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Abstract 

Swarm Computation1 is a relatively new optimisation paradigm. The basic premise is to 

model the collective behaviour of self-organised natural phenomena such as swarms, flocks and 

shoals, in order to solve optimisation problems. Particle Swarm Optimisation (PSO) is a type of 

swarm computation inspired by bird flocks or swarms of bees by modelling their collective social 

influence as they search for optimal solutions. 

In many real-world applications of PSO, the algorithm is used as a data pre-processor for a 

neural network or similar post processing system, and is often extensively modified to suit the 

application. The thesis introduces techniques that allow unmodified PSO to be applied 

successfully to a range of problems, specifically three extensions to the basic PSO algorithm: 

solving optimisation problems by training a hyperspatial matrix, using a hierarchy of swarms to 

coordinate optimisation on several data sets simultaneously, and dynamic neighbourhood 

selection in swarms. 

Rather than working directly with candidate solutions to an optimisation problem, the PSO 

algorithm is adapted to train a matrix of weights, to produce a solution to the problem from the 

inputs.  The search space is abstracted from the problem data. 

A single PSO swarm optimises a single data set and has difficulties where the data set 

comprises disjoint parts (such as time series data for different days). To address this problem, we 

introduce a hierarchy of swarms, where each child swarm optimises one section of the data set 

whose gbest particle is a member of the swarm above in the hierarchy. The parent swarm(s) 

coordinate their children and encourage more exploration of the solution space. We show that 

                                                           
1 Swarm Computation or Swarm Computing is often called Swarm Intelligence however, my preferred term is Swarm 

Computation. 
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hierarchical swarms of this type perform better than single swarm PSO optimisers on the disjoint 

data sets used. 

PSO relies on interaction between particles within a neighbourhood to find good solutions. 

In many PSO variants, possible interactions are arbitrary and fixed on initialisation. Our third 

contribution is a dynamic neighbourhood selection: particles can modify their neighbourhood, 

based on the success of the candidate neighbour particle. As PSO is intended to reflect the social 

interaction of agents, this change significantly increases the ability of the swarm to find optimal 

solutions. Applied to real-world medical and cosmological data, this modification is and shows 

improvements over standard PSO approaches with fixed neighbourhoods. 
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Introduction 

Zee: The whole system makes me feel... insignificant. 

Psychologist: Excellent. You’ve made a real breakthrough. 

Zee: I have? 

Psychologist: Yes, Zee. You ARE insignificant. 

(Antz 1998) 

This chapter begins with a brief introduction to the paradigm of biologically inspired 

computation. Combinatorial optimisation is then discussed as the branch of 

mathematics to which biologically inspired computation may be applied, and goes on to 

detail the research question considered in this thesis and the contributions made. The 

chapter concludes with an outline of the thesis. 

1.1 Biologically Inspired Computation 

Biologically inspired computation involves borrowing ideas from the natural world in order 

to carry out some optimisation task. On its own, a single ant in a colony is insignificant, but the 

colony as a whole may demonstrate useful emergent behaviour. Although emergence as a 

phenomenon had been studied for some time, its first general introduction to the wider 

research community was by Holland (2000), work which led to the development of genetic 

algorithms. The concept of emergent behaviour emerging from groups or crowds has been 

elucidated by Johnson (2002) and more recently Strogatz (2004). There has also been an upsurge 

http://www.definitions.net/definition/whole
http://www.definitions.net/definition/system
http://www.definitions.net/definition/feel..
http://www.definitions.net/definition/real
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in the study of emergent behaviour of insect societies, influenced by the original studies of 

Wilson (1971) and Hölldobler & Wilson (2008). 

Within the computing research community, there has been significant growth in research 

focusing on the development of heuristics and methodologies inspired by biological phenomena. 

This has proved to be a strong basis for the development of new heuristics, given that nature has 

already found solutions to search problems such as finding food or burying corpses. Biologically 

inspired computational techniques cover a diverse set of heuristics:  Corne et al. (1999) and de 

Castro & Von Zuben (2004) offer a good introduction to the topic.  

