13 research outputs found

    Location Optimization for Antennas by Asynchronous Particle Swarm Optimization

    Get PDF
    [[abstract]]A novel optimisation procedure for the location of the transmitter in 3 × 3 multiple input multiple output wireless local area network wireless communication systems is presented. The optimal antenna location for maximising the channel capacity is searched by particle swarm optimiser (PSO) and asynchronous particle swarm optimisation (APSO). There are two different receiver locations considered in the simulation. These two cases are: (i) the transmitter is mobile in the whole indoor environment and the receivers are located on the tables spaced in intervals uniformly distributed (ii) the transmitter is mobile and the receivers are space in uniformly distributed intervals in the whole indoor environment. Numerical results have shown that the proposed PSO and APSO methods are transmit antenna location is optimised to increase channel capacity. The APSO has better optimisation results compared with the PSO and numerical results also show that the APSO outperforms the PSO in convergence speed.[[notice]]補正完畢[[incitationindex]]SCI[[booktype]]紙本[[booktype]]電子

    Theoretical Derivation and Optimization Verification of BER for Indoor SWIPT Environments

    Get PDF
    [[abstract]]Symmetrical antenna array is useful for omni bearing beamforming adjustment with multiple receivers. Beam-forming techniques using evolution algorithms have been studied for multi-user resource allocation in simultaneous wireless information and power transfer (SWIPT) systems. In a high-capacity broadband communication system there are many users with wearable devices. A transmitter provides simultaneous wireless information and power to a particular receiver, and the other receivers harvest energy from the radio frequency while being idle. In addition, the ray bounce tracking method is used to estimate the multi-path channel, and the Fourier method is used to perform the time domain conversion. A simple method for reducing the frequency selective effort of the multiple channels using the feed line length instead of the digital phase shifts is proposed. The feed line length and excitation current of the transmitting antennas are adjusted to maximize the energy harvest efficiency under the bit error rate (BER) constraint. We use the time-domain multipath signal to calculate the BER, which includes the inter symbol interference for the wideband system. In addition, we use multi-objective function for optimization. To the best of our knowledge, resource allocation algorithms for this problem have not been reported in the literature. The optimal radiation patterns are synthesized by the asynchronous particle swarm optimization (APSO) and self-adaptive dynamic differential evolution (SADDE) algorithms. Both APSO and SADDE can form good patterns for the receiver for energy harvesting. However, APSO has a faster convergence speed than SADDE.[[notice]]補正完

    Different Object Functions for SWIPT Optimization by SADDE and APSO

    Get PDF
    [[abstract]]Multiple objective function with beamforming techniques by algorithms have been studied for the Simultaneous Wireless Information and Power Transfer (SWIPT) technology at millimeter wave. Using the feed length to adjust the phase for different objects of SWIPT with Bit Error Rate (BER) and Harvesting Power (HP) are investigated in the broadband communication. Symmetrical antenna array is useful for omni bearing beamforming adjustment with multiple receivers. Self-Adaptive Dynamic Differential Evolution (SADDE) and Asynchronous Particle Swarm Optimization (APSO) are used to optimize the feed length of the antenna array. Two different object functions are proposed in the paper. The first one is the weighting factor multiplying the constraint BER and HP plus HP. The second one is the constraint BER multiplying HP. Simulations show that the first object function is capable of optimizing the total harvesting power under the BER constraint and APSO can quickly converges quicker than SADDE. However, the weighting for the final object function requires a pretest in advance, whereas the second object function does not need to set the weighting case by case and the searching is more efficient than the first one. From the numerical results, the proposed criterion can achieve the SWIPT requirement. Thus, we can use the novel proposed criterion (the second criterion) to optimize the SWIPT problem without testing the weighting case by case.[[notice]]補正完

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    Spatial channel degrees of freedom for optimum antenna arrays

