
LEARNING HIERARCHICAL
SPEECH REPRESENTATIONS USING
DEEP CONVOLUTIONAL NEURAL

NETWORKS

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF MASTER OF PHILOSOPHY

IN THE FACULTY OF ENGINEERING AND PHYSICAL SCIENCES

2014

By
Darren Hau

School of Computer Science

Contents

Abstract 6

Declaration 7

Copyright 8

Acknowledgements 9

1 Introduction 10
1.1 Motivation . 10

1.2 Aims and Objectives . 12

1.3 Contributions . 12

1.4 Thesis Outline . 12

2 Background 14
2.1 Speech Production and Speech Processing 14

2.2 Digital Signal Processing Based Speech Representations 16

2.2.1 Spectrogram . 17

2.2.2 Mel-Frequency Cepstral Coefficients 18

2.3 Principal Component Analysis . 20

2.4 Sparse Coding . 21

2.5 Deep Learning . 23

2.5.1 Restricted Boltzmann Machine Based Architectures 25

2.5.2 Autoencoder Based Architectures 29

2.5.3 Convolutional Neural Networks 32

2.5.4 Predictive Sparse Decomposition 35

2.5.5 Convolutional Restricted Boltzmann Machine 37

2.6 Summary . 39

2

3 Model Description 40
3.1 CNN Building Block . 40
3.2 Predictive Sparse Decomposition Learning 43
3.3 Learning Hierarchical Representations 45

4 Comparison Study 47
4.1 Model Settings and Training . 47
4.2 Visualization . 49
4.3 Gender Classification . 57
4.4 Speaker Identification . 57
4.5 Phoneme Classification . 59
4.6 Summary . 60

5 Discussion 61
5.1 CRBM Comparison . 61
5.2 Related Work . 62
5.3 Limitations of this Study . 65
5.4 Summary . 65

6 Conclusion 67
6.1 Future Work . 68

Bibliography 69

A Implementation 80

Word Count: 16244

3

List of Tables

4.1 Average test accuracy on gender classification 57
4.2 Average test accuracy on speaker identification 58
4.3 Average test accuracy on phoneme classification 59

4

List of Figures

2.1 Illustration of the vocal system . 15
2.2 Illustration of the frequency sensitivity of the basilar membrane . . . 16
2.3 Example of a spectrogram . 17
2.4 Block diagram showing the processes involved in computing MFCC

representation . 19
2.5 Block diagram showing the processes involved in computing PCA trans-

formed spectrogram . 21
2.6 Stacking Restricted Boltzmann Machines to build deep networks . . . 28
2.7 Autoencoder with an over-complete code layer. 30
2.8 Unrolling stacked autoencoders to form a deep autoencoder 31
2.9 LeCun et al.’s LeNet-5 convolutional neural network 33

3.1 Schematic diagram of the CNN Building Block. 41

4.1 A random selection of 50 first layer weights 49
4.2 Comparison of the most active first layer weights for five examples of

the “ah” phoneme . 51
4.3 Comparison of the most active first layer weights for five examples of

the “oy” phoneme . 52
4.4 Comparison of the most active first layer weights for five examples of

the “el” phoneme . 53
4.5 Comparison of the most active first layer weights for five examples of

the “s” phoneme . 54
4.6 Comparison of gender encoding in each model for the first layer rep-

resentation with the “ae” phoneme 55
4.7 Comparison of gender encoding in each model for the second layer

representation with the “ae” phoneme 56

5

Abstract

LEARNING HIERARCHICAL SPEECH REPRESENTATIONS

USING DEEP CONVOLUTIONAL NEURAL NETWORKS

Darren Hau
A thesis submitted to the University of Manchester

for the degree of Master of Philosophy, 2014

Deep learning has proven to be an effective methodology in handling complex AI
problems, especially for visual perception tasks. Key to the success of deep learning is
its ability to learn hierarchical feature representations of increasing levels of abstrac-
tion. Motivated by the success of deep learning in the visual domain, researchers have
recently begun to apply deep learning to speech. In this study, we are interested in
investigating the feasibility of using deep convolutional neural networks (CNN) in the
speech domain. CNNs were designed based on models of the visual system and have
been shown to learn hierarchical feature representations on vision tasks. As many vi-
sion tasks have an auditory analogue, we believe deep CNNs could learn an effective
hierarchical representation for speech. In the speech domain, most deep architectures
have used a Restricted Boltzmann Machine (RBM) based deep architecture. A sec-
ondary aim of this study is to determine whether or not a different building block can
be used effectively in the speech domain. We construct a deep architecture using the
CNN as the building block trained using unsupervised learning only. We compare our
work against a Convolutional RBM based model on various speech perception tasks
showing that it is indeed possible to use an alternative to the RBM in the speech do-
main. Our analysis also leads to some non-trivial observations on the suitability of
using CNN-based deep architectures in the speech domain.

6

Declaration

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree or
qualification of this or any other university or other institute
of learning.

7

Copyright

i. The author of this thesis (including any appendices and/or schedules to this the-
sis) owns certain copyright or related rights in it (the “Copyright”) and s/he has
given The University of Manchester certain rights to use such Copyright, includ-
ing for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic
copy, may be made only in accordance with the Copyright, Designs and Patents
Act 1988 (as amended) and regulations issued under it or, where appropriate,
in accordance with licensing agreements which the University has from time to
time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other in-
tellectual property (the “Intellectual Property”) and any reproductions of copy-
right works in the thesis, for example graphs and tables (“Reproductions”), which
may be described in this thesis, may not be owned by the author and may be
owned by third parties. Such Intellectual Property and Reproductions cannot
and must not be made available for use without the prior written permission of
the owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and
commercialisation of this thesis, the Copyright and any Intellectual Property
and/or Reproductions described in it may take place is available in the University
IP Policy (see http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487),
in any relevant Thesis restriction declarations deposited in the University Li-
brary, The University Library’s regulations (see http://www.manchester.ac.uk/
library/aboutus/regulations) and in The University’s policy on presentation
of Theses

8

Acknowledgements

I would like to thank my supervisor, Dr. Ke Chen, for his support throughout this
work. I’d also like to thank my colleagues in the Machine Learning and Optimisation
Group, my friends and my family for helping me through the difficulties that I have
faced. Finally, I’d like to thank the EPSRC for funding me during this work.

9

Chapter 1

Introduction

1.1 Motivation

Speech signals are a complex, temporal data source containing a mixture of different
information components ranging from linguistic information, speaker-specific infor-
mation and environmental information. While it is effortless for the human auditory
system to extract the relevant information from the speech signal for a specific speech
perception task, it is a major challenge for automatic speech information processing
systems. For example, in an automatic speech recognition system, only the linguistic
information is required whilst the speaker information is not. The reverse is true for
a speaker recognition system whilst in both systems, any environmental information
serves only to confuse and harm the performance of the system. Extracting a suitable
speech representation for a specific task with only the relevant information components
required is still an open problem.

The most commonly used representations in automatic speech information pro-
cessing systems are based on signal processing methods. These representations, such
as Mel-Frequency Cepstral Coefficients (MFCC), may also take into account of some
of the basic characteristics of the human auditory system. MFCCs and similar repre-
sentations are compact and efficient to compute. As such, they have remained popular
for the past couple of decades.

However, in order to achieve a compact representation, MFCCs and other similar
representations, throw away a lot of the information contained within a speech signal
- information that could be very useful for certain perceptual tasks. We believe that
using the deep learning strategy in the speech domain can provide an alternative speech
representation that addresses the above issues.

10

1.1. MOTIVATION 11

Deep learning provides a novel methodology for dealing with complex AI prob-
lems. Its successes are mainly attributed to hierarchical unsupervised learning that
leads to effective hierarchical feature representations of increasing levels of abstrac-
tion [33] [15]. To perform hierarchical unsupervised learning, Hinton et al. proposed
a systematic strategy that trains the building blocks of a deep architecture in a greedy
layer-wise manner [33] with the output of each layer forming the hierarchical repre-
sentation.

Originally, deep learning was applied mostly to visual perception tasks with many
reported successes [34] [85] [25]. Motivated by this success, deep learning has ex-
panded into the domain of speech perception. Prior to when this work was originally
carried out at the end of 2011, only a few works had appeared applying deep learning to
speech. This included [55] for learning a generic audio representation used in various
audio classification tasks, [11] for learning a generic speaker-specific representation
and [59] that used a deep neural network as the acoustic model in a phoneme recog-
nition system. The then state-of-art-results achieved in [59] resulted in a new wave of
research into using deep learning for speech recognition and continually advanced the
state-of-the-art in that field [32].

Returning to 2011, we noted that the works in [59] and [55] use the Restricted
Boltzmann Machine (RBM) [33] as the building block to create a deep architecture,
specifically a deep belief network. Studies on deep learning strategies [5] [49] sug-
gested that a simple multi-layer perceptron (MLP) with one hidden layer trained as an
autoencoder and using the same deep learning strategy proposed by Hinton et al. [33],
may be an alternative to using the RBM in constructing deep architectures. In partic-
ular, a deep architecture constructed using a variant of the autoencoder, the denoising
autoencoder [88], often outperforms an RBM-based counterpart in OCR and object
recognition tasks [15].

The convolutional neural network (CNN) architecture is a biologically inspired
variant of an MLP originally developed for visual perception tasks and trained us-
ing supervised learning [51]. An unsupervised learning algorithm, named Predictive
Sparse Decomposition (PSD) [43], was proposed to enable the creation of a CNN
trained using the deep learning strategy [33]. Using a multi-layered CNN trained using
unsupervised learning leads to hierarchical representations that turn out to be crucial in
achieving state-of-the-art performance in various visual perception tasks [40]. There
are many similarities between the visual cortex and auditory cortex in the brain with
many visual tasks having an auditory analogue [78]. We believe that it may be possible

12 CHAPTER 1. INTRODUCTION

to use the CNN to create hierarchical speech representations much like those achieved
in the vision domain.

1.2 Aims and Objectives

The aim of this work is to carry out a feasibility study into the use of deep convolutional
neural networks trained on speech signals. Here we define “deep” as meaning trained
using a methodology similar to the deep learning strategy [33]. In this instance, we
use greedy, layer-wise unsupervised training to learn the parameters of a convolutional
neural network in order to learn what we hope to be a good representation of speech.

More specifically, we are interested in determining whether a CNN building block
can be used as an alternative to the RBM-based building blocks used in [59] and [55].
In order to do so, we will follow the work in [55] adopting the same corpus (TIMIT
[18]) and experimental settings in order to make our study completely comparable.

1.3 Contributions

The contributions of this study are as follows. We believe we are the first to apply
CNNs and the PSD learning algorithm on the speech domain. Comparative results
on speech perception tasks including gender classification, speaker identification and
phoneme classification, as well as a qualitative analysis of the learned features demon-
strates that an unsupervised CNN can be an alternative to the RBM-based architecture
in the domain of speech.

In comparison to the baseline performance with MFCCs, we also observe that the
convolutional architecture, originally designed for visual perception, might not be suf-
ficient for speech information processing as required by various speech perception
tasks.

This work was originally published at the 11th UK Workshop on Computational
Intelligence, 2011 [26].

1.4 Thesis Outline

This thesis is structured as follows. In Chapter 2, we review essential background con-
cepts such as speech production, spectrograms, MFCCs and deep learning. In Chapter

1.4. THESIS OUTLINE 13

3, we describe the CNN model and training algorithm used for this study. In Chap-
ter 4, we present the results of the comparison study against [55] and discuss their
significance in Chapter 5. Finally, we conclude in Chapter 6.

Chapter 2

Background

In this chapter, we give a basic overview of the human speech production and speech
processing systems. We then turn our attention to how speech can be represented,
including conventional signal processing techniques such as the spectrogram and Mel-
Frequency Cepstral Coefficients. In addition, we review the emerging technique of
deep learning which has proven very successful in learning hierarchical feature repre-
sentations.

2.1 Speech Production and Speech Processing

Speech production begins with the speaker formulating a message in their brain. The
brain then co-ordinates the movement of the vocal organs to produce the necessary
sounds that represents the message in the speaker’s chosen language. An illustration
of the human vocal system is shown in Fig. 2.1.

Speech sounds are a result of the motion of air passing through the vocal system.
Puffs of air are drawn up from the lungs, passing through the larynx, which is more
commonly known as the voice box. The larynx houses the vocal folds, or the glottis,
which then vibrate as the air passes through. The vibration of the vocal folds occur at
a particular base frequency and is known as the fundamental frequency which is the
major determinant of the pitch of a speaker’s voice.

Some sounds however do not require the vibration of the vocal folds and these
sounds are known as unvoiced sounds. Examples of unvoiced sounds are [p] and [s].
For voiced sounds, the rapid opening and closing (vibration) of the vocal folds leads to
periodic pulses of sound whilst unvoiced sounds result in a white noise like sound.

After the air passes through the larynx, it enters the vocal tract consisting of the oral

14

2.1. SPEECH PRODUCTION AND SPEECH PROCESSING 15

Figure 2.1: Illustration of the vocal system [89]

tract and nasal tract. Sounds then exit through the mouth and/or nose. Consonants are
the result of the restriction of the airflow at specific positions in the vocal tract whilst
for vowels, there is less restriction. Vowel sounds are dependent on the shape of the
vocal tract such as the tongue and the lips. The restrictions and the shape of the vocal
tract create resonances known as formant frequencies or formants which can help to
identify the speech sound being produced.

The vocal tract and folds are unique for each person and this gives rise to a speaker’s
characteristic voice which can be used as a means of identification. This leads to
variations in the speech sounds which must be compensated for during the processing
of speech by a listener. In addition, the speaker’s emotional state, whether they are
happy, sad or angry can result in vastly different speech output.

Before a speech signal reaches a listener, the signal must be transmitted through
some medium from the speaker to the listener. This might be through the air or down
telephone lines but no matter what the medium is, the speech signal will be distorted
by the medium of transmission and these are known as channel and environmental
factors. These factors must also be compensated for by a listener.

The processes by which this compensation occurs and the decoding of the speech
signal itself back into the original intended message is not well understood. What is
known however is that sound waves are converted to neural signals by the peripheral
auditory system.

Sound waves are captured by the outer ear and directed into the auditory canal

16 CHAPTER 2. BACKGROUND

Figure 2.2: Illustration of the frequency sensitivity of the basilar membrane [63]

which causes the eardrum to vibrate. These vibrations cause movement in the fluids
inside the spiral shaped cochlea of the inner ear. The cochlea is split along its length
by the basilar membrane. The movement of the fluid causes the displacement of the
basilar membrane which is sensitive to different frequencies of sound as shown in Fig.
2.2. In this way, the cochlea is able to perform a frequency analysis of the incoming
sound. The frequency scale is non-linear and frequency resolution is higher for low
frequencies than for high frequencies. This frequency based or tonotopic organization
is maintained throughout the auditory system.

Hair cells transcode the motion of the basilar membrane into neural firing rates
in the auditory nerve for processing in the auditory cortex. The auditory cortex is re-
sponsible for speech information processing tasks, for example, decoding the linguistic
message or the speaker identity from the neural firing patterns.

2.2 Digital Signal Processing Based Speech Represen-
tations

We now turn our attention to the way in which speech is represented in automated
speech processing systems. The most common methods are grounded in digital signal
processing and are based around the frequency or spectral analysis of a digitised speech
signal. Here, we will review two methods used in this work, the spectrogram and Mel-
Frequency Cepstral Coefficients.

2.2. DIGITAL SIGNAL PROCESSING BASED SPEECH REPRESENTATIONS 17

2.2.1 Spectrogram

Spectrograms are a 2D-plot showing the frequency composition of a signal over time.
A signal is divided up into short time segments using a window function such as the
Hamming window. It is assumed that the signal is stationary within each window and
so a short time Fourier analysis can be performed on each segment. The computed
magnitude spectrum at each time frame can be collected together into a plot of time
vs. frequency with energy levels shown as colour intensity. Often the energy levels or
intensity is shown on a logarithmic scale. An example spectrogram for the sentence,
“she had your dark suit in greasy wash water all year”, from the TIMIT corpus [18] is
shown in Fig. 2.3.

Time

A
m

pl
itu

de

Time

F
re

qu
en

cy

−3

−2

−1

0

1

2

3

Figure 2.3: Speech signal (top) and corresponding spectrogram (bottom) for the sen-
tence, “she had your dark suit in greasy wash water all year”, from the TIMIT corpus
[18].

