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ABSTRACT 
 

 

In this thesis, a Particle Swarm Optimization (PSO) method combined with a ray propagation 

method is presented as a means to optimally locate multiple antennas in an indoor environment. 

This novel approach uses Particle Swarm Optimisation combined with geometric partitioning. 

The PSO algorithm uses swarm intelligence to determine the optimal transmitter location 

within the building layout. It uses the Keenan-Motley indoor propagation model to determine 

the fitness of a location. If a transmitter placed at that optimum location, transmitting a 

maximum power is not enough to meet the coverage requirements of the entire indoor space, 

then the space is geometrically partitioned and the PSO initiated again independently in each 

partition. The method outputs the number of antennas, their effective isotropic radiated power 

(EIRP) and physical location required to meet the coverage requirements. An example scenario 

is presented for a real building at Loughborough University and is compared against a 

conventional planning technique used widely in practice.  
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 : Introduction  
 

 

ver the years mobile operators have had problems with providing indoor coverage. The 

signal propagated from based station antennas is attenuated through free space. This 

attenuation increases as the distance from the base station increases. The signal is also 

attenuated by walls with high losses some cases [1]. This means that the signal arriving in-

building is greatly reduced. In some cases, this signal strength is below the receiver sensitivity 

of the mobile device. The building may be relatively close (less than 5km) to the base station 

antenna but due to the path loss and wall losses the signal strength indoors can be very poor. 

 

Generally, a good signal quality is needed to achieve higher data rates, especially in the cases 

of modern mobile system technologies (2.5G, 3G and 4G systems). This will be difficult with 

the low signal quality inside some buildings. To improve indoor coverage, an in-building 

antenna system is needed.  

 

1.1 In-building Signal Propagation 

Consider the signal radiated from a transmitter as indicated in figure 1.  

 

 

 

 

 

 

 

 

 

Figure 1.1 Mobile network transmitter system 

 

The losses between transmitter and receiver can be expressed by the Okumura model [2]. The 

model can be expressed as follows: 

O 

Propagated signal 

Losses from transmitter to 

receiver 

Transmitter 

 

Receiver 
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   𝐿50 =  𝐿𝐹  +  𝐴𝑚𝑢(𝑓, 𝑑)  −  𝐺(ℎ𝑡𝑒)  −  𝐺(ℎ𝑟𝑒) − 𝐺𝐴𝑅𝐸𝐴        Equation 1.1 

 

𝐿50  is the median value of the propagation path loss in decibels (dB), 𝐿𝐹  is the free-space 

propagation loss in dB, Amu is the median attenuation (in dB) in the medium relative to free 

space at frequency f in Hz, and d corresponds to the distance between the base station and the 

mobile station in metres. 𝐺(ℎ𝑡𝑒)and 𝐺(ℎ𝑟𝑒) are the gain factors (in dB) for the base-station 

antenna and the mobile antenna respectively. hte and hre are the effective heights of the base-

station and the mobile antennas (in metres), respectively. GAREA is the gain (in dB) generated 

by the environment in which the system is operating.  

Both Amu, (f d) and GAREA can be found from empirical curves [3]. 

 

Equation 1.1 is usually used to express signal propagation in outdoor environments. In the basic 

form, it expresses loss as a function of the separation distance between transmitter and receiver 

and the transmission frequency. In indoor environments, the obstacles between transmitter and 

receiver are also considered. The Motley Keenan Model [4], as expressed in the Ericsson in-

building planning manual [1] and COST 231 Model [5] both considers all walls (and wall 

properties) intersecting the direct ray between transmitter and receiver. Generally, the losses 

are expressed as: 

 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿0  +  20𝑙𝑜𝑔10𝑑 +  ∑𝑘𝑖𝐿𝑤𝑖                                    Equation 1.2 

 

Where: Ltotal is the total path loss from the transmitter to the receiver, dB; L0 is the spreading 

path loss at 1m (31.5 dB at 900 MHz); d = distance between transmitter and receiver, ki= the 

number of types i separating walls; Lwi= the penetration loss in type i walls, dB. 

 

In-building Distributed Antenna Systems  

Multiple antenna, distributed from single base transmitter stations, are used to improve the 

received signal levels indoors. These are usually designed to enhance the general signal 

transmitted from the mobile base station and improve the indoor areas where the received 

signals are below acceptable levels.  
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1.2 Problem Definition 

Consider a simple indoor environment as outlined in figure 1.2. A distributed antenna system 

may be required to ensure that the building is covered to a minimum signal level.  

 

 

Figure 1.2. Sample building layout 

 

With the use of a simple indoor propagation model as described in equation 1.2, the signal level 

at multiple receiver locations can be calculated with respect to a single antenna (transmitter) 

location. Given values for d, ki and Lwi, the path loss and hence received signal levels for a 

known transmitter effective isotropic radiated power (EiRP) at a given frequency.  Depending 

on the transmitter-receiver separation distances, d, multiple transmitters may be needed to 

ensure that each receiver location is at least better than a desired level.  

 

The number one aim for a wireless network system is to produce profit for the network 

provider. There is a cost associated with the installation of each antenna, hence the network 

provider will seek to provide the coverage aims while at the same time minimising the costs to 

build and operate the network. Hence, the placement of these transmitters in an indoor antenna 

system is an optimisation problem. For a given building layout, the optimal solution to this 

  

Transmitter 
Possible Ray paths 

Receive location 
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problem is one with the minimum number of transmitters, transmitting at minimum power to 

achieved the minimum receiver signal levels.  The parameters to optimise are: 

• Number of antennas  

• Location of each antenna 

• The EiRP of each antenna 

 

The number of transmitters: 

The solution will provide the minimum number of transmitters to achieve the minimum 

received signal. This represents the lowest cost for installing the system. 

 

The Transmitters location. 

The location of each transmitter is affected by the physical characteristics (shape, layout etc) 

of the building and the number of transmitters. Minimizing the number of transmitters can 

only be achieved by determining an optimal location for these within the optimisation space. 

This space is the actual x-y position within the indoor environment.   

 

The EiRP of each Transmitters 

The effective isotropic radiated power (EiRP) of each antenna affects its optimized location 

and by extension, the number of required antennas. There is also a financial cost associated to 

the transmit power. Lower power levels will reduce the network provider running costs.  

 

1.2.1 Manual Planning Methods 

Designing in-building coverage solutions it is often a “best guess”, based on experience, as to 

the most optimal location to place the transmitters so that the building can be adequately 

covered. The method often used in practise [1] is outlined in figure 1.3 and described in the 

following steps.    

 

The creation of the nominal plan is done with the aid of the building drawings. The transmitter 

locations are manually chosen via a suitable propagation model [4]. Basic propagation 



1 .  I n t r o d u c t i o n                                                               5 

 

 

 

calculations are then made to estimate the received signal strength (RxLev) at worst case 

locations. A typical design requirement for the Global System for Mobile Communications 

(GSM) at 900 MHz would be that 95% of the building have a minimum RxLev of -85 dBm 

[6]. The first consideration is the use of one transmitting antenna to ensure that the minimum 

signal (coverage) requirements are met. If the coverage is not met with one antenna then the 

radio planner will consider two antennas, thus treating the layout as two separate areas. This 

process is often repeated until an acceptable solution can be found for the number of antenna 

required to ensure the minimum signal levels. 

 

The survey phase, involves a physical inspection of the building to identify unsuitable 

locations (no-go locations) from an implementation point of view. This may require the 

creation of a new nominal plan.  

 

The walk test phase involves settings transmitters in the chosen locations, according to the 

nominal plan and measuring the signal levels at worst case locations throughout the building. 

If the coverage levels are not met the nominal plan is reviewed and the process of nominal 

planning, and walk testing is repeated as needed. 
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Figure 1.3. Widely use in-building planning design method. 

   

 

1.2.2 Objectives of this Research 

There are commercially available in-building planning software tools [7], [8]. These can 

automatically estimate the placement of transmitters to provide adequate coverage indoors. 

There have also been various approaches to solving the problem of automatic transmitter 

placement.  

 

Creation of a nominal 

antenna plan 

Is 

Survey 

ok 

Is Walk 

test ok 

Installation and 

commissioning 

No 

No 

Perform Survey 

Perform walk test 



1 .  I n t r o d u c t i o n                                                               7 

 

 

 

Berenguer et al. [9] show a solution using a heuristic search algorithm. The algorithm uses 

direct ray methods combined with a ray tracing method for determining the power received at 

a given location.  

 

He et. al. [10]  uses a pattern search algorithm and optimises the antenna location for power 

coverage and bit error rate (BER).  

 

These and other previous work [11], [12], [13], [14] all apply a search technique where the 

coverage area is divided into grids of receiver locations. In each case, the algorithm will search 

until some optimised solution is reached. These methods all produce a workable solution. A 

similar optimisation process is employed in this research where, the coverage area is divided 

into grids of receiver locations. However, the search method used is Particle Swarm 

Optimisation (PSO).  

 

This thesis presents a novel method to optimally locate multiple antennas within a distributed 

antenna system. This method combines Particle Swarm Optimisation (PSO) with a process of 

geometrically partitioning the optimisation space. This produces an optimal solution for the 

number of antennas, the location and the EiRP of each antenna. 

 

This thesis shows the development of this method, making specific references to the factors 

affecting the effectiveness of this method. It outlines the propagation model considerations, the 

optimisation method and the development of a MATLAB simulation to show the effectiveness 

of the solution. It compares the output from the manual1 distributed antenna system design 

methods, as presented in the Ericsson In-building Design Manual [1] to those obtained by this 

novel approached.   

 

1.3 Thesis Overview 

Chapter 2 presents the general aspects of signal propagation and how this is applied in mobile 

phone technology. The propagation model consideration with respect to an indoor environment 

is also outlined here. 

 

                                                 
1 This is the output one would expect from the design by an experienced engineer using the methods outlined in a 

typical design manual. 
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Chapter 3. The different optimisation techniques used to solve the base station placement 

problem is considered in chapter 3. Here the focus is on Particle Swarm Optimisation and how 

it can be applied in a distributed antenna system. 

 

Chapter 4 outlines the general method developed with the combination of PSO and the 

geometric division of the optimisation space. Presented in this chapter also is the development 

of a MATLAB simulation to show the effectiveness of this solution. 

 

Chapter 5 shows the evaluation and implementation of the proposed method within real 

buildings. Firstly, the method is validated in smaller layouts with known logical solutions. Then 

the top floor (W2) of the Sir David Davies building at Loughborough University was planned 

using the method. Transmitters were set up at the locations indicated by the optimisation 

method. The measurement setup and results are presented in the chapter. Additionally, the 

proposed is method is used to plan the antenna configuration for the Xerox building in Montego 

Bay, Jamaica. The output is compared to the existing plan as done by a local in-building design 

company [15]. 

 

Chapter 6 concludes with general findings and proposes areas for further examination. 
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 : Signal Propagation  
 

 

he growth of mobile communications systems has demanded a better understanding of 

propagation in complex environments. Iskander et al. [16], (for example) has indicated 

the need for accurately knowing the propagation characteristics of the environment before 

implementing designs and confirming planning of wireless communication systems.  

 

This chapter introduces the general properties of a radio signal at frequencies used in mobile 

networks. The propagation models for both outdoor and indoor propagation are described in 

detail with specific reference made to the model chosen for this research.  

 

2.1 General propagation properties 

A radio propagation model is a mathematical formulation to describe how radio waves 

propagate within a particular environment. Propagation models are widely used by mobile 

network planners to help determine the best locations to place base transmitter stations to obtain 

the best radio coverage. Propagation models predict the path loss between transmitter and 

receiver at different frequencies. Usually, propagation models fall into one of three categories, 

empirical, site specific and theoretical [16].  

 

An empirical model is one in which a set of radio measurements is made and a formulation is 

used to describe the signal propagation within that environment. This function describes the 

general signal spreading at particular frequencies with respect to the transmitter to receiver 

separation distances for different environment classifications.   

 

A site-specific model requires very detailed and accurate input parameters. It uses detailed 

maps to trace ray paths between transmitter and receiver. 

 

A theoretical model is derived physically assuming some ideal conditions, like uniform 

spacing between buildings within an urban environment. 

 

T 
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The simplest approach to formulating a propagation model is to estimate the power ratio, L 

between transmitter and receiver as a function of the separation distance d. This ratio is referred 

to as the path loss. The Friis’ power transmission formula in free space [17] is indicated in 

equation 2.1.  

𝑃𝑅 = 𝑃𝑇
𝐺𝑡𝐺𝑟𝜆2

(4𝜋𝑑)2                                                                     (2.1) 

  

 Where: PR is received power, in Watts, PT is the transmitted power in Watts, Gt and Gr are the 

transmitter and receiver antenna gain, λ is the wavelength of the signal in metres, and d is the 

transmitter to receiver separation distance in meters.  

 

From equation 2.1, the ratio of transmitted power to received power can be deduced. If 

transmitter and receiver gains are considered to be unity, this ratio (loss) can be expressed in 

decibels as follows:  

 

𝐿 = 20[log10(4𝜋𝑑) − log10(𝜆)]        (2.2) 

 

Now 𝜆 =
𝑐

𝑓
, where c is the velocity of light in vacuum, ≈3x108 m/s, equation (2.2) becomes:  

 

𝐿 = 32.44 + 20 log10 𝑓 + 20 log10 𝑑     (2.3) 

 

Where L= path loss in decibels, f is the transmit frequency in MHz and d is the transmitter to 

receiver separation distance in km.  

 

2.2 Outdoor Propagation Models 

Consider the mobile system propagation environment [18] depicted in figure 2.1. This is 

different from the free space transmission environment described in section 2.1 and hence, 

equation (2.3) is not adequate to describe how a signal is propagated in such an environment.  
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Figure 2.1. Mobile propagation environment from Mahmood [18]. 

In an outdoor environment, there are additional loss mechanisms to consider. Equation 2.3 can 

be modified to describe these conditions. The propagation environment is very complex and 

cannot be fully described by only one model. Hence, there are many different models and 

approaches to characterising an outdoor radio propagation environment. As an example, work 

by Walfish et al. [19] shows the development of propagation models at UHF in Urban 

environments. Andrade et. al. [20] show the comparison between different models for indoor 

propagation at frequencies described by IEEE (Institute of Electrical and Electronics 

Engineering) 802.11. Tahat et. al. [21] shows the analysis of outdoor macro models at 2.1 GHz 

for 3G mobile networks. Iskander et al. [22] outlines general characteristics of different models 

for general wireless systems. Walh et. al. [23] describe a model that can be used in urban 

(outdoors) and indoor situations. All these models make reference to the following parameters, 

described as follow: 

dm.  The distance between mobile and nearest building, (m).  

f.  The carrier frequency, (Hz).  

hb.  The height of the base station (transmitter) above the ground, (m).  

hm.  The height of the mobile station (receiver) above the ground, (m).  

ho.  The mean height of a building above local terrain, (m). 

r.  The distance between transmitter and receiver, (m). 

λ. Free space wavelength.  
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A few of these models that are most relevant to the subject matter of the present thesis are 

described below. 

 

2.2.1 Okumura - Hata Model 

The Okumura – Hata model may be the most widely used model in mobile communications. 

This model is valid for frequency ranges from 150 MHz – 1.5 GHz. This is a fully empirical 

model where there is a classification of different environment types and the path loss 

component considers the plane earth model of direct ray or the ground reflection point. Using 

measurements collected within the city of Tokyo, Okumura developed a set of curves to 

illustrate the signal propagation in the environment of urban, suburban and open (rural) areas 

[24].  

 

Area Formulation 

Urban 𝐿𝑃 = 69.55 + 26.16 log10 𝑓𝑐

− 13.82 log10 ℎ𝑏 − 𝑎(ℎ𝑚) + (44.9

− 6.55 log10 ℎ𝑏) log10 𝑅 (𝑑𝐵) 

𝑎(ℎ𝑚) is the correction factor for vehicular station antenna height  

Medium-small city 

𝑎(ℎ𝑚) = (1.1 log10 𝑓𝑐 − 0.7) ℎ𝑚 − (1.56 log10 𝑓𝑐 − 0.8) 

Large city 

𝑎(ℎ𝑚) = 8.29(log10 1.54ℎ𝑚)2 − 1.1 ∶ 𝑓𝑐 ≤ 200 𝑀𝐻𝑧 

            = 3.2(log10 11.75ℎ𝑚)2 − 14.97 ∶ 𝑓𝑐 ≥ 400 𝑀𝐻𝑧 

Suburban 
𝐿𝑝𝑠 = 𝐿𝑝{𝑈𝑟𝑏𝑎𝑛 𝑎𝑟𝑒𝑎} − 2{log10 (

𝑓𝑐

28
)}

 

2

− 5.4 (𝑑𝐵) 

Open 

Area 

𝐿𝑝𝑜 = 𝐿𝑝{𝑈𝑟𝑏𝑎𝑛 𝑎𝑟𝑒𝑎} − 4.78{log10 𝑓𝑐}2 + 18.33 log10 𝑓𝑐 − 40.94 (𝑑𝐵) 

Where:  

fc= frequency (MHz) ----------------------------------------- 150-1500 (MHz) 

hb=base station effective antenna height(m)--------------- 30-200(m) 

hm=vehicular station antenna height(m)     ---------------- 1-10(m) 

R=distance (km)------------------------------------------------ 1-20km 

Table 2.1 Hata [25] propagation formulation for different environments. 
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From the measurements done by Okumura, Hata later produced an empirical formulation for 

the propagation losses [25]. Table 2.1 shows the formulation [25] for the different 

environments. 

 

2.2.2 Walfisch-Ikegami Model 

The Ikegami Model [26, 27] considers diffractions in addition to the direct ray. These signals 

may be due to buildings and other path obstacles within a radio environment. Consider the 

radio environment depicted in figure 2.2. Figure 2.3 show a cross-sectional representation of 

the path of both rays [28]. From this physical approximation, Ikegami proposed a summation 

of both reflected and diffracted ray given in [26, 28] as: 

 

𝐿𝐸 = 10 log 𝑓𝑐 + 10 log(sin 𝜙) + 20 log(𝐻 − ℎ𝑟) − 10 log 𝑊 − 10 log (1 +
3

𝐿𝑟
2) − 5.8  (2.4) 

 

Where LE is the signal losses in dB, fc is the frequency in Hz, ϕ is the angle between the street 

and the direct line from base to mobile, H and hr are the building and mobile heights 

respectively, W is the width of the street and Lr=0.25 is the reflection loss. 

 

This model assumes that the height of the base station does not affect the propagation of the 

radio signal [26]. Hence, losses at large distances are underestimated.   

 

Figure 2.2. Multipath environment with diffraction and reflection 

Diffraction Reflection 

Base Station 
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Figure 2.3. Cross-sectional representation of ray paths after Ikegami et al. [28] 

 

Walfisch and Bertoni [19] developed a theoretical model to show the effects that buildings 

have on signal propagation within an urban environment. The Walfisch-Ikegami model 

combines the approaches of Walfisch-Bertoni and Ikegami and is applicable for frequencies 

between 800 MHz and 2 GHz.  This model is comprised of three components as outlined in 

[29]. These are losses in the free space (L0), losses by diffraction to the level of the streets and 

by scattering (Lrts) and losses due the Multi-paths (Lms). The model is used in urban 

environments where buildings have a fairly uniform height and fairly equally separated. The 

total Losses [19] is given by: 

 

𝐿𝑇 = 𝐿0 + 𝐿𝑃                                                                                              (2.5) 

And  

  𝐿0 = 32.44 + 20 log10 𝑓 + 20 log10 𝑅                                                                       (2.6) 

  𝐿𝑃 =  57.1 + 𝐴 + log10 𝑓𝑐 + 18 log10 𝑅 − 18 log10 𝐻 − 18 log10 [1 −
𝑅2

17𝐻
]    (2.7) 

And  

𝐴 = 5 log10 [(
𝑑

2
)

2

+ (ℎ − ℎ𝑚)2] − 9 log10 𝑑 + 20 log10{tan−1[2(ℎ − ℎ𝑚)/𝑑]}                                            

(2.8) 

hr 

Φ 

E
1
 

E
2
 

E
2
 

E1 

Cross section 

Building 

Plan 

W 

H 

ω 
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Where: R is transmitter-receiver separation distance, m and d is the spacing between buildings. 

The last term of equation 2.7 accounts for the curvature of the earth and H is in metres, h is the 

height of the buildings and hm is the height of the mobile station. 

  

2.2.3 Ericsson Model (Algorithm 9999) 

This model was developed by Ericsson Radio Systems for use GSM mobile systems and is 

valid for transmitter-receiver separation distances of 0.2km to 100km [6]. Algorithm 9999 is a 

modification of the Okumura-Hata Model [21] and it takes into account land usage as well as 

knife-edge diffraction and effects of the curvature of the earth. It allows for the adjustment of 

certain parameters based on the given environment.  This is given as: 

 

𝐿 = 𝑎0 + 𝑎1 log10(𝑑) + 𝑎2 log10(ℎ𝑏) + 𝑎3 log10(ℎ𝑏) . log10(𝑑) − 3.2[log10(11.75ℎ𝑟)2] +

𝑔(𝑓)                                                                           (2.9) 

And  

𝑔(𝑓) = 44.49 log10(𝑓) − 4.78[log10(𝑓)2]   (2.10) 

 

Where d is the transmitter to receiver separation distance, hb is the base station height, f is the 

frequency, and the constants a0, a1, a2 and a3 are chosen based on the terrain. Table 2.2 show 

these values for different terrains. 

 

Parameter Urban Suburban Rural 

a0 36.2 43.2 45.95 

a1 30.2 68.93 100.6 

a2 12 12 12 

a3 0.1 0.1 0.1 

Table 2.2 Ericsson model 9999 parameters for different terrains after Tahat et al. [21] 

 

This model is often employed in traditional network planning tools used in the planning of 

mobile networks. The user has the ability to tune these parameters based on the local 

environment.  
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2.3 Indoor Propagation models 

There are two possible sources that may present a radio signal inside a building. These are 

external and internal. In a mobile network, the external source is usually from one or more 

macro base stations while the internal source would normally consist of a distributed antenna 

system of a single or multiple transmitter sources. For this research, a distributed antenna 

system with one or more transmitter sources is considered.   