Within biologically inspired computation, the class of heuristics which model collective self-

organisational behaviour is generally referred to as Swarm Intelligence. The recognition that 

biological organisms frequently rely on stigmergy to influence one another’s behaviour has led 

to the development of a group of heuristics which attempt to simulate stigmergic interactions in 

order to address combinatorial optimisation problems. The term stigmergy was introduced by 

French biologist Pierre-Paul Grassé, quoted in Wilson (1975, 2000), and originally referred to the 

spontaneous indirect coordination between agents, through influences on the environment 

which subsequently affect the actions of another agent or agents. The concept has subsequently 

been extended to include the notion that social organisms can influence each other’s behaviour 

through their previous actions (Bonabeau & Théraulaz, 2000; Bonabeau, 1999). By extension, 

the stimulation of a secondary behaviour via the reward received from another agent can also 

be considered as stigmergy. For example, in an ant colony, a returning forager may lay a 

pheromone trail that will stimulate nest mates to follow the trail to find more food. From these 

kinds of interaction between multiple agents, rather than from a top-down organisational 

structure, collective emergent behaviour appears. This concept is important when we consider 

how PSO interacts with the landscape of the problem being solved; it allows the particle swarm 

to move to areas of improved solutions based on information from other particles. 
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Swarm computation is a radical departure from the classical way of organising computation, 

in which processes are centrally controlled. Rather, Swarm Computation is a means of 

computing solutions to certain problems through self-organisation and emergence. We shall 

therefore use the term throughout this thesis.  

1.2 Combinatorial Optimisation 

We will now discuss the concept of combinatorial optimisation in some detail, in order to 

establish a context within which Swarm Computation is useful. Combinatorial optimisation is 

one of the most important areas of applied computation, applying to a significant set of real-

world problems. A combinatorial problem is one in which the aim is to optimise, or find the best 

solution for, a combination of values for a set of variables. For these types of problems there is 

no direct means of determining a solution within a realistic time, although the validity and 

“correctness” or otherwise of a given solution can be easily determined Macready & Wolpert 

(1995). The problem to be optimised is described in terms of parameters to an objective 

function, which a feasible solution minimises or maximises. Theoretically an almost universal 

optimiser is possible English (2000), however, the No Free Lunch (NFL) theorem Wolpert & 

Macready, (1995, 1997) proves that no algorithm will perform better than any other over the set 

of all possible computationally accessible problems. Many heuristics for solving combinatorial 

problems aim to arrive at an optimal solution by eliminating unsuitable solutions by one means 

or another. A real-world example of such a problem would be the optimal route for a 

supermarket delivery van to take, given the timed deliveries required by customers, the 

minimum number of vans required, the maximum fuel consumption considerations and other 

constraints relevant to the home delivery operation. This can be seen as a special case of the 

travelling salesman problem Michalewicz (1996), a PSO implementation of which is given by Zhi 

et al.  (2004).  
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A useful way of conceptualising the process of finding a solution to combinatorial 

optimisation problems is to develop the concepts of solution space and fitness landscape. A 

solution space is the n-dimensional space of all possible values of the n representative variables 

that meet the constraints of the problem. A Fitness landscape is a hyperplane within the n+1-

dimensional space formed by the solution space and a fitness dimension. An optimisation 

algorithm traverses the fitness landscape to find the high (or low) points that represent optimal 

solutions.   

1.3  Research Question and Rationale 

This thesis concentrates on improvements to one heuristic within Swarm Computation, 

namely Particle Swarm Optimisation (PSO). The steps that taken were as follows: 

1. A technique was developed in which the parameters used in the objective function are 

discovered during the optimisation process; this proved particularly useful when 

optimising highly non-linear systems. 

2. Current PSO implementations generally depend on a single layer swarm of particles, 

meaning that information gathered during the course of the search of the solution 

space is lost, rather than being made subject to later processing. A scalable robust 

extension to PSO was developed, in which the best candidate solutions2 for each subset 

are determined by a separate swarm within a hierarchy, with swarms at each level of 

hierarchy maintaining their own objective function. If each level of the hierarchy were 

to use exactly the same objective function then some of the advantage of using a 

hierarchy would be lost; indeed some of the information gathered at low levels would 

not be utilised. This research will demonstrate that a hierarchy of swarms can learn 

                                                           
2 Candidate Solution: a member of a population of possible solutions that satisfy all constraints. 
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from each other’s experience, and therefore direct the learning process, thereby 

improving overall performance. By this method, it is possible to demonstrate the 

application of particle swarm optimisation to noisy, dynamic and multiple optima 

datasets. The model respects the intrinsic relationships between the data subsets, 

increases diversity and encourages the spread of information across the solution space. 