The spectrogram can be analysed to detect different types of speech sound, ex-
tract the pitch, the formant frequencies and other acoustic features. However, there is
a trade-off between the frequency resolution and temporal resolution of the spectro-
gram. This trade-off is controlled by the duration of the window function, with high
frequency resolution requiring window durations of approximately 20 - 30ms, whilst

18 CHAPTER 2. BACKGROUND

high temporal resolution requires windows with durations of 10ms or less. High fre-
quency resolution spectrograms are known as narrow-band spectrograms whilst high
temporal resolution spectrograms are known as wide-band spectrograms. Narrow-band
spectrograms allow the harmonic frequencies (the human voice is a harmonic sound) to
be visible whilst wide-band spectrograms show the periodicities in the speech signal.

The spectrogram itself is not usually directly used as a speech representation due to
its high dimensionality. Often, a dimensionality reduction technique such as Principal
Component Analysis (see Sec. 2.3) is applied to make computations more feasible.
Other lower dimensional speech representations such as Mel-Frequency Cepstral Co-
efficients (MFCC) tend to be more commonly used however.

An alternative to spectrograms are cochleagrams which are computed using a model
of the cochlea such as the two models described in [80]. These models try to mimic
the functionality of the cochlea, in particular, the frequency selectivity and motion of
the basilar membrane in response to the detection of sound waves, the non-linear de-
tection and conversion of basilar membrane motion into auditory nerve firing rates by
the inner hair cells and the continuous adaptation of the system to changing activity
and sound input levels.

Compared to a spectrogram where there is a trade-off between frequency resolution
and temporal resolution, the cochleagram is able to retain fine time structure and uses
a biologically plausible frequency resolution. The cochleagram is able to show details
such as the glottal pulses, harmonics and formant tracks.

Cochleagrams tend to be used in in the field of Computational Auditory Scene
Analysis (CASA) where the goal is to segment a sound signal according to the different
sound sources or objects present [35] where precise timing and frequency details can
be especially useful. In the majority of other speech information processing tasks, for
example, speech recognition and speaker identification, spectrograms and MFCC-like
representations have proven more popular than cochleagrams.

2.2.2 Mel-Frequency Cepstral Coefficients

Mel-Frequency Cepstral Coefficients (MFCC) are a popular low dimensional represen-
tation of the speech signal. The process of computing MFCCs is shown in the block
diagram in Fig. 2.4. MFCCs are calculated by first taking the short-time Fourier trans-
form of a windowed segment of the speech signal, usually 20 - 40ms in duration. The
frequency axis of the spectrum is mapped onto the Mel scale. The Mel scale is a per-
ceptually adjusted frequency scale that attempts to emulate the non-linear frequency

2.2. DIGITAL SIGNAL PROCESSING BASED SPEECH REPRESENTATIONS 19

Short-time
Fourier Transform

Mel-scaling Log
Discrete Cosine

Transform

Speech
Signal MFCC

Figure 2.4: Block diagram showing the processes involved in computing MFCC rep-
resentation

analysis of the cochlea. The Mel scale is approximately linear up to 1000Hz and in-
creases logarithmically thereafter. This transformation is performed using overlapping
triangular windows that try to emulate the critical band frequencies of the cochlea.

The logarithm of the mel-spectrum is then performed in order to reflect the non-
linear response to changes in sound level by the auditory system. This log-spectrum is
further analysed using either a second Fourier transform or the related discrete cosine
transform (DCT) resulting in what is known as the mel-cepstrum.

To establish why this is useful, we can consider speech production as a source-filter
model, whereby the source is the glottal pulse waveform produced by the vocal folds
vibrating at a particular fundamental frequency and the filter is the shape of vocal tract
with its own resonant frequencies. For speech recognition, we are only interested in
the filter, the shape of the vocal tract which leads to a particular speech sound being
produced.

The DCT is useful as it can separate the speech signal into its source and filter
components, with the lower coefficients of the mel-cepstrum corresponding to the fil-
ter components and higher coefficients to the source components. The DCT also has
excellent energy compaction properties meaning only as few as 12 cepstral values are
required for representing the filter characteristics for speech recognition. For speaker
recognition, we are also interested in the source components and the fundamental fre-
quency of the speech signal. In practice, 19 cepstral values are used for speaker related
tasks. As speech has a temporal dynamic component, MFCCs are often augmented
with their first and second derivatives known as delta and delta-delta values.

Traditional automated speech recognition systems use Hidden Markov Models
(HMM) combined with Gaussian Mixture Models (GMM) for modelling the likeli-
hood of each HMM state generating a particular acoustic feature vector. MFCCs are
ideal for use as acoustic feature vectors with GMMs as the DCT used in computing
MFCCs is an orthogonal transform. This means that cepstral coefficients are decorre-
lated and therefore GMMs with diagonal covariance matrices can be used instead of
GMMs with full covariance matrices. Diagonal covariance matrix GMMs have fewer

20 CHAPTER 2. BACKGROUND

parameters and therefore require less training data and less computation time to cal-
culate the likelihood. This combined with the low dimensionality of MFCCs and the
efficient computation of the DCT has seen the enduring popularity of the MFCC rep-
resentation since the 1980s when they were first introduced.

Examples of automatic speech recognition systems that use this approach include
[37] [57] [90]. Additionally, MFCC feature vectors with GMM modelling have been
used successfully in speaker identification and verification tasks [45] [67]. MFCCs
have also been used with techniques other than GMM/HMM including augmented
conditional random fields [29].

MFCCs however are not a very robust representation and are susceptible to noise
factors from channel and environmental conditions often requiring some form of noise
reduction [86] [66] [93]. MFCCs can be described as low level acoustic features de-
rived directly from the speech signal. However, humans are known to use multiple
levels of processing and just as with analysing individual pixel intensities for visual
tasks, MFCCs may be too low-level to achieve optimal performance.

2.3 Principal Component Analysis

Principal Component Analysis (PCA) can be used to find the statistical distribution of a
dataset. PCA is an orthogonal transformation of the dataset such that the basis vectors
span the directions of maximum variance of the data. As such, PCA can be used for di-
mensionality reduction, with the top N components chosen so that a certain percentage
of the variance of the data is retained. PCA being an orthogonal transformation also
has the effect of decorrelating the data which makes it a useful pre-processing step for
machine learning algorithms.

In the context of speech applications, as mentioned previously, PCA can be used
for dimensionality reduction of spectrograms and it is this representation that forms
the input features for our work. As shown in Fig. 2.5, the process of computing PCA
transformed spectrograms is very similar to the process of computing MFCCs (Fig.
2.4).

PCA, also known as the Karhunen-Loéve Transform (KLT), is very similar to the
Discrete Cosine Transform (DCT) used for MFCCs. Both are orthogonal transforms
capable of decorrelating data. When the PCA transform is computed from coherent
time series data such as speech, PCA finds basis functions similar to the cosine ba-
sis functions used in the DCT [81] [12]. This is no surprise as one of the original

2.4. SPARSE CODING 21

Short-time
Fourier Transform

Log
Principal Component

Analysis

Speech
Signal

PCA Transformed
Spectrogram

Figure 2.5: Block diagram showing the processes involved in computing PCA trans-
formed spectrogram

motivations of the DCT was to find a method that could compute the KLT quickly [3].

PCA however, is a data-driven method and there is no guarantee that it can produce
the source-filter separation that the DCT is capable of for MFCCs. In our work, we
compute the PCA transform on the spectrogram of a whole utterance. This naturally
results in quite a different representation to MFCCs as the DCT is performed on short
windows of speech. Being data driven can be an advantage though as it can lead to
more suitable basis functions being found.

However, PCA being a linear transform, it is unlikely that the basis functions found
will correspond to the information components of speech due to the complex and non-
linear relationship between information components. In particular, as the dominant
information component in speech is the linguistic information, PCA will likely throw
away relatively minor information components such as the speaker information during
the dimensionality reduction process. This of course would be disastrous for speaker
recognition tasks.

2.4 Sparse Coding

Sparse coding supposes that neural representations of natural stimuli should reflect the
statistics of natural data, maximizing the amount of information whilst also minimizing
redundancy in the representation. What this means in practice is that in general for
a particular stimulus, only a small number of neurons will be active out of a large
population.

Using these principles, Olshausen and Field [62] presented an algorithm for learn-
ing a sparse representation of natural images. An input, x, is represented as a linear
combination of a set of basis functions, φ, each weighted by the coefficients, ai, as
shown in Eq. 2.1:

x =
n

∑
i=1

aiφi (2.1)

22 CHAPTER 2. BACKGROUND

Following the sparse coding principle, the number of non-zero coefficients will be
few in number with the majority of the coefficients being zero. This means that an
input can be described by a linear combination of a small number of basis functions.
The actual set of basis functions used to explain the dataset is large, in some cases over-
complete, meaning that the number of basis functions is greater than the dimensionality
of the input itself. This allows for many different possible variations in the input data.

The basis functions are learned unsupervised on a dataset by minimizing the mean
squared error between the reconstructed representation and the actual input, constrained
by a sparsity parameter such as the L1-norm. In [62], the learned basis functions,
trained using natural images, were similar to the receptive fields of simple cells in the
visual system.

In automatic speech recognition, sparse coding has been used in conjunction with
exemplar-based methods. In exemplar-based sparse representations, the basis func-
tions, or exemplars, are selected from the training set. Each data instance is then
represented by a small linear combination of these training exemplars. This new fea-
ture space can then be used for training an HMM based speech recogniser. For test
data, this remapping helps to move the test data distribution closer to that of the train-
ing set distribution helping to improve recognition [73]. This led to a reduction from
19.9% to 19.2% phoneme error rate on the TIMIT dataset compared to a conventional
GMM/HMM system.

In [20], exemplar-based sparse representations were used for missing data imputa-
tion. Missing data imputation seeks to replace noisy parts of speech features with clean
speech estimates. Speech features are labelled as reliable (clean) or unreliable (noisy)
and sparse coding is used to find a sparse linear combination of clean speech exemplars
from the training set that minimizes the reconstruction error of the reliable speech fea-
tures. The clean speech exemplars serve as estimates for the unreliable speech features.
The new sparse representation can be fed into a speech recognition system alongside
uncertainty measurements for the estimated clean speech replacements which helps in
the decoding process. This results in a substantial improvement in recognition accu-
racy over conventional missing data techniques [19] [20].

Away from exemplar-based methods, [79] uses a sparse autoassociator to learn
both the basis functions and sparse encoding for speech data. A sparse autoassociator
is a neural network with one hidden layer trained using a sparse coding objective func-
tion (see Sec. 2.5.2 for more details on autoassociators, also known as autoencoders).

2.5. DEEP LEARNING 23

This new learned sparse representation is used as the feature representation for a hy-
brid neural network/HMM speech recogniser. Compared to a baseline system using
only PLP features, the sparse representation gives a relative improvement of 5.6% in
phoneme error rate on the TIMIT dataset under clean conditions and a 3.2% relative
improvement under noisy conditions (additive babble noise).

Sparse coding has also been applied in speaker identification. In [24], a sparse
coding representation was used as the input features for several standard classifiers
such as Support Vector Machines (SVM) and Gaussian Discriminant Analysis (GDA).
The sparse coding representation performed comparably or better than the baseline
MFCC and raw spectrogram representations for a variety of noisy test conditions.

The sparse coding model was extended in [82] (where it is referred to as efficient
coding) so that basis functions can vary in size, can occur more than once in the coding
and can occur in any temporal position. When trained on speech, the learned basis
functions resemble the physiological responses obtained from cat auditory nerve fibres.
Using the same theoretical model, in [58], a perceptual experiment was performed to
compare the intelligibility of speech generated using the sparse coding model against
other types of cochlear filters. The study showed that speech generated from the sparse
coding model was the most recognisable.

The sparse coding paradigm plays an integral role in helping learning algorithms
to achieve biologically plausible representations. Sparsity regularization has also been
a crucial ingredient in improving deep learning methods which are reviewed in the rest
of this chapter.

2.5 Deep Learning

Artificial neural networks are capable of extracting features based on the underlying
statistical properties of the dataset it is trained on. Using a network with multiple
hidden layers, it may be possible to obtain a hierarchical feature representation.

Unfortunately, training these deep neural networks with supervised learning and
standard error backpropagation often results in worse performance compared to shal-
low architectures with only one or two hidden layers [5]. This is in large part due
to the complexity of deep neural networks with millions of parameters needing to be
tuned. Achieving good performance requires lots of labelled data which in certain ap-
plications can be limited. Even if the required labelled data is available, the objective
function is likely to be non-convex and given the high dimensionality of the parameter

24 CHAPTER 2. BACKGROUND

space, there will be lots of poor local minima. Random initialization of parameters will
most likely lead to parameters being trapped in one of these poor local minima during
training [16].

In 2006, Hinton et al. [33] proposed a new training strategy for the Deep Belief
Network (DBN), overcoming the problems discussed above. The training procedure
is unsupervised and works by training each layer of the network one at a time as a
Restricted Boltzmann Machine (RBM). This procedure is known as pre-training. The
weights learnt during pre-training can be used to initialize the weights of a deep neural
network which is then trained normally using supervised training, a process known as
fine-tuning. Throughout the rest of this report, we will refer to this hybrid learning
strategy as the deep learning strategy.

As an alternative to using RBMs as the building blocks for deep architectures,
Bengio et al. [5] showed that pre-training can be performed using autoencoders in-
stead of RBMs, resulting in comparable performance [49]. By using this unsupervised
pre-training procedure to initialize the weights of a deep architecture, we are starting
supervised fine-tuning using a more structured set of weights that has already captured
some of the underlying statistics of the input distribution. This puts the weights in a
part of the parameter space close to a good local minimum, one that is highly unlikely
to be reached through random initialization alone [15].

As the pre-training procedure is unsupervised, it does not require labelled data
which can be difficult to obtain. The data used for pre-training does not necessarily
have to come from the same distribution that generated the labelled data used in fine-
tuning, allowing for different datasets to be used for unsupervised pre-training and
supervised fine-tuning. Examples of this include the self-taught framework used in
[64] and the use of datasets from multiple languages for unsupervised pre-training in
order to boost the performance of an automatic speech recognition system where the
target language has limited amounts of transcribed data [83].

In general, deep architectures can be classified by the type of building block used
and the connectivity of neurons between layers, either fully connected or locally con-
nected. Fully connected networks are where each neuron is connected to every neuron
in the previous layer. Locally connected networks are where neurons are only con-
nected to a small local neighbourhood of neurons in the previous layer.

2.5. DEEP LEARNING 25

2.5.1 Restricted Boltzmann Machine Based Architectures

Restricted Boltzmann Machines (RBM) are probabilistic generative models usually
consisting of two layers. The simplest form of RBM has one visible layer correspond-
ing to the observed input data and one hidden layer used to explain the observed data.
The units in the visible layer can be either stochastic binary units or real-valued units
with independent Gaussian noise depending on the type of input data. The units in
the hidden layer are stochastic binary units. The visible and hidden layers are fully
connected with a symmetric weight matrix and there are no connections between units
of the same layer.

The RBM is an energy based model and all possible combinations of visible and
hidden unit vectors are assigned an energy through an energy function. The energy
function for stochastic binary units in both the visible and hidden layers is as follows:

E(v,h) =−
|v|

∑
i=1

aivi−
|h|

∑
j=1

b jh j−
|v|

∑
i=1

|h|

∑
j=1

vih jwi j (2.2)

where vi is the binary state of the visible unit i, ai the corresponding visible unit bias,
h j is the binary state of hidden unit j, b j is the corresponding hidden unit bias, wi j is
the weight between visible unit i and hidden unit j and |v| and |h| are the lengths of
the visible and hidden unit vectors.

The energy function for real-valued units with independent Gaussian noise is sim-
ilar:

E(v,h) =
|v|

∑
i=1

(ai− vi)
2

2ρ2
i
−
|h|

∑
j=1

b jh j−
|v|

∑
i=1

|h|

∑
j=1

vi

ρi
h jwi j (2.3)

where ρi is the variance of the Gaussian noise for visible unit i.

Through the energy function, the joint probability can then be computed as:

p(v,h) =
1
Z

e−E(v,h) (2.4)

where Z is known as the partition function and is the total sum of energies over all
possible pairs of visible and hidden unit vectors in order to normalize the probability
distribution:

Z = ∑
v,h

e−E(v,h) (2.5)

The probability of a visible vector or data example is then computed by summing

26 CHAPTER 2. BACKGROUND

over all possible hidden vectors:

p(v) =
1
Z ∑

h
e−E(v,h) (2.6)

As can be seen from the previous equations, the weights and biases of the RBM de-
fines the probability distribution over the data. In order to train the model, the weights
and biases are updated such that the energy of the training data is decreased whilst the
energy of all other possible visible vectors is increased.

More specifically, the weights should be updated using the gradient of the log prob-
ability of the training data:

∂ log p(v)
∂wi j

= E
[
vih j
]

data−E
[
vih j
]

model (2.7)

The expectation over the data, E
[
vih j
]

data, can be computed first by setting the vis-
ible unit probabilities to that of a training example and then computing the conditional
probability of the hidden units:

p(h j = 1|v) = σ(b j +
|v|

∑
i=1

viwi j) (2.8)

where σ(x) = 1/(1+ e−x) is the sigmoid function.