 

The indoor environment is very different from the outdoor one, consequently, the outdoor 

propagation models cannot normally be used indoors. The propagation of radio signals inside 

a building will be affected by the layout, and by different types of building materials. Consider 

the building layout depicted in figure 2.4. There are open spaces and dividing walls between 

transmitter and receiver. Additionally, there are normally other indoor obstacles such as tables 

and chairs and other building furniture. The transmitted signal will reach the receiver via more 

than one path via the methods of reflection, refraction and diffraction. In figure 2.4 only a two-

dimensional signal path is shown, but the signal propagation is also three-dimensional. For this 

research, the mobile height is considered at 1.5 metres and the transmitter height is at about 2.5 

metres. Due to the small difference in transmitter and mobile heights, only the two-dimensional 

analysis is considered. 

 

An indoor propagation model will seek to characterise how a radio signal will travel between 

transmitter and receiver within this environment. Consequently, there are many different 

models that have been used to characterise the propagation of radio signals inside buildings. A 

few of these are outlined below. 

 

Generally, the transmitted signal arriving at the receiver can be expressed as: 

 

𝑅𝑥𝑙𝑒𝑣 = 𝑃𝑇𝑥 − ∑(𝐿𝐷 + 𝐿𝐷𝑓 + 𝐿𝑅𝑓𝑙 + 𝐿𝑅𝑓𝑟 + 𝐿𝑁𝐹)                 (2.11) 

 

Where Rxlev is the signal arriving at the receiver in dBm, PTx is the power of the transmitted 

signal in dBm, LD is the signal loss along the direct path in dB, LDf is the signal loss due to 

diffraction in dB, LRfl is the signal loss due to reflection in dB and LRfr is the signal loss due to 

refraction in dB, LNF is the in-building log normal fading.   
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Figure 2.4. Indoor propagation environment 

 

 

There are generally four main types of rays within an indoor environment [30] as indicated in 

figure 2.5.  

 

Figure 2.5. Different types of rays  
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2.3.1 Ray tracing models  

A ray tracing algorithm [31] predicts the received strength of a multi-ray system based on the 

building floor plan. The ray tracing techniques in indoor propagation models are based on 

Geometric Optics. This assumes that energy can be radiated through infinitesimally small tubes 

called rays [2]. The rays emanate from the transmitter and travel to the receiver via means of 

reflection and refraction. The diffraction of the waves is analysed via the Geometrical Theory 

of Diffraction (GTD). Constantinou [32] describes two general ray-tracing methods, the 

imaging method and the point and shoot method. Figure 2.6 outlines these.  

 

 

Figure 2.6. Ray-tracing Methods after Constantinou [32] 

 

In the imaging method, all images of the transmitter are located in order to model single and 

multiple reflections and to model diffractions all the illuminated edges are located.  

 

The point and shoot method involve launching of rays spaced apart with small angular 

increment at the transmitter [33]. Not all of these rays may reach the receiver.  

 

Given a mixed path with n reflection and m diffractions, the field strength associated with each 

path can be computed as indicated in equation 2.12 below [32] [34].  

 

𝐸(𝑅𝑥) = 𝐸𝑟𝑒𝑓 . ∏ 𝑅(𝜃𝑖)

𝑛

𝑣=1

. ∏ 𝐷(𝜑𝜑′)𝐴({𝑟𝑖})𝑒−𝑗𝑘 ∑ |𝑟𝑖|𝑖

𝑚

𝜇=1

                        (2.12) 
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 Where, Eref is the E-field at a reference point, R and D, the reflection and diffraction 

coefficients are dyads along the whole ray path. A is an appropriate amplitude spreading 

factor to account for astigmatism in the ray and {𝑟𝑖} are the lengths of the segments 

comprising of this path. 𝑒−𝑗𝑘 ∑ |𝑟𝑖|𝑖  is the propagation phase factor due to the path length 𝑟𝑖, k 

= 2π/λ, with λ representing the wavelength.  

                                                                                 

2.3.2 Log Distance Path Loss Model 

The log-distance path loss model, also known as the one slope model characterises the loss 

between transmitter and receiver as a function distance and environment.  This is the general 

propagation formulation derived from the Friis power transmission formula and expressed in 

equation 2.3. This can also be written as: 

  

𝐿 = 𝐿0 + 10𝑛 log10 𝑑      (2.13) 

 

Where L is the path loss in dB, L0 is the path loss at distance 1m from the transmitter in dB, d 

is the transmitter to receiver separation distance in metres and n is path loss exponent.  

 

The path loss exponent n, is used to indicate the propagation characteristics of the environment. 

In free-space, this is taken to be 2 as represented in equation 2.3 but it can take values up to 5. 

In particular environments such as tunnels and aisles in buildings, n can take values smaller 

than 2 [21]. Table 2.3 shows typical values for n in indoor areas at 900 MHz [2], [35]. 

 

Building Value for n 

Grocery store 1.8 

Retail store 2.2 

Open plan factory 1.4-3.3 

Open plan office 2.4 

Office with soft partitions  2.8 

Table 2.3 Typical wall for path loss exponent 

 

The one slope method only considers the direct ray excluding losses due to walls, reflection, 

refraction etc. 
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2.3.3 Dual Slope Model  

The dual slope model, also known as the two-ray model offers an improvement on the one 

slope model. It considers losses due to the direct ray plus losses due to one reflected ray.  Figure 

2.7 shows a graphical representation for the consideration of the ray paths for the two-ray 

method. 

 

Figure 2.7. Two ray depiction 

 

The two-ray model can be written as described in [20] and [36] : 

 

𝐿 = 𝐿0 + {

10𝑛1 log10 𝑑,                                                             1𝑚 < 𝑑 ≤ 𝑑𝑏𝑝

10𝑛1 log10 𝑑𝑏𝑝 + 10𝑛2 log10 (
𝑑

𝑑𝑏𝑝
) ,                   𝑑 > 𝑑𝑏𝑝             

           (2.14) 

 

Where L is the path loss in dB, L0 is the path loss at distance 1m from the transmitter in dB, n1 

and n2 the path loss exponents are determined experimentally, d is the transmitter to receiver 

separation distance in metres dbp is the break point distance in metres.  

 

In an in indoor environments the break point is given as described in [20].  

 

𝑑𝑏𝑝 =
4ℎ𝑇𝑥ℎ𝑅𝑥

𝜆
 

      (2.15) 

 

Where, hTx is the transmitter height in metres and hRx is the height of the receiver in metres. 

 

hTx 

hRx 

R1 

R2 

d 

dpb 



2 .  S i g n a l  P r o p a g a t i o n                                                     21 

 

 

 

2.3.4 The Motley Keenan Model 

The Motley-Keenan model improves upon the dual slope model by considering also walls and 

ceiling along the path of the direct ray. In this model only the direct ray considered. All 

intersecting walls and ceiling are given an attenuation value. This can be written as: 

 

𝐿 = 𝐿0 + 10𝑛 log10 𝑑 + 𝑁𝑤𝑊 + 𝑁𝑓𝐹    (2.16) 

 

Where L is the path loss in dB, L0 is the path loss at distance 1m from the transmitter in dB, d 

is the transmitter to receiver separation distance in metres, n is path loss exponent, 𝑁𝑤 is the 

number of walls, W is the average wall attenuation, 𝑁𝑓 is the number of floors (or ceilings) and 

F is the floor attenuation.  

 

This model is also referred to as the average wall model because it uses average values for 

intersecting walls and ceilings/floor respectively. Table 2.4 indicates the wall losses for 

different types of walls as indicated in [37]. 

 

Material Attenuation at 900 

MHz, dB 

Glass 6 mm (thickness) 0.8 

Glass 13 mm 2 

Lumber 76 mm 2.8 

Brick 89 mm 3.5 

Brick 178 mm 5 

Concrete 102 mm 12 

Masonry Block 203 mm 12 

Concrete 203 mm 23 

Reinforced Concrete 203 mm 27 

Concrete 305 mm 35 

Table 2.4 Typical wall losses for different walls after [37]. 
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2.3.5  The COST 231-Multiwall Model 

Instead of using an average value for all the intersecting wall the COST 231 Model add 

individual losses depending on the wall types [5]. This can be expressed as: 

 

𝐿 = 𝐿0 + 10𝑛 log10 𝑑 + 𝑘
𝑓

[
𝑘𝑓+2

𝑘𝑓+1
−𝑏]

𝐿𝑓 + ∑ 𝑘𝑤𝑖𝐿𝑤𝑖
𝑘𝑤
𝑖=1    (2.17)  

 

Where L is the path loss in dB, L0 is the path loss at distance 1m from the transmitter in dB, d 

is the transmitter to receiver separation distance in metres, n is path loss exponent, kf is number 

of penetrated floors, b is empirical parameter used to fit the non-linear effects of the number of floor 

along the path, Lf is loss between adjacent floors, kwi is number of penetrated walls of type i and Lwi is 

loss of wall type i. 

 

The wall types are divided into two categories [20], [5]. Table 2.5 shows these categories and the 

typical values for these categories. 

 

Wall Type Description Loss 

Value(dB) 

Light wall (Lw1) A wall that is not bearing load: e.g. 

plasterboard, particle board or thin (<10 

cm), light concrete wall. 

3.4 

Heavy wall 

(Lw2) 

A load-bearing wall or other thick (>10 

cm) wall, made of e.g. concrete or brick. 

6.9 

Table 2.5 Typical wall losses for different for the multi-wall model after [5]. 

 

2.4 Coverage Vs Interference 

In a mobile network system, it is important to differentiate between coverage and interference.  

Consider an internal source as indicated in section 2.3, then the assumption is that the building 

has no mobile signal and the problem becomes a coverage issue. The solution is to produce a 

transmitter source or sources that will present all part of the building with a minimum receive 

signal of say -85 dBm for example. This is not an interference problem as there are no external 

interfering sources.  
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In this research, the aim is to improve the signal coverage in no-coverage areas. The test 

building is treated as one with no present signals and hence there is no need to consider 

interference. All external sources are ignored and signal leakage from the building is also not 

considered.  Additionally, each transmitter location is considered to be transmitting at a 

different frequency so the effects of multi-path and other internal/own interference are not 

considered.    

 

2.5 Discussion 

In this research, a multiple antenna in-building system is required to ensure that a single floor 

of a building is covered to a required signal level. The Keenan-Motley propagation model is 

used in the research. It has been shown to be more accurate than the multiwall model [20]. 

When used at 900 MHz on a single floor it can be expressed as: 

 

 𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿0 +  20𝑙𝑜𝑔10𝑑 +  ∑𝑘𝑖𝐿𝑤𝑖         (2.18) 

 

Where: Ltotal is the total path loss from transmitter to receiver, dB; L0 is the loss at 1m given as 

31.5 dB at 900 MHz; d = transmitter-receiver distance, m; n, the path loss exponent is taken to 

be 2; ki= the number of type i separating walls; Lwi= the penetration loss in type i walls, dB;  

Chapter 4 outlines the wall attenuation value used in this research and chapter 5 outlines how 

these were estimated. 

 

Combined with equation 2.11 the received signal level can be expressed as a function of 

transmit power as:  

 

𝑅𝑥𝑙𝑒𝑣 = 𝑃𝑇𝑥 − 31.5 + 20 log10 𝑑 + ∑𝑘𝑖𝐿𝑤𝑖          (2.19) 

 

Where Rxlev is the received signal level at a distance d from the transmitter in dBm and PTx is 

the transmitter power level in dBm. 

 

The reasons for the choice of this model are due to its simplicity and ease of comparison with 

normal planning methods. 
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Simple calculations 

The optimisation methods proposed as described in chapter 3 requires substantial 

computational resources. For this reason, the calculations for propagation model needs to be 

relatively simple. The Keenan-Motley does not consider multipath, or multiple rays and hence 

this reduce the computational requirements for this model. However, it has been shown to have 

acceptable performance in similar situations [20]. 

  

Ease of comparison to normal planning methods 

One of the usual methods of planning an in-building distributed antenna system is indicated in 

the Ericsson in-building planning manual [1]. Here the recommended propagation model is 

Keenan-Motley. In this research, the aim is to compare any planning method to the method 

used day to day by Engineers in the practical situations. For this purpose, this model is also 

chosen. 

 

2.6 Conclusion 

Signal propagation in an outdoor environment differs from that in an indoor environment. The 

inbuilding propagation model chosen in this research is Motley-Keenan model.  This has been 

shown [1] to be effective when used in the planning of inbuilding systems. 
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 : Optimisation Methods  
 

 

ithin concext of this research, optimisation means the process of finding the optimal 

solution to the problem defined in chapter 1. The optimal solution to this problem is 

one with a minimum number of transmitters, transmitting at minimum power to achieved the 

minimum receiver signal levels. The antenna is moved through the optimisation space 

(building layout) until the a location is found where all the measured receiver location are above 

a requied threshold.  

 

The manual design and planning for the placement of antennas in a distributed antenna system 

is described in [1]. This is often a ‘best guess,’ based on experience, as to the most optimal 

location to place the transmitters so that the building’s design requirements are met. The 

conventional method will see the engineer with the aid of the building drawings, manually 

choose the antenna locations and perform simple calculations to estimate the received signal 

strength (RxLev) at worst case locations. This process is often repeated several times until a 

solution can be found. The antennas are usually arbitrarily placed with little regard to 

optimising these locations to reduce the number of antennas and improve receive levels 

(RxLev).  The process is often ended once the desired covered levels are achieved, and solutions 

for an optimum number of antennas are not often pursued. 

 

There are commercially available in-building planning software tools [8]. These require the 

user to select the various antenna locations and then calculations are made to determine how 

effective the selected locations are. So far, this does not provide a method to automatically 

select the most optimal antenna locations. 

 

There have also been various approaches to solving the problem of automatic transmitter 

placement. Berenguer et al. [9] show a solution using a heuristic search algorithm. He et al. 

[10] uses a pattern search algorithm and optimises the antenna location for power coverage and 

bit error rate (BER). Other previous work [11], [13], [12] and [14] all apply a search technique 

where the coverage area is divided into grids of receiver locations. In each case, the algorithm 

will search until an optimal solution is reached.  

 

W 
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In this chapter, a review of various optimisation search techniques is presented. Presented also 

is a review of how to geometrically partition a two-dimensional space. Finally, this chapter 

concludes with the novel approach of combining particle swarm optimisation with geometric 

partitioning of the optimisation approach for solving the automatic placement of multiple 

antennas within an in-building system. This approach is very logical in that the optimisation 

space can be easily visualized as a two-dimensional field and this approach builds on the 

recommended method for the design of in-building planning systems as described in the 

Ericsson GSM In-building Solution Manual [1].   

 

3.1 General Optimisation Methods  

The problem of automatic antenna placement within a building is a global one. Its solution 

requires optimisation of the number of antennas, their individual EIRP and their physical 

location (x, y coordinates) within the building.  In this research, the objective function for this 

problem is the percentage coverage. A typical design requirement for the Global System for 

Mobile Communications (GSM) at 900 MHz would be that 95% of the building have a 

minimum RxLev of -85 dBm [6]. The percentage coverage would be obtained by noting the 

number of receiver location better than the minimum RxLev compared to the total number of 

receiver locations.  

 

Due to the building layout (obstructing walls, etc.), the coverage at receiver location can change 

dramatically with small change in antenna locations. This means that objective function can be 

described as nondifferentiable and obtaining a gradient of the objective function is not practical 

[12]. Hence, an appropriate search method is needed. A few possible approaches to solving this 

problem are discussed below. 

 

3.1.1 Direct search methods. 

Direct search methods are best known as unconstrained optimization techniques that do not 

explicitly use derivatives [38]. With this method, one parameter is varied at a time in small 

steps. The steps are halved when there is no change in outcome. 

 

The Nelder-Mead Simplex Method (NM) [39] and [40] is a direct search method that has been 

suggested as a possible solution to the indoor transmitter location problem [12]. A simplex is 
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defined [41] as a geometrical figure of n dimensions consisting of n+1 points. n=2 describes a 

triangle for example.  The vertices of each simplex are sorted according to functions given as:  

 

𝑓(𝑥1) ≤ 𝑓(𝑥2) … . . ≤ 𝑓(𝑥𝑛+1)    (3.1) 

 

Where x1, x2…xn+1 represent the each of the n+1 simplex vertices.  

 

This method simply compares the objective function at a set of point. The result of each 

iteration is either a single new vertex or a set of n new points that, together with the previous 

best vertex, forms the simplex at the next iteration [12]. The aim is to replace the worst vertex 

with a new point in the steps of reflection, expansion, contraction and shrinkage. For example, 

with reflection, the worst point is replaced by a point reflected through the centroid of the 

remaining points. The algorithm has been explained in further details in [41]. It has been shown 

[12], over four years of extensive testing to be an effective method for dealing with one of the 

variables in the problem indoor antenna location placement problem.   

 

3.1.2 Bundle methods. 

A bundle algorithm collects information about the previous iteration in a set, the bundle. This 

information is then used to compute a tentative descent direction along which the next points 

are generated [42].  

 

A Bundle method for optimal transmitter location in indoor wireless systems has been 

suggested by Aguado Agelet et al. [41] and [43]. First, a cost function f(x,y) is introduced which 

consists of two objective functions f1 and f2 given as: 

 

𝑓1(𝑥, 𝑦) = ∑
𝜔𝑖

𝑚
[𝑔𝑖(𝑥, 𝑦) + 𝜇𝑖max{0, 𝑔𝑖(𝑥, 𝑦) − 𝑆𝑖}]

𝑚

𝑖=1

                            (3.2)  

And  

𝑓2(𝑥, 𝑦) = max
𝑖=1,….,𝑚

(𝜔𝑖[𝑔𝑖(𝑥, 𝑦) + 𝜇𝑖 max{0, 𝑔𝑖(𝑥, 𝑦) − 𝑆𝑖}])  (3.3) 

 

Where f1 is the mean of all the weighted path loss predictions, along with a penalty term 

representing the violation of a maximum tolerated path loss threshold, Si at each receiver 
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location and f2 is the maximum of the weighted path loss predictions, 𝑔𝑖(𝑥, 𝑦) represent the 

path loss at the ith receiver location from a given transmitter location (x,y).  

 

The aim is to minimize the measurement of the weighted path loss. In this bundle method, the 

generalized gradient in each iteration is approximated by the information collected from 

previous iterations. After k iterations, the cutting plane model of f is built: 

 

𝑝𝑘(𝑥) = max{𝑓𝑗 + (𝑥 − 𝑥𝑗)
𝑡
𝑆𝑗 , 𝑗 = 1, … … , 𝑘}   (3.4) 

 

Where the bundle is formed by: 

  

{𝑥𝑗 , 𝑓𝑗 = 𝑓(𝑥𝑗), 𝑆𝑗 = 𝑆(𝑥𝑗) ∈ 𝜕𝑓(𝑥𝑗), 𝑗 = 1, … . , 𝑘}   (3.5) 

 

The mechanism involves generating two sequences: a sequence of sampling point {xj} to 

construct the model and a subsequence of serious points {xs} to warrant a sufficient decrease 

in the original function f: 

 

𝑥𝑠+1 = 𝑥𝑘when𝑓(𝑥𝑘) ≤ 𝑓(𝑥𝑠) − 𝛼𝛿𝑘    (3.6) 

 

Where δk is the nominal decrease in the model and α∈ (0,1) is an Armijo-like [44] tolerance. 

This limits the optimisation movements and is needed to ensure that the function converges.  

 

The bundle method usually provides a good solution with few iterations but the cost functions 

can be very complicated and difficult to formulate. This is in contrast to the simplistic approach 

taken in the manual planning methods described in [1] that is widely used in day to day network 

planning. 

 

3.1.3 Genetic Algorithms. 

Genetic Algorithm (GA) is an optimisation method inspired by evolution in nature. This is a 

heuristic search procedure based on the ideas of natural selection and genetics [45]. These 

algorithms encode a potential solution on a simple chromosome-like data structure and apply 

recombination operators to these structures so as to preserve critical information [41]. 
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The first step in the GA process is the formulation of the population. After this, the algorithm 

progresses through steps known as selection, cross-over, and mutation. 

 

Selection is where preference is given to the better individuals within the population 

Cross-over is the combination of two individuals selected from the population using the 

selection criteria. 

Mutation is used to maintain diversity within the population and prevent premature 

convergence.  

 

The GA can be implemented in the following procedures [45]: 

1. randomly initialize population at time t  

2. determine the fitness of the population at time t 

3. repeat  

a. select parents from population at time t 

b. perform crossover on parents creating population at time t +1  

c. perform mutation of population at time t +1 

d. determine fitness of population at time t +1 

4. until the best individual is good enough  

One of the approaches to using GA to solving the base station problem is shown in [46]. Here 

the genome is denoted as a vector 

𝑔 = (𝑐1, … . , 𝑐𝐾),      (3.7) 

Where ck=(xk,yk) is the chromosome for the kth base station position. K is the maximum 

number of base stations and all of them are located in the X-range [-Xmax, Xmax] and Y-range [-

Ymax, Ymax] as indicated in figure 3.1   
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Figure 3.1. Representation of genome for base station placement adapted from Byoung-Seong 

et al. [46].   

 

The fitness function is given as: 

 

𝑓(𝑔) = 𝑤𝑡 ∗ 𝑓𝑡(𝑔) + 𝑤𝑒 ∗ 𝑓𝑒(𝑔)    (3.8) 

 

Where ft and fe are the objective functions for coverage and economy fitness, respectively. wt 

and we are weight used to determine the number of base stations. wt + we =1. 

 

ft and fe are defined as: 

𝑓𝑡(𝑔) =  
𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑡𝑟𝑎𝑓𝑓𝑖𝑐

𝑡𝑜𝑡𝑎𝑙 𝑜𝑓𝑓𝑒𝑟𝑒𝑑 𝑡𝑟𝑎𝑓𝑓𝑖𝑐
     (3.9) 

and, 

𝑓𝑒(𝑔) =
𝐾−𝑛(𝑔)

𝐾
     (3.10) 

 

Where n(g) is number of existence in g.  
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The algorithm goes through the process as described above to find the optimum location of 

each base station and the least number of base stations to provide the best coverage. This was 

employed in an outdoor environment with the assumption that each transmitter (cell) is a 

hexagon with a radius of 2.5 km.  

 

Another application of GA is explored by Mangoud [47]. Here, a method of optimization of 

channel capacity for indoor multiple input multiple output (MIMO) systems is outlined. This 

optimizes the number of array elements at the base station (Mr), and the mobile station (Mt) 

and the configuration of the element. The fitness function is given by: 

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑐 =  log2 [det (𝐼𝑀𝑟 +
𝑆𝑁𝑅

𝑀𝑡
𝑇𝑇𝐻)]                  (3.11) 

 

Where IMr is the identity matrix with dimensions Mr x Mr. SNR is the average signal to noise 

ratio and T is the complex matrix obtained as indicated in [48].  