The combined information is used to guide the collective swarm effectively to a better 

solution, improving the performance of all swarms. This intrinsic strength is little 

explored by much of the early literature, for example, van den Bergh (2002), 

Engelbrecht et al. (2005),  Franken & Engelbrecht (2004),  Franken & Engelbrecht 

(2005),  Angeline (1998b),  Bo Liu et al. (2006),  Kennedy (2005) and  Higashi & Iba 

(2003). More recent papers focusing on real-world datan – for example, Wen-Tsai Sung 

et al. (2014), Li et al. (2013), Peng et al. (2014), Siano & Mokryani (2013), Chen et al. 

(2013) – tend to respect the velocity equation whilst maintaining good results; this is 

achieved principally through abstraction in the search space. The hierarchical extension 

is applied to problems with multiple, related data subsets of time series data which are 

processed simultaneously. 

3. A further extension to this model is introduced, based on models of human social 

interaction, inspired by Watts & Strogatz (1998) and Watts et al. (2005), in which 

particles are able to recruit and retire members of its neighbourhood, or social group, 

dependent on the member’s value to the particle. 

The research questions associated with this work are as follows: 

 Can a combinatorial optimisation problem be modelled for PSO without the use of 

pre-processing or prior knowledge of the characteristics of the solution space like 

this extension represented by the dataset? 
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 Is it possible to develop the PSO heuristic as a tool for optimising solutions for 

complex problems, through the abstraction of the heuristic from the problem space 

and objective function?  

 Can PSO be extended to simultaneously process multiple, related datasets, with 

complex interconnected relationships between variables, and the influence between 

the variables varying across their full range of values? 

1.4 Contributions 

The main contributions to knowledge are: 

 The application of PSO to a complex real-world problem using a straightforward 

transfer function which maps the input space to the output, and the main 

parameters of this function are discovered during the optimisation process, avoiding 

problem specific assumptions. This concept is developed in Section 0 and applied to 

real world data in Chapter 5. 

 Multiple swarms: The use of multiple swarms to optimise multiple distinct parts of a 

data set, such as disjoint sections of time series data from the same system. Each 

swarm separately optimises a predictor for each part, with the results coordinated 

by a parent swarm. The overall best predictor is found by the parent swarm, and the 

child swarms communicate indirectly with each other through this parent swarm. 

The approach is described in Section 0 and applied to real world data in Chapter 6. 

 An extended neighbourhood topology model which allows neighbourhood 

interactions to be influenced dynamically by the contributions made by individual 

particles to the success of another particle. This demonstrates an improvement in 
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the quality of solutions achieved over the standard neighbourhood topologies 

tested. This concept is discussed in Section 0 and applied to real-world data in 

Chapter 7. 

 The application of both of these techniques to noisy data (Sneyers, 1997), 

demonstrating an amendment to PSO which improves the capability of the heuristic 

over the single swarm version, when applied to complex real-world problems that 

include noisy data, along with an improvement over empirical results using the same 

data. 

1.5 Thesis Outline 

Chapter 2 presents the history of PSO’s development, initially as a social technology and 

then as an optimisation technique. Each section considers significant research within the 

development of PSO. This presents a foundation for our understanding, and for our research 

topic. The chapter also contains a major subsection on neighbourhood topologies, the context 

for the work presented in Chapter 7. Chapter 2 ends with a discussion of computational 

optimisation in the context of evolutionary based optimisation techniques 

Chapter 3 extends the review in Chapter 2 to offer a taxonomy and critique of recent 

developments of PSO including ad hoc approaches and extensions to the basic PSO approach 

Chapter 3 considers a number of problems with the early research.  

Chapter 4 begins with a principled analysis of the stages in the convergence of the PSO 

algorithm, as different aspects of the velocity equation become the dominant influence on the 

velocity; the role of velocity in the convergence on optima; and some of the consequences that 

arise from the formulation of the velocity equation. Based on these analyses, three innovations 
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to standard PSO are proposed in this chapter, establishing the foundation for the experiments 

proposed in later chapters.  

Chapter 5 establishes a predictive model for the River Severn hydrographical flow using real-

world environmental variables as inputs. The aim is to establish a generalised model which is 

able to predict chaotic systems – in this case hydrographical flow – with improved accuracy over 

existing techniques.  

