529 research outputs found

    A Subband-Based SVM Front-End for Robust ASR

    Full text link
    This work proposes a novel support vector machine (SVM) based robust automatic speech recognition (ASR) front-end that operates on an ensemble of the subband components of high-dimensional acoustic waveforms. The key issues of selecting the appropriate SVM kernels for classification in frequency subbands and the combination of individual subband classifiers using ensemble methods are addressed. The proposed front-end is compared with state-of-the-art ASR front-ends in terms of robustness to additive noise and linear filtering. Experiments performed on the TIMIT phoneme classification task demonstrate the benefits of the proposed subband based SVM front-end: it outperforms the standard cepstral front-end in the presence of noise and linear filtering for signal-to-noise ratio (SNR) below 12-dB. A combination of the proposed front-end with a conventional front-end such as MFCC yields further improvements over the individual front ends across the full range of noise levels

    Sub-Banded Reconstructed Phase Spaces for Speech Recognition

    Get PDF
    A novel method combining filter banks and reconstructed phase spaces is proposed for the modeling and classification of speech. Reconstructed phase spaces, which are based on dynamical systems theory, have advantages over spectral-based analysis methods in that they can capture nonlinear or higher-order statistics. Recent work has shown that the natural measure of a reconstructed phase space can be used for modeling and classification of phonemes. In this work, sub-banding of speech, which has been examined for recognition of noise-corrupted speech, is studied in combination with phase space reconstruction. This sub-banding, which is motivated by empirical psychoacoustical studies, is shown to dramatically improve the phoneme classification accuracy of reconstructed phase space-based approaches. Experiments that examine the performance of fused sub-banded reconstructed phase spaces for phoneme classification are presented. Comparisons against a cepstral-based classifier show that the proposed approach is competitive with state-of-the-art methods for modeling and classification of phonemes. Combination of cepstral-based features and the sub-band RPS features shows improvement over a cepstral-only baseline

    Characterization and Decoding of Speech Representations From the Electrocorticogram

    Get PDF
    Millions of people worldwide suffer from various neuromuscular disorders such as amyotrophic lateral sclerosis (ALS), brainstem stroke, muscular dystrophy, cerebral palsy, and others, which adversely affect the neural control of muscles or the muscles themselves. The patients who are the most severely affected lose all voluntary muscle control and are completely locked-in, i.e., they are unable to communicate with the outside world in any manner. In the direction of developing neuro-rehabilitation techniques for these patients, several studies have used brain signals related to mental imagery and attention in order to control an external device, a technology known as a brain-computer interface (BCI). Some recent studies have also attempted to decode various aspects of spoken language, imagined language, or perceived speech directly from brain signals. In order to extend research in this direction, this dissertation aims to characterize and decode various speech representations popularly used in speech recognition systems directly from brain activity, specifically the electrocorticogram (ECoG). The speech representations studied in this dissertation range from simple features such as the speech power and the fundamental frequency (pitch), to complex representations such as the linear prediction coding and mel frequency cepstral coefficients. These decoded speech representations may eventually be used to enhance existing speech recognition systems or to reconstruct intended or imagined speech directly from brain activity. This research will ultimately pave the way for an ECoG-based neural speech prosthesis, which will offer a more natural communication channel for individuals who have lost the ability to speak normally

    Spectro-Temporal Features for Automatic Speech Recognition using Linear Prediction in Spectral Domain

    Get PDF
    Frequency Domain Linear Prediction (FDLP) provides an efficient way to represent temporal envelopes of a signal using auto-regressive models. For the input speech signal, we use FDLP to estimate temporal trajectories of sub-band energy by applying linear prediction on the cosine transform of sub-band signals. The sub-band FDLP envelopes are used to extract spectral and temporal features for speech recognition. The spectral features are derived by integrating the temporal envelopes in short-term frames and the temporal features are formed by converting these envelopes into modulation frequency components. These features are then combined in the phoneme posterior level and used as the input features for a hybrid HMM-ANN based phoneme recognizer. The proposed spectro-temporal features provide a phoneme recognition accuracy of 69.1%69.1 \% (an improvement of 4.8%4.8 \% over the Perceptual Linear Prediction (PLP) base-line) for the TIMIT database

