2,465 research outputs found

    Space food experiences: designing passenger's eating experiences for future space travel scenarios

    Get PDF
    Given the increasing possibilities of short- and long-term space travel to the Moon and Mars, it is essential not only to design nutritious foods but also to make eating an enjoyable experience. To date, though, perhaps unsurprisingly, most research on space food design has emphasized the functional and nutritional aspects of food, and there are no systematic studies that focus on the human experience of eating in space. It is known, however, that food has a multi-dimensional and multi-sensorial role in societies and that sensory, hedonic, and social features of eating and food design should not be underestimated. Here, we present how research in the field of Human-Computer Interaction (HCI) can provide a user-centered design approach to co-create innovative ideas around the future of food and eating in space, balancing functional and experiential factors. Based on our research and inspired by advances in human-food interaction design, we have developed three design concepts that integrate and tackle the functional, sensorial, emotional, social, and environmental/atmospheric aspects of “eating experiences in space.” We can particularly capitalize on recent technological advances around digital fabrication, 3D food printing technology, and virtual and augmented reality to enable the design and integration of multisensory eating experiences. We also highlight that in future space travel, the target users will diversify. In relation to such future users, we need to consider not only astronauts (current users, paid to do the job) but also paying customers (non-astronauts) who will be able to book a space holiday to the Moon or Mars. To create the right conditions for space travel and satisfy those users, we need to innovate beyond the initial excitement of designing an “eating like an astronaut” experience. To do so we carried out a three-stage research and design process: (1) first we collected data on users imaginary of eating in space through an online survey (n = 215) to conceptualize eating experiences for short- and long-term space flights (i.e., Moon, Mars); then (2) we iteratively created three design concepts, and finally (3) asked experts in the field for their feedback on our designs. We discuss our results in the context of the wider multisensory experience design and research space

    Earth as Interface: Exploring chemical senses with Multisensory HCI Design for Environmental Health Communication

    Get PDF
    As environmental problems intensify, the chemical senses -that is smell and taste, are the most relevantsenses to evidence them.As such, environmental exposure vectors that can reach human beings comprise air,food, soil and water[1].Within this context, understanding the link between environmental exposures andhealth[2]is crucial to make informed choices, protect the environment and adapt to new environmentalconditions[3].Smell and taste lead therefore to multi-sensorial experiences which convey multi-layered information aboutlocal and global events[4]. However, these senses are usually absent when those problems are represented indigital systems. The multisensory HCIdesign framework investigateschemical sense inclusion withdigital systems[5]. Ongoing efforts tackledigitalization of smell and taste for digital delivery, transmission or substitution [6]. Despite experimentsproved technological feasibility, its dissemination depends on relevant applicationdevelopment[7].This thesis aims to fillthose gaps by demonstratinghow chemical senses provide the means to link environment and health based on scientific andgeolocation narratives [8], [9],[10]. We present a Multisensory HCI design process which accomplished symbolicdisplaying smell and taste and led us to a new multi-sensorial interaction system presented herein. We describe the conceptualization, design and evaluation of Earthsensum, an exploratory case study project.Earthsensumoffered to 16 participants in the study, environmental smell and taste experiences about real geolocations to participants of the study. These experiences were represented digitally using mobilevirtual reality (MVR) and mobile augmented reality (MAR). Its technologies bridge the real and digital Worlds through digital representations where we can reproduce the multi-sensorial experiences. Our study findings showed that the purposed interaction system is intuitive and can lead not only to a betterunderstanding of smell and taste perception as also of environmental problems. Participants comprehensionabout the link between environmental exposures and health was successful and they would recommend thissystem as education tools. Our conceptual design approach was validated and further developments wereencouraged.In this thesis,we demonstratehow to applyMultisensory HCI methodology to design with chemical senses. Weconclude that the presented symbolic representation model of smell and taste allows communicatingtheseexperiences on digital platforms. Due to its context-dependency, MVR and MAR platforms are adequatetechnologies to be applied for this purpose.Future developments intend to explore further the conceptual approach. These developments are centredon the use of the system to induce hopefully behaviourchange. Thisthesisopens up new application possibilities of digital chemical sense communication,Multisensory HCI Design and environmental health communication.À medida que os problemas ambientais se intensificam, os sentidos químicos -isto é, o cheiroe sabor, são os sentidos mais relevantes para evidenciá-los. Como tais, os vetores de exposição ambiental que podem atingir os seres humanos compreendem o ar, alimentos, solo e água [1]. Neste contexto, compreender a ligação entre as exposições ambientais e a saúde [2] é crucial para exercerescolhas informadas, proteger o meio ambiente e adaptar a novas condições ambientais [3]. O cheiroe o saborconduzemassima experiências multissensoriais que transmitem informações de múltiplas camadas sobre eventos locais e globais [4]. No entanto, esses sentidos geralmente estão ausentes quando esses problemas são representados em sistemas digitais. A disciplina do design de Interação Humano-Computador(HCI)multissensorial investiga a inclusão dossentidos químicos em sistemas digitais [9]. O seu foco atual residena digitalização de cheirose sabores para o envio, transmissão ou substituiçãode sentidos[10]. Apesar dasexperimentaçõescomprovarem a viabilidade tecnológica, a sua disseminação está dependentedo desenvolvimento de aplicações relevantes [11]. Estatese pretendepreencher estas lacunas ao demonstrar como os sentidos químicos explicitama interconexãoentre o meio ambiente e a saúde, recorrendo a narrativas científicas econtextualizadasgeograficamente[12], [13], [14]. Apresentamos uma metodologiade design HCImultissensorial que concretizouum sistema de representação simbólica de cheiro e sabor e nos conduziu a um novo sistema de interação multissensorial, que aqui apresentamos. Descrevemos o nosso estudo exploratório Earthsensum, que integra aconceptualização, design e avaliação. Earthsensumofereceu a 16participantes do estudo experiências ambientais de cheiro e sabor relacionadas com localizações geográficasreais. Essas experiências foram representadas digitalmente através derealidade virtual(VR)e realidade aumentada(AR).Estas tecnologias conectamo mundo real e digital através de representações digitais onde podemos reproduzir as experiências multissensoriais. Os resultados do nosso estudo provaramque o sistema interativo proposto é intuitivo e pode levar não apenas a uma melhor compreensão da perceção do cheiroe sabor, como também dos problemas ambientais. O entendimentosobre a interdependência entre exposições ambientais e saúde teve êxitoe os participantes recomendariam este sistema como ferramenta para aeducação. A nossa abordagem conceptual foi positivamentevalidadae novos desenvolvimentos foram incentivados. Nesta tese, demonstramos como aplicar metodologiasde design HCImultissensorialpara projetar com ossentidos químicos. Comprovamosque o modelo apresentado de representação simbólica do cheiroe do saborpermite comunicar essas experiênciasem plataformas digitais. Por serem dependentesdocontexto, as plataformas de aplicações emVR e AR são tecnologias adequadaspara este fim.Desenvolvimentos futuros pretendem aprofundar a nossa abordagemconceptual. Em particular, aspiramos desenvolvera aplicaçãodo sistema para promover mudanças de comportamento. Esta tese propõenovas possibilidades de aplicação da comunicação dos sentidos químicos em plataformas digitais, dedesign multissensorial HCI e de comunicação de saúde ambiental