The expectation over the data, E
[
vih j
]

data, is then computed simply by taking
the product of the visible unit value, vi, and the hidden unit conditional probability,
p(h j = 1|v).

Computing the expectation over the model, E
[
vih j
]

model , is harder and requires the
use of a Markov chain Monte Carlo method. As we can easily compute the conditional
probability distributions, we can use alternating Gibbs sampling to do this. We ini-
tialise the Markov chain once again by setting the visible units to the training example.
We can use Eq. 2.8 to then sample the hidden unit state. From this hidden unit state
we can then obtain a reconstruction of the data by using a formula in the same form as
Eq. 2.8 for binary visible units:

p(vi = 1|h) = σ(ai +
|h|

∑
j=1

h jwi j) (2.9)

2.5. DEEP LEARNING 27

and for real-valued units:

p(vi = 1|h) = N (ai +
|h|

∑
j=1

h jwi j ,ρi) (2.10)

where N (. , .) is a normal distribution with corresponding mean and variance.

From the reconstruction, we can recompute the hidden unit conditional proba-
bilities and we can keep alternating between the visible and hidden unit states un-
til we reach the stationary model distribution. At this point we can then compute
E
[
vih j
]

model in the same way as E
[
vih j
]

data using the visible and hidden unit proba-
bilities in the final step of the Markov chain. The gradient of the log probability of the
training data can then be computed by taking the difference of the two expectations
following Eq. 2.7.

In practice however, using alternating Gibbs sampling to obtain E
[
vih j
]

model takes
a very long time to compute. Instead, an approximate algorithm known as Contrastive
Divergence [30] is used. In Contrastive Divergence, rather than running the Markov
chain until equilibrium is reached, we stop the chain after the first reconstruction and
corresponding hidden unit computation step. Using the conditional probabilities from
the visible unit reconstruction and the conditional probabilities of the hidden units
given the reconstruction, we can again compute the expectation, E

[
vih j
]

recon, through
a pair-wise multiplication of the probabilities.

More concretely, the weights of the RBM are updated as follows:

∆wi j = ε
(
E
[
vih j
]

data−E
[
vih j
]

recon

)
(2.11)

where ε is the learning rate. In practice, we would normally use the average gradi-
ent computed over a small “mini-batch” of training examples in order to update the
weights. For the biases, we only need to consider the corresponding visible or hidden
unit’s conditional probability as unlike the weights, a bias is only connected to a single
unit.

Once an RBM is trained, a deep belief network (DBN) can be constructed by freez-
ing the weights of this layer and training a second RBM hidden layer using the first
hidden layer as the visible layer for this new RBM. As illustrated in Fig. 2.6, further
layers can be stacked and trained in the same way to build deeper and deeper net-
works. Once this unsupervised “pre-training” is completed, the deep network can then
be trained or “fine-tuned” as a whole using supervised learning on the specific task at

28 CHAPTER 2. BACKGROUND

W1 W1 W1

W2 W2

W3

Figure 2.6: Stacking Restricted Boltzmann Machines (RBM) to build deep networks.
Each new RBM is trained using the previous hidden layer as input with the weights in
the lower layers frozen (shown as greyed out).

hand. In this way, a hierarchical representation of increasing levels of abstraction can
be built.

Initially, RBM-based deep networks were used in computer vision tasks, including
modelling human motion in video [85] and in a robotic vision system [25]. In [53],
DBNs were extended to incorporate sparsity, producing features similar to those found
in the human visual system.

Deep networks built from Restricted Boltzmann Machines and their extended vari-
ants have also been used successfully in the speech domain, especially on large vo-
cabulary continuous speech recognition (LVCSR) tasks. Methods using deep neural
networks have continually set the state-of-the-art in speech recognition as advances in
deep neural network modelling continue to grow at a fast pace (see [32] for a compre-
hensive review).

The hybrid DNN/HMM approach is one commonly used framework applying deep
neural networks to LVCSR. In this approach, a deep neural network is used as the
acoustic model for a Hidden Markov Model recognizer, replacing Gaussian Mixture
Models. In such systems, the deep neural network is trained to estimate the posterior
probability of HMM phone states given an acoustic feature observation. Today’s deep
neural networks are able to directly model context-dependent phone states, with many
thousands of states in the output layer.

Key to their success has been the depth of the network with deeper networks learn-
ing more invariant and more discriminative features [60] [92] and their ability to exploit
information in neighbouring frames [32].

2.5. DEEP LEARNING 29

2.5.2 Autoencoder Based Architectures

Autoencoders can be used in place of RBMs in fully connected deep architectures.
An autoencoder is a three layer multi-layer perceptron (MLP) consisting of an input
layer, a code layer and a reconstruction layer, as illustrated in Fig. 2.7. The goal of an
autoencoder is to learn a good code representation that preserves as much information
as possible about an input to allow the input to then be reconstructed from the code.
An autoencoder is trained unsupervised on a dataset by minimizing a function of the
reconstruction error such as the mean squared error.

Autoencoders were originally used for dimensionality reduction where the code
layer has fewer units than the input layer, known as a bottleneck layer [75] [4] [13].
It was found that if a linear activation function is used in the code layer, the learned
encoding is equivalent to PCA [7]. Typically a non-linear activation function is used
such as the sigmoid function, hyperbolic tangent or more recently, the linear rectifica-
tion function [21]. This allows non-linear features of the dataset to be captured in the
encoding.

An encoding, h(x), can simply be computed using the normal feed-forward MLP
equation:

h(x) = F (Wx+b) (2.12)

where x is the input vector, W is the encoding weight matrix, b is the bias vector and
F (.) is the activation function. Likewise the reconstruction, x̂ is computed as:

x̂ = G(Dh(x)+ c) (2.13)

where D is the decoding weight matrix, c is the output layer bias vector and G(.)

is the output layer activation function, chosen depending on the scale of the input.
The autoencoder can be trained using standard error backpropagation and stochastic
gradient descent.

Deep neural networks can be built from autoencoders in much the same way as
using RBMs. Autoencoders are stacked on top of one another and trained one layer
at a time, with the code layer of the previous autoencoder becoming the input layer
of the current autoencoder. Again, all other previously learned weights are held fixed
and once unsupervised pre-training has been completed, a further supervised global
fine-tuning stage can be performed.

In deep networks, rather than using bottleneck autoencoders as in dimensionality
reduction, the code layer typically has many more hidden units than the input. This

30 CHAPTER 2. BACKGROUND

W

D

Input Layer

Code Layer

Reconstruction Layer

x

x
‸

h(x)

Figure 2.7: Autoencoder with an over-complete code layer.

allows for more complex data distributions to be captured. However, when using these
“over-complete” code layers, some form of constraint is required to avoid learning a
trivial solution. This could simply be using tied weights (the encoding and decod-
ing weights in the network are the transpose of one another) or imposing a sparsity
constraint on the code layer.

Other constraints have resulted in new variants of the autoencoder such as the De-
noising Autoencoder (DAE) [88]. The DAE is trained using a stochastically corrupted
version of the input and the goal of the DAE is to reconstruct the original noise-free
input. This goal of noise removal allows for more robust representations to be learned.
Deep architectures built from DAEs were found to perform comparably, if not better
than architectures built from RBMs on various image recognition tasks [88] [15].

More recently, Contractive Autoencoders (CAE) have been developed that penal-
izes the Frobenius-norm of the Jacobian matrix of the encoder. This allows the CAE
to learn a locally invariant representation that outperforms DAEs and RBMs on the
CIFAR and MNIST image recognition tasks [69].

Instead of using supervised learning for fine-tuning, stacked autoencoders can be
“unrolled” or “unfolded” to form a deep autoencoder where each of the encoding trans-
formations are successively undone to reconstruct the input at the final output layer.
This process is shown in Fig. 2.8. The deep autoencoder is trained unsupervised as a
whole using the reconstruction loss as per a shallow autoencoder.

Fine-tuning as a deep autoencoder ensures that the code representation is still ca-
pable of modelling the original input data. During layer-wise pre-training, the focus is
on capturing the previous layer’s distribution only. This subtle difference in the objec-
tive function could decrease the network’s ability to model the original input data and
fine-tuning the network as a deep autoencoder can help to restore the information loss
incurred from the greedy pre-training procedure.

Deep autoencoders can be built from either RBMs or shallow autoencoders and

2.5. DEEP LEARNING 31

W1

W2

D2

D1

x

x
‸

h1(x)

h1(x)
‸

h2(x)

Figure 2.8: Unrolling stacked autoencoders to form a deep autoencoder. Each encoding
layer is successively undone using the corresponding decoder weights until the input
is reconstructed.

have been used for dimensionality reduction of images [34], learning efficient codes
for fast image retrieval [46] and for compressing speech spectrograms [14].

In addition, two identical deep autoencoders coupled at the encoding layer and
trained using a special supervised learning objective function have been used to extract
a representation containing only the speaker information from MFCCs. This generic
speaker-specific representation has been shown to be invariant towards text and lan-
guage and robust against mismatch conditions in benchmark speaker verification tasks
[11] [74].

In the previous section, we discussed the use of the hybrid DNN/HMM frame-
work used in applying deep neural networks to speech recognition. An alternative
framework is the TANDEM approach [28] which aimed to combine the discrimina-
tive power of neural networks and the many advanced tricks and techniques used in
state-of-the-art GMM/HMM speech recognition systems.

In the TANDEM approach, a neural network is trained to discriminate between
(context-independent) phone states. However, instead of using the neural network as
a replacement acoustic model, the neural network is used as a feature extractor, and
these features are used as the input to train a regular GMM/HMM system.

In [28], the log posterior probabilities obtained from a single hidden layer neu-
ral network was as used as the input features and provided a performance gain over
both the GMM/HMM system with regular acoustic features and the hybrid NN/HMM

32 CHAPTER 2. BACKGROUND

system on the Aurora noisy digit recognition task.

An alternative to using posterior probabilities as the input features is to use the
output of a bottleneck hidden layer instead. In [23], a neural network with three hidden
layers with a middle bottleneck layer was trained as per usual to discriminate between
phone states. It was found that using the bottleneck features for the GMM/HMM
system outperforms the use of posteriors probabilities on the NIST RT’05 LVCSR
meeting transcription task.

The previous two approaches pre-dates the widespread use of deep learning in
speech recognition. In [71], deep learning was applied using the TANDEM and bottle-
neck feature approach. First, a deep neural network with six layers is trained to output
the posterior probabilities of phone states. These log posteriors are then used as input
to a bottleneck autoencoder with two hidden layers. Using the output of the first deep
neural network as input to a second bottleneck autoencoder ensures that the discrimina-
tive power of the deep neural network is utilised fully when computing the bottleneck
features. Results on the Broadcast News LVCSR task shows that this autoencoder bot-
tleneck approach outperforms both a state-of-the-art GMM/HMM system and hybrid
DNN/HMM system.

2.5.3 Convolutional Neural Networks

Prior to Hinton’s development of the deep learning strategy, the convolutional neural
network (CNN) was a neural network with many hidden layers that could be trained
using supervised learning only. This could be done because of the specialized archi-
tecture of the CNN. CNNs are inspired by models of the visual system such as Hubel
and Wiesel’s simple and complex cells [38] and Fukushima’s Neocognitron [17]. The
CNN is designed especially for visual recognition tasks and consists of many pairs of
alternating convolutional and subsampling layers. As an example, the LeNet-5 CNN
from [51] is shown in Fig. 2.9.

As shown in Fig. 2.9, the input to a CNN is a 2D image. The first layer of a CNN
is a convolutional layer which consists of a set of 2D feature maps. In Fig. 2.9, there
are six feature maps in the first convolutional layer, C1. A neuron in a feature map is
connected to a small local neighbourhood of the input, known as the receptive field,
with adjacent neurons connected to adjacent overlapping neighbourhoods in the input.
The number of neurons in a feature map is the number required to cover the whole
input image. In C1 in Fig. 2.9, each feature map is of size 28 x 28 with a receptive
field size of 5 x 5.

2.5. DEEP LEARNING 33

3
...

...

...

...

...

...

C1: 6@28x28

Input: 32x32 S2: 6@14x14

C3: 16@10x10

S4: 16@5x5

C5: 120@1x1

F6: 84 Units

Output: 10 Units

Convolution

5x5 features

Convolution

5x5xN features

Subsampling

2x2 blocks

Subsampling

2x2 blocks
Convolution

5x5xN features

RBF Classifier

Figure 2.9: LeCun et al.’s LeNet-5 convolutional neural network [51]. The bottom row
of labels show the layer number and the size of that layer with X@NxN representing
X feature maps of size NxN.

Each of the neurons in a feature map share the same set of weights. By having
shared weights, this means that the CNN is searching for a particular feature at all
points in the image. The result of this translation invariant feature detection is a 2D
map of responses that retains the topological structure of the input image. This weight
sharing reduces the number of trainable parameters which helps in successfully train-
ing the network using supervised learning alone.

The activation of a neuron is the standard weighted sum of inputs followed by a
non-linearity such as the hyperbolic tangent function. From an implementation stand
point, all the values in a feature map can be calculated using the convolution operator
by convolving the input image with the shared set of weights, also known as the con-
volution kernel. Following convolution, a non-linearity is applied to each value in the
resulting 2D matrix. Multiple convolution kernels are used to in order to detect differ-
ent features resulting in one feature map per convolution kernel. More specifically, a
feature map Hi is computed as:

Hi = F
(
X ∗Wi +bi

)
(2.14)

34 CHAPTER 2. BACKGROUND

where ∗ is the convolution operator, X is a 2D input image, Wi is the convolution kernel
for feature map i and bi is the corresponding bias shared across the whole of feature
map i.

Following a convolutional layer is a subsampling layer, where the values of each
feature map are subsampled in order to reduce dimensionality and to aid in producing a
translation invariant representation. Various subsampling schemes have been used but
the most common involves dividing the feature map into small non-overlapping blocks
and taking the average or maximum value of each block. These subsampled maps are
the input to the subsequent convolutional layer next in the feature hierarchy.

The feature maps in the subsequent convolutional layer are connected to multiple
subsampled maps in the previous layer using either a pre-defined connection scheme or
a learned connection scheme. Convolution is performed on each of the connected sub-
sampled maps with a separate convolution kernel for each map. The resulting feature
maps are summed together and in doing so, the network is trying to compose multiple
lower level features into more abstract higher-level features, creating a feature hierar-
chy of increasingly abstract features. We can generalize Eq. 2.14 to handle multiple
input maps:

Hi = F
(

∑
j∈Si

X j ∗Wi j +bi
)

(2.15)

where Si is the set of subsampled input feature maps that are connected to Hi.

In Fig. 2.9, a radial basis function (RBF) classifier consisting of the layers F6
and the output layer is stacked on top of the final convolutional layer in the feature
hierarchy, C5. This RBF classifier can be switched out for an alternative classifier
such as an MLP classifier or a support vector machine.

The features in the CNN are learned by training the network using supervised error
backpropagation and stochastic gradient descent, with a slight adjustment to take into
account of weight sharing. Although a CNN has many layers, the number of trainable
parameters are far fewer than an ordinary fully connected deep neural network. Along
with its specialized structure, this allows us to use normal neural network training
methods where previously we could not.

CNNs are capable of learning representations that are invariant to pose and lighting
[52] and have been used successfully in zip code recognition [50] and as part of an au-
tomated cheque reading system [51]. In addition, it has been found that using random
convolution kernels in untrained networks seem to perform well on object recognition

2.5. DEEP LEARNING 35

tasks showing that the structure of the network plays an important role in its success
[40] [76].

More recently, one of the largest scale CNNs ever built achieved state-of-the-art
performance on the ImageNet classification task consisting of 1.2 million images and
1000 classes [47]. CNNs have also been adapted for use with the deep learning strat-
egy, details of which follow in the next two sections.

2.5.4 Predictive Sparse Decomposition

Predictive Sparse Decomposition (PSD) [43] was designed to allow convolutional neu-
ral networks to take advantage of unsupervised pre-training used as part of the deep
learning strategy. PSD uses unsupervised learning to initialize the convolution kernels
of a CNN. PSD is an extension of the sparse coding paradigm and tries to solve the
problem of inefficient inference.

With sparse coding, once a dictionary has been learned, an expensive optimiza-
tion procedure is still required to find the sparse representation for a given input. To
solve this issue, PSD uses an efficient feed-forward non-linear encoder which is trained
jointly with the dictionary to learn a fast approximation of the optimal sparse represen-
tation. For inference, the encoder can be used to quickly obtain a good approximation
of the optimal sparse representation of the input.

