23,560 research outputs found

    Multi-spectral materials: hybridisation of optical plasmonic filters and a terahertz metamaterial absorber

    Get PDF
    Multi-spectral materials, using hybridised plasmonic and metamaterial structures, can simultaneously exhibit unique resonant phenomena over several decades of wavelengths. A multi-spectral material that combines a plasmonic colour filter array and a terahertz metamaterial absorber into a single material is a promising prospect for a coaxial multi-spectral imager operating in the visible, near IR, and terahertz wavebands

    Hybridization of optical plasmonics with terahertz metamaterials to create multi-spectral filters

    Get PDF
    Multi-spectral imaging systems typically require the cumbersome integration of disparate filtering materials in order to work simultaneously in multiple spectral regions. We show for the first time how a single nano-patterned metal film can be used to filter multi-spectral content from the visible, near infrared and terahertz bands by hybridizing plasmonics and metamaterials. Plasmonic structures are well-suited to the visible band owing to the resonant dielectric properties of metals, whereas metamaterials are preferable at terahertz frequencies where metal conductivity is high. We present the simulated and experimental characteristics of our new hybrid synthetic multi-spectral material filters and demonstrate the independence of the metamaterial and plasmonic responses with respect to each other

    Registration and Fusion of Multi-Spectral Images Using a Novel Edge Descriptor

    Full text link
    In this paper we introduce a fully end-to-end approach for multi-spectral image registration and fusion. Our method for fusion combines images from different spectral channels into a single fused image by different approaches for low and high frequency signals. A prerequisite of fusion is a stage of geometric alignment between the spectral bands, commonly referred to as registration. Unfortunately, common methods for image registration of a single spectral channel do not yield reasonable results on images from different modalities. For that end, we introduce a new algorithm for multi-spectral image registration, based on a novel edge descriptor of feature points. Our method achieves an accurate alignment of a level that allows us to further fuse the images. As our experiments show, we produce a high quality of multi-spectral image registration and fusion under many challenging scenarios

    Characterization of color cross-talk of CCD detectors and its influence in multispectral quantitative phase imaging

    Get PDF
    Multi-spectral quantitative phase imaging (QPI) is an emerging imaging modality for wavelength dependent studies of several biological and industrial specimens. Simultaneous multi-spectral QPI is generally performed with color CCD cameras. However, color CCD cameras are suffered from the color crosstalk issue, which needed to be explored. Here, we present a new approach for accurately measuring the color crosstalk of 2D area detectors, without needing prior information about camera specifications. Color crosstalk of two different cameras commonly used in QPI, single chip CCD (1-CCD) and three chip CCD (3-CCD), is systematically studied and compared using compact interference microscopy. The influence of color crosstalk on the fringe width and the visibility of the monochromatic constituents corresponding to three color channels of white light interferogram are studied both through simulations and experiments. It is observed that presence of color crosstalk changes the fringe width and visibility over the imaging field of view. This leads to an unwanted non-uniform background error in the multi-spectral phase imaging of the specimens. It is demonstrated that the color crosstalk of the detector is the key limiting factor for phase measurement accuracy of simultaneous multi-spectral QPI systems.Comment: 16 pages, 8 figure

    PeX 1. Multi-spectral expansion of residual speckles for planet detection

    Full text link
    The detection of exoplanets in coronographic images is severely limited by residual starlight speckles. Dedicated post-processing can drastically reduce this "stellar leakage" and thereby increase the faintness of detectable exoplanets. Based on a multi-spectral series expansion of the diffraction pattern, we derive a multi-mode model of the residuals which can be exploited to estimate and thus remove the residual speckles in multi-spectral coronographic images. Compared to other multi-spectral processing methods, our model is physically grounded and is suitable for use in an (optimal) inverse approach. We demonstrate the ability of our model to correctly estimate the speckles in simulated data and demonstrate that very high contrasts can be achieved. We further apply our method to removing speckles from a real data cube obtained with the SPHERE IFS instrument.Comment: accepted for publication in MNRAS on 25th of August 2017, 17 pages, 15 figure

    Low-degree multi-spectral p-mode fitting

    Get PDF
    We combine unresolved-Sun velocity and intensity observations at multiple wavelengths from the Helioseismic and Magnetic Imager and Atmospheric Imaging Array onboard the Solar Dynamics Observatory to investigate the possibility of multi-spectral mode-frequency estimation at low spherical harmonic degree. We test a simple multi-spectral algorithm using a common line width and frequency for each mode and a separate amplitude, background and asymmetry parameter, and compare the results with those from fits to the individual spectra. The preliminary results suggest that this approach may provide a more stable fit than using the observables separately

    MAPCAT: Monitoring AGN with Polarimetry at the Calar Alto Telescopes

    Full text link
    We introduce MAPCAT, a long-term observing program for "Monitoring of AGN with Polarimetry at the Calar Alto Telescopes". Multi-spectral-range studies are critical to understand some of the most relevant current problems of high energy astrophysics of blazars such as their high energy emission mechanisms and the location of their gamma-ray emission region through event associations across the spectrum. Adding multi-spectral-range polarimetry allows for even more reliable identification of polarized flares across the spectrum in these kind of objects, as well as for more accurate modeling of their magnetic field. As part of a major international effort to study the long term multi-spectral range polarimetric behavior of blazars, MAPCAT uses -since mid 2007- CAFOS on the 2.2m Telescope at the Calar Alto Observatory (Almeria, Spain) to obtain monthly optical (R-band) photo-polarimetric measurements of a sample of 34 of the brightest gamma-ray, optical, and radio-millimeter blazars accessible from the northern hemisphere.Comment: To be published in the proceedings of High Energy Phenomena in Relativistic Outflows III (HEPRO III, IJMPCS). 4 page
    corecore