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Abstract

Transmitting a linguistic message is most often the primary purpose of speech com

munication and the recognition of this message by machine that would be most useful.

This research consists of two major parts. The first part presents a novel and promis

ing approach for estimating the degree of recognition of speech phonemes and makes 

use of a new set of features based fractals. The main methods of computing the frac

tal dimension of speech signals are reviewed and a new speaker-independent speech 

recognition system developed at De Montfort University is described in detail. Fi

nally, a  Least Square Method as well as a novel Neural Network algorithm is employed 

to derive the recognition performance of the speech data.

The second part of this work studies the synthesis of speech words, which is based 

mainly on the fractal dimension to create natural sounding speech. The work shows 

that by careful use of the fractal dimension together with the phase of the speech 

signal to ensure consistent intonation contours, natural-sounding speech synthesis is 

achievable with word level speech. In order to extend the flexibility of this framework, 

we focused on the filtering and the compression of the phase to maintain and produce 

natural sounding speech. A ‘naturalness level’ is achieved as a result of the fractal 

characteristic used in the synthesis process. Finally, a novel speech synthesis system 

based on fractals developed at De Montfort University is discussed.

xiv
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Throughout our research simulation experiments were performed on continuous speech 

data available from the Texas Instrument Massachusetts institute of technology ( 

TIMIT) database, which is designed to provide the speech research community with 

a standarised corpus for the acquisition of acoustic-phonetic knowledge and for the 

development and evaluation of automatic speech recognition system.
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Chapter 1 

Introduction

The human vocal tract and articulators are biological organs with non-linear proper

ties, whose operation are not just under conscious control but also affected by factors 

ranging from gender to upbringing to emotional state. As a result, vocalisations can 

vary widely in terms of their accent, pronunciation, articulation, roughness, nasality, 

pitch, volume, and speed; moreover during transmission, our irregular speech patterns 

can be further distorted by background noise and echoes, as well as electrical charac

teristics (if telephones or other electronic equipment are used). All these sources of 

variability make speech recognition, even more than speech generation, a  very com

plex problem [1].

Humans are so comfortable with speech that we would also like to interact with our 

computers via speech, rather than having to resort to primitive interfaces such as 

keyboards and pointing devices. A speech interface could support many valuable 

applications, for example, telephone directory assistance, spoken database querying 

for novice users, ‘hands-busy’ applications in medicine or fieldwork, office dictation 

devices, or even automatic voice translation into foreign languages. Such tantalizing

1
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applications have motivated research in automatic speech recognition since the 1950’s. 

Significant progress has been made so far, especially since the 1970’s, using a series of 

engineered approaches that include template matching, knowledge engineering, and 

statistical modelling. However, computers are still nowhere near the level of human 

performance, in terms of speech recognition, and it appears that further significant 

advances will require some new insights.

1.1 Speech Signals: Representation and Analysis

Continuous speech is a set of complicated audio signals, which makes producing them 

artificially difficult. Speech signals are usually considered as voiced or unvoiced, but 

in some cases, they are a combination of the two. Voiced sounds consist of a fun

damental frequency (Fo) and a lot of harmonic components produced by vocal cords 

(vocal folds). The vocal tract modifies this excitation signal causing formant (pole) 

and sometimes antiformant (zero) frequencies [1]. Each formant frequency has an 

amplitude and bandwidth and it may be sometimes difficult to  define some of these 

parameters correctly. The fundamental frequency and formant frequencies are prob

ably the most important concepts in speech synthesis and also in speech processing 

in general.

W ith purely unvoiced sounds, there is no fundamental frequency in the excitation 

signal and therefore no harmonic structure either; the excitation can be considered 

as white noise. The airflow is forced through a vocal tract constriction, which can 

occur in several places between the glottis and mouth. Some sounds are produced
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with complete stoppage of airflow followed by a sudden release, producing an impul

sive turbulent excitation often followed by a more protracted turbulent excitation. 

A discrete time model, which simulates this process, is depicted in Figure 1.1. The 

vibrations of the vocal cords are simulated by an impulse train generator, which pro

duces pulses p at the pitch period. In the case of unvoiced speech, the airflow can be 

seen as white noise created by an appropriate random noise generator. This discrete 

sequence produced by either generator gets multiplied by a  value representing the 

amplitude of the signal corresponding to  the loudness of our speech. The vocal tract 

can be considered as a  linear filter. Of course, this system cannot be considered static, 

but varies with time. Due to  the slow movements of our vocal system, the model can 

be assumed static for short time intervals, e.g. 10ms [2].

Time-varying
Digitai
Filter

Figure 1.1: Model of Speech Production.
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1.2 Speech Recognition

Speech recognition is an important subject that has been widely studied over the 

last decade. Until recently, classical mathematics and signal processing techniques 

have been used to develop recognition systems. In recent years, research has been 

carried out on the fractal nature of speech. As information technology becomes more 

important to us in many aspects of our daily lives, the problem of communication 

between humans and machines becomes more of an issue. The well-established forms 

of communication with computer keyboards, screens, and the mouse have many dis

advantages, which could be overcome with a natural spoken language interface. How

ever, the deceptively simple means of exchanging information by speech is in fact, 

extremely complicated.

Speech recognition is being used by thousands of people everyday. Systems such as 

calling cards and phone banking services use speech recognition by prompting the 

user to answer questions in voice rather than pressing digits on the phone pad to 

send Dual Tone Multi-Frequency (D T M F ) signals. Speech Recognition is the ability 

to audibly detect human speech and parse that speech in order to generate a string of 

words or sounds to represent what a person has said. Speaker recognition is similar 

to that of speech recognition except that in addition to identifying the speech spoken, 

the system must also identify the individual who spoke [3].

The main problem areas for speech recognition are:

1. Continuous speech needs to be segmented in order to obtain the correct infor

mation.
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2. Speech patterns vary not only between speakers but also within an individual 

speaker, even when identical words are spoken.

3. A word can vary in loudness, pitch, stress and pronunciation rate.

4. The geographical origin of the speaker is an important factor when words are 

pronounced.

5. Different words sound very similar.

6. Background noise and other interference can distort the original signal.

7. Individual elements tend to lose their identity in the speech process; for example, 

words merge into each other and phonemes suffer from co-articulation effects.

Due to these problems, research has mostly concentrated on solving specific tasks, 

such as speaker-dependent recognition and isolated word recognition. Isolated word 

recognition overcomes the problem of correctly segmenting continuous speech by de

manding that appropriate pauses are inserted between each voiced word. Speaker de

pendent systems avoid problems such as regional accents and the sex of the speaker. 

The work reported in this thesis has focused on a speaker-independent isolated speech 

recognition system based on fractal techniques developed at De Montfort University.

The principal aims of the research have been to:

1. Investigate novel techniques for speech recognition systems based on fractal 

properties.

2. Improve the voice services in telecommunication systems through the develop

ment of new non-linear speech processing techniques.
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3. Provide higher quality speech synthesis.

4. Improve speech recognition.

5. Improve speaker identification and verification.

The specific objectives have been:

1. Use different fractal signatures including the fractal dimension and information 

dimension to segment and uniquely quantify speech signals.

2. Compare the practical value of this approach against established techniques.

3. Consider the synthesis of a word in order to produce high quality, good intelli

gibility and natural sounding speech.

The research has delivered new technologies to provide more efficient speech recogni

tion an higher quality speech synthesis.

1.3 Scope of the Thesis and Original Contribu
tions

Fractal geometry is currently being used in many areas of physics and mathemat

ics. Fractals have provided a framework for the characterisation and modelling of 

irregular and seemingly complicated structures found in nature. Classical geometry 

deals mainly with objects that cannot be recursively subdivided into self-similar com

ponents, while fractal geometry provides an approach to the analysis of self-similarity.

Since the advent of the new mathematical concept called fractals, fractal geometry 

has revolutionised the characterisation of self-similar structures and phenomena in
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nature [4]. The concept of fractals was introduced by Benoit Mandelbrot in the late 

1970s and is used generally to refer to geometrical shapes in nature with self-similar 

structures. This new concept has stimulated renewed interest in the field of comput

ing mathematics and simulation [5, 6].

Fractals have provided us with a  new method of characterising seemingly complex 

and irregular structures in nature by means of the fractal dimension. It has been 

used extensively in modelling self-similar structures such as mountains, clouds, rocks, 

etc. and self-affinity found in thermal noise, human electroencephalogram (EEG)

[7], music and more recently, vocal sounds [8]. Speech sounds, especially fricatives, 

contain some turbulence [9]. In the linear speech model this has been dealt with by 

having a white noise source exciting the vocal tract filter. It has been conjectured 

that the structures in turbulence can be modelled using fractals. This motivated 

Maragos [10] to use the short time fractal dimension of speech sounds as a feature to 

approximately quantify the degree of turbulence in them. Speech waveforms them

selves are highly irregular patterns that can be quantified using fractal mathematics. 

It is worth noting at this point that the scope and accuracy of characterisation that 

can reasonably be expected using the fractal dimension (a real number between 1 and 

2 for speech) essentially gives us a  measure of the degree of roughness or irregular

ity of the object. The usefulness of fractal geometric as a  model for characterising 

speech is inherently limited by the accuracy to  which a fractal dimension can safely 

be calculated. A speaker identity is strongly dependent of the physiological and be

havioral characteristics of the speech production system. The first step of a basic 

speech recognition system is to extract from the speech samples a ‘good’ parametric
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representation. These parameters must be, as much as possible, representative of a 

speaker, presenting low variability for the speaker’s speech samples, and great differ

ence when used with others speakers’ speech samples [11].

There are many difficulties in communications and signal processing algorithms, 

whose linear techniques have failed to be addressed satisfactorily. It is a generally held 

belief, that these problems may however, have solutions in the growing field of non

linear signal processing. The recent rise in neural network concepts is, for example, 

largely fuelled by this promise. In addition, the past decade has seen a remarkable 

growth in the theory of the dynamics of non-linear systems. One cause of this inter

est has been the realisation that deterministic mathematical models with few degrees 

of freedom can generate extremely complex behaviour. Thus, complicated physical 

systems may be well modelled by relatively simple non-linear models such as fractals. 

This research project has aimed to advance non-linear signal processing techniques for 

speech in telecommunication systems by investigating non-linear models for solving 

speech recognition problems.

The thesis encompasses the following novel developments and original contribution:

• A Novel Spectral Estimation of the Fractal Dimension for Phonetic Elements 

in Speech.

• Evaluation of the fractal dimension techniques to  reduce the recognition error.

• Fractal Dimension Segmentation For Isolated Speech Recognition [12].

• A Novel approach to measure the Fractal Dimension of Speech Phonemes.

• A Novel Word Recognition Scheme Based on Fractal Properties [13].
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•  New Features to Improve Fractal Speech Recognition.

•  A New Neural Network Model Based On a Parametric representation for Iso

lated Speech Recognition [14].

•  Hybrid Techniques for speech Recognition based on the Fractal Dimension.

•  A New Natural Sounding Speech Synthesis Based on Fractals [15].

1.4 Thesis Outline

This thesis is organised as follows:

Chapter 2 introduces the concepts of fractal geometry and the fractal dimension.

Chapter 3 describes the main approaches to speech recognition and synthesis proce

dure. Various existing methods and algorithms are also discussed.

Chapter 4 discusses a new speech recognition system based on fractals. It is shown 

that the algorithms developed add new features, which are reported for the first time. 

The simulation results are discussed in detail in this chapter.

Chapter 5 proposes a new algorithm for natural sounding speech synthesis. The 

algorithm has two components:

1. Phase compression based on the unwrapped phase of the speech signal.

2. Fractal synthesis based on the fractal dimension.
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The results obtained from the simulation are assessed and compared in this chapter.

Chapter 6 formulates the conclusions, and possible future work is suggested.
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Chapter 2

Fractal Geometry and the Fractal 
Dimension

2.1 Introduction

The introduction of the word “fractal” to the scientific community and the world at 

large can be attributed to one man, Benoit Mandelbrot [1]. Since the introduction 

of its concept in his classical 1975 paper, ‘Fractal objects: Form, chance and Dimen

sion’ [2], fractal models have been successfully applied to describe and understand 

the geometry of countless natural phenomenon and geometries ranging from parti

cle trajectories and hydrodynamic flow to landscape structures and biological studies.

The purpose of this chapter is to address the fundamental questions frequently posed 

by the uninitiated when first encountering the subject:

1. W hat is fractal?

2. W hat is fractal dimension?

3. How can fractal dimensions be calculated and what use are they?

13
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In answering these, the question of how fractals can be applied to speech science must 

be addressed.

2.2 Description of Fractal Geometry

The word “fractal” is relatively new to the world. It describes a new system of math

ematics, which is so powerful that it can actually describe the structure of mountain, 

coastlines, galaxies and other such natural phenomena. Mathematicians and scientists 

generally believed that such complex natural phenomena were almost beyond rigor

ous description. Fractals represent objects or patterns that appear to be self-similar, 

that is, no matter what scale is used to view the pattern, the magnified portion of 

the fractal shape looks similar to the original pattern. Benoit Mandelbrot [2] studied 

fractal structures and succeeded not only in describing them as for the first time, but 

also in showing that they are related to one another. He coined the word “fractal” 

to encompass his new generalisations of complex shapes.

The name ‘fractal’, came from the Latin word ‘fractus' which means broken and 

was given to highly irregular sets by Mandelbrot in his foundational essay in 1975. 

Since then, fractal geometry has attracted widespread, and sometimes controversial 

attention. The subject has grown on two fronts: on one hand many ‘real fractals’ of 

science and nature have been identified. On the other hand, the mathematics that is 

available for studying fractal sets, much of which has its roots in geometric measure 

theory, has developed enormously with new tools emerging for fractal analysis [3]. A
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very important characteristic of fractals that is useful for their description and classi

fication is their fractal dimension D. Intuitively, D measures the degree of irregularity 

over multiple scales [4].

f.fii

In order to characterise one object from anothèf, the so-called fractal dimension D, 

of the object can be calculated. The fractal alHlënsion is a fètil number, which in 

general, falls in the range 0 to 5 and can be calculated in a nimiifbr of ways. In short,, 

D gives a measure of the degree of irregularity or roughnedrf t o  an object [5]. The 

fact that such complicated structures can be characterised by single numbers has led 

to work being carried out in the area of acoustic and speech science. Speech wave

forms themselves are highly irregular patterns that can be quantified using fractal 

mathematics [6].

The field of fractal geometry was initially created by Mandelbrot [1, 7] and has expe

rienced almost explosive growth and refinement in the past several years. At the most 

fundamental level, it is a system for describing the shapes of objects of the real world, 

rather than the abstract or ideal structures that are the focus of the more traditional. 

Given this difference, it is not surprising that fractal and Euclidean geometries difTer 

at their most basic levels [8]. In general, a common educational background leads one 

to consider natural structures in Euclidean terms. Understanding fractal geometry, 

therefore, requires a significant reconceptualisation of the way the world is.