 

3.2 Other Optimisation Methods 

There are other optimisation methods which also provides effective solutions to the base station 

placement problem in an indoor system. Two of these are described in details below. These are 

Particle Swarm Optimisation and Simulated Annealing.  

 

3.2.1 Simulated Annealing 

Simulated annealing is another considered optimisation method. It is likened to metal working 

where the temperature of the metal is heated and cooled to alter its physical properties. If the 

metal is allowed to cool quickly it will become brittle, however if it cools slowly, its atoms will 

have enough time to settle in a strong configuration. In simulated annealing a temperature 

variable is kept to simulate this heating process [49]. As indicated in [49] and [50] the algorithm 

works as described in the following steps: 

1. The initial temperature is set and a random initial solution is created 

2. The system is looped until the exit conditions are met. Usually either the system has 

sufficiently cooled, or a good-enough solution has been found. 

3. Then a neighbour is selected by making a small change to the current solution. 
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4. This new candidate solution is evaluated and if it is better than the previous, it is 

accepted as the current solution. If it is not better than the previous, there will be a 

probability of this new worst solution to be accepted based on the cost of each solution 

and the present temperature in the system.  

5. Then the temperature is decreased and continue looping 

 

The process indicated in step 4 can be described by the following equation [51] 

 

𝐴 = 𝑒−
𝑐(𝑁)−𝑐(𝑃)

𝑡      (3.12) 

 

Where A is the probability of accepting the worst solution, c(N) is the cost of the new solution, 

c(P) is the cost of the present solution and t is the temperature. 

The temperature is the basic driving mechanism of the algorithm. At high temperatures, the 

system is more likely accept solutions that are worse.  It is the manipulation of the temperature 

that leads to a solution. This procedure is done in a loop and after an arbitrary number of 

iterations occurs the temperature is multiplied by a reduction factor. This will make the 

temperature decrease and consequently more difficult to accept worst solutions. This technique 

uses only one solution and tries to guide it to the best place in the design space [51]. 

 

Simulated annealing is often compared to the hill climber algorithm [49] to demonstrate its 

advantages. Figure 3.2 below show the logic behind the hill climber algorithm [49], [52] and 

[53].  

 



3 .  O p t i m i s a t i o n  M e t h o d s                                                  33 

 

 

 

 

Figure 3.2. Hill climber algorithm 

 

The hill climber algorithm works by accepting a neighbour that is better than the current one. 

So the hill climber will climb until it reaches a point where it will have to first decent before it 

can climber any higher. This point will be considered the solution. As in the case depicted in 

figure 3.2, this is not a global solution. Hence, the hill climber has the tendency to get stuck in 

local optimums [50]. This problem is avoided in simulated annealing. It will accept local 

solutions occasionally but over time, it will move to the global solution. 

 

One of the implementations of Simulated Annealing can be seen in [54]. It is employed as a 

proposed method to solving the base station placement problem in a distributed antenna system 

(DAS). In this case, all the antennas share the same base station. It uses a neighbour discovery 

approach that increases the probability to drive the solution towards the optimal configuration. 

Firstly, four objective functions were formulated. These are 

 

𝑀𝑖𝑛 {𝐹1 = ∑ 𝑏𝑖𝐶𝑖

𝑖∈𝐵

} 

                          (3.13) 

Where F1 is the cost to install all the antennas. It is to be minimized depending on the number 

of antennas bi and the financial cost of each ci, B is the set of all possible locations of antennas 

 

Hill climber 

starts here 

Hill climber stops here 

at local solution. 

Global solution 
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𝑀𝑎𝑥 {𝐹2 =  
1

|𝑀|
∑ ∑ 𝑏𝑖𝑃𝑖

(𝑟)
 

𝑖∈𝐵𝑗∈𝑀

} 

              (3.14) 

Where F2 is maximized the received power in all the receiving location. M is the set of all users 

receiving points and  𝑃𝑖
(𝑟)

 is the received power at a point j from antenna i. 

 

𝑀𝑎𝑥{𝐹3 = 𝑃𝑚𝑖𝑛,𝑗
(𝑟)

 }          ∀𝑗 ∈ 𝑀 

Where: 

𝑃𝑚𝑖𝑛,𝑗
(𝑟)

= 𝑀𝑖𝑛 ∑ 𝑏𝑖𝑃𝑖
(𝑟)

 𝑖∈𝐵    ∀𝑗 ∈ 𝑀      (3.15) 

 

Where F3 varies the power of each antenna output such that the minimum value of the received 

powers is minimized. 

 

𝑀𝑖𝑛 {𝐹4 =
1

|𝑊𝐸|
∑ ∑ 𝑏𝑖𝑃𝑖

(𝑟)
 

𝑖∈𝐵𝑗∈𝑊𝐸

} 

     (3.16) 

Where F4 minimized the power leakage outside the building by decreasing the power received 

on the external walls of the building. WE is the set of external walls. 

 

These objective functions are further subjected to two particular constraints. The first indicates 

the minimum value of received power that has to be satisfied at all the receiving locations in 

order to provide the users with the required bit rate.  

 

Constraint 1. (C1) 

∑ 𝑏𝑖𝑃𝑖,𝑗
(𝑟)

 

𝑖∈𝐵

> �̂�(𝑟)   

      (3.17) 

 

Where �̂�(𝑟) is the minimum received power threshold. 

 

The second constraint indicates the summation of all the transmitting powers of the antennas 

must be equal to the radio cabinet maximum power (ignoring the cable losses).  
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Constraint 2. (C2) 

∑ 𝑏𝑖𝑃𝑖
(𝑡)

 

𝑖∈𝐵

> 𝑃𝑚𝑎𝑥
(𝑡)

 

     (3.18) 

 

Where 𝑃𝑖
(𝑡)

is the transmitting power of antenna i, and 𝑃𝑚𝑎𝑥
(𝑡)

 is the maximum transmitted power 

from the base station.  

 

Simulated Annealing is now used to find the solution to these formulations. 

The first step is to find an initial location. This location is such that both constraints (C1 and 

C2) are satisfied. The general process as indicated in [54] is explained as follows:  

“three different functions were introduced: dropMove, addMove, and randMove, to 

explore neighbourhood solutions of the initial solution in addition to the power 

optimization function optimizePower that is applied after each of these three functions. 

The dropMove is used to optimize the objective function by removing deployed 

antennas that are not the best to optimize F2, F3 and F4 and redistribute their power 

among the other antennas. While addMove aims to optimize F2, F3 and F4 and satisfy 

the coverage constraint (C1) while keeping the value of F1 constant by changing the 

power and locations of the deployed antennas. If C1 remains violated, a new antenna 

must be deployed. The randMove is used to randomly explore neighbourhood solutions. 

The optimizePower is used to optimize the transmitting power of deployed antennas. 

The above three functions are executed successively until a feasible neighbour solution 

is obtained and compared with the best-found solution so far which is accepted if it is 

better or according to the simulated annealing probability”  

This Simulated Annealing probability is indicated in equation 3.16. 

 

Another implementation of Simulated Annealing is indicated in [55]. Here it has been 

employed as means to position base stations in network planning for Wideband Code Division 

Multiple Access (WCDMA).  
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3.2.2 Particle Swarm Optimisation  

Particle Swarm Optimisation (PSO) is a population-based optimization method originally 

proposed by Kenney and Eberhart [56] and it has been used to solve numerous optimisation 

problems [57]. The basic description of the elements of a PSO algorithm is explained in [58] 

where the PSO is likened to a swarm of bees searching a field for the location of the most 

flowers. The algorithm seeks to move all the bees/particles to the best location by changing the 

velocities and hence positions of each particle. It does this by combining the best position of 

each particle and the best position reported by the entire swarm. PSO has many advantages 

when compared to other search method, such as fewer parameters needed to be adjusted and 

the rapid convergence speeds [59].  The parameters of a PSO systems as explained in [58] are:  

Particle or Agent: Each individual in the swarm is referred to as a particle or agent. All the 

particles in the swarm will individually accelerate toward a vector summation of the best 

personal (pbest) location and best overall (gbest) location. 

Position: In the analogy above position referred to a bee’s place in the field. This is represented 

by coordinates on the x-y plane. In general, however, this idea can be extended into any N-

dimensional space according to the problem at hand. This N-dimensional space is the solution 

space for the problem being optimized, where any set of coordinates represents a solution to 

the problem. In the analogy above the solution is a physical location on the x-y plane, but this 

could just as easily represent amplitude and phase of element excitation in a phased array. In 

general, these can be any values needed to be optimized. Reducing the optimization problem 

to a set of values that could represent a position in solution space is an essential step in utilizing 

the PSO. 

Fitness: The fitness is used to rank the suitability of each position. In the analogy above the 

fitness function would simply be the density of flowers: the higher the density, the better the 

location. In general, this could be antenna location within a building, weight, peak cross-

polarization, or some kind of weighted sum of all these factors. The fitness function provides 

the interface between the physical problem and the optimization algorithm. 

pbest: In the analogy above each bee remembers the location where it personally encountered 

the most flowers. This location with the highest fitness value personally discovered by a bee is 

known as the personal best or pbest. Each bee has its own pbest determined by the path that it 

has flown. At each point along its path, the bee compares the fitness value of its current location 

to that of pbest. If the current location has a higher fitness value, pbest is replaced with its 

current location. 
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gbest: Each bee also has some way of knowing the highest concentration of flowers discovered 

by the entire swarm. This location of highest fitness encountered is known as the global best 

or gbest. For the entire swarm, there is one gbest to which each bee is attracted. At each point 

along their path, every bee compares the fitness of their current location to that of gbest. If any 

bee is at a location of higher fitness, gbest is replaced by that bee’s current position. 

The general PSO algorithm is given as:  

 

𝑉(𝑛) = 𝜔𝑉(𝑛) + 𝐶1𝛼1[pbest(𝑛) −  𝑋1(𝑛)] + 𝐶2𝛼2[gbest(𝑛) − X1(𝑛)                         (3-19)   

 

And:  

                            𝑋(𝑛) = 𝑋1(𝑛) + 𝑉(𝑛)𝑡                                                    (3-20) 

                                                                                            

Where V(n) is the velocity of the nth particle, X1(n) is the initial position of the nth particle, 

gbest is the globally best position for all the particles and pbest is the best position for the nth 

particle. ω applies weighting to initial velocity, C1 and C2 determines the pull of the particle to 

pbest and gbest respectively, 𝛼1  and 𝛼2, are random numbers between 0 and 1, 𝑋(𝑛) is the 

new position of the nth particle, and t denotes the time for which this velocity is applied. 

 

The advantages of PSO are is its simplicity, speed and robustness in overcoming the local 

minima problem [60]. The effectiveness of PSO can be improved via the selection of the 

parameters namely ω, C1 and C2. A few of the suggestions for values for these constants are 

given in [58], [61], [62] and [63]. The effect of these constants are described as follows: 

ω- This is the initial weight. This scales the old velocity and controls the speed at which the 

particle/bee flies over the solution. Typical values [58] can be between 0.9-0.4.   

C1 and C2 – These determine the relative pull towards pbest and gbest.  C1 describes the pull 

towards pbest (the local solution) and C2 describes the pull towards gbest (the global solution). 

Typical values [58] for both is 2. The size of the swarm is also very important for the PSO 

algorithm to converge, suggested values for this is shown in [64]. 

 

Vilovic et al. [60] describe PSO combined with a neural network for the placement of a single 

antenna in an indoor system. In this implementation, the fitness function is described to 

represent the quality of coverage over a given space as a function of transmitter location. 

This is given as:  
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𝑓𝑖 = ∑ ∑ 𝑆𝑖(𝑥𝑗 , 𝑦𝑗)𝑤 (𝑆𝑖(𝑥𝑗 , 𝑦𝑗))

𝑀

𝑗=1

𝑁

𝑖=1

 

                  (3.21) 

 

Where N and M are the numbers of possible locations of the base station and receiving points 

respectively. Si is the relative signal level (dBm) received from base station i at the location 

with coordinates (xj, yj) while wj is the relevant priority weight ascribed to the jth receiver 

location and it makes constraint in the cost function. This constraint indicates the quality of 

signal coverage at each receiver location. At different receiver thresholds, wj can be obtained 

as: 

 

𝑤𝑗 = {

𝑆𝑖(𝑥𝑗 , 𝑦𝑗) > −60 𝑑𝐵𝑚                              𝑤 = 1

−60 ≥ 𝑆𝑖(𝑥𝑗 , 𝑦𝑗) ≥ −72 𝑑𝐵𝑚               𝑤 = 10

𝑆𝑖(𝑥𝑖 , 𝑦𝑖) < −72 𝑑𝐵𝑚                              𝑤 = 100

              (3.22) 

 

This method is limited by the number of transmitters being a single transmitter. 

 

Another application of PSO is shown in [65] where it is used to allocate the location of receiver 

antenna in ultra-wideband (UWB) wireless communication systems in an indoor environment. 

The bit error rate (BER) is calculated and PSO is used to find the best optimum receiver 

locations that would minimize the outage probability relative to transmitter location.   

 

 

Additional applications of PSO to the indoor antenna placement problem can be seen in [66], 

[67] and [68]. In these cases, the PSO is used to optimize the best locations for a given number 

of transmitters.  

 

3.3 Discussion 

As stated in section 3.1, the objective function for the indoor antenna placement problem can 

be described as nondifferentiable and obtaining a gradient of this objective function is not 

practical [12]. A few of the approaches to solving this base station problems have been shown 

in section 3.1 and section 3.2 above. In section 3.1, the direct search method, the Bundle 

methods and genetic algorithms have been presented. In section 3.2 particle swarm 
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optimisation and simulated annealing have been presented. The methods all have advantages 

and disadvantages in solving the base station placement problem within an indoor environment.  

 

The Nelder-Mead Simplex Method is not guaranteed to converge [41] and can be inefficient as 

described by Olsson and Nelson [40]; 

 “Given an extremely sharp ridge, produced by high inter-dependency among the variables, the 

method can become inefficient to the point of failure”  

 

The bundle method shown in [41] provides a very useful solution but the formulation of the 

cost functions and the programming can be very difficult.  

 

Genetic Algorithms are similar to PSO in that both are population based search methods. These 

both move from a set of points (population) to another set of points in a single iteration with 

likely improvement using a combination of deterministic and probabilistic rules [69]. Table 3.1 

shows a general comparison of between both these methods. 

 

 

Genetic Algorithm PSO 

* High computational time to converge. 

*Several implementation selection 

options (tournament or proportionate 

selection)  

*Can get stuck in local solutions 

*Quick convergence 

*Ability to explore the entire optimisation space 

(global search) and avoid local solutions 

*More computationally efficient  

*Better quality of solution 

*Easy to implement 

Table 3.1. Comparison of Genetic Algorithm and Particle Swarm Optimisation 

 

The solution proposed in [54] using Simulated annealing provides a workable one but 

generally, PSO performs better than Simulated Annealing with substantially improved 

execution times because of the smaller number of function evaluations needed for convergence. 

It has been shown [70] that as a randomized search algorithm, the PSO algorithm is better 

suited to detect a developing induction motor winding fault. It achieved a success rate of about 

99% compared with 60% for the SA algorithm. 
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For this research PSO have been chosen, PSO offers a very simple and potentially very efficient 

solution. Many different research [41], [69], [71], have shown PSO to be more computational 

efficient than GA. Aguado et al. [43] have shown that the computational time for a simple GA 

is very high and the convergence is not assured. Via a set of bench mark test problems Hassan 

et al. [69] have shown that the computational efficiency superiority of PSO over the GA is 

statically proven with a 99% confidence level.  

 

With PSO, the problem can be easily formulated with a simple fitness function and the 

optimisation space is directly translated to the building coordinates. In PSO there are fewer 

parameters that need to be adjusted and hence it rapidly convergences in comparison to other 

algorithms such as SA. PSO is very robust in overcoming local minima problem [60] and it is 

faster and more accurate in comparison with other optimisation methods [58].  The PSO 

applications seen so far, usually involves the case of a single antenna [60], [59] or it is applied 

in an outdoor situation [66].  

 

The problem as indicated in the introduction to this chapter requires a solution that incorporates 

multiple antennas in an indoor scenario. The solution proposed in this research is presented in 

section 3.5, it combines PSO with a means of geometrically dividing the optimisation space. 

 

3.4 Geometric Partitioning 

A few applications of PSO to the solution of the indoor antenna location problem can be seen 

in [66], [60], [67] and [68]. These cases all demonstrate the effectiveness of PSO in solving the 

indoor antenna placement problem. In these cases, the PSO is used to optimize the best 

locations for a given number of transmitters but there is no method to automatically select the 

number of antenna. Compared to one transmitter in two-dimensional Cartesian space, each new 

transmitter introduces two additional variables to the problem as indicated in [68]. This 

introduces additional constraints that can be easily incorporated in the original PSO equations. 

However, the problem is how to determine how many antennas are needed for a complete 

solution of the base station placement problem.  

 

In section 1.2.1, the manual inbuilding planning process is described. In this method, if the 

received signal levels are not met with one antenna then the radio planner will consider two 

antennas, thus treating the layout as two separate areas. This planning method is widely used 
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by mobile network operators as it provides practical workable results. For this research, a 

similar consideration is used to determine if additional transmitters are needed.  

 

For the problem presented in this thesis, the optimisation space is the physical floor layout. 

With the aim of providing a simple geometric description of the entire space including areas 

where antennas are not allowed to be placed (no-go areas), this space is assumed to be 

rectangular. Subsequently, the partition of this space will also result in rectangles. 

 

Consider a two-dimensional space with dimensions (a,b) as indicated in figure 3.3. They are 

numerous was this space can be divided.  

 

 

Figure 3.3. Two-dimensional space 

 

A few of these possible divisions are indicated by the broken lines in figure 3.4. In the present 

thesis, this rectangular shape is to be divided into two parts. This is a similar problem described 

by Kong [72] and Kleitman [73]. The following conditions must be met for the new shapes.  

1. The new shapes must be rectangles. 

2. The area of the two new shapes must be equal. 

3. The difference between the length and the height of each of the new shapes should be 

minimised.     

b 

a 
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Figure 3.4. Dividing a two-dimensional space 

 

To meet these conditions, the diagonals (lines 1 and 3) would be excluded as these would 

produce triangles. This means that the line will either be horizontal and parallel to the length 

face (line 4) or vertical and parallel to the height face (line 2). 

 

If we consider this rectangle within the Cartesian system and it vertices at (x,y)= (0,0), (0,b), 

(a,0) and (a,b), then the equation describing line 2 can be written as; 

 

𝑥 =
𝑎

2
  

      (3.23) 

Similarly, the equation describing line 4 can be written as: 

 

𝑦 =
𝑏

2
  

      (3.24) 

Figure 3.5 shows the rectangles produced when the divisions are done along line 2 (case 1) and 

line 4 respectively (case 2).  

a 

Length  

b 

height 

1 2 3 

4 
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Figure 3.5. Possible ways of dividing a rectangle 

 

Both case-1 and case-2 have fulfilled the first conditions. That is the areas must be rectangles. 

 

The second condition requires both rectangles to be the same area. Again, both cases fulfil this 

condition. In case-1, the area of the rectangles can be calculated as: 

 

𝐴𝑟𝑒𝑎 𝑜𝑓 𝐶1 − 1 = 𝐴𝑟𝑒𝑎 𝑜𝑓 𝐶1 − 2 =
𝑎×𝑏

2
 

         (3.25) 

In case-2, the area is the same. Generally, the area of the new rectangles must be half the size 

of the original rectangle. 

 

The third condition requires the difference between the length and the height of each of the 

new shapes must be as close to zero as possible. This means that the perimeter of the rectangle 

must be the minimum possible.  

For case-1, the perimeter of each rectangle is given as: 

 

𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝐶1 − 1 = 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝐶1 − 2 = 2𝑏 + 𝑎     (3.26) 

 

For case-2, the perimeter of each rectangle is given as: 

 

𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝐶2 − 1 = 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝐶2 − 2 = 2𝑎 + 𝑏     (3.27) 

 

b 

height 

a/2 

Length  

a 

Length  

b/2 

height 

a/2 

Length  

b/2 

height 

Case-1 Case-2 

C1-1 

C2-1 

C1-2 

C2-2 
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From equations 3.26 and 3.27 it can be seen that the perimeter for the rectangles of case-1 and 

case-2 depended on the values of a and b. If the size of a is greater than b, then only case-1 

fulfils the third condition.  Similarly, when b is greater than a case-2 will have the smallest 

perimeter.   

 

Generally, as applied in this research, the rectangle is partitioned by dividing along the length 

of the longest sides. For the Cartesian system described above, if the length a is greater than 

the height b, the dividing line is line 2 and if height b is greater than length a, this line is line 

4. 

 

3.5 Proposed Optimisation Procedure 

The goal of the in-building design process is to achieve a minimum signal level for a percentage 

of the area of the building. Achieving this goal involves placing antennas (transmitters) 

throughout the design space. The design space or the optimisation is defined by the building 

layout drawings. Within this building drawing the transmitters will have an x, y location with 

reference to a defined point. The final solution will seek to have optimum conditions for the 

following parameters:  

• The total number of transmitters, 

• The location of each transmitter  

• The power of each transmitter, PTx,   

The novel optimisation process used in this research combines the methods of Particle Swarm 

Optimisation and geometric partitioning. First, PSO is used to find the best transmitter location 

within the entire building layout. If this transmitter transmitting at maximum power does not 

adequately meet the required coverage percentage of the building, then, the space is divided 

into two and PSO is again independently implemented within each space. Again, the percentage 

coverage is measured in each new partition and the process is continued until a solution is 

reached. The complete process is described in detail in below. 
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3.5.1 Optimisation Parameters 

The total number of transmitters 

For economic reasons, it is assumed that the best solution is the one that requires the fewest 

number of transmitters transmitting with minimum output power while meeting the coverage 

requirements.  

 

The location of each transmitter 

Within the optimisation space, there are forbidden or no-go areas for antenna locations. The 

optimum location will be bound by these forbidden locations while at the same time 

considering the number of transmitters and the output power of each transmitter. 

  

The power of each transmitter 

The final value for each individual transmitter PTx will be the range from PTmin to PTmax, where: 

PTmin = 0 dBm and PTmax = 21 dBm. These represent actual power ranges used by telecoms 

equipment manufacturers [1]. To reduce the number of steps required to get to an optimal 

solution PTx may vary between PTmin and PTmax in steps of 3 dB. 