The joint training with a predictive encoder also provides two other benefits, firstly
by using a smooth encoding function, the sparse representation obtained is also a
smooth function that can be approximated whereas traditional optimization results in
highly non-smooth or even non-differentiable functions. Secondly, by joint training
with the encoder, a sparse representation can be learned that can capture the specifics
of the type of data being modelled, something that a generic optimization method may
not normally be able to capture. In particular [44] has learnt features not normally seen
with ordinary sparse coding trained on images.

In the original PSD formulation [43], training was performed on image patches
randomly sampled from the input dataset. By using image patches the same size as
the convolution kernels, the problem can be formulated in terms of a standard fully
connected MLP. The predicted encoding of an input image patch is computed using
the standard feed forward MLP formula:

hp = G tanh(Wx+b) (2.16)

36 CHAPTER 2. BACKGROUND

where G is a trainable gain parameter to handle scaling, x is the vectorized input, W is
the weight matrix consisting of the vectorized convolution kernels and b is the set of
biases collected together into a vector.

The predicted encoding is then used in the following three-part loss function for
PSD:

LP SD =
1
2
||x−Dh||22 +λ||h||1 +α||h−hp||22 (2.17)

the first part of the loss function deals with the reconstruction loss, where D is the
sparse coding dictionary and Dh is the reconstruction of the input from the represen-
tation h. The second part is the sparse coding penalty on the representation. The third
and final part is the prediction error and constrains the sparse coding representation to
be close to the feed-forward predicted encoding.

This loss function is then minimized using a two-step, EM-like procedure:

1. Keeping all the trainable parameters fixed, find the optimal sparse code h∗ using
the predicted hp as the initial starting value.

2. Using the h∗ found in step 1, update all parameters using one step of stochastic
gradient descent.

For step 1, stochastic gradient descent or any other optimization procedure can be used
to find the optimal sparse code.

This unsupervised learning procedure can be used for each of the convolutional
layers in the CNN. Once this pre-training has been completed, the learned encoder
weights can be used to initialize the convolution kernels. The CNN can then be fine-
tuned with supervised learning.

Training on image patches independently however, leads to redundancy in the
learned features [42]. To counter this, PSD has been extended to incorporate more
elements of the convolutional neural network including, altering the sparsity penalty
to run over pooled units [42] and training on whole images rather than patches using a
convolutional dictionary [44]. These approaches have consistently shown state-of-the-
art performance on visual recognition datasets such as MNIST, NORB, Caltech-101
and the INRIA pedestrian detection task.

However, works involving PSD have only used minimal levels of depth with [43],
[42], [27] only using a single layer network and [40], [44] using a two layer network.
This is most likely due to the difficulty of scaling up convolutional neural networks

2.5. DEEP LEARNING 37

when used with realistic sized images. On the other hand, with the rise of GPU com-
puting, such difficulties are fast disappearing as the convolution operator can be effi-
ciently implemented on GPUs as shown by the large scale CNN developed in [47].

2.5.5 Convolutional Restricted Boltzmann Machine

An alternative approach to PSD in combining the deep learning strategy and convolu-
tional neural networks is the Convolutional Restricted Boltzmann Machine (CRBM)
[54]. Here we follow the formulation given in [55] where the CRBM was applied to
audio data and is the basis of comparison for our work.

The CRBM is very similar to the RBM except for the use of weight sharing. In the
convolutional neural network, we have K convolution kernels which we convolve with
the input to give K separate feature maps. In the CRBM, the visible layer, which we
assume to be a vector of time series data consisting of |v| frames, is convolved one at a
time with the K convolution kernels, wk, of dimensionality |w|, to give a hidden layer
that consists of K groups of feature vectors hk. The visible units all share a single bias
a. Each hidden unit in a feature vector group shares a bias bk.

To take into account of the weight sharing, the energy function from Eq. 2.2 for
binary visible units is now:

E(v,h) =−a
|v|

∑
i=1

vi−
K

∑
k=1

(
bk

|h|

∑
j=1

hk j

)
−

K

∑
k=1

|h|

∑
j=1

|w|

∑
r=1

hk jwkrv j+r−1 (2.18)

and for real-valued visible units (assuming unit variance):

E(v,h) =
1
2

|v|

∑
i=1

v2
i −a

|v|

∑
i=1

vi−
K

∑
k=1

(
bk

|h|

∑
j=1

hk j

)
−

K

∑
k=1

|h|

∑
j=1

|w|

∑
r=1

hk jwkrv j+r−1 (2.19)

The conditional probability of a hidden unit can be computed using the convolution
operator. Eq. 2.8 now becomes:

p(hk j = 1|v) = σ(bk +(R(wk)∗v) j) (2.20)

where R(.) is a function that rotates a vector by 180◦. This is required as the 1D
convolution operator will rotate the convolution kernel by 180◦ first before computing
the weighted sum.

38 CHAPTER 2. BACKGROUND

The conditional probability of a binary visible unit changes from Eq. 2.9 to:

p(vi = 1|h) = σ(a+
K

∑
k=1

(wk ∗hk)i) (2.21)

and for real-valued visible units:

p(vi = 1|h) = N (a+
K

∑
k=1

(wk ∗hk)i ,1) (2.22)

Training the CRBM can be done using the contrastive divergence algorithm as set
out in Sec. 2.5.1 with the modified conditional probabilities given above. In addition,
the CRBM also requires a sparsity penalty as in [53] due the over-complete represen-
tation. This introduces an extra step into the training algorithm where the parameters
of the CRBM are updated by the gradient of the sparsity regularization term after the
normal parameter updates using contrastive divergence.

Convolutional neural networks normally consist of alternating pairs of convolu-
tional and subsampling layers. As the CRBM is a generative model, a probabilistic
version of max-pooling was developed alongside the CRBM [54]. As with determinis-
tic max-pooling, the units in the hidden layer are divided into non-overlapping blocks.
For probabilistic max-pooling, within each block, at most one hidden unit can be acti-
vated. This is achieved by sampling from a multinomial distribution. Eq. 2.20 changes
to:

p(hk j = 1|v) =
exp(bk +(R(wk)∗v) j)

1+∑ j′∈Bq exp(bk +(R(wk)∗v) j′)
(2.23)

where Bq is the set of hidden units within probabilistic max-pooling block q.

Connected to the hidden layer is an additional pooling layer which again is or-
ganised into K groups. A unit in the pooling layer is connected to all of the hidden
units within one probabilistic max-pooling block and no others. This shrinks the rep-
resentation down by a factor of the block size as in deterministic max-pooling in a
convolutional neural network. The pooling unit, zkq, can be sampled using the follow-
ing formula:

p(zkq = 0|v) = 1
1+∑ j′∈Bq exp(bk +(R(wk)∗v) j′)

(2.24)

A convolutional deep belief network (CDBN) can then be built from alternating
layers of CRBM and probabilistic max-pooling modules. In [54], a CDBN trained
on images of a single object category was shown to learn a hierarchical object-part

2.6. SUMMARY 39

representation. When trained unsupervised using four different object categories, the
second layer of the learned representation consisted of both object-specific and shared
parts whilst the third layer consisted only of object-specific parts. This ability to gener-
ate hierarchical representations from unsupervised learning shows the promise of deep
convolutional representations in the visual domain.

In [55], the CDBN was applied to audio data. When trained unsupervised on speech
data from the TIMIT corpus, the features learned corresponded to phonemes and
showed distinct differences between male and female speech. When the features were
used for phoneme classification and speaker identification tasks, the CDBN proved
competitive against the baseline MFCC representation but falls short when compared
against the wider state-of-the-art in both speech recognition and speaker identification.

2.6 Summary

In this chapter, we have explained the basic principles of speech production and speech
processing in humans. We have seen how speech can be represented in the form
of spectrograms and in the form of low dimensional Mel-Frequency Cepstral Co-
efficients. We have also seen the potential of deep learning and sparse coding in learn-
ing hierarchical feature representations.

Chapter 3

Model Description

In this chapter, we present the details of the convolutional neural network (CNN) build-
ing block, the unsupervised learning training methodology and how to build a deep
architecture using these CNN building blocks for learning hierarchical speech repre-
sentations.

3.1 CNN Building Block

A schematic diagram of the CNN building block is shown in Fig. 3.1. The CNN build-
ing block is arranged in an encoder-decoder style of architecture with feed-forward
connections. Our CNN building block is capable of accepting multiple channels of
input vectors but we will concentrate on the simple case of a single input vector and
generalize this to multiple input channels in Sec. 3.3.

The CNN takes a vector of time series data, x, of length T , as shown in Fig. 3.1.
The convolutional layer consists of M number of feature map vectors. The job of the
convolutional layer is to perform feature detection. Each feature vector, hi , consists of
N units. We will denote a unit in hi as hi j, where j is the element index of the unit in
the i-th feature vector.

Each unit in a feature vector is connected to a small number of K input units. In
Fig. 3.1, K = 3, meaning each feature vector unit is connected to three input units.
In general, a feature vector unit, hi j is connected to the set of inputs {x j, · · · ,x j+K−1}.
This constrains the size of each feature vector to be N = T −K +1.

Every unit in a given feature vector, hi , shares the same set of incoming connection
weights as illustrated in Fig. 3.1. As each unit is connected to K input units, the shared
weight vector, wi for the i-the feature vector, hi , has K elements [wi1, · · · ,wiK].

40

3.1. CNN BUILDING BLOCK 41

InputELayer

ReconstructionE
Layer

. . .

. . .

. . .

Convolutional
Layer

. . .

x1 x2 x3 x4 xT

w11

w12

w13

w11

w12

w13

h11 h12 h1N hM1 hM2 hMN

x1 x2 x3 x4 xT
‸ ‸ ‸ ‸ ‸

DECODER

ENCODER

wM1

wM2

wM3 wM3

wM2

wM1

dE11

dE12

dE13

dE11

dE12

dE13

dEM1
dEM2

dEM3

dEM1
dEM2

dEM3

h1 hM

Figure 3.1: Schematic diagram of the CNN Building Block.

42 CHAPTER 3. MODEL DESCRIPTION

The local connectivity means that the network is trying to analyze the local struc-
ture of the input and detect small scale local features encoded by the weight vectors,
w. The shared weights across each feature vector means that feature detection is tem-
porally invariant as all points in the input are analyzed for the presence of the local
feature. Each weight vector is different for each feature vector in order to detect dif-
ferent features, i.e. wi 6= w j,∀i, j.

The values of each feature vector unit, hi j, can be computed using the weighted
sum of input connections in the normal feed-forward MLP fashion and then applying
a non-linearity. More conveniently, we can calculate all the values for a feature vector
hi using the convolution operator:

hi = gi tanh
(
[x∗v R(wi)]+bi

)
(3.1)

where gi is a trainable gain value used to take into account of the scaling performed by
tanh, bi is a trainable bias vector, R(.) is a function that rotates a vector by 180◦ and
∗v is the convolution operator in “valid” border handling mode, i.e. we only want the
values where the weight vector wi fits inside the boundaries of the input vector x. As
we are using convolution in valid border mode, we must rotate the weight vector by
180◦ in order to ensure the weights are applied to the correct connections.

It should also be noted that as well as sharing weights, each unit in a feature vector
hi also shares the same bias. This means that the bias vector bi actually contains one
bias value replicated N times for each of the N hi j units.

Having obtained the feature vector representations in the convolutional layer, we at-
tempt to reconstruct the input from the feature vectors in the reconstruction layer. Each
hi j unit has symmetric outgoing connections to the reconstructed input, x̂as shown in
Fig. 3.1. Again, each hi j unit in feature vector hi shares a set of outgoing decoder
weights di with K elements. We can compute the reconstruction using convolution and
summing the resulting values as shown below:

x̂ =
M

∑
i=1

hi ∗full di (3.2)

where ∗full is the convolution operator in “full” border handling mode. Note we do not
need to rotate the decoder weights as we did in Eq. 3.1. Eq. 3.2 approximates the input
x as a linear combination of the decoder weights d.

To learn the weights and other parameters of our CNN building block, we used
the unsupervised Predictive Sparse Decomposition (PSD) algorithm [43] (reviewed in

3.2. PREDICTIVE SPARSE DECOMPOSITION LEARNING 43

Sec. 2.5.4) and described in the next section.

3.2 Predictive Sparse Decomposition Learning

Predictive Sparse Decomposition (PSD) allows us to learn the parameters of our CNN
building block in an unsupervised way. In particular, we are interested in learning
the weights for the encoder part of the CNN building block as it computes the feature
representation. We use PSD because traditional sparse coding [62] only allows us to
learn the decoder weights, whereas PSD allows us to learn both.

Rather than training on the input as a whole, we follow the original PSD formu-
lation and train on patches of the input the same size as the weight vectors w. We do
not use the extensions of PSD as they are even more specific to learning in the visual
domain.

Due to the local connectivity of the CNN, we then only need to compute, for each
of the M feature vectors, the value of the corresponding single hi j unit that is connected
to the input patch x j, where j is the index of the patch’s first element in x. To compute
the value of each hi j unit, rather than using convolution, we can now use simple matrix
arithmetic like we would in a normal MLP setting. We modify Eq 3.1 to become:

h j = G tanh(x jW +b) (3.3)

where h j is the resulting vector containing each hi j value ∀i ∈ M; G is a diagonal
gain matrix containing each gi value along the diagonal; W is an M x K matrix with
each weight vector wi on the i-th row of W and b is a vector of biases containing each
individual shared bias bi,∀i ∈M.

Given the hidden vector h j, we can reconstruct the input patch in a manner similar
to Eq. 3.2.

x̂ j = Dhj (3.4)

where D is a K x M matrix containing each decoder weight vector di along the i-th
column of D. In [43], each di is referred to as a basis function.

To learn the parameters, we need to minimize the following loss function:

L =
1
2
||x j−Dh∗j ||22 +λ||h∗j ||1 +

α

2
||h∗j −h j||22 (3.5)

where h∗j is the optimal sparse hidden representation, h j is the hidden vector obtained

44 CHAPTER 3. MODEL DESCRIPTION

from our encoder in Eq. 3.3, λ is the sparsity parameter and α is a parameter controlling
the contribution of the third term. The first term of Eq. 3.5, penalizes inaccurate
reconstructions, the second term penalizes non-sparse representations controlled by λ,
whilst the third term drives the encoder towards producing the optimal representation
controlled by α.

For each input patch x j in the training set, we perform training in two stages. In
the first stage, we try to find h∗j for the current set of parameters. We do so by using
the h j obtained from the encoder, Eq. 3.3, as a starting point for minimizing the loss
function, Eq. 3.5, using stochastic gradient descent. The update rule is as follows:

h∗j ← h∗j −η
∂L
∂h∗j

∂L
∂h∗j

=−DT (x j−Dh∗j)+λsign(h∗j)+α(h∗j −h j) (3.6)

where η is the learning rate.

In the second stage, using the value of h∗j obtained from the first stage, we update
the parameters using one step of stochastic gradient descent as follows. Firstly, the
weights:

W ←W − ε
∂L
∂W

(3.7)

∂L
∂W

=−α
(
g′(x j)(h∗j −h j)

)
x j (3.8)

where g′(x j) =
1
G
(G2−h2

j) and ε is the encoder learning rate.

Next the encoder biases:

b← b− ε
∂L
∂b

(3.9)

∂L
∂b

=−α
(
g′(x j)(h∗j −h j)

)
(3.10)

The encoder gain parameters:

G← G− ε
∂L
∂G

(3.11)

∂L
∂G

=−α(h∗j −h j)(tanh(Wx j +b)) (3.12)

3.3. LEARNING HIERARCHICAL REPRESENTATIONS 45

Finally, the decoder weights:

D← D−µ
∂L
∂D

(3.13)

∂L
∂D

=−(x j−Dh∗j)(h
∗
j)

T (3.14)

where µ is the decoder learning rate. Each column of D must then be scaled to unit
norm to avoid learning trivial solutions.

This two stage process is repeated for all input patches in the training set, by the
end of which, the learned encoder parameters should produce a close approximation to
the optimal sparse hidden representation.

3.3 Learning Hierarchical Representations

We can stack multiple CNN building blocks together and using the deep learning strat-
egy [33], we can create a hierarchical feature representation. Before doing so however,
we perform one further processing step on all feature vectors h in the convolutional
layer after the encoder parameters have been learned through PSD. For a given input
x, we compute all feature vectors h using Eq. 3.1. We then subsample the values in
each feature vector in order to reduce dimensionality and to provide further temporal
invariance.

We subsample using a technique called max-pooling [68] [65]. For each feature
vector hi , we divide the N units into distinct non-overlapping groups of size S. Within
each group, we take the maximum value, resulting in a max-pooled vector of length
P = N/S. Where P is not an integer number, we zero-pad the beginning and end of the
input x so that P results in a whole number.