    Improving the Speech Intelligibility By Cochlear Implant Users

    Get PDF
    In this thesis, we focus on improving the intelligibility of speech for cochlear implants (CI) users. As an auditory prosthetic device, CI can restore hearing sensations for most patients with profound hearing loss in both ears in a quiet background. However, CI users still have serious problems in understanding speech in noisy and reverberant environments. Also, bandwidth limitation, missing temporal fine structures, and reduced spectral resolution due to a limited number of electrodes are other factors that raise the difficulty of hearing in noisy conditions for CI users, regardless of the type of noise. To mitigate these difficulties for CI listener, we investigate several contributing factors such as the effects of low harmonics on tone identification in natural and vocoded speech, the contribution of matched envelope dynamic range to the binaural benefits and contribution of low-frequency harmonics to tone identification in quiet and six-talker babble background. These results revealed several promising methods for improving speech intelligibility for CI patients. In addition, we investigate the benefits of voice conversion in improving speech intelligibility for CI users, which was motivated by an earlier study showing that familiarity with a talker’s voice can improve understanding of the conversation. Research has shown that when adults are familiar with someone’s voice, they can more accurately – and even more quickly – process and understand what the person is saying. This theory identified as the “familiar talker advantage” was our motivation to examine its effect on CI patients using voice conversion technique. In the present research, we propose a new method based on multi-channel voice conversion to improve the intelligibility of transformed speeches for CI patients

    Fractal based speech recognition and synthesis

    Get PDF
    Transmitting a linguistic message is most often the primary purpose of speech com­munication and the recognition of this message by machine that would be most useful. This research consists of two major parts. The first part presents a novel and promis­ing approach for estimating the degree of recognition of speech phonemes and makes use of a new set of features based fractals. The main methods of computing the frac­tal dimension of speech signals are reviewed and a new speaker-independent speech recognition system developed at De Montfort University is described in detail. Fi­nally, a Least Square Method as well as a novel Neural Network algorithm is employed to derive the recognition performance of the speech data. The second part of this work studies the synthesis of speech words, which is based mainly on the fractal dimension to create natural sounding speech. The work shows that by careful use of the fractal dimension together with the phase of the speech signal to ensure consistent intonation contours, natural-sounding speech synthesis is achievable with word level speech. In order to extend the flexibility of this framework, we focused on the filtering and the compression of the phase to maintain and produce natural sounding speech. A ‘naturalness level’ is achieved as a result of the fractal characteristic used in the synthesis process. Finally, a novel speech synthesis system based on fractals developed at De Montfort University is discussed. Throughout our research simulation experiments were performed on continuous speech data available from the Texas Instrument Massachusetts institute of technology ( TIMIT) database, which is designed to provide the speech research community with a standarised corpus for the acquisition of acoustic-phonetic knowledge and for the development and evaluation of automatic speech recognition system

    Model-Based Speech Enhancement

    Get PDF
    Abstract A method of speech enhancement is developed that reconstructs clean speech from a set of acoustic features using a harmonic plus noise model of speech. This is a significant departure from traditional filtering-based methods of speech enhancement. A major challenge with this approach is to estimate accurately the acoustic features (voicing, fundamental frequency, spectral envelope and phase) from noisy speech. This is achieved using maximum a-posteriori (MAP) estimation methods that operate on the noisy speech. In each case a prior model of the relationship between the noisy speech features and the estimated acoustic feature is required. These models are approximated using speaker-independent GMMs of the clean speech features that are adapted to speaker-dependent models using MAP adaptation and for noise using the Unscented Transform. Objective results are presented to optimise the proposed system and a set of subjective tests compare the approach with traditional enhancement methods. Threeway listening tests examining signal quality, background noise intrusiveness and overall quality show the proposed system to be highly robust to noise, performing significantly better than conventional methods of enhancement in terms of background noise intrusiveness. However, the proposed method is shown to reduce signal quality, with overall quality measured to be roughly equivalent to that of the Wiener filter
    corecore