrates
an exclusive inclusion of papers that address planning problems within a manufacturing
environment. The third criterion shows the strong focus on energy. Any optimisation
models and objectives must explicitly address energy concerns. In step 5, the literature
analysis and synthesis of the articles chosen so far is performed by analysing the entire
articles’ contents. With the resulting information, the articles can be incorporated into
the initial conceptualisation phase (step 2). Moreover, the current literature classification
scheme (step 6) can now be established with a useful set of dimensions and attributes
(cf. Subsection 2.2.2).

After a first run through steps 2 to 5, we validated and expanded the original con-
ceptualisation by performing a one-level forward as well as a one-level backward search
(step 3b) in order to identify relevant articles that cite any of the so-far selected articles.
Afterwards, the steps were repeated and, where necessary, the dimensions and categories
of the derived literature classification scheme were adjusted. Eventually, we obtained our
final classification scheme (step 6) that is described in detail in Subsection 2.2.2.

Within our search process, we identified a total of 192 relevant articles incorporating
energy-awareness in production environments. Over time, an increasing amount of pub-
lications developed. While 30 articles were published in both 2016 and 2017, 39 articles
were published in 2018, 65 in 2019, and 28 in early 2020. The continuously increas-
ing number of articles published in the last years impressively underlines the need for a
systematic literature review that structures the existing research and identifies relevant
research gaps. Figure 2.3 shows the number of articles in those management-oriented
operations research journals that published at least four relevant articles. Table 2.2 lists
those journals that published three or less articles each, which make up the 37 articles
in category ‘others’ shown in Figure 2.3. Please note that approximately 60 % of the
articles appeared in only four journals out of a total of 32.
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Table 2.2: Journals with three or less relevant articles.

Journal Articles
per

journal

Annals of Operations Research; Applied Energy; Computers & Chemical Engi-
neering; Computers & Operations Research; Energy; Journal of the Operational
Research Society;

3

Energies; Engineering Optimization; IEEE Transactions on Engineering Manage-
ment; IEEE Transactions on Systems, Man, and Cybernetics: Systems;

2

Algorithms; Computers in Industry; Decision Support Systems; EURO Journal on
Computational Optimization; IEEE Transactions on Industrial Informatics; In-
ternational Journal of Energy Research; International Journal of Energy Sector
Management; International Journal of Operational Research; Journal of Industrial
Engineering and Management Studies; Naval Research Logistics; Production and
Operations Management;

1
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2.2.2 Literature classification scheme

In order to structure the relevant literature, we propose a ten-dimensional classification
scheme that was derived from analysing previous literature reviews (Gahm et al. 2016,
Biel and Glock 2016b) and the papers that were found through the search process. The
scheme is shown in Figure 2.4. The first three dimensions A–C classify the articles in
terms of their energy related scope. In particular, a distinction is made between energy
supply, energy demand, and energy storage. The further seven dimensions D–J refer
to the modelling approach, taking into account the objective criterion, the system of
objectives, the manufacturing model, the mode characteristics, the planning horizon, the
model type, and the proposed solution method. Within each dimension, we further define
attributes and categories (groups of attributes).

The energy supply (dimension A) contains two categories ‘generation’ and the un-
derlying ‘coordination mechanism’. The energy generation can either be realised by the
grid (off-site), by an adjustable on-site facility (e.g., combined heat and power, inciner-
ation plant), or by a non-adjustable on-site facility (e.g., solar, wind), where the terms
off-site and on-site refer to the location of generation plants. Adjustable facilities are op-
erated according to demand, whereas the operation of non-adjustable facilities depends
on the temporal availability of external factors such as wind or sun. The coordination
mechanism takes into account measures to determine the timing of energy consumption
(demand response). In principle, previous research revealed that a distinction can be
made between price-driven and event-driven demand response (Gahm et al. 2016). Par-
ticularly, the demand side management in companies encourages consumers to adopt a
targeted demand response, where consumption patterns are changed either in response to
electricity price variations (e.g., TOU, critical peak pricing, RTP, and load curve penal-
ties) or in response to specific trigger events, e.g., extreme weather conditions (Sun and
Li 2014). Due to the fact that our literature search solely revealed price-driven demand
response, we mention this differentiation only for the sake of completeness, but it is not
considered in the rest of this paper.

The actual energy demand (dimension B) distinguishes between ‘processing energy
demand’ and ‘non-processing energy demand’. Processing energy demand accounts for
the energy consumed to operate manufacturing machines that are directly in relation
with a company’s value added. By contrast, non-processing energy demand reflects
activities not directly connected to value adding (e.g., machine idle, machine setup,
material handling, and storage).

Looking at energy storage types (dimension C), we distinguish between three cate-
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Figure 2.4: Literature classification scheme.
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gories to capture various possibilities for energy conversion and reconversion. ‘Power-to-
power’ (P2P) indicates storage types where no conversion takes place, since electricity is
fed into the storage facility and electricity is also retrieved from it. ‘Power-to-X’ (P2X)
refers to storage types that convert input electricity into a different output type of energy
(e.g., Power-to-Gas, Power-to-Heat). Finally, ‘Power-to-X-to-power’ (P2X2P) storage
types even account for reconversion when input electricity is fed, converted (e.g., into
hydrogen), and stored in the storage facility and later reconverted back into electricity.

Regarding the modelling approach, the objective criterion (dimension D) shows the
formulation of objective functions and differentiates between two categories: ‘monetary’
and ‘non-monetary’ objectives. The monetary category includes the minimisation of
costs related to energy consumption, peak power, environmental (e.g., CO2 emission
costs), production-related, inventory, tardiness, and other. The non-monetary category
considers the minimisation of energy consumption and peak power as well as the optimi-
sation of environmental (e.g., carbon emission), time-based (e.g., makespan, tardiness),
production quantity-based, and other non-monetary performance measures.

The system of objectives (dimension E) distinguishes between ‘single-’ and ‘multi-
objectives’. While single-objective formulations solely exhibit variables referring to a
single dimensional unit (e.g., costs), multi-objective formulations take various dimen-
sional units (e.g., costs and emissions) into account (Pinedo 2016).

The underlying manufacturing model (dimension F) differentiates five established
manufacturing environments (‘single machine’, ‘parallel machine’, ‘flow shop’, ‘job shop’,
‘lot sizing’). A sixth attribute ‘other’ is added as a collective term for further energy-
intensive processes’.

The mode characteristic (dimension G) reflects the machine respectively job execu-
tion modes. A ‘single-mode’ characteristic is present when a job can only be processed
in a single execution mode going along with a given processing time and energy con-
sumption. We also assume the single-mode characteristic in case of parallel machines
with identical processing times. On the contrary, a ‘multi-mode’ characteristic stands for
various execution modes (e.g., several machine speeds or heterogeneous machines) being
available for processing a job.

A time perspective is included by the planning horizon (dimension H). Here, ‘short-
term’ (< 24 h), ‘mid-term’ (> 24 h), and ‘long-term’ (weeks/months) planning horizons
are distinguished, which is useful especially when dealing with time-varying electricity
prices (Windler et al. 2019). The additional attribute ‘not specified’ has been introduced
for papers with a generic time perspective that do not refer to a particular time horizon.

The model type (dimension I) used in the research is either linear programming

33



Chapter 2. Energy-Aware Decision Support Models in Production Environments

(‘LP’), mixed-integer linear programming (‘MIP’), mixed-integer non-linear program-
ming (‘MINLP’), queueing theory (‘QT’) and simulation or ‘stochastic models’. The
attribute ‘not explicitly presented’ accounts for all articles that do not present an ex-
plicit mathematical model formulation.

Finally, solution method (dimension J) indicates the type of method that is proposed
in a paper for solving the optimisation problem. This can be a ‘heuristic’ (e.g., a genetic
algorithm) or an ‘exact algorithm’ (e.g., a branch-and-bound). ‘Exact (Solver)’ refers to
papers that propose the use of a standard solver (e.g., CPLEX or Gurobi) for obtaining
a solution for the problem under investigation.

The described classification scheme has been applied to all relevant articles found
by our literature research. The detailed classification of all these articles is provided in
Tables 2.5–2.10 in Appendix A.

2.3 A brief quantitative evaluation of all papers

Having developed the literature classification scheme, we perform a brief quantitative
evaluation with respect to the different dimensions, categories, and attributes to analyse
the results and, in particular, to identify common combinations of attributes.

Almost all papers involve a feature of ‘energy supply’ (dimension A). Especially the
combination of attributes from the category ‘energy generation’ (i.e., energy from the
grid/off-site or from an adjustable or non-adjustable on-site facility) with the different
‘manufacturing models’ (dimension F) provides a good overview of the research in the
field of energy-oriented production planning and scheduling. On the one hand, Figure 2.5
shows the number of articles for the possible 21 combinations of attributes linked to the
category ‘energy supply’ and the dimension ‘manufacturing model’. By means of this
evaluation, it can be directly deduced that by far most studies consider an off-site energy
feed from the grid, whereas on-site generation is clearly insufficiently researched. On
the other hand, Figure 2.5 also shows the combination of attributes associated with
both the category ‘coordination mechanism’ (e.g., time-of-use, critical peak pricing) of
dimension A and the different ‘manufacturing models’ of dimension F. Here, it can be
analysed how many authors consider measures to determine the best timing of energy
consumption (demand response). In fact, coordination mechanisms are addressed in only
about 60 % of the articles. Furthermore, a distinction between time- and event-driven
response is not necessary for the papers that were published so far, as event-driven pricing
schemes do not occur so far.

Since all of the papers specify an objective function, we study the different objective
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Figure 2.5: Energy supply and coordination mechanism subject to manufacturing model.

criteria (dimension D, cf. Subsection 2.2.2), as it seems interesting to analyse the relative
frequency of the individual objectives proposed. Figure 2.6 shows a pie chart with the
corresponding information. Here, the monetary objective functions are shown on the
right side (chequered) of the chart and the non-monetary objective functions on the left
side (vertical line).

As expected, a large share of the articles (approx. 41 %) deals with energy costs and
energy consumption in the objective function. A further large part considers time-based
objective functions, which comprises various forms like minimisation of the maximum
tardiness, minimisation of total earliness and tardiness, or minimisation of the completion
time. Peak power and environmental objectives are integrated into the models less than
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Figure 2.6: Relative usage of objective criteria.

assumed, no matter whether treated by a cost or by a non-monetary objective.
In this survey, energy storage as well as possible energy conversion and reconversion

are explicitly taken into account. Therefore, the attributes P2P, P2X, and P2X2P of
dimension C in the field of the energy storage types have to be evaluated in combi-
nation with the categories ‘energy generation’ and ‘coordination mechanism’ of dimen-
sion A. Analysis shows that storage types play a subordinate role in the published articles.
Merely the simple P2P-storage received some significant attention so far. Thus, a clear
gap opens up here for future research.

2.4 Energy-oriented research in machine environments

In Figure 2.1, we have already illustrated that the present literature survey deals with
energy-oriented research in the field of production planning and scheduling with a fo-
cus on manufacturing environments. However, not only machines should be considered,
but also supporting, energy-intensive processes (e.g., transportation), which require elec-
tricity to perform or support production. Since conventional machine environments or
manufacturing models (dimension F) are chosen as a basis in almost all articles, we will
first take a closer look at papers that are positioned in this field; see Subsections 2.4.1–
2.4.4. The task of machine scheduling is to schedule jobs on a given set of machines,
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taking into account any possible dependencies so that the resulting schedule is as good
as possible with regard to a defined objective criterion. The result is then a schedule that
contains the assignment of individual jobs to the machines as well as information about
the order and the timing in which the jobs are processed on the machines (Pinedo 2016).
Finally, Subsection 2.4.5 reflects lot sizing problems. This stream of research accounts
for determining the number of product units to be processed together on one machine.
The different problems can be clearly divided into problems with a single-objective and
a multi-objective. In the following, we use this substructure to increase the clarity of the
descriptions.

2.4.1 Single machine scheduling

With regard to possible machine environments, the fundamental case is to consider only a
single machine. The resulting single machine scheduling problem is practically relevant in
various applications that feature a dominant energy-intensive process step (e.g., heating,
cooling, coating). Moreover, the problem often appears as a subproblem in environments
with multiple machines.

Single-objective

In the context of single machine scheduling, a total of 13 papers with a single-objective
criterion can be identified. The most studied setting is a general manufacturing envi-
ronment of a production company that faces an energy-aware single machine scheduling
problem (Zhang et al. 2018a, Módos et al. 2017, Gong et al. 2016, Che et al. 2016,
Aghelinejad et al. 2018). Moreover, some articles deal with problems for particular in-
dustries like the steel industry (Sinha and Chaturvedi (2018), Puttkammer et al. (2016))
or the production of flake ice units (Ramos and Leal 2017). The paper of Wang et al.
(2019a) considers both a single- as well as a multi-objective model that further inte-
grates production scheduling and distribution scheduling. While Wang et al. (2019a)
combine single machine scheduling with a multi-vehicle routing problem in an integrated
model formulation, Gong et al. (2017) extend energy-efficient production scheduling with
labour-scheduling, aiming at investigating the emerging trade-off between low energy and
low labour costs, respectively. In general, prevalent problem modifications observe idle
machine switch-off strategies and consequently account for non-processing energy demand
as well as energy-conscious speed variation due to multi-mode machine characteristics
(Lee et al. 2017, Fang et al. 2016). Chen et al. (2019a) consider machine conditions dur-
ing optimisation in order to evaluate machine reliability in a dynamic, uncertain planning
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environment. All articles are based exclusively on grid energy supply. The work of Ramos
and Leal (2017) also incorporates a P2X storage in the form of ice production. With
regard to monetary objectives, roughly 78% of the articles address goals, where cost are
related to energy consumption and production schedules are carried out under a TOU
pricing scheme (6 articles) or an RTP scheme (3). Only Módos et al. (2017) include
energy consumption limits. Most articles take into account a planning horizon of at
most 24 hours (7 articles). Four articles show a mid-term planning horizon (> 24 hours).
Merely Che et al. (2016) and Ramos and Leal (2017) address a longer time horizon of up
to one month. Three articles do not specify the planning horizon, which places the prob-
lem within a generic time frame. Seven out of the 13 papers exhibit MIP formulations,
three articles present non-linear model formulations, and another three publications do
not explicitly present a model at all. Just Gong et al. (2016) examine stochasticity in
terms of machine failures, starvation, blockage of a production unit, and customer order
cancellation or changes. In general, except for one paper, the considered articles pro-
pose heuristic algorithmic solution methods to produce solutions within reasonable time.
Genetic algorithms (Aghelinejad et al. 2018, Gong et al. 2016; 2017), greedy insertion
heuristics (Zhang et al. 2018a, Che et al. 2016), a GRASP heuristic (Puttkammer et al.
2016), tabu search (Wang et al. 2019a, Módos et al. 2017), an ant colony algorithm (Chen
et al. 2019a), a graphical solution method based on the concepts of pinch analysis (Sinha
and Chaturvedi 2018), an approximation algorithm (Fang et al. 2016), and a dynamic
idle time and arrival time control algorithm (Lee et al. 2017) can be found in the litera-
ture. Furthermore, Che et al. (2016), Chen et al. (2019a) additionally propose an exact
solver solution.

Multi-objective

A total of 22 articles deal with multi-objective formulations, which is about 63 % of all
articles on single machine scheduling. Considering the trade-off between energy costs
and time-based objectives (10 articles) and the combination of energy consumption and
time-based objectives (5) is most prominent. 12 models explicitly take energy costs into
account, with the majority of them incorporating TOU tariffs as a price coordination
mechanism. The production setting investigated in these multi-objective studies is pri-
marily a manufacturing environment similar to the one in the single-objective problems
of this field. Only one article deals with a different setting and focuses on energy-aware
scheduling of computing device jobs in data centres (Carrasco et al. 2018). Regarding
research on manufacturing environment extensions, Liu et al. (2019b) investigate de-
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terioration effects of machines and Cui et al. (2019b) as well as Sin and Chung (2020)
consider machine unavailability due to failures, which necessitates to incorporate (preven-
tive) maintenance planning. Li et al. (2017c) and Zhang et al. (2017b) include machine
cutting parameter optimisation into process planning and job scheduling. All articles
exhibit settings in which the energy is supplied by the power grid. Merely Liu (2016)
extends this by an on-site energy generation that also includes a rechargeable battery
storage system. It may be stated that nearly 60 % (13 articles) additionally account for
non-processing energy demand besides processing energy demand consideration. While
ten articles optimise operations for a single day of production (short-term), two articles
concentrate on several days (mid-term), and the remaining ten articles do not explic-
itly specify a planning horizon. With the exception of Zhang et al. (2017b), all articles
with a short-term planning horizon comprise time-based components in their objective
functions. Apart from various heuristic solution approaches like, e.g., particle swarm
optimisation (Li et al. 2017a, Liu et al. 2019b), articles predominantly apply metaheuris-
tics based on ε-constraint methods for the generation of pareto fronts to solve the multi-
objective problems (Cheng et al. 2017, Liu et al. 2019a, Wang et al. 2016, Wu et al. 2019a,
Che et al. 2017a). Moreover, the non-dominated sorting genetic algorithm (NSGA-II) is
often used as a benchmark in order to compare the introduced solution approaches (Liu
et al. 2019a;b, Lu et al. 2016).

2.4.2 Parallel machine scheduling

In machine environments with several parallel machines, it has to be decided which
machine processes which jobs. Thereby, machines are not necessarily identical, i.e., they
may differ in terms of speed, energy consumption, or other characteristics.

Single-objective

In the field of parallel machine scheduling, there are 18 articles dealing with a single-
objective function. Only one of them (Zhang et al. 2018c) considers on-site adjustable
energy generation and optimises the sizing of the generation unit under critical peak pric-
ing (CPP). All other papers examine production settings in which the underlying factory
is connected to the grid, with a multitude of authors assuming a variable pricing struc-
ture like TOU tariffs (7 articles) or RTP (3). Nine articles include non-processing energy
demands within the machine characteristics. It is rather surprising that no publication
takes energy storage into account. As one could already assume from the wide considera-
tion of variable pricing patterns, most objective functions have a monetary focus, with 13
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papers putting emphasis on minimising energy costs. Additional cost factors are related
to production (6 articles), inventory (5), tardiness (2), peak power (1), and environmen-
tal concerns (1). There is only one article aiming at minimising the production system’s
energy consumption; see Meng et al. (2019b). Regarding the investigated time frame, six
papers contain a short-term planning horizon, one paper focuses on a mid-term horizon,
and two articles consider a long-term planning horizon. Most authors formulate the par-
allel machine scheduling problem as a mixed-integer linear model (14 articles), while the
use of heuristics is the typical solution approach (17). Modelling approaches such as LP,
MINLP, or stochastic modelling are hardly observed (Zhang et al. 2018c, Hajej and Rezg
2019, Yang et al. 2018), while QT and simulation are not present at all. Twelve articles
use exact solver solutions. Five of the papers combine lot sizing and machine scheduling,
with two of them (Rapine et al. 2018a, Wu et al. 2018a) including decisions of additional
machine capacity purchase. Kong et al. (2020b) solve an integrated order acceptance and
scheduling model. Yang et al. (2018) investigate a scrap steel production, additionally
taking into account the uncertainty of raw material quality.

Multi-objective

Considering multi-objective optimisation for parallel machine environments, 21 papers
can be identified. They exclusively deal with settings, where energy is supplied by the
grid connection. Energy storage is not considered in any of the papers. The TOU
scheme is examined four times and the RTP scheme once, which means that the share
of authors investigating variable pricing is significantly lower than in single-objective
studies. Consequently, most of the papers make use of non-monetary objective functions
being comprised of time-based (18 articles), energy consumption (13), environmental (2),
and peak power (1) performance measures. Just seven of the papers minimise energy
costs. Merely Kong et al. (2020a) take production-related costs into account, where they
use an aggregated cost term that includes cost of machines, labour, material, depreciation,
and other variable factors. In nine articles, the parallel machine setting is integrated
with a flow shop. (Rocholl et al. 2020) deal with a lot sizing problem in a parallel
machine setting and point out that the pure parallel machine problem is rarely considered
appropriate for today’s complex production environments. Similarly to single-objective
optimisation, most of the articles solve short-term problems (7 articles in total). Only two
papers deal with a mid-term planning horizon (Zhu and Tianyu 2019, Zheng and Wang
2018). A long-term horizon is studied in two publications (Plitsos et al. 2017, Zeng et al.
2018b). The majority of problems is modelled as a MIP, whereas the two papers of Faccio

40



Chapter 2. Energy-Aware Decision Support Models in Production Environments

et al. (2019) as well as Zhu and Tianyu (2019) model a MINLP. A simulation approach
including a comprehensive data model for energy-aware manufacturing is presented by
Plitsos et al. (2017). All articles use heuristic approaches to find a solution, while two
authors also present exact solver solutions for small problem instances.

2.4.3 Flow shop scheduling

In flow shop environments, different production stages exist in series and each job passes
the stages one after the other and in the same order.

Single-objective

Roughly a third of the investigated flow shop problems (26 articles in total) can be associ-
ated with single-objective optimisation. All these articles assume that energy is supplied
by the external grid. Interestingly, two papers put emphasis on adjustable on-site gener-
ation systems. While Islam et al. (2018) do not explicitly describe the underlying system,
the core element in Biel and Glock (2016a) relies on the transformation of waste heat
into electricity. The waste heat is generated during machine operations of other produc-
tion systems and then converted into electricity that is used to operate the machines in
the flow shop (P2X, but no storage system). The integration of non-adjustable on-site
generation systems is considered by five articles, while predominantly the feed-in of solar
as well as wind power systems is of particular interest. Among all energy cost-related
objective functions, which make up about 65 % of the considered articles, the most often
studied coordination mechanism are TOU tariffs. Fazli Khalaf and Wang (2018) is the
only work which incorporates an RTP scheme that is adapted to a short-term schedul-
ing problem. Moreover, the impact of on-site renewables such as solar and wind power
as well as battery storage systems are taken into account here, allowing to investigate
related make-or-buy decisions of energy supply. Next to a specific production process,
the work of Dababneh et al. (2016) also takes up a heating ventilation and air condition-
ing system, being referred to as other energy-intensive processes (cf. Subsection 2.2.2.
The basic idea is to optimise the heat transfers such that peak power demands can be
flattened significantly. Among all papers that explicitly state a planning horizon, short-
term scheduling is most popular (10 articles). In contrast, Zhang et al. (2018c) study
the sizing and planning of an on-site generation system on a yearly basis, while a CPP
tariff is considered. This approach stands out, since it is the only article that covers both
a long-term planning horizon as well as the CPP tariff. Generally, different heuristic
solution strategies are used in 19 articles. Genetic algorithms are presented, e.g., in Liu
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et al. (2017b), Meng et al. (2019b), Zhang et al. (2018c), and Masmoudi et al. (2017b).
Moreover, a fix-and-optimise (Liang et al. 2019) as well as a fix-and-relax (Rodoplu et al.
2019) approach can be named further on, while exact approaches are applied less often
(9 articles).

Multi-objective

Looking at multi-objective optimisation in the context of flow shop scheduling, a total
of 42 papers can be found here. Similar to the single-objective flow shop papers, also
all of the multi-objective articles assume a grid feed-in. The works of Biel et al. (2018),
Wu et al. (2018b), and Weitzel and Glock (2019) additionally study the impact of on-
site generation, where the latter also incorporates a battery storage system. Solar and
wind generation, respectively, are treated as a non-adjustable source of electricity in
these modelling approaches. A clear majority of studies (26 articles) analyses the trade-
off between energy consumption and time-based objective criteria (i.e., makespan), see,
e.g., Fu et al. (2019), Jiang and Wang (2019), and Öztop et al. (2020). Considering
monetary objectives, roughly a quarter of the articles combines energy cost-related goals
with the aforementioned time-based objective criteria, mostly carrying out short-term
production scheduling under a TOU pricing scheme. In this line of thought, Masmoudi
et al. (2017a) is worth mentioning, as this study combines a multi-objective flow shop
environment with a single-item capacitated lot sizing problem in order to minimise setup
and inventory costs. Regarding the planning horizon, 23 articles consider a horizon of
at most 24 hours and 14 articles do not specify the horizon. While four papers focus
on a planning horizon slightly longer than 24 hours, only Zeng et al. (2018b) address a
longer time horizon of up to one month by interpreting the computed energy-saving ratios
also on a monthly basis. The most widely used solution strategy relies on determining
pareto-optimal solutions by means of heuristic approaches such as the hybrid NSGA and
its variants (e.g., Schulz et al. (2019), Wang et al. (2019b), and Zheng et al. (2019)). Ten
articles (additionally) make use of exact solution approaches for verification purposes,
see, e.g., Weitzel and Glock (2019) and Schulz et al. (2020).

2.4.4 Job shop scheduling

A job shop environment is characterised by several production stages (machines), where
each job must pass through the stages, but following its own predefined route (machine
sequence).
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Single-objective

Within the field of job shop scheduling problems, 12 articles present single-objective
models. Six papers study energy costs and five energy consumption. Three papers deal
with tardiness penalties and two with non-monetary time-based objectives. Moreover,
two articles also consider production-related costs and one article includes inventory
costs. The authors either optimise operations for a planning horizon of a single day (5
articles) or they do not specify the time frame for the optimisation (7 articles). Only
three articles present exact solutions, the rest uses heuristics.

Among the papers in this area, only Golpîra et al. (2018) consider an industrial setting
with on-site energy generation (adjustable and non-adjustable), P2P, and P2X2P energy
storage. The authors introduce an integrated, robust mixed-integer problem for lot sizing
and scheduling decisions under uncertain energy supply and demand, minimising energy
as well as various production-related costs. Two other articles also present integrated
models. Ebrahimi et al. (2020) combine machine scheduling and layout optimisation,
where distances between machines influence transportation times that may contribute to
tardiness penalties. Zhang et al. (2016b) integrate scheduling and process planning for
environments, where different product types have a number of possible machine sequences
(processes). The traditional time-based objectives are considered in Meng et al. (2019c)
and Meng et al. (2019a). Here, the authors reduce energy consumption in production by
minimising the idle times of machines in which they still consume energy. In Masmoudi
et al. (2019), the authors compare two different problem formulations of energy-aware
job shop scheduling: a time-indexed versus a disjunctive graph-based formulation. The
results show that the time-indexed formulation takes longer to find feasible solutions,
but, eventually, reaches the optimal solutions faster than the disjunctive formulation.
Some articles propose rather unusual nature-inspired metaheuristics, namely cat swarm
and water wave algorithms (Jiang and Deng 2018), a discrete whale algorithm (Jiang
et al. 2019), and a bat algorithm (Lu and Jiang 2019).

Multi-objective

In total, 22 articles focus on multi-objective optimisation problems in a job shop envi-
ronment. All of them study settings in which the production site receives its energy from
the power grid; on-site energy generation or storage is not regarded. Mainly, a one-day
planning horizon is taken into account, only two articles schedule several days and one
includes a long-term perspective. In the area of multi-objective optimisation, most of
the papers examine trade-offs between classical time-related objectives (i.e., makespan,
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tardiness, or waiting time) and energy consumption or environmental objectives such as
emissions reduction (17 articles). Only a minority (6 articles) use monetary objectives,
with four models taking energy costs into account and only one of them including TOU
and RTP tariffs as coordination mechanisms. The predominant solution approach to get
to an efficient frontier is a variation of the genetic algorithm, mainly the NSGA-II.

One of the most studied settings in multi-objective job shop problems is an industrial
environment in which machines can operate at variable processing speeds under corre-
sponding energy consumption rates (Wu et al. 2019b, Abedi et al. 2020, Zhang et al.
2017b, Mokhtari and Hasani 2017, Wu and Sun 2018, Salido et al. 2016, Luo et al. 2019).
Frequently, the consideration of deterioration effects is included and, thus, maintenance
activities on machines are scheduled together with production jobs (Wu et al. 2019b,
Abedi et al. 2020, Zhang et al. 2017b, Mokhtari and Hasani 2017). Since these models
focus on processing speeds, time-related objectives are associated with a minimisation
of energy consumption or CO2 emissions. As jobs move individually between stages in
this production environment, a natural modification of the basic setting is to incorporate
(energy-intense) transportation activities into the model. Depending on the environment,
either cranes (Liu et al. 2019c) or automatic guided vehicles (Dai et al. 2019, Zhang et al.
2019e) are included. To account for both, service objectives and environmental objectives,
minimisation of transportation times, and makespan is combined with a minimisation of
energy consumption. Furthermore, Gong et al. (2019) take workforce-related aspects into
account by using wages as cost-factors. In a related stream, Coca et al. (2019) and Gong
et al. (2018) add non-monetary social objectives, e.g., noise or material handling, to bring
a sustainability perspective into the job shop scheduling problem. Perković et al. (2017)
only optimise monetary objective values (tardiness and energy cost), but use a weighted
sum approach to generate Pareto fronts, which is why the article may be classified as a
multi-objective approach. Especially in more dynamic environments, optimisation needs
to account for possible machine breakdowns or random job arrivals (Li et al. 2020, Zhang
et al. 2016a). Solution approaches then take a pre-generated production schedule that
is modified when dynamic events occur through introducing new genes into the used ge-
netic algorithm. Wang et al. (2018b) consider applications that involve consecutive steps
in the production processes (e.g., tool selection and machine allocation). They divide
the problem into subproblems which are solved within an iterative two-stage approach.
Finally, game theoretical approaches are also applied to reach an equilibrium of conflict-
ing objectives within job shop production environments (Zhang et al. 2017c, Wang et al.
2020a).
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2.4.5 Lot sizing

Lot sizing decisions are about the aggregation of different production orders into produc-
tion lots whose production is preceded by a setup process.