 

3.5.2 Optimisation Phases 

There are three main phases to the optimisation/search procedure, these are swarming, power 

optimisation and geometric partitioning. All three phases are interlinked to optimize the 

parameters described in section 3.5.1 above. 

 

The swarming phase is implemented via the particle swarm optimisation process. It involves 

moving the transmitter around the optimisation space to find the best location. All the 

transmitters will move to this best/optimum location. It is the optimum location that will give 

the maximum coverage to most parts of the building/optimisation space. In the swarming 

phase, we seek the transmitter location that gives the highest number of receiver locations 

above the defined received threshold. The process of swarming is described by equation 3.28 

and 3.29.  

 

𝑉(𝑛) = 𝜔𝑉(𝑛) + 𝐶1𝛼1[pbest(𝑛) −  X1(𝑛)] + 𝐶2𝛼2[gbest(𝑛) − X1(𝑛)]       (3.28)                    

 

And  



3 .  O p t i m i s a t i o n  M e t h o d s                                                  46 

 

 

 

                            𝑋(𝑛) = 𝑋1(𝑛) + 𝑉(𝑛)𝑡             (3.29)                                  

 

The particles/transmitters will change velocity within the optimisation space. This space is the 

(x, y) coordinates described by the building layout drawing with reference to some fixed point. 

Therefore, within this two-dimensional space, the velocity and resulting positions are made up 

of two components. Thus, for each transmitter within the swarm, equations 3.28 and 3.29 can 

be re-written to indicate the x- components and the y-components as: 

 

𝑉𝑥(𝑛) = 𝜔𝑉𝑥(𝑛) + 𝐶1𝛼1[𝑝𝑏𝑒𝑠𝑡𝑥(𝑛) − X1(𝑛)] + 𝐶2𝛼2[𝑔𝑏𝑒𝑠𝑡𝑥(𝑛) − X1(𝑛)]   (3.30) 

 

𝑉𝑦(𝑛) = 𝜔𝑉𝑦(𝑛) + 𝐶1𝛼1[𝑝𝑏𝑒𝑠𝑡𝑦(𝑛) −  Y1(𝑛)] + 𝐶2𝛼2[𝑔𝑏𝑒𝑠𝑡𝑦(𝑛) − Y1(𝑛)]           (3.31)             

 

And                    

𝑋(𝑛) = 𝑋1(𝑛) + 𝑉𝑥(𝑛)𝑡      (3.32)       

     

𝑌(𝑛) = 𝑌1(𝑛) + 𝑉𝑦(𝑛)𝑡                                  (3.33) 

 

Where Vx and Vy are the components of the velocity, X and Y are the components of the 

positions and similarly pbest and gbest are indicated with components with the (x, y) coordinate 

space and n= 1,2, …… m, where m is the size of the swarm. The PSO algorithm will optimise 

the best position for each transmitter composing of an x and a y component.   

 

Figure 3.6 below shows a block diagram representation of this process. This can be explained 

in the following steps. 
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Figure 3.6. Block diagram of swarming process 

 

Step 1. The process starts with the transmitter within the swarm having random locations. The 

aim is to now move all the transmitters to best location within the optimisation space. From 

each transmitter location, the Rxlev at each receiver location is calculated as described in 

equations 2.18 and 2.19. From this, the fitness of each Tx location is calculated.  

 

Step 2. The best is defined by the fitness function described in section 3.5.3. The best location 

(gbest) of all the transmitter within the swarm is noted, also the best location of each transmitter 

(pbest) is noted. At initial point, since each transmitter would have had only one location that 

will be its pbest location. The gbest will be the best of all the pbest locations.  

 

Step 3. Each transmitter will have an x, y coordinate within the optimisation space.  The PSO 

process will seek to move each particle by considering the position of the pbest and gbest. This 

is indicated in figure 3.7  
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Tx locations 
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location 
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Start 

End 

No 
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Figure 3.7. PSO particle movement adapted from Robinson et al. [58]. 

 

Step 4. This indicates the exit from the swarming process. All the transmitters in the swarm 

will move towards the gbest location over time. If t (in equation 3.32) is assumed to be unity, 

then a stepwise optimisation will be indicated with all the transmitters converging after a finite 

number of steps. This can mean many iterations which can have an impact on computation 

power and resources. For practical purposes, the exit maybe taken at a defined standard 

deviation for all the particles of the swarm/transmitters or after a set number of iterations.   

 

In the power optimisation phase, the transmitter effective isotropic radiated power (EiRP) is 

optimised for the transmitter at the swarmed location 

 

The geometric partitioning phase is only initiated if there is no solution after the power 

optimisation phase. Here the optimisation space is portrayed to be contained in a rectangle. 

This rectangle is now divided/partitioned into two equal parts as indicated in section 3.4. The 

swarming phase is initiated again independently in each new partition. If no solution is found 
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in either partition, then that partition is again divided into equal parts. The number of partitions 

represents the solutions for the number of transmitters. 

 

3.5.3 Exit conditions 

The search procedure will end when the exit conditions are met. The main parameter that is 

monitored is the received signal threshold. From this, the percentage coverage can be obtained. 

The received signal threshold is monitored via the fitness function for PSO and percentage 

coverage is evaluated in the power ramping stage indicated in section 3.5.2 above.  

 

The fitness function evaluates the received signal at each receiver location and calculates the 

percentage of locations having received signal levels above a defined threshold. This is defined 

as: 

 

 𝐹 =
𝑇

𝑘
                                                      (3.34) 

 

Where: F = fitness at each transmitter location, k = total number of received locations within 

the optimisation space and T is the number of received locations in the problem space that 

exceed a minimum defined receive threshold. 

 

In this research, a receive threshold of -85 dBm is used. This is based on a typical value widely 

used in practise [1].  The fitness function also describes the percentage coverage. The Motley-

Keenen propagation model described in equation 2.18 is used to calculate the received signal 

levels. For this research, a minimum percentage coverage of 95% [6] is considered as the 

overall exit condition. The power optimisation phase will optimise this value for the best 

transmitter location and the entire optimisation process will end when the percentage coverage 

is greater than a specified value.  

 

3.5.4 Boundary Conditions 

There are walls (boundaries) and forbidden (no-go) spaces within the building layout. The 

optimisation procedure also describes how the transmitters will react when they are moved 

towards a boundary or a forbidden space. The general ways that standard PSO considers 

boundaries or obstructions are described in [58] where a boundary or obstruction can be 

absorbing, reflective or invisible. Lu et. al [74], have developed an augmented particle swarm 
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optimisation algorithm (AugPSO) using a particle position resetting strategy. If the new 

location of the particle will be outside the boundary or within the no-go location, a new random 

location is chosen for the particle. This method has been shown to be improve the quality of 

the solution (when compared to standard PSO) by introducing diversity and preventing the 

convergence into some local minima. In the present thesis, we consider this particle resetting 

strategy. This is outlined further in section 4.5.4.  

 

3.5.5 Complete Optimisation Steps 

The complete optimisation steps are indicated in the flow chart in figure 3.8. In chapter four all 

the specific input parameters are discussed. Here, the general optimisation procedure is 

discussed. The steps are outlined as follows: 

 

Step 1. The initial number of particles (transmitters) are chosen. This determines the size of 

the swarm. Also, the optimisation space is divided into a number of equally spaced receiver 

locations, m.  

 

Step 2. A random position and velocity are assigned to each particle throughout the 

optimisation space. Each initial position is a possible transmitter location. The first phase is to 

find the best location of all these initial locations and to swarm the particles towards these. 

 

Step 3. The PSO algorithm as described in equation 3 and 4, is now used to find the best 

location for all the particles (swarming described in section 3.5.2).  

 

Step 4. The swarmed location achieved in step 3 is the transmitter location that will ensure 

optimal received signal levels at all the receiver locations. The required percentage coverage is 

checked against the fitness function. If this is greater than the fitness function a solution is 

achieved with one transmitter at the swarmed location. If this is less than the fitness function 

the transmit power (PTx) is increased in 3dB steps from 0 to a maximum 21 dBm. This 

maximum represents a typical indoor base station output power found in [1].  

 

Step 5. If the percentage coverage has still not been met the defined space (layout) is 

geometrically partitioned into two and the PSO algorithm is independently initiated again in 

each of the new spaces. This process is continued until the percentage coverage is met for the 
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entire layout. One transmitter will be required for each partition so the total number of 

transmitters will be dependent on the number of partitions created.  

 

Figure 3.8. Search Procedure 
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3.6 Conclusion 

The proposed solution is a combination of Particle Swarm Optimisation and Geometric 

Partitioning. This method allows the adaptation of PSO to produce a solution with multiple 

antenna locations.   

 

With PSO there are fewer parameters needed to be adjusted and it has a rapid convergence 

speed. PSO is very robust in overcoming local minima problem [60] and has been shown to be 

faster and more accurate in comparison with other optimisation methods [58]. 

 

PSO shows great potential when used in solving the problem of multiple antenna placements 

in an indoor environment. This is because the problem can be easily formulated as there is a 

good analogy between the general optimisation space described by PSO and the 

transmitters/bees within the building layout.   
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 : Algorithm Development  
 

 

he solution to the indoor base station placement problem is implemented in two parts, 

namely the signal propagation stage and the optimisation stage. In this research, a 

MATLAB simulation is used to show how the proposed solution is implemented in a real 

building.  

 

The optimisation method is outlined in section 3.5. The algorithm describing these steps along 

with samples of the MATLAB code will be discussed in this chapter. Here the formulations 

and the steps taken towards developing this algorithm and program is presented.  The input and 

output parameters are shown along with the methods of calibrating the system. 

 

Although the choice of compiler is MATLAB, the general algorithm is presented so that the 

program can be written in any other programming language. 

  

4.1 Test Building 

The top floor (W2) of the Sir David Davies building at Loughborough University was chosen 

as the test location as it was readily accessible. This is considered a complex building layout 

as described in chapter 5. This building layout is shown in figure 4.1. The minimum signal 

strength at any point in the building must be so planned that the coverage requirements are met. 

In this research, the coverage requirements are taken to be a minimum received level (RxLevmin) 

of -85 dBm through 95% of all measured received locations.  

 

As stated in chapter 3, to meet this coverage requirement this research seeks to find the 

following:  

• the number of antennas  

• the location of these antenna throughout the building  

• the EIRP of these antennas 

T 
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  Figure 4.1. Test building layout.  

 

4.2 The Optimisation Space 

The main input required to develop the MATLAB program is the optimisation space. This is 

the test building, described in figure 4.1. The program will search the optimisation space for 

the best locations to place the antennas so that the coverage requirements are met. Hence, it is 

required to define the optimisation space. This definition requires the location all walls and 

partitions, wall thickness and locations of corridors. 

Exposed walkway 

 

Quad containing 

vegetation/trees 
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To meet these requirements a digital representation of the test building is needed. The layout 

could be represented in actual latitude and longitude values with respect to a geographical 

coordinate system or by x, y locations within a Cartesian system. In this research, the Cartesian 

system is used as there is no need to reference the actual location of the test building.  

 

The building layout with the noted dimensions in metres, is first saved in as an image in a Jpeg 

file. With the use of the “GetData” software [75], the vertices/corners of the walls in the 

drawing were noted with reference to the Cartesian coordinate system. Figure 4.2 shows an 

example of the points taken from a wall. 

 

 

  Figure 4.2. Encoding the building layout.  

 

Each wall can be described as a rectangle with four vertices. The “GetPoint” software is used 

get the x-y coordinates of each of these four points.  

 

Additionally, the type of wall is required to add to the description of the wall. As described in 

section 2.3.5, different walls will have different effects on the radio signal propagation. For 

this test building, interior walls are described as type 1 walls with a loss of 2dB while exterior 

walls are type 2 with a loss of 5dB. This is shown in table 4.1.  
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Now there are two input files for the MATLAB program. One shows the positions of all the 

elements/walls describing the optimisation space and the other shows the different types of 

walls and losses.  Table 4.2 shows examples of the wall positions.  

 

 

Wall Types Losses (dB) 

Type 1 2 

Type 2 5 

Table 4.1. Wall losses for Sir David Davies building at Loughborough University. 

 

 

x1 y1 x2 y2 

8.066565 142.3017 8.00909 86.78072 

95.79948 142.3017 8.066565 142.3017 

8.00909 86.78072 59.25133 86.78072 

59.25133 86.78072 59.44766 126.4386 

59.44766 126.4386 95.93834 126.4386 

95.93834 126.4386 95.79948 142.3017 

90.9764 133.2037 90.98582 142.3017 

90.9764 133.2037 40.66584 133.2037 

40.66584 133.2037 40.67526 142.3017 

44.40197 142.3017 44.39255 133.2037 

Table 4.2. Example of an input file 

 

Figure 4.3 show the optimisations space as deployed within the Cartesian system. It shows all 

the wall locations as described in the sample files indicated in Table 4.2. 
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Figure 4.3. The test building defined within the Cartesian space.  

 

4.3 Program Initialisations  

With the optimisation space now defined, the development of the MATLAB program can now 

progress as described in optimisation methods section 3.5. The goal is to produce a MATLAB 

simulation that will find a solution for the problem of planning the optimum location for 

antennas within the test building.  

 

There two distinct processes contained within the optimisation methods described in section 

3.5. These are the propagation process and the search process. These processes indicate the 

parameters sets and their initial values for the program.  

 

Metres 

Metres 

 

Exposed walkway not 

shown 
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4.3.1 Propagation Parameters  

The parameters needed for the propagation process can be derived from equation 2.19. These 

are obtained from the following categories:  

• The receive signal threshold.  

• The transmit power 

• The path loss parameters 

• The wall losses  

 

The received signal threshold.  

The set of parameters involved here is used to determine when the coverage levels are met. The 

optimisation space is divided into a number individual receiver grids. Figure 4.4 shows an 

example with 4 grids. In the real problem 200 grids are used. The number of grids is the square 

of the number of points. In figure 4.4 the number of points is chosen to be 4. This produces 16 

receiver grids located at the interception of the vertical and horizontal grid lines. The spacing 

between these grid lines for the x and y domains are given as: 

 

𝑑𝑥 =
𝑥_𝑚𝑎𝑥− 𝑥_𝑚𝑖𝑛

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠−1
     (4.1) 

and  

𝑑𝑦 =
𝑦_𝑚𝑎𝑥− 𝑦_𝑚𝑖𝑛

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠−1
     (4.2) 

 

Where dx and dy are the spacing between grid lines for the x and the y domains respectively, 

x_max, x_min, y_max and y_min are the maximum and minimum boundary walls defining the 

optimisation for the x and y domains, the number of points must be greater than 1.  

 

The received signal level is calculated at the intersection of each grid line. The received signal 

level at each point is compared to the received signal threshold. From this, the percentage 

coverage is calculated.  

Parameters: Number of points, Received signal threshold, percentage coverage, x-minimum, 

x-maximum, y-minimum, y-maximum, RXpoint (x,y)   
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Figure 4.4. Example of how receiver locations are calculated in a sample building layout 

 

The transmit power.  

The transmit power is used to determine the receiver signal levels at the centre of each grid 

throughout the building. The typical base station [1] will have a range of values which will 

determine the EiRP of the transmitter.  In this research, the power will be cycled through the 

range of values to find the optimum transmitter EiRP to meet the receiver signal threshold. The 

transmitter power will be between 0 and 21dBm and changes in 3dB steps. This will create a 

set of values of 0,3,6,9,12,15,18 and 21 (all in dBm).  

 

The path loss parameters 

The path loss parameters are derived from the propagation model. The propagation model used 

in this research is the Motley-Keenan. The reasons for the choice of this model are due to its 

simplicity and ease of comparison with normal planning methods. This model is given as:  

 

𝐿 = 𝐿0 + 10𝑛 log10 𝑑       (4.3) 

 

dy 

1 

2 

3 

  

1 2 3 4 

4 

dx 
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In this research, a frequency of 900 MHz is chosen, in this case, L0 becomes equal to 31.5. The 

path loss exponent, n is chosen to be 2 and d is the receiver to transmitter separation distance. 

The process of calculating d is explained in section 4.  

Parameters: L0. Path loss exponent, n.  Total path loss 

 

The wall losses 

The wall losses are obtained from the input file describing the optimisation space as described 

in section 4.2. The position of each and the type of wall are used in the calculations for received 

signal levels.  

Parameters: Average wall attenuation, W 

 

4.3.2 Search Parameters 

The search parameters are obtained from the PSO equations. These are described in chapter 3 

and are given as:  

 

𝑉𝑥(𝑁𝑡) = 𝜔𝑉𝑥(𝑁𝑡) + 𝐶1𝛼1[𝑝𝑏𝑒𝑠𝑡𝑥(𝑁𝑡) −  X1(𝑁𝑡)] + 𝐶2𝛼2[𝑔𝑏𝑒𝑠𝑡𝑥(𝑁𝑡) − X1(𝑁𝑡)]  (4.4) 

 

𝑉𝑦(𝑁𝑡) = 𝜔𝑉𝑦(𝑁𝑡) + 𝐶1𝛼1[𝑝𝑏𝑒𝑠𝑡𝑦(𝑁𝑡) −  Y1(𝑁𝑡)] + 𝐶2𝛼2[𝑔𝑏𝑒𝑠𝑡𝑦(𝑁𝑡) − Y1(𝑁𝑡)]   (4.5)             

 

And                    

𝑋(𝑁𝑡) = 𝑋1(𝑁𝑡) + 𝑉𝑥(𝑁𝑡)𝑡      (4.6)       

     

𝑌(𝑁𝑡) = 𝑌1(𝑁𝑡) + 𝑉𝑦(𝑁𝑡)𝑡                      (4.7) 

 

Size of the swarm 

The values for Nt are integers from 1 to bees where bees is the size of the swarm. The size of 

the swarm is very important in determining how efficiently PSO converges to a solution [57] 

and [64]. A large swarm will provide more accurate results but will require more processing 

resources. It has been shown [64] that a swarm size greater that 30 does not provide a better 

quality of solution compared with the proportionate increased in processing resource demands. 

In this research, the suggested value of 30 bees [64] is used.  

Parameter: Size of the swarm. 
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Constants 

The effectiveness of PSO can be improved via the selection of the parameters namely ω, C1, 

C2, α1, and α2. Typical values for these parameters are described in [58], [61] [62], [63]. ω- This 

is the initial weight. This scale the old velocity and controls the speed at which the transmitter 

flies over the solution. C1 and C2 – These determine the relative pull towards pbest and gbest.  

C1 describes the pull towards pbest (the local solution) and C2 describes the pull towards gbest 

(the global solution).  

Parameters: ω, C1, C2, α1, and α2. 

 

Main Search Parameters 

The main search parameters are the fitness, pbest, gbest, velocity, position and time. These are 

described as; Fitness: The fitness is used to rank the suitability of each transmitter location. 

The fitness is calculated from the received signal strength at indicated in section 3.5.  

pbest: The best location of each transmitter. Required for both x and y locations 

gbest: The best location of all the all transmitters in the swarm. Required for both x and y 

locations 

Velocity: The velocity of the transmitter, comprising of x and y components 

Position: The position of the transmitters, comprising of x and y components  

Time, t: taken to be 1 

 

Table 4.3 list all the parameters and their initial values. 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 .  A l g o r i t h m  D e v e l o p m e n t                                                62 

 

 

 

Parameter Symbol Initial value 

Average wall attenuation  W Based on building layout 

Fitness Fv 0 

Global best, x-y component 
gbest_x, 

gbest_y 
Randomly selected 

Local best, x-y component 
pbest_x, 

pbest_y 
Randomly selected 

Number of points nb_pts 200 

Path loss at 1m and 900 MHz L0 31.5 

Path loss exponent p 2 

Percentage coverage 
Percent_cove

rage 
95% 

Position (x and y components), 

TXpoints(x,y) 
pos_x, pos_y Randomly selected 

PSO constant ω 0.01 

PSO constant C1  2 

PSO constant C2 2 

PSO constant α1  1 

PSO constant α2 1 

Received signal level Tot_Rx_pwr 0 dBm 

Received signal threshold rxthreshold -85 dBm 

Receiver locations RXpoint (x,y) 
Based on number of point on 

optimisation space 

Size of the swarm, each transmitter 

in the swarm 
bees, Nt 30, 

Time t 1 sec 

Total path loss rs_amp 0 dB 

Transmitter power txpower 0 dBm 

Velocity (x and y components) vel_x, vel_y Randomly selected 

x-maximum x_max Based on building layout 

x-minimum x_min Based on building layout 

y-maximum y_max Based on building layout 

y-minimum y_min Based on building layout 

Table 4.3. List of parameters used in MATLAB program, alphabetically ordered 
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4.4 Initial Placement of Transmitters 

In this step, the initial locations of the transmitters are randomly chosen. The program gives 

the transmitters and initial position within the optimisation space while being constrained by 

the no-go locations. 

 

4.4.1 No-Go Locations 

There are areas within the building where it may not be possible to install transmitters. Also, 

because the building layout is defined within a rectangle there may be areas within the rectangle 

that are not a part of the layout. These are no-go areas and should be ignored during the 

optimisation process. The PSO algorithm must be able to recognise these areas and avoid 

moving the transmitter within these areas during the swarming phase and also avoid placing in 

this location during the initial random placements of the transmitters. The no-go areas in the 

test building are indicated in figure 4.5. 

 

 Figure 4.5. No-go locations. 

 

 1 

2 

3 

4 

Meters 

Meters 
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In this building layout (figure 4.5) the no-go areas are bounded by four rectangles defined as 

described in table 4.4.  

 

Rectangle Vertices 

x1 (m) x2 (m) y1 (m) y2 (m) 

Rect- 1 x-min 64.90 y-min 86.78 

Rect- 2 59.4 x-max 69.75 126.44 

Rect- 3 75.32 x-max y-min 69.75 

Rect- 4 22.50 45.45 102.87 126.44 

Table 4.4. Rectangles defining No-Go areas of building layout 

 

The following pseudocode is used to choose the initial random position and velocity of all the 

transmitters within the swarm while avoiding these no-go locations.  