Chapter 6 presents and develops the hierarchical extension to PSO, based on the generalised 

technique presented in Chapter 5, which allows it to process multiple data subsets 

simultaneously, allowing independent processing of all those datasets and improving the overall 

predictive accuracy of the derived model. The chapter demonstrates that the proposed 

hierarchal swarm is a significant development of existing PSO models, which maintains the 

swarm’s coherence and maintains the implicit feedback from the underlying data, guiding the 

search – an intrinsic strength of PSO. 

 Chapter 7 presents the new neighbourhood topology for PSO. Within this topology, a 

particle’s neighbourhood can change dynamically, dependent on the relative value the particle 

places on the contributions made by other particles in its neighbourhood. The intuitive idea 

behind this innovation is that a particle’s neighbourhood should be affected by the contribution 

made by the interaction with its neighbours to the improvement of the particle’s candidate 

solution. The aim is to produce a more dynamic neighbourhood which is more reflective of social 

interaction between the particles. 

Chapter 8 presents a summary of the research on the various datasets used. For each of 

these datasets we summarise the contributions our performance enhancements make to PSO. 

The chapter summarises the issues we identify and contributions to knowledge made.  
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Chapter 2  

A Brief History of Particle Swarm 

Optimisation 

This chapter provides a history of Particle Swarm Optimisation (PSO) starting with its 

formulation as a social interaction technique and its transition into an optimisation 

technique. The chapter is divided into sections that consider various stages in the 

development of PSO. Each section considers significant papers within the PSO research 

being considered. The chapter starts with an introduction to the foundations of PSO and 

goes on to consider in section 0 the major heuristic developments, establishing the 

foundations of our research topic. 

Section 0 discusses developments of the PSO model that are significant from the point of 

view of the research presented in later chapters, including a major subsection on 

neighbourhood topologies. These can have a significant influence on the effectiveness or 

PSO as an optimisation technique. Section 0 considers PSO’s application to dynamic and 

multi-objective optimisation problems and section 0 discusses the application of multi-

swarms to these. 

The chapter concludes with an observation on swarm behaviour in section 2.7, a 

discussion of PSO’s applications to real-world problems in section 2.8, and finally a brief 

introduction to other optimisation techniques in section 2.9. These sections provide an 

introduction to computational optimisation in the context of evolutionary based 

optimisation techniques, in order to set the scene for Chapter 3 that looks at some of the 

weaknesses of the early PSO research. 
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Introduction 

Particle Swarm Optimisation operates as a model of social influence, with each particle 

representing a potential solution to the problem being solved. The particles are ‘flown’ 

through the solution space under the influence of their previous best solution and the best 

solution of the population. The best solution is determined by a problem-specific objective 

function, which returns a measure of the fitness of a candidate solution. 

The problem space is visualised as an abstract landscape, with hills and valleys, and with 

the height of any point in the space representing how good the solution at that point is, 

referred to as that solution’s fitness. In PSO, a number or particles are distributed at random 

across this landscape, as illustrated in Figure 1. In the basic version of PSO, each particle has 

a neighbourhood, and can exchange information with other particles in this neighbourhood. 

The structure of these neighbourhoods is termed the topology of the swarm and is generally 

fixed when the swarm is created. Each particle will have the following characteristics: 

 a current position, represented by a vector xi;  

 a velocity (since particles move), represented by a vector vi; 

 a vector recording the position in the solution space at which it achieved its fittest 

result (its personal best, pi);  

 a vector recording the position pg of the particle in its neighbourhood with best 

fitness. 

The particle marked gBest in Figure 1 is closest to the fittest solution in the whole 

landscape, and is marked as the global best.  
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Figure 1: Particles moving in solution space 

The PSO system evolves across a number of time steps or iterations, with particles 

moving across the landscape seeking out better and better solutions. At each time step: 

 every particle compares the fitness of the possible solution its position vector x 

represents with those of the other particles in its neighbourhood;  

 the best particle then becomes the neighbourhood’s best, and the pg of all particles 

in the neighbourhood are updated accordingly.  

The other particles in the neighbourhood are thus pulled towards the best particle and 

the current particle’s previous best in the following iteration. See section 0 for a more 

detailed discussion of neighbourhood topologies. 