A small demonstration can help, tear the corner off a sheet of paper (Do not crease 

it before hand just tear it), a roughly triangular piece of paper results and two of its
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edgcs-thc untorn ones- represent straight lines. The tòni edge however, is likely to 

be very irregular. However, how can the erratic, disorderly shaflb of the torn edge be 

characterized? Traditional mathematics attempted to solve till; problem by making 

the assumption that if the irregular edge were magnified sufficlèhtly it would appear 

as a series of (extremely short but perfectly straight) simple line segments, each of 

which could be easily described by traditional geometry. Since a straight line is a 

one-dimensional shape, the implication of this method is that a complex irregular 

and disorderly line can be described as a string of very much shorter (but individu

ally orderly) one-dimensional structures. Looking at the torn edge with ever-stronger 

magnifying glasses quickly shows the problem with this assumption: Every time the 

irregular line is magnified, more irregularity appears. In fact, no matter how much it 

is enlarged, the torn edge of a real piece of paper can never be reduced to a set off 

perfectly straight lines. (In the formal language of fractal geometry, the edge is said 

to be ‘self-similar’ at all scalings). This implies that it cannot be a one-dimensional 

shape. On the other hand, the irregular edge obviously cannot have a dimension of as 

much as two, which is the dimension of a plane surface. However, counterintuitive it 

may seem at first that logic demands that the irregular edge must have a dimension 

that is between one and two, that is, its dimension must be fractal [8].

Fractal geometry is rapidly being assimilated into many diverse fields of physics and 

mathematics. Whereas man-made objects are well defined in Euclidean geometry, 

natural objects can often best be modelled by fractal geometry. Fractal geometry is 

the geometry of the broken-up, the pitted and pocked, the tangled and twisted, the 

turbulent and the chaotic. Central to fractal geometry is the concept of self-similarity
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in which an object appears to look similar at different scales - an obvious concept 

when observing naturally occurring features, but one that has only relatively recently 

started to be developed mathematically and applied to various branches of science 

and engineering. This concept can be applied to systems of varying physical size 

depending on the complexity and diversity of the fractal model that is considered. 

Ultimately, it is of philosophical interest to view the universe itself as a single frac

tal, the self-similar parts of which have yet to be fully categorized; those naturally 

occurring objects for which fractal models abound, being smaller subsets of a larger 

whole. This view is closely related to the concept of a chaotic universe in which the 

dynamical behavior of a system cannot necessarily be pre-determined. Such systems 

exhibit self-similarity when visualized and analyzed in an appropriate way (i.e. an 

appropriate phase space). In this sense, the geometry of a chaotic system may be 

considered to be fractal [1].

Self-similarity is a  very general term, there are two distinct types of self-similar ob

jects (as illustrated in Figure 2.1 and described in the following subsections):

2.2.1 Deterministic self-similarity

A deterministic fractal is composed of distinct features, which resemble each other in 

some way at different scales (feature scale invariance).

Deterministic fractals are usually generated through some Iterated Function System 

(IFS) remarkable for the complexity that can be derived through the simplest of these
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centering

Figure 2.1: Fractal Types.

iterated systems. The way in which the output from these systems is viewed graphi

cally and interpreted geometrically changes substantially from one fractal to another 

but the overall principal remains the same.

T h e  Von K och C urve

The construction of the Koch curve starts with a line segment of unit length L (l) =  1. 

This starting form is called the initiator and may be replaced by a polygon. The ini

tiator is the 0-th generation of the Koch curve. The construction of the Koch curve 

proceeds by replacing each segment of the initiator by the generator shown as the 

curve marked n = 1 as shown in Figure 2.2. Thus, we obtain the first generation, 

which is a curve of 4 line segments each of length 1/3. The length of the curve is 

now ¿(1/3) =  4/3. The next generation is obtained by replacing each line segment 

by a scaled-down version of the generator. Thus in the second generation we have a
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curve consisting of N  — 42 = 16 segments each having length 6 = 3~2 =  1/ 9, and the 

length of this curve is L( 1/9) =  (4/3)2 =  16/9.

By applying a reduced generator to all segments of a generation of the curve, a new 

generation is obtained. According to Mandelbrot’s definition of a fractal, “A  fractal 

is by definition a set for which the Hausdorff-Besicovitch dimension strictly exceeds 

the topological dimension, so that, the topological dimension is always an integer 

whilst the fractal dimension is not” [2]. Curves for which D exceeds the topological 

dimension 1 are called fractal curves. Since the Hausdorff-Besicovitch dimension D 

for the Koch curve exceeds its topological dimension D t , the Koch curve is a fractal 

set with the fractal dimension D = In 4 / In 3.

2.2.2 Statistical self-similarity

The features of a statistical self-similar fractal may change at different scales but their 

statistical properties at all scales are the same (statistical scale invariance).

Statistically self-similar fractals are those used to model a variety of naturally oc

curring objects (background noise, clouds, landscapes, coastlines etc.). They can be 

generated through a variety of different stochastic modelling techniques. They can 

also be considered to be the solution to certain classes of stochastic differential equa

tions of fractional order.

The most commonly associated measure with a self-similar object is its fractal (or 

similarity) dimension. If we consider a bounded set A in a Euclidean n dimensional
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n=0

N =4  r = l /3

Figure 2.2: The Von Kock Curve.

space, then the set A is said to  be self-similar if A is the union of N distinct (non

overlapping) copies of itself, each of which has been scaled down by a ratio r  <  1 in 

all coordinates. The fractal is described by the relationship:

N r D = 1; D  = In N  
ln r (2.1 )

where D  is the fractal dimension. The ranges of value of D  characterizes the type of 

fractal as shown in Table 2.1.

In each case, the fractal may be deterministic or random. In the latter case the 

fractal is taken to be composed of N  distinct subsets each of which is scaled down by 

a ratio r < 1 from the original and is the same in all-statistical respects to the scaled
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original. The fractal dimension in this case is also given by Eqn.2.1.

Fractal Dimension Fractal Types

0 <  D  < 1 Fractal dust

1 <  D  < 2 F rac ta l Signals an d  C urves [as used for speech]

2 <  D < 3 Fractal Images and Surfaces

3 <  D  <  4 Fractal Volumes

4 <  D < 5 Fractal Time

Table 2.1: Fractal types and associated ranges of the fractal dimension.

The scaling ratios need not to be the same for all the scaled down copies. Certain 

fractal sets are composed of the union of N distinct subsets each of which is scaled 

down by a ratio rt , 1 <  i <  N  from the original in all coordinates. The fractal 

dimension is given by a generalization of Eqn.2.1, namely

N

E r ‘°  =  1 (2-2)
t=i

Finally, there are self-affine fractal sets, which are scaled by different ratios in different 

coordinates. For example, consider the curve f ( x )  which satisfies
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f{Xx) = \ af{x)  V A X )

where A is a scaling factor and a  is the scaling exponent. This equation implies that 

a scaling of the x-coordinate by A gives a scaling of the /-coordinate by a factor A“ , 

which is an example of self-affinity. A special case occurs when a  = 1 when we have a 

scaling of x by A producing a scaling of /  by A which is an example of self-similarity. 

Random fractal signals are, in general, examples of self-affine records [5].

Naturally occurring fractals also differ from the strictly mathematically defined frac

tals in that they do not display statistical or exact self- similarity over all scales. 

Rather, they display fractal properties over a limited range of scales.

2.3 Self-similarity and the Fractal Dimension

The property of self-similarity or scaling is one of the central concepts of fractal 

geometry. It means that some types of mainly naturally occurring objects look similar 

at different scales. It is closely connected with the intuitive notion of fractal dimension

[9]. An object normally considered as one-dimensional, a  line segment, for example, 

also possesses a similar scaling property. It can be divided into N  identical part, each 

of which is scaled down by the ratio from the whole.

r  =  1 / N 1 (2.3)

Similarly, a two-dimensional object, such as a square area in the plane, can be divided
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into N  self-similar parts, each of which is scaled down by a factor

r  =  1 /N 1' 2 (2.4)

Three-dimensional objects like a solid cube may be divided into N  smaller cubes, 

each of which is scaled down by a ratio

r  =  1 / N 1/3 (2.5)

W ith self-similarity the generalisation to fractal dimensions is straightforward. D- 

dimensional self-similar object can be divided into N  smaller copies of itself, each of 

which is scaled down by a factor r  where

r  =  1 / N1/d (2.6)

Conversely, given a self-similarity object of N  parts scaled by a ratio r  from the whole, 

its fractal or similarity dimension is given by

D = log(iV)/log(l/r)

which quantifies roughness.

A signal with D  close to 1 looks smooth whereas a  signal with D  approaching 2 looks 

rough [10]. This is illustrated with the example given in Figure 2.3, where we can 

clearly observe how changes to D  affect the signal.
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D=1.2

Figure 2.3: Fractal signals.

The dynamic airflow during speech production may often result in some smaller or 

larger degree of turbulence during the production of speech sounds by human vocal- 

tract system [11]. The geometry of the speech turbulence as reflected in the frag

mentation of the time signal that can be quantified by using fractal models [7]. The 

fractal dimension is an important characteristic of fractals, which contains informa

tion about their geometrical structures at multiple scales [11],
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Let s( t ) represent a continuous real-valued function where 0 <  t < T, and its graph 

is

S = ( t , s ( t ) ) e R 2 : 0 < t < T

The Fractal Dimension of S  is equal to its Hausdorff Dimension D H , which is de

fined by Mandelbrot, and S  is called fractal if the D H of S  is strictly exceeds 1 (its 

topological dimension) [12]. However,DH is only a mathematical concept. In reality, 

its value is very hard to compute and can only be closely related by other methods 

with smaller complexities as described in the following section.

In general, there is no unique and general rule for computing the fractal dimension. 

A large number of algorithms have been developed over the past fifteen years to 

compute the fractal dimension. Nakagawa [12], for example, estimates the fractal di- 

measions of self-affine data with power spectra according to a power law based on the 

moment exponent. This method is called critical exponent method (CEM). The next 

section describes four methods to calculate the fractal dimension of speech phonemes.

2.4 Fractal Dimension Techniques

2.4.1 Box Counting Method (BCM)

The Box counting dimension D B(S) of S  is defined as

Db {S) =  lira ¥ 77#  »-»0 ln (l/s) (2.7)

Where N(s)  is the number of squares that intersect S  when partioned by a  grid of
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squares with size £ [13], the principle is illustrated in Figure 2.4. Assuming the digital 

speech signal S i ,S 2, ..., St  is discretized from a real speech signal £'(f)(0 <  t < T )  by 

sampling the computation of Db via Eqn.2.7 we have

where, £¿(1 < j  < J) are J computation of resolutions, emin < £i < £2 < ... <  

£3 < £j < £max (£min and e-max represent the maximum and the minimum resolution 

of computation). N(sj)  is the number of squares tha t intersect S  when the grid of 

square of size £j. Hence, from Eqn.2.8, the Dd is the slope of the line In(e^) — ln(£j)) 

obtained via the least-squares error principle.

2.4.2 Continuous Box Counting Method (CBCM )

Functions never fold back on themselves, and as box counting can be thought of as 

only looking at functions, boxes can be counted in and between columns. The CBCM 

method gives a more accurate value for the fractal dimension as it does not look only 

at the points within each column along the curve, as the dimension is calculated but 

also to  the relationship between columns [14].

(2.8)
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Figure 2.4: Illustration of the box counting method for computing the fractal dimen
sion D of a signal showing 4 iterations and the least squares fit [5].

2.4.3 Walking- Divider Method (WDM)

The WDM makes use of a chord length (step) and measures the number of chord 

lengths (length) needed to cover a fractal curve. This technique is based on the 

principle of taking smaller and smaller rulers of size step to cover the curve and 

counting the number of ruler lengths required in each case [5] (see Figure 2.5). It 

is a recursive process in which the step is decreased (typically halved) and the new 

length calculated. The input signals are taken to be of size N  where N  is a power of 

2 because of the recursive nature of the method. A least squares fit to the Inin plot 

of length against step gives where (D — —¡3):

(3 —  In [to tal length] Vs In [step size] (2.9)
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The fractal dimension is then given:

D =  -( In  [total length] Vs In [step size]) (2-10)

v\ A
\  Length\/  V f  v

Step~ I, L ength-20 S tep-2 , Length-9 Step

A , A .
log(Length)

\ r
Step-4 , L ength-5 S tep -8 , Length-2 bg(Step)

Figure 2.5: Illustration of the line walking-divider method for computing the fractal 
dimension D of a signal showing 4 iterations and the least squares fit, [5],

2.4.4 Power Spectrum Method (PSM)

Let us investigate the property of scaling law by answering the following question : 

Why is c / k f  a power spectrum of a signal which is self-affine?

The scaling law implies that we can model signal in term of the full equation (assuming 

analogue signal) [15]:

/(* ) =
n(x)
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where n{x) is a white noise (i.e. noise whose PSDF is a constant) and 1 / k f  is a filter 

of frequencies ku its Fourier Transform is given by:

Fk
OOJ f ( x ) exp(—ikx)dx

—OO

Using this definition, the inverse Fourier Transform is given by:

OO
1 f  1

^  =  2ir J [ k i f N ^ exp(ikx)dk

where N(k)  is the Fourier transform of n(x).  Application of the convolution theorem 

allows us to write this result in the form:
OO

f ( x )  = J h ( x -  y)n(y)dy

where h is given by

h{x) =  ¿  /
1 f  exp(i/car)

{ iky
dk

Substituting p for i k , h(x) can be written in terms of the inverse Laplace transform 

ofp^. Since

(3 > ~2 ,  Re(p)>  0

where C is taken to denote the laplace transform and T is the Gamma function.

we can write

OO

m  = J y  1exp (—t)dt 
o

or
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Thus,

£_1
m x

0 - 1

m
1 f  n(y)

W )  J {x~-yy-f>dv

This is the Liouville-Riemann transform and is an example of a fractional integral. Is 

this transform consistent with the concept of statistical self-affinity? Let’s Consider 

the case where

n X) =  J _  /  i v
n  ) m J  ( x - y ) l - 0 dy

- 0 0

where A is a scaling parameter. Substituting z = \y ,  we obtain,

i i
/  { \ x - l y - ^ dz x ^ f{Xx)

Now both f ' {x)  and /(Ax) are stochastic functions of the same type but over different 

scales (n(x) being white noise at any scale) and so, although / '(x )  ^  /(Ax),

P r \n * ) \  =  ¿ i ’rl/lAx)]

which describes a statistically self-affine signal.

The power spectrum of a fractal signal is by definition given by the fundamental 

scaling law [15]

P i
\ h f (2.11)

where h  is the frequency in Hz and c is a constant of proportionality. Taking the 

natural logarithm of this equation yields

In Fj =  C — /? In | fcj | (2.12)
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where c is a constant and C  =  Inc. Suppose we construct a norm in the form of a 

least-squares error given by

® =  11 In P% In F\ 112 (2.13)

Substituting Eqn.2.12 into Eqn.2.13 yields:
n

e = ^ [ l n P 1- ( C - / 31n|fci |)]! (2.14)
i=0

The error, e , is a function of both C and /? . The values of C and /? which minimise 

e are therefore the values for which the estimated curve P4 provides a best fit (in a 

least-squares sense) to the data Pi. This occurs when

h  | + P ¿ ( I n  | ki |)2 +  ¿ ( I n P i  | ** | J =  0
i= 0 i= 0

and

(2.15)

de
dC =  2

. ¿=0 ¿=0 i= 0

Solving for (3 and C, we have

=  0

0 =
(n +  1) £ ( lnPi) In | fcj -  X) In | fcj | J ] ln P j
________ t=0________________ i=0_________i=Q_____

( E ln I ki I)2 -  (n +  1) £  In I ki |
i= 0 i= 0

and

(2.16)

(2.17)

C  =

n n
X > a ) + / ? £ M M
i= 0 i— 0

(n +  l ) (2.18)

Using the relationship,

0  = 5 -  2D (2.19)
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provides a non-iterative formula for computing the fractal dimension from the power 

spectrum of a signal.