We use the max-pooled feature vectors, which we denote collectively as p, as the
feature representation for the input x. We can create a feature hierarchy by stacking
CNNs and training each on the previous layer’s feature representation pl−1, where l is
the layer being trained. As there are now Ml−1 vectors as input to the convolutional
layer l, we need to generalize Eq. 3.1 so that it can accept multiple input vectors:

hl
i = gl

i tanh
(Ml−1

∑
q=1

[pl−1
q ∗v R(wl

iq)]+bl
i

)
(3.15)

where p0 = x. There now exists a weight vector wi j for each of the input vectors pq

46 CHAPTER 3. MODEL DESCRIPTION

which are still of size K and are shared across each feature vector unit in a feature
vector hi . The summation in Eq. 3.15 means that in the higher levels of the feature
hierarchy, we are trying to combine lower-level features into more abstract composite
features, giving us a hierarchical representation of increasing levels of abstraction.

We also need to make some adjustments to the PSD algorithm to take into account
of multiple input vectors. We construct the input vector x j by extracting patches of size
Kl from each of the pl−1 vectors and concatenating them into a single column vector.
This results in the length of x j being equal to Kl x Ml−1. The patches must also be
extracted from the same corresponding region of each pl−1

q , i.e. the starting element of
the patch must be j-th element in each pl−1

q .
We must also concatenate each wl

iq weight vector into a corresponding row vector
wl

i . We can then form the weight matrix W as per usual. Likewise, we must do the
same for each dl

iq decoder weight vector to form the matrix D. Learning can then
proceed as normal as described in the previous section to learn the parameters for layer
l in the hierarchical representation.

Chapter 4

Comparison Study

In this chapter, we provide the details of the model settings that we used for learning a
hierarchical representation from speech data using the CNN building block described
in the previous chapter. We compare our model against Lee et al.’s CRBM results and
MFCC baseline presented in [55]. The experiments performed were gender classifica-
tion, speaker identification and phoneme classification using the TIMIT corpus [18].
In our experiments, we take care to try and match as closely as possible the experi-
mental settings in [55] to make for a fair comparison. We also perform a qualitative
comparison of our model’s learned features against the CRBM features presented in
[55].

4.1 Model Settings and Training

Following [55], we used the TIMIT [18] training set to draw unlabelled data to train
our CNN architecture with. The TIMIT training set consists of 4620 utterances from
462 speakers, each contributing 10 utterances. Each utterance is on average 3 seconds
in duration.

For each utterance, we used the same pre-processing technique as [55]. Each ut-
terance was converted into a spectrogram using a 20ms Hamming window with 10ms
overlap. The spectrogram was PCA whitened to reduce the dimensionality of the spec-
trogram, retaining the first 80 principal components. This resulted in 80 time-series
vectors as input to our CNN with P0 frames in length.

To make our results as comparable as possible, we used the same sized architecture
as [55] and extracted a two layer feature representation using our CNN architecture.
The first convolutional layer consists of M = 300 feature vectors, giving 300 x 80

47

48 CHAPTER 4. COMPARISON STUDY

weight vectors, each with size K = 6 frames in length. Following convolution, each
feature vector, hi , was max-pooled using a block size of S = 3 to give 300 max-pooled
vectors, p1

i , each with P1 = (P0−K+1)/S frames in length. These max-pooled vectors
forms the full first layer representation. We denote this as the full L1 representation.

In the second layer, following [55], we also used M = 300 and K = 6 resulting in
300 x 300 weight vectors. Again, following convolution, we max-pooled with a block
size of S = 3, to produce 300 p2

i vectors of length P2 = (P1−K + 1)/S, forming the
full L2 representation.

We used the procedure described in the previous chapter (Sec. 3.2 and 3.3) to train
our architecture. Details of the implementation of the training algorithm can be found
in Appendix A. We first trained the L1 representation using a training set constructed
by randomly extracting 50,000 patches of size 80 x 6 from the PCA whitened spec-
trograms of the utterances in the TIMIT training set. Each patch was vectorized as
per the training procedure. We further extracted 10,000 patches randomly to form a
validation set. Hyperparameters were selected based on the performance of the model
on the validation set, evaluated using the loss function in Eq. 3.5.

Once the L1 representation was learnt, we trained the second layer CNN on the L1
representations of each utterance. From the full L1 representations, we constructed a
training set by randomly extracting 25,000 patches and a validation set by randomly
extracting a further 10,000 patches. Again, hyperparameter selection was based on the
model’s performance on the validation set evaluated using Eq. 3.5.

We then tested our learned representations on three speech classification tasks. Fol-
lowing [55], we used a linear SVM classifier for each classification task. Where a task
is a multi-class classification problem, we used a multi-class SVM in one vs one mode.
More specifically, we used the LibSVM Matlab implementation [10].

Since each utterance is of variable length, the size of our feature representations are
not uniform across the dataset, which poses a problem as the SVM classifier requires
fixed sized feature vectors. In the interests of a fair comparison, we used the approach
in [55] and used simple summary statistics to reduce our variable length representations
to a fixed size. For example, our full L1 representation consists of 300 p1

i vectors, each
of length P1. For each p1

i , we take for instance, the average over all P1 values, resulting
in a 300 x 1 vector as input to the SVM.

The summary statistics we trialled were the mean, maximum and standard devi-
ation. The choice of summary statistic and hyperparameters for the SVM classifier
were chosen using either cross-validation or a validation set. Details of this and the

4.2. VISUALIZATION 49

results of our experiments are presented the following sections but firstly we perform
a qualitative analysis of our learned representation.

4.2 Visualization

In this section, we compare visualizations of our model’s learned weights against the
CRBM visualizations presented in [55]. Firstly, we present a random selection of 50
first layer weights as shown in the bottom half of Fig. 4.1. The top half of Fig. 4.1
shows 50 random first layer weights for the CRBM taken directly from [55]. These vi-
sualizations were simply produced by reversing the PCA preprocessing on each weight
vector.

We can see that our model’s learned weights consist of a mixture of harmonic de-
tectors (horizontal bands) useful for detecting voiced sounds, whilst others are looking
for concentrations of energy particularly in the low frequency ranges. Compared with
the CRBM features, there are also harmonic detectors but their features more clearly
show the detection of formant trajectories compared to our CNN features.

(a) CRBM

(b) CNN

Figure 4.1: A random selection of 50 first layer weights. (a) CRBM visualization taken
from [55]. (b) Visualization of our CNN model’s weights.

Next, we compare the first layer weights for four phonemes, “ah”, “oy”, “el” and
“s”. For each phoneme, we show the weight with the largest corresponding activation.

50 CHAPTER 4. COMPARISON STUDY

In each figure (Fig. 4.2 - 4.5), part (a) shows the spectrogram of the phoneme from
[55] whilst part (b) shows the corresponding first layer CRBM weight with the largest
activation beneath it. Parts (c) and (d) show the equivalent for our model’s first layer
weights.

From Fig. 4.2 - 4.5, we see that in general our model has learned to capture some
sensible aspect of the input. For the “ah” phoneme in Fig. 4.2, we see a mixture of
harmonic detectors and detection of formant energies similar to the CRBM features.
For the “oy” phoneme in Fig. 4.3, we see a similar pattern in our learned CNN features,
although the CRBM features are more capable of tracking the rising formant.

In the “el” phoneme example in Fig. 4.4 we see a noticeable difference between
our features and CRBM features. The CRBM features prefer to pick out the general
spectral shape whereas our features either focuses on the detection of harmonics (2nd,
4th and 5th examples) or formants (1st and 3rd examples).

Finally, for the unvoiced “s” phoneme in Fig. 4.5, we see that the for our CNN
features, the first and the second examples result in the same weight being maximally
active with the third example activating a very similar looking weight. This shows
some robustness in the representation that same weights are maximally active for dif-
ferent examples of the same phoneme.

The final visualization comparison involves comparing how male and female ver-
sions of the “ae” phoneme are represented in each of the models. The first comparison
shows the first layer weights in Fig. 4.6. The second comparison shows the second
layer weights in Fig. 4.7. For visualizing the second layer weights, we unfold the
deep architecture to form a deep autoencoder and show the model’s reconstruction of
the input using only the second layer weight. We note that unlike for the CRBM, our
encoding and decoding weights are not the same but nevertheless, the reconstruction
serves as a useful indication of what the model has learned in the higher layers.

In part (a) of both Fig. 4.6 and 4.7, five example spectrograms of female speakers
speaking the “ae” phoneme are shown (these are same across both figures for ease
of comparison) taken from [55]. Likewise, part (b) of both figures show the male
counterparts. Parts (c) and (d) show what are described as the most “biased” CRBM
features toward each gender taken from [55]. Parts (d) and (e) show our model’s top
five features that activate when averaged over all “ae” phoneme examples for each
gender.

As with the CRBM features, in Fig. 4.6, we can see a distinct difference between
the first layer weights in our model that are most active for female speakers and male

4.2. VISUALIZATION 51

(a) Spectrogram CRBM

(b) CRBM

(c) Spectrogram CNN

(d) CNN

'ah' phoneme

Figure 4.2: Comparison of the most active first layer weights for five examples of the
“ah” phoneme. (a) Spectrogram of each of the five example “ah” phonemes taken from
[55]. (b) The most active first layer CRBM weight when the above example phoneme
is used as input taken from [55]. (c) and (d) Same as for (a) and (b) but using our
model’s first layer CNN weights.

52 CHAPTER 4. COMPARISON STUDY

(a) Spectrogram CRBM

(b) CRBM

(c) Spectrogram CNN

(d) CNN

'oy' phoneme

Figure 4.3: Comparison of the most active first layer weights for five examples of the
“oy” phoneme. (a) Spectrogram of each of the five example “oy” phonemes taken from
[55]. (b) The most active first layer CRBM weight when the above example phoneme
is used as input taken from [55]. (c) and (d) Same as for (a) and (b) but using our
model’s first layer CNN weights.

4.2. VISUALIZATION 53

(a) Spectrogram CRBM

(b) CRBM

(c) Spectrogram CNN

(d) CNN

'el' phoneme

Figure 4.4: Comparison of the most active first layer weights for five examples of the
“el” phoneme. (a) Spectrogram of each of the five example “el” phonemes taken from
[55]. (b) The most active first layer CRBM weight when the above example phoneme
is used as input taken from [55]. (c) and (d) Same as for (a) and (b) but using our
model’s first layer CNN weights.

54 CHAPTER 4. COMPARISON STUDY

(a) Spectrogram CRBM

(b) CRBM

(c) Spectrogram CNN

(d) CNN

's' phoneme

Figure 4.5: Comparison of the most active first layer weights for five examples of the
“s” phoneme. (a) Spectrogram of each of the five example “s” phonemes taken from
[55]. (b) The most active first layer CRBM weight when the above example phoneme
is used as input taken from [55]. (c) and (d) Same as for (a) and (b) but using our
model’s first layer CNN weights.

4.2. VISUALIZATION 55

speakers. For female speakers, the model tends to concentrate on the harmonic pattern
whilst for male speakers, the formants are most preferred. As we’ve seen previously,
the CRBM features tend show more of a trajectory than our CNN features.

For the second layer weights in Fig. 4.7, there is no noticeable gender difference
in our CNN features unlike the CRBM features. We hypothesise that our second layer
features have learned to become more invariant towards speaker attributes such as gen-
der. This hypothesis is tested in the gender classification experiment in the following
section.

(a) Female Spectrogram
 CRBM

(c) Female CRBM L1 (e) Female CNN L1

'ae' phoneme

(b) Male Spectrogram
 CRBM

(d) Male CRBM L1 (f) Male CNN L1

Figure 4.6: Comparison of gender encoding in each model with the “ae” phoneme.
(a) Five example spectrograms of female speakers taken from [55] (b) Five example
spectrograms of male speakers taken from [55] (c) The five most biased first layer
CRBM weights for female speakers taken from [55] (d) The five most biased first layer
CRBM weights for male speakers taken from [55] (d) The five most active first layer
CNN weights for female speakers (e) The five most active first layer CNN weights for
male speakers

56 CHAPTER 4. COMPARISON STUDY

(a) Female Spectrogram
 CRBM

(c) Female CRBM L2 (e) Female CNN L2

'ae' phoneme

(b) Male Spectrogram
 CRBM

(d) Male CRBM L2 (f) Male CNN L2

Figure 4.7: Comparison of gender encoding in each model with the “ae” phoneme. (a)
and (b) The same ten example spectrograms from Fig. 4.7 taken from [55] (c) The five
most biased second layer CRBM weights for female speakers taken from [55] (d) The
five most biased second layer CRBM weights for male speakers taken from [55] (d)
The five most active second layer CNN weights for female speakers (e) The five most
active second layer CNN weights for male speakers

4.3. GENDER CLASSIFICATION 57

4.3 Gender Classification

In the gender classification experiment, the task is to classify whether a given utterance
is spoken by a male or female speaker. For this task, we tested both L1 and L2 feature
representations. We trained the SVM classifier using a variable number of training
utterances per gender. The training set was constructed by randomly sampling utter-
ances from the TIMIT complete test set. The TIMIT complete test set contains 1680
utterances from 168 speakers with a 2:1 male-female ratio.

We tested using a randomly constructed test set of 200 utterances as per [55]. We
report the average classification accuracy over 20 train-test runs. Hyperparameter se-
lection and choice of summary statistic was performed using a validation set of 25
utterances per gender, randomly sampled from the separate TIMIT training set which
was previously used for unsupervised training only. Table 4.1 shows a comparison of
our results with [55] and the MFCC baseline.

Table 4.1: Average test accuracy on gender classification

training CNN L1 CNN L2 CRBM L1 CRBM L2 MFCC
utterances [55] [55] [55]

1 90.2% 82.7% 78.5% 85.8% 58.5%
2 94.1% 86.1% 86.0% 92.5% 78.7%
3 94.9% 88.1% 88.9% 94.2% 84.1%
5 94.3% 89.3% 93.1% 95.8% 86.9%
7 96.1% 92.5% 94.2% 96.6% 89.0%

10 96.3% 91.9% 94.7% 96.7% 89.8%

Our results were obtained using the maximum summary statistic. As shown in
Table 4.1, our learned representation outperforms the baseline MFCC representation.
We outperform [55] for smaller numbers of training utterances and is comparable for
larger numbers.

The second point to notice is that our L1 representation outperforms our L2 repre-
sentation, whilst the opposite is true in [55]. This is consistent with the visualization
of the most active weights for each gender in Fig. 4.6 and 4.7.

4.4 Speaker Identification

In speaker identification, the task is to identify the speaker of a given utterance from a
given set of speakers. This is a closed-set task meaning that the model will not be tested

58 CHAPTER 4. COMPARISON STUDY

against any unknown speakers. We tested both our L1 and L2 representations using
the TIMIT complete test set. As mentioned in the previous section, the complete test
contains 168 speakers with 10 utterances per speaker. We treat this task as a 168-way
classification problem.

Following [55], we randomly selected varying numbers of training utterances per
speaker and tested (separately) on two random utterances per speaker, except in the
case of eight training and two testing utterances per speaker. In this case, we used the
two “sa” sentences, three “si” sentences and the first three “sx” sentences for training
and the remaining two “sx” sentences for testing. We performed 10 train-test runs and
report the average classification accuracy in Table 4.2. Hyperparameter and summary
statistic selection were chosen using cross-validation, except in the case of one training
utterance per speaker where a randomly chosen validation sentence per speaker was
used.

Table 4.2: Average test accuracy on speaker identification

training CNN L1 CNN L2 CRBM L1 CRBM L2 MFCC
utterances [55] [55] [55]

1 65.5% 58.5% 74.5% 62.8% 54.4%
2 78.4% 69.3% 76.7% 66.2% 69.9%
3 88.0% 80.2% 91.3% 84.3% 76.5%
5 93.8% 88.0% 93.7% 89.6% 82.6%
8 97.3% 92.3% 97.9% 95.2% 92.0%

Our results were obtained using the mean summary statistic. Overall, as shown in
Table 4.2, our representation is generally worse than [55]. We believe this is because
of the patch based nature of the PSD algorithm. With our architecture, PSD trains on
patches six frames in duration which is equivalent to approximately 70ms of speech.
With such short durations of speech, it would be difficult for any algorithm to learn to
model speaker dynamics well. In [55], the whole utterance (approximately 3 seconds
in duration) is used for feature learning. It is more likely that the PSD algorithm
learns to model phonemes as each patch corresponds to approximately to the average
phoneme duration. This hypothesis is tested in the next task.

Despite this, our representation still performs better than the MFCC baseline. This
provides some evidence for using deep learning features over MFCC based features
for speaker related tasks.