Single-objective

We identified a total of 16 papers on energy-oriented lot sizing that follow a single-
objective optimisation. Fourteen of these papers address period-discrete lot sizing de-
cisions to fulfil given demands and two of them deal with time-continuous lot sizing
decisions (Asghar et al. 2019, Biel and Glock 2016a). Regarding the energy supply, all
papers consider using energy from the grid. On-site energy is additionally treated in one
paper as adjustable (Biel and Glock 2016a), in one paper as non-adjustable (Wichmann
et al. 2019b), and one paper includes both options (Golpîra et al. 2018). Eight papers
include time-varying energy prices, mostly as TOU tariffs (Masmoudi et al. 2017a;b, Ro-
choll et al. 2020, Rodoplu et al. 2019, Tan et al. 2018) or real-time prices (Golpîra et al.
2018, Wichmann et al. 2019a;b), while one paper also addresses critical peak pricing
(Masmoudi et al. 2017a). When looking at infrastructure, it is noticeable that energy
storage is only covered by two papers, once as P2P (Wichmann et al. 2019b) and once
as P2P and P2X2P (Golpîra et al. 2018). Optimisation decisions always refer to mone-
tary objectives. Energy costs (11 articles), production-related costs (15 articles) as well
as inventory costs (15 articles) are the most important cost types in lot sizing. It is
remarkable that in eight articles, energy costs are directly derived from the amount of
energy used, while in three articles energy cost are derived from emission certificates.
The major cost types are accompanied by peak power costs (Hajej and Rezg 2019, Mas-
moudi et al. 2017a;b, Rodoplu et al. 2019), environmental costs (Absi et al. 2016, Biel
and Glock 2016a, Hong et al. 2016), and tardiness costs (Giglio et al. 2017). Further
eight papers deal with other costs like, e.g., penalties for violating of contract bounds
or delayed demand fulfilment. Regarding the machine characteristics, 12 papers address
a single mode of machines, while five papers consider multiple operation modes. The
models are typically based on MIP formulations (15 articles), one paper formulates a
MINLP (Hajej and Rezg 2019), and two papers focus on stochastic models (Asghar et al.
2019, Golpîra et al. 2018). To solve the proposed models, heuristics solution procedures
(9 articles) as well as exact algorithms (5) and exact solvers (9) are presented.

Considering the modelling of time in the decision making, two different approaches
can be distinguished. Some papers use a continuous time, while most papers use discrete
time periods. In the field of time-continuous lot sizing, Asghar et al. (2019) examine
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the determination of recurring production lots with respect to their related production
speed. The speed influences energy consumption as well as emissions. The lots are
determined using partial differential equations. Furthermore, Biel and Glock (2016a)
consider a complex two-stage production and energy system. Here, a waste heat recovery
uses energy obtained from prior periods to fulfil energy demands of current periods. To
do so, complex engineering knowledge is applied to determine and formalise energy-
related non-linear interdependencies and to evaluate saved amounts of primary energy.
The economic aim is the decision on production lots according to interrupting and non-
interrupting production policies. Optimal decisions are obtained by solving differential
equations. In the field of time-discrete lot sizing, decisions on the setup state of machines
as well as production quantities of products are derived for multiple discrete periods in
a row. In all approaches, inventory costs as well as period-based capacities prevent a
one-time setup process for the overall planning period. These classic approaches are
extended by the consideration of energy-prices by Giglio et al. (2017). One interesting
aspect of energy-related constraints are emission quantities and allowances as well as
energy availability. Absi et al. (2016) include emission allowances and set up a model to
decide whether to use emission-friendly yet slow or energy-intensive yet fast production
modes to fulfil a given demand. Rapine et al. (2018a) and Rapine et al. (2018b) study
limited availability of energy in lot sizing and develop several exact solution methods for
the determination of lots of individual products to be produced in multiple stages. Hong
et al. (2016) consider emission allowances in the selection of machines to be set up and
used for production. Tan et al. (2018) take into account minimum and maximum load
restrictions on the energy consumption per period.

If energy can be bought at an arbitrary amount, its consumption is evaluated with
energy costs. Here, Giglio et al. (2017), Masmoudi et al. (2017b), and Wichmann et al.
(2019a) enhance classical lot sizing approaches for different machine environments by the
consideration of energy costs for production as well as setup and idle processes. Rodoplu
et al. (2019) extend the decision space even to the selection of energy supply contracts
and provide a fix-and-relax heuristic to solve the problem. Studies that go beyond the
consideration of a production are Wichmann et al. (2019b) and Golpîra et al. (2018).
Wichmann et al. (2019b) introduce an on-site energy generation as well as an electrical
energy storage to determine interactions between production decisions and the energy
market as well as the economic benefit of including energy storage within production
systems. Golpîra et al. (2018) develop a robust method for the integration of a wind
turbine and a combined heat and power plant into the energy supply of a multi-stage
production system. In both approaches, problems are solved using standard solvers.
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Furthermore, both approaches show that incorporating decisions for energy supply leads
to different schedules than just production-related ones.

Multi-objective

Merely the paper of Rocholl et al. (2020) investigates multi-objective lot sizing. It focuses
on a bi-objective planning approach for the batching of jobs to lots on parallel identical
machines. The two objectives consider energy costs as well as weighted tardiness of
jobs. Energy costs refer to TOU tariffs of the energy that is demanded by jobs in their
processing periods. Energy is provided by the grid. The proposed bi-objective problem is
solved by an NSGA-II heuristic that uses various encoding and local search schemes. The
procedure is applied in a case study to derive a pareto-optimal frontier of the competing
objectives, showing the possible spread and trade-off between them.

2.5 Streams of recent developments and future research po-
tentials

The analysis shows that the body of literature has been growing significantly since the
first review papers have been published. In what follows, we complement the quantitative
perspective taken so far by a content analysis. As a starting point, we use the open
research areas that have been identified by Gahm et al. (2016) as well as Biel and Glock
(2016b) and enrich them through a discussion of recent, innovative research streams
found in the contemporary literature. The goal is to provide an updated research agenda
for energy-aware production planning and scheduling.

Likewise, a presentation of real-life case studies allows to identify specific industries,
where energy-aware scheduling is mostly carried out. Table 2.3 provides an overview
of the studied articles that specifically look into practical manufacturing processes. In
the listed references, each of the individually developed model formulation is directly
applied to a specific use case in industry. As expected from Section 2.1, several practical
applications can be found in the energy-intensive steel and paper industry, see, e.g., Lu
et al. (2016), Sinha and Chaturvedi (2018), Zeng et al. (2018b;c). Interestingly, also
CNC machine tool processes are widely studied. In these cases, the energy consumption
is typically affected by different processing speed levels (e.g., Zeng et al. (2018a), Wang
et al. (2020c)). Looking at the evaluation by country, roughly 45 % of real-life case
studies are located in China, not the least because of governmental efforts of fostering
energy-conscious transformation in the industry sector (Li and Lin 2017, Ghisellini et al.

47



Chapter 2. Energy-Aware Decision Support Models in Production Environments

Table 2.3: Overview of articles dealing with real-life case studies.

Study Industry Country Manufacturing Model

Biel and Glock (2016a) Cutting process unknown Flow shop, Lot sizing
Che et al. (2016) Milling/boring of metal parts China Single machine
Che et al. (2017b) Turning machines unknown Parallel machine
Chen et al. (2019a) Rotor production China Single machine
Chen et al. (2019b) Milling/machining unknown Other
Coca et al. (2019) Metal-mechanic sector Colombia Job shop
Feng et al. (2020) Auto parts (one-line shafts) China Other
Gajic et al. (2017) Steel scrap melt shop Italy Flow shop
Iqbal and Al-Ghamdi (2018) Metal-cutting processes unknown Job shop
Li et al. (2017a) CNC face milling process unknown Single machine
Li et al. (2018a) Bathroom ceramic plant China Flow shop
Li et al. (2017b) Hydraulic press system unknown Single machine
Li et al. (2017c) Manufacturing workshop unknown Single machine
Li et al. (2018c) Welding shop China Flow shop
Liang et al. (2019) Tea drink production line China Flow shop
Liu et al. (2017a) Ceramic tile polishing unknown Flow shop
Liu et al. (2019c) Cement equipment China Job shop
Liu et al. (2019d) Cement equipment China Other
Liu et al. (2020b) Ring forging China Flow shop
Lu et al. (2016) Steel forming unknown Single machine
Lu et al. (2017) Connecting rods of motors China Flow shop
Modarres and Izadpanahi (2016) Smelting manufacturer Iran Other
Nujoom et al. (2019) Plastic and woven sacks unknown Other
Plitsos et al. (2017) Textile manufacturing unknown Parallel machine, Job shop
Puttkammer et al. (2016) Hot strip mill rolling unkown Single machine
Ramezanian et al. (2019) Extractor hood production Iran Flow shop
Ruiz Duarte et al. (2020) Metal structures Mexico Flow shop
Shi et al. (2019) Part machining China Flow shop
Sinha and Chaturvedi (2018) Iron and steel plant India Single machine
Su et al. (2017) Pharmaceutical enterprise China Flow shop
Tan et al. (2019) Iron and steel plant China Other
Wang et al. (2018b) CNC machining unknown Job shop
Wang et al. (2020b) Television disassembly China Other
Wang et al. (2016) Glass manufacturing China Single machine
Wang et al. (2019b) Glass ceramic production China Parallel machine, Flow shop
Wang et al. (2018c) Automobile stamping die China Parallel machine, Flow shop
Wang et al. (2020c) CNC machine tool unknown Other
Wu et al. (2018b) Wind turbine/tire production China Flow shop
Yang et al. (2018) Steel scrap melt shop unknown Parallel machine, Flow shop
Zeng et al. (2018a) CNC machine tool China Parallel machine
Zeng et al. (2018b) Tissue paper mill China Flow shop
Zeng et al. (2018c) Paper mill China Parallel machine, Flow shop
Zhang and Jiang (2019) CNC machine tool unknown Single machine
Zhang et al. (2018a) Vertical machining centre China Single machine
Zhang et al. (2018c) Auto components USA Parallel machine, Flow shop
Zhang et al. (2016b) CNC machine tool unknown Other
Zhang et al. (2019e) CNC machine tool unknown Job shop
Zhao et al. (2018) Steel production unknown Flow shop

2016).
From the future research needs, identified in the mentioned reviews of Gahm et al.

(2016) and Biel and Glock (2016b), three main categories of future development of energy-
aware production planning approaches can be derived. As outlined in Section 2.1, these
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categories are system boundary, conceptualisation, and practical relevance. Table 2.4 now
shows the three categories with the individual areas in more detail. Please note that
the areas are marked with abbreviations to refer to them later in Figure 2.7. In the
category ‘system boundary’, it is interesting to identify contributions that deal with ef-
ficiency increases of the upstream processes of energy supply. Pricing perspectives of
the utilities are rarely considered and are therefore an area of future research. Systems
differ, especially, if an internal conversion system is available or if on-site generation
and storage is installed. It is also of interest to find out whether load management is
implemented, where, e.g., power demand charges are included. Other fields incorporate
multiple-site concepts with energy hubs and smart grids in an industrial symbiosis. The
category ‘conceptualisation’ emphasises that a better understanding of the energy char-
acteristics is to be advocated. Since all systems under consideration are highly technical,
the consideration of interacting technologies is an important issue. Usually, a stochastic
dynamic environment is given and authors should be aware of it. Few papers explicitly
model other output-related criteria like the carbon footprint. In addition, few approaches
are presented that deal with big data and use methods of machine learning. A linkage
between short-term scheduling and mid-term planning in a common approach can help
to consider long-term effects in short-term decisions. The ‘practical relevance’ category
addresses whether an approach or a case study offers added value for the industry. In
particular, realistic model formulations or suitably specialised and useful solution meth-
ods should be identified. It is valuable if authors provide synthetic benchmarks that can
be used to validate methods in the future. Furthermore, real-life case studies show that
consulting activities in practice form the basis of the contribution.

Generally, we observe that substantial progress has been made along all the identified
areas of future developments. A number of works stand out as they address multiple
aspects at once. Such papers that contribute to several categories and their involved
subareas have been taken up in Table 2.4. Figure 2.7 further visualises to what extend
the categories are addressed in the literature. In this figure, we have also taken up papers
that contribute to just one of the three categories, but then have a lighthouse character
in doing so. From Table 2.4 and Figure 2.7, it can be seen that substantial progress
has been achieved in the recent literature, which is a promising finding regarding the
development of the research field.

In order to further advance research in the field of energy-aware production man-
agement, we abstain here from discussing the aforementioned categories and subareas in
detail and refer to the descriptions in the earlier survey papers. Instead, we suggest to
change the perspective on recent developments by discussing in the following subsections,
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Table 2.4: Recent contributions to open research areas mentioned in earlier literature
reviews.
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Category: System boundary

Efficiency increase of upstream processes (IUP)
Price setting perspective of utilities (PPU)
Internal conversion system (ICS)
On-site generation and storage (OGS)
Load management; including power demand charges (LM)
Multi-site concepts (MSC)

Category: Conceptualisation

Better understanding of energy characteristics (EC)
Stochastic dynamic environment approaches (SDA)
Modeling of output-related criteria (ORC)
Big data and machine learning approaches (BDML)
Linkage between scheduling and mid-term planning (SMP)

Category: Practical relevance

Realistic model formulations (RMF)
More specialised and useful solution methods (SUM)
Synthetic benchmarks for validation (SBV)
Real-life case studies (RCS)

fully covered, partially covered, not covered

what main thematic research streams we identified from analysing these innovative stud-
ies. Within Subsections 2.5.1–2.5.6, we take up the articles from Table 2.4 and Figure 2.7
and show how they form streams of recent development with respect to (novel) problem
features such as on-site electricity generation, layout and process planning, integration of
assembly line balancing, and others. Some of these steams are already addressed through
a substantial number of papers, whereas others are more in their beginning. Through the
identification of these streams and the discussion of corresponding papers, we identify
promising gaps for future research.
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System boundary

Practical relevanceConceptualisation

• Biel et al. (2018) 
OGS, LM, SDA, RMF, SUM, RCS

• Biel and Glock (2016a) 
ICS, OGS, EC, RMF, SUM, RCS

• Cui et al. (2019a) 
IUP, OGS, LM, SDA, BDML, RMF, SUM

• Fazli Khalaf and Wang (2018) 
IUP, OGS, SDA, BDML, RMF, RCS

• Golpıra et al. (2018) 
IUP, ICS, OGS, LM, SDA, BDML, RMF

• Perković et al. (2017)
• OGS, SMP, RMF
• Pham et al. (2019) 

OGS, MSC, SDA, ORC, BDML, SMP, SBV
• Ruiz Duarte et al. (2020) 

IUP, OGS, LM, SDA, RMF, RCS
• Wu et al. (2018b) 

OGS, ORC, RMF, SUM, RCS

• Dababneh et al. (2016) 
ICS, RMF

• Desta et al. (2018)
LM, RCS

• Weitzel and Glock (2019) 
PPU, ICS, OGS, LM, RMF

• Zhang et al. (2018c) 
OGS, LM, RMF, SUM, RCS

• Hemmati Far et al. (2019)
RMF

• Liu et al. (2019c)
RMF, RCS

• Zhang et al. (2020)
SUM

• Ebrahimi et al. (2020) 
SMP

• Feng et al. (2020)
SDA, BDML

• Lamba et al. (2019)
SMP

• Nouiri et al. (2019) 
SDA

• Salido et al. (2017) 
SDA

• Wang et al. (2019a)
ORC

• Chen et al. (2019b)
EC, RMF

• Jin and Zhang (2019)
EC, RMF, RCS

• Wang et al. (2020b)
SDA, RCS

Figure 2.7: Contribution of innovative research articles to three categories of research
gaps.

2.5.1 On-site generation environments

With an increasing awareness for the possibilities and potentials of on-site generation
of energy from distributed (renewable) energy resources to achieve efficient and possi-
bly carbon neutral operations, recently a number of works has been proposed to tackle
the challenges of the design and operation of such systems in different manufacturing
environments.

Works on design intend to support and coordinate decisions on the sizing of on-
site energy resources, storage, and energy conversion systems with those of production
planning. Mostly, complex energy management scenarios are considered, which comprise
realistic load management and demand response mechanisms. Within this stream Zhang
et al. (2018c) consider the setting of a manufacturing company participating in a CPP
demand response program. Assuming deterministic framework conditions and a non-
renewable adjustable energy resource, a MINLP model is proposed to determine the on-
site system size and the corresponding production and inventory decisions that minimise
the yearly energy costs in the face of variable energy and demand charges. The authors
develop and analyse a case study based on an automotive component manufacturer in
combination with real CPP data. In order to find solutions, linearisation techniques for
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the MINLP are presented and complemented by a genetic algorithm. Results show that
an optimal design of the system in combination with CPP can lead to cost reductions of
approximately 40 %.

The integrated energy system design and warehouse sizing problem is discussed in
Perković et al. (2017). The authors consider a stylised factory with a single-stage produc-
tion process that requires heat and electricity. The intensity of the production process
can be varied along with energy requirements. A warehouse (1) provides additional
flexibility to serve demand. Heat and electricity are supplied by an on-site fuel-driven
combined heat and power plant (2), a power-to-heat unit (3), and a solar power unit
(4). Energy can be stored by means of a thermal buffer (5) and traded with the grid
via a power exchange unit (6). Assuming deterministic data, a MIP is formulated to
simultaneously optimise the sizing of (1) to (6) along with energy trading, fuel purchas-
ing, and adjustments of the production intensity with respect to investment and energy
costs. A detailed scenario analysis shows that operating costs have a higher significance
than investment costs and when relying on renewable energy generation, bigger energy
storage and warehouses are needed.

Pham et al. (2019) study the coordination of decisions on the sizing and locating of
on-site non-adjustable energy generation and storage as well as production, inventory,
and transports for a multi-item, multi-factory supply chain under an microgrid which is
disconnected from the main grid. The objective is to minimise levelised costs assuming
stochastic demand and energy supply. To tackle the problem, Pham et al. (2019) use a
two-stage approach in which firstly production is scheduled to meet uncertain demands
and, afterwards, sizing (i.e., capacity) and positioning (among the set of manufacturing
facilities) of solar and wind power units is planned. Based on numerical experiments
and detailed 11-year climate data for eight cities around the globe, the authors conclude
that net-zero energy operations could be feasible and affordable depending on climate
conditions and the ability to exchange energy with the grid. In a sensitivity analysis, the
authors also investigate the use of batteries, concluding that they are most valuable in
systems that rely on energy from solar power.

From an operational point of view, the challenge that comes with on-site generation is
to coordinate the diverse set of flexibility instruments in the areas of energy, production,
material, and (back)orders in the face of dynamic and/or stochastic energy supply. De-
terministic settings are presented in the works of Weitzel and Glock (2019) and Wu et al.
(2018b). Weitzel and Glock (2019) consider the energy-aware scheduling of a flexible flow
shop with parallel machines and buffers. The system includes on-site solar power gener-
ation and a battery storage subject to wear. Additional energy is supplied from the grid.
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The main idea is to offer load reduction flexibility to the grid under a demand response
regime. Given a baseline schedule and the corresponding load, the authors determine
load reduction curves (LRC) that make load reduction potentials and their consequences
for the manufacturing firm transparent to the grid operator. This enables the grid opera-
tor to select the most efficient load reduction(s), if needed. Within a deterministic model
setting, the authors propose an ε-constraint approach to determine LRC for a given set
of demand response periods throughout one day. The approach is evaluated based on a
numerical study that replicates metal parts manufacturing for an exemplary day. The
authors find that the battery contributes to an increased load reduction potential while
at the same time reducing the deteriorating effect of demand response interventions on
the schedule. The potential, however, comes at the costs of significant wear.

Wu et al. (2018b) investigate possibilities to reduce the carbon footprint of a flex-
ible flow shop using renewable and non-renewable energy sources as well as a battery
energy storage system. Based on the assumption that processing and non-processing
energy requirements differ based on the energy source, a deterministic multi-objective
scheduling problem is formulated to reflect the trade-offs between makespan and the
carbon footprint of energy consumption. The latter is derived from a fixed coefficient
of CO2 emissions. A hybrid genetic algorithm with variable local search is proposed to
determine non-dominated solutions. Experiments conduced are based on data derived
from the production of wind turbine blades and radial tires. Based on the results, the
authors conclude that the availability of energy from on-site energy resources allows for
a significant reduction of the carbon footprint without jeopardising makespan. Further
reductions are possible, however, at the costs of an increased makespan. The proposed
solution procedure proved effective in finding non-dominated solutions.

A series of works departs from the assumption of known input data. Golari et al.
(2017) present a three-step approach to optimise production and inventory decisions in
a multi-site environment with non-adjustable on-site energy supply. The first step of the
approach solves a deterministic model for production and inventory planning, assum-
ing renewable energy is always available. In the second step, a multi-stage stochastic
optimisation incorporates uncertainties of renewable energy generation. The third step
is a Benders decomposition approach to find the optimal production schedule based on
scenario trees. The authors determine a pareto front, showing that without high cost
increases, a share of approximately 40 % renewable energy consumption can be achieved.

A two-stage bi-criteria stochastic optimisation procedure is contributed by Biel et al.
(2018). The authors determine a production schedule as well as energy supply deci-
sions for flow shop systems with grid-integrated on-site wind power to minimise the
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total weighted flow time and expected energy cost under power and demand charges.
A weighted-sum approach is proposed to determine non-dominated solutions. To ade-
quately capture the uncertainty of wind energy supply within the proposed MIP formu-
lation, the authors rely on the physically well-founded wind power scenario generation
process of Ma et al. (2013) in combination with a scenario reduction algorithm. At the
first stage, the optimisation procedure determines the schedule and establishes an initial
plan for the usage of energy generated on-site. The second stage anticipates the flexibil-
ity to adjust the energy plan depending on the observed wind power data. A rule-based
method is proposed to actually adjust energy supply decisions in real-time as wind power
data becomes available. Based on a synthetic case study that replicates real-life data on
machine power requirements, a TOU tariff, and wind speed observations, the authors see
a strong potential of on-site wind power generation. This potential includes the reduc-
tion of energy costs, the mitigation of fluctuating energy prices, and the chance to foster
environmental goals in manufacturing. Noteworthy, pronounced reductions in costs can
be achieved at a minor increase in total weighted flow time.

A more general system configuration is considered in Cui et al. (2019a). Electricity
is fed from the grid and, in addition, energy is generated from a set of non-controllable
renewable energy resources and partly stored in an energy storage system. A non-linear
model formulation is proposed to minimise electricity costs under demand and power
charges for a flow shop system. A general probability distribution function for the shop’s
energy requirements is derived based on a Markov process that assumes a Bernoulli re-
liability model. Energy that cannot be used locally will be wasted, as there is no sale to
the grid considered. A rolling horizon approach is adopted in order to handle the uncer-
tainty caused by weather changes. To solve the model, the authors present a generalised
Benders decomposition method. While referring to a representative production line with
six machines and realistic data, the authors demonstrate the suitability of the solution
approach. For a static setting, they observe a major potential to reduce energy costs of
up to more than 30 %, depending on the size of the on-site energy resources. The rolling
horizon scheme shows promising potential to tap the potential in a dynamic setting.

In the same line of thought, Ruiz Duarte et al. (2020) consider a multi-stage produc-
tion process with on-site renewable energy supply along with energy storage systems and
the power grid as backup system. As a special feature, a more realistic energy storage
model is used that considers imperfect charging/discharging efficiencies. Production is
planned using an aggregate multi-period single-item scheduling model. In order to cap-
ture renewable uncertainties, a two-stage robust optimisation model is formulated and a
nested column-and-constraint generation algorithm is applied. Similar to the prior works,
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the authors integrate TOU tariffs combined with LCP, describing an increase in price the
more power is consumed in a certain time span. In addition to that, the authors consider
energy consumption reduction requests from the utility company. Results based on the
case of a metal structures-manufacturing company and a planning horizon of up to seven
days demonstrate a cost reduction potential of up to 29 %, where the majority of the cost
reductions is only possible with the proposed pricing scheme. Otherwise reductions are
limited to only 2%. Both more incorporation of more detailed data and the consideration
of a longer planning horizon help in improving the results.

Finally, Fazli Khalaf and Wang (2018) extend the scope to the consideration of two
electricity markets: the day-ahead and the real-time market. The paper refers to a
single-item flow shop setting with multiple on-site solar and wind power units as well
as a battery-based energy storage system with realistic charging/discharging efficiency.
Interaction with the external grid is considered with respect to buying and selling energy.
The authors present a two-stage stochastic MIP to minimise electricity costs, given a de-
fined production volume. Based on known day-ahead electricity prices and the forecast
of renewable electricity generation, the first stage determines optimal purchase com-
mitments. The second stage anticipates real-time energy procurement by considering
scenario-based RTP and the actual generation of the solar and wind power. A synthetic
case study is developed based on real data of electricity pricing and renewable gener-
ation. In an attempt to make the model more realistic, the authors consider different
seasons, distinguish process- and non-process-related energy demand, and include lev-
elised cost of solar and wind generation to incorporate investment-related costs. They
observe very substantial cost savings potentials of up to 68 % depending on the number
and kind of on-site energy resources. The size of the battery only marginally influences
the results. It may be worth noting that the results strongly depend on the data. The
charging/discharging efficiency of 90 % in combination with the possibility to sell to the
grid at a fixed tariff make the battery an unattractive alternative in many situations.
Moreover, the authors assume a strictly positive contribution margin for wind power. As
a result, it is easily possible to end up with negative energy costs by adding more and
more wind power generation capacity.

To conclude, substantial progress has been made in the conceptualisation, devel-
opment, and analysis of models to support the design and operations of manufacturing
operations with on-site energy generation and storage. The studies consider a wide range
of configurations with respect to the energy and manufacturing system and report in uni-
son very significant potentials to reduce costs and to increase the share of renewables.
While the potentials obviously depend on the operating conditions (e.g., availability of
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wind and solar power, operational flexibility, possibility to trade exchange with the grid,
dynamic tariffs), there also seems to be a chance to improve the results by relying on
more accurate and more holistic models. This can be seen as a strong motivation to
engage in the development of extended model formulations as well as the provision of
capable solution procedures. When doing so, open topics for future research are the con-
sideration of mid-term energy procurement decisions as well the incorporation of more
realistic production costs. With regard to the latter, all model formulations discussed
before rely on highly stylised models of production cost. What is missing are model
formulations that adequately capture the costs related to the production mode/machine
state (e.g., ramp-up costs) as well as those related to the duration and time of the pro-
duction activities (e.g., labour costs). While data on weather and energy information is
widely and publicly available, the same would be highly desirable for open source data
sets that reflect the operating conditions of representative manufacturing facilities.

2.5.2 Layout and process planning

A number of authors have identified that planning tasks related to the choice of layout,
processes, and tool parameters can have a great effect on schedules as well as their energy
profiles.

In most multi-stage production settings, schedules and their energy profiles strongly
depend on the allocation of the machines on the shop floor, mainly through the trans-
portation activities between the machines. Not only the production layout has an influ-
ence on transportation times, and thereby waiting and idle states of machines, but also
the transportation devices themselves. For example, automated guided vehicles (AGVs)
or cranes cause the energy consumption to increase. Therefore, another stream of re-
search is devoted to combined production layout planning and scheduling. Ebrahimi
et al. (2020) plan the optimal schedule and layout in a single optimisation step. For
transportation between machines, electric vehicles are used which also contribute to the
energy demand. It is shown that the combined planning (energy and tardiness) results
in cost savings of 5 % on average. Lamba et al. (2019) optimise a dynamic cell layout
by minimising energy consumption costs incurred by AGV movements as well as mate-
rial handling and rearrangement costs. The resulting non-linear problem is solved by a
simulated annealing-based metaheuristic.

Another area between layout planning and scheduling with a significant influence on
energy characteristics, is process planning. In process planning, the sequence of opera-
tions of single jobs is determined. Jin and Zhang (2019) investigate this problem using a
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weighted sum approach to minimise both total production time and energy consumption
with the help of an energy consumption coefficient matrix. The test cases from real man-
ufacturing environments show that an average of 40 % of energy consumption reduction
can be achieved by including process planning in the scheduling decision.