The implementation of the PSM consists of applying the FFT to the speech signal 

in order to obtain a spectral representation of the phoneme. A pre-filter step is then 

used to adjust the estimated values of the fractal dimension to fit within the range 

1 and 2. The power spectrum of the pre-filtered signal is computed and then the 

least squares approach is applied to calculate the power exponent ¡3 and the fractal 

dimension D.

It is important to mention that without the pre-filtering step, the values of the fractal 

dimension do not satisfy the range of the fractal model. However, the use of the pre

filter 1 /k  has the effect of conforming the speech data to fit the range of the fractal 

dimension for speech signal which lies between the range 1 and 2. Figure 2.6 illustrate 

the power spectum method for the speech word /open/.
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Figure 2.6: Illustration of the power spectrum method for computing the fractal 
dimension D showing the power spectrum of the speech word /O pen/.
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Chapter 3

Speech Recognition and Synthesis

3.1 Categories of Speech Recognition

Speech recognition tasks can be classified according to the following categories:

• Isolated word recognition

• Connected word recognition

• Continuous speech recognition

• Speech understanding

• Word spotting

• Speaker identification and verification

• Language identification

In  iso la ted  w ord recognition: The words are spoken in isolation, pauses between 

words simplify recognition because they make it relatively easy to identify endpoints

36
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(i.e., the start and end of each word), and they minimise co-articulation effects be

tween words. In addition, isolated words tend to be pronounced somewhat more care

fully, since the need to pause between words impedes fluency, which would otherwise 

tend to encourage a more natural and hence more careless pronunciation. Isolated 

words are adequate for many applications but are far from being a natural way of 

communication.

In  connec ted  w ord recognition: The spoken input is a sequence of isolated words 

from a specified vocabulary and the recognition is based on recognising isolated words.

The recognition of continuous speech is an attempt to transcribe naturally spoken 

utterances (i.e. without artificial pauses between phonemes, syllables, words, or sen

tences) in accordance with the rules of language orthography. This implies the need 

for some form of segmentation of the speech into linguistic units. The fluency of 

speech in natural speech imposes co-articulation between adjacent phonemes and 

words in a phrase. This leads to neglecting some phonemes in a phrase, especially 

between words, which makes the recognition process very difficult to achieve.

The goal of a speech understanding system is to identify the meaning of the speech 

without constraining the speaker’s sentence structure. In such a  system, traditional 

speech recognition techniques are integrated with artificial intelligence techniques 

to give the extra power needed to deal with natural continuous speech. High-level 

knowledge sources (i.e. morphological, syntactic, semantic, and pragmatic) are incor

porated in this system.



38

In  w ord spo tting : The speech recognition deals with detecting the occurrence of 

a given word in continuous speech. In this case, all the speech is ignored until a 

keyword is spoken. Therefore the system is tuned to recognise words, which have 

high correlated to one of the pre-specified keywords.

In  speak er iden tification  an d  verification: The aim of the speech recognition 

here is not to recognise what has been said but actually to highlight differences be

tween speakers.

In  speaker identification: An unknown speaker is to be recognised from a previ

ously specified group of speakers, while in speaker verification the speech recognition 

technique is used in addition to other identification systems (such as a magnetic card 

reader) to verify the identity of the speaker.

In  language identification: The speech understanding techniques are used to form 

some sort of linguistic chains from the phonetic transcription of speech and these are 

used as a  means of discrimination between different languages.

Two terms, which are frequently used to describe a speech recognition system are 

speaker-dependent and speaker-independent. In a speaker-dependent system, the 

system is to  be trained to the speech of each new speaker for the entire vocabulary. 

In a speaker-independent or multi-speaker system, no training is required for the new
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speaker. Actually, for a large vocabulary system and for continuous speech recogni

tion, instead of full training, the system can adapt to a new speaker by some relatively 

simple restricted procedures using a few words or sentences. The latter case is often 

called speaker adaptation.

3.2 Feature Measurement

A speech signal is a highly redundant signal, it carries linguistic messages as well 

as information about speakers, regarding their physiology, psychology, etc. Feature 

measurement, some times called feature extraction, is basically a data reduction tech

nique. The digitised speech signal is transformed into a smaller set of features, which 

faithfully describe the salient properties of the acoustic waveform. Data reduction 

rates (or compression ratios) of 10 to 100 are generally practical.

A number of different feature sets have been proposed ranging from simple sets such 

as energy and zero-crossing rates to complex representation such as:

•  Short-time spectrum (DFT or filter bank)

• Linear predictive coding

• Cepstral parameters (homomorphic model)

• Articulatory parameters

• Auditory model
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The motivation for choosing one feature set over another is often dependent on the 

imposed on the system in terms of cost, speed, and recognition accuracy.

3.2.1 Linear Prediction Parameters

Linear prediction coding coefficients can model the spectral envelope well, and are 

widely used. The basic idea behind LPC is that a given speech sample can be ap

proximated as a  linear combination of past speech samples [1]. For each sample, a 

prediction error e(n) is defined as follows:

e(n) =  s(n) — s{n)

where
p

s{n) =  ] T a ( i ) s ( n -  1)
i=l

with

(3.1)

(3.2)

H(z) --------- ------------
1 -  a (*> -i

(3.3)

Here, s(n) is the linearly predicted sample, s(n) is the actual sample, p is the degree 

of the LPC model filter, and a(i) where i= l, 2,...p are the filter predictor coefficients. 

By minimizing the mean-square prediction error e(n), over a finite interval, a unique 

set of predictor coefficients can be determined. The LPC coefficients give good short- 

time spectral estimation of the linear time varying system. H( z ) in Eqn.3.3 represents 

the z-transform of the transfer function of the vocal tract (all pole model).

For a short interval (M samples of speech), the LPC coefficients are computed to 

yield an N-dimensional feature vector, where N equals p ( the model’s degree) which
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is usually taken to be between 8 to 14 [2]. The time variation of these feature vectors 

defines a pattern for the speech utterance.

Formant frequencies and their bandwidths can be extracted from the transfer func

tion of the vocal tract by a peak picking procedure. Computing the FFT over the set 

of LPC parameters and taking the inverse of the result, yields the transfer function 

of the vocal tract Eqn.3.3. Another way to find the Formant Frequencies and their 

bandwidths is to  solve the inverse of Eqn.3.3 and find its roots (complex pole-pairs) [2].

3.2.2 Filter Bank Parameters

A popular set of features used in many speech recognition systems is the output of 

a bank of filters. The speech signals are passed through a bank of band pass filters 

covering the speech bandwidth. The energy at the output of each channel is esti

mated from the output of each particular filter [3]. The set of energy values at each 

interval of time (frame) constitutes an N-dimensional feature vector. The time vari

ation of these features vectors defines a pattern for the speech utterance. In general, 

the band pass filters are linearly spaced at low frequencies (below 1000 Hz) and log

arithmically spaced at high frequencies. It has been found [4], that 13 filters spaced 

along a critical-band frequency scale (or bark scale), are enough for high recognition 

accuracy, and using 15 filters spaced uniformly in frequency give the same result as 

critical-band filters in a template matching approach.
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3.2.3 Cepstral Parameters

Three types of cepstral parameters have been used in speech recognition systems 

(homomorphic model) [5], namely the linear frequency cepstral coefficient (LFCC) 

[6] the mel-frequency cepstral coefficients (MFCC) [7], and the LPC-derived cepstral 

Coefficients (LPCC) [8].

The LFCCs are computed from the log-magnitude discrete Fourier transform (DFT) 

directly as follows:

(3.4)

where k=0,l,2,...,K -l and K is the number of DFT log-magnitude coefficients Yk, 

i= l,2,...,N  and N is the number of cepstral coefficients employed.

In me 1-frequency scale, the DFT magnitude spectrum is frequency-warped to follow a 

critical band scale (mel-scale) [7, 9] and amplitude-warped (logarithmic scale), before 

computing the inverse DFT parameters. Therefore, Q band pass filters are used to 

cover the required frequency range, and the MFCCs are computed as follows:

Q ,
M FCCi =  ] T x fccos7r [ i ( fc- - )^- ]  (3.5)

it=o * **
where i=  1,2,...,N and N is the number of cepstral coefficients used, k= 0.1 2 O 

and Q is the number of band pass filter used,and X k represents the log-energy output 

of the kth filter.

The LPCCs are obtained from the LPC parameters directly as follows:
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LPCC^LPCi + ' f ^ — L P C C ^xL P C ,  (3.6)
fc=X 1

where i=  1,2,..., N and N is the number of cepstral parameters, k the LPC model’s or

der. For i greater than the order of the LPC model, LPC, is taken to be equal to zero.

The set of N parameters (LFCCs, MFCCs, or LPCCs) constitutes an N-dimensional 

feature vector. The time variation of these feature vectors defines a pattern for the 

speech utterance.

3.2.4 Articulatory Parameters

Another set of features for describing speech sounds are the parameters giving the 

position of the tongue, lips, jaws and the velum as functions of time. These param

eters can be estimated from the speech signal [10]. A new speech production theory 

based on distinctive regions along the vocal tract has been introduced [11, 12], which 

provides a new concept in the acoustic-articulatory-phonetic relation. By performing 

acoustic-articulatory inversion, the area function can be used as an articulatory pa

rameter for speech recognition.

3.2.5 Auditory Model Parameters

Another approach for feature measurements is the use of the auditory model [13]. 

The psychophysical aspects of critical bandwidth, loudness, timbre, and subjective 

duration have been used as feature measures [14]. Another design, which tries to
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capture the time-varying nature of the auditory model by combining the psychophys

ical critical-band, and loudness estimation with a firing-rate model, has improved the 

accuracy of the speech recognition compared to previous filter-bank feature measures

[15]-

3.3 Recognition

The recognition of single isolated words is usually approached by the method of tem

plate matching, this is illustrated in Figure 3.1. The incoming speech is pre-processed 

(start and end points detected and amplitude normalized) and, if the recogniser is in 

the training mode, a suitable representation of the word is extracted and stored as a 

template for the selected word. If the recogniser is operating in the recognition mode, 

the input word will be compared to each of the stored templates using a suitable 

distance metric to determine the best match. If the best match exceeds a decision 

threshold then the match is considered to have been found, but if the match is less 

than the decision threshold the input word is not considered to be any of the stored 

templates and consequently is not recognized.

The features that are commonly extracted from the speech waveform for recognition 

purposes are the spectral components and their energies during time-frame intervals 

of typically 20 to 50 ms. These are frequently LPC (linear predictive coding) coef

ficients, the FFT (Fast Fourier Transform) coefficients [16], the output of a bank of 

filters is illustrated in Figure 3.2 or Mel-based cepstral coefficients [17]. The banks of 

band pass filters usually covers the whole range of significant frequency components
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Figure 3.1: A Typical template-matching technique for isolated word recognition.

for speech (100 to 8000 Hz) and typically up to 20 filters are used. The output of these 

filters is sampled over the frame interval and the energy of each output averaged over 

the frame interval to produce a single energy intensity value for each filter output. 

Templates are often stored in this format as they occupy less storage space than the 

sampled time waveform and pattern comparison is faster.

3.3.1 Creating Reference Templates

In the recognition system, a training phase is assumed before an actual recognition 

can take place. The simplest speaker-dependent systems employ causal training, in 

which each speaker utters every word in the vocabulary one or more times and a  ref

erence template is created. Since speakers tend to pronounce a  given word differently 

at different times or in different contexts (because of different articulatory structtire 

for different speakers), a few repetitions of each word are often used in training. Most 

speaker-dependent systems use 1-3 templates per word, while speaker-independent 

systems (multi-speakers) use 10-12 [19J.
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Time

Figure 3.2: Filter bank analysis of speech. The shaded boxes represent the average 
energy output from each filter during a fixed sample period: the darker the box the 
higher the energy [18].

Reducing the number of templates for each word to a reasonable number (as men

tioned above) is necessary to reduce confusions and storage requirements in speech 

recognition systems. Two methods are used for creating reference templates, namely 

averaging and clustering. In averaging, all the occurrences of a given word are av

eraged together, after some form of time alignment. This gives a single reference 

template for a speaker-dependent system [20], For a speaker-independent system, 

averaging can create an unrepresentative pattern if the templates differ substantially.

In a speaker-independent system, at least 100 speakers must provide multiple train

ing for each word, which implies that substantial clustering is necessary to merge 

the tokens to a representative set of 10-12 templates for efficiency. The K-means
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clustering method [21], and the unsupervised K-means clustering without averaging 

method [22], has been used. In clustering, the N templates of each vocabulary word 

are grouped together to form M clusters, using the nearest neighbour rule. For each 

such cluster, a single template is created using averaging technique over the tokens 

of that cluster.

3.3.2 Neural Networks

In recent years, the advent of new learning procedures and the availability of high 

speed parallel supercomputers, have given rise to a renewed interest in parallel dis

tributed processing models known as Artificial Neural Networks or simply Neural 

Nets. These models attempt to achieve good performance via dense interconnections 

of simple computational elements. The Neural Nets are particularly interesting for 

cognitive tasks that require massive constraint satisfaction, i.e. the parallel evaluation 

of many clues and facts and their interpretation in the light of numerous interrelated 

constraints. Cognitive tasks such as a vision, speech, and language processing, are also 

characterised by high degrees of uncertainty and variability and it has proven difficult 

to achieve good performance of these tasks using standard sequential programming 

methods. In general, such constraints are too complex to be easily programmed and 

require the use of automatic learning strategies, which are now available [23]. Learn

ing or adaptation is a major focus of Neural Nets research. The ability to adapt and 

continue learning is essential in areas such as speech recognition, where training data 

is limited and new talkers, new words, new dialects, new phrases, and new environ

ments are continuously encountered.
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Experiments on using NN for speaker-independent recognition yield 95% for 20 iso

lated words [24], and 98% accuracy for 10 isolated words [25], using different NN 

implementations. These results suggest that appropriately designed Artificial Neural 

Networks are well-suited for speaker-independent recognition tasks.

3.4 Matching Techniques

Two principle methods have been used to match the sampled word with existing 

templates:

•  The Least Squares Method (LSM);

•  The Neural Network Method (NNM).

The LSM is a standard fitting and matching technique that is used in many areas of 

signal and image processing. The LSM matching technique works when the words 

compared are of the same length, and when corresponding times in separate utter

ances of a word represent the same phonetic features. In practice, speakers vary their 

speed of speaking and often do so non-uniformly so that different voicing of the same 

word can have the same total length but may differ in the middle.