Begin 

For (Nt =1 to the number of bees)  

Choose a random x-location for each transmitter between x-max and x-min 

Choose a random y-location for each transmitter between y-max and y-min 

While (the transmitter location is in rect-1 or rect-2 or rect-3 or rect-4) 

     Choose a random x-location for each transmitter between x-max and x-min 

Choose a random y-location for each transmitter between y-max and y-min 

 End 

 Choose a random velocity in the x-direction 

 Choose a random velocity in the y-direction 

End 

End 

 

A simple flow chart of the process is shown in figure 4.6.  
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 Figure 4.6. Flow chart showing the initial placement of transmitter while avoiding no-go 

locations.  
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Figure 4.7 show the initial transmitter locations while avoiding the no-go areas. For 

visualisation porposes, the size of the swarm is chosen to be 500 transmitters. 

 

  

Figure 4.7. Initial placement of transmitter within the test building while avoiding no-go 

locations. Each circle represents a transmitter location 

 

4.5 Swarming  

Now that each particle has a position and velocity as obtained in section 4.4 the next step is to 

start the swarming process. This is predicated on the values of pbest and gbest. To calculate 

pbest and gbest, the received signal level at each receiver location (grid) position with respect 

to each transmitter is to be first calculated. The receiver signal level is calculated based on the 

Transmitters 
Metres 

Metres 
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path loss between transmitter and receiver. This path loss is dependent on distance and the 

number of intercepting walls between transmitter and receiver.  

 

4.5.1 Path Loss Calculation. 

De Luca et al. [76] have shown how radiated power indoors can be used to improve localization 

techniques. A MATLAB program showing this had been implemented by Paris [77]. This 

research uses elements of this program to develop the required MATLAB simulation.  

 

At each receiver point, described in section 4.3.1, the received signal level (RxLev) is needed 

for each transmitter location.  The pseudo code expressed in its simplest form can be given as 

below.  

 

Begin 

Input  

TXpoint, RXpoint, walls, materials, L0, n. 

Output 

rs-amp  

For (each receiver point) 

 Calculate the distance to each transmitter 

 Calculate the number of intersecting walls 

 Calculate the path loss to each transmitter (𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿0 +  20𝑙𝑜𝑔10𝑑 +  ∑𝑘𝑖𝐿𝑤𝑖   ) 

End 

End 

 

The parameters of this code can be described as: 

TXpoint is a matrix containing Nt rows and two columns. The columns are x-y positions initially 

randomly selected for each transmitter (bees) within the optimisation space.  

RXpoint is two by nb_pts squared matrix containing all the receiver points denoted in x-y 

components. Walls and material are the input files defining the number of walls and wall types 

described in section 4.2. L0 is the path loss at 1m transmitter-receiver separation distance at 

900 MHz. n is the path loss exponent taken to be 2. rs_amp is a Nt by nb_pts squared matrix 

containing the path loss for each transmitter at each receiver point.  
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Distance Calculations 

The separation distance is a simple calculation between the receiver coordinates and the 

transmitter coordinates within the Cartesian space. For example if the transmitter is at position 

denoted (xt,yt) and the receiver is at point (xr,yr) as indicated in figure 4.8, then the distance 

from transmitter to receiver, d can be calculated as:  

 

𝑑 = √(𝑥𝑟 − 𝑥𝑡)2 + (𝑦𝑟 − 𝑦𝑡)2    (4.8) 

 

 

Figure 4.8. Distance calculation. 

 

Intersecting walls 

Figure 4.8 also shows that wall B is intersecting the transmitter to receiver direct ray path. The 

general test to indicate whether two line segments intersect is described in [78], [79] and [80].  

Consider the wall and the direct ray as line segments within the Cartesian coordinate space 

with end points as indicated in figure 4.9. The end points of the direct ray can be described as 

pT and pR and the end points of the wall can be described as pw1 (xw1, yw1) and pw2 (xw2, yw2). 

The wall and the direct ray will intercept if the following two conditions are met: 

1. The end points of the wall are on opposite sides of the direct ray path 

  

(xt,yt) 

(x
r
,y

r
) 

d 

Wall B 

Transmitter 

Receiver location 
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2. The end points of the direct ray are on opposite sides of the wall. 

  

Figure 4.9. Testing for the intersection of a direct ray and walls. 

 

The expression of the line segment representing the direct ray can be written as: 

 

𝑝𝑇 + 𝑡(𝑝𝑅 − 𝑝𝑡)      (4.9) 

 

And the expression for the wall segment is: 

 

𝑝𝑤1 + 𝑢(𝑝𝑤2 − 𝑝𝑤1)      (4.10) 

 

Where 0 ≤ t ≤ 1 and 0 ≤ u ≤ 1 defines a point along the line. For example, the point t=0 is pT. 

 

At the point where these two line segments intersect the expressions will be equal.  

Therefore: 

 

  𝑝𝑇 + 𝑡(𝑝𝑅 − 𝑝𝑡) = 𝑝𝑤1 + 𝑢(𝑝𝑤2 − 𝑝𝑤1)    (4.11) 
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Substituting the x and y coordinates: 

 

𝑥𝑡 + 𝑡(𝑥𝑟 − 𝑥𝑡) = 𝑥𝑤1 + 𝑢(𝑥𝑤2 − 𝑥𝑤1)    (4.12) 

 

𝑦𝑡 + 𝑡(𝑦𝑟 − 𝑦𝑡) = 𝑦𝑤1 + 𝑢(𝑦𝑤2 − 𝑦𝑤1)    (4.13) 

 

Solving for t and u gives: 

 

𝑡 =
(𝑦𝑤1 − 𝑦𝑤2)(𝑥𝑡 − 𝑥𝑤1) + (𝑥𝑤2 − 𝑥𝑤1)(𝑦𝑡 − 𝑦𝑤1)

(𝑥𝑤2 − 𝑥𝑤1)(𝑦𝑡 − 𝑦𝑟) − (𝑥𝑡 − 𝑥𝑟)(𝑦𝑤2 − 𝑦𝑤1)
 

    (4.14) 

 

𝑢 =
(𝑦𝑡 − 𝑦𝑟)(𝑥𝑡 − 𝑥𝑤1) + (𝑥𝑟 − 𝑥𝑡)(𝑦𝑡 − 𝑦𝑤1)

(𝑥𝑤2 − 𝑥𝑤1)(𝑦𝑡 − 𝑦𝑟) − (𝑥𝑡 − 𝑥𝑟)(𝑦𝑤2 − 𝑦𝑤1)
 

    (4.15) 

 

For any point of intersection along these segments, 0 ≤ t ≤ 1 and 0 ≤ u ≤ 1. If values for t and 

u falls outside [0, 1], then the intersection is outside these line segments. If the denominator in 

equation 4.14 and 4.15 is zero then there is no solution and the lines either has no intersections 

or infinitely many intersection points.  

 

In the program, each wall is checked against each direct ray between each transmitter and each 

receiver location during the swarming process. If a wall is intercepting the path, then its wall 

losses are considered in the path loss calculations. 

 

4.5.2 Receiver Level and Fitness Calculations 

The matrix with path loss values is now used to calculate the receive signal level (Tot_Rx_pwr) 

at each receiver location and then the fitness of each location. The location with the best fitness 

will be gbest value. The fitness of each transmitter location is calculated by comparing the 

receiver level at each receiver location (for each transmitter location) to the receive threshold.  
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Figure 4.10. Fitness calculation for each transmitter. 

 

Figure 4.10 shows a sample building layout to illustrate how the fitness of each transmitter is 

calculated. For this example, only the receiver levels at locations (2,2), (2,3), (3,2) and (3,3) 

are considered. Given that the levels from each transmitter is assumed as indicated in table 4.5 

and the rxthreshold is -85dBm, then fitness of each transmitter is calculated as:  

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑏𝑜𝑣𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠
 

           (4.16) 

 

Then it can be seen that Tx2 has a better fitness than Tx1 and the location of Tx2 will, therefore, 

be taken as gbest. 

 

 

 

Tx1 

Tx
2
 

1 

2 

3 

  

1 2 3 4 

4 



4 .  A l g o r i t h m  D e v e l o p m e n t                                                72 

 

 

 

Transmitter Receiver levels at different locations(dBm) Fitness 

Location 

(2,2) 

Location 

(2,3) 

Location 

(3,2) 

Location 

(3,3) 

Tx1 -84 -86 -95 -100 ¼=0.25 

Tx2 -84 -80 -82 -81 ¾=0.75 

Table 4.5. Sample fitness calculations 

 

To calculate pbest for Tx2 for example, the fitness of all the previous locations of Tx2 will be 

considered. Of all these locations, the one with the highest fitness value will be used as the 

pbest of Tx2. Clearly this set of fitness values will be updated each time Tx2 is moved to a new 

location. The pseudo code for the overall process can be given as: 

 

Begin 

Tot_Rx_pwr = txpower-rs_amp  

For (Each transmitter) 

 Calculate the fitness at each receiver point 

 Calculate pbest by comparing each transmitter location to previous transmitter locations  

End 

Calculate gbest 

END 

 

4.5.3 Moving the transmitters 

With the pbest and gbest values, the transmitters can now be moved based on PSO algorithm. 

With each new location, the PSO swarming process is initiated again until the exit conditions 

are met. The x-component of the velocity is calculated using equation 4.4. 

 

𝑉𝑥(𝑁𝑡) = 𝜔𝑉𝑥(𝑁𝑡) + 𝐶1𝛼1[𝑝𝑏𝑒𝑠𝑡𝑥(𝑁𝑡) −  X1(𝑁𝑡)] + 𝐶2𝛼2[𝑔𝑏𝑒𝑠𝑡𝑥(𝑁𝑡) − X1(𝑁𝑡)] 

 

The y-component is obtained from equation 4.5. 

 

𝑉𝑦(𝑁𝑡) = 𝜔𝑉𝑦(𝑁𝑡) + 𝐶1𝛼1[𝑝𝑏𝑒𝑠𝑡𝑦(𝑁𝑡) −  Y1(𝑁𝑡)] + 𝐶2𝛼2[𝑔𝑏𝑒𝑠𝑡𝑦(𝑁𝑡) − Y1(𝑁𝑡)]         
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4.5.4 Boundaries and No-go Swarming Locations  

The transmitters must only move within the defined optimisation space while avoiding the no-

go locations. Therefore, there must be a process of describing how the transmitters will react 

at these boundaries and when moved within these no-go locations. The PSO algorithm will 

consider a boundary or a wall to be either absorbing, reflective or invisible [58]. When a 

particle/transmitter collides with an absorbing boundary the velocity of the particle becomes 

zero. Collisions with a reflective boundary will make the velocity of the particle negative while 

an invisible boundary will have no effects on the velocity of the particle.   

 

The optimisation space contains interior walls and is bounded by the exterior walls defined by 

the x_min, x_max, y_min, and y_max values. In this research, the interior walls are considered 

to be invisible as far as the PSO algorithm is concerned, so the transmitters can pass freely 

through these walls.  

 

In section 4.4.1, the process of avoiding no-go location during the initial placement phase is 

shown. A similar method is used to re-position the transmitters if their new position is outside 

a boundary or within the no-go areas. The flow chart of the swarming process is represented in 

figure 3.6. The pseudo code describing the swarming while avoiding no-go locations and 

negotiating the boundaries given as: 

 

For (each transmitter) 

 Calculate new velocity 

𝑉𝑥(𝑁𝑡) = 𝜔𝑉𝑥(𝑁𝑡) + 𝐶1𝛼1[𝑝𝑏𝑒𝑠𝑡𝑥(𝑁𝑡) −  X1(𝑁𝑡)] + 𝐶2𝛼2[𝑔𝑏𝑒𝑠𝑡𝑥(𝑁𝑡 −

X1(𝑁𝑡)]       

𝑉𝑦(𝑁𝑡) = 𝜔𝑉𝑦(𝑁𝑡) + 𝐶1𝛼1[𝑝𝑏𝑒𝑠𝑡𝑦(𝑁𝑡) −  Y1(𝑁𝑡)] + 𝐶2𝛼2[𝑔𝑏𝑒𝑠𝑡𝑦(𝑁𝑡) −

Y1(𝑁𝑡)]   

 Calculate new position 

  𝑋(𝑁𝑡) = 𝑋1(𝑁𝑡) + 𝑉𝑥(𝑁𝑡)𝑡     

𝑌(𝑁𝑡) = 𝑌1(𝑁𝑡) + 𝑉𝑦(𝑁𝑡)𝑡      

 While (New position is greater than x_max and y_max, respectively) 

 Choose a random x-location for transmitter between x-max and x-min 

Choose a random y-location for transmitter between y-max and y-min 

 End 
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While (New position is less than x_max and y_max, respectively) 

 Choose a random x-location for transmitter between x-max and x-min 

Choose a random y-location for transmitter between y-max and y-min 

 End 

While (New transmitter position is in rect-1 or rect-2 or rect-3 or rect-4) 

 Choose a random x-location for transmitter between x-max and x-min 

Choose a random y-location for transmitter between y-max and y-min 

END 

End 

 

In the last section of the above pseudo code, if the new transmitter location is within the no-go 

location, a new random position is selected. The implementation of this part of the solution is 

similar to the “particle position re-setting strategy” used in [74] and can be very effective in 

allowing the particle/transmitters to further explore the optimisation space and improve the 

solution.  

 

Figure 4.11 to figure 4.14 illustrates elements of the swarming process with 200 transmitters. 

Snapshots of the motion of the transmitters are shown after a number of position changes. It 

can be seen that the transmitters are swarming towards an optimum location after about 10 

position changes. After about 60 position changes most of the transmitters are at the optimal 

location, this is further illustrated in chapter 5.  

 

 

 

 

 



4 .  A l g o r i t h m  D e v e l o p m e n t                                                75 

 

 

 

 

Figure 4.11. Initial placement of transmitters 

 

 

 

Figure 4.12. Transmitters swarming after 10 position changes.  
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Figure 4.13. Transmitters swarming after 20 position changes.  

 

 

 

Figure 4.14. Transmitters swarming after 60 position changes 
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4.5.5 Swarming Exit Conditions 

The goal of the PSO algorithm is the find the optimal location for the transmitters. All the 

transmitters will move around until they all have the same pbest values. Depending on the size 

of the optimisation space and the number of transmitters this can mean many iterations which 

can have an impact on computation power and resources. For practical purposes, the exit maybe 

taken at a defined standard deviation for all the particles of the swarm/transmitters or after a 

set number of iterations.   

 

In normal inbuilding planning situations [1], [6], there is not a great difference in the 

propagations characteristics of transmitters placed less than 1 metre apart. Therefore, a logical 

value for the standard deviation is 1 metre. For this specific test building, after several 

simulations (discussed in chapter 5), it was found that the transmitters will converge after about 

60 iterations. The processing is with an Intel Core i7-5600U (speed 2.6 GHz) processer with 

Windows 10 64-bit operating systems with 12GB RAM.  

The pseudo code for the exits condition can be written as: 

 

Begin 

While (The standard deviation of all the transmitters is greater than 1 meter and the number of 

irritation are less than 60) 

 Perform swarming 

End 

End 

 

4.6 Power Optimisation 

The power optimisation phase starts after exit from the swarming phase. Here the best location 

for the transmitter will have been found. The best location for the transmitter will be denoted 

by gbest_x and gbest_y for the x and y components respectively. All the transmitters will have 

the same location meaning that pbest_x of any transmitter will be equal to gbest_x. This is the 

same for the y-components of the location. Additionally, all the transmitters will have the same 

fitness. Now the aim is to test if this best location will meet the required percentage coverage. 

 

The fitness would have been calculated as indicated in section 4.5.2. If the fitness is less than 

the percentage coverage, then the aim is to increase is to increase the transmitter power and in 
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effect increase the receiver signal strength at each receiver point. The transmitter power will 

be increased in steps of 3 dB from 0 dBm to 21 dBm. Figure 4.15 is a flow chart representation 

of the power ramping process the pseudo code is given as: 

 

Begin 

Input 

fitness, Percentage_coverage, txpower, rs_amp 

While (fitness is less than or equal Percentage_coverage and txpower is less than 21dBm) 

 Increase txpower 

 Calculate new receiver levels (Tot_Rx_pwr = txpower-(-rs_amp) 

 Calculate the fitness for any transmitter  

End 

End

 

Figure 4.15. Flow chart indicating power ramping  

4.7 Geometric partitioning 

If after the power ramping phase, as described in section 4.6, the percentage coverage has still 

not been met the next step in the optimisation process is to perform geometric partitioning. In 
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this phase, the optimisation space is divided into two and PSO is initiated independently in 

each phase. The process of dividing has been explained in section 3.4. The pseudo code can be 

given as: 

 

Begin 

Input 

txpower, percentage coverage, fitness 

If (txpower is at maximum and fitness is less than percentage coverage) 

 Divide optimisation space 

 Re-define x-min, x-max, y-min and y-max for new optimisation spaces 

 Re-start the swarming process independently in each of the new optimisation spaces 

End 

End 

 

The optimisation process will be re-started in each of the new optimisation spaces. Separate 

swarms will be established in each partition and each swarm will follow the steps of swarming, 

power ramping and if needed further geometric partitioning independently of each other. The 

process will end when each of the partitioned optimisation spaces has met the coverage 

threshold.  Figure 4.16 and Figure 4.17 show the test building before and after geometric 

partitioning. The size of the swarm and the no-go areas remain the same, but the x-min, x-max, 

y-min and y-max are redefined to indicate two separate optimisation spaces.  
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Figure 4.16. Before geometric partitioning. 

 

 

Figure 4.17. After geometric partitioning. 
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The longest sides of the rectangle are divided in two. For the test building, this is along the y- 

dimensions.  This introduces y-mid to re-define the boundaries so that optimisation spaces A 

and B are defined as indicated in table 4.6.  

 

Optimisation Spaces Boundaries (metres) 

 x-min x-max y-min y-max 

Before Partition, Area A 8.01 95.94 10.50 142.30 

After Partition, Area B 8.01 95.94 10.50 76.40 

After Partition, Area C 8.01 95.94 76.40 142.30 

Table 4.6. Boundaries before and after geometric partitioning. 

 

 It can now be seen in figure 4.17 that there are two different set of transmitters (swarms), one 

set in each of the new partitions. Each will independently start the swarming process. After the 

optimal location is chosen each of these newly portioned spaces, the optimisation process will 

proceed to the power ramping stage separately in each partition. If after the power ramping 

(described in section 4.6) the percentage coverage has not been met, then a new process of 

partitioning will be initiated in that area. In the end, each new partition may be further divided 

in two until the percentage coverage is met. Finally, the number of partitions will be equal to 

the number of transmitters required for the final solution.  

 

4.8 Conclusions 

There are two aspects to solving the indoor base station placement problem, namely the 

propagation consideration and the optimisations considerations. The major considerations for 

the development of a computer program to show the solution described in chapter three have 

been presented.  

 

The general programming considerations have been presented so that the program can be 

written in whatever programming language required. In this research, the optimisation process 

was formulated using MATLAB.  

 

The basis pseudo code and have been presented and where necessary there are additional flow 

charts to show the how the program has been constructed. 
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 : Implementation and 

Evaluation of Proposed System 
 

 

he purpose of this chapter is to evaluate the proposed method in simple canonical 

situations where it is likely to be possible to deduce the solution. The chapter then goes 

on to apply the method on more and more complex situations. Finally, the chapter considers 

real buildings and validation evidence is presented based on a measurement campaign. 

 

5.1 Test Scenarios  

The aim of the validation is to ensure that the program is performing as required. This 

validation includes testing the proposed method in a series of building layouts with known 

logical outcomes. These range from a rectangular shaped building to a series of more complex 

layouts with multiple dividing walls and corridors. The different phases of the proposed 

algorithm are validated against different building layouts of varying complexities. There are 

three different cases to consider, namely the low, medium and high complexity problems.  

 

The low complexity layouts provide the simplest demonstrations of the swarming phases 

described in section 3.5. This is illustrated in section 5.2 with the following specific geometries; 

i. Rectangular box (10 m x 15 m) 

ii. Rectangular box (10 m x 15 m) with 1 dividing wall  

 

The medium complexity layouts are a better representation of actual buildings. In addition to 

the swarming phase, this helps validate the power ramping and avoidance of no-go areas. 

Section 5.3 show the validation for the following cases; 

i. Long corridor with n offices either side. 

ii. Long corridor with n offices either side and one no-go area 

 

The high complexity layouts are fully representative of known structures. The floors WU and 

W2 of the Sir David Davies building at the Loughborough University are specific examples. 

The WU floor has less rooms and dividing walls but the geometric shape is somewhat similar 

to the W2 floor as described in section 4.1.  

T 



5 .  M e a s u r e m e n t s  a n d  I m p l e m e n t a t i o n                                  83 

 

 

After the validation is completed, the system can be evaluated to provide an estimation as to 

when to exit the swarming process and to select the PSO parameters.  

 

The test building (floor W2 of the Sir David Davies building at the Loughborough University) 

provides a good case to be able to test the effectiveness of the algorithm versus the manual in-

building planning methods outlined in [1]. The wall loss is estimated as indicated in table 4.1. 

The planned coverage (rxthreshold) for the building is taken as -85dBm at 900 MHz with 95% 

percentage coverage. This means that 95% of the building must have a minimum receiver 

signal level of -85 dBm. The antenna layout for the building is planned via the methods 

described in [1] and then with the developed program. Both methods are compared to show the 

effectiveness and the number of antennas used.  

 

This method is also used to plan the antenna configuration for the Xerox building Montego 

Bay, Jamaica. The output is compared to a plan produced by an in-building company [15]. 

Here, the number of antennas and their location are compared.  

 

Finally, a test transmitter is set up at one of the locations chosen by the MATLAB program 

within the test building. Receiver level measurements are then taken at different locations 

throughout the building. This is then compared with the simulated results to test the 

effectiveness of the propagation model and to improve the estimation of the wall losses.  

 

5.2  System Validation in Low Complexity Layouts  

In this research, a low complexity layout is defined as one with an area less than 500 m2 with 

less than three dividing walls. This area would normally require one transmitter transmitting at 

less than the full power (21 dBm) to meet the standard coverage requirements [6] of -85dBm 

at 900 MHz and 95% of the area covered. In the low complexity validation, there are two cases 

to consider, a rectangular box with and without a dividing wall. The accuracy of the swarming 

process, the choice of PSO parameters and the exit conditions can be evaluated in the simple 

layouts. 