4.5. PHONEME CLASSIFICATION 59

4.5 Phoneme Classification

In phoneme classification, the task is to classify a given phoneme segment from an
utterance as one of 39 phoneme classes. (This is distinct from phoneme recognition

where an utterance must be segmented and labelled.) We followed the phoneme clus-
tering in [55] to give 39 phoneme classes. As with [55] we tested our L1 representation
and used the “si” and “sx” sentences in the TIMIT training set for training our SVM
classifier and the TIMIT core test set is used for testing.

We treated each phoneme segment as an individual example and computed the L1
representation for each. We did so by computing the PCA whitened spectrogram for an
utterance and segmenting the phonemes using the annotations provided by the corpus.
Where the number of frames did not naturally fit our CNN architecture, i.e. the length
of hi is not divisible by the max-pooling block size of three, we extracted a sufficient
number of frames centred on the phoneme segment. This means that at most 40ms of
extra speech is extracted before and after the phoneme segment.

We report the average classification accuracy over 5 runs for varying numbers of
training utterances, except in the case of 3696 utterances where all the training data is
used. The results are shown in Table 4.3. We used cross-validation for hyperparameter
and summary statistic selection.

Table 4.3: Average test accuracy on phoneme classification

training CNN L1 CRBM L1 MFCC
utterances [55] [55]

100 55.4% 53.7% 58.3%
200 59.1% 56.7% 61.5%
500 63.0% 59.7% 64.9%

1000 65.0% 61.6% 67.2%
2000 66.8% 63.1% 69.2%
3696 67.8% 64.4% 70.8%

Our results were obtained using the maximum summary statistic. Overall, as shown
in Table 4.3, our representation performs better than the CRBM [55] for all numbers
of training utterances (the variance was negligible). However, both our representation
and [55] do not outperform MFCC based features.

60 CHAPTER 4. COMPARISON STUDY

4.6 Summary

We started the chapter by detailing the model settings and training set that we used
for unsupervised learning from speech data using the CNN building block and PSD
training algorithm. We compared our model against Lee et al.’s CRBM results and the
MFCC baseline presented in [55] as well as performing a qualitative analysis of our
model’s learned features.

Through this qualitative analysis we found that our first layer weights were similar
to those of the CRBM and consisted of harmonic pattern detectors and formant energy
detectors, although the CRBM seems to show the trajectories of formants more so than
ours.

The key difference between the CRBM and our CNN features is in the second
layer representation. The CRBM second layer features showed differences for male
and female speakers, whilst ours did not. This was consistent with the results for the
gender classification task where our L1 features performed better than our L2 features
whilst the opposite was true for the CRBM.

In the speaker identification experiment, the CRBM outperformed our model. This
is most likely due the patch based training used in PSD compared to whole utterance
learning in the CRBM. Despite this, our model still outperformed the baseline MFCC
representation. In the final phoneme classification experiment, both our model and the
CRBM however, did not outperform the baseline MFCC representation.

Chapter 5

Discussion

In this chapter, we will discuss the results found in our experimental work, compare
our model with the current state-of-the-art techniques used in speech recognition and
discuss some of the limitations of this study.

5.1 CRBM Comparison

Our deep CNN approach in general results in comparable performance against the
CRBM deep architecture in [55] as seen in the previous chapter. In the gender classifi-
cation results (Table 4.1) and speaker identification results (Table 4.2), we saw that our
first layer representation outperforms our second layer representation but the opposite
was true for the CRBM. We have also seen in the visualization of the learned weights
in Fig. 4.7 that the CRBM maintains a difference in the encoding of male and female
speech in the second layer whilst our model does not. All this suggests that for our
PSD trained CNN model, higher-level representations are likely to become more and
more invariant towards speaker characteristics compared to the CRBM.

In the phoneme classification results (Table 4.3), although our model outperforms
the CRBM, neither model is better than the baseline MFCC representation. We believe
that there are two reasons for this.

First is the lack of depth in the representation. As both models use convolution in
time along with max-pooling, as the layers increase, so to does the temporal duration
of each feature. The first layer features have a temporal duration of approximately
70ms and the second layer 270ms. A third layer would be on the order of seconds. For
this reason, only the first layer representation was used in the phoneme classification
experiments as this fits well with temporal duration of phonemes.

61

62 CHAPTER 5. DISCUSSION

However, since Lee et al.’s work [55] in 2009 and this work in 2011 [26], deep
learning has been used very effectively in speech recognition systems [32]. Key to
their success has been the depth of the network [60] [92] which both the CRBM and
our CNN lack. The models reviewed in [32] mostly use conventional fully connected
deep architectures and one possible solution to our problem of a lack of depth is to
build a fully connected deep architecture on top of the CNN architecture layer with the
appropriate temporal duration for the task.

Secondly, both the CNN and CRBM architectures are trained using unsupervised
learning with the goal of [55] to learn a generic audio representation. For best recog-
nition performance, it would appear that unsupervised learning alone is insufficient
and that supervised learning is also required as in the more conventional deep learning
training strategies adopted by the models reviewed in [32].

5.2 Related Work

As mentioned previously, one possible use of our CNN model would be to use it
in the lower layers of a deep neural network with fully connected layers built on
top. This network could then be fine-tuned using supervised learning as part of a
hybrid DNN/HMM speech recognition system. Such a system could work well in
low-resource conditions where training data is limited and unsupervised pre-training
is helpful [32].

However, when labelled training data is plentiful, the effectiveness of unsupervised
pre-training is reduced in hybrid DNN/HMM systems [91]. Additionally, under these
conditions, it is possible even to use layer-wise discriminative pre-training as opposed
to unsupervised pre-training [77].

Using our model as a feature extractor for a speech recognition system has parallels
with the TANDEM framework [28] where neural network outputs are used as features
for a GMM/HMM speech recognition system. A key difference however, is that in
TANDEM the neural network is trained supervised to classify phone states and the
log posterior probabilities obtained from the neural network are used as the features to
train the GMM.

An alternative to using posterior probabilities as features for GMMs in the TAN-
DEM framework, is to use low dimensional, bottleneck features obtained from a bot-
tleneck hidden layer in the neural network [23]. As discussed previously in Sec. 2.5.2,
in [71], bottleneck features were obtained using a bottleneck autoencoder trained on

5.2. RELATED WORK 63

the output of a deep neural network. It is thought that the underlying structure of the
processes responsible for generating speech is low dimensional [32], hence the use of
bottleneck features. In our model, instead of using a bottleneck layer, we use an over-
complete representation with a sparsity constraint to provide what is effectively a low
dimensional representation.

What is described as a “convolutive” approach to obtaining bottleneck features was
proposed in [87]. Here two neural networks with bottleneck layers are used. The first
network is trained as per usual to classify phone states using a context window of 11
frames as input. The second network takes as input, the bottleneck features from the
first network using input windows with offsets of -10, -5, 0, +5 and +10 frames from
the central frame of the input window to be classified. To allow for joint training of the
two networks, the first network is replicated five times, each for the five input offsets
used by the second fully connected network.

By replicating the first network five times, there is a degree of weight sharing along
with local receptive fields as each network takes as input a small window of frames.
This can be seen as convolution in time similar to our model. However, the goal of
convolution in [87] is different to ours. In [87], the aim is to provide extra context
with the addition of offset features as input to the second network to aid in classifying
the central window. Convolution provides a means to do so easily and to train both
networks jointly. Our goal with convolution is to provide shift invariant feature de-
tection along the time axis. This is achieved through a single frame shift when using
convolution and with max-pooling over neighbouring convolutional units.

An early example of convolutional networks used with speech recognition is the
Time-Delay Neural Network (TDNN) [48]. Similar to our model, convolution in time
is used but there is no pooling layer. The TDNN consisted of one convolutional hidden
layer and a convolutional output layer used to classify spoken word segments. The
TDNN was proposed in 1990 just as continuous density HMM models were first being
used for speech recognition. Since then, HMMs for speech recognition have proven
more popular and their ability to model the temporal sequences in speech makes using
convolution in time somewhat redundant.

An alternative to using convolution in time proposed in [2] is to use convolution
along the frequency axis. This helps to take into account of speaker variabilities, some
of which can manifest itself as shifts in formant frequencies which convolution and
pooling can provide invariance towards. It can also provides some robustness to noise
if noise is limited to a local part of the spectrum.

64 CHAPTER 5. DISCUSSION

Additionally, as speech features in lower frequency bands are very different to those
in higher frequency bands, [2] also proposes to limit weight sharing to units within a
max-pooling group only. This limited weight sharing however has the disadvantage
that no further convolutional layers can be added on top as features are no longer
related. Instead, fully connected layers need to be used to provide further depth. For
our model, we faced a similar problem in that different feature maps are not related
and thus how to perform convolution using these disparate feature maps as input to
the next convolutional layer. To get around this, our model uses convolution kernels
that extends over all of the feature maps together in the previous layer (although still
localized in time) which can thought of as a fully connected style of approach.

Initial experiments using convolution in frequency and limited weight sharing un-
der a hybrid CNN/HMM framework on the TIMIT dataset shows that the CNN/HMM
model outperforms a DNN/HMM with a similar number of parameters with max-
pooling being a critical factor in improving phoneme error rate [2]. In follow-up work
[1], the CNN was pre-trained using the CRBM method and was found to give a per-
formance boost over no pre-training on a large vocabulary, 18 hour Microsoft internal
voice search dataset.

In addition to convolution in frequency, [1] also investigated the use of convolu-
tion in time. They found that convolution in time was not as effective as convolution
in frequency as pooling can cause difficulty for higher layers to effectively label the
central frame. Using both convolution in frequency and time gives roughly the same
performance as full weight sharing in the frequency domain without convolution in
time. Again, limited weight sharing in the frequency domain proved to be the most
effective. Finally [1] also proposed a weighted softmax pooling method in order to try
and learn the pooling size and structure but this did not prove effective.

Convolution in frequency using both hybrid CNN/HMM and TANDEM frame-
works were investigated in [72] and [70] on the much larger scale 430 hour Broadcast
News and 300 hour Switchboard datasets. Results again show the effectiveness of us-
ing a convolutional approach in the frequency domain on these larger tasks. In [72],
convolution in time was also used but without max-pooling and in [70] using pooling
in time did not prove effective. In both cases, no unsupervised pre-training was used.

Finally in this section, we will cover the recently proposed maxout network [22]
which has set the state-of-the-art in various computer vision benchmarks. In the max-
out network, instead of using a conventional non-linearity such as a sigmoid or tanh

5.3. LIMITATIONS OF THIS STUDY 65

function, a maxout unit takes the maximum of a group of linear input units. This al-
lows the maxout unit to learn the appropriate activation function as it is parameterised
by weights of its linear input units. A maxout unit can learn a piecewise linear ap-
proximation of any convex function and a maxout network is a universal approximator
[22].

Maxout units perform the same function as max-pooling over linear units in a fully
connected neural network. In convolutional neural networks, maxout units pool over
units in different feature maps whilst max-pooling pools over units within the same
feature map in order to achieve shift invariance. In [22], a convolutional maxout layer
is followed by a regular max-pooling layer.

Initial work applying maxout networks to speech recognition has shown maxout
to be effective under low resource conditions but gains are less pronounced in larger
tasks where more training data is available [9] [56] [84]. Maxout networks were found
to converge much faster than sigmoid non-linearities due to their facilitation of larger
gradients in lower layers, alleviating the vanishing gradient problem [9] [84]. All work
so far has focused only on fully connected networks and do not use convolutional
methods.

5.3 Limitations of this Study

We recognise that this study is by no means a comprehensive evaluation. We have only
evaluated one particular size of architecture in order to be as comparable as possible
with the CRBM results in [55]. This study also only uses the TIMIT dataset which is
a clean speech dataset recorded in a noise-free environment. It does not evaluate the
representation’s handling of noise and mismatched channel conditions, something that
all good speech representations need to overcome. The experiments chosen to evaluate
the representation were simplified versions of real world tasks such as phoneme recog-
nition and open-set speaker verification. Nevertheless, this study is still worthwhile as
a feasibility study into the use of convolutional architectures for the speech domain.

5.4 Summary

We have seen that our model performs comparably to the CRBM model under the three
tasks performed. However, on the phoneme classification task, neither our model nor
the CRBM performs better than the MFCC baseline. We believe that with added depth

66 CHAPTER 5. DISCUSSION

and supervised learning, we can bridge that performance gap.
In the review of related work in speech recognition, our work in creating a feature

extractor using a convolutional neural network has parallels with the TANDEM frame-
work for speech recognition but the biggest point of difference is the use of supervised
learning in TANDEM compared to our use of unsupervised learning only.

Additionally, we have seen that our use of convolution in time may not be an effec-
tive strategy as temporal modelling can be handled well with Hidden Markov Models.
A more effective strategy could be to use convolution in the frequency domain. Convo-
lutional maxout layers could also provide a useful compliment to max-pooling within
feature maps though this has yet to be investigated in the speech domain.

Finally, we addressed some of the limitations of this study, including the use of
clean data only, the use of simplified tasks and no exploration of different network
architectures.

Chapter 6

Conclusion

The overall aim of this work was to carry out a feasibility study into the use of deep
Convolutional Neural Networks (CNN) in the speech domain. CNNs were designed
based on models of the visual cortex [51] and have been very effective in learning
hierarchical representations for object recognition (Sec. 2.5.3). As there are many
parallels between the visual and auditory cortex, we believed that applying CNNs to
the speech domain may yield similar hierarchical representations.

At the time of this work, deep learning was starting to be applied in the speech do-
main. Most work was based on the Restricted Boltzmann Machine (RBM) architecture
and a second aim of this study was to determine if an alternative building block to the
RBM could be successfully used in the speech domain.

To achieve our goals, we developed a CNN building block trained unsupervised
using the Predictive Sparse Decomposition algorithm simply modified for use with
speech data (Chapter 3). We followed the experimental protocol and compared our
model against Lee et al.’s work [55] which used a convolutional RBM (CRBM) as
the building block for a two layer network applied to gender classification, speaker
identification and phoneme classification (Chapter 4). We found that our CNN model
performed comparably on these tasks with the CRBM showing that an alternative to
RBM-based architectures can be used in the speech domain.

We also performed a qualitative comparison of the features learned by our CNN
model and the CRBM. We found that in the first layer the features learned consisted of
harmonic pattern detectors and formant energy detectors, similar to those learned by
the CRBM, although the CRBM features showed more obvious formant trajectories
than our features did. We found that for the second layer, the features learned were dif-
ferent. In a visualization showing which features were most active on female and male

67

68 CHAPTER 6. CONCLUSION

speech (Fig. 4.7), the CRBM retained a different encoding in the second layer whilst
our model did not. Results on the gender classification and speaker identification tasks
showed that our first layer representation outperformed the second layer representa-
tion whilst the opposite was true for the CRBM. This suggests that our model becomes
more invariant towards speaker characteristics as we move up the feature hierarchy
compared to the CRBM.

When compared against the baseline MFCC representation, in particular on the
phoneme classification task (Table 4.3), both our CNN model and the CRBM model
performed poorly by comparison. We have seen in other work that deep networks have
been very effective when used as acoustic models in speech recognition systems [32].
We hypothesize that the reasons for the convolutional models’ poor performance was
due to a lack of depth in the representation and a lack of supervised training which we
will need to explore in future work.

Overall, this study has shown that using the Predictive Sparse Decomposition algo-
rithm to learn the weights of a deep CNN unsupervised can be an alternative to using
the Convolutional Restricted Boltzmann Machine.

6.1 Future Work

In this feasibility study we have focused only on one network architecture. In order to
better understand the characteristics of our model, we would need to explore the archi-
tecture space to find the optimal number of layers, number of feature maps per layer,
size of convolution kernels and number of units to pool over. As neural networks do
not need decorrelated input, using PCA whitening to transform the input spectrogram
may not be necessary. Investigating the use of the raw spectrogram and other types of
input features may also prove fruitful.

We will also need to run further experiments to test our hypotheses for the poor
performance on phoneme classification by testing the effectiveness of using supervised
fine-tuning and the effectiveness of adding fully connected layers to increase the depth
of the network. Additionally, increasing depth will also help to us to investigate the
hypothesis that our model becomes more speaker invariant with depth.

Finally, in light of recent results using convolution in the frequency domain for
speech recognition [2] [1] [72] [70], it would be prudent to investigate whether we can
also apply PSD with convolution in the frequency domain and whether or not it will
prove to be more effective than convolution in time.

Bibliography

[1] Ossama Abdel-Hamid, Li Deng, and Dong Yu. Exploring convolutional neu-
ral network structures and optimization techniques for speech recognition. In
Proceedings of the 14th Annual Conference of the International Speech Commu-

nication Association (INTERSPEECH), pages 3366–3370, 2013.