3.5 Introduction to Speech Synthesis

Speech synthesis and the automatic generation of speech waveforms have been under 

development for several decades [26, 27]. Recent progress in speech synthesis has
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produced synthesizers with very high intelligibility but the sound quality and natu

ralness still remain a  major problem. However, the quality of present products has 

reached an adequate level for several applications, such as multimedia and telecom

munications. W ith some audiovisual information or facial animation (talking head) 

it is possible to  increase speech intelligibility considerably [28]. Some methods for 

audiovisual speech have been recently introduced by [26, 29, 30]. Some milestones of 

speech synthesis development are shown in Figure 3.3.

Articulatory synthesis 1958
Syntheas-by-rulel959 Sinusoidal mo dels 1984

Stewart 1922 C oncatenate synthesis NN1985

MITalk 1979 
Vntrax 1979

Figure 3.3: Some milestones in speech synthesis [28].

3.6 Methods, Techniques, and Algorithms

Synthesized speech can be produced by several different methods. The methods are 

usually classified into three groups:

•  Articulatory synthesis, which attempts to  model the human speech production 

system directly.
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•  Formant synthesis, which models the pole frequencies of the speech signal or 

transfer function of the vocal tract based on a source-filter-model.

•  Concatenative synthesis, which uses different length pre-recorded samples de

rived from natural speech.

The formant and concatenative methods are the most commonly used in present syn

thesis systems. The formant synthesis was dominant for a long time, but today, the 

concatenative method is becoming more and more popular. The articulatory method 

is still too complicated for high quality implementations, but may arise as a potential 

method in the future.

3.6.1 Linear Prediction Based Methods

Linear predictive methods are originally designed for speech coding systems, but may 

also be used in speech synthesis. In fact, the first speech synthesizers were developed 

from speech coders. Like formant synthesis, the basic LPC is based on the source- 

filter-modei of speech. The digital filter coefficients are estimated automatically from 

a frame of natural speech.

The basis of linear prediction is that the current speech sample y(n) can be approxi

mated or predicted from a finite number of previous p samples y(n  — 1) to y(n  — k) 

by a linear combination with a small error term e(n) called a residual signal. Thus,

p
(3.7)

and
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p
e(n) =  y(n) -  a(k)y(n -  k) = y(n ) -  y(n) (3.8)

fc+i

where y(n ) is a predicted value, p is the linear predictor order, and a(k) are the linear 

prediction coefficients which are found by minimizing the sum of the squared errors 

over a frame. Two methods, the covariance method and the autocorrelation method, 

are commonly used to calculate these coefficients and only with the autocorrelation 

method is the filter guaranteed to be stable [27, 31].

In the synthesis phase, the excitation is approximated by a train of impulses for voiced 

sounds and by random noise for unvoiced. The excitation signal is then gained and 

filtered with a digital filter for which the coefficients are a(k). The filter order is 

typically between 10 and 12 at 8 kHz sampling rate, but for higher quality at 22 kHz 

sampling rate, the order needed is between 20 and 24 [27, 32]. The coefficients are 

usually updated every 5-10 ms.

The main deficiency of the ordinary LP method is that it represents an all-pole model, 

which means phonemes that contain anti-formants such as nasals and nasalized vow

els are poorly modelled. The quality is also poor with short plosives because the 

time-scale events may be shorter than the frame size used for analysis. W ith these 

deficiencies, the speech synthesis quality with standard LPC methods is generally 

considered poor, but with some modifications and extensions for the basic model, the 

quality may be increased.

Warped Linear Prediction (WLP) takes advantages of the human hearing properties
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and the order of filter needed is reduced significally from orders 20-24 to 10-14 with 

22 kHz sampling rate [32, 33]. The basic idea is that the unit delays in a digital filter 

are replaced by the following all-pass sections

z l D x{z)
z~x - \  
1 -  Az~l (3.9)

where A is a warping parameter between -1 and 1 and D 1 (z) is a warped delay element 

and with Bark scale it is l = 0.63 with sampling rate of 22 kHz. WLP provides better 

frequency resolution at low frequencies and worse at high frequencies. However, this 

is very similar to the human hearing properties [32].

Several other variations of the linear prediction method have been developed to in

crease the quality of the basic method [34, 35]. W ith these methods, the excitation 

signal is different from the ordinary LP method and the source and filter are no 

longer separated. These kind of variations are for example Multi-Pulse Linear Pre

diction (MLPC) where the complex excitation is constructed from a set of several 

pulses, Residual Excited Linear Prediction (RELP) where the error signal or residual 

is used as an excitation signal and the speech signal can be reconstructed exactly, and 

Code Excited Linear Prediction (CELP) where a finite number of excitations used 

are stored in a finite codebook [36].

3.6.2 Sinusoidal Models

Sinusoidal models are based on a well-known assumption that the speech signal can 

be represented as a sum of sine waves with time-varying amplitudes and frequencies
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[27, 37, 38]. In the basic model, the speech signal s(n) is modeled as the sum of a 

small number L  of sinusoids

where Ai and <j>i represent the amplitude and phase of each sinusoidal component 

associated with the frequency track ujt. To find the parameters Ai and <A, the DFT 

of windowed signal frames is calculated and the peaks of the spectral magnitude are 

selected from each frame (see Figure 3.4). The basic model is also known as the 

McAulay/Quatieri Model and has also some modifications such as ABS/OLA (Anal

ysis by Synthesis /  Overlap Add) and Hybrid /  Sinusoidal Noise models [38].

While the sinusoidal models are very suitable for representing periodic signals, such 

as vowels and voiced consonants, the representation of unvoiced speech becomes prob

lematic [38].

Sinusoidal models are also used successfully in singing voice synthesis [38, 39]. The 

synthesis of singing differs from speech synthesis in many ways. In singing, the intel

ligibility of the phonemic message is often secondary to the intonation and musical 

qualities. Vowels are usually sustained longer in singing than in normal speech, and 

naturally, easy and independent controlling of pitch and loudness is also required. 

The best-known singing synthesis system is the LYRICOS, which was developed at 

Georgia Institute of Technology. The system uses sinusoidal-modeled segments from 

an inventory of singing voice data collected from a human vocalist maintaining the 

characteristics and perceived identity. The system uses a standard MIDI interface

L

(3.10)
1=1
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amplitude

SYNTHESIS

phases

frequencies

amplitude

Synthetic
speech

Figure 3.4: Sinusoidal analysis /  synthesis system [38].

where the user specifies a musical score, phonetically spelled lyrics, and control pa

rameters such as vibrato and vocal effort [39].
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Chapter 4

Fractal Speech Recognition

4.1 Introduction

Speech is man’s most natural channel of communication, so it is only natural that 

it should be the subject of much work in speech recognition. Recognising speech is 

difficult because of the nature of the speech communication process, which carries 

many messages. Transmitting a linguistic message is most often the primary purpose 

of speech communication and it is the recognition of this message by machine that 

would be most useful. The first step of a  basic speech recognition system is to extract 

from the speech samples a ‘good’ parametric representation.

In this chapter a speech recognition system is performed using a combination of Mel- 

Frequency Cepstral Coefficients MFCCs with a nonlinear dynamic invariant ‘fractal 

dimension’ (D). This combination leads to a more accurate speech recognition system 

with more accurate results. The best results are obtained when the fractal dimension 

is combined with the Mel-Frequency Cepstral Coefficients MFCCs. It is shown that 

the suggested method add a new feature which is reported for the first time.
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The corpus used is the speech data performed on the Texas Instruments Massachusetts 

Institute of Technology (TIMIT) database (see Appendix B).

4.2 Speech Parameters

A speech signal is a highly redundant signal, which carries linguistic messages as well 

as other information about the speaker, regarding their physiology, psychology, etc.. 

Feature measurement, some times called feature extraction, is basically a  data reduc

tion technique, whose features should meet the following criteria [1]:

• Insensitive to extraneous variables (i.e. emotion, state of talker etc.)

• Stable over long periods of time

•  Frequently occurring

• Easy to  measure

•  Not correlated with other features

In general, it is impossible to find features that meet all of these requirements at 

once, and compromises are inevitable. The features are usually selected intuitively. 

A feature is judged by how-well it separates recognition classes from one another. In 

fact, the selection of the best parametric representation of the acoustic data is an 

important task in the design of any speech recognition system.
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Several parametric representations of speech signal, such as LPC parameters, filter 

bank parameters and cepstral parameters, have been of interest to many researchers. 

The objective of these parametric representations are to compress the speech data 

by eliminating information not pertinent to the phonetic analysis of the data and to 

enhance those aspects of the signal that contribute significantly to the detection of 

phonetic differences. In this work, the fractal dimension (D) and the Mel-frequency 

cepstral coefficients (M F C C s) are chosen as the new parametric representation of 

the speech signal.

4.3 Application of the fractal dimension to speech 
recognition

The dynamics of speech airflow might create small or large degrees of turbulence 

during the production of speech sounds by the human-tract systems. Static airflow 

and acoustic characteristics of turbulent speech, e.g. fricative and stop sounds with 

aspiration, have been studied by several researchers; references and related discussion 

can be found in [2, 3,4]. While the majority of work in this area has mainly associated 

turbulence in speech with consonants, it is also possible to have vowels uttered with 

some amount of aspiration which adds some small degree of turbulence to them [5]. 

Most approaches to modelling speech turbulence at the speech-waveform level have 

focused on the random nature of the corresponding signal component. Another im

portant aspect of speech sounds that contain frication or aspiration is the high degree 

of geometrical complexity and fragmentation of their time waveform; due to lack of 

a  better approach, this has been left unmodeled and treated in the past as noise [51.
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In this research, we use the theory of fractals [6] to model the geometrical complexity 

of speech waveforms via their fractal dimension and related fractal parameter, which 

quantifies the degree of signal fragmentation. In the next sub-section, we provide 

some motivation and justification from the field of speech aerodynamics for using the 

fractal dimension to quantify the degree of turbulence in speech signals.

4.3.1 Speech Aerodynamics and Fractals

Conservation of momentum in the airflow during speech production yields the Navier- 

Stokes governing equation .[7]:

P(^T +  u •V u) =  “ VP +  V p2u, (4.1)

where p is the air density, p is the air pressure, u is the (vector) air-particle velocity, 

and p  is the (assumed constant) air-viscosity coefficient. It is assumed that flow 

compressibility is negligible [valid since in speech flow (Match numbers)2 «  1], 

and hence V • u =  0. An important parameter characterising the type of flow is the 

Reynolds number Re = where U is a velocity scale for u and L is a typical length 

scale, e.g. the tract diameter. For the air we have very low p, and hence high Re. 

This causes the inertia forces [in the left-hand of 4.1] per unit volume to have a much 

larger order of magnitude than the viscous forces pV 2u. While p  is low and may not 

play an important role for the speech airflow through the interior of the vocal tract, it 

is essential for the formation of boundary layers along the tract boundaries and for the 

creation of vortices. A vortex is a region of similar (or constant) vorticity u>, where uo = 

V x u. Vortices in the airflow have been experientally found above the glottis by [8,9], 

and theoritically predicted by [10, 8, 11], using simple geometries. There are several
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mechanisms for the creation of vortices: (1) velocity gradients in boundary layers, (2) 

separation of flow, which can easily happen at cavity inlets due to adverse pressure 

gradients ( see [10, 8] for experimental evidence of separated flow during speech 

production), and (3) curved geometry of tract boundaries, where due to the dominant 

inertia forces the flow follows the curvature and develops rotational components. After 

a vortex has been created, it can propagate downstream as governed by the vorticity 

equation [7]:

-7j£  +  u • Vu  =  uj • Vu +  vV2u;, v — ¡ip (4.2)

the term w.Vu causes vortex twisting and stretching, whereas v V 2u> produces diffu

sion of vorticity. As Re increases (e.g., in fricative sounds or during loud speech), 

all these phenomena may lead to instabilities and eventually result in turbulent flow, 

which is a “state of continuous instability” [7] characterised by broad-spectrum rapidly 

varying (in space and time) velocity and vorticity. The transition to turbulence dur

ing speech production may occur for lower Re closer to the glottis because there is 

an air jet flowing out from the vocal cords, and for jets, turbulence starts at a much 

lower Re  than for flows attached to walls ( as is the case downstream in the vocal 

t r a c t ). Modern theories that attempt to  explain turbulence [7] predict the existence 

of eddies (vortices with characteristic size A) at multiple scales. According to the 

energy-cascade theory, energy produced by eddies with large size A ( of the order of 

the boundary-layer thickness ) is transferred hierarchically to  the small-size eddies, 

which actually dissipate this energy due to viscosity. The result is compounded by 

the Kolmogorov law

E ( k , r ) oc r2/3fc 5/3, (4.3)
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where k = ™ is the wave number in a finite nonzero range, r  is the energy-dissipation 

rate, and E (k ,r )  is the velocity wave spectrum, i.e. Fourier transform of spatial cor

relations. This multiscale structure of turbulence can in some cases be quantified by 

fractals [5].

All the above theoretical considerations, and the fact that the speech signal is pro

duced by a  non linear dynamical system, which often generates small or large degrees 

of turbulence, motivated our study of its fractal aspects. One of the main quantita

tive ideas that we focused on is the fractal dimension of speech signals, because it can 

quantify their graph’s roughness (fragmentation).

As shown later in this chapter, the fractal dimension ‘D’ as a single feature is able to 

achieve a good recognition when a small number of phoneme classes is used. However, 

the problem of class limitation is solved by adding 13 M F C C s. It is also important 

to  mention that the Mel Frequency Cepstral coefficients ‘MFCCs’ method uses short 

time Fourier Transform for feature extraction and for some class of phonemes like 

fricatives and plosives it can not extract good features as these latter are non sta

tionary speech signals. However, the fractal dimension ‘D’ is not sensitive to that 

and can process stationary as well as non-stationary speech signals. Therefore, the 

fractal dimension ‘D’ provides different information than supplied with the M F C C s  

and the combination of 13 M F C C s  with one fractal dimension ‘D’ (as shown later) 

shows an improvement in the recognition of speech phonemes.
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4.4 Evaluation of the Fractal Dimension

In order to test the validity and accuracy of the different methods for computing the 

fractal dimension, a speech word ‘close’ with a known fractal dimension D was used. 

From Table 2.1 in chapter 2, it has been shown that speech signals have a fractal 

dimension within the range 1 and 2. These values of ‘D’ have been used as known 

fractal dimensions for the word ‘close’ in our evaluation process. For each value of 

‘D’ within this range a fractal signal is computed, then used with the four methods 

mentioned later to evaluate the new fractal dimension ‘D’ for comparison purpose. 

This procedure is called the ‘inverse solution ’[12] and can be summarized in two steps 

as follow:

1. Given D compute f

2. Given f compute D

Where D is the fractal dimension of the speech signal and f its fractal signal.

The fractal dimensions of the speech word ‘close’ have been then evaluated using the 

Walking- Divider, the Box Counting, the continuous box counting and the Power 

Spectrum Method (PSM). The results are given in Table 4.1.