  

A rectangular building layout with length 10 m and width 15 m is used as the low complexity 

validation test layout. This is indicated in figure 5.1 initially with no dividing walls. In figure 

5.8 one partition wall is added.  
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Figure 5.1. Low complexity layout 

 

 

Figure 5.2. Fitness of transmitter locations 

 

Figure 5.2 shows the fitness of possible transmitter locations within this layout. The signal 

spreading from a transmitter to receiver location is calculated using the propagation model 

described in chapter 2 as:  

Metres 

Metres 

Fitness 
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𝑅𝑥𝑙𝑒𝑣 = 𝑃𝑇𝑥 − 31.5 + 20 log10 𝑑 + ∑𝑘𝑖𝐿𝑤𝑖          (5.1) 

 

Where Rxlev is the received signal level at a distance d from the transmitter in dBm and PTx is 

the transmitter power level in dBm, 𝑘𝑖 is the type of wall and 𝐿𝑤𝑖 is the loss for each type of 

wall.  

 

Given that PTx = 0 dBm and the layout is evenly divided into 625 (25 x 25) transmitter grids 

and 2500 (50 x 50) receiver grids. From each transmitter grid location, the signal level at each 

receiver grid location is calculated. Then with a receiver signal threshold of -50 dBm, the 

fitness of each receiver location is calculated as discussed in section 3.5.3. The fitness function 

is given as:  

 

 𝐹 =
𝑇

𝑘
                                                      (5.2) 

 

Where: F = fitness at each transmitter location, k = total number of received locations and T is 

the number of received locations that exceed the receive threshold. 

 

The transmitter location of greatest fitness as indicated in figure 5.2. With the grid resolution 

used, the point of greatest fitness (7.5, 5). 

 

The first test is to evaluate how accurately the transmitters swarms to the optimum location. 

With the validation parameters indicated in table 5.1, the transmitters should swarm to the 

centre of the validation space. The swarm size is chosen to be larger than that which is strictly 

necessary to allow the swarming process to be visualized. Extreme values are also chosen for 

the percentage coverage and the rxthreshold to force the swarm to the centre of the room. 

Figure 5.3 shows the initial random position of all the particles and Figure 5.4 shows the 

transmitters moving towards gbest (swarmed location) after three iterations.  
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Parameters Validation Values 

Swarm size 400 

ω 0.01 

C1 2 

C2 1 

α1 1 

α2 1 

Percentage coverage 95% 

L0 31.5 

rxthreshold -50 dBm 

nb_points 100 

Table 5.1. Validation parameters. 

 

 

Figure 5.3. Initial random positions of the particles within the low complexity layout 
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Figure 5.4. Swarming after 3 iterations (low complexity layout) 

 

 

Figure 5.5. Final location after convergence after 30 iterations. 

 

The MATLAB program performed as expected converging to the area of greatest fitness.  

Figure 5.5 show the final swarmed location and figure 5.6 show the receiver signal levels from 

this location with transmitter power of 0 dBm. A scatter plot (table available in appendix A) of 

the final positions (x-y positions) over 25 runs (executions of the program) is shown in figure 
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5.7. The mean value for gbest(x,y)=(7.5073, 5.0051) and the standard deviation for 

gbest(x,y)=(0.1587, 0.0254).  

 

Figure 5.6. Received signal levels with the transmitter at the final location. 

 

 

Figure 5.7. Scatter plot of gbest over 25 runs 
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The second case indicates how swarming is affected with interior walls added to the validation 

space. Figure 5.8 shows an interior wall from the location (12, 0) to location (12, 10) with a 

wall loss of 5 dB. The fitness of each transmitter location is shown in figure 5.9 with the point 

of greatest fitness located at (9.4, 5). This is moved closer to the wall (compared to the layout 

with no wall) from the geometric centre to compensate for wall losses. 

 

 

Figure 5.8. Low complexity layout with 1 wall  

 

Figure 5.9. Low complexity layout with 1 wall  
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Figure 5.10. Initial transmitter location with 1 wall added to test layout  

 

Figure 5.11 Swarming after 3 iterations (1 wall in low complexity layout) 
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Figure 5.12 Final transmitter location after convergence after 30 iterations 

 

Figure 5.12 shows a final location for gbest(x,y)=(9.5069, 4.997). With a single transmitter at 

this location, the transmit power required to meet the coverage requirements was 3 dBm. This 

is an increase in transmitter power compared to the first test when there were no partition walls. 

The received signal at different locations is plotted as indicated in figure 5.13. Shown here also 

is the effect that interior wall has on the received levels beyond the wall, with the levels being 

reduced due to the wall attenuation.  
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Figure 5.13. Received levels with an interior wall. 

 

5.3 System Validation in Medium Complexity Layouts  

In this research, a medium complexity layout is defined as one with an area greater than 500 

m2 and less than 4000 m2 with more than three dividing walls. This area may require more than 

one transmitter or one transmitter transmitting at high power to meet the standard coverage 

requirements [6] of -85 dBm at 900 MHz and 95% of the area covered. The validation in the 

medium complexity layouts considers the following cases; 

i. Long corridor with n rooms either side. 

ii. Long corridor with n rooms either side and one no-go area 

The ability of the system to deal with multiple partition walls, to swarm avoiding the no-go 

location and the power ramping process can be evaluated in the medium complexity layouts. 

 

The validation parameters indicated in table 5.2, and figure 5.14 show a typical medium 

complexity layout.  
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Parameters Validation Values 

Swarm size 500 

ω 0.01 

C1 2 

C2 1 

α1 1 

α2 1 

Percentage coverage 95% 

L0 31.5 

rxthreshold -60 dBm 

nb_points 100 

Table 5.2. Validation parameters for medium complexity layout. 

 

 

 

Figure 5.14. Typical medium complexity layout. 
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Figure 5.15. Transmitter locations fitness, medium complexity layout. 

 

Figure 5.15 shows the fitness of the transmitter locations. This is calculated given PTx = 0 dBm 

with 1225 transmitter grids, 10000 receiver grids and a receiver signal threshold of -60 dBm.  

The point of greatest fitness was found at (30.00, 14.12). 

 

 

Figure 5.16. Initial random positions of the particles within the medium complexity layout. 

 

Figure 5.16 shows the initial random positions of all (500) the transmitters in the swarm. The 

large swarm size is used to illustrate the random initial placement of each transmitter in the 
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swarm. High values are also chosen for the percentage coverage and the rxthreshold (refer to 

table 5.2) to reduce the number of solutions and create only one optimum solution. Figure 5.17 

show the transmitters moving towards gbest (swarmed location) after three iterations. 

 

 

Figure 5.17. Swarming after 3 iterations (Medium complexity layout) 

 

Figure 5.18. Received signal levels with the transmitter at the final location (after 30 

iterations), medium complexity layout. 
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Figure 5.18. shows the plot of signal levels throughout the building with the transmitter at the 

final swarmed location. The mean for gbest(x,y)=(30.0002, 14.1709). This is in good agreement 

with the expected results as indicated in figure 5.15. The final location is in the y-direction is 

not in the geometrical centre. This is because there are more walls in the lower section of the 

layout. This means that the transmitter would have to be placed closer to the lower section to 

compensate for the greater signal losses (due to more walls) in this area. 

 

The avoidance of no-go areas is also tested in the medium complexity layout. Figure 5.19 

shows the medium complexity layout with a no-go location added. The initial transmitter 

location is illustrated in figure 5.20. It can be seen, that during the initial random placement of 

the transmitters, the no-go locations are avoided. Additionally, the transmitters avoid the no-

go locations in the swarming phase. This is demonstrated in figure 5.21.  

 

 

Figure 5.19. Medium complexity layout with no-go location. 
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Figure 5.20. Initial random transmitter locations avoiding no-go locations 

 

 

Figure 5.21. Swarming after 3 iterations (no-go locations avoided)  

 

5.4 System Validation in High Complexity Layouts  

In this research, a high complexity layout is defined as one with an area greater than 4000 m2 

with more than three dividing walls and possible no-go areas. This area may require more than 

one transmitter to meet the standard coverage requirements [6] of -85dBm at 900 MHz and 
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95% of the area covered. The floors WU and W2 of the Sir David Davies building at 

Loughborough University are specific examples for the high complexity layout. The validation 

considers the floor WU. The ability of the system to deal with multiple partition walls, to swarm 

avoiding the no-go location, power ramping and the geometric partitioning process can be 

evaluated in the high complexity layouts. 

 

With the validation parameters indicated in table 5.3. Figure 5.22 shows a typical example of 

a high complexity layout. Figure 5.23 shows the transmitter locations fitness. This is calculated 

given PTx = 21 dBm with 500 transmitter grids, 10000 receiver grids and a receiver signal 

threshold of -75 dBm. At maximum power the coverage requirements are not met hence in this 

scenario, geometric partitioning is required. Figure 5.24 shows the initial transmitter locations 

and figure 5.25 shows the swarming process.  

 

 

 

 

 

 

Parameters Validation Values 

Swarm size 400 

ω 0.01 

C1 2 

C2 1 

α1 1 

α2 1 

Percentage coverage 95% 

L0 31.5 

rxthreshold -75 dBm 

nb_points 100 

Table 5.3. Validation parameters for high complexity layouts. 
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Figure 5.22. High complexity layout. (Floor WU of the Sir David Davis Building at 

Loughborough University)   

 

 

 

Figure 5.23. Transmitter fitness locations. High complexity layout. (Floor WU of the Sir David 

Davis Building at Loughborough University)   
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Figure 5.24. High complexity layout. Initial transmitter locations (500 transmitters) 

 

Figure 5.25. High complexity layout. Swarming after 3 iterations  
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Figure 5.26. High complexity layout. Final swarmed location  

 

 

Figure 5.27. Initial random particle positions after geometric partitioning.  

 

Figure 5.26 shows the final swarmed position for the high complexity layout. This is 

gbest_x=60.5763, gbest_y =28.2704.  
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Figure 5.28. Swarming after geometric partitioning after 5 iterations.  

 

The process of geometric partitioning is illustrated in figure 5.27 and 5.28. The entire 

optimisation space is divided in two parts and the swarming process is independently initiated 

in each part. 

 

5.5 Discussion 

5.5.1 Choosing Initial Parameters 

Section 4.3 describes the list of most of the parameters used when creating the program. The 

parameters used in the swarming part of the program are very important in determining the 

effectiveness of the PSO algorithm [57]. These are the size of the swarm, and the constants ω, 

C1, C2, α1, and α2. Suggested values for these parameters are indicated in [58] and [61]. The 

validation process dictates the best sets of values for these parameters to apply to the test 

building. In this research, the suggested [58], [61] values for the constants ω, C1, C2, α1, and 

α2, are used. Throughout the entire validation process, extreme values for Rx-threshold and 

percentages coverage are chosen for the different complexity layouts to illustrate the 

performance of all phases of the program.  
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Metres 

Metres 
No-go location 
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For a set number of bees, there exists a direct relationship between the speed of swarming of 

the program and number of receiver points. As indicated in section 4.5, the fitness of each 

bee/transmitter location is calculated by comparing the receiver level at each receiver location 

(for each transmitter location) to the receive threshold.   

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑏𝑜𝑣𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠
 

           (5.3) 

 

Number of receiver 

locations per/m2 

AVG Swarm 

time (seconds) 

Swarm Precision, 

Sigma, m 

Max Power 

Output (dBm) 

0.06 1.54 11.106 21 

0.22 1.65 4.470 21 

0.50 1.78 6.749 21 

0.89 1.96 10.586 21 

1.39 2.17 4.480 18 

2.00 2.45 0.016 12 

2.72 2.79 0.012 12 

3.56 3.18 0.006 12 

4.50 3.59 0.006 12 

5.56 4.10 0.004 12 

6.72 4.48 0.006 12 

8.00 5.12 0.008 12 

9.39 5.80 0.008 12 

10.89 6.56 0.002 12 

12.50 7.38 0.004 12 

14.22 8.16 0.002 12 

16.06 9.20 0.005 12 

18.00 9.92 0.007 12 

20.06 11.00 0.003 12 

22.22 11.98 0.003 12 

Table 5.4. Number of points vs execution time 
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The optimum number of receiver location per square metre compared to the swarming 

precision for the medium complexity layout is illustrated in table 5.4. The full table is available 

in Appendix A. This is for a swarm size of 30 bees. It can be seen, that there is no useful 

improvement in sigma values with the number of receiver locations greater than 3.56 per m2. 

The execution time increases with more points and the output power remains at a minimum.  

   

It has been shown [64]that a swarm size of 30 was enough for an accurate convergence of the 

PSO. Figure 5.29 (table available in Appendix-A) shows the effect of swarm size versus run 

time in the medium complexity layout. The convergence time is measured as the time it takes 

for all the transmitters to be in the same location with an accuracy of 0.01 m. The processing 

is with an Intel Core i7-5600U (speed 2.6 GHz) processer with Windows 10 64-bit operating 

systems with 12GB RAM. The sigma values are the standard deviation for five different 

executions for a specific swarm size.  

 

Figure 5.29. Swarm size versus run time.  

 

The value for swarm size agrees with Yassin et. al. [64], as with a swarm size greater than 30 

there is no significant improvement in the standard deviation for gbest_x values even though 

there is an increase in convergence time.  
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Table 5.5 shows the final set of values chosen parameters for the test building (floor W2 of the 

Sir David Davies building at Loughborough University).  These are obtained by the noting the 

performance in the different validations cases as indicated above. These forms the set of values 

to be used in the test case and the case comparing the actual planning via the in-building design 

company [15].   

 

  

Parameters Validation Values 

Swarm size/number of transmitters 30 

ω 0.01 

C1 2 

C2 1 

α1 1 

α2 1 

Percentage coverage 95% 

L0 31.5 

rxthreshold -85 dBm 

nb_points2 100 

Table 5.5. Parameters used in test building. 

 

5.5.2 Exit conditions 

Theoretically, the PSO algorithm may be considered to have converged to a useful solution 

when the all the particles have the same location. Depending computational resources this may 

take a long time and it may not be practical or efficient to have all the particles in the same 

positions. In this research, the number of movements/iteration of each particle is noted and 

compared against the standard deviation from gbest for each iteration. The standard deviation, 

σ (sigma) is calculated as:  

𝜎 = √
∑ (𝑝𝑏𝑒𝑠𝑡(𝑁𝑡) − 𝑔𝑏𝑒𝑠𝑡)2𝑏𝑒𝑒𝑠

𝑁𝑡=1

𝑏𝑒𝑒𝑠
 

            (5.4) 

                                                 
2 The number of points indicates the average number of receiver locations per square metre 
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Where bees is the size of the swarm, Nt is the number of transmitters in the swarm, pbest is the 

current position of the particle and gbest is the optimum position of all the particles.  

 

At convergence, it is expected that the standard deviation for all the particles approaches zero. 

Figure 5.30 and figure 5.31 (table available in appendix A) show how the standard deviation 

changes compared to the number of iteration over an average of 10 run with 30 transmitters 

during the swarming phase for all three types of layouts. This is done for the x-coordinates 

only. A similar performance can be seen for the y-coordinates. In this research, acceptable 

convergence is considered when sigma is less than or equal to 0.001 metres. This convergence 

increases as with respect to the level of complexity of the layout. In the high complexity layout, 

the convergence occurs after a largest number of iterations compared with the other layout 

types. 

 

There are no no-go locations within the low complexity layouts, hence, the convergence curve 

is much smoother than it is in the other layout types. In medium and high complexity layouts, 

a transmitter’s position will be randomly repositioned if it falls within a no-go area during 

swarming. This is like the process described in [74] that will allow additional exploration of 

the optimisations for that transmitter. This may affect the smoothness of the convergence as it 

now introduces the ability to “jump” from local optimums and improves the overall solution.  

 

 Figure 5.30. Sigma vs number of iterations in low complexity layout table A-5 
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Based on the convergence results in figure 5.30 and figure 5.31 a quicker exit point can be used 

to speed up the optimisation process.  This can be set at 50 iterations. The overall solution now 

uses two swarming exit points; one is when sigma equal 0.001 metres the other when 50 

iterations are reached. Exit occurs if either of these conditions is met. Practically, the latter 

condition is will be met first.  

 

Figure 5.31. Sigma vs number of iterations in medium and high complexity layouts from table 

A-5 

 

5.5.3 Power Ramping 

The power ramping stage is demonstrated in the medium complexity layout and high 

complexity layouts. If the fitness at the final swarmed position does not meet the coverage 

requirement (percentage coverage) the transmitter power is increased in steps of 3 dB and the 

fitness recalculated. The output from the power ramping phase is shown in the medium 

complexity layout in table 5.6 and in the high complexity layout in table 5.7 
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Power (dBm) AVG Percentage Coverage 

0 37.84 

3 46.56 

6 55.02 

9 75.93 

12 98.61 

Table 5.6. Power ramping in medium complexity building 

 

 

In table 5.6 the percentage coverage is given at 95% with a receiver threshold of -60 dBm. 

After the final swarmed location, the fitness was calculated to be 37.84 %. Because this is less 

than the percentage coverage required the power is increased to 12 dBm where the fitness was 

calculated to be 98.61%. Here the coverage requirements are met and a solution is found with 

1 transmitter. 

 

Power, dBm AVG Percentage Coverage, % 

0 58.57 

3 61.05 

6 65.88 

9 68.65 

12 71.46 

15 75.79 

18 78.39 

21 83.01 

Table 5.7. Power ramping in high complexity layout 

 

5.5.4 Geometric Partitioning 

The process of partitioning is validated in the high complexity layout. After power ramping, if 

the maximum power is reached and the percentage coverage have not been attained then, the 

geometric partitioning phase is initiated. This has been described in detail in section 3.4.  

 

The power ramping process is illustrated in table 5.7 for the high complexity layout. The power 

is increased from 0 dBm to 21 dBm. At 21 dBm the percentage coverage is still below the 
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required levels of 95%, hence the optimisation space is divided and the swarming is 

independently initiated in the in each partition with separate swarms. This is shown in figure 

5.21 and 5.22.  

 

5.6 Planning Using Conventional Methods 

The effectiveness of the solution is compared with the normal planning methods described in 

[1]. The top floor (W2) of the Sir David Davies building at Loughborough University has been 

planned using “normal” planning methods. This will later be compared to the proposed method 

(implemented via the MATLAB code).  

 

With the normal planning method, the main consideration is the “worst case” areas in the 

building. These receiver locations should be at the least be equal to the minimum receiver level. 

For the test building, the required coverage level is -85 dBm.  

 

The Rx level at the worst-case locations (Rxmin) is calculated for each antenna. The Rxmin 

location is defined as the physical receiver location inside the building where the received 

signal strength is at a minimum. After choosing the initial transmitter locations, the first 

estimation for finding Rxmin locations is by examining the building layout drawings and 

identifying the receiver locations where the distance to the transmitter is the greatest and the 

number of traversing walls is the greatest. It may be found that more than one single location 

exists, all these locations must be considered. The receive signal level is calculated using the 

following equation:  

 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿0 +  20𝑙𝑜𝑔10𝑑 +  ∑𝑘𝑖𝐿𝑤𝑖                                     (5.5)   

 

Where: Ltotal is the total path loss from the transmitter to receiver, dB; L0 is the loss at 1m given 

as 31.5 dB at 900 MHz; d = transmitter-receiver distance, m; ki= the number of types i 

separating walls; Lwi= the penetration loss in type i walls, dB. 

 

The received signal strength any point is given as follows: 

 

𝑅𝑥𝐿𝑒𝑣 = 𝑃𝑇𝑥  −  𝐿𝑡𝑜𝑡𝑎𝑙                                                         (5.6) 
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Where: RxLev = received signal strength, dBm; PTx= total transmitted power, dBm,  

The transmitters are moved around or more transmitters added to the optimisation space until 

the all estimated Rxmin at is greater than the RxLevmin. 

 

5.6.1 Worst Case Locations (Conventional Planning) 

The manual method has no means of calculating percentage coverage during the initial antenna 

location phase (nominal planning phase), instead, the worst-case locations are analysed. Four 

Transmitters are chosen and placed in the locations shown in figure 5.32. Table 5.8 list the 

actual positions (x-y coordinates) based on the references system used in the MATLAB 

program. Table 5.9 list the worst-case locations and the contributing antennas. The PTx of each 

antenna is 0 dBm and worst-case points are at A, B, C, D, E and F. The received levels at each 

worst-case location are calculated as below: 

 

At point A: The maximum Rx levels will be due to antenna 1. d = 17.5 m, k = 8, Lw= 5 dB  

Rxmin = 𝑃𝑇𝑥 − (𝐿0  +  20𝑙𝑜𝑔10𝑑 +  𝑘𝑤𝐿𝑤 )       

Rx min = 0 - (31.5 + 20log(17.5) + 8 x 5) 

Rxmin = - 96.36 dBm 

 

At point B: Maximum Rx level will be due to antenna 2.  d = 12.5 m, k = 6, Lw= 5 dB. 

Rxmin = 𝑃𝑇𝑥 − (𝐿0  +  20𝑙𝑜𝑔10𝑑 +  𝑘𝑤𝐿𝑤 )       

Rxmin = 0 – (31.5 +20log(12.5) + 6 x 5) 

Rxmin = - 83.44 dBm 

 

At point C: Maximum Rx level will be due to antenna 3. d = 23.75 m, k = 5, Lw= 5 dB. 

Rxmin = 𝑃𝑇𝑥 − (𝐿0  +  20𝑙𝑜𝑔10𝑑 +  𝑘𝑤𝐿𝑤 )       

Rxmin = 0- (31.5 + 20log(23.52) + 5 x 5) 

Rxmin = - 84.04 dBm 

 

At point D: Maximm Rx level will be due to antenna 3. d = 23 m, k = 7, Lw= 5 dB. 

Rxmin = 𝑃𝑇𝑥 − (𝐿0  +  20𝑙𝑜𝑔10𝑑 +  𝑘𝑤𝐿𝑤 )       

Rxmin = 0 – (31.5 + 20log(23) + 7 x 5) 

Rxmin = - 93.74 d Bm 
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At point E: Maximum Rx level will be due to antenna 4. d = 20 m, k = 6, Lw= 5 dB. 

Rxmin = 𝑃𝑇𝑥 − (𝐿0  +  20𝑙𝑜𝑔10𝑑 +  𝑘𝑤𝐿𝑤 )       

Rxmin = 3 – (31.5 + 20log(20) + 6 x 5) 

Rxmin = - 84 dBm 

 

At point F: Maximum Rx level will be due to antenna 4. d = 15 m, k = 4, Lw= 5 dB. 