Going further into the details of the processes themselves, production settings with
tool-using machines allow for more influence on the energy characteristics of the final
schedule. The selection and actual usage of this tooling can be determined by optimi-
sation. Chen et al. (2019b) integrate cutting tool selection and parameter optimisation
in the context of the process planning of a mill. They present a multi-objective ap-
proach to minimise energy footprint and total production time. Results show that, as
expected, both objectives are conflicting and the integrated approach allows for larger
energy footprint savings than solving both problems separately.

When it comes to energy-oriented layout planning, transportation activities can
strongly influence energy consumption. Therefore, integrating routing decisions may
lead to improved results. The great impact of process and tool characteristics shows that
these decisions should not be neglected in practice. Nevertheless, this research stream
is strongly focused on energy consumption as the main variable. Hence, time-varying
prices are still a promising open research field.

2.5.3 Assembly line balancing

The balancing of assembly lines (and disassembly lines) is an issue that is closely related
to the problems of production scheduling and, thus, has been integrated in several papers
due to its great influence on the energy consumption of production processes.

Zhang et al. (2020) propose a balancing and sequencing problem for mixed-model
assembly lines, typically found in car manufacturing. The authors develop a bi-objective
mathematical model minimising energy consumption as well as optimising the balance
rate horizontally (workload on each station) and vertically (deviations of workload be-
tween stations). Specifically, processing and non-processing energy demands are anal-
ysed. The model is solved using a multi-objective algorithm that integrates a cellular
strategy and local search. Results show that the energy consumption can be reduced by
adjusting the task assignment and model sequence without changing the configuration
of the line, while the energy consumption of idle machines has a significant impact on
results.

Desta et al. (2018) take a closer look at situations in which utilities impose power
limitations. The authors suggest to maximise the production rates for an asynchronous

57



Chapter 2. Energy-Aware Decision Support Models in Production Environments

assembly line system while maintaining the performance constraints. They propose a
temporal deterministic finite station machine concept, where each state represents ma-
chine status (working/idle) and transitions capture temporal changes. A near-optimal
schedule is selected by first finding extreme schedules, either by minimising power de-
mand, or by maximising production rates. Then, a constrained local search heuristic is
used to find near-optimal schedules by selecting the optimal set of state transitions. The
model is tested on a real case in the food industry. Results show that production rates
can be increased by up to 70 %, along with an increase in the total energy consumption.
However, power limitations are not violated in demand response event times.

Wang et al. (2020b) propose a disassembly line balancing model for waste electronic
equipment. They account for uncertainties, but only related to the quality of disas-
sembly parts. The multi-objective model optimises the number of stations, smoothness
index (difference in workstation load), energy consumption, and disassembly profit. The
problem is solved by a genetic algorithm based on task precedence relationships. One
of the main goals is to decide which part has to go through a destructive disassembly
process, leading to differences in energy consumption. The analysis of pareto fronts
shows that partial disassembly can simultaneously yield higher profits and lower energy
consumption.

In assembly line balancing works, the focus still remains strongly on energy consump-
tion. Time-varying pricing schemes are rarely examined, especially, since the associated
fluctuating processes may be in strong conflict with the traditional balancing objectives.
A further open research field is the integration of more complex energy systems, including
on-site generation as well as storage and/or electricity storage, which, in combination,
may partially solve conflicts between both varying prices and balancing lines. When
analysing energy-aware assembly line balancing, future research should additionally ac-
count for the fact that idle times and non-processing energy demands have a significant
impact on energy profiles.

2.5.4 Dynamics and rescheduling

Dynamic machining environments are characterised by unexpected, sudden events (e.g.,
breakdowns, job cancellations) that affect the originally determined deterministic sched-
ule. In order to minimise the overall impact on the schedule itself (i.e., delays), reschedul-
ing has to be performed.

The work of Salido et al. (2017) deals with dynamic changes within a job shop envi-
ronment, which make rescheduling techniques necessary. Given an unexpected machine
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disruption affecting the current schedule, machine-specific speed levels are used to re-
cover the original schedule until a so-called ‘match-up point’ is reached. The aims are to
maintain the makespan as well as to minimise the energy consumption. In response to
uncertain and dynamically changing machine states, rescheduling of production jobs is
also initiated in Feng et al. (2020). Unlike common approaches, the authors make use of
machine learning techniques allowing to monitor and evaluate the current machine state.
In case of necessary adjustments, the findings are promptly posted to the underlying
multi-objective optimisation model such that an updated schedule can be determined.

Nouiri et al. (2019) combine an energy-aware flexible job shop problem with an inven-
tory problem. The core element relies on synchronising machining operations with the
underlying multi-stage supply chain network with transports. Here, the minimisation
of energy consumption and transportation costs (and hence the carbon footprint) are
of particular interest. In order to quickly react on sudden unexpected events (e.g., ma-
chine breakdowns, arrival of new jobs), rescheduling measures are carried out, allowing
to modify the previously determined machine allocations as well as routing decisions.

The discussed papers strongly focus on machine-related, sudden disturbances. Against
the background of energy-aware scheduling with respect to fast changing real-time elec-
tricity prices, future research could also direct rescheduling activities to the dynamics
observed at electricity spot markets. In this context, a disturbance is associated with an
unexpected change in the electricity price. So far, machine learning techniques are rarely
considered within this stream. However, an integration of these techniques into decision
making might be useful, especially, when scheduling is based on predicted electricity
prices.

2.5.5 Multiple forms of energy

A number of papers also deals with the integration of multiple forms of energy, where the
different forms of energy are convertible from one form into another, e.g., from electricity
into heat. The integration of multiple forms of energy is crucial to address the overall
energy required within industrial production systems. Besides, it allows to consider
energy efficiency on a broader scale.

Dababneh et al. (2016) investigate the control of a heating ventilation and air cooling
(HVAC) system in combination with a sequential flow shop. The authors develop a
process model that allows to determine electrical power consumption of the HVAC based
on the demand for heating respectively cooling to maintain the room temperature of
the shop floor within a certain range. In doing so, external temperatures as well as
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heat emissions from producing machines, convection, and radiation are also considered.
The decisions to be made include the heating and cooling state of the HVAC, the use
of electrical energy, as well as the manufacturing state of machines. The corresponding
model is formulated as a MIP and solved using standard solvers.

Golpîra et al. (2018) investigate energy-oriented lot sizing in a production system
which requires electrical as well as thermal energy. For both types of energy, on-site
generation and storage technologies are in place, accompanied by an external electricity
grid. The transformation of energy is considered with respect to capacities and efficien-
cies. Since on-site energy generation by wind power as well as the overall heat demand
are uncertain, a robust mixed-integer non-linear program is developed in order to deter-
mine production quantities and sequences, energy flows, and inventories. The approach
takes RTP as well as CPP schemes into consideration and uses a conditional value at
risk-technique to examine trade-offs between scenario-based cost deviations and power
imbalances with regard to the decision maker’s attitude towards risk. The problem is
linearised and solved by a standard solver for small-scale problem instances using deter-
ministic scenarios for uncertain parameters.

Biel and Glock (2016a) focus on lot sizing in a two-stage flow shop system producing
one product. Both stages require electricity, partially coming from the external grid.
More importantly, both stages generate waste heat that can be converted into electricity
by an organic rankine cycle. For the energy conversion, the authors propose a mathe-
matical formulation based on a thermodynamic process model, where energy generation
is a function of lot sizes, production speeds of both stages, and the number of shipments
between stages. The formulation is embedded into a flow shop lot sizing problem and
an optimal solution algorithm is proposed. To apply the algorithm, problem instances
following a real-world company from the manufacturing sector are extended by realis-
tic technological characteristics for the organic rankine cycle. The instances are solved
for different interrupted and continuous production lot strategies, identifying significant
cost-related benefits of waste heat recovery.

The discussed papers provide approaches to integrate electricity and heat as impor-
tant forms of energy in industry. They strongly focus on technologically sound models
with clearly distinguishable conversion processes. Nevertheless, the field of multiple en-
ergy forms still is a mostly open topic in decision support. Future research could focus on
other forms of energy being important for industry like pressurised air or chemical energy.
Moreover, approaches to model the technologies of conversion processes are possible open
research areas.
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2.5.6 Integration of transportation processes

Several authors identified that an integration of transportation issues with production
related scheduling decisions seems reasonable from a holistic environmental viewpoint.
The subsequently discussed publications can be distinguished by the kind of transport
process being integrated in production management in order to leverage further reaching
energy-savings potentials.

Hemmati Far et al. (2019) consider a setting with flexible manufacturing cells, where
industrial robots conduct production operations while AGVs are responsible for the trans-
portation of material between a storage area and the robots. The authors examine this
setting in deterministic as well as fuzzy environments under TOU electricity prices. The
optimisation problem involves AGV job allocation decisions and accounts for the corre-
sponding power consumption of moving AGVs within the shop floor. By linking produc-
tion planning and transportation, the authors contribute a more realistic model formu-
lation with practical relevance. The proposed MIP model minimises the total cost of the
production and transportation system as well as the total tardiness of jobs against given
job due dates. The results indicate that the proposed algorithms generate high quality
solutions. In the line of thought of integrating material handling units into production
management, Liu et al. (2019c) integrate crane operations with job shop scheduling.
Especially in traditional heavy-duty industrial manufacturing environments, energy con-
sumption of crane equipment can account for a significant amount of the overall energy
consumption. The particular environment considered in this paper is a flexible job shop
with an overhead gantry crane that transports workpieces between various machines. A
corresponding MIP model is presented that decides about the operations of the involved
equipment while minimising the total cost of energy consumed by machines and the
crane. As the proposed problem is NP-hard, a combination of a genetic algorithm and
a swarm heuristic is proposed for its solution. The approach is tested using a real-world
case study of a large cement equipment company in China. The company produces in-
dustrial assets such as rotary kilns, vertical mills, or roll squeezers. Numerical results for
this case study reveal that the algorithm is capable of obtaining high quality solutions
in reasonable time. The case study emphasises the approach’s practical relevance.

A further expansion of the transportation sphere is investigated in Wang et al.
(2019a). This paper combines scheduling decisions of a single manufacturing machine
with a vehicle routing problem for the distribution of the finished products to the actual
customer locations. This combination seems reasonable, as in the considered setting,
customer orders have a due date which needs to be met through a combination of suffi-
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ciently short lead times for production and final delivery. In other words, if production
decisions affect a late finishing of a product unit, a fast delivery process may still ensure
a timely delivery and vice versa. The objective of the proposed optimisation model is
to minimise the total carbon emissions resulting from the energy consumption of the
production equipment as well as from the fuel consumption of delivery trucks. Hence,
it integrates enhanced output-related criteria into the model formulation; see ORC in
Table 2.4. As the problem proves to be NP-hard, a tabu search hybrid algorithm is
proposed for its solution. The results show that the integrated production scheduling
and distribution method is capable of reducing the total CO2 emissions.

The mentioned articles provide a sound basis for fruitful future research. In particu-
lar, it appears promising to systematically extend the system boundaries of production
systems towards distribution processes in order to evaluate the environmental perfor-
mance of production-distribution systems as a whole. What is missing in the literature
so far is to include charging decisions of material handling equipment into the production
scheduling. Especially the usage of AGVs raises the question, what capabilities these ve-
hicles have and how to fit their recharging into the scheduling of machines that depend
on this material handling equipment. Using the batteries of such equipment for (interme-
diate) storage of energy could be a further innovative aspect of energy-aware operations
management. Finally, a systematic approach to the inclusion of various material han-
dling equipment types (e.g., AGVs, portal cranes, conveyor systems, fork lifts, external
trucks) and their particularities within production scheduling could put an environmen-
tal perspective not only in operational planning, but also in more tactical decisions like
a coordinated selection of material handling technology and production technology.

2.6 Conclusions

This literature review has put focus on papers that bring issues of sustainable energy
generation, storage, and consumption into operational production planning problems.
For this purpose, we conducted a systematic literature search and selection that identified
almost 200 relevant articles published between 2016 and 2020. In order to analyse this
research systematically, we have proposed a multi-dimensional classification scheme that
accounts for novel attributes of energy supply, demand, and storage, next to more classical
attributes like the type of production planning problem under investigation, the features
of the proposed optimisation model, and the type of the solution method being used.
This scheme is applied to clearly reveal the features of the relevant papers and to analyse
this body of literature systematically.
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Next to a thorough presentation of studies in their respective areas of job scheduling
in various machine environments and lot sizing, we provide a detailed analysis of current
streams of research. For this purpose, we actively take up and discuss areas of future
research mentioned in earlier review papers and we present six research streams that can
be found in the recent literature. For each of these streams, we discuss those papers
that already contributed to them so far and we identify related topics of future research.
With these contributions, we hope that this survey supports the further advancement
of energy-aware decision making in production environments. Mentioned in previous
surveys, but not yet integrated into the literature, is an event-driven demand response
and a realistic modelling of greenhouse gas emissions.
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Model type
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Peak power
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Production quantity-based x x
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Planning horizon
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Model type
LP
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Solution method
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Exact algorithm x x
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Abstract Increasing yet volatile generation of electricity from renewable energy sources
constitutes challenges to prevent grid bottlenecks and to ensure grid stability. Similarly,
energy-intensive industrial companies have to take care of their internal power load man-
agement to prevent energy infrastructure overloads. We bring these two fields together by
(1.) optimizing production scheduling and equipments’ charging decisions such that the
internal load management of a company is respected while (2.) supporting grid stability
through increased local consumption in periods of peak generation of renewable energy.
For this, the considered company receives an external signal about the availability of
(excessive) renewable energy. We present two optimization models that incorporate this
signal when making production and charging decisions for heterogeneous types of equip-
ment. The main objectives consider minimization of total tardiness, maximization of
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energy consumption in periods of excessive renewable energy generation and minimiza-
tion of peak loads. Total job completion time forms a subordinate objective. We further
propose a production coordination platform (PCP) that orchestrates the decision making
of both optimization models. Computational experiments consider a manufacturing sys-
tem that consists of two heterogeneous production equipment types with two machines
and two support devices and demonstrate that the PCP is competitive compared to an
integrated optimization model. It is shown that a hierarchical order of the diverse objec-
tives is properly reflected in the decision making such that a company can flexibly adapt
its internal load management to the current situation of renewable energy generation.
Sensitivity analyzes of control parameters reveal how the performance of the PCP reacts
to different degrees of information availability. We finally show that the signal-driven
PCP can achieve a substantial reduction of production-related CO2 emissions.

Keywords Machine scheduling, charging decision, load management, demand response,
grid stability, CO2 emission

3.1 Introduction

In recent years, a significant increase in generating electricity from renewable energy
sources has been achieved, see Capizzi et al. (2019). Temporal fluctuations in renewable
energy generation constitute challenges for the stability of power grids. This calls for feed-
in management to prevent overloads as lacks of grid infrastructure prevent far distance
transmission of energy from the locations where this energy is produced to those that face
a high energy demand. Far distance energy transmissions constitute a grid bottleneck
and wind mills, solar panels etc. may be shut down temporarily to prevent feed-in.
Consequently, renewable energy is not generated, although it could have been produced,
which constitutes an undesirable loss of sustainable energy. As an example, feed-in
management actions caused a loss of 6.48 GWh of renewable energy in Germany in the
year 2019 (Bundesnetzagentur 2019).

One approach to reduce feed-in management actions and thus, the loss of sustainable
energy, without overloading transmission infrastructure to distant demand places is to
temporarily increase local consumption of energy in times of peaks in energy generation.
This relieves the grid and the potential bottleneck is bypassed. This paper presents a
methodology for flexibly adapting the production processes to the availability of excessive
sustainable energy. The company receives an external signal that indicates for upcoming
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periods, whether or not feed-in management actions are necessary. The demand side
knows through the external signal when to increase its own consumption such that the
loss of renewable energy due to feed-in management is reduced.

Pushing energy consumption to relieve the grid and to avoid a loss of renewable
energy constitutes a challenge for the internal load management of a company. This is
because internal peak loads are a thread to a company’s factory infrastructure and a
substantial component of the energy prices. Thus, grid stabilization by fostering local
consumption cannot be considered without a company’s internal load management too.
The internal load of a company is determined by various, heterogeneous energy consumers
like machines, support devices (e.g., electrified fork lifts for material handling) and others.
While energy consumption of machines is determined mostly through job scheduling
decisions, support devices are subject to charging decisions. The latter takes the form of
an inventory management that keeps track of a device’s charging level. To consider both
types of consumers, we present two optimization models, one for making job scheduling
decisions of a machine and one for making charging decisions of a support device. Both
models take into account the external signal for the availability of renewable energy as
well as the internal peak load. As it seems unrealistic to consider the decisions of such
heterogeneous consumers within a single, holistic decision making process, we present a
production coordination platform (PCP). The PCP coordinates the individual decision
making processes of these considered equipment types.

The remainder of this paper is organized as follows. Section 3.2 gives an overview
of the relevant energy-aware production scheduling literature. Section 3.3 presents the
models for the heterogeneous types of equipment, an integrated optimization model as a
benchmark and the PCP that coordinates the individual, short-sighted decision making.
As the decision making has to trade-off the consumption of renewable energy with service-
oriented goals like meeting job due dates, we consider these decision making processes
under a set of well defined performance measures. Computational experiments in Section
3.4 analyze the performance of the individual decision making processes and the PCP
as a whole and identify to what extend a consideration of the external signal supports
eco-friendly production operations. Section 3.5 concludes the paper.

3.2 Literature review

In recent years, energy consideration in the context of production scheduling received a
lot of attention in research and is addressed in various research streams under a variety of
terms. Following Schulz et al. (2019), we subsume this research under the term ’energy
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aware scheduling’. Detailed literature overviews of research on energy aware scheduling
are provided by Biel and Glock (2016), Gahm et al. (2016) and Bänsch et al. (2021).
Renna and Materi (2021) put special emphasis in their review on articles integrating
renewable energy sources in manufacturing systems. Energy aware scheduling means
that industrial consumers respond to energy price variations or other trigger events by
changing their consumption patterns. The subsequent literature review will emphasize
three energy aware research streams that differ in the way of considering energy related
information. These are: price driven demand response, event driven demand response,
and peak power reduction.

Price driven demand response means to take into account varying energy prices when
making production decisions. It is primarily considered in terms of time-of-use prices,
where high energy prices occur in on-peak periods and low prices in off-peak periods
in order to smoothen consumption patterns. While Zhang et al. (2014) investigate a
flow shop setting, Shrouf et al. (2014) focus on a single machine production setting un-
der time-of-use tariffs. Che et al. (2017) consider a time-of-use energy tariff within a
scheduling problem of unrelated parallel machines to minimize energy costs. Rubaiee
and Yildirim (2019) examine a preemptive single-machine scheduling problem with time-
of-use energy prices to minimize both, total completion time and total energy cost. Biel
et al. (2018) consider a flow shop scheduling problem with stochastic on-site wind power
generation under time-of-use energy prices. They minimize the total weighted flow time
and expected energy costs. In this line of thought, Subramanyam et al. (2020) develop a
two-stage mixed-integer model minimizing the energy costs of a flow shop that is pow-
ered by onsite renewable energy plants. The first stage minimizes the annual energy
consumption subject to a job throughput requirement. The second stage sizes wind tur-
bines, solar panels and battery units to meet the hourly electricity demand. Wang et al.
(2020) present a two-stage multi-objective stochastic optimization model for flow-shop
scheduling under a time-of-use electricity pricing scheme additionally integrating on-site
renewable energy generation and an energy storage system. Additionally, Materi et al.
(2021) propose an approach to reduce energy costs and CO2 emissions by production
system energy flexibility through photovoltaic plant and battery storage integration. In
this line of thought, Karimi and Kwon (2021) propose an approach to analyze the effect of
energy-aware production scheduling, on-site solar power generation and battery energy
storage on energy cost and makespan. Numerical experiments demonstrate the cost-
saving and performance effect that results from different configuration settings. Other
papers consider critical peak pricing for reflecting energy costs within production schedul-
ing. Critical peak pricing is based on time-of-use tariffs such that energy consumption
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peaks during critical peak periods are charged with especially high prices. While Bego
et al. (2014) propose a demand response program for sustainable manufacturing enter-
prises to identify reservation capacity, Ashok (2006) introduces a peak load management
model to incorporate the characteristics of batch-type loads, which is common in the pro-
cess industry. Zhang et al. (2018) address the sizing of an on-site generation system and
the corresponding production plan of a manufacturing system in order to minimize total
energy related cost under critical peak pricing conditions. Yusta et al. (2010) consider
real time prices that change (at least) on an hourly basis. The authors aim at finding a
production schedule that maximizes the company’s profit calculated as the difference be-
tween sales income and related production costs, where the latter also include electricity
cost.

Contrasting price driven demand response, event driven demand response received
much less attention in the literature. In particular, Sun and Li (2014) consider demand
response as a reaction to triggering events like local weather change. An automotive
assembly line manufacturing system is subject to a throughput-constraint. The goal is
to reduce power consumption when triggering events indicate a challenging situation for
the power grid or the internal load profile while keeping the throughput constant for
the considered work shifts. Beier et al. (2017) propose a method for a real-time energy
flexibility control logic to match a manufacturing systems energy demand with renewable
energy generation without throughput loss.

Peak power reduction is either considered as a means of internal load management
by establishing a hard peak load limit or by considering a minimization of the peak load.
A hard limit in terms of a constraint is suggested by Ashok and Banerjee (2001) for a
flour mill scheduling problem that minimizes energy costs and by Fang et al. (2013) for
a flow shop scheduling problem with makespan-minimization. Masmoudi et al. (2017)
contemplate a capacitated flow shop environment where minimizing peak power is part
of a cost function. Schulz et al. (2019) contribute a multi-objective mixed-integer pro-
gram (MIP) model for hybrid flow-shop scheduling with real-time energy prices. The
model exhibits three objective functions minimizing makespan, total energy costs, and
peak power. Ashok (2006) and Schulz (2018) link the reduction of energy consumption,
price driven demand response, and peak power reduction within a single model formula-
tion. Ashok (2006) presents a model that minimizes monthly operating costs regarding
energy costs with time dependent energy charges, machine speed variation and charges
for the maximum demand. Schulz (2018) contribute a multi-objective MIP model for
hybrid flow-shop scheduling with real time energy prices. The three subcategories of
energy aware scheduling are addressed in this model through an objective function that
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minimizes energy consumption and peak power under volatility prices.
The analyzed publications reveal a focus on price driven demand response. Any-

how, to the best of our knowledge, there exists no approach that combines event driven
demand response with a reduction of power peaks. To achieve this, we integrate an ex-
ternal signal that indicates availability of excessive renewable energy. Beyond that, the
analyzed publications solely consider job scheduling and exclude further production re-
lated energy consumers like support devices for material handling. Hence, we approach
the heterogeneity of production equipment through corresponding model formulations
and propose a production coordination platform that flexibly orchestrates the decision
making of this equipment.

3.3 A framework for coordinating heterogeneous produc-
tion equipment

3.3.1 Production environment and external signal

We consider an industrial company with an heterogeneous production equipment man-
ufacturing environment. The equipment is divided into two general types. The first
equipment type refers to machines that have to execute production jobs. The second
equipment type are support devices like, for example, electric fork lifts that handle ma-
terial or air tanks that supply compressed air. While the machines call for job scheduling
decisions, support devices have to made charging decisions. The proposed approach can
be applied to various kinds of manufacturing environments that involve energy intensive
processes such as laser cutting, melting, welding, pressing, material lifting, or others.

Research typically considers production scheduling and charging decisions as isolated
problems. From the perspective of a company’s internal load management, these kinds
of equipment decisions are interdependent as both contribute to the overall energy load
profile. We therefore consider a PCP that links the individual decision making of the
equipment units. As such, the platform is capable to coordinate different kinds of equip-
ment through their individual decision making models.

The decision making faces the challenge of conflicting objectives between production
related goals and energy consumption related goals. With regard to energy consump-
tion, a classical goal is to minimize peak consumption, see e.g. the survey of Bänsch
et al. (2021). In order to avoid feed-in management actions a further energy-related
goal can be to maximize consumption during periods with excessive renewable energy
generation. This prevents a loss of renewable energy that could be generated but needs
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Figure 3.1: ’Netzampel’ Schleswig-Holstein, Germany (Schleswig-Holstein Netz AG
2021).

to be suppressed if insufficient current energy consumption exists. In parts of Germany
and especially in the federal state of Schleswig-Holstein, the so-called ENKO-Netzampel
(Schleswig-Holstein Netz AG 2021) provides information about the availability of renew-
able energy, see Figure 3.1. It depicts an hourly forecast of feed-in management actions at
the community level for up to 24 hours. Red color indicates excessive renewable energy in
the municipality and thus, necessary feed-in management. For a local company, such an
external signal red (ESR) indicates that power-intensive operations could be conducted
to consume energy that would otherwise be lost. External signal green (ESG) indicates,
that no feed-in management is necessary and thus, no loss of sustainable energy is ob-
served. By considering the external signal an opportunity is given to consume excessive
renewable energy in ESR-periods and support grid stability.

The existing literature predominantly considers price signals from the energy-market
for energy aware scheduling, see discussion in Section 3.2. Price signals support a cost-
driven decision making. The price signal merely reflects the market-wide availability
of renewable energy. Such price signals therefore cannot support locally driven renew-
able energy generation and avoidance of feed-in management, at a municipality level.
Therefore, we investigate how to include such a signal into a company’s operations man-
agement.

To investigate the presented production environment and the role of the external
signal within the PCP, we present in Subsections 3.3.2 and 3.3.3 individual optimization
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models for a single machine and a single support device. Subsection 3.3.4 introduces the
integrated optimization model serving as a benchmark and 3.3.5 describes the PCP that
links the individual equipment model formulations and coordinates the decisions of all
machines and support devices in a company’s production environment.

3.3.2 Optimization model for scheduling jobs on a machine

We consider a single machine and a set of jobs J that need to be processed on this
machine. The decision making is based on discrete time periods. The time horizon of
interest is denoted by T and subdivided into time intervals of equal length. This enables
aligning the production decisions to the external signal forecast, which follows the same
time intervals. The machine can process a single job at a time, job processing is assumed
to be non-preemptive and there are no job precedence relations. For each job j ∈ J ,
a release date rj and a due date dj is given, where job j cannot be started before its
release date. The machine can operate in different modes S. For processing a job, a
machine processing mode s ∈ S must be chosen. The processing mode s affects the
processing speed and implies a trade-off between the processing time pj,s of a job j and
the corresponding energy consumption qj,s. Further input is given by the load profile lpt,
which is the company’s power consumed in period t. We assume that the external signal
is given for periods t ∈ T through a parameter ret with value ret = −1 for ESR-periods
and ret = 1 for ESG-periods. In ESR-periods, the available renewable energy capacity
is assumed to be infinite. Finally, a parameter n is given, which defines how many of the
jobs of set J the model should schedule in the current planning run. This parameter is
later used by the PCP to coordinate the various production equipment.

The decisions to be made are modelled through binary variable xj,s,t, which is equal
to 1 if processing job j in mode s starts in period t, 0 otherwise. Binary variable yj,s,t is
equal to 1 if job j is processed in mode s in period t, 0 otherwise. Continuous variable pl

measures the peak energy consumption over the entire planning horizon. The notation
is summarized in Table 3.1. The proposed decision support model is then formulated as
follows:

The model considers three (partly) conflicting objectives TA, ES, PL, see objective
functions (3.1a) to (3.1c). The minimization of the total tardiness (TA in (3.1a)) consti-
tutes the first objective. Tardiness occurs only if the difference between a jobs completion
time and its due date is positive. The corresponding max-function in (3.1a) can be easily
linarized using standard techniques. The second objective (ES in (3.1b)) represents the
external signal objective, which synchronizes production with ESR-periods and maxi-
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Table 3.1: Notation used for modeling the decision making.