From Table 4.1, it is clear that the Power Spectrum Method provides the most con

sistently accurate results throughout the range 1 to 2. The box counting method 

provides good results for fractal dimensions with a value below 1.4. After this, the 

fractal dimension is below the original value of the speech word used; for a  value of 

2.0, the box counting method returns a  value of 1.615. The Walking-Divider Method
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provides a  good approximation of the fractal dimension for values below 1.5, return

ing results that are slightly higher than those produced by the Box Counting Method 

and the continuous Box Counting Method. For an original value of 2.0 the Walking- 

Divider Method returns a value of 1.665. Of the four methods tested, the PSM is the 

fastest as it is based on a non-iterative approach based on the least square estimate 

which relies on the use of an FFT.

Original Value 

of the fractal 

Dimension

Walking-Divider

Method

Box Counting 

Method

Continuous Box 

Counting Method

Power Spectrum 

Method

1.0 1.220 1.088 1.178 1.025
1.1 1.268 1.178 1.259 1.130

1.2 1.268 1.163 1.269 1.214

1.3 1.351 1.229 1.276 1.301
1.4 1.370 1.263 1.393 1.400

1.5 1.432 1.348 1.419 1.495
1.6 1.571 1.397 1.470 1.599

1.7 1.552 1.459 1.516 1.696

1.8 1.638 1.513 1.574 1.771

1.9 1.639 1.572 1.621 1.915

2.0 1.665 1.615 1.647 1.968

Table 4.1: Evaluation and comparison of fractal dimensions.

The accuracy, efficiency and the versatility of the PSM lead naturally to its use in 

many areas of signal processing [12]. The test discussed above provides confidence
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in the realization that the PSM is the most appropriate technique for applications to 

speech processing. Thus, in the following sections the fractal dimension computation 

is obtained from the PSM only.

4.4.1 Fractal dimension of speech signals

Four techniques for computing the fractal dimension have been used in this research as 

discussed in Chapter 2. However, the best of the four and the most used one , as seen 

previously, is the Power Spectrum Method (PSM) because it is easy to implement, 

computationally less time consuming and is not based on iterative procedures. PSM 

is generalisable and potentially more accurate computationally among the three other 

methods. One of its main advantage is that the computation of the fractal dimension 

D is based on an explicit formula (/? =  5 — 2D).

4.4.1.1 Power Spectrum Method

Direct application of the PSM for computing the fractal dimension of arbitrary speech 

signals leads to a wide range of values, many of which lie outside the natural range 

[13, 14]. This is not surprising, since many speech waveforms will not conform to 

patterns, which are statistically self-affine with a single spectral signature of the type 

1 Jkq. It is expected that parts of speech are fractal in nature while other parts are 

not. In other words, like any other model for signal analysis, a  fractal model cannot 

be assumed to be applicable to all aspects of speech. As with any other signal, one 

should expect it to be composed of both fractal and non-fractal components, particu

larly with highly non-stationary waveforms such as those observed in speech. A new 

step in the power spectrum method is therefore required in order to force a speech
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signal or component waveform to conform to a  spectral signature of a  fractal type, 

in particular, some appropriate low-pass filter. Of all the possible low-pass filters, a 

filter of the type 1/k  is the most appropriate as it conforms to the case for q =  1.

The implementation of the PSM consists of applying the FFT to  the speech signal 

in order to obtain a  spectral representation of the phoneme. A pre-filter step is then 

used to  adjust the estimated values of the fractal dimension to fit within the range 1 

and 2. The power spectrum of the pre-filtered signal is computed and the least square 

approach is applied for the calculation of the power exponent ¡3 Eqn.2.17, which yields 

to the computation of the fractal dimension D Eqn.2.19.

4.5 Experiments on Computing Fractal Dimen
sion of Speech Signals

The speech waveforms of Figure 4.1 show three phonemes / f / , /u /  and /o /  spoken by 

a  male and a female speaker. Their fractal dimension is shown in Figure 4.2 where we 

can notice that the fractal dimensions for female are higher than male’s, this is due 

to the fact that the speech waveforms of female speakers are rougher which means 

more zero crossing and in turn means more irregularities, hence a higher fractal di

mension. In fact, in term of texture a signal with a fractal dimension close to  one 

looks smoother that a signal with D closer to two.
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The following results are based on a single male speaker of the vowel /o /  and the 

fricatives /z /  and /sh /. The results illustrate the expected increase in frequency con

tent and zero crossings (as illustrated by direct inspection of the waveforms) and the 

increasing value of the fractal dimension. Figure 4.3 shows the waveform for /o /, 

which, through application of the Power Spectrum Method with \ / k  pre-filtering, 

returns a fractal dimension of 1.20. Figure 4.4 shows the waveform for the fricative 

/z /  which is characterised by a fractal dimension of 1.38. Finally, Figure 4.5 shows 

the waveform for the fricative /sh / which yields a fractal dimension of 1.58.

Figure 4.3: Waveform of vowel /o /; D=1.20.
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Figure 4.4: Waveform of fricative /z /; D=1.38.

M a l e  / s IV

Figure 4.5: Waveform of fricative /s h / ; D=1.58.
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Another example of computing the fractal dimension for a single isolated word and a 

female speaker is given in Figure 4.6, which shows the waveform for the word /te s t/  

Application of the Power Spectrum Method with pre-filtering for this signal returns 

a value of 1.34 for the fractal dimension. Figures 4.7, 4.8, 4.9 and 4.10 show the 

waveforms that characterize the vowel and fricative components of this signal for the 

word /te s t/, namely / t / ,  /e /, / s /  and / t /  respectively, which return values for the 

fractal dimension given by 1.06, 1.36, 1.41 and 1.19. It is worth noticing that the 

fractal dimension for / t /  at the beginning and end of the word are different, due to 

changes in the pronunciation of this fricative when used to form a complete word. 

Also as should be expected, the fractal dimension is the highest for the high frequency 

fricative /s / .

F igure  4.6: W aveform  of word / t e s t / ;  D = 1 .3 4 .
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Figure 4.8: Waveform of /e /; D=1.36



Figure 4.9: Waveform of /s /; D=1.41.
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Figure 4.10: Waveform of / t / ; D=1.19.
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Figures 4.11 and 4.12 show respectively the fractal dimension for 9 classes of vowels 

and fricatives speech sounds taken from the T1MIT datbase. The computation of the 

fractal dimension obtained has been conducted with the use of PSM.

—  Vowels

Vowels

Figure 4.11: Fractal dimensions for the case of Vowels.

—  fricatives

Fricatives

Figure 4.12: Fractal dimensions for the case of Fricatives.
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We have conducted many experiments similar to the one shown in Figures 4.11 and 

4.12 respectively, from which we concluded the following: (i) Unvoiced fricatives ( /f /, 

/ t h / , /s / ) ,  affricates, stops (during their turbulent phase), and some voiced fricatives 

like / z /  have a high fractal dimension e  [1.6, 1.9], consistent with the turbulence phe

nomena present during their production; (ii) Vowels have a  small fractal dimension 

e  [1, 1.3]. This is consistent with the absence or small degree of turbulence (e.g. for 

loud or breathy speech) during their production; (iii) Some voiced fricatives like / v /  

and / t h /  have a  mixed behavior. If they don’t contain a fully developed turbulent 

state, their fractal dimension is medium-to-high [1.3, 1.6].

Thus, we have found that the fractal dimension can roughly distinguish three classes 

of speech sounds:

•  Vowels have a  small fractal dimension D.

• Low-turbulence voiced fricatives, e.g. /v / ,  / th /  have a medium D  value.

•  Unvoiced fricatives, high-turbulence voiced fricatives, stops, and affricates have 

large D.

However, for loud speech (where the air velocity increases, and hence turbulence 

occurs more often) or for breathy voice (especially for female speakers), the fractal 

dimension of several speech sounds, e.g. vowels may significantly increase [15].

The fractal dimensions discussed above are the global measure of self-affinity for dif

ferent geometrical objects; however, such global measure can not represent all the
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fractal characteristics in different levels of complex objects. For digital speech pro

cessing, the global fractal dimension is just a reference feature and must be used with 

other features because the information it supports is limited [15]. To overcome the 

information limitation of a single global fractal dimension, 13 Mel-Frequency Cepstral 

Coefficients (MFCCs) are added, which we will introduce later in this chapter.

4.6 Fractal Dimension for phoneme Segmentation

A word is composed of phonemes which are different from one another. Both word 

segmentation and endpoint detection are based on an approach similar to the convex 

hull method [16]. If the fractal dimension ‘D’ vs. window number plot shows a dip, an 

endpoint or a phoneme boundary is confirmed. The fractal dimension can be used for 

endpoint detection and therefore segmentation of speech [17]. To obtain the fractal 

dimension variations across speech waveforms, a moving window with a  finite width 

was used. The moving window of size n, is taken to have s=2n samples. The fractal 

dimension in each window is obtained using the Power spectrum method discussed in 

Chapter 2. The segmentation method is based on the criteria of detecting the peaks 

in the fractal dimension plot, which means that if the fractal dimension vs. window 

number plot shows a dip a phoneme boundary is confirmed. Figure 4.13 shows the 

fractal dimension variation across the word / greasy/.

From Figure 4.13 it can be noticed that some dips appear only at phonemes bound

aries within a specific number of windows. Each window is 512 samples wide. For
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Figure 4.13: Fractal segmentation of word /greasy/.

example the boundary or end point of the phoneme / i y /  is detected at window num

ber 8 and since each window has 512 samples, this means that the phoneme’s / i y /  

boundary is detected around 4096 samples, which correspond approximately to its 

number of samples in Figure 4.14.

A comparison of the fractal segmentation method performance with the ground truth 

in the TIMIT database has been undertaken to confirm its validity and the results are 

shown in Figure 4.14, where the red line in the bottom Figure show the segmentation 

of the word /greasy/ as provided by the TIMIT database and the top Figure shows 

its fractal segmentation. It is clearly seen from Figure 4.14 that the fractal segmenta

tion of each phoneme in the word /greasy/ coincide with the segmentation provided 

by the TIMIT database. It is also worth to mention that the fractal dimension vs.
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Figure 4.14. Fractal dimension across the word /greasy/

window number plot as shown in Figure 4.13 satisfy the criteria mentioned previously. 

To obtain a more accurate segmentation using fractal dimension, the window size can 

for example, be reduced to 8 which corresponds to 256 samples.

Finally, segmentation based on fractals as presented is simpler and appears to be 

more effective than most of the existing methods, which for example, make use of the 

average zero crossing rate and mean square amplitude [5],

4 .7  M el-F requency C epstral C oefficients

Many systems currently use Mel-cepstral coefficients {Mel-frequency Cepstral Coefficients- 

MFCCs) for speech recognition. Mel-cepstral analysis is increasingly replacing the
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traditional forms of cepstral parameters utilization although cepstrum coefficients at 

first glance seem to be a good parameter set. However, the cepstral parameters do 

not consider the structure of the human auditory system. It has been shown in [18] 

that incorporating this knowledge into the parameter set used in recognition improves 

performance considerably. Instead of using a linear frequency scale, we can use a  log

arithmic scale just as that human auditory system does. One of the popular scales is 

the Mel scale (Appendix A). This scale is almost linear below 1 kHz and logarithmic 

at higher frequencies. A technically useful approximation to the Mel scale is of the 

form [19]:

where /  is the frequency in Hz, k  is a constant. The constant k is computed with the 

consideration that a tone with a frequency of 1000 Hz is defined as having a pitch of 

1000 mels.

Computing the MFCCs makes use of a filter bank, which is placed according to Mel 

scale. At the output of each filter a log energy coefficient is obtained representing the 

energy in that band. An inverse DCT is then performed to  get back to  the cepstral 

domain and obtain Mel-cepstral coefficients. This procedure is summarised in Figure 

4.15. The ith MFCC is given as:

where i =  1, 2, and k  =  1, 2,...., K . N  is the number of required MFCC and 

K  is the number of filters in the filter bank which cover the frequency range of the 

input speech signal. E k represents the logarithm of the energy output of the kth filter.

y = fclog(l +  / / 1000) (4.4)

K

(4.5)
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Figure 4.15: MFCCs Computation.

Some of the results of the MFCC computation are displayed in Figure 4.KJ. Note 

the effect of smoothing performed by the Discrete Cosine Transform (DCT) in Figure 

4.16 (d).

Figure 4.16: Speech waveform of a fragment of phoneme ae (a), after pre-emphasis 
and Hamming windowing (b), power spectrum (c) and MFCC (d)

The DCT has the ability to produce highly uncorrelated features; therefore, the
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stochastic characterization of the feature process is simpler [20]. The number of 

MFCC is generally lower than 14 in speech recognition [21].

In this research, 13 MFCCs are combined together with the fractal dimension D  in 

order to form a feature set characterising each phoneme, which is used for the recog

nition.

4.8 System Description

In this section, we have discussed the two matching techniques used for the recogni

tion of phonemes for the case of speaker independent.

4.8.1 Template Matching Techniques

The basic idea involved in template matching is that each word is divided into 

phonemes and each phoneme is represented by a template (in some cases, more than 

one), which is a reference pattern created from speech data. Each input phoneme to 

be recognised is then compared with the stored template and identified as an instance 

of tha t phoneme whose template best matches the unknown input.

The matching techniques used in this research are:

•  The Least Square Error Method (LSEM)

•  The Neural Network Method (NNM)
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4.8.1.1 The Least Square Error Method (LSEM)

The LSEM compares the unknown input signal Si with the standard reference tem

plate T j .  The difference between the matched input against the reference template 

is evaluated as an error function Eqn.4.6 and obviously, the smallest the error is, the 

more accurate the recognition.

n,m

£  =  (4.6)

where n  is the number of inputs, m  is the number of templates, St the unknown 

input and T j  is the standard reference template. The proposed algorithm used for 

the recognition of speaker-independent speech phonemes is illustrated in Figure 4.17.

This algorithm makes use of the following steps:

S te p l :  The data are taken from the TIMIT database, which has been subdivided 

into suggested training and test sets following the criteria that roughly 20 to 30% of 

the corpus should be used for testing purposes, leaving the remaining 70 to 80% for 

training.

S tep2 : Two sentences spoken by all speakers both male and female from 2 major di

alect divisions of the United States are used to extract phonemes. Once the phonemes 

are extracted they are stored in order to be used for testing and training. The training 

set of the TIMIT is used for template creation and the test set is used as unknown 

input in the matching process.



Step3: One Fractal dimension ‘D’ and 13 Mel Frequency Cepstral Coefficients ‘MFCCs’ 

are computed and added together forming a  new set of feature ‘DMFCC’ for each 

phoneme in the test set and training set respectively.

S tep4 : The unknown phoneme, which is represented by 14 coefficients is compared 

with the stored template and the error is computed as follows:

S tep5 : The error is then compared to  a  threshold, which has been set up by experi

ment to  0.3 since there is no empirical theory that defines it.