Rxmin = 𝑃𝑇𝑥 − (𝐿0  +  20𝑙𝑜𝑔10𝑑 +  𝑘𝑤𝐿𝑤 )       

Rxmin = 0 – (31.5 + 20log(15) + 4 x 5) 

Rxmin = - 82.02 dBm 

 

 

 

 

Transmitter Location Position x, (m) Position y, (m) Transmit Power. 

dBm 

1 62.80 132.4 0 

2 17.29 132.4 0 

3 46.53 96.11 0 

4 70.31 33.02 3 

Table 5.8. Manual planning transmitter locations and transmit power 

 

 

Receiver 

Location 

Position x, (m) Position y, (m) Estimated 

Receiver Power. 

dBm 

Contributing 

Transmitter 

A 95.05 141.6 -96.36 1 

B 34.52 141.6 -83.44 2 

C 9.34 87.33 -84.04 3 

D 58.40 87.33 -93.74 3 

E 68.78 68.12 -84.00 4 

F 74.29 11.82 -85.02 4 

Table 5.9 Worst case receiver locations and the contributing antennas 
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Figure 5.32. Building layout showing transmitter and receiver locations. 
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Figure 5.33. Building layout showing transmitter and receiver locations. 

 

Figure 5.33 show the receive signal levels with the transmitters at the locations chosen via the 

manual methods. This plot is obtained using the MATLAB simulation. 

  

5.7 Planning with Proposed System 

The proposed solution is now applied in the test building (the top floor (W2) of the Sir David 

Davies building at Loughborough University) with the parameters listed in table 5.5. 

Additionally, the number of swarming iterations was set to 50. The final solution produced 

three transmitters at the locations indicated in figure 5.34 along with a display of the received 

Metres 

Metres 

 Signal levels, dBm 
Transmitter 1 

Transmitter 2 

Transmitter 3 

Transmitter 4 
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signal levels throughout the building. Table 5.10 shows the final transmitter positions and the 

out power.  

 

Figure 5.34. Simulation results using the developed MATLAB code 

 

 

Transmitter Position x, (m) Position y, (m) Transmit Power, 

dBm 

1 34.52 130.8 12 

2 69.82 130.83 12 

3 69.01 43.37 12 

Table 5.10. Final transmitter positions and out power based on MATLAB program 

 

Metres 

Metres 

 Signal levels, dBm 

Transmitter 1 
Transmitter 2 

Transmitter 3 
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5.7.1 Worst Case Locations (Proposed System) 

In the conventional planning system described in section 5.6, the transmitter placement is 

structured around the worst-case locations. In the proposed system, the worst-case location is 

automatically calculated and is the composite coverage of the entire transmitter system. This 

was found to be (8.06, 142.3) with a signal level of -128.05 dBm. 

 

5.8 Comparing Both Systems 

The outputs of both methods are similar. The conventional planning methods results in 4 

transmitters with power output between 0 dBm and 3 dBm while the results from the proposed 

systems are 3 transmitters with higher transmitter power. The choice of best results is 

dependent on the building layout. Generally, the aim is to produce the smallest numbers of 

transmitters as possible as the cost for installations would be greater than increasing base 

station transmit power. For this reason, the solution proposed by the PSO system is more 

practical.   

 

The proposed method also provides the ability to estimate the percentage coverage and shows 

how this will be affected by a change in transmit power. Via the traditional planning method, 

the coverage percentage can only be estimated via a walk test after the initial transmitter 

locations have been selected. This makes the proposed system more flexible and can be more 

cost effective. 

 

5.9 Measurements  

The aim of the measurements campaign is the following: 

1. Verify the transmit locations specified by the MATLAB simulation gives expected 

coverage. 

2. Evaluate the accuracy of the propagation model used in the simulation 

3. Improve the estimation of the wall attenuation losses.  

 

5.9.1 Measurement Setup 

The block diagram of the setup is shown in figure 5.35. It consists of a transmitter and receiver 

system. The transmitter system is a Spectrum Analyser with tracking Generator set to single 

frequency mode on 880 MHz connected to a Bi-conical Antenna (VUBA-9117). The antenna 
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specifications are included in Appendix B. The spectrum analyser is used to generate a signal 

at 880 MHz and transmit it via the bi-conical antenna. A similar setup is implemented for the 

receiver system with the receiver antenna gain of 3 dBi. Figure 5.36 shows photographs of the 

measurement setup. Table 5.11 shows the general transmit specification for the measurement 

setup. 

 

 

 

 Frequency(MHz) Antenna 

Gain (dBi) 

Power (dBm) EIRP (dB) 

Transmitter 880 -3 -10 -13 

Table 5.11. Transmitter specifications 

 

 

Figure 5.35. Measurement setup 

 

5.9.2 Measurement Procedure. 

The transmitter is placed at the Tx location 2 as indicated in figure 5.37. The receiver is then 

used to measure the receive levels at specified test locations. The complete set of measurement 

locations are outlined in figure 5.37 
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Figure 5.36. Photographs of receiver system placed at different locations throughout the 

building. 

 

VUBA-9117 

Spectrum Analyser 

FS315 



5 .  M e a s u r e m e n t s  a n d  I m p l e m e n t a t i o n                                  118 

 

 

 

Figure 5.37. Measurement locations. 

 

 

 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Tx 2. 

10 

11 
12 13 

14 

15 16 

17 

18 

19 

20 

21 

22 

23 



5 .  M e a s u r e m e n t s  a n d  I m p l e m e n t a t i o n                                  119 

 

 

Figure 5.38. Receive level Simulation from Tx2. 

 

 

5.9.3 Measurement Results 

Figure 5.38 shows the simulation levels with a transmitter at transmitter location 2 with the 

transmitter EIRP indicated in table 5.11. This simulation is done using elements of the proposed 

system. Table 5.12 and figure 5.39 show the Rx level measured and simulated at these 

locations.  
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Generally, there is a good agreement between measured and simulated received levels, this 

indicates the propagation model was providing acceptable results. The mean error was 0.66 dB 

and the greatest error was 17 dB. The greatest errors occur at locations 13, 14 and 15. At these 

locations the measured values are at the noise floor and simulated are way below the noise 

floor. Here it is difficult to resolve the transmitted signal compared to the noise levels and the 

measurement becomes limited by the noise levels.  

 

 

 

 

Figure 5.39. Plot of measured and simulated  
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Rx 

location 

Measured Rx 

Level(dBm) 

Simulated 

(dBm) Error (dB) 

1 -105 -107 2 

2 -103 -93.16 -9.84 

3 -115 -100.7 -14.3 

4 -100 -91.8 -8.2 

5 -89 -89 0 

6 -89 -89.27 0.27 

7 -84 -85.11 1.11 

8 -86 -89.75 3.75 

9 -100 -89.06 -10.94 

10 -78.5 -79.8 1.3 

11 -96.8 -96.35 -0.45 

12 -98 -89.66 -8.34 

13 -115 -132.8 17.8 

14 -118 -122 4 

15 -112 -127.3 15.3 

16 -106 -116 10 

17 -93.2 -101.5 8.3 

18 -104 -103.9 -0.1 

19 -92.5 -97.2 4.7 

20 -97 -97.45 0.45 

21 -70.2 -72.38 2.18 

22 -58.5 -54.62 -3.88 

23 -97 -97 0 

Table 5.12. Measurement results 

 

 

 

5.10 Re-calculating Wall losses 

Table 4.1 shows the estimated values for wall losses. This was estimated from the 

measurements taken at location 5 and location 23. These locations were carefully pre-selected 

to estimate the wall losses due to the different types of walls found in the building construction. 

At location 5 there are only external walls (type 2) between transmitter and receiver while there 

are only internal walls (type 1) between transmitter and receiver at location 23. At these 
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locations, there is a direct ray path (perpendicular to the walls) between transmitter and 

receiver. These transmit-receive areas in the building provides a means of approximating the 

non-free space losses between transmitter and receiver. These losses are mainly due the 

intercepting walls as the Motley-Keenan model disregards the effects of multipath and other 

signal interferences and considers the direct ray only.  Given the transmit power, the measured 

receiver signal and the distance between transmitter and receiver at these locations, the path 

loss equation (equation 2.19) can be re-arranged to calculate the average wall losses. Given as:  

 

 

∑𝑘𝑖𝐿𝑤𝑖  = 𝑅𝑥𝑙𝑒𝑣 − 𝑃𝑇𝑥 + 31.5 − 20 log10 𝑑   (5.7) 

 

5.11 Blind Test on Real Building  

Figure 5.40 shows the layout of the Xerox office in Montego Bay, Jamaica. The in-building 

systems for this building have been designed by a local in-building design company, Aramos 

Telecommunications and Engineering Consultants (Aratel). With no prior knowledge of the 

actual inbuilding plan (implemented by Aratel), the proposed system is used to design the 

antenna plan for this building.  
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Figure 5.40. Xerox office building in Montego Bay, Jamaica 
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Figure 5.41. Xerox office building in Montego Bay, Jamaica 

 

Figure 5.41 shows the layout when imported into the MATLAB program. The existing antenna 

locations are also shown along with the simulated receiver coverage (via the MATLAB 

program) at with these antenna locations.  

 

The proposed planning method is then used to plan the antenna locations with the parameters 

in table 5.5. Figure 5.42 shows the initial random placement of the swarm.  

 

Figure 5.42. Initial swarm position, Xerox office building in Montego Bay, Jamaica 

 

Figure 5.43 illustrates the initial swarming after 5 iterations. At the final swarmed location 

(figure 5.44), with the transmitter at maximum power the coverage requirements are not 

Metres 

Metres Received signal levels, dBm 

Metres 

Metres Transmitters 
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reached hence the geometric partitioning is initiated with the random initial swarmed positions 

shown in figure 5.45.  

 

Figure 5.43. Swarming after 5 iterations, Xerox office building in Montego Bay, Jamaica 

 

Figure 5.44. Final initial swarmed location, Xerox office building in Montego Bay, Jamaica 
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Figure 5.45. Initial random locations after geometric partitioning, Xerox office building in 

Montego Bay, Jamaica 

 

Figure 5.46 show the swarming process after the swarm splitting and the final solution is 

displayed in figure 5.47 along with the receiver level plots. 

 

Figure 5.46. Swarming (5 iterations) after partitioning, Xerox office building in Montego Bay, 

Jamaica 
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Figure 5.47. Final solution Xerox office building in Montego Bay, Jamaica 

 

The solution via the proposed system is compared with Aratel solution. Table 5.13 shows the 

general solutions and table 5.14 shows the solutions for the antennas. Both solutions are 

similar, with the same number of antennas and very similar antenna locations. The EiRP was 

calculated to be 0 dBm, whereas the existing EiRP was 15 dBm.  Aratel has noted the 

difference and indicated that their analysis also indicates that the power output of the system 

can be reduced. 

 
 

Aratel Planning Proposed System 

Percentage Coverage (%) 100% (estimated) 96.73 

Number of Transmitters 2 2 

Minimum Coverage (dBm) -93.6 -103.88 

Location of Minimum Coverage 

(x, y) 

98, 9 96.5, 6.81 

Table 5.13. Design comparison for Xerox building, Montego Bay, Jamaica 

 
 

Aratel Planning Proposed system 
 

Location (x,y) EiRP, dBm Location (x,y) EiRP, dBm 

Antenna 1  30, 21 15 27.70, 21.95 0 

Antenna 2 65, 21 15 69.00, 21.21 0 

Table 5.14. Antenna solution, Xerox building, Montego Bay, Jamaica 

 

Metres 

Metres Transmitters 

 

Received signal levels, dBm 
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5.12 Conclusion 

The main goal of this research was to devise a system to automatically plan an in-building an 

antenna system. This system should be similar to the conventional planning method discussed 

in [1]. In section 5.6 and 5.7 the output of the manual system and the proposed system is 

presented.  It can be seen, that the output of both systems is very similar. The conventional 

planning methods result in 4 transmitters with power out between 0 dBm and 3 dBm while the 

results from the proposed systems are 3 transmitters with higher transmitter power. 

 

In the “blind” design of the in-building system at the Xerox building in Montego Bay, Jamaica, 

the proposed system compares very well with the existing solution implemented by Aratel. It 

also indicated the possibility of reducing the transmit power and still meet the required 

coverage thresholds. 

 

The measurement results show that the propagation model used is very effective. There is a 

good agreement between measured and simulated results with the differences due to receiver 

sensitivity. The values for the wall losses were further refined with the measurement results. 
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 : Conclusions 
 

 

he aim of this research was to find a means of solving the antenna location problem within 

an indoor environment. This has been met via the use of Particle Swarm Optimisation. 

This chapter outlines the contributions of this research and suggests areas of improvements. 

 

6.1 Contribution of this thesis 

In this thesis, a solution to the antenna location problem within an indoor environment has been 

proposed. This solution replaces the normal in-building planning methods suggested in [1] by 

automating the search process. The same propagation models and receiver signal level 

calculations have been employed as in the normal planning methods but the method of 

determining the number of tranmitters, their location within the building and their output power 

has been automated and improved upon.  

 

This novel approach uses Particle Swarm Optimisation combined with geometric partitioning. 

The PSO algorithm uses swarm intelligence to determine the optimal transmitter location 

within the building layout. It uses an established propagation model and the PSO to determine 

the fitness of a location. If a transmitter placed at that optimum location, transmitting a 

maximum power is not enough to meet the coverage requirements of the entire layout, then the 

optimisation space is geometrically partitioned and the PSO initiated again independently in 

each partition. 

 

This overall algorithm has been implemented via a MATLAB code and applied to the top floor 

(W2) of the Sir David Davies building at Loughborough University. The result is a more 

efficient antenna layout design when compared to the design obtained by the use of the more 

traditional design methods. This system also simulates and plots the receive signals levels 

throughout the building and gives the percentage of areas meeting the coverage threshold. 

Traditional planning methods [1] usually plan at 100% percent coverage with a crude 

estimation to find the areas not meeting the coverage threshold. With these methods, 

transmitters are usually setup in the initially planned transmitter locations and a walk test is 

usually done to collect receive signal measurements at different transmitter power. This may 

T 
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then be used to estimate percentage coverage or to optimise the transmitter location and output 

power. This proposed method provides the flexibility to make initial design changes, such as 

receiver threshold levels and transmit power and then evaluate how these changes will affect 

the overall design layout and coverage requirements without having to perform walk tests.  

 

6.2 Suggestions for further research 

The proposed method is can be divided into two main areas, these are the propagation and the 

optimisation areas. Improvements to the overall process can be seen by looking at the 

functionality of these different areas. The following are possible ways in which the proposed 

method may be improved.  

 

6.2.1 Propagation Improvements. 

The measurement results in chapter 5 shows a good agreement between actual and simulated 

results. This indicates a good choice of propagation model, however, there are possible aspects 

of the signal modelling that can be improved.  

 

Generally, the walls are considered to be solid exterior walls or interior portioned walls, this is 

usually acceptable for practical purposes as described in [1]. No consideration is made for the 

windows and doors materials. Also, there was no consideration for the cases where there are 

glass partitions to the exteriors. Further studies could look at incorporating each of these 

specific types of wall losses in the propagation model considerations for the test building to see 

the general effect on the final solution. 

 

6.2.2  Optimisation Improvements 

General Improvements 

Within the optimisation space, there are dividing walls and no-go areas. Walls locations are 

not considered when finding the initial location of the transmitters as described in section 4.4.1. 

This means that the transmitters can have initial locations in the middle of walls. The program 

can be modified to ignore these locations similarly to how the avoidance of no go locations 

was initiated. Also in the swarming phase, the walls are treated as invisible [65], this means 

that the final swarmed location can be in the middle of a wall. Again, considering the walls as 

no-go locations will resolve this.  
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In the current program implementation, the overall boundaries are defined to be rectangular 

shaped. Depending on the building shape there may be areas within this rectangular shape that 

are not a part of the building layout and are therefore treated as no-go areas. These are no-go 

areas for the transmitters only but are considered receiver areas. These areas are currently 

included in the fitness and overall percentage coverage calculations.  This can have a negative 

effect on the efficiency of the overall solution as considerations are given to these receiver 

areas that are not physically a part of the building layout. The algorithm can be improved to 

ignore these areas for both transmitters and receivers. 

 

Geometric Partitioning  

The assumed rectangular defined optimisation layout also affects the accuracy of the geometric 

partitioning. This implementation makes it easy to divide the optimisation space during the 

geometric partitioning phase but in reality the actual building may not be rectangular and hence 

the division may include a lot of empty space. In the test building, the second partitioning 

process creates a space that does not contain any of the actual building layouts. This is shown 

in figure 6.1 as Partition C. No particles are allowed to swarm in this area so this partition did 

not progress toward a better solution. This is a case where the final number of transmitters is 

less than the number of partitions created. 

 

By improving how the optimisation space is defined, the general performance of the overall 

system can be improved. A method would be needed to define the optimisation boundaries to 

be close as possible to the actual building layout.  
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Figure 6.1. Partition that contains an empty optimisation space. 

 

Power Ramping 

After the PSO have converged, the power ramping stage will increase the power by 3dB steps 

from 0 dBm to 21 dBm. Currently, this power ramping involves only a power increase. Further 

improvement to the power optimisation phase could employ a means of also decreasing the 

power if the coverage requirements are met after convergence.  

 

6.2.3 General Programming Concerns 

The main focus of this research has been the optimisation method rather than its execution via 

MATLAB program. While the MATLAB program does the basics in implementing the 

optimisation strategy and output simulation, to an expert programmer its implementation may 

seem crude and there may be a few things that can be done to improve its efficiency.  

Partition A 

Partition C 

Partition B 

Partition D 
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Firstly, defining the optimisation space is a manual process which involves transcribing the 

layout drawing into a Cartesian coordinate system. An improvement here will see this process 

be done automatically where the layout drawing can be loaded and re-defined directly by the 

program.  

 

There could also be further improvement in the structure and the implementation of the 

program. The current program flow is sequential, restructuring the program in a modular style 

may be more efficient. Additionally, creating the program via C++ may improve the speed of 

execution. Currently with a laptop employing 12G B of memory and a CPU speed of 2.6 G Hz 

on MATLAB version R2011a, it takes on average 7 minutes to implement the algorithm with 

30 transmitters within the test building. This may be decreased with C++.  

 

6.3 Overall Summary 

The proposed in-building planning system can be a good substitute for the manual planning 

system described in [1]. Both systems employ the same propagation model but the proposed 

system produces a more efficient antenna design when employed in the same test building. 

  

The proposed system uses Particle Swarm Optimisation combined with a method of 

geometrically dividing the optimisation space to find a solution to the indoor antenna placement 

problem. With a MATLAB code, this solution was implemented in the top floor (W2) of the 

Sir David Davies building at Loughborough University. The output gives the optimal number 

of transmitters, there optimum location and the optimum transmit power of each to ensure that 

the entire building is covered to a minimum signal level. Additionally, a simulation of the 

receiver levels throughout the building is also produced 

 

The system also produced more efficient results when used in the “blind-test” at the Xerox 

building in Montego Bay, Jamaica. It proposed a reduction in the transmitter power while still 

maintaining the planned coverage requirements. 
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  gbest Values 

Number of run x-position y-position 

1 7.4836 4.997 

2 7.659 5.0524 

3 7.4232 5.0159 

4 7.6168 4.9994 

5 7.3599 4.9493 

6 7.338 5.0004 

7 7.2563 5.0292 

8 7.3344 4.9508 

9 7.3541 5.0018 

10 7.4417 5.0277 

11 7.7912 4.9991 

12 7.5085 5.0448 

13 7.3634 5.0026 

14 7.8185 5.0052 

15 7.6008 4.9744 

16 7.6857 5.0021 

17 7.5697 4.9829 

18 7.714 4.9996 

19 7.3473 5.0027 

20 7.5811 5.0215 

21 7.2863 5.0261 

22 7.5036 5.002 

23 7.4924 4.9976 

24 7.4878 5.0486 

25 7.6664 4.9944 

Mean 7.507348 5.0051 

Standard deviation 0.158752 0.02543 

Table A.1. gbest locations over a series of 25 runs 

 