In early papers, typical particle populations used were up to 40 particles Eberhart & Shi 

(2001). However, there remains a wide range in the number of particles used in the 
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literature, ranging from 10 to 100 or alternatively a population number which relate to the 

number dimensions in the problem being solved, for example, Hu & Tan  (2015),  Munlin & 

Anantathanavit (2015),  Mandal & Si (2015). There are no established criteria for 

determining the number of particles – simply, that the more particles there are, the more 

opportunities are available to discover better solutions per iteration, balanced against the 

computational cost. In our experiments, we maintain a constant population of 40 particles 

per swarm. The following is a commonly-used version of the equations which govern the 

change in direction of the particle at each step of its flight (Kennedy & Eberhart, 1995; 

Kennedy et al., 2001): 

(b)

a)( )()( 21

iii

igiiiiii

vxx

xpxpvv






 
 

where ip


 is the particle’s previous best, and gp


is the neighbourhood best, iv 


is the 

particle’s velocity, ix


 is the particle's current position, i1  and, i2 , are random values, 

conventionally in the range 1.4 to 1.9. (However, refer to the constriction coefficient and 

GCPSO sections below.) The subscript i  is often omitted from i1  and i2 . 
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Figure 2: Pseudo code for Particle Swarm Optimisation 

An algorithm for PSO is given in Figure 2. When run, the effect is that the particles 

converge towards the best particle in the population. Once per iteration, the solution found 

by each particle is compared with the solutions of the other particles in its neighbourhood. 

(As an aside, it should be noted that when PSO was developed. It lacked the concept of a 

neighbourhood, hence gp


being retained to refer to neighbourhood best.) The best particle 

then becomes known as the neighbourhood’s best, or gbest, and the other particles in the 

neighbourhood are then pulled towards this best particle in the following iteration, using: 

(b)

(a))()(

 

21

iii

igiiiiii

vxx

xpxpvwv









 

This equation is also known as the inertia weight variant Shi & Eberhart (1998b). The w  

parameter acts as an inertia weight Shi & Eberhart (1998b). In the original form of the 

equations, the whole of the previous velocity was included without being damped. The 

Initialize particles to uniformly random positions and 

velocities to zero 

Repeat 

Calculate particle fitness, if better than previous 

best change particles previous best 

Set best particle as global best 

For each particle do 

Calculate particle’s velocity according to 

equation (a) above 

Update particle’s position according to 

equation (b) above 

End Do 

Until Termination condition met 
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original algorithm by Kennedy & Eberhart (1995) was even simpler than this:  rather than 

coefficients, there were arbitrary cut-off points implemented in the algorithm 

programmatically as IF-THEN logic decision rules, with a simple greater than or less than 

decision made to pull the particle towards gbest (Kennedy et al., 2001).  

A further observation is made if the elements of the equation are separated as follows:  

(b))(

a)( )(
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In the equation above, part (a) is considered to be the cognitive element and part (b) the 

social element. This reflects the respective influences of a particle’s previous best solution 

and the best solution of the population. 

 The algorithm also implements a maxV  parameter, implemented as the following test 

after the update of the velocity for each dimension per iteration: 

maxidmax VxV    

where i  is the particle’s index, d is the dimension and maxV is a heuristic specific 

parameter often set to 4.0. In the original form of the heuristic, this acted as a damping 

constant to prevent the swarm exploding due to a greater step size in the velocity Eberhart 

& Shi (2000). In our research we continue to use a value of 4.0, which is consistent with van 

den Bergh (2002), to ensure that the swarm converges. In our early experiments we found 

that setting maxV to half the dynamic range, as suggested in Shi & Eberhart (1998a), 

restricted the exploration potential. 

The original PSO heuristic was developed as a model of social influence, but was quickly 

realised to have potential application in optimisation. However, the original PSO had some 
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shortcomings (Kennedy, 2004; Wen-Jun & Xiao-Feng, 2003), mainly that the swarm 

converges too quickly, making it susceptible to local optima, and that the swarm stagnates 

before reaching maximum optimality. 

We shall now consider the main adaptations to the heuristic which have attempted to 

address these problems. 

2.1.1 A Comment on Notation 

Throughout this thesis we shall use the notation used by Shi & Eberhart (1998b) and van 

den Bergh (2002) when describing the particle swarm equations, in order to remain 

consistent with the historical development of PSO. However, it should be noted that the 

notation used can be misleading, not least because it implies certain assumptions about the 

nature of the parameters 1 and 2 . In the traditional notation, these are represented as 

coefficients, whereas in fact they are implemented as vectors, consistent with Poli et al. 