(4.7)

S tep 6 : Finally the recognition performance of the input class is computed as the 

total number of error below threshold divided by the total number of input phonemes 

within this class multiplied by 100.
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Set of Features for the Training DataCIj)

No
>----------► No Match

Calculation of the Recognition 
Perfomance 

Rp= [(Total Match) /  (TotalTest)]*! 00

Figure 4.17: LSE Matching Algorithm.
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4 .8.1.2 N eural N etw ork  A pproach

Neural networks are usually used to perform static pattern recognition, that is, to 

statically map complex inputs to simple outputs, such as an N-array classification of 

the input patterns [22]. Moreover, the most common way to train a  neural network 

for this task is via back-propagation, whereby the network’s weights are modified 

in portion to their contribution to the observed error in the output unit activations 

(relative to desired outputs). One of the main advantages of neural networks is the 

massive parallelism they offer [23].

The neural network model used for the recognition of speaker-independent speech 

phonemes is shown in Figure 4.18. This makes use of the new set of features, which 

consist of the combination of the fractal dimension (D) and 13 Mel frequency cepstral 

coefficients (MFCCs).

F igure  4.18: T h e  configuration  of th e  th ree -lay er NN.
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A lg o rith m  U sed 

First layer (k—1)

I j=  input of the j~ th node at layer k. j  =  1, ...nk 

Second layer (k=2) and Third layer (k= 3)

nk- 1

(4.8)

j  ~  1» —»n *>wtiere °k is a bias node of layer k, wkjt is the connection weight from the i th 

node at layer k-1 to the j th node at layer k, and nk is the number of nodes at klli layer.

The output of node j at layer k= 1, 2, 3 is given by

= m  (4.9)

( j  = 1| - n*) and /  is an activation function, which is the sigmoid function as

1 _|_ e~ d j+ n j) /n ( , (d-10)

where nj serves as the threshold or bias, and n0 is used to modify the shape of the 

sigmoid.

The Neural Network (NN) is first trained and the net connection weights w k Eqn.4.8 

are determined by using the back-propagation learning algorithm [24] and then stored 

in order to be used in the testing part of the recognition. The input to the neural net

work is a  vector of combined features (13 MFCCs + D) extracted from each phoneme
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chosen from the test set of the TIMIT database.

4.9 Computer Simulation Set up

Experiments for both techniques described in the previous sections were performed on 

continuous speech data from the Texas Instrument Massachusetts Institute of Tech

nology (TIMIT) database, which were directly digitised at a sample rate of 20 kHz 

using Digital Sound Corporation DSC 200 with the anti-aliasing filter at 10 kHz. The 

speech was then filtered, debiased and down sampled at 16 kHz. The TIMIT database 

has been subdivided into suggested training and test sets following the criteria that 

roughly 20 to 30% of the corpus should be used for testing purposes, leaving the 

remaining 70 to 80% for training.

In this research, all sentences spoken by male and female speakers from dialect re

gions one and two of the TIMIT database of the United States were used. These 

dialect regions are geographically close, DR1 corresponds to  New England and DR2 

to the Northern US. The total number of speakers in DRl was 49 of which 27% were 

female. In DR2 the total number of speakers was 102 of which 30% were female 

giving an overall number of speakers equal to 151 including 50 female speakers. The 

total number o f speech utterances of varying length in DRl and DR2 respectively is 

equal to 472 and 1040, which numbered a total of 1512 utterances. These latter were 

extracted from the database and recursively searched to find all instances of each 

phone used in all its possible contexts. Since the speech was originally 16 kHZ ban- 

dlimited it was segmented into 32ms sections corresponding to 512 samples per signal
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Two classes of phonemes have been used and are referred to as ‘vowel’ and ‘frica

tives’. For each phoneme in these two classes , a set of features, which consist of the 

combination of one fractal dimension D together with 13 MFCCs, are computed. The 

training set of the TIMIT is used for template creation and the test set is used as 

unknown input in the matching process. The simulations were based on MATLAI3 

version 5.3.

4.10 Results and Discussion

In this section, recognition results and analysis of the Least Square and the Neural 

network methods are clearly presented.

The Least Square method based on the new set of features ‘DMFCC’ is applied to 

two classes of speech data ‘Vowels’ and Fricatives’.

For comparative purposes, an identical operation was carried out on both ‘MFCC’ 

and fractal dimension feature ‘D’ and classification performance similarly obtained

The first dataset contained the three vowels / iy / , /a a / ,/a h /  corresponding ( according 

to Figure 4.19) to front-,back-, and mid-voiced sounds.
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l t d /uw/

/ax/ /uh/

/ah/ lo w /

laol

/aa/

High

Low

Front Back

Figure 4.19: Diagram showing distances between several vowel sounds according to 
the position of the tongue bulk.

Figure 4.20 and Tables 4.2, 4.3 and 4.4 illustrate the recognition performances and 

the confusion matrix obtained for this case of vowel, respectively.

□  1 D

□  13 MFCC
□  14 DMFCC

F igure  4.20: Vowels recognition  perfo rm an ce  for SI.
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Training class

/a a / /iy / /a h /

/a a / 72.42% 17.82% 9.76%

/iy / 18.875% 70.3125% 10.8125%

/a h / 12.12% 15.15% 72.73%

Table 4.2: Confusion matrix for testing datasets using ‘D’ as a single parameter

Training class

/a a / /iy/ /a h /

/a a / 85.29% 8.88% 5.83%

/iy/ 12.6875% 79.6875% 7.625%

/a h / 6.07% 9.09% 84.84%

Table 4.3: Confusion matrix for testing datasets using 13 coefficients of ‘MFCC’

Training class

/a a / /¡y / /a h /

/a a / 90.18% 5.88% 2.94%

/iy / 6.25% 90.625% 3.125%

/a h / 3.04% 6.06% 90.90%

TaWe 4.4: Confusion matrix for testing datasets using a combination of ‘I)• , ,
coefficients of ‘MFCC u IO
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The confusion matrix for the three classes of vowels cited above, shows that / i y /  and 

ja a /  have higher confusion with each other than with /a h /  while of the two, /a h /  

has higher confusion with / i y / . This is probable that overlap has occurred due to 

the range of pitch intonation likely to exist between speakers, particularly those of 

different gender. However, improvement is marked in the recognition performance 

when the fractal dimension ‘D’ and the Mel Frequency Cepstral Coefficients ‘MFCC’ 

are combined together as seen in Figure 4.20 and Table 4.4.

The second dataset contained the three classes of fricatives / f / , /T / ,  and /s / .  This set 

of fricatives are generated by creationg a turbulent airflow at some point of constric

tion in the vocal tract. Labiodental as in /{ /  causes the sound by creating friction 

between the top teeth and the lower lip. Forcing airflow between the top teeth and 

the tip of the tongue as in the ‘t,h’ sound of thing (/T /)  is known as interdental and 

where articulation takes place between the tip of the tongue and the gum is called 

alveolar, an example of which is / s /  as in sing.

Figure 4.21: Acoustic Waveform of /[ /



/t/

N u m b e r  o f  S a m p l e s

Figure 4.22: Acoustic Waveform of /T /

8

6 0 0  8 0 0  

N u m b e r  o f  S a m p l e s

1 0OO 1 20 0

Figure 4.23: Acoustic Waveform of / s /
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The main characteristic observable from Figures 4.21, 4.22, and 4.23, is that the 

acoustic waveforms are generally noisy and of high frequency, although both /f /  and 

/ T /  have more burst-like start. Perhaps it is this attribute that causes more / f /  and 

/T /  sounds to become confused in the confusion matrices Tables 4.5, 4.G, and 4.7.

Training class

N IV N
N 75.125% 16.43% 8.445%

m 19.4% 74.91% 5.69%

/s / 10.7% 12.89% 76.41%

Table 4.5: Confusion matrix for testing datasets using ‘D’ as a single parameter

Training class

N IV / s/

N 87.1835% 10.12% 2.6965%

IV 11.143% 84.125% 4.732%

N 5.6223% 6.0644% 88.3133%

Table 4.6: Confusion matrix for testing datasets using 13 coefficients of ‘MFCC’
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Training class

N m /s  /

f i t 95.11% 3.15% 1.74%

m 4.26% 94.23% 1.51%

N 1.03% 3.88% 95.09%

Table 4.7: Confusion matrix for testing datasets using a combination of ‘D’ and 13 
coefficients of ‘MFCC’

From Figure 4.24, it can be notice that the recognition performance is greatly im

proved when D and 13 M F C C s  are combined together and used as a new single set 

of features.

100 -1

Iff fTf Is/

□  1 D

a  13 MFCC

□  14 DMFCC

F ig u re  4.24: Fricatives recogn ition  p erfo rm ance  for SI.



97

Prom the previous confusion matrix it can be seen that the recognition performance 

achieved by using fractal dimension is very good for the three phoneme classifica

tion problem. This is due to the fact that the phonemes chosen in each class have 

very different articulator positions giving rise to different degree of randomness in 

the signal. This is very successfully captured by the fractal dimension ‘D \ hence it 

shows high recognition performance. Since this feature is uncorrelated to the ‘MFCC’ 

features therefore use of one fractal dimension along with 13 ‘MFCCs’ features shows 

substantial improvement. However, ‘D’ cannot be used all alone for the phoneme 

recognition in a practical scenario as the number of phonemes is large this will give 

very poor recognition. But it can be used along with 13 ‘MFCCs’ features and will 

improve the recognition performance as compared to the system using 13 ‘MFCCs’ 

features alone.

The combination of 13 Mel frequency cepstral coefficients ‘MFCCs’ with the fractal 

dimension ‘D’ leads the speech recognition system to give even better results when 

using N N ,  achieving 98.21% (fricatives) and 96.75% (vowels) accuracy, which is a 

good result considering the amount speech used for training. These results are elab

orated in the tables and histograms drawn below.
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N N m

14 DMFCC 98.21% 96.3% 95.25%

13 MFCC 90.80% 88.6% 86.21%

1 D 77.30% 76.94% 75.22%

Table 4.8: Fricatives recognition rates

cO
cO)OO(U
a:

□ 14 D M FC C
□ 13 M FC C
□  1 D

F ig u re  4.25: N eural ne tw ork  recogn ition  ra te s  for fricatives.
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/a a / M /a h /

14 DMFCC 96.75% 94.77% 95.22%

13 MFCC 86.33% 83.30% 85.43%

1 D 74.11% 71.25% 73.01%

Table 4.9: Vowels recognition rates

05oo
<D
£

□ 14 D M FC C
□ 13 M FC C
□  1 D

F ig u re  4.26: N eural netw ork  recognition  ra te s  for Vowels.
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Chapter 5

Fractal Speech Synthesis

5.1 Introduction

In an ideal world, speech synthesiser should be able to synthesise any arbitrary word 

sequence with complete intelligibility and naturalness. The trade-off schematic in 

Figure 5.1 illustrates how current synthesisers have tended to strive for flexibility of 

vocabulary and sentences at the expense of naturalness (i.e. arbitrary words can be 

synthesised, but do not sound very natural). This applies to articulatory, rule-based 

and concatenative methods of speech synthesis [1, 2, 3, 4).

An alternative strategy is one which seeks to maintain naturalness by operating in 

a  constrained domain. There are potentially many applications where this mode of 

operation is perfectly suitable. In conversational systems for example, the domain of 

operation is often quite limited, and is known ahead of time [5].

Past work by others have examined how unit selection algorithms can be formulated, 

and what constraints must be maintained [1, 3, 4].
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In this work, we develop a framework for natural-sounding speech synthesis using 

fractal. Our objective was to place naturalness as a paramount goal. Our research 

follows the bottom curve of Figure 5.1 where we view naturalness as the highest pri

ority.

Figure 5.1: Schematic trade-off synthesis development.

In signal analysis (where the independent variable is usually time), a real valued signal 

can be represented in terms of the so-called analytic signal, which will be explained in 

the next section. The analytic signal is important because it is from this signal that 

the amplitude, phase and frequency modulations of the original real valued signal can 

be determined.
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5.2 The Analytic Signal and Phase Unwrapping

If / (x )  is a real valued signal with spectrum F(k), then /(x )  can be computed from 

F(k)  via the inverse Fourier transform

This involves integrating over k from — oo to oo. The analytic signal is obtained by 

integrating only over the positive half of the spectrum, which contains the physically 

significant frequencies (i.e. integrating over k from 0 to -foo ).

If s  is used to denote the analytic signal of /  , then by definition

From Eqn.5.2 it is possible to  obtain an expression for s in terms of /  which is done by 

transforming s into Fourier space and analysing the spectral properties of the analytic 

signal.

a) Important Result

T h e o rem :  The analytic signal is given by

(5.1)

(5.2)

s(x) = f ( x )  +  iq(x) (5.3)

where q(x) is the Hilbert transform of f{x).
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P ro o f:  In Fourier space, the analytic signal can be written as

S(K)  =  2 U(k)F(k)  (5.4)

where S  and F  are the Fourier transforms of s and /  respectively and U{k) is the 

unit step function given by

m  =  <
1, k > 0

0, fc < 0

We now employ a simple but useful analytical trick by 

the form

writing the step function in

m = i + ¿»gif*)

where

(5.5)

sgn(k) -
1, k>  0 

-1, fc<0

The inverse Fourier transform of this function can then be written as

u(x)

OO

h  J

OO

J  ^sgn(k) exp(ikx)dk

+
i

2 ttx

(5.6)

(5.7)
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where,

and

since

OO

oo

/ I i-sgn (k) exp (ikx)dk =  —  
2 nx

-O O

2U(k)F{k)<=*2u{x)®f (x)

Therefore we have

s(x) = 2u(x) <8> f ( x )  

substituting Eqn.5.7 into Eqn.5.8 gives:

s(x) = f ( x )  ® (¿(a) + ^~)  = f{x)  +  ® /(* )

or

s(x) = f ( x )  +iq{x)

where q(x) is the Hilbert transform of f ( x )  , i.e.

q(x) =  —  ® f {x)
TTX

(5.8)

(5.9)

(5.10)

(5.11)
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From the last result it is clear that the analytic signal associated with a  real valued 

function /  can be obtained by computing its Hilbert transform to provide the quadra- 

ture component. This process is called quadrature detection.

The analytic signal is a complex function and therefore contains both amplitude and 

phase information. The important feature of the analytic signal is that its spectrum 

(by definition) is zero for all values of k less than zero. This type of spectrum is 

known as a single sideband spectrum because the negative half of the spectrum is 

zero. An analytic signal is therefore a  single sideband signal. This provides another 

way of computing the Hilbert transform of a function f{x):

•  Compute the Fourier transform of f ( x )

•  Set the component of the complex spectrum F(k)  in the negative half space to 

zero.

•  Compute the inverse Fourier transform, which will have real and imaginary 

parts f ( x ) and q{x) respectively.

5.2.1 Attributes of the analytic signal

From the original speech signal we compute the analytical signal (by Hilbert Trans

form) from which we can derive the amplitude envelop and the phase. The amplitude 

and phase can then be processed as required for the purpose of fractal speech synthe

sis as shown in this section.

As with any other complex function, the behavior of the analytic signal can be anal

ysed using an argand diagram and may be written in the form
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•s(x) = A( x)  exp[?;0(x)] (5.12)

where

A = y f p T ? (5.13)

9 -  tan -1 (5.14)

The parameter A describes the average dynamics! behavior of the amphtude modula

tions of /  . For this reason, it is sometimes referred to as the amplitude envelope. The 

param eter 6 measures the phase of the signal a t an instant in time and is therefore 

known as the instantaneous phase.