    Get PDF
    One of the ultimate goals of future wireless networks is to maximize data rates to accommodate bandwidth-hungry services and applications. Thus, extracting the maximum amount of information bits for given spatial constraints when designing wireless systems will be of great importance. In this paper, we present antenna array topologies that maximize the communication channel capacity for given number of array elements while occupying minimum space. Capacity is maximized via the development of an advanced particle swarm optimization (PSO) algorithm devising optimum standardized and arbitrarily-shaped antenna array topologies. Number of array elements and occupied space are informed by novel heuristic spatial degrees of freedom (SDoF) formulations which rigorously generalize existing SDoF formulas. Our generalized SDoF formulations rely on the differential entropy of three-dimensional (3D) angle of arrival (AOA) distributions and can associate the number of array elements and occupied space for any AOA distribution. The proposed analysis departs from novel closed-form spatial correlation functions (SCFs) of arbitrarily-positioned array elements for all classes of 3D multipath propagation channels, namely, isotropic, omnidirectional, and directional. Extensive simulation runs and comparisons with existing trivial solutions verify correctness of our SDoF formulations resulting in optimum antenna array topologies with maximum capacity performance and minimum space occupancy

    Spatial Channel Degrees of Freedom for Optimum Antenna Arrays

    Get PDF
    One of the ultimate goals of future wireless networks is to maximize data rates to accommodate bandwidth-hungry services and applications. Thus, extracting the maximum amount of information bits for given spatial constraints when designing wireless systems will be of great importance. In this paper, we present antenna array topologies that maximize the communication channel capacity for given number of array elements while occupying minimum space. Capacity is maximized via the development of an advanced particle swarm optimization (PSO) algorithm devising optimum standardized and arbitrarily-shaped antenna array topologies. Number of array elements and occupied space are informed by novel heuristic spatial degrees of freedom (SDoF) formulations which rigorously generalize existing SDoF formulas. Our generalized SDoF formulations rely on the differential entropy of three-dimensional (3D) angle of arrival (AOA) distributions and can associate the number of array elements and occupied space for any AOA distribution. The proposed analysis departs from novel closed-form spatial correlation functions (SCFs) of arbitrarily-positioned array elements for all classes of 3D multipath propagation channels, namely, isotropic, omnidirectional, and directional. Extensive simulation runs and comparisons with existing trivial solutions verify correctness of our SDoF formulations resulting in optimum antenna array topologies with maximum capacity performance and minimum space occupancy

    The automatic placement of multiple indoor antennas using Particle Swarm Optimisation

    Get PDF
    In this thesis, a Particle Swarm Optimization (PSO) method combined with a ray propagation method is presented as a means to optimally locate multiple antennas in an indoor environment. This novel approach uses Particle Swarm Optimisation combined with geometric partitioning. The PSO algorithm uses swarm intelligence to determine the optimal transmitter location within the building layout. It uses the Keenan-Motley indoor propagation model to determine the fitness of a location. If a transmitter placed at that optimum location, transmitting a maximum power is not enough to meet the coverage requirements of the entire indoor space, then the space is geometrically partitioned and the PSO initiated again independently in each partition. The method outputs the number of antennas, their effective isotropic radiated power (EIRP) and physical location required to meet the coverage requirements. An example scenario is presented for a real building at Loughborough University and is compared against a conventional planning technique used widely in practice

    Arquitectura para coordenação em tempo-real de múltiplas unidades móveis autónomas