Sets

J Set of jobs being released for the machine under consideration
S Set of processing modes
T Set of periods

Parameters

rj Release date of job j ∈ J [period]
dj Due date of job j [period]
pj,s Processing time of job j in mode s ∈ S [periods]
qj,s Power consumed by job j in mode s per period processing time [kW per period]
lpt Company’s load profile in period t [kW]
ret Dichotomous parameter, with ret = −1 if external signal red (ESR) indicates

feed-in management in period t, otherwise ret = 1 (ESG)
n Number of jobs to be added to schedule

Decision variables

xj,s,t Binary variable, equal to 1 if processing job j in mode s starts in period t, 0
otherwise

yj,s,t Binary variable, equal to 1 if job j is processed in mode s in period t, 0
otherwise

pl Peak load, measured as maximum energy demand [kW] over the entire planning
horizon

mizes the shift of energy consumption from ESG- to ESR-periods. The third objective
(PL in (3.1c)) represents the minimization of peak loads, as many industrial company’s
are additionally charged for their highest energy peak load. We solve this multi-objective
problem hierarchically, i.e., we consider one of these performance measures as primary
objective and the others as subordinate objectives, as this enables to distinct the func-
tioning of the different performance measures.

min→ TA =
∑
j∈J

∑
s∈S

∑
t∈T |rj≤t

max{0, xj,s,t · (t+ pj,s − dj − 1)} (3.1a)

min→ ES =
∑
j∈J

∑
s∈S

∑
t∈T |rj≤t

yj,s,t · qj,s · ret (3.1b)

min→ PL = pl (3.1c)
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∑
s∈S

∑
t∈T |rj≤t

xj,s,t ≤ 1 j ∈ J (3.2)

∑
t∈T

yj,s,t =
∑

t∈T |rj≤t

xj,s,t · pj,s j ∈ J, s ∈ S (3.3)

∑
τ∈T |t≤τ≤t+pj,s−1

yj,s,τ ≥ xj,s,t · pj,s j ∈ J, s ∈ S, t ∈ T (3.4)

∑
j∈J

∑
s∈S

∑
t∈T |rj≤t

xj,s,t = min{n, |J |} (3.5)

∑
j∈J |rj≤t

∑
s∈S

yj,s,t ≤ 1 t ∈ T (3.6)

∑
j∈J

∑
s∈S

yj,s,t · qj,s + lpt ≤ pl t ∈ T (3.7)

pl ≥ 0 (3.8)

xj,s,t, yj,s,t ∈ {0, 1} j ∈ J, s ∈ S, t ∈ T (3.9)

Feasibility of solutions is ensured by the following constraints. Constraints (3.2) en-
sure that each job j is started at most once after being released. Constraints (3.3) impose
job processing times by ensuring that executing job j in mode s takes exactly pj,s peri-
ods. Constraints (3.4) guarantee that jobs are processed non-preemptively. Constraint
(3.5) ensures that n jobs or less are scheduled in the current planning run depending
on the size of job set J . Constraints (3.6) assure that at most one job j is processed
by the machine in each time period t. Constraints (3.7) compute the highest peak load
pl. While Constraint (3.8) ensures that pl cannot take negative values, (3.9) assures the
binary character of variables xj,s,t and yj,s,t.

3.3.3 Optimization model for charging decisions of a support device

In this section, we consider a single support device that assists machines in their produc-
tion operations. Such a device might be an electric forklift that handles material, or an
air tank that provides compressed air to the production equipment. Each support device
holds an inventory of a resource that is depleted when supporting machine operations.
The jobs scheduled on the machines constitute a demand that consumes this inventory
of a support device. Considering a particular type of support device, we denote by bj the
amount of the device’s inventory that is consumed per period while job j is processed
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Table 3.2: Additional notation for charging decisions of support devices.

Sets

T̃ Set of look ahead horizon periods T̃ ⊆ T

Parameters

inv0 Initial inventory of support device
invmax Maximum inventory of support devise
det Demand faced by support device in period t ∈ T
ϕt Equal to 1 if support device faces demand in period t (i.e. det > 0), 0 otherwise
qs Power consumed per period charging in mode s [kW per period]
cs Charging amount per period in mode s
scc Equal to 1 if support device can charge and consume simultaneously, 0 other-

wise

Decision variables

zs,t Binary variable, 1 if support device charges in mode s in period t, 0 otherwise
invt Dependent continuous variable stating the inventory at the end of period t

on a machine. From the job scheduling decisions yj,s,t of all machines being active in
a period t, we can derive a total demand det faced by the considered support device in
period t. Whether or not the support device faces such a demand in period t is indicated
by binary parameter ϕt, which is equal to 1 if det > 0 and 0 otherwise.

The support devices inventory recharging consumes energy and needs to be aligned
with the machines’ production operations, which is why we present an optimization
model that covers the charging decisions of a support device. For this, we denote by T̃

a subset of the entire period set T for which charging decision are to be made. This set
characterizes the support device’s look ahead horizon for making charging decisions. It
is derived from the periods the machines have completed their decision making for. An
initial inventory level is given by inv0 and inventory is restricted by a limit invmax. The
inventory is reduced in period t by demand rate det. The support device can recharge
in different processing modes S. The modes s ∈ S differ by the charge rate cs and the
power consumption qs per period. The charge rate expresses the energy charged to the
battery for a forklift whereas it expresses the added amount of compressed air for the
air tank, etc. The availability of different modes S allows to trade-off the charge speed
versus the energy that is consumed per period of charging. Whether a support device
is capable to charge and fulfill demand simultaneously within a same period is denoted
by binary parameter scc. As an example, while an air tank can be refilled and provide
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pressured air to machines at the same time (scc = 1), an electric forklift cannot charge
and handle material simultaneously (scc = 0). The charging decision for the support
device is then modelled through the binary decision variable zst, which is equal to 1 if
the device charges in mode s ∈ S in period t ∈ T̃ . The dependent continuous variable
invt keeps track of the resulting inventory. Table 3.2 summarizes the additional notation
that is introduced for this model. The optimization model for the charging decisions of
the support device is then as follows:

min→ TA =
∑
s∈S

∑
t∈T̃

zs,t · t (3.10a)

min→ ES =
∑
s∈S

∑
t∈T̃

zs,t · qs · ret (3.10b)

min→ PL = pl (3.10c)

∑
s∈S

zs,t ≤ 1 t ∈ T̃ (3.11)

invt = invt−1 − det +
∑
s∈S

zs,t · cs t ∈ T̃ (3.12)∑
s∈S

zs,t + ϕt ≤ 1 + scc t ∈ T̃ (3.13)∑
s∈S

zs,t · qs + lpt ≤ pl t ∈ T̃ (3.14)

0 ≤ invt ≤ invmax t ∈ T̃ (3.15)

pl ≥ 0 (3.16)

zs,t ∈ {0, 1} s ∈ S, t ∈ T̃ (3.17)

The model involves three objective functions, which strive for similar goals as the
machine scheduling objectives (3.1a) - (3.1c). In particular, the first objective (TA in
(3.10a)) reflects a time goal for early support device loading, which ensures sufficient
inventory and avoids job tardiness on machines due to insufficient support device inven-
tory. The second objective (ES in (3.10b)) represents the external signal objective that
synchronizes charging with ESR-periods. The third objective (PL in (3.10c)) represents
the minimization of peak loads. Feasibility of the support device’s charging decisions
is ensured by Constraints (3.11) to (3.17). Constraints (3.11) assure that at most one
charge mode can be chosen for a period. Constraints (3.12) compute the inventory invt
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at the end of period t taking into account the inventory invt−1 at the end of the previous
period, the demand det in the current period and the charge zs,t · cs. Constraints (3.13)
assure that those devices that are capable of simultaneous charging and demand fulfill-
ment (scc = 1) can do both in a period whereas other devices (scc = 0) either charge
or fulfill demand in a period. Constraints (3.14) compute the maximum peak load pl,
similar to Constraints (3.7) in the job scheduling model. Constraints (3.15) ensure the
non-negativity of inventory and respects the inventory’s upper limit. Constraint (3.16)
assures non-negativity of variable pl while Constraints (3.17) assure the binary character
of variables zs,t.

3.3.4 Integrated optimization model

The individual models for machines and support devices of Sections 3.3.2 and 3.3.3
will be coordinated by a Production Coordination Platform (PCP) that is explained in
Section 3.3.5. As a benchmark for the platform’s decentral decision making, we present
here an integrated optimization model (IOM) that solves the decisions jointly for a set of
machines M and a set of support devices SD in a centralized manner. Please note that it
seems unrealistic to apply such a holistic optimization model in practice for a production
setting with many heterogeneous types of equipment due to the required coordination of
all involved decision makers. Therefore, the IOM solely serves as a theoretical benchmark
for the PCP. The notation used for this model is summarized in Table 3.3. The IOM
model is then defined by (3.18a) - (3.31). The objective functions (3.18a) - (3.18c) merge
the objective functions (3.1a) - (3.1c) and (3.10a) - (3.10c). Constraints (3.19) - (3.31)
reflect Constraints (3.2) - (3.9) and (3.11) - (3.17) but for the cases of a set of machines
M and a set of support devices SD, respectively.

min→ TA =
∑
m∈M

∑
j∈Jm

∑
s∈S

∑
t∈T |rj,m≤t

max{0, xj,m,s,t · (t+ pj,m,s − dj,m − 1)}

+
∑

sd∈SD

∑
s∈S

∑
t∈T

zsd,s,t · t (3.18a)

min→ ES =
∑
m∈M

∑
j∈Jm

∑
s∈S

∑
t∈T |rj,m≤t

yj,m,s,t · qj,m,s · ret

+
∑

sd∈SD

∑
s∈S

∑
t∈T

zsd,s,t · qsd,s · ret (3.18b)

min→ PL = pl (3.18c)
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Table 3.3: Notation used for the IOM.

Sets

M Set of machines
Jm Set of jobs to be processed on machine m ∈M
SD Set of support devices
S Set of processing modes
T Set of periods

Parameters

rj,m Release date of job j for machine m [period]
dj,m Due date of job j for machine m [period]
pj,m,s Processing time of job j for machine m in mode s [periods]
bj,m,sd Support device sd inventory needed for processing job j on machine m
qj,m,s Power consumed by job j for machine m in mode s [kW per period]
csd,s Charging amount per period of support device sd in mode s
sccsd Equal to 1 if support device sd is capable to charge and consume simultane-

ously, 0 otherwise
qsd,s Power consumed per period by support device sd charging in mode s [kW per

period]
lpt Company’s load profile in period t ∈ T [kW]
ret Dichotomous parameter, with ret = −1 if external signal red (ESR) indicates

feed-in management action in period t, otherwise ret = 1 (ESG)
bigM Sufficiently large positive number

Decision variables

xj,m,s,t Binary variable, equal to 1 if processing job j on machine m in mode s starts
in period t, 0 otherwise

yj,m,s,t Binary variable, equal to 1 if job j on machine m is processed in mode s in
period t, 0 otherwise

zsd,s,t Binary variable, equal to 1 if support device sd charges in mode s in period t,
0 otherwise

ϕsd,t Binary variable, equal to 1 if support device sd faces demand in period t, 0
otherwise

invsd,t Dependent continuous variable stating the inventory of support device sd at
the end of period t

desd,t Dependent continuous variable stating the demand faced by support device
sd in period t

pl Peak load, measured as maximum energy demand over the entire planning
horizon [kW]
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∑
s∈S

∑
t∈T |rj≤t

xj,m,s,t = 1 m ∈M, j ∈ Jm (3.19)

∑
t∈T

yj,m,s,t =
∑

t∈T |rj≤t

xj,m,s,t · pj,m,s
m ∈M, j ∈ Jm,

s ∈ S
(3.20)

∑
τ∈T |t≤τ≤t+pj,m,s−1

yj,m,s,τ ≥ xj,m,s,t · pj,m,s
m ∈M, j ∈ Jm
s ∈ S, t ∈ T

(3.21)

∑
m∈M

∑
j∈Jm|rj≤t

∑
s∈S

xj,m,s,t · bj,m,sd = desd,t sd ∈ SD, t ∈ T (3.22)

∑
j∈Jm|rj≤t

∑
s∈S

yj,m,s,t ≤ 1 m ∈M, t ∈ T (3.23)∑
m∈M

∑
j∈Jm

∑
s∈S

yj,m,s,t · qj,m,s +

∑
sd∈SD

∑
s∈S

zsd,s,t · qsd,s + lpt ≤ pl t ∈ T
(3.24)

∑
s∈S

zsd,s,t ≤ 1 sd ∈ SD, t ∈ T (3.25)∑
s∈S

zsd,s,t + ϕsd,t ≤ sccsd + 1 sd ∈ SD, t ∈ T (3.26)

invsd,t = invsd,t−1 − desd,t +
∑
s∈S

zsd,s,t · csd,s sd ∈ SD, t ∈ T (3.27)

desd,t ≤ ϕsd,t · bigM sd ∈ SD, t ∈ T (3.28)

0 ≤ invsd,t ≤ invmax sd ∈ SD, t ∈ T (3.29)

pl ≥ 0 (3.30)

xj,m,s,t, yj,m,s,t, zsd,s,t, ϕsd,t ∈ {0, 1}
m∈M, j∈Jm, s∈S,
sd ∈ SD, t ∈ T

(3.31)

3.3.5 Production coordination platform

To combine the introduced model formulations for machines (3.3.2) and support devices
(3.3.3) in a flexible manner, we conceptualize a Production Coordination Platform (PCP).
The PCP does not make decisions itself but calls the respective decision making model of
an equipment unit. In this way, it coordinates the decisions and is capable to orchestrate
multiple units of heterogeneous types of equipment.

Clearly, an autonomized PCP requires means of information exchange among equip-
ment units, which can be established nowadays through machine-to-machine (M2M)
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communication (Verma et al. 2016). The decision making of machines and support
devices is then performed on the PCP-server through smart agents that hold the indi-
vidual optimization models of machines and support devices. Following the definition of
an intelligent agent of Wooldridge (2002), a smart agent is understood as a computer
program that executes rules and specified processes that are triggered autonomously.
The PCP keeps track of the state of the production system (in particular the load profile
resulting from the decisions made), receives triggering signals from equipment units, calls
smart agents for making decisions, and sends the decisions made to the equipment units.
The platform incrementally builds a schedule for production and charging processes over
time. By introducing control parameters (number of jobs n to schedule on a machine,
look ahead horizon T̃ for charging decisions of support devices) the decision making is
subdivided along the overall horizon. We assume that information forecasts are more
certain when applying a shorter planning horizon and uncertainty of input data becomes
negligible.

0

10

t

Decision trigger

Production decision

Energy consumption [kW]

PCP-Server
Smart 

Agents

Peak load

1 2 3 94 8765 10 12 1311 1514 16

5

Figure 3.2: Conceptual sketch of the PCP.

Figure 3.2 visualizes the functioning of the PCP. The figure shows the load profile
(energy consumption) of the overall production system in the course of time. The boxes
represent production processes of machines and charging processes of support devices
where the width represents processing time and the height corresponds to the energy
consumption. Boxes stacked upon one another add up to the overall load profile. In this
PCP illustration, the machine control parameter n is set to n = 3. This effects that a
machine schedules three further jobs each time it runs idle and its smart agent is trig-
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gered to perform a planning run. Boxes with same color indicate that the corresponding
processes result from the same planning run.

The operational functioning of the PCP is then as follows. Upon receiving a triggering
event for a production equipment unit, the platform calls the corresponding smart agent
to make the required decisions. Events for triggering a decision making process are:

• a new job is released

• an equipment unit is running idle

• a support device’s inventory cannot meet a future demand

With the focus on the smart agent level, each equipment icon symbolizes the incre-
mentally developing operations plan of the company, which emerges from the planning
runs of the triggered agents. The PCP provides all required information to the smart
agents (e.g., job set J for a machine, or demand rates det for a support device). With our
energy-oriented focus, the PCP provides the load profile lpt, which comprises the energy
consumption per period, to the smart agent. As this profile follows from all those deci-
sions that other smart agents made before, the currently triggered agent respects these
decisions when solving its own optimization model. The PCP is aware of the external
signal ret of upcoming periods. Once a smart agent solved its optimization model, the
resulting instructions (expressed through decision variables xj,s,t, yj,s,t, zs,t) are commu-
nicated to the respective equipment unit directly or to its operator and the platform
updates relevant information like the company’s load profile lpt, job set J , demands for
support devices det, or inventory levels invt at the PCP-server for being available for
future decision making.

To illustrate the functioning of the PCP, we take up Figure 3.2 and turn it into a
(numerical) example. In the beginning, only the blue operations are scheduled from a
previous planning run of the considered machine. This effects a load profile of 4, 3, 3, 5, 5
kW in the first five periods, with a peak of 5 kW. The machine runs idle at time 5, which
triggers the corresponding smart agent on the PCP to schedule further jobs. We assume
n = 3 jobs for this decision making and the newly scheduled three jobs appear in green
in the figure. They keep the machine busy until time 8. At that time, the machine runs
idle again. We assume that there are no further jobs available at that time and, thus,
the machine stays idle. Furthermore, the first support device’s smart agent (red pressure
tank) is triggered at time 3 due to insufficient inventory. It makes charging decisions for
the next three periods, which contribute to the load profile. The forklift’s smart agent
is triggered at time 8 to meet further support device demand. It charges till time 11.
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With new jobs being released at time 10, the second machine, which was idle so far, is
now triggered and schedules n = 3 jobs for the upcoming six periods. The pressure tank
recharges from 11 to 14 (orange icons) to meet the support device demand of machine 2.
The resulting overall load profile lpt has a peak load of 10 kW.

For our subsequent experiments, we simulate the behaviour of such a PCP through
the processes that are sketched in the flowchart of Figure 3.3. This simulations handles a
priority queue of triggering events that occur on the PCP. The priority queue yields the
next trigger event on the PCP according to the time at which they occur, see process (4).
Then, the platform identifies the equipment type (machine or support device) (decision

(1) Start

(2) Initialize priority queue

(3) Are there
more events
to simulate?

(4) Select next trig-
ger event from queue

(5) Identify
equipment type

(6) Select machine agent
i from machine set M

(7) Provide lpt and ret
to machine smart agent i

(8) Solve machine optimiza-
tion model (3.1a) - (3.9)

(9) Communicate pro-
duction decisions xj,s,t,
yj,s,t to machine unit

(10) Update lpt and det

(11) Select support de-
vice agent i from sup-
port device set SD

(12) Provide lpt, det,
invt and ret to support

device smart agent i

(13) Solve support
device optimization

model (3.10a) - (3.17)

(14) Communicate
charging decisions zs,t
to support device unit

(15) Update lpt

(16) Add next trigger
event to priority queue

(17) Stopno

yes

Machine Support device

Figure 3.3: PCP simulation framework flowchart.
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(5)) and selects the particular agent i that corresponds to the piece of equipment that
triggered the request (process (6) or (11)). The agent receives the necessary information
(process (7) or (12)), which includes (among others), the current load profile lpt that
reflects the energy demand of those operations that were planned through earlier decision-
making processes of machines and support devices. The agent then solves its optimization
model (process (8) or (13)). The results of the optimization are communicated to the
corresponding piece of equipment that executes the newly planned operations, which are
either the jobs scheduled on a machine (process (9)) or the charging decisions of a support
device (process (14)). The load profile lpt and the demand rates det are then updated to
take into account the energy demand of the newly planned operations (processes (10),
(15)). If appropriate, a follow-up request is added to the priority queue (process (16)),
for example to trigger a machine’s smart agent again as soon as the considered machine
processed all jobs that were scheduled in the current planning run.

3.4 Computational study

3.4.1 Computational study setup

To evaluate the proposed approach and its intended effectiveness by integrating excessive
renewable energy and load management into production decision making, we conduct the
following computational study. The findings are applicable for a variety of similar indus-
trial manufacturing environments. Our study is built around a manufacturing system
that consists of two heterogeneous production equipment types with two machines and
two support devices each. Each machine has to process 50 jobs within a 300 period
planning horizon while the support devices need to meet demand for this horizon. Over
this horizon, the support devices have to fulfill the demands that arise from the pro-
duction decisions. Each period corresponds to 15 minutes, which fits the typical time
interval at which electricity companies identify peak loads in energy demand. The 300
period planning horizon regarding 15 minutes per period thus equals 75 hours. As the
Netzampel’s forecast of the external signal covers a horizon of 24 hours only, progressive
decision making as is established by the PCP becomes essential to take into account
forecast updates in a rolling horizon fashion. Each job j ∈ J can be processed in one
out of three processing modes, i.e., |S|= 3. Job processing times pj,s are measured in
periods and drawn from the uniform distribution U[1,6] such that processing times differ
for the three processing modes. Rates qj,s reflect the different power consumptions of
these modes. There exists a trade-off between processing time and power consumption
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such that a decrease in processing time by choosing a processing mode of higher pro-
cessing speed comes along with an increase in power consumption. Job release dates
rj follow a uniform distribution U[1,150] and the corresponding due dates dj are cal-
culated as rj + 150. As support devices, we consider one electric forklift and one air
pressure tank. The forklift’s inventory consumption bj for supporting machine job j

is drawn from the range [1,8] as is derived from ISO 23308-1 (ISO 2020). For the air
tank, consumption rate bj is drawn from a similar range [0,6], where the lower bound
is 0 as not all jobs require pressured air for their processing. The PCP computes the
resulting demand rates det. Both support devices exhibit three charging modes S. The
devices differ in power consumption qs and charge rates cs for mode s ∈ S. They also
differ in their capability of simultaneous charging and fulfilling demand. For this, the
compressed air tank is capable to charge and serve simultaneously (scc = 1), while the
forklift can either charge or fulfill demand (scc = 0). The data of the external signal is
derived from Schleswig-Holsteins feed-in management actions in 2019 corresponding to
approximately 80% ESR-period occurrence and accounts for different scenarios of ESR-
period occurrences. All test data generated for this study is available at the repository
[https://www.scm.bwl.uni-kiel.de/de/forschung/research-data].

All computations are performed on an Intel Core i7 with a 3.6 GHz CPU and 32 GB
memory. For solving the optimization models, we use the MIP solver CPLEX 12.9.0.
The PCP has been implemented in Python 3.7 using the libraries queue, pandas, numpy
and doopl.factory.

3.4.2 Comparison of PCP and an integrated optimization model (IOM)

As the original data set does not gain solutions for the IOM and all objectives within
48h, we scale down the data set from Section 3.4.1 in this experiment to the first 25 jobs
and 150 periods and adjust release and due dates accordingly. Control parameter n is
not considered in the IOM, as this benchmark assumes perfect and complete information
to be given. Consequently, a look ahead horizon T̃ is not involved, as it equals horizon T .

In the following comparison, we solve the considered problem using the PCP and the
IOM for the pure objectives TA, ES, and PL. For a fair comparison, the PCP-control
parameter n accounts for the entire job set of the down-scaled data set (n = 25). For the
obtained solutions, we analyze the following key performance indicators (KPI) that are
derived from the multiple objectives: the total job tardiness (TA machines) respectively
total support device completion time (TA support devices), which corresponds to the
TA-objectives in each of the model formulations, the energy consumption during ESR-
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Table 3.4: Comparison of IOM and PCP.

Objective → TA ES PL

KPI ↓ IOM PCP IOM PCP IOM PCP

TA machines [period] 0 0 147 265 148 361
TA support devices [period] 37 37 2, 943 3, 182 1, 678 711
ESR-periods [kWh] 3, 124 3, 185 5,159 5,159 2, 292 2, 292
ESG-periods [kWh] 810 832 0 0 646 647
PL [kW] 369 376 501 417 105 110

Computation time [sec.] 37 8 88 4 2, 231 216

and ESG-periods, which are derived from the ES -objectives in the models, and the peak
load (PL) that constitutes the third objective function in the two models.

and the computation times for IOM and PCP under each considered objective are
reported in Table 3.4. Those KPIs that refer to the primary objective are shown in
bold font. Considering job tardiness and support device completion time minimization
(objective TA), the PCP and the IOM both yield comparable solutions with almost all
KPIs being nearly identical. Both approaches are capable to avoid job tardiness and
shift support device charging to early periods. Regarding the ES -objective, both PCP
and IOM achieve that the total energy consumption occurs entirely in ESR-periods but
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Figure 3.4: PCP KPI variation compared to IOM solution.
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at the cost of higher TA as well as PL, compared to the previous setting. Forcing the
production system to support the power grid’s stability by an utmost consumption in
ESR-periods comes along with a substantially higher total consumption of about 30%.
As this renewable energy would otherwise be lost, this higher energy consumption does
not constitute an environmental concern. As this solution focuses on the external signal,
the schedule exhibits job tardiness for machines and support device activities that span
up the whole planning horizon, which is reflected by high values of ’TA machines’ and
’TA support devices’. Finally, under the PL-objective, the PCP and the IOM are both
successful in reducing peak loads compared to objective TA and ES, but at the cost
of even higher TA values for the machines and also more energy consumption in ESG-
periods. The IOM performs slightly better and is capable to reduce PL by further 5
kWh.

In this experiment, we observe that the PCP delivers (almost) identical values for
the considered objective as the IOM if it is given perfect information too and is capable
to reduce computation times significantly. Figure 3.4 reports the percentage deviation of
the PCP KPIs compared to the IOM solution. Solutions with due date violations might
be considered unacceptable from the customer perspective. Differences only occur in
the subordinate KPIs. We observe that the IOM and the PCP can achieve solutions of
good service quality (e.g., for the TA-objective) and of good environmental performance
(all other objectives). The PCP’s decentral decision making is able to keep up with an
IOM under the given conditions. Building up on this, the following experiments will
examine the impact of limited information-availability (i.e., varied PCP-control parame-
ter) in Subsection 3.4.3 and objective combinations as well as of different external signal
scenarios in Subsection 3.4.4 on the PCP’s performance.

3.4.3 Varying control parameter

In the previous experiment, the computations were based on PCP-control parameter
n covering the entire job set and the entire planning horizon representing perfect and
complete information. This allowed to plan all operations within a single equipment’s
planning run. In this subsection, we analyze the role of this parameter. The lower
the value of the control parameter, the more the decision making is subdivided along the
overall horizon. The smart agents are triggered more often but schedule a reduced number
of jobs and fewer charging decisions per planning run. Such settings become relevant if
information about jobs, corresponding support device demands, or signal forecasts are
partly uncertain and vary over time such that perfect information is no longer available.
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We analyze here to what extend this effects the solutions. We again consider the three
objectives TA, ES, and PL and vary the control parameter n systematically over the
complete range [1,50]. For the extremely small value n = 1, a triggered smart agent of a
machine schedules just a single job whereas the extreme value n = 50 covers the whole
job set like in the previous experiment. The periods T̃ for which the support devices can
make their decisions depends on the periods for which machines have already planned
production operations. This adapts the look ahead of the charging decisions to the job
scheduling of the machines, as is reasonable if the platform faces incomplete information
due to dynamically arriving jobs or changes in the (forecasted) external signal.

Note, that a low value of n might effect that not all the jobs in set J are served within
the given time horizon T . This is because the few jobs that are to be scheduled in a
planning run might be placed late within the planning horizon, depending on the chosen
objective. From this, the next triggering of the corresponding machine agent takes place
late in the planning horizon, from which remaining jobs might run out of time and cannot
be inserted within the residual periods. Consequently, we introduce a further KPI, the
so-called service level (SL), which expresses the number of jobs that the PCP can include
into the solution. Since our tests involve two machines with 50 jobs each, the maximum
value of SL is 100 jobs, respectively 100 %. A maximization of this KPI is achieved by
adding SL to the objective function and by adapting Constraint (3.5).

We start by solving the problem under the pure objective TA. The corresponding
service level under varied values of n is shown by the dashed curve in Figure 3.5. It
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Figure 3.5: Service level with varied control parameter n for objective TA.
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Table 3.5: Solutions for n = 25 under various objectives.

KPI ↓ / Objective → TA, CT (A) ES, CT (B) PL, CT (C)

TA machines [period] 0 204 2, 354
TA support devices [period] 2,424 7, 381 5, 152
ESR-periods [kWh] 8, 381 11,085 6, 559
ESG-periods [kWh] 2, 110 0 1, 297
PL [kW] 553 519 260

Computation time [sec.] 55 46 450

can be seen that for n = 1 only 15 out of the 100 jobs are scheduled. For n = 20 we
achieve a service level of about 80 %. The poor performance with respect to SL can
be improved significantly by establishing total job completion time (CT ) as a secondary
objective. This prioritizes scheduling jobs with early due dates and avoids unused gaps
in a production schedule. The solid line in figure 3.5 demonstrates that considering CT
as a secondary objective yields a perfect service level where the PCP can schedule 100
% of the jobs. For the moderate control parameter of n = 25 (point (A) in the figure),
Table 3.5 provides the corresponding KPI values and the computation time. It can be
seen that combining TA and CT as primary and secondary objectives achieves that jobs
are processed without tardiness.
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load under various objectives.

Service levels for the exclusive objective ES are shown by the dashed line in Figure
3.8. For n = 1 only 17 out of the 100 jobs are scheduled. This is due to the strict focus
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on aligning production with the external signal. With n = 1, a single job is scheduled
in each planning run and this job is placed within the next sequence of successive ESR-
periods that fits to the job’s processing time. This means that previous ESG-periods,
but also smaller sequences of ESR-periods, are skipped and lost for scheduling other jobs
in later planning runs as the smart agents advance through time. The PCP does not
perform well with regards to SL if it is too restricted in the number of jobs to schedule
and if the focus is strictly on the external signal. In turn, SL improves for larger values
of n but reaches its maximum only for n = 50. Like before, considering CT as secondary
objective improves the service level significantly, see solid line in Figure 3.8. Here, apart
from n = 1 and n = 2 with SLs of 95 % and 93 % all further values of the control
parameter achieve a SL of 100 %. For the moderate control parameter of n = 25 (point
(B) in the figure), Table 3.5 again provides the corresponding KPI. For this setting the
entire production takes place during ESR-periods.