[2] Ossama Abdel-Hamid, Abdel-rahman Mohamed, Hui Jiang, and Gerald Penn.
Applying convolutional neural networks concepts to hybrid NN-HMM model for
speech recognition. In IEEE International Conference on Acoustics, Speech, and

Signal Processing (ICASSP), pages 4277–4280, 2012.

[3] Nasir Ahmed, T. Natarajan, and Kamisetty Ramamohan Rao. Discrete cosine
transform. IEEE Transactions on Computers, C–23(1):90–93, Jan 1974.

[4] Pierre Baldi and Kurt Hornik. Neural networks and principal component analysis:
Learning from examples without local minima. Neural Networks, 2(1):53–58,
1989.

[5] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy
layer-wise training of deep networks. In Advances in Neural Information Pro-

cessing Systems (NIPS) 19, pages 153–160, 2006.

[6] Christopher M. Bishop. Neural Networks for Pattern Recognition, pages 116–
160, 195–200, 230–240. Oxford University Press, 1995.

[7] Herve Bourlard and Y. Kamp. Auto-association by multilayer perceptrons and
singular value decomposition. Biological Cybernetics, 59(4-5):291–294, 1988.

[8] Mike Brookes. VOICEBOX: Speech processing toolbox for MATLAB. http://
www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html. [Online: accessed
01/10/2010].

69

70 BIBLIOGRAPHY

[9] Meng Cai, Yongzhe Shi, and Jia Liu. Deep maxout neural networks for speech
recognition. In Proceedings of the IEEE Workshop on Automatic Speech Recog-

nition and Understanding (ASRU), pages 291–296, 2013.

[10] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector
machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1–
27:27, 2011.

[11] Ke Chen and Ahmad Salman. Extracting speaker-specific information with a
regularized siamese deep network. In Advances in Neural Information Processing

Systems (NIPS) 24, pages 298–306, 2011.

[12] Steven B. Davis and Paul Mermelstein. Comparison of parametric representa-
tions for monosyllabic word recognition in continuously spoken sentence. IEEE

Transactions on Acoustics, Speech, and Signal Processing, 28(4):357–366, 1980.

[13] David DeMers and Garrison W. Cottrell. Non-linear dimensionality reduction. In
Advances in Neural Information Processing Systems (NIPS) 5, pages 580–587,
1992.

[14] Li Deng, Michael Seltzer, Dong Yu, Alex Acero, Abdel-rahman Mohamed, and
Geoffrey E. Hinton. Binary coding of speech spectrograms using a deep auto-
encoder. In Proceedings of the Eleventh Annual Conference of the International

Speech Communication Association (INTERSPEECH), pages 1692–1695, Sep
2010.

[15] Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pas-
cal Vincent, and Samy Bengio. Why does unsupervised pre-training help deep
learning? Journal of Machine Learning Research, 11:625–660, 2010.

[16] Dumitru Erhan, Pierre-Antoine Manzagol, Yoshua Bengio, Samy Bengio, and
Pascal Vincent. The difficulty of training deep architectures and the effect of un-
supervised pre-training. In Proceedings of the Twelfth International Conference

on Artificial Intelligence and Statistics (AISTATS), pages 153–160, 2009.

[17] K. Fukushima. Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position. Biological Cy-

bernetics, 36(4):193–202, 1980.

BIBLIOGRAPHY 71

[18] John S. Garofolo, Lori F. Lamel, William M. Fisher, Jonathan G. Fiscus, David S.
Pallett, Nancy L. Dahlgren, and Victor Zue. TIMIT Acoustic-Phonetic Continu-

ous Speech Corpus. Linguistic Data Consortium, Philadelphia, 1993.

[19] Jort F. Gemmeke and Bert Cranen. Sparse imputation for noise robust speech
recognition using soft masks. In Proceedings of the IEEE Conference on Acous-

tics, Speech and Signal Processing (ICASSP), pages 4645–4648, 2009.

[20] Jort F. Gemmeke, Ulpu Remes, and Kalle J. Palomaki. Observation uncertainty
measures for sparse imputation. In Proceedings of the Eleventh Annual Confer-

ence of the International Speech Communication Association (INTERSPEECH),
pages 2262–2265, Sep 2010.

[21] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural
networks. In Proceedings of the Fourteenth International Conference on Artificial

Intelligence and Statistics (AISTATS), pages 315–323, 2010.

[22] Ian J. Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron C. Courville, and
Yoshua Bengio. Maxout networks. In Proceedings of the 30th International

Conference on Machine Learning (ICML), pages 1319–1327, 2013.

[23] František Grézl, Martin Karafiát, Stanislav Kontár, and Jan Černocký. Proba-
bilistic and bottle-neck features for LVCSR of meetings. In Proceedings of the

IEEE Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
757–760, 2007.

[24] Roger Grosse, Rajat Raina, Helen Kwong, and Andrew Y. Ng. Shift-invariant
sparse coding for audio classification. In Proceedings of the Twenty-third Con-

ference on Uncertainty in Artificial Intelligence, pages 149–158, 2007.

[25] Raia Hadsell, Ayse Erkan, Pierre Sermanet, Marco Scoffier, and Urs Muller. Deep
belief net learning in a long-range vision system for autonomous off-road driving.
In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 628–633, 2008.

[26] Darren Hau and Ke Chen. Exploring hierarchical speech representations with a
deep convolutional neural network. In Proceedings of the 11th UK Workshop on

Computational Intelligence, pages 37–42, 2011.

72 BIBLIOGRAPHY

[27] Mikael Henaff, Kevin Jarrett, Koray Kavukcuoglu, and Yann LeCun. Unsuper-
vised learning of sparse features for scalable audio classification. In International

Society for Music Information Retrieval Conference, pages 681–686, 2011.

[28] Hynek Hermanksy, Daniel P. W. Ellis, and Sangita Sharma. Tandem connec-
tionist feature extraction for conventional HMM systems. In Proceedings of the

IEEE Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
1635–1638, 2000.

[29] Yasser Hifny and Steve Renals. Speech recognition using augmented conditional
random fields. IEEE Transactions on Audio, Speech & Language Processing,
17(2):354–365, 2009.

[30] Geoffrey E. Hinton. Training products of experts by minimizing contrastive di-
vergence. Neural Computation, 14(8):1771–1800, 2002.

[31] Geoffrey E. Hinton. A practical guide to training restricted boltzmann machines.
Technical report, University of Toronto, 2010.

[32] Geoffrey E. Hinton, Li Deng, Dong Yu, George E. Dahl, Abdel-rahman Mo-
hamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen,
Tara N. Sainath, and Brian Kingsbury. Deep neural networks for acoustic mod-
eling in speech recognition: The shared views of four research groups. IEEE

Signal Processing Magazine, 29(6):82–97, 2012.

[33] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algo-
rithm for deep belief nets. Neural Computation, 18(7):1527–54, 2006.

[34] Geoffrey E. Hinton and Ruslan R. Salakhutdinov. Reducing the dimensionality
of data with neural networks. Science, 313(5786):504–7, 2006.

[35] Guoning Hu and DeLiang Wang. Auditory segmentation based on onset and
offset analysis. IEEE Transactions on Audio, Speech and Language Processing,
15(2):396–405, 2007.

[36] Xeudong Huang, Alex Acero, and Hsiao-Wuen Hon. Spoken Language Pro-

cessing: A Guide to Theory, Algorithm and System Development, pages 21–36,
276–283, 464–468. Prentice Hall, 2001.

BIBLIOGRAPHY 73

[37] Xuedong Huang, Alex Acero, Fileno A. Alleva, Li Jiang, Mei-Yuh Hwang, and
Milind Mahajan. From Sphinx II to Whisper – Making Speech Recognition Us-
able. In Chin-Hui Lee, Frank K. Soong, and Kuldip K. Paliwal, editors, Automatic

Speech Recognition Speech and Speaker Recognition, pages 481–508. Norwell,
MA, Kluwer Academic Publishers, 1996.

[38] David H. Hubel and Torsten N. Wiesel. Receptive fields, binocular interaction
and functional architecture in the cat’s visual cortex. The Journal of Physiology,
160(1):106–154, 1962.

[39] Anthony F. Jahn and Joseph Santos-Sacchi. Physiology of the Ear, pages 549–
569, 613–632, 651–667. Singular Thomson Learning, second edition, 2001.

[40] Kevin Jarrett, Koray Kavukcuoglu, Marc’Aurelio Ranzato, and Yann LeCun.
What is the best multi-stage architecture for object recognition? In Proceed-

ings of the 12th International Conference on Computer Vision (ICCV), pages
2146–2153, 2009.

[41] Daniel Jurafsky and James H. Martin. Speech and Language Processing, pages
207–246, 319–367. Pearson Education, Inc., second edition, 2009.

[42] Koray Kavukcuoglu, Marc’Aurelio Ranzato, Rob Fergus, and Yann LeCun.
Learning invariant features through topographic filter maps. In IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR), pages 1605–1612,
2009.

[43] Koray Kavukcuoglu, Marc’Aurelio Ranzato, and Yann LeCun. Fast inference
in sparse coding algorithms with applications to object recognition. Technical
report, Computational and Biological Learning Lab, Courant Institute, New York
University, 2008. CBLL-TR-2008-12-01.

[44] Koray Kavukcuoglu, Pierre Sermanet, Y-Lan Boureau, Karol Gregor, Michael
Mathieu, and Yann LeCun. Learning convolutional feature hierarchies for visual
recognition. In Advances in Neural Information Processing Systems (NIPS) 23,
pages 1090–1098, 2010.

[45] T. Kinnunen, E. Karpov, and P. Franti. Real-time speaker identification and
verification. IEEE Transactions on Audio, Speech and Language Processing,
14(1):277–288, 2006.

74 BIBLIOGRAPHY

[46] Alex Krizhevsky and Geoffrey E. Hinton. Using very deep autoencoders for
content-based image retrieval. In 19th European Symposium on Artificial Neural

Networks (ESANN), 2011.

[47] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in Neural Information

Processing Systems (NIPS) 25, pages 1106–1114, 2012.

[48] Kevin J. Lang, Alex Waibel, and Geoffrey E. Hinton. A time-delay neural net-
work architecture for isolated word recognition. Neural Networks, 3(1):23–43,
1990.

[49] Hugo Larochelle, Yoshua Bengio, Jerome Louradour, and Pascal Lambin. Ex-
ploring strategies for training deep neural networks. Journal of Machine Learn-

ing Research, 10:1–40, 2009.

[50] Yann LeCun, Bernard Boser, John S. Denker, Donnie Henderson, Richard E.
Howard, Wayne Hubbard, and Lawrence D. Jackel. Backpropagation applied to
handwritten zip code recognition. Neural Computation, 1(4):541–551, 1989.

[51] Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[52] Yann LeCun, Fu Jie Huang, and Léon Bottou. Learning methods for generic ob-
ject recognition with invariance to pose and lighting. In Proceedings of Computer

Vision and Pattern Recognition (CVPR), pages 97–104, 2004.

[53] Honglak Lee, Chaitu Ekanadham, and Andrew Y. Ng. Sparse deep belief net
model for visual area v2. In Advances in Neural Information Processing (NIPS)

20, 2007.

[54] Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y. Ng. Convo-
lutional deep belief networks for scalable unsupervised learning of hierarchical
representations. In Proceedings of the 26th Annual International Conference on

Machine Learning (ICML), pages 609–616, 2009.

[55] Honglak Lee, Yan Largman, Peter Pham, and Andrew Y. Ng. Unsupervised fea-
ture learning for audio classification using convolutional deep belief networks.

BIBLIOGRAPHY 75

In Advances in Neural Information Processing Systems (NIPS) 22, pages 1096–
1104, 2009.

[56] Yajie Miao, Florian Metze, and Shourabh Rawat. Deep maxout networks for low-
resource speech recognition. In Proceedings of the IEEE Workshop on Automatic

Speech Recognition and Understanding (ASRU), pages 398–403, 2013.

[57] Ji Ming and F. Jack Smith. Improved phone recognition using bayesian triphone
models. In Proceedings of the IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pages 409–412, 1998.

[58] Vivienne L. Ming and Lori L. Holt. Efficient coding in human auditory percep-
tion. Journal of the Acoustical Society of America, 126(3):1312–20, 2009.

[59] Abdel-rahman Mohamed, George E. Dahl, and Geoffrey E. Hinton. Acoustic
modeling using deep belief networks. IEEE Transactions on Audio, Speech, and

Language Processing, 20(1):14–22, 2012.

[60] Abdel-rahman Mohamed, Geoffrey E. Hinton, and Gerald Penn. Understanding
how deep belief networks perform acoustic modelling. In IEEE International

Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 4273–
4276, 2012.

[61] Brian C. J. Moore. Introduction to the Psychology of Hearing, pages 21–52,
65–78. Academic Press, fifth edition, 2003.

[62] Bruno A. Olshausen and David J. Field. Emergence of simple-cell receptive field
properties by learning a sparse code for natural images. Nature, 381(6583):607–
609, 1996.

[63] Encyclopaedia Britannica Online. Basilar membrane: analysis of sound
frequencies. [ART]. http://www.britannica.com/EBchecked/media/537/

The-analysis-of-sound-frequencies-by-the-basilar-membrane. [Online: ac-
cessed 27/11/2013].

[64] Rajat Raina, Alexis Battle, Honglak Lee, Benjamin Packer, and Andrew Y. Ng.
Self-taught learning: Transfer learning from unlabelled data. In Proceedings of

the 24th Annual International Conference on Machine Learning (ICML), pages
759–766, 2007.

76 BIBLIOGRAPHY

[65] Marc’Aurelio Ranzato, Fu Jie Huang, Y-Lan Boureau, and Yann LeCun. Un-
supervised learning of invariant feature hierarchies with applications to object
recognition. In IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). IEEE Computer Society, 2007.

[66] Sourabh Ravindran, David V. Anderson, and Malcolm Slaney. Improving the
noise-robustness of mel-frequency cepstral coefficients for speech processing. In
Statistical and Perceptual Audio Processing, pages 48–52, 2006.

[67] Douglas A. Reynolds, Thomas F. Quatieri, and Robert B. Dunn. Speaker verifi-
cation using adapted gaussian mixture models. Digital Signal Processing, 10(1-
3):19–41, 2000.

[68] Maximilian Riesenhuber and Tomaso Poggio. Hierarchical models of object
recognition in cortex. Nature Neuroscience, 2(11):1019–1025, 1999.

[69] Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua Bengio.
Contractive auto-encoders: explicit invariance during feature extraction. In Pro-

ceedings of the 28th International Conference on Machine Learning (ICML),
pages 833–840, 2011.

[70] Tara N. Sainath, Brian Kingsbury, Abdel-rahman Mohamed, George E. Dahl,
George Saon, Hagen Soltau, Tomás Beran, Aleksandr Y. Aravkin, and Bhuvana
Ramabhadran. Improvements to deep convolutional neural networks for LVCSR.
In Proceedings of the IEEE Workshop on Automatic Speech Recognition and Un-

derstanding (ASRU), pages 315–320, 2013.

[71] Tara N. Sainath, Brian Kingsbury, and Bhuvana Ramabhadran. Auto–encoder
bottleneck features using deep belief networks. In Proceedings of the IEEE Con-

ference on Acoustics, Speech and Signal Processing (ICASSP), pages 4153–4156,
2012.

[72] Tara N. Sainath, Abdel-rahman Mohamed, Brian Kingsbury, and Bhuvana Ram-
abhadran. Deep convolutional neural networks for LVCSR. In Proceedings of the

IEEE Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
8614–8618, 2013.

[73] Tara N. Sainath, Bhuvana Ramabhadran, David Nahamoo, Dimitri Kanevsky,
and Abhinav Sethy. Exemplar-based sparse representation features for speech

BIBLIOGRAPHY 77

recognition. In Proceedings of the Eleventh Annual Conference of the Interna-

tional Speech Communication Association (INTERSPEECH), pages 2258–2261,
Sep 2010.

[74] Ahmad Salman. Learning speaker-specific characteristics with deep neural ar-

chitecture. PhD thesis, University of Manchester, 2012.

[75] Eric Saund. Dimensionality-reduction using connectionist networks. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 11(3):304–314,
1989.

[76] Andrew Saxe, Pang Wei Koh, Zhenghao Chen, Maneesh Bhand, Bipin Suresh,
and Andrew Y. Ng. On random weights and unsupervised feature learning. In
Proceedings of the 28th Annual International Conference on Machine Learning

(ICML), pages 1089–1096, 2011.

[77] Frank Seide, Gang Li, Xie Chen, and Dong Yu. Feature engineering in context-
dependent deep neural networks for conversational speech transcription. In Pro-

ceedings of the IEEE Workshop on Automatic Speech Recognition and Under-

standing (ASRU), pages 24–29, 2011.