Iterat
ion 

Sigma, 
run 1 

Sigma, 
run 2 

Sigma, 
run 3 

Sigma, 
run 4 

Sigma, 
run 5 

Sigma, 
run 6 

Sigma, 
run 7 

Sigma, 
run 8 

Sigma, 
run 9 

Sigma, 
run 10 AVG 

1 
678.048

959 
577.509

282 
866.117

978 
1253.23

9726 
661.269

933 
935.332

146 
511.110

536 
1194.11

3628 
1101.74

7561 
1347.42

1560 
912.591

131 
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2 
985.370

386 
1264.45

3295 
1762.70

5505 
3204.60

5648 
642.787

511 
1454.40

0497 
431.318

374 
1317.96

9538 
940.570

516 
1079.41

7824 
1308.35

9909 

3 
1311.60

3884 
1243.14

5134 
2449.06

0582 
3105.30

2318 
1478.05

0471 
1861.21

5622 
421.016

393 
1523.10

1028 
1229.67

0239 
1696.49

0178 
1631.86

5585 

4 
1247.14

6607 
658.429

686 
4052.97

5447 
7289.37

1103 
1404.30

8909 
2358.88

6776 
334.535

419 
2244.46

3459 
2358.15

5565 
3440.88

2739 
2538.91

5571 

5 
1146.39

0110 
643.184

700 
1035.03

9369 
7227.69

9665 
995.908

122 
2628.22

7564 
256.158

300 
5760.97

9131 
2930.56

8065 
5099.92

3782 
2772.40

7881 

6 
605.573

449 
2112.06

0781 
3050.66

8475 
6600.11

8507 
1332.87

3710 
4810.82

0616 
179.340

683 
3652.16

0716 
2110.45

4166 
2657.81

0607 
2711.18

8171 

7 
603.725

144 
2115.47

1386 
3573.00

4647 
6275.24

3170 
1068.48

7045 
1586.10

4831 
98.2512

50 
1588.05

9390 
2070.29

3809 
4663.79

0467 
2364.24

3114 

8 
252.023

916 
2087.26

4518 
3481.42

0300 
4372.62

7640 
1933.30

9835 
1576.98

1142 
57.2085

43 
4060.43

0024 
4522.71

6579 
2932.20

7027 
2527.61

8952 

9 
168.094

945 
2374.73

5506 
7562.48

0837 
1793.78

0289 
1233.77

5964 
1553.90

8050 
52.6399

84 
3826.36

4968 
1116.23

0186 
192.443

797 
1987.44

5453 

10 
162.068

803 
563.972

966 
977.494

745 
800.444

667 
2742.41

0737 
4086.09

2466 
45.4663

03 
6922.49

6914 
975.082

648 
818.635

274 
1809.41

6552 

11 
153.150

316 
550.557

147 
976.660

560 
3061.90

9277 
4505.33

8121 
1112.65

9976 
27.1781

51 
3323.84

8593 
1331.47

3692 
4647.02

6487 
1968.98

0232 

12 
330.300

872 
527.560

970 
599.266

927 
316.741

016 
2408.62

1088 
1111.89

5316 
26.1865

48 
2885.68

746 
3672.98

5594 
4624.85

400 
1650.40

9979 

13 
322.865

851 
1972.00

4256 
598.461

162 
306.666

894 
5066.66

9099 
354.505

535 
23.6479

61 
474.708

52 
493.453

800 
6780.19

650 
1639.31

7958 

14 
42.3349

06 
4419.41

7975 
313.975

444 
689.403

271 
1098.12

5857 
184.078

467 
18.0065

90 
809.648

28 
792.842

395 
18261.0

6961 
2662.89

0279 

15 
40.7228

37 
1108.75

3730 
311.160

916 
678.744

806 
1097.46

9580 
184.121

797 
17.2576

20 
2093.37

927 
794.748

950 
12.2909

9 
633.865

049 

16 
0.28359

1 
1108.76

9282 
310.743

074 
622.167

963 
382.856

501 
183.063

483 
14.4999

38 
2081.89

129 
417.458

259 
14.4460

4 
513.617

942 

17 
0.15919

3 
1141.08

6673 
178.699

317 
502.013

357 
382.600

076 
481.574

084 
13.9678

40 
667.098

65 
153.653

038 
14.2517

5 
353.510

398 

18 
0.11063

4 
1133.27

8889 
149.813

231 
39.2541

19 
1684.45

1639 
867.703

696 
12.0473

64 
476.275

49 
124.422

880 
14.2439

7 
450.160

191 

19 
0.07749

9 
1.41478

4 
149.707

556 
26.1299

13 
1630.03

7860 
1812.62

8233 
11.0200

23 
1004.97

621 
108.767

614 
12.0504

7 
475.681

016 

20 
0.00769

9 
0.93656

4 
149.675

465 
26.1217

69 
1629.84

7842 
1812.63

2341 
10.4926

29 
1399.53

254 
106.602

947 0.14884 
513.599

863 

21 
0.00456

2 
0.27878

9 
149.667

078 
25.8363

93 
1629.74

1129 
1808.64

1147 
9.37030

1 
1342.26

417 
11.5351

64 0.13799 
497.747

673 

22 
0.00139

3 
0.21467

0 
149.658

573 
25.8167

64 
1629.72

8941 
132.699

240 
9.34283

6 
995.147

37 
0.58553

6 0.05170 
294.324

703 

23 
0.00032

5 
0.10996

1 
149.658

178 
25.8188

93 
2898.90

1613 
0.24680

3 
9.16601

8 
1458.69

103 
0.14781

3 0.04947 
454.279

010 

24 
0.00011

5 
0.03829

6 
149.658

472 
2.95253

6 
781.945

970 
0.24367

1 
8.31967

9 
3350.31

153 
0.11172

4 0.04922 
429.363

121 

25 
0.00011

0 
0.02237

0 
94.3920

26 
2.41718

4 
781.904

464 
0.10192

7 
5.95599

1 
929.389

99 
0.06342

9 0.01111 
181.425

861 

26 
0.00007

1 
0.00691

9 
0.27369

7 
2.32606

9 
781.905

139 
0.10572

8 
5.94505

5 
2289.49

227 
0.00293

5 0.00417 
308.006

206 

27 
0.00006

2 
0.00218

8 
0.23528

8 
2.32598

9 
6.26085

3 
0.02094

2 
4.75728

7 
1729.96

808 
0.00209

7 0.00073 
174.357

352 

28 
0.00003

1 
0.00085

0 
0.20168

7 
0.06271

7 
6.25904

0 
0.01416

9 
4.75734

6 
6065.47

163 
0.00123

1 0.00050 
607.676

920 

29 
0.00001

6 
0.00033

8 
0.13005

1 
0.01519

0 
6.23850

9 
0.00941

7 
4.41694

5 
3204.26

110 
0.00037

6 0.00001 
321.507

195 

30 
0.00000

4 
0.00017

3 
0.00313

6 
0.01547

8 
6.23305

1 
0.00941

8 
4.41691

6 
628.723

28 
0.00010

2 0.00000 
63.9401

56 

31 
0.00000

1 
0.00006

0 
0.00313

7 
0.00101

7 
6.23268

1 
0.00613

9 
4.41689

6 
234.444

10 
0.00001

1 0.00000 
24.5104

05 

32 
0.00000

0 
0.00001

8 
0.00016

9 
0.00020

1 
6.23267

0 
0.00032

6 
4.41689

8 
109.363

65 
0.00000

7 0.00000 
12.0013

94 

33 
0.00000

0 
0.00000

8 
0.00000

1 
0.00002

1 
6.23267

8 
0.00000

0 
4.41203

7 
109.362

84 
0.00000

4 0.00000 
12.0007

59 

34 
0.00000

0 
0.00000

3 
0.00000

1 
0.00002

0 
6.23267

5 
0.00000

0 
2.38768

9 
106.922

11 
0.00000

2 0.00000 
11.5542

50 

35 
0.00000

0 
0.00000

0 
0.00000

1 
0.00001

8 
6.23268

3 
0.00000

0 
0.89067

3 
106.920

08 
0.00000

0 0.00000 
11.4043

46 
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36 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
6.23267

5 
0.00000

0 
0.58913

2 
106.920

08 
0.00000

0 0.00000 
11.3741

89 

37 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
6.23267

5 
0.00000

0 
0.57176

9 
17.0400

8 
0.00000

0 0.00000 
2.38445

3 

38 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
6.23267

5 
0.00000

0 
0.56129

1 0.03980 
0.00000

0 0.00000 
0.68337

7 

39 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
6.23267

5 
0.00000

0 
0.56117

2 0.03980 
0.00000

0 0.00000 
0.68336

5 

40 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
6.23267

5 
0.00000

0 
0.27105

1 0.03980 
0.00000

0 0.00000 
0.65435

3 

41 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
6.23267

5 
0.00000

0 
0.26763

6 0.00124 
0.00000

0 0.00000 
0.65015

5 

42 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
6.23267

5 
0.00000

0 
0.26718

8 0.00014 
0.00000

0 0.00000 
0.65000

1 

43 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
6.23267

5 
0.00000

0 
0.26718

9 0.00014 
0.00000

0 0.00000 
0.65000

1 

44 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
6.23267

5 
0.00000

0 
0.02408

6 0.00010 
0.00000

0 0.00000 
0.62568

6 

45 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
6.23267

5 
0.00000

0 
0.01423

3 0.00000 
0.00000

0 0.00000 
0.62469

1 

46 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
6.23267

5 
0.00000

0 
0.01423

2 0.00000 
0.00000

0 0.00000 
0.62469

1 

47 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
6.23267

5 
0.00000

0 
0.00772

6 0.00000 
0.00000

0 0.00000 
0.62404

0 

48 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
6.23267

5 
0.00000

0 
0.00529

5 0.00000 
0.00000

0 0.00000 
0.62379

7 

49 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
6.23267

5 
0.00000

0 
0.00476

1 0.00000 
0.00000

0 0.00000 
0.62374

4 

50 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
0.00011

6 
0.00000

0 
0.00474

2 0.00000 
0.00000

0 0.00000 
0.00048

6 

51 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
0.00028

7 
0.00000

0 
0.00435

8 0.00000 
0.00000

0 0.00000 
0.00046

5 

52 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
0.00028

7 
0.00000

0 
0.00431

5 0.00000 
0.00000

0 0.00000 
0.00046

0 

53 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
0.00007

5 
0.00000

0 
0.00426

8 0.00000 
0.00000

0 0.00000 
0.00043

4 

54 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
0.00007

5 
0.00000

0 
0.00426

6 0.00000 
0.00000

0 0.00000 
0.00043

4 

55 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
0.00002

9 
0.00000

0 
0.00425

7 0.00000 
0.00000

0 0.00000 
0.00042

9 

56 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
0.00002

0 
0.00000

0 
0.00425

6 0.00000 
0.00000

0 0.00000 
0.00042

8 

57 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
0.00002

0 
0.00000

0 
0.00425

6 0.00000 
0.00000

0 0.00000 
0.00042

8 

58 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

4 
0.00000

0 
0.00425

6 0.00000 
0.00000

0 0.00000 
0.00042

6 

59 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

4 
0.00000

0 
0.00425

6 0.00000 
0.00000

0 0.00000 
0.00042

6 

60 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
0.00425

6 0.00000 
0.00000

0 0.00000 
0.00042

6 

61 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
0.00006

4 0.00000 
0.00000

0 0.00000 
0.00000

6 

62 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
0.00006

4 0.00000 
0.00000

0 0.00000 
0.00000

6 

63 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
0.00006

4 0.00000 
0.00000

0 0.00000 
0.00000

6 

64 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
0.00006

4 0.00000 
0.00000

0 0.00000 
0.00000

6 

65 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
0.00006

4 0.00000 
0.00000

0 0.00000 
0.00000

6 

66 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
0.00006

4 0.00000 
0.00000

0 0.00000 
0.00000

6 

67 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
0.00006

4 0.00000 
0.00000

0 0.00000 
0.00000

6 

68 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
0.00006

4 0.00000 
0.00000

0 0.00000 
0.00000

6 

69 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
0.00006

4 0.00000 
0.00000

0 0.00000 
0.00000

6 
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70 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
0.00006

4 0.00000 
0.00000

0 0.00000 
0.00000

6 

71 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
0.00000

0 
0.00006

4 0.00000 
0.00000

0 0.00000 
0.00000

6 

Table A-2. Convergence of swarming process within test building 

 

point

s per 

sq m time  

AV

G 

time gbest_x with 30 bees 

Sigm

a Power (dBm) 

0.05

6 

1.52

8 

1.54

8 

1.57

5 

1.47

9 

1.56

6 

1.53

9 

19.8

82 

15.0

30 

14.8

35 

14.7

79 

40.4

88 

11.1

06 

2

1 

2

1 

2

1 

2

1 

2

1 

0.22

2 

1.69

4 

1.62

0 

1.69

9 

1.66

0 

1.59

9 

1.65

4 

30.0

47 

30.0

01 

29.9

16 

29.9

94 

39.9

84 

4.47

0 

1

8 

1

8 

1

8 

1

8 

2

1 

0.50

0 

1.80

7 

1.73

6 

1.87

3 

1.74

1 

1.72

9 

1.77

7 

30.0

00 

29.9

82 

45.0

68 

29.9

50 

29.9

77 

6.74

9 

1

8 

1

8 

2

1 

1

8 

1

8 

0.88

9 

1.96

2 

2.00

5 

1.90

3 

1.91

4 

2.00

1 

1.95

7 

15.0

17 

30.0

05 

30.0

22 

30.0

05 

44.9

58 

10.5

86 

2

1 

1

8 

1

8 

1

8 

2

1 

1.38

9 

2.19

8 

2.19

8 

2.18

8 

2.11

7 

2.13

1 

2.16

6 

30.0

24 

30.0

06 

30.0

23 

30.0

01 

40.0

31 

4.48

0 

1

5 

1

5 

1

5 

1

5 

1

8 

2.00

0 

2.40

6 

2.50

6 

2.38

6 

2.49

3 

2.46

4 

2.45

1 

30.0

19 

29.9

91 

30.0

02 

29.9

91 

29.9

75 

0.01

6 

1

2 

1

2 

1

2 

1

2 

1

2 

2.72

2 

2.88

8 

2.72

1 

2.78

5 

2.80

9 

2.73

9 

2.78

8 

30.0

00 

30.0

04 

30.0

13 

29.9

80 

29.9

95 

0.01

2 

1

2 

1

2 

1

2 

1

2 

1

2 

3.55

6 

3.12

4 

3.12

9 

3.27

7 

3.15

9 

3.19

2 

3.17

6 

30.0

03 

29.9

92 

29.9

90 

29.9

86 

29.9

89 

0.00

6 

1

2 

1

2 

1

2 

1

2 

1

2 

4.50

0 

3.56

2 

3.52

2 

3.53

8 

3.70

7 

3.61

9 

3.59

0 

29.9

95 

30.0

00 

30.0

07 

29.9

99 

29.9

92 

0.00

6 

1

2 

1

2 

1

2 

1

2 

1

2 

5.55

6 

4.10

4 

4.09

5 

4.05

8 

4.09

7 

4.14

6 

4.10

0 

30.0

00 

30.0

06 

29.9

99 

30.0

07 

30.0

06 

0.00

4 

1

2 

1

2 

1

2 

1

2 

1

2 

6.72

2 

4.50

9 

4.50

3 

4.50

5 

4.43

0 

4.43

0 

4.47

5 

29.9

96 

30.0

01 

30.0

10 

29.9

98 

30.0

07 

0.00

6 

1

2 

1

2 

1

2 

1

2 

1

2 

8.00

0 

5.08

9 

5.13

5 

5.15

6 

5.11

8 

5.11

1 

5.12

2 

29.9

88 

30.0

08 

30.0

02 

30.0

01 

29.9

92 

0.00

8 

1

2 

1

2 

1

2 

1

2 

1

2 

9.38

9 

6.00

1 

5.70

7 

5.67

2 

5.67

9 

5.94

3 

5.80

0 

30.0

02 

30.0

01 

29.9

98 

29.9

88 

30.0

10 

0.00

8 

1

2 

1

2 

1

2 

1

2 

1

2 

10.8

89 

6.52

2 

6.64

0 

6.56

8 

6.48

4 

6.57

0 

6.55

7 

29.9

98 

29.9

99 

30.0

00 

30.0

02 

30.0

00 

0.00

2 

1

2 

1

2 

1

2 

1

2 

1

2 

12.5

00 

7.28

4 

7.48

1 

7.40

7 

7.35

0 

7.39

2 

7.38

3 

30.0

03 

29.9

97 

30.0

00 

30.0

00 

29.9

91 

0.00

4 

1

2 

1

2 

1

2 

1

2 

1

2 

14.2

22 

8.22

7 

8.13

8 

8.24

8 

8.10

3 

8.09

1 

8.16

1 

30.0

00 

30.0

02 

29.9

97 

30.0

00 

30.0

00 

0.00

2 

1

2 

1

2 

1

2 

1

2 

1

2 

16.0

56 

9.61

3 

9.12

4 

8.87

2 

9.01

6 

9.36

8 

9.19

9 

30.0

00 

29.9

94 

30.0

06 

29.9

93 

29.9

98 

0.00

5 

1

2 

1

2 

1

2 

1

2 

1

2 

18.0

00 

10.1

55 

9.92

4 

9.87

8 

9.83

7 

9.81

4 

9.92

2 

30.0

09 

30.0

08 

29.9

95 

29.9

93 

30.0

05 

0.00

7 

1

2 

1

2 

1

2 

1

2 

1

2 
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20.0

56 

11.3

99 

10.9

01 

10.8

91 

10.9

11 

10.8

89 

10.9

98 

30.0

00 

30.0

06 

30.0

02 

30.0

00 

30.0

03 

0.00

3 

1

2 

1

2 

1

2 

1

2 

1

2 

22.2

22 

12.1

80 

11.7

63 

11.9

88 

12.0

19 

11.9

44 

11.9

79 

30.0

00 

29.9

93 

30.0

00 

30.0

01 

29.9

97 

0.00

3 

1

2 

1

2 

1

2 

1

2 

1

2 

Table A-3. Number of receiver points versus swarming precision.  

 

bees time  AVG 

time 

gbest_x Sigma(gbe

st) 

5 3.4451

72 

3.5940

95 

3.7135

7 

3.7480

9 

3.4820

02 

3.5965

86 

19.934

1 

40.917 30.014

8 

19.716

3 

40.069

1 

10.338760

4795 

10 5.2221

49 

5.1973

75 

5.4026

23 

5.4793

72 

5.2032

35 

5.3009

51 

29.995

4 

27.802 29.994

9 

20.008

2 

40.018 7.1427560

150 

15 7.3373

78 

7.2346

09 

7.2900

29 

7.0866

36 

6.6652

68 

7.1227

84 

44.996

6 

29.998

6 

29.995 19.983

7 

29.999

7 

8.9481417

751 

20 10.269

25 

8.7500

6 

9.6530

36 

8.6999

71 

8.4451

49 

9.1634

93 

29.991

2 

44.991 30.008

1 

29.987

6 

15.012 10.599180

4094 

25 10.535

34 

10.585

99 

10.433

16 

10.301 10.282

26 

10.427

55 

15.007

1 

29.901

7 

29.999

6 

30.001

1 

29.997

3 

6.6939484

744 

30 12.306

8 

13.551

72 

12.323

6 

13.670

48 

14.061

11 

13.182

74 

30.002

2 

30.005

7 

29.99 29.999

9 

29.989

9 

0.0072300

069 

35 15.696

84 

15.824

85 

16.614

05 

16.768

06 

17.018

97 

16.384

55 

29.999

8 

29.994

7 

30.005

7 

30 29.997

7 

0.0040319

970 

40 17.333

23 

16.634

78 

18.347

96 

18.464

36 

19.081

53 

17.972

37 

29.999

2 

29.997

9 

29.994 30.002

4 

30.001

9 

0.0033980

877 

45 18.830

15 

18.925

07 

18.722

29 

18.893

51 

18.644

91 

18.803

19 

30.002

1 

30.004 29.999

5 

30.000

2 

30.000

5 

0.0018036

075 

50 20.758

52 

20.778

27 

20.527

24 

20.671

95 

20.673

02 

20.681

8 

29.997

7 

29.998

7 

30.000

4 

29.999

7 

29.997

6 

0.0012275

993 

55 22.910

07 

22.986

78 

23.078

92 

22.404

51 

22.676

05 

22.811

27 

30.000

3 

30.000

2 

29.997

7 

29.999

9 

30.000

3 

0.0011189

281 

60 24.639

89 

24.567

68 

26.200

1 

24.760

86 

24.633

34 

24.960

37 

30.000

1 

30 29.999

3 

30.001

7 

30.001

8 

0.0011122

050 

65 26.998

7 

27.588

95 

27.774

86 

32.176

88 

27.659

44 

28.439

77 

30.000

3 

30.000

2 

29.997

9 

30.000

2 

30 0.0010232

302 

70 30.221

64 

30.958

88 

28.537

99 

29.221

33 

28.953

74 

29.578

71 

30.000

4 

30.000

4 

30.001 29.997

1 

30.000

2 

0.0015498

387 

75 35.214

47 

33.248

21 

31.468

16 

32.355

06 

32.118

76 

32.880

93 

30.000

2 

30 29.999

4 

30 30.000

7 

0.0004669

047 

80 36.058

71 

33.599

3 

35.126

03 

33.786

74 

33.525

88 

34.419

33 

29.999

4 

30.000

4 

29.999

5 

29.999

6 

29.999

8 

0.0003974

921 

85 35.809

11 

35.396

43 

35.651

34 

36.187

64 

35.503

59 

35.709

62 

30.000

2 

29.999

8 

29.999

8 

30.000

2 

30 0.0002000

000 

90 37.994

6 

37.566

67 

37.911

18 

37.618

15 

37.350

35 

37.688

19 

30 30.000

1 

29.999

7 

29.999

7 

29.999

8 

0.0001816

590 

95 39.860

56 

38.964

86 

39.657

93 

39.371

16 

39.454

12 

39.461

72 

29.999

7 

30.000

2 

29.999

8 

30 30.001

4 

0.0006870

226 

100 40.329

45 

41.002

95 

42.981

8 

41.501

79 

42.317

83 

41.626

76 

30.000

2 

30.000

3 

29.999

7 

29.999

9 

29.999

9 

0.0002449

490 
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Table A-4. Swarm size versus run time.  

 
 

Average Sigma over 10 runs 

Number of 

iterations 

High complexity Layout Medium complexity Layout Low complexity Layout 

1 460.62348 474.44914 21.48036 

2 260.65394 282.83843 8.02997 

3 194.24403 196.17868 2.70368 

4 86.33895 109.92293 0.80315 

5 67.03259 98.04421 0.23688 

6 54.04174 58.48275 0.12125 

7 47.20814 38.53320 0.05474 

8 41.64539 15.86514 0.03329 

9 35.09844 9.54661 0.01477 

10 31.05737 4.27375 0.00854 

11 21.87665 2.64578 0.00372 

12 16.43827 1.51963 0.00171 

13 14.59982 1.30365 0.00095 

14 13.25408 1.15966 0.00055 

15 11.63380 0.83388 0.00040 

16 9.08495 0.51618 0.00015 

17 7.88880 0.38892 0.00028 

18 6.99092 0.36670 0.00012 

19 6.93859 0.02537 0.00007 

20 6.80248 0.00027 0.00003 

21 4.97340 0.00012 0.00001 

22 4.32098 0.00002 0.00001 

23 4.30282 0.00000 0.00000 

24 3.31707 0.00000 0.00000 

25 3.31159 0.00000 0.00000 

26 3.29870 0.00000 0.00000 

27 1.71998 0.00000 0.00000 

28 1.71982 0.00000 0.00000 

29 1.69061 0.00000 0.00000 

30 1.61486 0.00000 0.00000 

31 1.61483 0.00000 0.00000 

32 1.59760 0.00000 0.00000 

33 1.61700 0.00000 0.00000 
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34 1.60240 0.00000 0.00000 

35 1.59745 0.00000 0.00000 

36 1.59642 0.00000 0.00000 

37 0.06067 0.00000 0.00000 

38 0.00081 0.00000 0.00000 

39 0.00002 0.00000 0.00000 

40 0.00000 0.00000 0.00000 

41 0.00000 0.00000 0.00000 

42 0.00000 0.00000 0.00000 

43 0.00000 0.00000 0.00000 

44 0.00000 0.00000 0.00000 

45 0.00000 0.00000 0.00000 

46 0.00000 0.00000 0.00000 

47 0.00000 0.00000 0.00000 

48 0.00000 0.00000 0.00000 

49 0.00000 0.00000 0.00000 

50 0.00000 0.00000 0.00000 

51 0.00000 0.00000 0.00000 

52 0.00000 0.00000 0.00000 

53 0.00000 0.00000 0.00000 

54 0.00000 0.00000 0.00000 

55 0.00000 0.00000 0.00000 

Table A-5. Convergence in different layout types.  
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