Figure 3.9 depicts the results of varying n with regard to objective PL by the dashed
line and with regard to a combination of PL and CT by the solid line. Here, the pure
objective PL again exhibits a poor SL that rises only slowly. Incorporating CT as a
secondary objective again improves the SL drastically, although a service level of 100 %
can be achieved only for n = 50. For n = 25, a near optimal service level is achieved for
which the corresponding KPIs are again provided in Table 3.5. The different KPI values
dependent on the objective are illustrated in Figures 3.6 and 3.7.

This experiment demonstrated the influence of control parameter variations that
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Figure 3.8: Service level with varied control parameter n for objective ES.
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Figure 3.9: Service level with varied control parameter n for objective PL.

reflect different degrees of information availability on the obtained PCP solutions, where
solution quality is measured in terms of a service level next to other KPIs. All solutions
exhibit a higher SL when integrating CT minimization as a secondary objective, which
is why we keep CT as secondary objective in the further experiments. From integrating
this objective, the immanent conflict among a company’s goal of high service quality and
environmental performance can be traded off in the decision making of the PCP. This
finding leads to the conclusion that integrating CT as a secondary objective in the PCP’s
decentral decision making is advisable to improve solution quality.

3.4.4 Objective combinations and external signal scenarios

In this section, we will focus on four further objective combinations under a moderate
control parameter (n = 25). These objective combinations include a tertiary objec-
tive. Combination TA,CT,PL is a corporate-oriented hierarchy of service- and load-
management objectives. Combination ES,CT,TA gives priority to the environmental
goal without losing sight of service quality. Combination PL,CT,ES tries to maximize
the consumption of renewable energy under the primary objective of minimizing peak
loads. Finally, PLESG, CT,ES follows a similar idea but the peak load is measured only
for ESG-periods to further incentivize companies in consuming energy in ESR-periods.
While the previous computations were based on just one forecast scenario of the external
signal, we will also investigate the influence of alternative signal scenarios. Through this,
we finally quantify the achieved saving of CO2 from consuming energy in ESR- instead
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Table 3.6: Solutions for n = 25 under various objective combinations.

KPI ↓ / Objective → TA,CT, PL ES,CT, TA PL,CT,ES PLESG, CT,ES

TA machines [period] 0 131 1, 482 0
TA support devices [period] 2,424 5,544 8, 197 5, 613
ESR-periods [kWh] 8, 242 11,085 6,493 11,085
ESG-periods [kWh] 2, 170 0 1,161 0
PL [kW] 523 553 260 0
PL in ESR-periods [kW] - - 260 510
PL in ESG-periods [kW] - - 248 0

Computation time [sec.] 302 192 1, 594 277

of ESG-periods.
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Figure 3.10: Tardiness under various ob-
jective combinations.
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Figure 3.11: Energy consumption and
peak load under various objective combi-
nations.

As an extension to TA as primary and CT as secondary objective ((A) in Figure 3.5
and Table 3.5) we first add peak load reduction (PL) as tertiary objective. This setting
corresponds closest to a company’s corporate goals as it aims at job tardiness avoidance
to satisfy customer needs and additional peak load reduction to flatten the internal load
curve and reduce energy related costs. Column ’TA,CT,PL’ in Table 3.6 shows the
corresponding KPI values incorporating the additional tertiary objective. Contrasting
’TA, CT ’ (Table 3.5) with ’TA, CT, PL’ (Table 3.6), the peak load is further reduced
from 553 to 523 (about 5 %). The additional peak load objective improves the internal
load management while the primary objective of minimizing job tardiness is kept at the
same level.
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Under an environmental primary perspective, a relevant objective combination is
to additionally consider TA as a tertiary objective next to ES as primary and CT as
secondary objective. Thus, the external signal synchronisation of objective ES is sup-
plemented by job tardiness avoidance. Comparison of the KPIs of column ’ES, CT ’ in
Table 3.5 with ’ES, CT, TA’ in Table 3.6 reveals that TA values can be further reduced
by about 36 % for machines and 25 % for support devices under constant ESR- and
ESG-period energy consumption.

At the moment, companies might be more interested in their internal load manage-
ment, rather than in aligning production decisions with the external signal. Objective
combination PL, CT, ES respects this but tries to shift energy consumption into ESR-
periods provided that the peak load is kept at a minimum. Corresponding KPIs are
shown in column ’PL,CT,ES ’ in Table 3.6. Compared to ’PL, CT ’ in Table 3.5, we
observe that the consumption in ESG- and ESR-periods is hardly changed from this
tertiary objective. One reason for this is that the peak load is identified over all ESG-
and ESR-periods such that companies do not have a strong incentive for shifting en-
ergy consumption into ESR-periods. To overcome this disincentive, it could be helpful if
energy suppliers identify peak load solely from ESG-periods so that high energy consump-
tion in ESR-periods is possible without compromising PL goals. Objective combination
PLESG, CT,ES takes this into account by solely considering ESG-periods for computing
the peak load. The right column in Table 3.6 confirms that such a change gives a strong
incentive for consuming energy in ESR-periods, where all consumption takes place in
these times. Clearly, such a strict solution is only possible if ESR-periods constitute a
substantial amount of the overall planning horizon, which is the case with 80 % such
periods in the external signal scenario considered here. The different KPI values of the
various objective combinations are illustrated in Figures 3.10 and 3.11.

We finally investigate the role of alternative scenarios for the external signal to ex-
amine the impact of different intensities of feed-in management actions and the resulting
environmental effects. The monthly frequency of feed-in management actions in the
federal state of Schleswig-Holstein, Germany, in 2019 provides the data foundation for
these scenarios. The average ESR-period occurrence in this year was about 80 %, which
constituted the data basis for all previous experiments. We refer to this external signal
scenario as ESS80. Two further scenarios (ESS75, ESS85) are generated by adjust-
ing the status quo of 80 % by +/-5 % ESR-period occurrence. The fictional scenario
ESS100 exclusively exhibits ESR-periods. As a result, we obtain four signal scenarios
that demonstrate different intensities of feed-in management actions or, more specifically,
different ESR-period occurrences.
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We solve the problem once for each signal scenario under objective ES and varied
control parameter n in the range [1,50]. Figure 3.12 depicts the relative share of energy
consumption in ESR-periods depending on the value of control parameter n for each
of the scenarios. We observe that even low control parameters n achieve at least 93

% energy consumption in ESR-period in the scarce scenario ESS75 and a somewhat
higher consumption rate in the scenario ESS80. In these scenarios 100 % ESR-period
consumption is only achieved for considerably higher values of n, which would mean that
the planning can look sufficiently far ahead to schedule jobs and charging operations
within upcoming ESR-periods. If such ESR-periods are abundant, as is the case in the
scenario ESS100, the PCP can schedule all operations in such periods and achieve 100
% of energy consumption within them. Nevertheless, already scenario ESS85, which has
just slightly more ESR-periods compared to the current practical situation, allows the
PCP to shift all consumption into ESR-periods. The influence of the control parameter
decreases, the richer the ESR-scenario is.

Objective ES and its corresponding shift of production and charging processes to
ESR-periods offers the opportunity to minimize the loss of sustainable energy. As this
energy would be lost without an increase of consumption in ESR-periods, a CO2 saving
results from consuming energy in these periods instead of ESG-periods. We finally
quantify this potential by experiment. We solve the problem once for each signal scenario
and each primary objective TA, ES and PL under the moderate control parameter of
n = 25. For the obtained solutions, we quantify the resulting total CO2 emissions. We
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Figure 3.12: Energy consumption depending on external signal scenario.
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Figure 3.13: CO2 emissions of solutions under various external signal scenarios.

do this by multiplying the energy consumption in ESG-periods by a CO2 emission factor
of 401 g per kWh, which corresponds to the standard energy mix in Germany (Statista
2020). The energy consumption in ESR-periods is weighted by 0 g per kWh as this energy
is assumed to be lost due to feed-in management if not consumed immediately. Figure
3.13 shows the resulting amounts of CO2 for each signal scenario and each objective. As
expected, the more ESR-periods a signal scenario has, the lower are the corresponding
CO2 emissions as there is less production in ESG-periods. We also observe that the pure
objective TA causes by far the highest CO2 emissions in every scenario whereas objective
ES shifts production completely into ESR-periods in all scenarios. This reflects that
objective ES achieves the best environmental performance. Still, the alternative objective
PL provides a trade-off where emissions are reduced by about one third compared to the
sole minimization of TA.

Eventually, through the various objective functions and the PCP-control mechanism,
decision makers gain flexibility to align a company’s goals with regard to service quality
(TA), internal load management (PL) and environmental performance (ES ).
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3.5 Conclusion

Peaks in renewable energy generation may require increased local energy consumption to
prevent feed-in management actions and to stabilize the power grid. We have presented
two optimization models that adapt production scheduling and charging decisions to an
external signal that indicates the availability of renewable energy. Using these models, a
company can temporarily increase its local energy consumption in times of energy peaks
which, in turn, prevents a temporary shut down of wind mills, solar panels etc. The
two models consider two heterogeneous types of consumers as to be found in industrial
facilities, namely production machines that are driven by job scheduling decisions and
support devices that call for charging decisions to manage their inventory. As compa-
nies can hardly control these diverse heterogeneous consumers within a single, holistic
decision making process, we have presented a production coordination platform that or-
chestrates the individual decision making processes of these equipment types through a
triggering of smart agents. Computational experiments have shown that the PCP pro-
duces good solutions under diverse service- and environmentally-oriented optimization
goals compared to an integrated optimization model. Anyhow, for each such goal, it was
required to consider the minimization of job completion times as a subordinate objective
to guarantee high service levels. We also analyzed the impact of a PCP-control parame-
ter, which can be interpreted as the availability of information that the platform requires
for making its decisions. Our experiments have shown that the PCP can deal with im-
perfect information but the more information it receives the better the service level of
the obtained solutions is. We also demonstrated that further subordinate objectives can
additionally improve the solutions. In view of the environmentally-oriented optimization
goals, the presented PCP is capable to make an essential contribution to CO2 reduction.
The planning approach proposed in this paper can assist companies in coordinating their
heterogeneous equipment types and in aligning production and charging processes under
a range of relevant objectives. Finally, as the presented PCP follows a modular design,
it can also handle larger numbers of machines and more diverse support devices as those
considered in our experiments, as long as the individual decisions of each such type of
equipment are captured in a suitable decision support model that is executed through a
corresponding smart agent.

Regarding future research, it may be of interest to include non-linear charging pat-
terns that are often observed for various types of support devices in practice. It could
also be interesting to examine the role of uncertainty in the forecasted external signal.
Finally, political instruments that incentivize companies to adapt their operations and
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energy consumption to the availability of renewable energy are also considered relevant
for future research.

Acknowledgments

The authors would like to thank the Gesellschaft für Energie und Klimaschutz Schleswig-
Holstein GmbH (EKSH) for promoting this project in form of a PhD scholarship.

122



Bibliography

Bibliography

Ashok, S., 2006. Peak-load management in steel plants. Applied Energy 83 (5), 413–424.

Ashok, S., Banerjee, R., 2001. An optimization mode for industrial load management.
IEEE Transactions on Power Systems 16 (4), 879–884.

Bego, A., Li, L., Sun, Z., 2014. Identification of reservation capacity in critical peak
pricing electricity demand response program for sustainable manufacturing systems.
International Journal of Energy Research 38, 728–736.

Beier, J., Thiede, S., Herrmann, C., 2017. Energy flexibility of manufacturing systems
for variable renewable energy supply integration: Real-time control method and sim-
ulation. Journal of Cleaner Production 141, 648–661.

Biel, K., Glock, C. H., 2016. Systematic literature review of decision support models for
energy-efficient production planning. Computers & Industrial Engineering 101, 243–
259.

Biel, K., Zhao, F., Sutherland, J. W., Glock, C. H., 2018. Flow shop scheduling with
grid-integrated onsite wind power using stochastic MILP. International Journal of
Production Research 56 (5), 2076–2098.

Bundesnetzagentur, 2019. Quartalsbericht zu Netz- und Systemsicherheitsmaßnahmen.
Gesamtes Jahr 2019. https://www.bundesnetzagentur.de/SharedDocs/Mediathek/
Berichte/2020/Quartalszahlen_Gesamtjahr_2019.pdf?__blob=publicationFile&v=
9, last accessed on 20.05.2021.

Bänsch, K., Busse, J., Meisel, F., Rieck, J., Scholz, S., Volling, T., Wichmann, M. G.,
2021. Energy-aware decision support models in production environments: A systematic
literature review. Computers & Industrial Engineering 159, 107456.

Capizzi, F., Das, A., Dauwe, T., Moorkens, I., Saarikivi,
R. J., Tomescu, M., 2019. Renewable energy in Europe -
2019. www.eionet.europa.eu/etcs/etc-cme/products/etc-cme-reports/
renewable-energy-in-europe-2019-recent-growth-and-knock-on-effects, last accessed
on 20.05.2021.

Che, A., Zhang, S., Wu, X., 2017. Energy-conscious unrelated parallel machine scheduling
under time-of-use electricity tariffs. Journal of Cleaner Production 156, 688–697.

123

https://www.bundesnetzagentur.de/SharedDocs/Mediathek/Berichte/2020/Quartalszahlen_Gesamtjahr_2019.pdf?__blob=publicationFile&v=9
https://www.bundesnetzagentur.de/SharedDocs/Mediathek/Berichte/2020/Quartalszahlen_Gesamtjahr_2019.pdf?__blob=publicationFile&v=9
https://www.bundesnetzagentur.de/SharedDocs/Mediathek/Berichte/2020/Quartalszahlen_Gesamtjahr_2019.pdf?__blob=publicationFile&v=9
www.eionet.europa.eu/etcs/etc-cme/products/etc-cme-reports/renewable-energy-in-europe-2019-recent-growth-and-knock-on-effects
www.eionet.europa.eu/etcs/etc-cme/products/etc-cme-reports/renewable-energy-in-europe-2019-recent-growth-and-knock-on-effects


Bibliography

Fang, K., Uhan, N. A., Zhao, F., Sutherland, J. W., 2013. Flow shop scheduling with
peak power consumption constraints. Annals of Operations Research 206 (1), 115–145.

Gahm, C., Denz, F., Dirr, M., Axel, T., 2016. Energy-efficient scheduling in manufactur-
ing companies: A review and research framework. European Journal of Operational
Research 248 (3), 744–757.

ISO, 2020. Energy efficiency of industrial trucks. https://www.iso.org/standard/75204.
html, last accessed on 07.06.2021.

Karimi, S., Kwon, S., 2021. Comparative analysis of the impact of energy-aware schedul-
ing, renewable energy generation, and battery energy storage on production scheduling.
International Journal of Energy Research 45 (13), 18981–18998.

Masmoudi, O., Yalaoui, A., Ouazene, Y., Chehade, H., 2017. Solving a capacitated flow-
shop problem with minimizing total energy costs. International Journal of Advanced
Manufacturing Technology 90, 2655–2667.

Materi, S., D’Angola, A., Enescu, D., Renna, P., 2021. Reducing energy costs and CO2

emissions by production system energy flexibility through the integration of renewable
energy. Production Engineering 15, 667–681.

Renna, P., Materi, S., 2021. A literature review of energy efficiency and sustainability in
manufacturing systems. Applied Sciences 11 (16), 7366.

Rubaiee, S., Yildirim, M. B., 2019. An energy-aware multiobjective ant colony algorithm
to minimize total completion time and energy cost on a single-machine preemptive
scheduling. Computers & Industrial Engineering 127, 240–252.

Schleswig-Holstein Netz AG, 2021. Netzampel. https://www.enko.energy/netzampel, last
accessed on 20.05.2021.

Schulz, S., 2018. A multi-criteria MILP formulation for energy aware hybrid flow shop
scheduling. In: Operations Research Proceedings 2016. Springer, pp. 543–549.

Schulz, S., Neufeld, J. S., Buscher, U., 2019. A multi-objective iterated local search
algorithm for comprehensive energy-aware hybrid flow shop scheduling. Journal of
Cleaner Production 224, 421–434.

Shrouf, F., Ordieres-Meré, J., García-Sánchez, A., Ortega-Mier, M., 2014. Optimizing
the production scheduling of a single machine to minimize total energy consumption
costs. Journal of Cleaner Production 67, 197–207.

124

https://www.iso.org/standard/75204.html
https://www.iso.org/standard/75204.html
https://www.enko.energy/netzampel


Bibliography

Statista, 2020. Electricity mix related CO2 emission develop-
ment. https://de.statista.com/statistik/daten/studie/38897/umfrage/
co2-emissionsfaktor-fuer-den-strommix-in-deutschland-seit-1990, last accessed on
20.05.2021.

Subramanyam, V., Jin, T., Novoa, C., 2020. Sizing a renewable microgrid for flow shop
manufacturing using climate analytics. Journal of Cleaner Production 252, 119829.

Sun, Z., Li, L., 2014. Potential capability estimation for real time electricity demand
response of sustainable manufacturing systems using Markov Decision Process. Journal
of Cleaner Production 65, 184–193.

Verma, P. K., Verma, R., Prakash, A., Agrawal, A., Naik, K., Tripathi, R., Alsabaan,
M., Khalifa, T., Abdelkader, T., Abogharaf, A., 2016. Machine-to-machine (M2M)
communications: A survey. Journal of Network and Computer Applications 66, 83–
105.

Wang, S., Mason, S. J., Gangammanavar, H., 2020. Stochastic optimization for flow-shop
scheduling with on-site renewable energy generation using a case in the united states.
Computers & Industrial Engineering 149, 106812.

Wooldridge, M., 2002. Intelligent agents: The key concepts. In: Mařík, V., Štěpánková,
O., Krautwurmová, H., Luck, M. (Eds.), Multi-Agent Systems and Applications II.
Springer, Berlin, Heidelberg, pp. 3–43.

Yusta, J. M., Torres, F., Khodr, H., 2010. Optimal methodology for a machining process
scheduling in spot electricity markets. Energy Conversion and Management 51 (12),
2647–2654.

Zhang, H., Zhao, F., Fang, K., Sutherland, J., 2014. Energy-conscious flow shop schedul-
ing under time-of-use electricity tariffs. CIRP Annals 63, 37–40.

Zhang, Y., Islam, M., Sun, Z., Yang, S., Dagli, C., Xiong, H., 2018. Optimal sizing
and planning of onsite generation system for manufacturing in critical peaking pricing
demand response program. International Journal of Production Economics 206, 261–
267.

125

https://de.statista.com/statistik/daten/studie/38897/umfrage/co2-emissionsfaktor-fuer-den-strommix-in-deutschland-seit-1990
https://de.statista.com/statistik/daten/studie/38897/umfrage/co2-emissionsfaktor-fuer-den-strommix-in-deutschland-seit-1990


Chapter 4

Decentral decision-making for
energy-aware charging of
intralogistics equipment

Publication status Published in 2023: Logistics Research 16: 4. https://doi.org/10.
23773/2023_4

Sebastian Scholz
Institute of Business Management, Christian-Albrechts-University Kiel, Germany

Abstract Industrial manufacturing is based on a variety of energy sources, e.g. electric-
ity, oil, and gas. Electricity appears to be particularly relevant to operate most types of
industrial production equipment in an environmentally friendly manner. Aside from pro-
duction machines, intralogistics equipment that performs material handling and supplies
processes is a further consumer of electricity in an industrial environment. The integra-
tion of electricity-intensive intralogistics equipment has, however, hardly been considered
in the research on energy-aware production management. With this paper, we present
an optimization model that synchronizes intralogistics charging decisions with a produc-
tion schedule and the availability of renewable electricity in a power grid. Following
the Industrie 4.0 -paradigm, we use decentralized decision-making within an agent-based
platform that coordinates different types of production and intralogistics equipment. We
integrate a forecast signal for the availability of renewable energy into this platform to
support an environmentally oriented decision process. In a simulation study that is based
on real-world data, we analyze the role of intralogistics handling processes and charging
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operations with respect to a company’s job shop environment and electricity consump-
tion profile. In this simulation, we compare static charging policies in contrast to the
proposed optimization model and decentral decision-making under various demand sce-
narios. The presented approach is shown to be capable of increasing local electricity
consumption in times of peak generation of renewable energy, which contributes to CO2

reductions in industrial manufacturing.

Keywords Intralogistics charging decision, demand response, renewable energy, CO2

emission, decentral decision making

4.1 Introduction

In 2021, Germany emitted a total of 675 million tons of CO2 Statista (2023). Industrial
manufacturing contributed significantly to this emission and electricity appears to be
particularly relevant to operate the majority of production equipment, as the industry
sector accounts for a large share of Germany’s overall electricity consumption Eurostat
(2022b). Increasing electricity generation from renewable energy sources is considered
the central approach to reduce CO2 emissions. At present, however, the potential is
not being fully exploited as insufficient grid capacity cannot handle peaks in renewable
energy generation, which results in feed-in management and losses of renewable energy
generation (Eurostat 2022a). More precisely, a loss of 5,818 GWh of renewable energy by
feed-in management actions was caused in Germany in the year 2021 (Bundesnetzagentur
2021). Assuming a CO2 emission factor of 420 g per kWh, corresponding to the standard
electricity mix in Germany in 2021, potential CO2 savings of approximately 2.44 million
tons CO2 were lost due to this (Umweltbundesamt 2022).

Besides costly and time-intensive expansions of grid infrastructure, energy-aware re-
search, in particular event-driven demand response in the form of adaptable local in-
dustrial electricity consumption, offers an opportunity to counteract renewable energy
generation losses. While energy-aware research greatly focuses on production planning
and specifically machine scheduling, little attention has been put on closely linked and
mandatory electricity intensive intralogistics supply processes, like, for example, material
handling or production factor supply. Aside from machine scheduling, intralogistics can
have a considerable impact on a company’s overall electricity consumption. Therefore,
it seems appropriate to widen the focus of energy-aware research to also account for
intralogistics processes in order to exploit further potentials of CO2 emission reduction.
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For this purpose, the paper at hand adopts a decentral decision-making methodol-
ogy to orchestrate machine scheduling and intralogistics charging decisions taking into
account the availability of sustainable energy in the course of time. We introduce an
optimization model with the objective of synchronizing charging decisions of intralogis-
tics equipment to the availability of renewable energy. More precisely, the considered
company receives a forecast signal that indicates whether feed-in management is neces-
sary for upcoming periods. This forecast corresponds to the so-called Netzampel (AG
2022), which provides information about the availability of excessive renewable energy at
a regional level. Excessive renewable energy is indicated by a red color Netzampel in the
municipality and, thus, feed-in management is necessary (external signal red, ESR). For
a local company, this forecast signal indicates that energy-intensive operations could be
conducted to consume renewable energy that would otherwise be lost. A green Netzampel
forecast (external signal green, ESG) indicates, that feed-in management is not needed.
Following this approach means that an opportunity is given to synchronize industrial
manufacturing processes with renewable energy generation and to contribute to indus-
trial CO2 emission reduction. We benchmark our intralogistics charging optimization
model against well-known static charging policies.

The remainder of this paper is organized as follows. Section 4.2 reviews the relevant
energy-aware literature. Section 4.3 puts emphasis on the decentral decision-making
process under consideration of the availability of renewable energy. Subsequent compu-
tational experiments in Section 4.4 analyze and evaluate the performance of the presented
approach. Section 4.5 concludes the paper.

4.2 Literature review

Energy awareness in industrial manufacturing decision-making is addressed in numerous
recent publications and several literature reviews, see for example Gahm et al. (2016).
Energy awareness in manufacturing environments means incorporating energy price varia-
tions or events like special weather conditions to align energy consumption with manufac-
turing processes. In this line of thought, demand-side management encourages companies
to adopt energy consumption to a targeted demand response event. A distinction can be
made between prevalent price-driven and rare event-driven demand response approaches
(Biel and Glock (2016)). The analysis of publications reveals a focus on price-driven de-
mand response and emphasizes a need for research that accentuates event-driven demand
response to which this paper contributes through the conducted investigation.

As an example of price-driven demand response, Busse and Rieck (2022) investigate
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a flow shop scheduling problem integrating mid-term electricity price forecasts to mini-
mize energy costs under a real-time pricing (RTP) scheme. Lu et al. (2021) propose a
RTP prediction approach based on a neural network to minimize electricity costs while
satisfying production requirements of a serial production line. Based on manufacturing
systems with cyber-physical systems, Yun et al. (2022b) contribute a real-time demand
response strategy to reduce electricity costs. In consideration of the large number of
energy-aware decision support models, we refer to the following literature reviews for
a detailed insight: While Renna and Materi (2021) provide an overview with a special
highlight on studies that consider renewable energy source integration in manufacturing
systems, Bänsch et al. (2021) study a wide range of relevant energy-aware scheduling
publications in depth. The publication by Bänsch et al. (2021) points out that demand
response literature predominantly focuses on machine scheduling and only a few pub-
lications additionally integrate the effect of manufacturing supply processes, which we
discuss hereafter.

From the large body of energy-aware machine scheduling research, Bänsch et al.
(2021) report streams of recent developments and identify future research potentials.
Apart from on-site generation environments, dynamics, rescheduling, and usage of mul-
tiple forms of energy, the authors mention a need for the integration of intralogistics
transportation processes. From an integrated environmental viewpoint, it seems reason-
able to furthermore account for energy-intensive intralogistics together with production-
related job scheduling. Regarding transportation processes, Liu et al. (2019) consider a
flexible job shop scheduling problem and integrate crane operations to transport work-
pieces on the shop floor while minimizing both, the total cost of consumed energy and
the schedule makespan. Hemmati Far et al. (2019) emphasize a flexible manufacturing
cell setting with industrial robots, where automated guided vehicles (AGVs) are used to
transport material between storage and manufacturing areas. The proposed model mini-
mizes overall production and transport cost under time-of-use (TOU) electricity prices to
account for the energy consumption of moving AGVs within the manufacturing environ-
ment as well as job tardiness. Expanding the focus, Wang (2019) extends the company
boundary and integrates finished product distribution in the sense of vehicle routing in
combination with single machine scheduling to minimize carbon emissions from the pro-
duction equipment’s energy consumption and the fuel consumption of delivery trucks.
Hahn-Woernle and Günthner (2018) investigate the effect of power-load management on
the throughput of material-handling systems in automated warehouses and demonstrate
that power limits are capable to avoid energy consumption peaks, while slightly reducing
the throughput.
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Relating to equipment charging decisions, a demand response method for an inte-
grated manufacturing scheduling and material handling charging system is proposed by
Yun et al. (2022a). Under a time-of-use electricity tariff, the approach minimizes the
electricity costs of production schedules. The authors integrate a price-driven demand
response approach and integrate material handling equipment charging decisions. Com-
pared with this, Scholz and Meisel (2022) consider an event-driven demand response
setting and propose a platform to coordinate machine scheduling and intralogistics charg-
ing decisions. The paper at hand expands the approach of Scholz and Meisel (2022) by
putting a special focus on charging decisions of energy-intensive intralogistics equipment,
where we align these decisions to machine schedules under various static charge policies
and an optimization-driven approach.

4.3 Decentral agent-based intralogistics charging

First, in Subsection 4.3.1, the underlying manufacturing environment is introduced.
Then, Subsection 4.3.2 introduces the intralogistics charging decision optimization model.
Conclusively, Subsection 4.3.3 presents the algorithm that specifies the considered decen-
tral decision-making and provides explanations for the static charging policy procedures.

4.3.1 Problem description

In what follows, we consider a manufacturing environment that can be divided into two
general segments. A schematic framework of this environment is depicted in Figure 4.1.
The outer segment includes intralogistics devices (ile) like, for example, equipment for
material handling or production factor supply. The inner segment refers to production
scheduling where machines (m) have to execute manufacturing jobs. While machines
call for job scheduling decisions, intralogistics face charging decisions. The proposed
approach can be applied to various kinds of manufacturing environments that involve
energy-intensive intralogistics processes like material handling and machine operations
such as laser cutting, melting, welding, pressing, or others.

The intralogistics environment, depicted in orange in the figure, consists of k intralo-
gistics equipment depicted as circles. As intralogistics processes, we consider an electrified
forklift fleet performing material handling or air compressors providing compressed air
as a production factor. Accordingly, we distinguish between intralogistics equipment
providing production factors to machines, symbolized by solid arrows, and intralogistics
equipment performing material handling between the machines on the shop floor, sym-
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Figure 4.1: Schematic manufacturing environment framework.

bolized by dotted arrows. We put emphasis on the intralogistics charging decisions that
need to provide sufficient resources to the production scheduling environment and ensure
an adequate inventory (like battery energy level in the case of forklifts or compressed
air in the case of compressors) by making charging decisions. A detailed view into the
intralogistics environment decision-making is provided in Section 4.3.2.