    Get PDF
    Doutoramento em Engenharia ElectrotécnicaInterest on using teams of mobile robots has been growing, due to their potential to cooperate for diverse purposes, such as rescue, de-mining, surveillance or even games such as robotic soccer. These applications require a real-time middleware and wireless communication protocol that can support an efficient and timely fusion of the perception data from different robots as well as the development of coordinated behaviours. Coordinating several autonomous robots towards achieving a common goal is currently a topic of high interest, which can be found in many application domains. Despite these different application domains, the technical problem of building an infrastructure to support the integration of the distributed perception and subsequent coordinated action is similar. This problem becomes tougher with stronger system dynamics, e.g., when the robots move faster or interact with fast objects, leading to tighter real-time constraints. This thesis work addressed computing architectures and wireless communication protocols to support efficient information sharing and coordination strategies taking into account the real-time nature of robot activities. The thesis makes two main claims. Firstly, we claim that despite the use of a wireless communication protocol that includes arbitration mechanisms, the self-organization of the team communications in a dynamic round that also accounts for variable team membership, effectively reduces collisions within the team, independently of its current composition, significantly improving the quality of the communications. We will validate this claim in terms of packet losses and communication latency. We show how such self-organization of the communications can be achieved in an efficient way with the Reconfigurable and Adaptive TDMA protocol. Secondly, we claim that the development of distributed perception, cooperation and coordinated action for teams of mobile robots can be simplified by using a shared memory middleware that replicates in each cooperating robot all necessary remote data, the Real-Time Database (RTDB) middleware. These remote data copies, which are updated in the background by the selforganizing communications protocol, are extended with age information automatically computed by the middleware and are locally accessible through fast primitives. We validate our claim showing a parsimonious use of the communication medium, improved timing information with respect to the shared data and the simplicity of use and effectiveness of the proposed middleware shown in several use cases, reinforced with a reasonable impact in the Middle Size League of RoboCup.O interesse na utilização de equipas multi-robô tem vindo a crescer, devido ao seu potencial para cooperarem na resolução de vários problemas, tais como salvamento, desminagem, vigilância e até futebol robótico. Estas aplicações requerem uma infraestrutura de comunicação sem fios, em tempo real, suportando a fusão eficiente e atempada dos dados sensoriais de diferentes robôs bem como o desenvolvimento de comportamentos coordenados. A coordenação de vários robôs autónomos com vista a um dado objectivo é actualmente um tópico que suscita grande interesse, e que pode ser encontrado em muitos domínios de aplicação. Apesar das diferenças entre domínios de aplicação, o problema técnico de construir uma infraestrutura para suportar a integração da percepção distribuída e das acções coordenadas é similar. O problema torna-se mais difícil à medida que o dinamismo dos robôs se acentua, por exemplo, no caso de se moverem mais rápido, ou de interagirem com objectos que se movimentam rapidamente, dando origem a restrições de tempo-real mais apertadas. Este trabalho centrou-se no desenvolvimento de arquitecturas computacionais e protocolos de comunicação sem fios para suporte à partilha de informação e à realização de acções coordenadas, levando em consideração as restrições de tempo-real. A tese apresenta duas afirmações principais. Em primeiro lugar, apesar do uso de um protocolo de comunicação sem fios que inclui mecanismos de arbitragem, a auto-organização das comunicações reduz as colisões na equipa, independentemente da sua composição em cada momento. Esta afirmação é validada em termos de perda de pacotes e latência da comunicação. Mostra-se também como a auto-organização das comunicações pode ser atingida através da utilização de um protocolo TDMA reconfigurável e adaptável sem sincronização de relógio. A segunda afirmação propõe a utilização de um sistema de memória partilhada, com replicação nos diferentes robôs, para suportar o desenvolvimento de mecanismos de percepção distribuída, fusão sensorial, cooperação e coordenação numa equipa de robôs. O sistema concreto que foi desenvolvido é designado como Base de Dados de Tempo Real (RTDB). Os dados remotos, que são actualizados de forma transparente pelo sistema de comunicações auto-organizado, são estendidos com a respectiva idade e são disponibilizados localmente a cada robô através de primitivas de acesso eficientes. A RTDB facilita a utilização parcimoniosa da rede e bem como a manutenção de informação temporal rigorosa. A simplicidade da integração da RTDB para diferentes aplicações permitiu a sua efectiva utilização em diferentes projectos, nomeadamente no âmbito do RoboCup

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field
    corecore