Note; Because the arctangent function is periodic, this parameter is multivalued. 

Hence, strictly speaking, the analytic function should be written as

5 =  A  exp[i(0 +  27m)]; n  =  0, ± 1, ± 2,... (5>15)

If we confine the value of the phase to a  fixed period (i.e. we compute the phase 

using only one particular value of n), then it is referred to as the wrapped phase. In 

this case, there is only one unique value of the phase within a  fixed period. However, 

any other interval of length 2w can be chosen. Any particular choice, decided upon 

in advance, is called the principal range. The value of the phase within this range, is 

called the principal value.
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5.3 Phase Unwrapping

An alternative way of defining the phase can be obtained by taking the natural 

logarithm of the analytic signal, and this yields the equation

In s = In A  +  i(0 +  27rn) 5̂

where,

Real [Ins] =  In A 

Im[ln s] =  (9 +  2nn)

Another important property of the analytic signal is its instantaneous frequency. This 

parameter (denoted by $  ) measures the rate of change of phase dOjdx and from the 

previous expression can be written as

'> = £ =Im( ^ ' “ s) = ,m( i ; | )  (5.17)

The instantaneous frequency provides a quantitative estimate of the frequency of the 

real valued signal /  at any instant in time.

The phase 0 can be obtained as follow

( \ { x ) d x  = r ~ d x  
Jo Jo dx

Using the initial conditions

0(x = O)=0o

we get
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0(x) = 6q + [  ÿ (x )d x
Jo

This phase function is called the unwrapped phase. It is not multi-valued and there

fore the problem of choosing a principal range to compute the phase does not occur.

5.4 System Description
5.4.1 Phase Compression Method

As explained in section 5.2, a  real valued signal can be represented in terms of the 

so-called analytic signal, which is important because it is from this signal tha t the 

amplitude, phase and frequency modulations of the original real valued signal can be 

determined.

The phase compression method makes use of two parameters related to the speech 

signal namely the fractal dimension D and the phase <j>. The fractal dimension of the 

speech word is computed using the power spectrum method (Chapter 2), then it is 

used to  generate the fractal signal F , the idea is to  use the fractal properties of the 

word in the calculation of the amplitude envelope in order to obtain more natural 

speech synthesis.

To avoid the problem of choosing a  principal range to compute the phase 0, we use 

the function unwrap phase, which we note by <j>’. This phase is then compressed and 

used with the amplitude envelope within a  specific algorithm to produce the synthetic
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speech. The method is illustrated in Figure 5.2.

P igure 5.2: Phase compression algorithm.

The simulation process consists of the following steps:

The speech signal is divided into frames using a window size of 512 samples. For each 

j th window of the speech word the following steps are undertaken:

S te p  1: Compute the fractal dimension D of the speech word S j( t)

S t e p  2: Compute the fractal signal Fj(t) = R e { IF F T (FFT(Sj(t.)) x -i,)} Gf the 

speech signal Sj(t) , using the power spectrum method discussed in Chapter 2
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S te p  3: Compute the Hilbert transform H j(t) of the fractal signal Fj , (j =  1,2,..., N , 

where N  is the number of samples of S j  ) as follows:

1. Take the Fourier Transform Fj(k) of the fractal signal Fj(t)

2. Multiply the result by [-* sgn (fc)]

3. Compute the inverse Fourier Transform to obtain the Hilbert transform as fol

lows:

Hj (t) = F~l{ ( - i  sgn (k)Fj(k))}

S te p  4: Compute the amplitude envelop Aj(t) = y/F j(t)2 + JJj(t)2 

S te p  5: Compute the phase =  fan-1 of the speech signal

S te p  6: Compute the unwrapped phase — unwrap(<f>j(t))

S te p  7:Compress <^(t) by 65% from it’s original size with the use of the Discrete 

Cosine Transform (DCT), which has the role of retaining the low frequencies and 

section the high frequencies to  zero.

S te p  8: FYom the standard complex representation A ^ e ' ^  of which the real part 

SQ(t) = Re[A{t)ei^ t'>] = A(t)cos<t>(t) is taken to be the synthesised word, the synthetic

speech signal is then reproduced as follows:
N

S 0{t) = 22 A'j(t) cos[#(0], where Aj(t) is the amplitude envelop cited previously and 
j=1

N the number of samples in Sj(t).

The texture of the fractal signal Fj(t) as shown in Figures 5.3 and 5.4, for example, 

looks smoother than the input speech signal Sj(t), which means that the fractal sig

nal requires less samples to  reconstruct the synthetic speech word, therefore together
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with the compression of the phase 4>j{t) it provides a method of synthesising a speech 

signal from very limited data. The principal information related to the speech to be 

synthesised comes from the phase of the original signal. However, the realistic texture 

or naturalness of the synthetic speech waveform is related directly to the fractal field 

Fj{t). This is because the fractal field has the same textural properties as the orig

inal signal as compounded in the computation of the fractal dimension D. As with 

the approach of fractal geometry to compute graphics in which the fractal dimension 

defines random fractal constricted with natural object (e.g. cloud, mountains and 

other natural surfaces) so, this approach to speech synthesis provides an equivalent 

acoustic effect.

Fracta l S ign a l zo n o

F igure  5.3: W aveform  o f w ord /z o n e /  an d  its  frac ta l signal.
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Figure 5.4: Waveform of word /te s t/  and its fractal signal.

5.4 .2  Phase Compression M ethod w ith Fractal Synthesis

Using the same algorithm as in section 5.4.1, the amplitude of this simulation as shown 

in Figure 5.5 was passed through a low pass filter, which distorted the frequency 

response of the speech signal. In order to eliminate this effect, a white Gaussian 

noise was added. The synthetic speech signal is then reproduced (from the standard 

complex representation A { t ) e ^  of which the real part S0{t) =  R e[A {t)e^)]  =  

A(t)ms(p(t) is taken to be the synthesised word) as follows:

N

S0(t) = J2Aj(t)cos[0'(i)]
j =i

This method adds novelty to  the synthesis speech as it doesn’t  not only nses the frac

tal dimension D to compute amplitude envelop but also compresses the amplitude by
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using a low pass filter and adds white Guassian noise in order to show the robustness

of the synthetic speech signal.

Figure 5.5: Fractal Synthesis algorithm.
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5.5 Computer Simulation Set up

Three experiments were conducted in the simulation process involving four different 

words namely “test”, “best” , “open” and “zone” spoken by different male and female 

speakers. The speech words were recorded and directly digitized at a sample rate of 

8 kHz using the digital audio editor Cool Edit 96.

• In the first experiment, only the unwrapped phase of the word was used along 

with the fractal signal.

• In the second one, the phase is 65% compressed from the original.

• In the third experiment, the amplitude envelope is low pass filtered and the re

maining signal is replaced by a white Guassian noise as discussed in the previous 

section.

5.6 Results and Discussion

The three experiments gave good quality and intelligibility of the synthetic words 

and they all sounded very natural as shown in the subjective evaluation subsection; 

however, of the three, the best natural sounding speech was enhanced when the am

plitude of the speech signal was low pass filtered and white Gaussian noise added.

It is worth mentioning here, that the use of the fractal properties in the energy of 

the reconstructed speech signal has the effect of controlling the naturalness of the 

synthetic speech as mentioned in subsection 5.4.1.



118

The results are illustrated in Figures 5.6, 5.7, 5.8 and 5.9 respectively where the 

unwrapped phase; the synthetic amplitude envelope, the original word and its recon

structed word are plotted. We clearly notice the similarities between the waveforms 

of the input speech word with the synthetic waveform, which confirm the accuracy 

and efficiency of the new algorithm in the synthesis of a  speech word.

Essentially , the method involves retention of the phase (with or without compression) 

and detection of the signal amplitude envelope which is reconstructed from knowledge 

of the fractal dimension of the original signal.

Figure 5.6: Synthesis results of word ‘open’.
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Figure 5.7: Synthesis results of word ‘best’.

Figure 5.8: Synthesis results of word ‘test’.
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Figure 5.9: Synthesis results of word ‘zone’.

5.6.1 Subjective Evaluation

To test the validity of the simulation results, 30 people were asked to listen to the 

synthetic words and to give their evaluations in terms of how good or bad is the 

quality of the synthetic word and how clear or not is the intelligibility of the word 

and also how natural it sounds, without having any earlier information about the

word they were going to hear. These subjective evaluations are elaborated in Figure 

5.10 and Table 5.1.
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Natural Quality Inteligibility

Figure 5.10: Subjective of the Synthesis Evaluation.

Quality Naturalness Intelligibility

Unwrapped phase Good natural clear

Unwrapped compressed 

phase (65%)

Good natural clear

Unwrapped compressed 

phase with fractal 

synthesis

very good very natural Very clear

Table 5.1: Subjective evaluations
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The audible synthesised words were considered to be satisfactory in the subjective 

evaluation. They highlight the importance of the use of the fractal dimension in 

generating very natural sounding speech. In fact, we notice from Figure 5.10 and 

Table 5.1 that for the case of the unwrapped phase and compressed phase methods 

simultaneously, the quality and the intelligibility of the words is good and the differ

ence occurs only in the naturalness where the synthetised word is found to be more 

natural when the fractal properties are added in the computation of the amplitude 

envelope. On the other hand, it is clear from Table 5.1 that the compression method 

with fractal synthesis, gives the best results with a high quality and intelligibility of 

the word and very natural sounding words synthesis when compared to the synthesis 

that uses only the unwrapped phase or the unwrapped compressed phase.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

A new spectral representation of speech phonemes based on fractals has been pre

sented and the use of pre-filtering in the Power Spectrum Method described. This new 

spectral technique for the determination of the fractal dimension of speech phonemes 

appears to be a practical procedure of acceptable validity. In fact, one of its main 

advantage is that the computation of the fractal dimension D is based on an explicit 

formulae D  =  (5 -  ¡3)¡2. This gives a good computation of the fractal dimension of 

various speech phonemes as they all obey the law of fractal dimension when applied 

to  fractal speech and curves.

New ideas to  construct a more robust and more reliable speaker recognition system 

has been highlighted. A new set of features for phoneme speech recognition un

der the template matching technique was described in detail. Experimental results 

from using this technique on TIMIT continuous speech showed significantly improved 

recognition accuracy. Chapter 4 explained and discussed the simulation results for 

the recognition research of this thesis. It is clearly noticeable from Figures 4.20 and
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4.24 respectively that the recognition performance has been greatly improved when 

D and the M F C C s  were combined together and used as a single set of features char

acterizing the specific use of phoneme. In particular, the recognition rates increased 

significantly for vowels and fricatives respectively from 71% to  90% and from 75% to 

95% when M F C C s  were added to the fractal dimension D. This shows that when the 

new hybrid features (D and M F C C s) are combined together, a  better performance 

of the speech phoneme recognition can be achieved.

It has also been shown that the combination of the Mel-frequency cepstral analysis 

with non-linear features lead to a speaker recognition system with better results when 

a Neural Network algorithm is used as shown in Figures 4.25 and 4.26 respectively 

achieving 98.21% (fricatives) and 96.75% (vowels) of accuracy, which is considered to 

be a good and promising result.

A new algorithm based on fractals has been used for the synthesis of speech words. 

The synthesis process involved three cases of experiments, which increased the qual

ity and the intelligibility of the synthesised speech. It is worth mentioning here, that 

the texture of the fractal signal Fj(t) as shown in Figures 5.3 and 5.4, for example, 

looks smoother than the input speech signal Sj(t), which means that the fractal sig

nal requires less samples to  reconstruct the synthetic speech word, therefore together 

with the compression of the phase <t>3{t) it provides a  method of synthesising a speech 

signal from very limited data. The principal information related to the speech to be 

synthesised comes from the phase of the original signal. However, the realistic texture 

or naturalness of the synthetic speech waveform is related directly to the fractal field
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Fj(t). This is because the fractal field has the same textural properties as the original 

signal as compounded in the computation of the fractal dimension D. As with the 

approach of fractal geometry to compute graphics in which the fractal dimension de

fines random fractal constricted with natural object (e.g. cloud, mountains and other 

natural surfaces) therefore, this approach to speech synthesis provides an equivalent 

acoustic effect.

The naturalness level (paramount in our work) was achieved as a result of the fractal 

characteristic used in the synthesis process. Despite the small size of vocabulary used, 

the naturalness is very high and, as the pursuit of naturalness dominates, human lis

tening provided the best feedback.

6.2 Future Work

There are many difficulties in communications and signal processing algorithms, which 

linear techniques have failed to address satisfactorily. It is generally held belief that 

these problems may however have solutions in the growing field of non-linear signal 

processing. The recent rise in neural network concepts and fractals are, for example, 

largely fuelled by this promise. In addition, the past decade has seen a remarkable 

growth in the theory of the dynamics of non-linear systems such as fractals. One cause 

of this interest has been the realisation that deterministic mathematical models with 

few degrees of freedom can generate extremely complex behavior. Thus complicated 

physical systems may be well modelled by relatively simple non-linear models.
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The research work presented in this thesis can be enhanced through further investi

gations and practical implementation, which may be achieved by taking into consid

eration that:

•  Speech  coefficients: Speech recognition based only on fractals analysis will 

not be possible. Fractals will however be good additional features to be com

bined with other approaches like, for example, LP-derived cepstral coefficients 

which are obtained from the predictor coefficients, or wavelets. This could 

extract new informations tha t specifically distinguish different speakers and 

improve recognition. Non-linear techniques will allow us to merge feature ex

traction and classification problems and to include the dynamics of the speech 

signal in the model. This is likely to lead to significant improvements over cur

rent methods, which are inherently static.

• M u ltifrac ta l A nalysis: Speech processing ( e.g., characterisation, compres

sion, recognition, and analysis ) depends heavily on processing nonstationary 

parts of the signals considered (e.g., consonants, vowels transitions, consonant- 

vowel transitions) because the transient parts of speech often carry most of 

speech information. Multifractal (or singularity) processing of speech is capa

ble of providing important processing aspect (decomposition, representation and 

spectrum characterisation). The multifractal approach can decompose speech 

into various segments and is also used in characterising speech through singular

ity spectrum, which can be used to develop a better accuracy speech recognition 

schemes.
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•  S peaker recognition  ap p lica tion  : A simple recognition system can be envis

aged where each class (which could be composed of phones, diphones, etc) can 

be characterised by a non-linear model. Then, given an input frame of speech, 

it will be possible to use the sum of the error residual from the predictor over 

the frame to decide which class the input speech belongs to. Thus, the feature 

extraction and the classification problem are merged together and solved by 

one unit. Further, the dynamics of the speech signal may be included in the 

non-linear model. For speaker recognition applications it has been shown that 

the residual signal of a linear analysis contains enough information to enable 

humans to identify people. Thus, there is relevant information that is ignored 

with a  linear analysis. Non-linear techniques allow us to  merge feature extrac

tion and classification problems and to include the dynamics of the speech signal 

in the model. It is likely to lead to significant improvements over current meth

ods, which are inherently static. Work on detecting such features and using 

them in recognition systems is very promising.