    Multisensory technology for flavor augmentation: a mini review

    Get PDF
    There is growing interest in the development of new technologies that capitalize on our emerging understanding of the multisensory influences on flavor perception in order to enhance human-food interaction design. This review focuses on the role of (extrinsic) visual, auditory, and haptic/tactile elements in modulating flavor perception and more generally, our food and drink experiences. We review some of the most exciting examples of recent multisensory technologies for augmenting such experiences. Here, we discuss applications for these technologies, for example, in the field of food experience design, in the support of healthy eating, and in the rapidly-growing world of sensory marketing. However, as the review makes clear, while there are many opportunities for novel human-food interaction design, there are also a number of challenges that will need to be tackled before new technologies can be meaningfully integrated into our everyday food and drink experiences

    Proceedings of the 1st Workshop on Multi-Sensorial Approaches to Human-Food Interaction

    Get PDF

    The Impact of Sensory Marketing: Analysis of its Attributes Towards Online Perfum Users’ Behavior

    Get PDF
    Purpose: The tendency of consumers to purchase online today is enormous and requires the role of sensory marketing in providing a positive and memorable experience to all. In addition, since sensory marketing whether in online or offline settings can unconsciously govern shoppers’ judgement and purchase behavior, this paper aims to understand how multi-sensory information processing in the online environment is diverted from offline in the cosmetic perfume industry by leveraging previous research to analyze its effect on offline stores and emphasizing the present study on online retail stores.   Theoretical framework: The research study conducted by Petit et al. (2019) attempts to explore more about digital sensory marketing and multisensory technologies. However, offline and online settings would have different effects and since perfume products require the use of our senses, there would be obstacles that prevent us from using our senses when sold online. This requires us to understand sensory marketing in the online shopping environment.   Design/Methodology/Approach: This paper uses an exploratory study approach to gain in-depth understanding of the topic. The qualitative study is essentially built on primary data sources, through naturalistic observation and semi-structured interviews with 9 Generation Z individuals who are Indonesian citizens and have undertaken frequent perfume purchases online. A snowball sampling method was used in finding respondents for this study while interview results were analyzed using thematic analysis.   Findings: The paper highlights the significant impact of sensory marketing through the use of sensorial cues, sensorial attributes, and individual differences in sensory perception. Ethical considerations when utilizing sensory marketing are also being emphasized throughout this study.   Research, Practical & Social implications: Results of this study can encourage future research to help bring benefits for website/internet site designers, content managers, online perfume retailers, as well as academicians in general.   Originality/Value: This paper draws attention to the growing use of online channels by cosmetic perfume industry actors and sheds light on the importance of sensory marketing practices in affecting online user behavior by answering what and how questions using exploratory studies.

    Digitizing the chemical senses: possibilities & pitfalls

    Get PDF
    Many people are understandably excited by the suggestion that the chemical senses can be digitized; be it to deliver ambient fragrances (e.g., in virtual reality or health-related applications), or else to transmit flavour experiences via the internet. However, to date, progress in this area has been surprisingly slow. Furthermore, the majority of the attempts at successful commercialization have failed, often in the face of consumer ambivalence over the perceived benefits/utility. In this review, with the focus squarely on the domain of Human-Computer Interaction (HCI), we summarize the state-of-the-art in the area. We highlight the key possibilities and pitfalls as far as stimulating the so-called ‘lower’ senses of taste, smell, and the trigeminal system are concerned. Ultimately, we suggest that mixed reality solutions are currently the most plausible as far as delivering (or rather modulating) flavour experiences digitally is concerned. The key problems with digital fragrance delivery are related to attention and attribution. People often fail to detect fragrances when they are concentrating on something else; And even when they detect that their chemical senses have been stimulated, there is always a danger that they attribute their experience (e.g., pleasure) to one of the other senses – this is what we call ‘the fundamental attribution error’. We conclude with an outlook on digitizing the chemical senses and summarize a set of open-ended questions that the HCI community has to address in future explorations of smell and taste as interaction modalities
    corecore