[78] Shihab Shamma. On the role of space and time in auditory processing. Trends in

Cognitive Sciences, 5(8):340–348, 2001.

[79] Gariemella S. V. S. Sivaram, Sriram Ganapathy, and Hynek Hermansky. Sparse
auto-associative neural networks: theory and application to speech recognition.
In Proceedings of the Eleventh Annual Conference of the International Speech

Communication Association (INTERSPEECH), pages 2270–2273, Sep 2010.

[80] Malcolm Slaney and Richard F. Lyon. On the importance of time - a temporal
representation of sound. In Visual Representations of Speech Signals, pages 95–
116. John Wiley & Sons, Inc., New York, NY, USA, 1993.

[81] Paris Smaragdis. Redundancy Reduction for Computational Audition, a Unifying

Approach. PhD thesis, Massachusetts Institute of Technology, June 2001. pages
41–45.

[82] Evan C. Smith and Michael S. Lewicki. Learning efficient auditory codes using
spikes predicts cochlear filters. In Advances in Neural Information Processing

Systems (NIPS) 17, pages 1289–1296, 2004.

78 BIBLIOGRAPHY

[83] Pawel Swietojanski, Arnab Ghosal, and Steve Renals. Unsupervised cross-
lingual knowledge transfer in DNN-based LVCSR. In Proceedings of the IEEE

Spoken Language Technology Workshop (SLT), pages 246–251, 2012.

[84] Pawel Swietojanski, Jinyu Li, and Jui-Tang Huang. Investigation of maxout neu-
ral networks for speech recognition. In Proceedings of the IEEE Conference on

Acoustics, Speech and Signal Processing (ICASSP) (to appear), 2014.

[85] Graham W. Taylor, Geoffrey E. Hinton, and Sam Roweis. Modeling human mo-
tion using binary latent variables. In Advances in Neural Information Processing

Systems (NIPS) 19, pages 1345–1352, 2006.

[86] Vivek Tyagi and Christian Wellekens. On desensitizing the mel-cepstrum to spu-
rious spectral components for robust speech recognition. In IEEE International

Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 529–
532, 2005.

[87] Karel Veselý, Martin Karafiát, and František Grézl. Convolutive bottleneck net-
work features for LVCSR. In Proceedings of the IEEE Workshop on Automatic

Speech Recognition and Understanding (ASRU), pages 42–47, 2011.

[88] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol.
Extracting and composing robust features with denoising autoencoders. In Pro-

ceedings of the 25th International Conference on Machine learning (ICML),
pages 1096–1103, 2008.

[89] Wikipedia. Speech production. https://en.wikipedia.org/wiki/Speech_

production. [Online: accessed 26/11/2013].

[90] Philip C. Woodland, Chris J. Leggetter, J. J. Odell, V. Valtchev, and Steve J.
Young. The 1994 HTK large vocabulary speech recognition system. In Pro-

ceedings of the IEEE Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 73–76, 1995.

[91] Dong Yu, Li Deng, and George E. Dahl. Roles of pretraining and fine-tuning
in context-dependent DBN-HMMs for real-world speech recognition. In NIPS

Workshop on Deep Learning and Unsupervised Feature Learning, 2010.

BIBLIOGRAPHY 79

[92] Dong Yu, Michael L. Seltzer, Jinyu Li, Jui-Ting Huang, and Frank Seide. Fea-
ture learning in deep neural networks - studies on speech recognition tasks. In
International Conference on Learning Representations, 2013.

[93] Xiaojia Zhao and DeLiang Wang. Analyzing noise robustness of MFCC and
GFCC features in speaker identification. In IEEE International Conference on

Acoustics, Speech, and Signal Processing (ICASSP), pages 7204–7208, 2013.

Appendix A

Implementation

The experiments presented in this thesis were implemented using MATLAB. Read-
ing TIMIT speech files and extracting Mel-frequency Cepstral Coefficients were per-
formed using the VOICEBOX toolbox [8]. The LibSVM library [10] was used for the
Support Vector Machine implementation. All other code was written by the author of
this thesis. Below follows a listing of the source code used to implement the Predictive
Sparse Decomposition training algorithm.

First, psd patch.m which is the main training function.

1 function [weights biases gain basis mse] = psd_patch(train, valid, ...

numCodeUnits, numEpochs, basisLearningRate, predictorLearningRate, ...

decayLearningRate, codeSparsity, predictionAlpha, codeOptThreshold, ...

codeOptLearningRate, codeOptMaxIterations, codeLRSearchMaxIterations, ...

loggingRate)

2 %PSD_PATCH Run PSD using dataset consisting of vectorized patches

3 % Input args:

4 % - train/valid: Training and validation set consisting of vectorized

5 % patches. Vectorized patch dim x num data points

6 % - numCodeUnits: Number of hidden units

7 % - numEpochs: Number of epochs to train for

8 % - basisLearningRate: Learning rate for basis (decoder) part

9 % - predictorLearningRate: Learning rate for predictor (encoder) part

10 % - decayLearningRate: Learning rate decay factor

11 % - codeSparsity: Weighting parameter of the sparsity part of the loss

12 % function

13 % - predictionAlpha: Weighting parameter of the predictor part of the

14 % loss function

15 % - codeOptThreshold: Convergence threshold for stopping search for

16 % optimal sparse code

17 % - codeOptLearningRate: Learning rate for searching for optimal sparse

18 % code

19 % - codeOptMaxIterations: Maximum number of iterations for searching for

20 % optimal sparse code

80

81

21 % - codeLRSearchMaxIterations: Maximum number of learning rate search

22 % iterations per iteration of searching for optimal sparse code

23 % - loggingRate: Rate at which to compute error and decay learning rate

24 % (number of data points)

25 % Output:

26 % - weights: Predictor weights, num code units x vectorized patch dim

27 % - biases: Predictor biases, num code units x 1

28 % - gain: Predictor gains, num code units x 1

29 % - basis: Decoder basis, vectorized patch dim x num code units

30

31 %% Initialize parameters

32

33 fprintf(1,'Initializing parameters...');

34

35 [inputDim numPatches] = size(train);

36

37 % Randomly initialize basis functions according to uniform distribution

38 % [-1/sqrt(fan-in), 1/sqrt(fan-in)].

39 upper = numCodeUnitsˆ(-0.5);

40 lower = -upper;

41 basis = lower + (upper - lower).*rand(inputDim, numCodeUnits);

42 % Normalize each basis function (column)

43 for j = 1:numCodeUnits

44 basis(:,j) = basis(:,j)./norm(basis(:,j));

45 end

46

47 % Randomly initialize basis functions according to uniform distribution

48 % [-1/sqrt(fan-in), 1/sqrt(fan-in)].

49 upper = inputDimˆ(-0.5);

50 lower = -upper;

51 weights = lower + (upper - lower).*rand(numCodeUnits, inputDim);

52

53 biases = zeros(numCodeUnits, 1);

54

55 gain = ones(numCodeUnits, 1);

56

57 zeroThreshold = 0.0000001;

58

59 basisLearningRateCurrent = basisLearningRate;

60 predictorLearningRateCurrent = predictorLearningRate;

61

62 fprintf(1,'Completed\r');

63

64 %% Train

65

66 fprintf(1,strcat('[',datestr(now),'] '));

67 fprintf(1,' Calculating initial mse...\r');

68 mse = zeros((numPatches*numEpochs)/loggingRate + 1, 4);

69 [mseTrain mseValid] = calc_train_valid_mse(train, valid, basis, weights, ...

biases, gain, codeSparsity);

70 mse(1,1) = 0;

71 mse(1,2) = mseTrain;

72 mse(1,3) = mseValid;

73 fprintf(1,strcat('[',datestr(now),'] '));

82 APPENDIX A. IMPLEMENTATION

74 fprintf(' Train = %f, Valid = %f\r', mseTrain, mseValid);

75

76 for epoch=1:numEpochs

77 fprintf(1,strcat('[',datestr(now),'] '));

78 fprintf(1,' Starting epoch %i of %i...\r', epoch, numEpochs);

79 sumOptimizeIterations = 0;

80 for p=1:numPatches

81 % Predict the code vector Z

82 patch = train(:,p);

83 nonLinearOutput = tanh(weights*patch + biases);

84 predictedCode = gain.*nonLinearOutput;

85

86 % Optimize the code vector to find Z*
87 [optimalCode numIterations] = optimize_z(patch, predictedCode, basis, ...

codeSparsity, predictionAlpha, codeOptThreshold, ...

codeOptLearningRate, codeOptMaxIterations, ...

codeLRSearchMaxIterations, zeroThreshold);

88 sumOptimizeIterations = sumOptimizeIterations + numIterations;

89

90 % Update basis functions

91 derivBasis = (patch - basis*optimalCode);

92 derivBasis = derivBasis * (-optimalCode)';

93 basis = basis - basisLearningRateCurrent * derivBasis;

94 % Normalize each basis function (column)

95 for j = 1:numCodeUnits

96 basis(:,j) = basis(:,j)./norm(basis(:,j));

97 end

98

99 % Update weights and biases

100 codeDeriv = (1./gain) .* (gain.ˆ2 - predictedCode.ˆ2);

101 delta = (-codeDeriv).*(optimalCode - predictedCode);

102 delta = predictionAlpha * delta;

103 biases = biases - predictorLearningRateCurrent * delta;

104 derivWeights = delta * patch';

105 weights = weights - predictorLearningRateCurrent * derivWeights;

106 % Update gain

107 derivGain = predictionAlpha*(optimalCode - ...

predictedCode).*(-nonLinearOutput);

108 gain = gain - predictorLearningRate * derivGain;

109

110 if(mod(p,loggingRate)==0)

111 % Learning rate decay

112 predictorLearningRateCurrent = predictorLearningRate / ((...

(((epoch-1)*numPatches)+p) /1000 * decayLearningRate) + 1);

113 basisLearningRateCurrent = basisLearningRate / ((...

(((epoch-1)*numPatches)+p) /1000 * decayLearningRate) + 1);

114

115 fprintf(1,strcat('[',datestr(now),'] '));

116 fprintf(1,' Completed working on patch %i of %i (E%i)\r', p, ...

numPatches, epoch);

117 [mseTrain mseValid] = calc_train_valid_mse(train, valid, basis, ...

weights, biases, gain, codeSparsity);

118 patchNum = numPatches*(numEpochs - 1) + p;

119 idx = patchNum / loggingRate + 1;

83

120 mse(idx, 1) = patchNum;

121 mse(idx, 2) = mseTrain;

122 mse(idx, 3) = mseValid;

123 fprintf(1,strcat('[',datestr(now),'] '));

124 fprintf(' Train = %f, Valid = %f\r', mseTrain, mseValid);

125 end

126 end

127 fprintf(1,strcat('[',datestr(now),'] '));

128 fprintf(1,' Completed epoch %i of %i\r', epoch, numEpochs);

129 mse(end, 4) = sumOptimizeIterations / numPatches;

130 end

131

132 fprintf(1,strcat('[',datestr(now),'] '));

133 fprintf(1,' Completed Training\r');

134

135 end

Next, optimize z.m which is used to find the optimal sparse code called by psd patch.m.

1 function [optimalZ numOptimizeIterations] = optimize_z(patch, predictedZ, ...

basis, sparsityParam, predictionAlpha, convergenceThreshold, ...

initialLearningRate, maxOptimizeIterations, maxLRSearchIterations, ...

zeroThreshold)

2 %OPTIMIZE_Z Optimize the code vector z using gradient descent

3 % Input args:

4 % - patch: Original input patch as column vector

5 % - predictedZ: Code (column) vector z from predictor

6 % - basis: Matrix of basis functions of size patchLength * codeLength

7 % - sparsityParam: Scalar to control sparsity of the z

8 % - predictionAlpha: Scalar to control influence of prediction loss

9 % - convergenceThreshold: Threshold used to determine convergence (scalar)

10 % - learningRate: Learning rate (scalar)

11 % - maxOptimizeIterations: Maximum number of iterations before stopping

12 % - maxLRSearchIterations: Maximum number of learning rate search iterations

13 % - zeroThreshold: Threshold used to determine floating point zero value

14 % Output:

15 % - optimalZ - Optimal code vector z*
16

17

18 z = predictedZ;

19

20 delta = convergenceThreshold + 1;

21 numOptimizeIterations = 0;

22 learningRate = initialLearningRate;

23 initialLoss = (norm(patch - basis*z)).ˆ2 + (sparsityParam * norm(z,1));

24 currentLoss = initialLoss;

25 previousLoss = Inf;

26 while (delta > convergenceThreshold && currentLoss < previousLoss && ...

numOptimizeIterations < maxOptimizeIterations)

27

28 % Calculate derivatives

29 decoderDeriv = (patch - basis*z);

84 APPENDIX A. IMPLEMENTATION

30 decoderDeriv = (-basis)' * decoderDeriv;

31 predictionDeriv = predictionAlpha * (z - predictedZ);

32 sparsityDeriv = sparsityParam * sign_float(z, zeroThreshold);

33 deriv = decoderDeriv + predictionDeriv + sparsityDeriv;

34

35 % Use search to find appropriate learning rate

36 numLRSearchIterations = 0;

37 newLoss = currentLoss + 1;

38

39 % Keep decreasing the learning rate until the loss starts to decrease

40 % or hit maximum number of search iterations

41 while (newLoss > currentLoss && numLRSearchIterations < maxLRSearchIterations)

42 % Take a trial gradient step

43 tempZ = z - learningRate * deriv;

44 % Calculate new loss with trial z

45 newLoss = (norm(patch - basis*tempZ)).ˆ2 + (sparsityParam * ...

norm(tempZ,1)) + (predictionAlpha * (norm(tempZ - predictedZ).ˆ2));

46 % Increment number of search iterations

47 numLRSearchIterations = numLRSearchIterations + 1;

48 % Loss is decreasing, make the trial step permanent

49 if (newLoss < currentLoss)

50 % Update z

51 z = tempZ;

52 % Update losses

53 previousLoss = currentLoss;

54 currentLoss = newLoss;

55 else

56 % Halve the learning rate

57 learningRate = learningRate / 2;

58 end

59 end

60

61 % Calculate the L2 norm of the derivative

62 delta = norm(deriv);

63

64 numOptimizeIterations = numOptimizeIterations + 1;

65 %fprintf(1,'Iteration %i: Derivative norm = %f\r',numIterations, delta);

66 end

67 optimalZ = z;

68 finalLoss = (norm(patch - basis*optimalZ)).ˆ2 + (sparsityParam * ...

norm(optimalZ,1)) + (predictionAlpha * (norm(optimalZ - predictedZ).ˆ2));

69 %fprintf(1,'Optimal z found in %i iterations (%i search iterations). Initial ...

Loss = %f, Final Loss = %f\r',numOptimizeIterations, ...

numLRSearchIterations, initialLoss, finalLoss);

70

71 end

Finally, calc train valid mse.m which is used to compute the mean squared recon-
struction error of the training and validation datasets called by calc train valid mse.m.

85

1 function [meanTrainError meanValidError] = calc_train_valid_mse(train, ...

valid, basis, weights, biases, gain, codeSparsity)

2 %CALC_TRAIN_VALID_MSE Computes the reconstruction error for training and

3 %validation sets using the predictor for computing the representation

4 % Input args:

5 % - train/valid: Training and validation set consisting of vectorized

6 % patches. Vectorized patch dim x num data points

7 % - basis: Decoder basis, vectorized patch dim x num code units

8 % - weights: Predictor weights, num code units x vectorized patch dim

9 % - biases: Predictor biases, num code units x 1

10 % - gain: Predictor gains, num code units x 1

11 % - codeSparsity: Weighting parameter of the sparsity part of the loss

12 % function

13 % Output:

14 % - meanTrainError: Mean squared reconstruction error of the training set

15 % - meanValidError: Mean squared reconstruction error of the validation set

16

17

18 [inputDim numPatches] = size(train);

19 sumSquaredError = 0;

20 for i=1:numPatches

21 % Predict the code vector Z

22 patch = train(:,i);

23 predictedCode = gain.*tanh(weights*patch + biases);

24 patchSquaredError = sum((patch - basis*predictedCode).ˆ2);

25 sumSquaredError = sumSquaredError + patchSquaredError;

26 end

27 meanTrainError = sumSquaredError / numPatches;

28

29 [inputDim numPatches] = size(valid);

30 sumSquaredError = 0;

31 for i=1:numPatches

32 % Predict the code vector Z

33 patch = valid(:,i);

34 predictedCode = gain.*tanh(weights*patch + biases);

35 patchSquaredError = sum((patch - basis*predictedCode).ˆ2);

36 sumSquaredError = sumSquaredError + patchSquaredError;

37 end

38 meanValidError = sumSquaredError / numPatches;

39

40 end