The production environment, depicted in blue in Figure 4.1, comprises job scheduling
decisions for machines. In what follows, we consider the individual decisions within the
production scheduling segment as given and the corresponding decision-making process as
a black box. For the sake of completeness and to make the paper self-contained, we shortly
introduce the production scheduling setting. The production scheduling environment
consists of n machines, depicted as squares in the figure, that process a set of jobs J .
Each job j ∈ J consists of a set of operations o ∈ Oj that have to be processed in a
specified order, and, thus, job-specific precedence relations exist where each job exhibits
an individual machine routing. Each operation o can be processed in one of three different
processing modes, |S|= 3. Job processing time po,s is measured in periods and varies for
the three processing modes s ∈ S. The electricity consumption of modes is reflected by
rates qo,s. There is a trade-off between processing time and electricity consumption such
that choosing a processing mode with a higher processing speed leads to an electricity
consumption increase. Furthermore, jobs exhibit release dates rj that refer to the earliest
period in time at which processing can be started.
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The majority of research considers production scheduling and inventory-based charg-
ing decisions as independent problems. The literature review in Section 4.2 revealed
that recent publications bring these two research streams together and formulate inte-
grated approaches, which seems reasonable as both exert a decisive influence on a com-
pany’s electricity consumption. In what follows, we, therefore, propose an agent-based
decentralized decision-making platform that acts as an interface between the produc-
tion scheduling and intralogistics decision-making environments. In order to focus on
the impact of intralogistics decision-making, we consider the detailed process within the
production scheduling segment as a black box and production decisions as given. To
get a detailed view of intralogistics decision-making, we propose a mathematical model
formulation that constitutes an extension of the model provided by Scholz and Meisel
(2022). In order to orchestrate intralogistics processes in coordination with production
scheduling decisions, we put emphasis on decentralized decision-making. To this end, the
next Section 4.3.2 describes the intralogistics charging decision-making that is triggered
through the decentral decision-making procedure. Section 4.3.3 then represents the de-
central decision-making procedure, where individual agents hold the intralogistics and
production scheduling decision rules.

4.3.2 Optimization model for intralogistics charging decisions

In this section, we consider a single intralogistics equipment (ile) that assists machines
in their production operations. The intralogistics inventory charging needs to be aligned
with the machines’ production operations to avoid disruptions of the production pro-
cesses. For this purpose, we present an optimization model that covers intralogistics
charging decisions with respect to demands that result from machine scheduling deci-
sions. We denote by T the set of upcoming periods for which charging decisions have to
be made. This set can be derived from the periods the machines have scheduled their
jobs so far. The considered intralogistics equipment exhibits an initial inventory inv0

and a maximum inventory capacity invmax where recharging can take place in different
charging modes S. The availability of different modes allows to trade-off the charge speed
versus the electricity that is consumed per period of charging. Accordingly, they differ
in power consumption qs and charge rate cs. The charge rate expresses the electricity
charged to the battery for a forklift whereas it expresses the added amount of compressed
air for an air compressor or similar inventories for other types of equipment. The jobs
scheduled on the machines constitute the intralogistics equipment period-based demands
det for periods t ∈ T that consume the intralogistics equipment’s inventory. From the
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job scheduling decisions of all machines being active in a period, we can derive a total
demand det faced by the considered intralogistics equipment in period t. Whether or not
the intralogistics equipment faces such a demand in period t is indicated by the binary
parameter ϕt, which is equal to 1 if det> 0 and 0 otherwise. According to technical
realities, especially in view of forklift batteries, a certain self-discharge amount sdc per
period is taken into account. Furthermore, intralogistics equipment can be distinguished
by whether or not they are capable of simultaneous charging and inventory consumption
(binary parameter scc = 1) or not (scc = 0). The charging decision for the intralogistics
equipment is then modeled through the binary decision variable zs,t, which is equal to
1 if the equipment charges in mode s ∈ S in period t ∈ T . The dependent continuous
variable inv t keeps track of the resulting inventory. Table 4.1 summarizes the notation
for this model. The optimization model for the charging decisions of the intralogistics
equipment is then as follows.

Table 4.1: Notation for intralogistics charging decisions.

Sets

T Set of periods
S Set of charging modes

Parameters

inv0 Initial inventory [l, Wh, or similar dimensions]
invmax Maximum inventory capacity [l, Wh, or similar dimensions]
det Demand faced in period t ∈ T [l, Wh, or similar dimensions]
ϕt Equal to 1 if there is demand in period t (i.e. det > 0), 0 otherwise
qs Power consumed per period of charging in mode s [kW per period]
ret Dichotomous parameter, with ret = −1 if forecast indicates feed-in manage-

ment (ESR) in period t, otherwise ret = 1 (ESG)
cs Inventory charged per period in charging mode s [l, Wh, or similar dimensions]
sdc Self discharge per period [%]
scc Equal to 1 if the equipment is capable to charge and consume inventory at the

same time, 0 otherwise

Decision variables

zs,t Binary variable, 1 if equipment charges in mode s in period t, 0 otherwise
invt Dependent continuous variable stating the equipment’s inventory at the end

of period t [l, Wh, or similar dimensions]
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min→
∑
s∈S

∑
t∈T

zs,t · qs · ret (4.1)

∑
s∈S

zs,t ≤ 1 t ∈ T (4.2)

invt = invt−1 − det +
∑
s∈S

zs,t · cs −

(
1−

∑
s∈S

zs,t

)
· sdc t ∈ T (4.3)∑

s∈S
zs,t + ϕt ≤ 1 + scc t ∈ T (4.4)

0 ≤ invt ≤ invmax t ∈ T (4.5)

zs,t ∈ {0, 1} s ∈ S, t ∈ T (4.6)

The objective function (4.1) represents the intralogistics inventory charging synchro-
nization with the dichotomous renewable energy forecast parameter ret , with ret = −1
if the forecast indicates feed-in management (ESR) in period t and ret = 1 if no feed-in
management is necessary (ESG). Through this, the objective maximizes the electricity
consumption to charge intralogistics inventory in times of excessive renewable energy
generation (feed-in management, ESR) and minimizes electricity consumption in periods
without feed-in management (ESG). Feasibility of the charging decisions is ensured by
Constraints (4.2) to (4.6). Constraints (4.2) assure that at most one charge mode can be
chosen for a period. Constraints (4.3) compute the inventory inv t at the end of period t

taking into account the inventoryinv t−1 at the end of the previous period, the demand
det in the current period, and the new charge zs,t · cs. Furthermore, according to the
last term in these constraints, the inventory is reduced from the self-discharge sdc in
periods where the equipment is not charging. Constraints (4.4) satisfy that an intralo-
gistics equipment that is capable of simultaneous charging and inventory consumption
(resp. demand fulfillment) (scc = 1), can do both in a single period whereas other
equipment either charges or consumes inventory in a period (scc = 0 ). Constraints (4.5)
ensure the non-negativity of intralogistics inventory and respects the maximum capacity.
Constraints (4.6) guarantee the binary character of variables zs,t.
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4.3.3 Decentral decision-making procedure

The intralogistics charging optimization model introduced in Section 4.3.2 is embedded
in an agent-based platform to coordinate the decentral decision-making of production
machines and intralogistics equipment. The decision-making is then performed on a
server infrastructure by embedded smart agents that hold the individual decision rules
for the production scheduling and intralogistics environment. Based on the definition of
an intelligent agent of Wooldridge (2002), a smart agent is understood as a computer
program that executes autonomously triggered rules and processes. For the subsequent
experiments, we simulate the behavior of such a platform through the procedure that is
sketched in Algorithm 1. In this algorithm, the multi-agent system is implemented as a
priority queue of requests placed by the equipment. Requests represent an equipment’s
production inquiry, e.g. in order to schedule jobs or to recharge intralogistics inven-
tory. These requests incrementally build a production and charging schedule in a rolling
horizon manner. While a real-time approach requires continuous data input, constant
data processing, and continuous data output with low latency, the presented approach
behaves like a near real-time approach, as data handling is linked to the manufacturing
equipment request times. This coupling reduces the amount of necessary data handling
compared to a real-time approach and still delivers real-time alike solutions.

Contrasting the introduced intralogistics charging decision optimization model of Sec-
tion 4.3.2, static charging policies are a common instrument for making charging decisions
in practice. In the following, we take into consideration four well-known and established
inventory review policies. In general, we can distinguish these static policies into peri-
odic charging procedures (t , q-policy, t ,S -policy) and continuous procedures (s, q-policy,
s,S -policy). Regarding periodic charging procedures, charging takes place at given and
fix time intervals t where either a fixed amount q is charged or it is charged until the
order-up-to level S is reached. On the contrary, continuous charging procedures initiate
charging when the state of charge (inventory) falls below a defined threshold, the order
point s. Then, either a fixed amount q is charged or charging takes place until the order-
up-to level S is reached. Consequently, the proposed decentral decision-making platform
is capable to account for four static charging policies and to apply the optimization model
to charge intralogistics equipment.

In more detail, lines 1 to 7 of Algorithm 1 initiate essential sets, lists, the priority
queue, and initial request periods. The processing of the priority queue starts at line 8. It
first identifies the next request according to the period at which requests occur, see line 9.
The agent then receives the current load profile lpt and feed-in management forecast ret
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Algorithm 1 Decentral decision-making procedure.
1: E ← M ∪ ILE ▷ set of equipment (production machines and intralogistics equipment)
2: U = [ ] ▷ list of unprocessed jobs
3: P = [ ] ▷ list of processed jobs
4: q ← priority queue() ▷ initialize priority queue
5: for e ∈ E do
6: e.request ← initial request period ▷ assign initial request period
7: q .put(e) ▷ place request in priority queue
8: while q ̸= ∅ do ▷ priority queue procedure
9: e ← q .get() ▷ select next trigger event from priority queue

10: smart agent retrieves relevant information lpt, ret
11: if e refers to a production machine then ▷ request equipment type ’machine’
12: compare required capacity with intralogistics equipment inventory
13: if insufficient intralogistics equipment inventory then
14: e.request ← next request period ▷ postpone machine request
15: ile.request ← next request period ▷ define next intralogistics equipment request
16: q .put(ile) ▷ insert ile into priority queue
17: else
18: call machine scheduling model as black box ▷ see Scholz and Meisel (2022)
19: e.request ← next request period ▷ next request when machine runs idle
20: transmit production decisions to machine
21: update det ▷ derive intralogistics equipment demand from production decision
22: for ile ∈ ILE do
23: if charge policy = s, q OR if charge policy = s,S then
24: if ile.inventory ≤ s then
25: ile.request ← next request period ▷ define next request
26: q .put(ile) ▷ insert intralogistics equipment into priority queue
27: for j ∈ U do
28: if job j’s final operation was executed then
29: U .remove(j ) ▷ remove job from list of unprocessed jobs
30: P .append(j ) ▷ add job to list of processed jobs
31: if e refers to an intralogistics equipment then ▷ request equipment type ’intralogistics’
32: smart agent retrieves relevant information det
33: if charge policy = t , q OR if charge policy = s, q then
34: if e.inventory + q ≤ e.invmax then
35: e.inventory ← e.inventory + q ▷ charge with quantity q
36: if charge policy = t ,S OR if charge policy = s,S then
37: ∆ = S − e.inventory
38: e.inventory ← e.inventory +∆ ▷ charge with quantity ∆
39: if charge policy = t , q OR if charge policy = t ,S then
40: e.request ← next request period ▷ next request in t periods
41: if charge policy = optimization model then
42: solve model (4.1)–(4.6) ▷ solve intralogistics optimization model
43: e.inventory ← e.inventory + zs,t · cs ▷ charge with quantity zs,t · cs
44: e.request ← next request period ▷ next request when intralogistics equipment runs

idle
45: update lpt

46: q .put(e) ▷ put next request in priority queue

136



Chapter 4. Energy-aware charging of intralogistics equipment

in the considered period t (line 10). The current load profile lpt reflects the company’s
already fixed electricity demand in period t that results from those operations that were
planned in earlier decision-making processes. The feed-in management forecast ret indi-
cates upcoming excessive renewable energy generation. For a better understanding of the
parameters lpt and ret a brief example is as follows: With lp1 = 1,500 and re1 = −1, the
parameters represent an electricity demand of 1,500 kWh and the dichotomous param-
eter ret indicates feed-in management (ESR) in period t = 1. Afterwards, it is checked
whether the trigger event e belongs to a machine or intralogistics equipment.

In case a machine requests to schedule new production jobs (line 11), intralogistics
inventories need to meet the upcoming machine demands det . Otherwise, the production
scheduling request is postponed to meanwhile recharge the intralogistics equipment, see
lines 13 - 16. In case of sufficient intralogistics inventory, the machine is capable to
proceed with production scheduling, see lines 18 - 20. The newly scheduled jobs constitute
a new demand for intralogistics inventory, which is reflected in the update of det in
line 21. Referring to the case where charge policies (s, q) or (s,S ) are implemented
for intralogistics charging, a constant inventory verification is essential to ensure that
the inventory lays above the order point s. If the inventory falls below the defined order
point, lines 22 - 26 define the next intralogistics request to initiate an immediate charging
process. Lines 27 - 30 complete the production machine request procedure. Through this,
when a job’s final operation is executed, the job is moved from the list of unprocessed
jobs to the list of processed jobs.

In case the triggered event refers to an intralogistics equipment’s request for charging
(line 31), the agent receives the relevant demand information det (line 32). In case of
a charge policy with constant charge rate q (t , q ; s, q), the intralogistics inventory is
charged with quantity q, in case the maximum inventory capacity invmax allows for this
(lines 33 - 35). Similarly, when a charge policy with a given order-up-to level S (t ,S ;
s,S ) is used by the company, the intralogistics inventory is charged with a quantity ∆

that brings the inventory up to level S, see lines 36 - 38. In case of a periodic charging
procedure (t , q ; t ,S ), the next request will be triggered at the time of the current period
plus charge interval t, see lines 39 - 40. If the charging decisions are made through the
optimization model (4.1)–(4.6), line 42 solves the model, line 43 updates the inventory
according to the model’s charging decisions, and line 44 schedules the next event for the
period in time when the equipment runs idle for the next time. Having handled the
request of the current event e, the load profile lpt is updated to capture the electricity
demand of the taken decisions (line 45). Finally, the follow-up request is added to the
priority queue (line 46), for example, to trigger an intralogistics smart agent again as
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soon as a charging decision is necessary.

4.4 Computational experiments

In the following, Subsection 4.4.1 introduces the computational study setup, while Sub-
section 4.4.2 describes the charge policy interval parameterization. Based on that, Sub-
section 4.4.3 contrasts the static charging policies to the optimization model approach.
Subsection 4.4.4 concludes the computational experiments by considering the impact of
different intralogistics demand lengths.

4.4.1 Computational study setup

Our computational study consists of several experiments that parameterize the static
charge policies, compare them to the optimization-driven charging decision-making, and
analyze the performance of the approach with respect to variations in intralogistics de-
mand.

The experiments are inspired by a real-world manufacturing company in the metal-
working industry from the federal state of Schleswig-Holstein, Germany. The company’s
manufacturing system consists of a job shop production environment with five machines
that operate in batch production. Job processing times are derived from this environ-
ment. As the paper at hand considers the production scheduling environment as a black
box, we do not describe its structure in further detail. The intralogistics devices of the
company assist the machines in their production operations. The devices comprise two
electric forklifts for material transportation between the machines and one air compres-
sor providing compressed air as a production factor to the machines. Relevant in this
context is that the intralogistics equipment has to fulfill the demands that arise from
the production scheduling decisions. Table 4.2 shows relevant data of these intralogistics
devices.

The inventories of the compressor are measured in liters (l) of compressed air while
the inventory of the electric forklifts is measured in Watt-hours (Wh). The general
parameters such as the maximum inventory invmax of the compressor and the forklifts
are taken from the considered company and from the industrial standardization norm
DIN EN 16796. All intralogistics equipment exhibits three charging modes |S|=3 with
different charge rates cs and electricity consumption rates qs for mode s ∈ S. According
to technical realities, the battery of a forklift charges at a rate cs of approximately 64 %
of the corresponding electricity consumption rate qs. Besides that, the forklift battery’s
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Table 4.2: Intralogistics data.

Input data Compressor Forklift

Maximum inventory invmax 10,000 [l] 36,000 [Wh]
Charge rate per period cs 769/588/476 [l] 969/923/877 [Wh]
Charging electricity consumption qs 45,040/41,029/36,929 [W] 6,048/5,760/5,472 [W]
Self discharge amount sdc 0.0 [%] 0.2 [%]
Simultaneous charg-
ing/consumption scc

1 0

Initial inventory inv0 10,000 [l] 36,000 [Wh]
Order point s 2,000 [l] 7,200 [Wh]
Order-up-to level S 8,000 [l] 28,800 [Wh]
Intralogistics demand det 500-2,000 [l] 1,400− 2,925 [Wh]

self-discharge sdc is assumed to be 0.2 % per period whereas the compressor does not
face such a discharging (sdc = 0.0 %). Furthermore, the air compressor can charge and
fulfill production demand simultaneously (scc = 1), whereas the forklift can either charge
or serve demands in a period (scc = 0).

We assume that the initial inventory inv0 of both types of equipment is identical
to the maximum inventory. For the static charge policies, we consider an order point s

that corresponds to 20 % of the maximum intralogistics inventory and an order-up-to
level S equaling 80 % of the maximum inventory. Individual demand rates det of the
forklifts and the air compressor vary in the ranges mentioned in Table 4.2 and correspond
to the underlying real-world production data. Even though the conducted simulation
study is following the outlined manufacturing environment from practice, the proposed
model formulation is not limited to these consumers and is applicable to a wide range of
inventory-based equipment types.

When conducting the computational experiments, we consider a rolling time horizon
of 64 periods and an overall simulation time of 640 periods. A single period corresponds
to 15 minutes, according to which the planning time horizon covers two days and the
total simulated time of operations equals four weeks with one eight-hour shift per day.
The forecast of the availability of excessive renewable energy is derived from Schleswig-
Holstein’s feed-in management actions in 2021. According to this data, approximately 66

% of the periods face feed-in management actions. All data for the computational exper-
iments are available at the repository [https://www.scm.bwl.uni-kiel.de/de/forschung/
research-data]. All computations are conducted on an Intel Core i7 with a 3.6 GHz CPU
and 32 GB memory. For solving the optimization model, we use the MIP solver CPLEX
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12.9.0. The corresponding computation time per instance of the model is approximately
30 seconds, which is considered sufficiently small and, therefore, not further analyzed in
the following. The decentral decision-making environment is implemented in Python 3.7
using the libraries queue, pandas, numpy, and doopl.factory.

4.4.2 Charge policy interval parameterization

In what follows, we will emphasize the mentioned periodic charging procedures introduced
in Section 4.3.3 with a special focus on parameterizing the charge interval t. The order
point s, an order-up-to level S, and charge amount q are important parameters as well but
are assumed to be given due to (technical) restrictions of the intralogistics equipment. In
contrast, the charge interval t is clearly within the company’s decision-making authority
and exerts a decisive influence on the production scheduling segment, as the machines are
reliant on sufficient intralogistics inventory to maintain production. Figures 4.2 and 4.3
demonstrate the charge interval influence. They illustrate the production scheduling job
processing rate (right ordinate), which is the percentage of jobs that can be processed
within the simulated time horizon, and the intralogistics electricity consumption (left
ordinate) for varied values of the charge interval t.
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Figure 4.2: (t, q)-policy charge interval parameterization.

In order to define an appropriate charge interval t for the charge policies (t , q) and
(t ,S ), Figures 4.2 and 4.3 represent 22 different charge intervals within the range of 8
to 640 periods. It can be clearly seen that an increasing charge interval t leads to a
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Figure 4.3: (t, S)-policy charge interval parameterization.

decreasing job processing rate and a decreasing intralogistics electricity consumption.
We observe that small-scale charge intervals of up to t = 32 for the (t , q)-policy and up
to t = 96 for the (t ,S )-policy achieve the maximum possible job processing rate of 93
%. This rate cannot be exceeded in the considered setting as jobs being released shortly
before the end of the simulation time cannot be completed (end-of-horizon effect). In
contrast, increasing charge intervals t lead to a decreasing job processing rate due to
insufficient inventory of the intralogistics equipment. Regarding the extreme case where
the charge interval is equal to the simulation time of 640 periods and, hence, only a single
charging takes place during the simulation, the job processing rates drop to as little as
20 %.

The total electricity consumption (sum of ESR and ESG) for the charge interval t = 8

constitutes the maximum consumption rate. For higher values of t, the total electricity
consumption decreases, as increasing time spans between two charge processes result
in an overall reduction of the number of charge operations. Thereby, charge intervals
within the range of t = 8 to t = 32 achieve at least 82 % of charging within ESR
periods. The total electricity consumption is identical for the charge intervals within
the range of t = 352 up to t = 640, which is due to the fact that only a single charge
takes place in all these settings. Merely the allocation to periods with necessary feed-in
management (ESR-periods) and to periods without feed-in management (ESG-periods)
changes slightly. Differences in the job processing rate for the charge interval range
t = 352 to t = 640 and the slight increase for t = 288 can be traced back to variations in
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the jobs that are selected by the machines due to postponements that are required when
charging the intralogistics devices.

Based on these results, the charge interval is set to t = 32 for the subsequent com-
putational experiments, which ensures sufficient intralogistics inventory to obtain the
maximum possible machine job processing rate when applying a static charging policy.

4.4.3 Static intralogistics charging policy compared to charging opti-
mization model

In this section, we will emphasize the comparison of the introduced charging policies from
Section 4.4.2 with the intralogistics charging decision optimization model from Section
4.3.2.

Figure 4.4 contrasts the intralogistics charging electricity consumption and job pro-
cessing rate for each of the four static charge policies and the optimization model. All
charging approaches allow for a machine job processing rate of 93 %, which means that
the production scheduling segment is capable to process an identical job amount, regard-
less of the chosen charging policy. It becomes apparent that all static charging policies
additionally reveal lower total electricity consumption compared to the optimization
model. Consequently, only the optimization anticipates excessive renewable electricity
generation and gives the company’s decision maker the opportunity to reduce the loss of
renewable electricity generation by fully charging intralogistics devices in ESR-periods.
From comparing the optimization model’s charging decisions to the most electricity-
intensive static charging (t ,S )-policy, it is possible to make use of additional 326 kWh
during ESR-periods, which would otherwise be lost due to feed-in management.

In more detail, the (s, q)-policy comes along with a minimum total electricity con-
sumption of approximately 711 kWh. This is followed by the (s,S )- and (t , q)-policies,
which show a total intralogistics charging consumption of 731 kWh and 821 kWh, respec-
tively. Only the (t ,S )-policy reveals a significantly higher total electricity consumption of
about 917 kWh. This difference can be traced back to the periodic intralogistics charg-
ing up to the order-up-to level S, when applying a (t ,S )-policy. The (t , q)-policy for
instance also recharges periodically but charges a constant amount q, which corresponds
to 50 % of the intralogistics maximum inventory and is only applied when the upper
inventory limit is not exceeded by this. Similar statements hold for the remaining poli-
cies. Even though the (s, q)- and (s,S )-policy both initiate intralogistics charging when
the inventory falls below the order point s, they marginally differ in the total electricity
consumption. The slightly higher electricity consumption of the (s,S )-policy compared
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Figure 4.4: Comparison of static charge policies and optimization-driven charging.

to the (s, q)-policy is due to the fact that the order-up-to level S corresponds to 80 % of
the intralogistics maximum inventory whereas the charge amount q equals 50 % of the
intralogistics maximum inventory.
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Figure 4.5: Charging policy specific CO2 emissions.

It should be noted that all static charging policies involve electricity consumption
in periods with feed-in management (ESR-periods) and without feed-in management
(ESG-periods) and only the optimization model entirely shifts intralogistics charging
decisions solely to feed-in management periods (ESR-periods). The (s,S )-policy causes
the maximum electricity consumption in ESG-periods with 160.88 kWh, followed by the
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(t , q)-policy with 146.13 kWh. While the (t ,S )-policy induces 144.33 kWh the (s, q)-
policy exhibits a minimum of 103.84 kWh electricity consumption in ESG-periods. For
the obtained solutions in Figure 4.4, we quantify the resulting total CO2 emissions (see
Figure 4.5). We do this by multiplying the electricity consumption in ESG-periods by
a CO2 emission factor of 366 g per kWh, which corresponds to the standard electricity
mix in Germany in 2020 (Umweltbundesamt 2022). The electricity consumption in ESR-
periods correlates with 0 g per kWh as this electricity originates from excessive renewable
electricity generation and would be lost due to feed-in management if not consumed
instantly. Consequently, a charging policy with low ESG-period electricity consumption
comes along with low CO2 emissions. In light of this, the (s, q)-policy comes along with
the lowest CO2 emissions of 38 kg among the static charging policies. The (t , q)-and
(t ,S )-policy exhibit almost identical CO2 emissions of around 53 kg, whereas the (s,S )-
policy causes the highest CO2 emissions of all static charging policies with around 59

kg. Contrasting the static charging policies, the optimization model completely avoids
CO2 emissions. The CO2 quantification reveals that applying the proposed intralogistics
charging optimization model instead of a static charging policy opens up an opportunity
for substantial CO2 emission reduction in the simulated time horizon. In addition to the
mentioned CO2 emission reduction, a potential cost saving arises from trading emission
allowances.

4.4.4 Variation of intralogistics demands

While the computations in the previous section compared the five different charging
options with one another, we will subsequently examine the impact of different intral-
ogistics demand lengths. By varying the length over which parameter det is applied,
we simulate changes in the demand for the intralogistics fulfillment. These changes in
the intralogistics demand can either result from changes in machine processing or vari-
ations in the intralogistics demand fulfillment. In any case, different demand lengths
exert influence with regard to the intralogistics property of simultaneous charging and
consumption (scc). A minimal example could involve de3 = de4 = de5 = 100 , an in-
tralogistics equipment with no simultaneous charging and consumption (scc = 0 ) being
capable to recharge inventory at the earliest in t = 6 and constituting a potential bot-
tleneck for machine processing. On the contrary, an intralogistics equipment that is
capable of charging and consuming simultaneously (scc = 1 ) can recharge in periods 3

to 5 while fulfilling the demand de3 = de4 = de5 = 100 , which would not result in a
production bottleneck. As a consequence, the variation of intralogistics demand lengths
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might demonstrate potential adverse interactions between the intralogistics environment
with the production environment.

Tables 4.3 to 4.8 summarize the impact of demand length variations on a set of key
performance indicators (KPIs). The tables represent the charging policy impact on the
KPIs that are reported in the table rows and demonstrate a row-based KPI data relation
in the sense of a heat map. Here, the dark green color depicts the best possible KPI
value among all charging policies and demand length settings, whereas the dark red
color represents the weakest performance. Note that high ESR electricity consumption
rates but low ESG rates are desirable in order to counteract excessive renewable electricity
generation. Apart from the already introduced performance measures ESR, ESG and job
processing rate, we additionally account for four other KPIs. We here introduce relative
ESR usage as the percentage of intralogistics charging decisions during ESR periods.
Three further KPIs measure insufficiencies of intralogistics inventory and the consecutive
effects for machine scheduling. The machine postponement KPI refers to lines 12 to 16
of Algorithm 1 and reports how often machine scheduling needs to be postponed to a
later point in time due to insufficient intralogistics inventory. In this line of thought,
the compressor delay and forklift delay specify, which insufficient intralogistics inventory
caused the machine postponement. The reported KPIs exert practical relevance with
regard to production and energy-related goals. The job processing rate in combination
with the underlying machine postponement, compressor delay as well as forklift delay is
of particular business relevance, whereas ESR, ESG, and the relative ESR usage focus on
the company’s energy profile. As an upper bound, for the setting with five machines and
a simulation time of 640 periods a maximum possible machine postponement of 5 · 640 =

3,200 could be observed in case that each machine request is postponed in each period.
We further distinguish settings where the forklift that has the highest inventory is selected
for fulfilling a demand (Tables 4.3-4.5) and where one forklift is used consistently until it
has insufficient capacity at which point the demands are assigned to the second forklift
while the first one is recharging, and so on (Tables 4.6-4.8).