• Speech  ap p lica tio n  system s: Such as recognisers and synthesisers, require 

some parametric representation of the signal. These parameters should reflect 

our understanding of speech production and speech perception mechanisms. For 

example, actual recognition systems are not robust in terms of noise and vari

ations of voice quality and speaker. Synthesisers suffer for being characterised 

by poor and unnatural quality of speech, and by a lack of flexibility in terms of 

changes in voice gender and reflection of emotional states.



The development of new applications using speech technology has sparked in

terest in determining when and how to incorporate speech for user input and 

is leading to the design of efficient dialogue generation. Along these lines, class 

grammars may provide better modelling of sentence, topic and discourse struc

ture. In addition, an accurate prosodic model would be useful for choosing 

between parses in natural language as well as for producing natural speech for 

both language learning and instruction.

•  A nalysis o f th e  acoustic  signal: One way for gaining insight in how speech 

sounds are structured is to analyse the acoustic signal in a very detailed manner. 

This procedure allows the definition of a number of acoustic attributes, which 

characterise, in a significant way, the speech units of a  language. However, as 

is well known, the acoustic attributes of a given sound vary as a function of 

many factors, among which the context in which the sound is embedded and 

the speaker have the strongest effects. Therefore, a careful analysis of the speech 

signal requires sophisticated experiments in which a large number of tokens of 

a given sound are recorded to form the experimental database. Accurate mea

surements of the acoustic parameters must be performed on all collected data, 

and their significance must be evaluated. However, even when doing so, a vari

ety of factors such as the speaking rate and emotional state may be neglected. 

It should be noted, th a t the acoustic attributes also depend upon the language 

under examination and thus, the findings obtained on one language can hardly 

be extended to other languages. All these aspects make the analysis complex 

and time-consuming, a feature that is often not compatible with the timing of
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speech application systems development.

•  Speech  syn thesis technology: It plays an important role in many aspects of 

man machine interaction, particularly in telephony applications. New telecom

munication services include the capability of a machine to speak with a human 

in a ‘natural way’; to this end, a lot of work must be done in order to improve 

the actual voice quality. This will involve constructing models, which operate in 

the state space domain, such as neural network architectures and fractal mod

els. The speech synthesised by these methods will be more natural-sounding 

than linear concatenation techniques because the low dimensional dynamics of 

the original signal are learnt. In addition to generating high quality speech, 

other associated tasks will also be addressed. The most important of these is 

to  examine techniques for natural parameterisation that can be linked into the 

non-linear model.

Speech synthesis has been developed steadily over the last decades and it has 

been incorporated into several new applications. For most applications, the 

intelligibility and comprehensibility of synthetic speech have reached an accept

able level. However, in prosodic, text preprocessing and pronunciation fields, 

there is still much work and improvements to be done to achieve more natural 

sounding speech.

Several normal speech processing techniques may be used also with synthesised
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speech. For example, by adding some reverberation it may be possible to in

crease the pleasantness of synthetic speech afterwards. Other effects, such as 

digital filtering, chorus, etc., can also be used to generate different voices. How

ever, using these kind of methods may increase the computational load. Most 

information of the speech signal is focused at a frequency range less than 10 

kHz. However, by using higher sampling rates than necessary, the speech may 

sound slightly more pleasant.

As long as speech synthesis needs to be developed, the evaluation and assess

ment play one of the most important roles. Before performing a listening test, 

the method used should be tested with smaller listener groups to find out pos

sible problems and the subjects should be chosen carefully. The development of 

speech synthesis is going forward steadily and in the long run, the technology 

seems to make progress faster than we can imagine. Thus, when developing 

a speech synthesis system, we may use almost all resources available, because 

in a  few years time today’s high resources will be available in every personal 

computer. Regardless of how fast the development process will be, speech syn

thesis, whenever used in low-cost calculators or state-of-the-art multimedia so

lutions, has probably the most promising future. If speech recognition systems 

someday achieve a generally acceptable level, we may develop for example a 

communication system that will first analyse the speakers’ voice and its char

acteristics, transmit only the character string with some control symbols, and 

finally synthesise the speech with individual sounding voice at the other end. 

Even interpretation from a language to another may became feasible.
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Appendix A

Mel Scale and Critical Bands

A .l Threshold of Hearing

The absolute sensitivity of the human ear is measured as the smallest Sound Pres

sure (SP), which leads to the sensation of hearing. The threshold depends on the 

frequency of the sound. Figure A .l displays this threshold as a  function of frequency 

for a typical young adult [1].

The human ear is most sensitive between 1000 and 3000 Hz with the threshold rising 

from lower to higher frequencies. If a threshold at 1000 Hz is taken as a  reference 

(see Figure A .l), the signal is to be increased a  hundred times to reach a threshold at 

100 Hz and 15,000 Hz, and a thousand times to reach a threshold a t 18,000IIz. The 

threshold of pain occurs more or less uniformly at sound intensities equal to 140dB.

The frequency limits of hearing are generally considered to lie between 20 and 20,000 

Hz.
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A.2 Pitch and Mel Scale

Pitch is the subjective attribute of a sound, which corresponds to the physical a t

tribute of frequency. Although the pitch of a pure tone is monotically related to its 

frequency, a linear relationship does not hold. The unit of pitch is the ‘mel’. The 

mel scale has been constructed on the basis of subjective pitch evaluations. This 

involves the determination of the frequency corresponding to halving and doubling of 

the pitch and equal increments of the pitch by nave listeners. A tone with a pitch of 

500 mels sounds half as high as one with a pitch of 1000 mels. However, its frequency 

will be 400 Hz. Similarly, a tone with a pitch of 2000 mels will sound twice as high 

as one with a pitch of 1000 mels, yet its frequency will be 3000 Hz rather than 2000 

Hz. Figure A.2 illustrates the relationship between the pitch scale and the frequency 

scale for pure tone of 40db intensity [1].

The mel scale is essentially linear at low frequencies and logarithmic at higher fre

quencies. A useful approximation to the mel scale is of the form [2]

f
y  =  k  logfl +

1000'
(A.l)

where f is the frequency in Hz and k  is a constant. The constant is computed with 

the consideration that a tone with a frequency of 1000 Hz is defined as having a pitch 

of 1000 mels. Thus, k  is equal to 3322. A conversion of a frequency to a mel scale is 

roughly identical with an estimate of the spatial position of the corresponding point 

of maximum excitation on the basilar membrane in the cochlea ( in the inner ear).
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Figure A.l: Threshold of hearing as a function of frequency.

The cochlea, a liquid-filled tube located in the inner ear, performs a continuous broad

band analysis of the sound, which enters the ear, and transmits the results to the 

brain through the neural fibre outputs of the cochlea. The basilar membrane in the 

cochlea, which performs the spectral analysis, has a different frequency response along 

its length. Each location along the basilar membrane has a characteristic frequency; 

at which it vibrates maximally for a given frequency at the input of the cochlea is 

that of a band pass filter with almost constant Q (fixed ratio of centre frequency 

to bandwidth). Because of this constant-percentage bandwidth, frequency resolution 

along the basilar membrane is best at low frequencies. For every input frequency, 

there is a point on the basilar membrane of maximal vibration.
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Figure A.2: Relationship between pitch scale and frequency.

According to the mel scale, the frequency range over which the human ear is able 

to perceive sounds can be divided into a bank of band pass filters. These filters are 

linearly spaced below 1000 Hz and logarithmically spaced above 1000 Hz. The filters 

under 1000 Hz have fixed bandwidths and are taken to be equal to 100 Hz. The 

filters at and above 1000 Hz follow a logarithmic distribution according to Eqn.A.l, 

and these filters are assumed to have constant Q given by

Q = Jo_
B W (A.2)

where f 0 and B W  are the filter’s centre frequency and bandwidth respectively. From 

Eqn.A.l, the frequency /  is given as a function of its value y on the mel scale as 

follows:
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/ =  103(10« /* - ! )  (A3)

For a  band pass filter 1000 Hz =1000 mels and for a bandwidth equal to 100 mels, 

Q  is computed by substituting Eqn.A.3 into Eqn.A.2 to yield Q  =  7.3. In order to 

have a flat composite spectrum over the whole frequency range of the filter bank the 

centre frequency of a  filter i is computed as follows:

ft  = /i_x +  B W i-i =  /¿_x (1 +  1 /Q ) = 1.137/i_j (A.4)

For /i_ i =  1000 Hz, the centre frequency of the following filter is a t 1137 Hz. Table 

A .l illustrates values of the centre frequency of a bank of 22 filters covering the range 

50-4980 Hz [3], where the centre frequencies above 1000 Hz follow Eqn.A.4
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Filter No. Center Frequency (Hz) Bandwidth(Hz)

1 100 100

2 200 100

3 300 100

4 400 100

5 500 100

6 600 100

7 700 100

8 800 100

9 900 100

10 1000 118

11 1137 146

12 1292 166

13 1469 189

14 1671 215

15 1899 244

16 2159 316

17 2455 359

18 2791 408

19 3173 464

20 3607 527

21 4662 599

Table A.l: Filter bank centre frequencies and bandwidths (mel scale).
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A.3 Critical Bands

When a weak tone is heard in the presence of an adjacent tone, the threshold for 

hearing the first tone is raised. This phenomenon is known as ‘masking’. It was 

found that the threshold is raised only when the tones are close to each other in the 

frequency. If they are more than a critical distance apart, the second tone (whose 

intensity is above the hearing threshold) has no effect on the threshold for hearing 

the first tone [1]. This has led to the concept of the critical band. Signals within the 

critical band influence the perception of each other.

Critical bands are measured throughout the frequency range of hearing by listening 

to tones mixed with band-limited noise. The tone is set at the centre frequency of 

the band of noise. As the bandwidth of the noise is increased, the intensity at which 

the tone was just perceived is also increased until the bandwidth of the noise is equal 

to  the critical band. Thereafter, the intensity for hearing the tone remains constant. 

It has been found the critical bandwidth increases as the centre frequency is raised. 

The critical bandwidth for a centre frequency of 200 Hz is found to  be about 100 IIz, 

and for 5000 Hz about 1000 Hz [1].

In the cochlea, the point of maximum vibration moves along the basilar membrane as 

the frequency of excitation is increased. The critical bandwidths correspond approx

imately to fixed spacing (1.5 mm spacing) along the basilar membrane, suggesting 

that a set of 24 band pass filters would model the basilar membrane well. A per

ceptual measure, called the ‘Bark’ scale [4] or ‘critical-band rate’, relates acoustical 

frequency to perceptual frequency resolution, in which one Bark covers one critical



bandwidth over the whole frequency range, and corresponds nearly to a  pitch interval 

of 100 mels. Table B.2 gives the values for preferred frequencies defining the limits 

of auditory critical bands [4].

An analytical expression [5] mapping the frequency /  into critical -band rate Z, and 

another expression for critical bandwidth CB are given as follows:

Zi =  13 arctan(0.76/) +  3.5 arctan(//7 .5)2 (A.5)

CB, = 2575(1 +  1.4/2)0,69 (A.6)

Where /  is taken in KHz. These expressions approximate the tabulated data with an 

accuracy of ±10%. From Table A.2, we notice that the critical bandwidth is constant 

at low frequencies but increases with the logarithm of frequency at high frequencies. 

Also the critical-band rate is proportional to frequency at low frequencies, but at 

medium and high frequencies it is proportional to  the logarithm of frequency. The 

critical bands have a certain width, but their position on the frequency scale is not 

fixed.
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Critical Band 

Rate Bark

Center Frequency (Hz) Critical Bandwidth (IIz)

1 50 100

2 150 100

3 250 100

4 350 100

5 450 110

6 570 120

7 700 140

8 840 150

9 1000 160

10 11701 190

11 1370 210

12 1600 240

13 1850 280

14 2150 320

15 2500 380

16 2900 450

17 3400 550

18 4000 700

19 4800 900

20 5800 1100

21 7000 1300

22 8500 1800

23 10500 2500

24 13500 3500

Table A.2: Values of critical band rate and critical bandwidth as a function of fre
quency.
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Appendix B 

TIMIT Database

Since the wish reported in this thesis uses speech data from the TIMIT database, we 

now present a brief overview of this database. TIMIT is an acoustic-phonetic speech 

corpus designed to provide speech data for the acquisition of acoustic-phonetic knowl

edge and for the development and evaluation of speech processing systems [1]. It is 

prepared by the National Institute of Standards and Technology (NIST) with sponsor

ship from the Defence Advanced Research Projects Agency-Information Science and 

Technology Office (DARPA). TIMIT consists of a total of 6300 sentences, 10 sen

tences spoken by each of 630 male and female speakers from 8 major dialect regions 

of the United States. The speech data in TIMIT is divided into two broad groups: 

train and test for training and testing purposes. Each group is further subdivided 

into eight dialect groups. There are four files associated with each sentence data: a 

wave file (.wav), a text file (.txt), a word file (.wrd) and a phone file (.phn). The 

wave file consists of waveform speech data with a header. The speech waveforms are 

digitized at the sampling rate of 16 kHz and are stored in binary format. The text 

file contains the associated orthographic transcriptions of the words in a sentence. 

The word file is composed of the time-aligned word transcriptions while the phone
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file consists of the time-aligned phonetic transcription. A more detailed description 

of the T1MIT phonetic lexicon can be found in [1]. In Tables 2.4 and 2.5 we present 

the TIMIT phonetic transcription that is used consistently throughout in this thesis.
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Phone type Symbol Example word Phonetic transcription

Stops b bee BCL B iy

d day DCL D ey

g gay GCL G ey

P pea PCL P iy

t tea TCL T  iy

k key KCL I< iy

dx muddy,dirty m ah DX iy, del d er DX iy

Affricatives jh Joke DCL JII ow kcl k

ch choke TCL CII ow kcl k

Fricatives s sea S iy

sh she SI I iy

X Zone Z ow n

zh Azure ae ZII er

f fin F ih n

th thin V ae n

dh Van DII c n

then

Nasals m Mom M aa M

n noon N uw N

ng sing S ih NG

em Bottom Baa tel t EM

en button B ah q EN

eng Washington W aa sh ENG tel t ax n

nx winner w ih NX axr

Table B .l: Phonetic transcription used in the TIM IT database for Stops, Affricates
Fricatives and nasals. * ’ ’
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Semivowels 1 lay L ey

el bottle Bel b aa tel t EL

r ray R ey

w way W ey

y yacht Y aa tel t

Aspiration hh hay IIII ey

hv ahead AxIIV eh del d

Vowels iy Beet bel b IY tel t

ih Bit bel b IY tel t

eh Bet bel b EH tel t

ey Bait bel b AE tel t

ae Bat bel b AE tel t

aa Bott bel b AA tel t

aw Bout bel b AW tel t

ay Bite bel b AY tel t

ah But bel b All tel t

ao Bought bel b AO tel t

oy Boy bel b OY

ow Boat bel b OW tel t

uh Book bel b UII kcl t

uw Boot bel b UW tel t

ux toot tbcl t UX tel t

er Bird bel b ER del d

ax about AX bel b aw tel t

ix debit del d eh bel b IX tel t

axr Butter bel b ah dx AXR

ax-h suspect s AX-II s pel p eh kcl k tel t

Table B.2: Phonetic transcription used in the TIMIT database for semivowels Aspi
ration and vowels. ’ "1
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