Table 4.3 reports the KPIs for the default demand length of one period, which cor-
responds to the results depicted in Figure 4.4 in Section 4.4.3. The table reveals that
all charging policies allow for a job processing rate of 93 % whereby only the (s, q)- and
(s,S )-policy come along with a bit of machine postponement. This postponement is due
to insufficient compressor inventory but does not reduce the achievable job processing
rate. The forklift inventory is sufficient in this demand length setting for all charging
policies. Using these results as a reference for comparison, Table 4.4 represents the re-
sults under a demand length of two periods. With respect to the job processing rate,
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Table 4.3: Charging policy comparison with one period demand length and forklift se-
lection by highest inventory.de_length=1 forklift_selection=1

KPI t,q-policy t,S-policy s,q-policy s,S-policy Optimization model

ESR [kWh] 674.48 772.37 607.35 570.46 1098.44

ESG [kWh] 146.13 144.33 103.84 160.88 0.00

Relative ESR usage [%] 82 84 85 78 100

Job processing rate [%] 93 93 93 93 93

Machine postponement 0 0 3 4 0

Compressor delay 0 0 3 4 0

Forklift delay 0 0 0 0 0

de_length=2 forklift_selection=1

KPI t,q-policy t,S-policy s,q-policy s,S-policy Optimization model

ESR [kWh] 1139.31 1438.94 696.43 697.87 1812.70

ESG [kWh] 255.72 313.68 124.17 175.28 0.00

Relative ESR usage [%] 82 82 85 80 100

Job processing rate [%] 73 93 47 47 93

Machine postponement 183 24 584 463 0

Compressor delay 183 24 581 368 0

Forklift delay 0 0 3 95 0

de_length=3 forklift_selection=1

KPI t,q-policy t,S-policy s,q-policy s,S-policy Optimization model

ESR [kWh] 1227.86 1528.02 387.98 867.21 2234.09

ESG [kWh] 413.37 424.71 49.67 162.14 0.00

Relative ESR usage [%] 75 78 89 84 100

Job processing rate [%] 53 60 20 33 73

Machine postponement 421 221 1556 1263 152

Compressor delay 421 202 1188 723 152

Forklift delay 0 19 368 540 0

Table 4.4: Charging policy comparison with two periods demand length and forklift
selection by highest inventory.

de_length=1 forklift_selection=1

KPI t,q-policy t,S-policy s,q-policy s,S-policy Optimization model

ESR [kWh] 674.48 772.37 607.35 570.46 1098.44

ESG [kWh] 146.13 144.33 103.84 160.88 0.00

Relative ESR usage [%] 82 84 85 78 100

Job processing rate [%] 93 93 93 93 93

Machine postponement 0 0 3 4 0

Compressor delay 0 0 3 4 0

Forklift delay 0 0 0 0 0

de_length=2 forklift_selection=1

KPI t,q-policy t,S-policy s,q-policy s,S-policy Optimization model

ESR [kWh] 1139.31 1438.94 696.43 697.87 1812.70

ESG [kWh] 255.72 313.68 124.17 175.28 0.00

Relative ESR usage [%] 82 82 85 80 100

Job processing rate [%] 73 93 47 47 93

Machine postponement 183 24 584 463 0

Compressor delay 183 24 581 368 0

Forklift delay 0 0 3 95 0

de_length=3 forklift_selection=1

KPI t,q-policy t,S-policy s,q-policy s,S-policy Optimization model

ESR [kWh] 1227.86 1528.02 387.98 867.21 2234.09

ESG [kWh] 413.37 424.71 49.67 162.14 0.00

Relative ESR usage [%] 75 78 89 84 100

Job processing rate [%] 53 60 20 33 73

Machine postponement 421 221 1556 1263 152

Compressor delay 421 202 1188 723 152

Forklift delay 0 19 368 540 0

Table 4.5: Charging policy comparison with three periods demand length and forklift
selection by highest inventory.

de_length=1 forklift_selection=1

KPI t,q-policy t,S-policy s,q-policy s,S-policy Optimization model

ESR [kWh] 674.48 772.37 607.35 570.46 1098.44

ESG [kWh] 146.13 144.33 103.84 160.88 0.00

Relative ESR usage [%] 82 84 85 78 100

Job processing rate [%] 93 93 93 93 93

Machine postponement 0 0 3 4 0

Compressor delay 0 0 3 4 0

Forklift delay 0 0 0 0 0

de_length=2 forklift_selection=1

KPI t,q-policy t,S-policy s,q-policy s,S-policy Optimization model

ESR [kWh] 1139.31 1438.94 696.43 697.87 1812.70

ESG [kWh] 255.72 313.68 124.17 175.28 0.00

Relative ESR usage [%] 82 82 85 80 100

Job processing rate [%] 73 93 47 47 93

Machine postponement 183 24 584 463 0

Compressor delay 183 24 581 368 0

Forklift delay 0 0 3 95 0

de_length=3 forklift_selection=1

KPI t,q-policy t,S-policy s,q-policy s,S-policy Optimization model

ESR [kWh] 1227.86 1528.02 387.98 867.21 2234.09

ESG [kWh] 413.37 424.71 49.67 162.14 0.00

Relative ESR usage [%] 75 78 89 84 100

Job processing rate [%] 53 60 20 33 73

Machine postponement 421 221 1556 1263 152

Compressor delay 421 202 1188 723 152

Forklift delay 0 19 368 540 0
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only the (t ,S )-policy and the optimization model are capable of realizing the highest
possible performance whereas all other static charging policies lead to a clear drop in
performance. Especially the (s, q)-policy and the (s,S )-policy show very high machine
postponement values such that, eventually, a large share of the jobs cannot be processed
at all. The KPI compressor delay reveals that insufficient compressor inventory is the
predominant reason for this. It should be noted that the (s,S )-policy additionally ex-
hibits a comparably high forklift delay. When comparing the optimization model results
for the one and two period demand lengths, we observe a higher overall electricity con-
sumption with increasing demand length but the model still satisfies all of this through
renewable energy that would otherwise be lost (see row ESR). Under a demand length of
three periods, Table 4.5 reveals that the job processing rate further decreases, now for all
charging policies. Still, the optimization model reveals the lowest machine postponement
and a consistent usage of ESR-electricity.

In contrast to the results in Tables 4.3 to 4.5 where material handling is executed by
the forklift with the highest current inventory level, Tables 4.6 to 4.8 show the results
for a setting where material handling is executed by only one forklift before this one has
insufficient capacity and is replaced by the second forklift while it charges. We observe
that the general findings do not change from this alternative forklift deployment strat-
egy. Except for marginal differences in ESR- and ESG-period electricity consumption,
the consistent forklift selection provides similar results as a selection of forklifts according
to the highest inventory for demands of one period length, see Tables 4.3 and 4.6. Ta-
ble 4.7 shows that consistent forklift selection is capable of entirely avoiding insufficient
forklift inventory (forklift delay = 0 for all charging policies) without any change in the
job processing rate compared to Table 4.4. It should be noted that the forklift selection
mechanism may increase the compressor delay as changes in the machine scheduling de-
cisions due to better forklift inventory utilization are accompanied by further compressor
demands. This is observed here for charging policy (s, q) and may be at the expense of
the battery’s state of health.

Comparing the results for a demand length of three periods in Tables 4.5 and 4.8, we
observe that the consistent forklift selection completely eliminates forklift delays under
the (s, q)-policy and drastically reduces them under the (s,S )-policy. However, only the
(s,S )-policy benefits from this in terms of a higher job processing rate, which increase
from 33 % to 40 %. Even though the forklift delays under the (s, q)-policy can be
completely eliminated, the remaining compressor delays prevent a higher job processing
rate. This is due to the fact that both compressor and forklift inventory are insufficient for
a multitude of machine requests and the reduction of a single bottleneck cannot increase
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Table 4.6: Charging policy comparison with one period demand length and consistent
forklift selection.de_length=1 forklift_selection=2

KPI t,q-policy t,S-policy s,q-policy s,S-policy Optimization model

ESR [kWh] 697.52 778.13 627.51 587.74 1122.24

ESG [kWh] 150.45 144.33 111.04 165.20 0.00

Relative ESR usage [%] 82 84 85 78 100

Job processing rate [%] 93 93 93 93 93

Machine postponement 0 0 3 4 0

Compressor delay 0 0 3 4 0

Forklift delay 0 0 0 0 0

de_length=2 forklift_selection=2

KPI t,q-policy t,S-policy s,q-policy s,S-policy Optimization model

ESR [kWh] 1156.59 1437.50 715.15 756.91 1876.63

ESG [kWh] 262.92 313.68 132.81 194.00 0.00

Relative ESR usage [%] 81 82 84 80 100

Job processing rate [%] 73 93 47 47 93

Machine postponement 183 24 602 368 0

Compressor delay 183 24 602 368 0

Forklift delay 0 0 0 0 0

de_length=3 forklift_selection=2

KPI t,q-policy t,S-policy s,q-policy s,S-policy Optimization model

ESR [kWh] 1204.82 1528.02 406.70 983.83 2275.24

ESG [kWh] 409.05 420.39 58.31 218.84 0.00

Relative ESR usage [%] 75 78 87 82 100

Job processing rate [%] 53 60 20 40 73

Machine postponement 421 219 1186 901 158

Compressor delay 421 202 1186 723 158

Forklift delay 0 17 0 178 0

Table 4.7: Charging policy comparison with two periods demand length and consistent
forklift selection.

de_length=1 forklift_selection=2

KPI t,q-policy t,S-policy s,q-policy s,S-policy Optimization model

ESR [kWh] 697.52 778.13 627.51 587.74 1122.24

ESG [kWh] 150.45 144.33 111.04 165.20 0.00

Relative ESR usage [%] 82 84 85 78 100

Job processing rate [%] 93 93 93 93 93

Machine postponement 0 0 3 4 0

Compressor delay 0 0 3 4 0

Forklift delay 0 0 0 0 0

de_length=2 forklift_selection=2

KPI t,q-policy t,S-policy s,q-policy s,S-policy Optimization model

ESR [kWh] 1156.59 1437.50 715.15 756.91 1876.63

ESG [kWh] 262.92 313.68 132.81 194.00 0.00

Relative ESR usage [%] 81 82 84 80 100

Job processing rate [%] 73 93 47 47 93

Machine postponement 183 24 602 368 0

Compressor delay 183 24 602 368 0

Forklift delay 0 0 0 0 0

de_length=3 forklift_selection=2

KPI t,q-policy t,S-policy s,q-policy s,S-policy Optimization model

ESR [kWh] 1204.82 1528.02 406.70 983.83 2275.24

ESG [kWh] 409.05 420.39 58.31 218.84 0.00

Relative ESR usage [%] 75 78 87 82 100

Job processing rate [%] 53 60 20 40 73

Machine postponement 421 219 1186 901 158

Compressor delay 421 202 1186 723 158

Forklift delay 0 17 0 178 0

the job processing rate. Nevertheless, the by far best performance is again achieved when
leaving the charging decisions to the optimization model.

Of course, machine postponements could be reduced by a decrease of compressor-
and forklift delays. This could be achieved by a company through new equipment types
that have a higher maximum inventory capacity (invmax ), which would then also require
fewer charging activities. In the case of the forklifts, this effect could also be achieved
by adding further forklifts to the fleet. In an extreme example, where the intralogistics
equipment’s inventory capacity equals the overall demand det for the entire simulation

Table 4.8: Charging policy comparison with three periods demand length and consistent
forklift selection.

de_length=1 forklift_selection=2

KPI t,q-policy t,S-policy s,q-policy s,S-policy Optimization model

ESR [kWh] 697.52 778.13 627.51 587.74 1122.24

ESG [kWh] 150.45 144.33 111.04 165.20 0.00

Relative ESR usage [%] 82 84 85 78 100

Job processing rate [%] 93 93 93 93 93

Machine postponement 0 0 3 4 0

Compressor delay 0 0 3 4 0

Forklift delay 0 0 0 0 0

de_length=2 forklift_selection=2

KPI t,q-policy t,S-policy s,q-policy s,S-policy Optimization model

ESR [kWh] 1156.59 1437.50 715.15 756.91 1876.63

ESG [kWh] 262.92 313.68 132.81 194.00 0.00

Relative ESR usage [%] 81 82 84 80 100

Job processing rate [%] 73 93 47 47 93

Machine postponement 183 24 602 368 0

Compressor delay 183 24 602 368 0

Forklift delay 0 0 0 0 0

de_length=3 forklift_selection=2

KPI t,q-policy t,S-policy s,q-policy s,S-policy Optimization model

ESR [kWh] 1204.82 1528.02 406.70 983.83 2275.24

ESG [kWh] 409.05 420.39 58.31 218.84 0.00

Relative ESR usage [%] 75 78 87 82 100

Job processing rate [%] 53 60 20 40 73

Machine postponement 421 219 1186 901 158

Compressor delay 421 202 1186 723 158

Forklift delay 0 17 0 178 0
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horizon, no charging would be required at all from which all charging policies would
result in an identical maximum job processing rate and merely differ in the share of ESR
and ESG electricity consumption.

To summarize, the computational experiments have demonstrated that charge inter-
val parameterization, the implementation of a static charging policy or an intralogistics
charging optimization model as well as the demands for intralogistics inventory exert a
decisive influence on the performance of the production environment. The intralogis-
tics charging optimization model is capable to outperform the static charging policies in
all considered settings and with respect to all analyzed KPIs. Therefore, the computa-
tional experiments reveal that the intralogistics charging optimization model dominates
all static charging policies, leading to significant performance benefits for an industrial
company.

4.5 Conclusions

The integration of electricity-intensive intralogistics equipment has rarely been consid-
ered in the research on energy-aware production management. To close this gap, we
have presented an optimization model that synchronizes intralogistics devices’ charg-
ing decisions with a production schedule and the availability of renewable electricity
in a power grid. Additionally, a decentral decision-making framework is proposed to
orchestrate intralogistics charging decisions while taking into account the availability
of sustainable electricity in the course of time. We have benchmarked our intralogis-
tics charging optimization model against well-known static charging policies and have
demonstrated that the optimization model is capable to outperform all static charging
policies in every considered setting. Using the proposed model, a company can tem-
porarily increase its electricity consumption in times of generation peaks of renewable
electricity, which prevent a temporary shutdown of windmills, solar panels, etc. due to
feed-in management. Implementing this decision-making methodology offers an opportu-
nity to synchronize industrial manufacturing processes with the availability of renewable
electricity, contributing to a reduction of CO2 emissions from manufacturing processes.

Regarding future research, policy instruments that provide incentives for companies to
adapt their production and intralogistics-based electricity consumption to the availability
of renewable electricity generation seem promising. In addition to the considered charging
decisions, the integration of energy-aware routing decisions for those intralogistics devices
that perform material handling operations may be of interest too.
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Abstract A manufacturing company’s production-related decision-making is to a large
extent characterized by machine scheduling and support device operations management.
All these industrial equipment types consume energy, often in the form of electricity.
This electricity is more and more provided by renewable energy sources such as wind and
solar power. The volatility of these power sources can lead to peak periods where feed-in
management is required to stabilize a power grid. In this paper, we suggest to increase
local industrial energy consumption in such periods to relieve the power grid. For this,
we use models that are capable of synchronizing machine scheduling activities and sup-
port device charging operations with the availability of renewable energy. We then use
a decentralized decision-making platform to coordinate the decision-making of various
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types of production-related equipment. By integrating a forecast for the occurrence of
excessive renewable energy into this coordination platform, an opportunity is given to
support environmentally oriented production decisions that avoid feed-in management
actions in the power grid that surrounds the company. In a simulation study based
on real-world data, we compare flow shop and job shop production environments, both
under stochastically arriving jobs in such an energy-oriented setting. We furthermore
introduce and examine the impact of machine-specific due date adjustment methods to
achieve high processing rates and low job tardiness next to the energy-related goal. The
presented approach is computationally analyzed with respect to the trade-offs of these
conflicting goals in both types of production environments.

Keywords Machine scheduling; stochastic job arrival; energy awareness; event-driven
demand response; job shop; flow shop

5.1 Introduction

Since industrial production equipment is in many cases operated by electrical power,
industry is the largest consumer of electricity in many developed economies. For example,
industry accounted for about 44 % of the net electricity consumption in Germany in the
year 2021 (Destatis 2022). Increasing environmental concerns as well as rising fossil
energy costs, therefore, lead to more and more energy awareness in industrial production
environments.

The expansion of electricity generation from renewable energy sources like wind or
solar power provides an opportunity for more sustainable electricity generation but also
creates new challenges. Renewable energy generation goes along with volatility and peak
rates, which constitute a threat to the stability of insufficient electricity grid infrastruc-
ture. This requires feed-in management actions to limit the feed-in of excessive energy
and, thus, ensure a balanced electricity grid. As a consequence, less renewable energy
is fed into the grid in times of feed-in management actions, even though more energy
could have well been produced. Especially wind and solar power-abundant regions face
the challenge of local excessive renewable electricity production. In 2021, 5,818 GWh of
renewably generated electricity was lost due to feed-in management actions in Germany,
which additionally resulted in corresponding claims for compensation from operators of
renewable power plants of about e807 million (Bundesnetzagentur 2021). By fostering
adjustable local electricity consumption, an opportunity would be given to counteract
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such renewable energy losses, as the electricity grid is relieved from transmitting this
energy to other regions and the, thus, the corresponding infrastructure bottleneck is
bypassed.

Increasing energy awareness in production environments integrates an energy per-
spective into a company’s decision-making. All energy-consuming operations at the pro-
duction floor determine a company’s energy consumption profile. Energy consumption of
production machines is typically determined through job scheduling decisions in both, job
shop as well as flow shop production environments. These decisions are often made with
respect to customer-oriented service objectives such as avoiding job tardiness w.r.t. due
dates. But also support devices contribute to a company’s energy consumption through
their corresponding recharging decisions. Thereby, under the term support device, we
subsume here all types of equipment that assists machine activities, for example, by han-
dling material or through similar processes. To jointly consider both types of such energy
consumers, we use in this paper optimization models for job scheduling decisions on pro-
duction machines and for recharging decisions on support devices. However, there exists
a conflict of objectives as these decisions account for service- as well as energy-related ob-
jectives. The paper at hand, therefore, adopts a decentral decision-making methodology,
the so-called production coordination platform (PCP), to bring together and orchestrate
machine scheduling and support device recharging decisions in the course of time.

With this paper, we primarily focus on the interrelations of service- and energy-
related objectives in production environments where jobs arrive stochastically and each
job has to be processed by several machines with a given machine routing. We con-
trast flow shop production environments where jobs show identical machine routings and
consistent operation sequences with job shop environments where each job can have an
individual machine routing and operation sequence. In what follows, we consider both
such systems in the decentral decision-making environment. We examine the impact
of these different production environments in a simulation that is based on real-world
data. In this context, the conducted computations examine the impact of stochastic
job arrival in both production environments and contrast the energy- and service-related
objective functions. Furthermore, we introduce and analyze machine-specific due dates
to demonstrate their influence regarding the decentral decision-making process.

The paper is organized as follows: Section 5.2 provides an overview of the relevant
literature on energy awareness in production environments. In Section 5.3, the proposed
production environment, the model formulations, and the PCP are described. The gen-
eral simulation study setting is introduced in Section 5.4 while Section 5.5 aims at the
computational experiments, which analyze the impact of stochasticity in job arrivals and
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the production environment on the performance of the PCP. Conclusions are provided
in Section 5.6.

5.2 Literature review

Environmental concerns and increasing energy costs make energy awareness an increas-
ingly important aspect of industrial manufacturing giving rise to a large number of pub-
lications over the last years. Energy awareness incorporates energy-related aspects in
production-related decision-making. In this line of thought, demand-side management
aims to adjust production energy consumption to certain external signals. The litera-
ture differentiates between price-driven and event-driven demand response approaches
(Biel and Glock 2016). While price-driven demand response considers energy prices as
external signals, event-driven demand response states reactions to particular events like
renewable energy peak generation due to high wind levels or sun-intensive periods. Fur-
thermore, the large number of energy-aware publications can be categorized based on
the considered planning problems into various research streams with detailed literature
surveys being available for all of them. While Gahm et al. (2016) solely classify machine
scheduling models, Biel and Glock (2016) focus on articles in the context of master pro-
duction scheduling, capacity planning approaches, and lot-sizing. Bänsch et al. (2021)
link both these reviews and provide an updated as well as extended literature overview
for this field of research. Terbrack et al. (2021) review the literature with a particular
focus on energy-aware models in hierarchical production planning.

With regard to our study, the following papers are of particular relevance as they con-
sider multiple objectives within energy-aware production scheduling. In a price-driven
demand response setting under a time-of-use setting, Heydar et al. (2022) put emphasis
on energy-efficient unrelated parallel machine scheduling and propose a method from
the field of approximate dynamic programming to take into account that jobs arrive at
the system randomly. The approach minimizes the schedule makespan as well as total
energy costs, where energy costs include the cost of energy consumption of machines for
switching on, during processing, and in an idle state. Mansouri et al. (2016) consider
a two-machine sequence-dependent permutation flow shop. They analyze the trade-off
between minimizing makespan, a service level measure, and total energy consumption.
Different machine speed levels with various energy consumption levels allow for explor-
ing the potential of energy saving in the considered manufacturing system. The authors
develop a mixed integer linear multi-objective optimization model to identify the Pareto
frontier comprised of makespan and total energy consumption. A construction heuristic
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is proposed for solving the problem. Ruiz Duarte et al. (2020) focus on a manufactur-
ing system with a single-item manufacturing process and consecutive production stages
with the aim to integrate various renewable energy sources. The proposed optimization
model obtains a production schedule that matches the onsite renewable energy supply
with an energy storage system and the electricity grid as a backup. To counter renew-
able energy generation uncertainties, a two-stage robust optimization model is proposed.
For solving this formulation, a nested Column-and-Constraint Generation algorithm is
applied. Lang et al. (2016) take a look into agent-based automated negotiation mecha-
nisms for decentralized scheduling problems with heterogeneous machines that process
competing jobs. The objective is to minimize tardiness cost, machine operating cost, or
energy cost. Rubaiee and Yildirim (2019) focus on single-machine scheduling with job
preemption in a time-of-use energy price setting in order to minimize total completion
time and total energy cost. Karimi and Kwon (2021) consider joint on-site renewable
energy production, energy storage, and energy-aware production scheduling and the im-
pact on energy cost as well as makespan. The conducted experiments reveal cost-savings
and performance effects as a result of proper system configuration. Wang et al. (2020)
propose a stochastic optimization model with multiple objectives and two stages for flow
shop scheduling. In a time-of-use electricity price setting, the authors integrate on-site
renewable energy generation with energy storage. The approach of Materi et al. (2021)
adjusts CNC machine cutting speed and aims at energy costs and CO2 emissions reduc-
tion by integrating photovoltaic plants and battery storage. Biel et al. (2018) emphasize
on-site renewable energy generation stochasticity in a flow shop scheduling environment.
Under a time-of-use energy price setting, they aim to minimize both, total weighted flow
time and energy costs. In accordance, Subramanyam et al. (2020) additionally account
for onsite renewable energy generation in a flow shop production environment. They
propose a two-stage mixed-integer optimization model to minimize energy costs. While
the first stage minimizes the per-year energy consumption with respect to job through-
put requirements, the next stage considers the sizing of wind turbines, solar panels, and
battery units to meet the electricity demand.

The survey of Bänsch et al. (2021) reveals streams of recent research and identifies
future research topics with regard to energy-aware machine scheduling. Besides on-site
renewable energy generation, dynamics, rescheduling, and usage of multiple forms of
energy, a need for combined production scheduling and supporting processes, like for
example material handling, is identified. In this context, Liu et al. (2019) consider
crane processes for the transportation of workpieces within a flexible job shop scheduling
problem. Their approach minimizes the total cost of consumed energy and schedule
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makespan. Hemmati Far et al. (2019) consider flexible manufacturing cells with industrial
robots. Automated guided vehicles (AGVs) transport material between manufacturing
and storage areas. The model aims to minimize production and transport costs under a
time-of-use electricity tariff to account for the energy consumption of moving AGVs as
well as for job tardiness. With a wider focus, Wang (2019) integrate vehicle routing for
final product distribution with single machine scheduling in order to minimize total CO2

emissions. The approach proposed by Yun et al. (2022) minimizes production electricity
costs under a time-of-use electricity tariff. The novelty is the integrated demand response
model for scheduling in a manufacturing environment in combination with a material
handling recharging system. The authors apply a price-driven demand response and
additionally account for material handling equipment recharging decisions.

This literature review has shown so far that a large number of studies focused on
price-driven demand response approaches. Research on event-driven demand response
is clearly lacking. One study in this regard is Scholz and Meisel (2022), who suggest
event-driven demand response to counteract feed-in management actions at a regional
level in times of peak renewable energy generation. A price-driven demand response is
not appropriate in this context as electricity prices are determined for an entire renewable
energy market, from which they cannot reflect local renewable energy generation peaks
and feed-in management actions at a regional level. The authors propose an agent-
based decentral decision-making platform to incrementally plan and coordinate machine
scheduling decisions with support device recharging decisions. Scholz and Meisel (2022)
exclusively consider a job shop production environment with a known and given set of
jobs. In contrast, the paper at hand extends on Scholz and Meisel (2022) by comparing
job shop and flow shop environments for which jobs are not known at the beginning of the
planning horizon but arrive stochastically over time. The jobs are complex in that they
exhibit (job-specific) machine routings involving multiple operations. We compare these
production environments within a simulation study with respect to their performance
for both, energy- and service-oriented objectives. Based on the above literature review,
such a comparison of flow shop and job shop systems with regard to energy and service
objectives has not been conducted yet, even though it is of practical relevance to better
understand the performance of various production systems in the context of energy-aware
production management.
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5.3 Production environments’ decision-making and coordi-
nation platform

In this section, an event-driven demand response approach in a job shop as well as a
flow shop production environment, both with stochastic job arrivals, is studied. First,
in Subsection 5.3.1, we describe the production environment with the underlying math-
ematical model formulation. Then, Subsection 5.3.2 provides an algorithm that specifies
the decentral decision-making, which coordinates numerous production equipment units
within a rolling time horizon. Finally, Subsection 5.3.3 introduces methodologies for
machine-specific due dates.

5.3.1 Problem specification and model formulation

We consider here an energy-intensive production environment in an event-driven demand
response setting. A simplified version of the problem was investigated by Scholz and
Meisel (2022), where a given set of jobs had to be processed on a set of machines without
a predetermined machine order. In the paper at hand, we extend the problem towards
more realistic production environments by integrating stochastic job arrivals and machine
precedence relations for jobs that resemble both, job shop as well as flow shop production
environments.

The equipment in this production environment is subdivided into two general types.
One equipment type refers to the machines that execute the production jobs whereas the
second equipment type are support devices that assist in terms of material handling and
ensure production factor supply to the machines. We describe the decision-making for
the machines formally and present the corresponding optimization model whereas the
support device recharging decisions are merely described verbally afterwards to avoid
redundancies in this paper and with Scholz and Meisel (2022).

The production environment processes stochastically arriving jobs J . Each job j ∈ J

consists of an individual set of operations that have to be processed in a predefined
sequence. The machine environment consists of n machines and processing of a certain
operation is dedicated to a fixed machine out of this set. With this, each job exhibits
individual machine precedence relations. We assume that each machine is capable to
perform a single job at a time and operations are processed non-preemptively. Based on
discrete time periods, the time horizon of interest is denoted by T . Each job exhibits
an individual time window for being processed. The time window starts with an arrival
date aj at which the first operation can be started at the earliest. It ends with a due
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date dj that represents the job’s preferred time of completion. We consider the due date
as a soft constraint, meaning that tardy completion of a job beyond dj is allowed but
such tardiness should be minimized to avoid dissatisfaction of customers.

The production coordination platform (PCP) that is explained in the next subsection
coordinates the decision-making of machines and support devices by having each such
equipment unit solve its own decision model whenever certain events take place in the
production environment. Due to this, we will subsequently focus on a single machine’s
decision-making model, similar to the one proposed by Scholz and Meisel (2022), which
is triggered each time that the machine has finished those jobs that it scheduled in its
preceding planning run. From the perspective of such an individual machine, processing a
job j is identical to processing the job’s corresponding operation that is dedicated to this
machine. Due to this, we do not need to distinguish jobs and operations in the model and,
for reasons of simplicity, we just refer to ’jobs’ rather than ’operations’ in the following.
The machine-dependent processing time for job j on the considered machine is given by
pj and measured in periods. The corresponding machine electricity consumption for this
operation is reflected by rate qj . Furthermore, the dichotomous parameter ret represents
a forecast which indicates for each period t ∈ T , whether feed-in management actions are
necessary (ret = −1) or not (ret = 1) from the perspective of the power grid. In other
words, in periods ret = −1 feed-in management actions (FMA) reduce the generation
of electricity to stabilize the power grid. In such periods, the considered company could
well increase its local consumption to retrieve more energy from the grid and avoid such
FMA’s (and the corresponding loss of renewable energy that could actually be generated
in that period). Periods with no need for feed-in management actions are indicated by
ret = 1. Relating production decisions and their energy consumption to parameter ret

constitutes the event-driven demand response in our proposed approach.
The decisions of the machine under consideration are then expressed through binary

variables xj,t, equal to 1 if the processing of job j is started in period t, 0 otherwise, and
binary variables yj,t, equal to 1 if job j is processed in period t, 0 otherwise. Depending
on these decisions, the tardiness taj of job j is determined if that job ends beyond its
due date. All notation is summarized in Table 5.1.
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Table 5.1: Notation for machine job scheduling.

Sets

J Set of released jobs for the machine under consideration
T Set of periods

Parameters

aj Arrival date of job j ∈ J [period]
dj Due date of job j ∈ J [period]
pj Processing time of job j ∈ J for the machine under consideration
qj Power consumed by job j ∈ J per period processing time for the machine under

consideration
ret Dichotomous parameter, with ret = −1 if feed-in management action in period

t (FMA-period) is indicated, otherwise ret = 1 (regular period without feed-in
management action)

Decision variables

xj,t Binary variable, equal to 1 if processing job j starts in period t, 0 otherwise
yj,t Binary variable, equal to 1 if job j is processed in period t, 0 otherwise
taj Job tardiness, measured as period-based due date exceedance of job j

The model for the individual decision-making of a machine is then stated as follows:

min→ TA =
∑
j∈J

taj (5.1a)

min→ CT =
∑
j∈J

∑
t∈T |aj≤ t

xj,t · (t+ pj − 1) (5.1b)

min→ ERE =
∑
j∈J

∑
t∈T |aj≤ t

yj,t · qj · ret (5.1c)

∑
t∈T |aj≤ t

xj,t = 1 j ∈ J (5.2)

∑
t∈T |aj≤ t

yj,t =
∑

t∈T |aj≤t

xj,t · pj j ∈ J (5.3)

∑
τ∈T |t≤τ≤t+pj−1

yj,τ ≥ xj,t · pj j ∈ J, t ∈ T (5.4)
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∑
j∈J |rj≤t

yj,t ≤ 1 t ∈ T (5.5)

taj ≥
∑

t∈T |aj≤ t

xj,t · (t+ pj − 1− dj) j ∈ J (5.6)

taj ≥ 0 j ∈ J (5.7)

xj,t, yj,t ∈ {0, 1} j ∈ J, t ∈ T (5.8)

In order to analyze service as well as energy targets in the decision-making, the model
comprises three objectives (5.1a), (5.1b), and (5.1c). The first objective aims to meet
customer appointments with a total job tardiness minimization (TA in (5.1a)). Tardiness
results when the completion time of job j for the machine under consideration exceeds
the corresponding due date dj . In a similar regard, the second objective (CT in (5.1b))
represents the minimization of the overall completion time of all jobs to enforce their
finishing as soon as possible. The third objective is related to the consumption of (ex-
cessive) renewable energy (ERE in (5.1c)). It aims to shift production-related energy
consumption from regular periods (ret = 1) into FMA-periods (ret = −1) to consume
more energy in periods that suffer from feed-in management actions. In our later exper-
iments, we bring these objectives in an order of priority and solve them hierarchically in
terms of a lexicographical objective function. This allows us to understand how these
objectives impact decision-making and whether they are conflicting or in line with each
other.

The following constraints guarantee the feasibility of the machine scheduling solu-
tions. Constraints (5.2) ensure that job j is started exactly once on the machine under
consideration. Constraints (5.3) enforce that the processing of job j takes exactly pj

periods on the considered machine. Constraints (5.4) guarantee processing without pre-
emption. Constraints (5.5) make sure that the machine processes at most one job per
period t. Constraints (5.6) and (5.7) compute the tardiness for objective function (5.1a).
Constraints (5.8) assure the binary character of variables xj,t and yj,t.

The operations of the machines are accompanied by support devices (e.g. forklifts for
material handling) that need to be coordinated with the machines’ production schedule
in order to avoid disruptions to the production processes. This coordination is ensured
through the subsequently presented PCP. The support devices themselves have to make
recharging decisions in order to be able to suitably supply the machines. More formally,
the jobs scheduled on the machines constitute for a considered support device a service
demand that consumes the support device’s charging level at a rate of det in periods
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t ∈ T . Furthermore, the support device has an initial charging level inv0 in period 0 and
a possible maximum charging level invmax. Then, recharging decisions are necessary from
time to time to have a sufficient charge level that allows for fulfilling the service demands.
These charging decisions can be made according to service objectives or energy objectives
like in the machine model presented above. A corresponding optimization model for the
support devices can be found in Scholz and Meisel (2022). We abstain from repeating
this model here.

5.3.2 Production coordination platform

A production coordination platform (PCP) orchestrates the individual decision-making
processes of machines and support devices, where each machine and each support device
exhibits its individual decision-making authority. An in-depth introduction to the PCP’s
fundamentals is provided in Scholz and Meisel (2022). For the subsequent computational
experiments, we simulate the behavior of the PCP in accordance with the procedure
that is outlined in Algorithm 2. This algorithm was initially introduced with a focus on
support device recharging in Scholz (2023) and is modified here for our later comparison of
flow shop and job shop production systems. According to this algorithm, a priority queue
of requests for production scheduling decisions on machines (M), recharging decisions on
support devices (SD), as well as job arrival (JA) events incrementally builds a schedule
within a rolling time horizon. The priority queue and all relevant input data are initialized
in Lines 1 to 6, where each of the initially known requests e ∈ E is placed according to
the period at which it takes place. The actual priority queue procedure starts at line 7.
Here, the request that occurs next is identified in line 8. According to the event-driven
demand response, a forecast of the feed-in management actions in the next periods is
received in line 9. Next, the algorithm differentiates whether the current priority queue
request e belongs to a machine (see line 10), a support device (see line 28), or a new job
arrival (see line 33).

In the event of a machine request (line 10), the PCP first releases a number of arrived
jobs to the machine (see lines 11 - 12). This number of released jobs is a parameter
that controls the work-in-progress of the machine and is later analyzed in detail in the
experiments in Section 5.5.1. In order to schedule new jobs on the considered machine,
adequate support device charging levels are necessary to cover the upcoming demand
det in subsequent periods t. In case this requirement is not met, the machine request is
delayed to a later period in order to recharge the support device in the meantime, see
lines 14 - 17. Otherwise, the machine is able to proceed with its production planning,
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Algorithm 2 PCP decision-making process.
1: E ←M ∪ SD ∪ JA ▷ set of request types (machine, support device and job arrival)
2: A = initial jobs; R = [ ]; P = [ ] ▷ list of arrived-, released- and processed jobs
3: Q ← priority queue() ▷ initialize priority queue
4: for e ∈ E do
5: e.request← initial request period ▷ assign initial request period
6: Q.put(e) ▷ place request in priority queue
7: while Q ̸= ∅ do ▷ priority queue procedure
8: e← Q.get() ▷ select next request from priority queue
9: retrieval of feed-in management action forecast ret

10: if e refers to type M then ▷ request type ’machine’
11: if |R|< job amount then ▷ based on ’job amount’-parameterization
12: move earliest jobs from A to R ▷ First In First Out (FIFO) discipline to respect

job arrival dates
13: compare required capacity with support device charging level
14: if insufficient support device charging level then
15: e.request← next request period ▷ postpone machine request
16: sd.request← next request period ▷ define next request for recharging
17: Q.put(sd) ▷ insert sd into priority queue
18: else
19: retrieve machine dependent operation parameters pj and qj
20: solve model (5.1a) - (5.8) ▷ solve machine scheduling model
21: transmit production decisions to machine
22: update det ▷ derive support device demand from production decision
23: for j ∈ R do
24: if job j’s final operation was executed then
25: R.remove(j) ▷ remove job from list of released jobs
26: P.append(j) ▷ add job to list of processed jobs
27: e.request← next request period ▷ next request when machine runs idle
28: if e refers to type SD then ▷ request type ’support device’
29: retrieval of support device demand det in period t
30: call support device optimization model ▷ see Scholz and Meisel (2022)
31: transmit recharging decisions to support device
32: e.request← next request period ▷ next request when recharging is necessary
33: if e refers to type JA then ▷ request type ’job arrival’
34: if production environment equals flow shop system then
35: define new job with consistent and identical machine precedence relations
36: if production environment equals job shop system then
37: define new job with random and job-specific machine precedence relations
38: A.append(new job)
39: e.request← next request period with X ∼ Exp(λ) ▷ next job arrival request
40: Q.put(e) ▷ put follow-up request in priority queue
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see lines 19 - 21, where new jobs are scheduled through the optimization model and the
corresponding decisions are given as instructions to the machine. The newly scheduled
jobs then constitute the new demands for support devices, which is reflected by updating
det in line 22. Furthermore, all jobs that are finished are transferred from the list or
released jobs to the list of processed jobs, see Lines 23 - 26. Line 27 completes the
request and defines the follow-up request.

If the event refers to a support device that requests to recharge (line 28), the demand
det for upcoming periods t is derived from the machine schedules (line 29). Afterward,
the support device optimization model is solved (see line 30), and line 31 updates the
support charging schedule. To complete this request, line 32 defines the follow-up request,
for example, to trigger a support device again as soon as the next recharging decision
becomes necessary.

In the event of a new job arrival (line 33), lines 34 to 37 differentiate the underlying
production environment. In the case of a flow shop system, each new arriving job receives
an identical machine routing (M1, M2, etc.) and corresponding identical production-
related data (pj , qj), see lines 34 and 35. In the case of a job shop system, new arriving
jobs exhibit random and job-specific machine routings with individual production-related
data (pj , qj), see lines 36 and 37. The list of arrived jobs A is then extended by the
new job. Afterward, the next request period is defined according to the exponentially
distributed job inter-arrival time X ∼ Exp(λ).

The updated or new request is finally inserted into the priority queue (line 40).

5.3.3 Due date adjustment methodologies

As mentioned in Section 5.3.1, each job j appears to the system at an individual stochastic
arrival date aj (specifying the earliest period processing can be started) and has a due
date dj , which refers to the preferred time of completion. Due to the decision authority of
each individual machine and the decomposition of the overall machine scheduling problem
into individual decentral single machine scheduling problems in a rolling horizon manner,
due dates are of particular relevance for the decision-making. However, providing the
final job due dates dj to all machines raises the challenge that upstream machines are
hardly restricted by those due dates whereas downstream machines may unavoidably
generate tardiness, as there is not enough remaining buffer time left before that due
date is reached. This is because preceding machines observe quite a far-away deadline
for their operations and do not anticipate the potentially arising tardiness of subsequent
machines. This phenomenon applies in particular to the energy-related ERE -objective,
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as there is no time component in the objective function that would foster early completion
of operations. Due to this, a job’s operation on an early machine might be scheduled very
late just to benefit from excessive renewable energy at that time. Later machines then
fail to meet the due date when scheduling their operations for that job. To counteract
this, we will introduce machine-specific due date adjustments and later analyze their role
when optimizing for energy- and service-oriented goals. In particular, we focus on three
different due date adjustment methods. The benchmark is the so-called no adjustment
method where all machines are provided with the final job due date dj . With the equal
division, we introduce machine-specific due dates that are calculated for the operation
of each machine individually. In this setting, the length of the processing time window
dj − aj + 1 of job j is equally divided among all machine operations, such that dj−aj+1

|Oj |
time units are available per machine, where |Oj | refers to the number of operations
(machines) of job j. With this formulation, each machine performing a single operation
receives an individual due date with respect to the machine operation order and the
allowed time units. At the same time, there is no differentiation between long or short
machine processing times. Based on that, the weighted division takes differences in the
processing time of the individual machines into account. With this, a machine exhibiting
a longer operation processing time receives a larger share of the processing time window
dj − aj +1 than a machine showing a shorter operation processing time. More precisely,
the sum of job j’s processing times over all machines is denoted as p̃j . With respect to
a job’s machine-specific processing time pj , the individual machines’ share of the time
window is then computed as pj ·(dj−aj+1)

p̃j
.

5.4 Simulation study setting

This section explains the general setup for the simulation system that is used afterward
to study flow shop and job shop systems with stochastic job arrival and decentralized
PCP decision-making under environmental- and service-oriented objectives. We focus on
a production environment with stochastic job arrival, where the job inter-arrival time X

is a random variable following an exponential distribution X ∼ Exp(λ) with E(X) = 1
λ .

For example, in a setting with λ = 0.1 the job inter-arrival time X ∼ Exp(0.1) has an
expected value of E(X) = 1

0.1 = 10, corresponding to an expected new job arrival every
10 periods.

Jobs have to be processed by several machines with known operation sequences and
processing times pj . Job arrival dates aj correspond to the aforementioned exponentially
distributed stochastic job arrival. Corresponding due dates are computed as dj = aj +
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∑
j∈J pj · ω where ω is a parameter that controls the tightness of the processing time

window. With ω = 1, the time between the arrival date and the due date equals exactly
the processing time of all required operations. To give some more flexibility, we set ω = 2,
which corresponds to a time window twice as large as the required processing time.

The computational experiments will differentiate between a job shop- and a flow
shop-oriented production environment, following the definition of Pinedo (2016). This
differentiation is reflected by the characteristics of the corresponding jobs. For the flow
shop production environment, all jobs reveal identical machine routings beginning on
machine M1, then machine M2, and so on. In addition to that, the processing times pj ,
as well as energy consumption rates qj are identical on the machines for all jobs j ∈ J .
On the contrary, the job shop environment is characterized by jobs that reveal individual
machine routings where each job visits each machine at most once. Furthermore, the jobs
have individual machine-dependent processing times pj and energy consumption rates qj .

The simulation study is inspired by a metal processing medium-sized company from
northern Germany’s federal state of Schleswig-Holstein, a region with a high potential
for the generation of renewable wind power. The company’s production environment
includes two production equipment types with five machines and three support devices.
Table 5.2 comprises the machines’ energy consumption rates that were derived from this
company. The job processing times pj are set constantly to 3 periods in the flow shop
production environment whereas they are drawn from the range [1 − 5] in the job shop
production environment.

Table 5.2: Machines’ energy consumption rates.

Flow shop Job shop

Machine 1 [W] 1, 808 1, 756− 1, 847
Machine 2 [W] 1, 756 1, 132− 1, 808
Machine 3 [W] 15, 824 7, 912− 23, 737
Machine 4 [W] 320 320
Machine 5 [W] 5, 505 3, 701− 10, 051

As support devices, the considered company operates two electrified forklifts and one
air pressure tank. The forklift’s charging level consumption for supporting processing of
job j in the job shop production environment is drawn from the range [1, 400; 2, 925] based
on European Norm 16796. In the flow shop environment, we set this value constantly to
2, 200. For the air pressure tank, the consumption rate (measured in liter of compressed
air) is drawn from the range [500, 1000] in the job shop environment and set to 500 in the
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flow shop environment. The electrified forklifts are capable to recharge 923 Wh to the
battery per period whereas the compressor stores 2, 000 l into the air pressure tank per
period. Each period equals 15 minutes, which is a typical electricity tariff-related time
interval. The PCP computes the demand rates det of the support devices as a result of
the job scheduling. In 2021 Schleswig-Holstein reveals approximately 66% FMA-period
occurrence (Schleswig-Holstein Netz AG 2021), which serves as a basis for setting the
feed-in management parameters ret. The conducted simulations span a time horizon of
640 periods, which corresponds to 20 working days with 8 hour shifts. The individual
look-ahead horizon of a request in the PCP’s rolling horizon planning is set to 64 periods.
All computational experiments are performed on an Intel Core i7 with a 2.5 GHz CPU
and 32 GB memory. The PCP is implemented in Python 3.7 using the libraries queue,
numpy, pandas. In order to solve the involved optimization models, doopl.factory and
the CPLEX 12.9.0 solver are applied.

5.5 Computational experiments

While Section 5.5.1 will present a parameterization and general findings based on the
stochastic job arrival, Sections 5.5.2 to 5.5.5 provide insights into various objective com-
binations contrasting energy- and service-related goals in flow shop and job shop produc-
tion environments.

5.5.1 Production environment parameterization

It is to be expected that the arrival rates of jobs in the stochastic environment have a
strong impact on the performance of the production system in general but also on the
solution of the individual subproblems from Section 5.3.1, especially as a large number
of jobs may not be processable within the given time horizons. To cope with this, it is
necessary to decide on the number of jobs that are released to a machine each time its
scheduling procedure is triggered by the PCP. We call this parameter the ’job amount ’ and
test various values for it under varied job arrival rate parameters λ. The performance of
these parameter settings is measured in terms of the job processing rate, which represents
the ratio of jobs that are finally processed by the system at the end of the simulation
horizon.

Figures 5.1 and 5.2 illustrate for job shop and flow shop production, respectively, the
achieved job processing rates where the parameter job amount is varied in the range 1

to 20 and job inter-arrivals follow five settings with λ = 0.2 to 1.0. For each such setting
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Figure 5.1: Job amount parameterization
in job shop production environment.
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Figure 5.2: Job amount parameterization
in flow shop production environment.

with ERE objective, we have conducted five independent simulation runs and report the
average job processing rate over these runs.

With regard to the job shop results in Figure 5.1, all scenarios have in common that
job processing rates first increase with rising job amount and then reach a maximum.
Beyond this, a further rise of the job amount parameter decreases the job processing rate
again. This is explained by the fact that a too large number of released jobs cannot be
processed by the machines as the capacities of the support devices are then insufficient
but cannot be recharged within a machine’s scheduling run. We observe that the highest
inter-arrival time of E(X) = 5.0 (λ = 0.2) achieves the highest job processing rate of
about 90% if the job amount is set to 10. An explanation why this system does not reach
a 100 % processing rate is that it is impossible to complete jobs that are released close
to the end of the simulation time horizon (end-of-horizon effect). For lower inter-arrival
times (larger values of λ), the system cannot catch up in processing the quickly arriving
jobs, which leads to significantly lower job processing rates. While λ = 0.4 reveals a
maximum processing rate of around 44 %, λ = 0.6 goes along with approximately 30 %,
and λ = 0.8 exhibits only 21 %. If one job arrives each period on average (λ = 1.0),
the system can only process 15 % of the jobs, which clearly reveals the overload of the
production environment. Nevertheless, we observe that almost all settings perform best
if the parameter job amount is set to 10.

Figure 5.2 considers the flow shop environment. It becomes apparent that the pro-
cessing rate is lower compared to the job shop production environment, which can be
explained by the higher number of operations per job, as processing is necessary on all
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machines for each job. All scenarios have in common that they reveal comparably low
yet increasing processing rates for job amounts up to 5. From there on, processing rates
are quite constant over a long range of job amount values. For example, while λ = 0.2

reveals a maximum processing rate of approximately 60 % for job amounts within the
range of 5 to 16, λ = 0.4 goes along with approximately 30 % within the same range.
This is due to the flow shop characteristics with identical processing times for the jobs
and reveals that such a system is less sensitive to the setting of the parameter compared
with the job shop environment.

In general, the conducted calculations reveal that the proposed PCP is capable to
handle stochastic job arrivals. In addition, an increasing job arrival rate can lead to
lower job processing rates as the machines reach their limits and cannot keep up with
the fast successive job arrivals. Apart from that, it becomes clear that the job amount
released to the machines is an essential parameter with a major influence on the PCP’s
results. With a focus on the λ = 0.2 job arrival, the following computations will base
on a job amount of 10 as this achieved maximum job processing rate within almost all
investigated settings.

5.5.2 Energy performance indicators under service-orientation

In this experiment, we will consider the service-oriented TA-objective in both production
environments and the impact of the due date adjustment methods on energy and service
performance indicators. For this, 20 simulation runs for each production environment and
each due date adjustment method are conducted. Starting with Figure 5.3, we present
our results as box plots where × marks the average, the horizontal line within the box
the median, and the first and third quartiles (25th and 75th percentile) are the boxes
lower and upper limit. The lines extending the boxes show the variability outside the
first and third quartiles. Data outliers that differ significantly from the rest of the data
are plotted as individual points. Figure 5.3 shows the FMA-rate, which is the share of
job processing times that take place in FMA-periods. The figure reveals that all due date
adjustment methods perform similarly with FMA-rates of around 67 %, meaning that
two-thirds of the processing times of all jobs take place in FMA-periods with excessive
renewable energy being available. The average job processing rate is not shown in the
figure but equals 98 % for all due date adjustment methods.

Figure 5.4 shows the total tardiness over all jobs. It reveals that the ’no adjustment’
approach causes by far the highest total tardiness of 705 periods. Applying the equal
division significantly reduces this performance measure to 75 periods, a reduction of
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about 90 % compared to no adjustment. The weighted division is then capable of further
slightly reducing the average total tardiness to 70 periods. Compared to the equal divi-
sion, the weighted division is capable to obtain lower or equal tardiness in 60 % of the
cases, whereas, for the remaining 40 %, the equal division provides lower total tardiness
than the weighted division.

Figure 5.3: FMA-rate in job shop produc-
tion environment with TA-objective.

Figure 5.4: Tardiness in job shop produc-
tion environment with TA-objective.

With respect to the flow shop environment, Figure 5.5 reveals almost identical box
plots and average FMA-rates of around 67 % compared to the job shop setting for all
due date adjustment methods. Figure 5.6 shows that the no adjustment method again
reveals the highest tardiness with an average total tardiness of 274 periods under a job
processing rate of 97 %. As in the job shop production environment, the equal division
significantly reduces, in this case to a negligible value of just about 10 periods. In 45 % of
the test runs, there is no tardiness at all. The average job processing rate stays constant
at 97 %. The weighted division approach basically provides identical solutions as equal
division.

Summarizing these results from an energy perspective, the TA-objective yields so-
lutions with an average FMA-rate of around 67 %, which is in line with the average
occurrence of feed-in management actions in 66 % of the simulated periods. In other
words, whether or not production takes place in FMA-periods is a matter of chance be-
cause the service-oriented TA-objective does not strive for shifting production activities
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Figure 5.5: FMA-rate in flow shop produc-
tion environment with TA-objective.

Figure 5.6: Tardiness in flow shop produc-
tion environment with TA-objective.

into these periods. For this reason, also the choice of the due date adjustment method
only exerts marginal influence on the FMA-rates observed in both production environ-
ments. From a service-oriented point of view, machine-specific due dates are beneficial
to reduce the total tardiness in both, job shop and flow shop environments.

5.5.3 Impact of combined service-related objectives

We now integrate completion time (CT ) as a secondary service-oriented goal in the
lexicographical objective function to further induce early production and, thus, reduce
tardiness.

Figures 5.7 and 5.8 provide the corresponding results for the job shop environment.
As with the exclusive TA-objective, the combined TA,CT -objective exhibits comparable
average FMA-rates of around 67 % for all three due date adjustment methods. Figure 5.8
reveals that the integration of CT as a secondary objective leads to a strong reduction
of tardiness compared to the use of the sole TA-objective in Figure 5.4. All three, no
adjustment, equal division, and weighted division, now show a total tardiness of just about
20 periods and achieve job processing rates of 99 %.

Figures 5.9 and 5.10 provide the results for the flow shop production environment
under the TA,CT -objective combination. It becomes apparent that the integration of
CT as a secondary objective leads to identical and high-quality energy- and service-
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Figure 5.7: FMA-rate in job shop produc-
tion environment with TA,CT -objective.

Figure 5.8: Tardiness in job shop produc-
tion environment with TA,CT -objective.

Figure 5.9: FMA-rate in flow shop produc-
tion environment with TA,CT -objective.

Figure 5.10: Tardiness in flow shop
production environment with TA,CT -
objective.
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related KPIs for all three adjustment methods. The additional CT -integration reveals
constant average FMA-rates of 67 % and processing rate of 99 %. It leads to a consistently
low average total tardiness of 10 periods.

Summarizing these results, adding the subordinate CT -objective further reduces job
tardiness in both considered production environments. It also effects that the solutions
become much more similar for the three due date adjustment methods. As was already
observed for the pure TA-objective, also the combined TA,CT -objectives lead to average
FMA-rates of 67 %, which again shows that production takes place in FMA-periods purely
by chance.

5.5.4 Combined service- and energy-orientation

The previous computations focused on the impact of service-oriented job tardiness min-
imization on energy- and service-related KPIs. In what follows, we will combine the
service objective with a subordinate energy focus. The energy orientation will emphasize
the event-driven demand response in the decision-making in order to push the energy
consumption in FMA-periods while still focusing on the primary service-oriented goal to
satisfy customers. For this, we combine TA and CT as in the previous experiment but
add the ERE -objective (5.1c) as a tertiary goal in order to counteract losses of excessive
renewable energy.

The average FMA-rate across all previous experiments was consistently around 67 %.
Accounting for ERE as a tertiary objective in the job shop production environment now
reveals a slight rise to 69 % for all due date adjustment methods, see Figure 5.11. The
average total tardiness values of all three due date adjustment methods are similar under
the TA,CT,ERE -objective and the TA,CT -objective, compare Figures 5.12 and 5.8.
For the flow shop environment, integrating ERE as a tertiary objective exhibits an even
lower relative increase in the FMA-rate from 67 % to just 68 % and no change in the
tardiness values. The figures are omitted here for reasons of brevity.

To summarize, a subordinate tertiary ERE -orientation in combination with the service-
oriented primary TA and secondary CT objectives has almost no additional potential to
exploit the availability of excessive renewable energy and counteract feed-in management
actions.

5.5.5 Energy orientation in an event-driven demand response setting

So far, we mainly focused on service orientation with only a subordinate energy con-
sideration. In what follows, we will emphasize energy orientation and consider service
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Figure 5.11: FMA-rate in job shop pro-
duction environment with TA,CT,ERE -
objective.

Figure 5.12: Tardiness in job shop pro-
duction environment with TA,CT,ERE -
objective.

orientation as a subordinate goal in the hierarchical objective function. Focusing on
energy orientation leads to the ERE,TA,CT -objective combination. Here, the primary
goal is to schedule jobs such that their processing consumes as much energy during FMA-
periods as possible. The subordinate secondary and tertiary service-oriented goals are to
minimize total tardiness and overall completion time.

Through this change in the scope of the planning, we now reach an FMA-rate of
almost 100 % in both, the job shop and the flow shop environment, see Figures 5.13
and 5.14. These figures summarize the achieved job processing rates and FMA-rates
for all considered objective combinations, averaged over all three due date adjustment
methods. It can be seen that the previously mentioned objectives reveal approximately
30 % lower FMA-rates. Hence, the PCP is capable of entirely synchronizing production
under stochastic job arrivals with feed-in management actions in a job shop as well as
flow shop production environment if primarily guided by the ERE -objective. By doing
so, the electricity grid is relieved during peak renewable energy generation periods and
the loss of excessive renewable energy generation is counteracted.

However, it must be noted that the higher FMA-rates come at the expense of lower
job processing rates. While the average job processing rate in the job shop environ-
ment with service-oriented objectives (TA; TA,CT ; TA,CT,ERE ) is at least 98 %, the
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Figure 5.15: Tardiness in job shop pro-
duction environment with ERE,TA,CT -
objective.

Figure 5.16: Tardiness in flow shop pro-
duction environment with ERE,TA,CT -
objective.
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energy-oriented objective ERE,TA,CT reveals a processing rate of just about 92 %. For
the flow shop environment, the processing rate drops drastically to just about 60 %.
This drop is because the primary ERE-objective lets the PCP put operations into pe-
riods with excessive renewable energy no matter how late these periods occur in the
simulation horizon. Due to this, subsequently scheduled jobs then cannot be finished
within the given time horizon. Next to this, the solutions suffer even more drastically
from the primary ERE-goal orientation with regard to total tardiness values. These are
now orders of magnitude larger than in service-oriented settings. The job shop and flow
shop environments reveal total tardiness of nearly 5, 000 and even about 11, 000 periods,
respectively, see Figures 5.15 and 5.16. This means that the average tardiness per job
is about 36 periods on the 640 time period planning horizon. With each period corre-
sponding to 15 minutes, average job tardiness of 9 hours results here. Resolving this
clear conflict among the objectives remains an open issue for future research.

5.6 Conclusion

Peak renewable energy generation poses a risk to electricity grid stability, which is coun-
teracted by feed-in management actions. One opportunity to contribute to grid stabiliza-
tion without losing renewable energy due to feed-in management actions is to increase
the local consumption of electricity. For this, the paper at hand applies event-driven
demand response within industrial job shop and flow shop production environments.
The optimization model-driven approach handles stochastic job arrivals and combines
the scheduling of jobs on machines with charging decisions for support devices on a
decentralized decision-making platform. The approach can handle energy-related and
service-related objectives in isolation and in combination. By applying the energy-related
objective, a company is able to temporarily increase its energy consumption in times of
excessive generation of renewable energy and, thus, make feed-in management actions
obsolete.

Computational experiments have analyzed the decentral decision-making in a flow
shop and a job shop production environment with stochastic job arrival and energy- as
well as service-related performance indicators. The computations reveal that low job tar-
diness can be achieved by combining service-oriented objective functions with machine-
specific due date mechanisms. However, a push of energy consumption in periods that
face feed-in management actions is hardly possible, if the corresponding energy-related
objective is just added as a subordinate objective to a primary tardiness or completion-
time objective. Only if this objective is treated as a primary objective, an almost com-
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plete synchronization of production activities with feed-in management action periods
can be achieved. Such a solution can substantially relieve the electricity grid in times of
peak renewable energy generation and foster the consumption of renewable energy that
is otherwise lost due to feed-in management. However, such an energy orientation comes
along with substantially higher total job tardiness and lower job processing rates, as is
shown by the computational results too. Resolving this conflict among the considered ob-
jectives clearly requires further research. Furthermore, future research could investigate
negotiation mechanisms that support the decision-making platform if limited excessive
renewable energy needs to be distributed best possibly among the consuming machines
and devices.
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