(2007). 

Major Heuristic Developments 

There have been many major developments of the original heuristic. The reason for this 

is that PSO was originally developed to model social influence and emergent behaviour, 

subsequently undergoing developments for application as an optimiser. Briefly, basic PSO is 

susceptible to local optima, especially in a uniform solution space, where the solutions are 

predominately suboptimal and there is no general direction of improvement. Therefore PSO 

is susceptible to an occurrence characterised as First Order Deception (FOD) Blum & Dorigo 

(2005). 



16 

 FOD is characterised by a solution space with multiple areas of stable attraction or a 

plateau containing the globally optimal solution. During the early stages of convergence, 

PSO is less susceptible to FOD because any particle can become the attractor, the particle 

having the best solution so far drawing the other particles towards it. During the latter stage 

of the search the algorithm is prone to stagnation, meaning that it reaches a point where it 

fails to make further improvements, although further improvements are still possible, 

resulting in FOD Blum & Dorigo (2005). The remainder of this section considers the most 

significant developments of PSO, and the effect they have on the algorithm’s performance. 

2.1.2 Inertia weight 

In the original version of the PSO heuristic, the maxV  parameter was introduced in order 

to prevent explosion, which, in turn, prevented convergence; this parameter is applied after 

the velocity equation and restricts the velocity to. maxV . However, even with the addition 

of the maxV  parameter, it has been reported Shi & Eberhart (1998b) that the heuristic also 

suffered from poor convergence towards the optima during the latter stages of the 

algorithm’s run (see also Clerc & Kennedy, 2002, and van den Bergh, 2002). This was 

believed to be because, at this point, particles which were not the global best were 

effectively oscillating between their previous best, and the best of the population, rather 

than being ‘attracted’ to the global best. This can be predicted by examining the two 

elements of the velocity update equation and the acceleration coefficients: if the particle’s 

best position in the solution space is further from the particle’s current position than that of 

the current gbest, then, assuming equality of the acceleration coefficients, the cognitive part 

of the equation will on average have greater influence over the particle’s trajectory as it 

approaches the gbest position. 
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In order to improve this behaviour Shi & Eberhart (1998b) inserted an inertia weight into 

the equation to moderate the influence of the particle’s previous velocity; this is shown 

below.  
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The additional element w , introduces a dampener on the propensity for the particle to 

continue to travel in the direction in which it was travelling, in effect causing it to explore its 

immediate area a little farther and reducing the particle’s inertia.  Shi & Eberhart also varied 

the value of w , starting at 0.9 and descending to 0.4 over the course of the algorithm’s 

execution lifetime. This improved the algorithm’s performance over that of the original 

version of the PSO heuristic. However, subsequent studies, for example Ismail & Engelbrecht 

(1999),  Higashi & Iba (2003),  and Kennedy & Mendes (2003) have shown that, although this 

version is competitive with other heuristics, its convergence potential is not as great as other 

optimisation techniques – for example that of Genetic Algorithms  (Goldberg, 1989; 

Michalewicz, 1996) and Evolutionary Algorithms (Corne et al., 1999). Further analysis 

demonstrated that the suggested parameter values do not induce convergent behaviour van 

den Bergh (2002). 

2.1.3 Constriction coefficient 

Another development of the original velocity equation is the use of a constriction 

coefficient Clerc & Kennedy (2002). Clerc and Kennedy carried out extensive research, 

evaluating different forms of constriction coefficient (also known as constriction factor). The 

authors’ proposal changes the velocity equation as follows: 
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In this version of the equation,   constricts the whole of the new velocity. The 

calculation for   is given in Clerc & Kennedy (2002) and in Eberhart & Shi (2000). The latter 

is reproduced below: 

4,where,
42

2
21

2
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 
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 cc  

Essentially the constriction coefficient’s purpose is to restrict the maximum step size a 

particle can take on each dimension, for a given iteration. Clerc and Kennedy also proposed 

removing the maxV  parameter, effectively allowing a continuous solution space, with the 

constriction coefficient acting as an inertia weight for the whole of the new velocity. Such a 

modification appeared to produce improved convergence over the inertia weight version of 

the equation in Eberhart & Shi; see van den Bergh (2002) for a detailed discussion on the 

parameter settings required to make the inertia weight variant equivalent to the variant 

suggested by Clerc & Kennedy (2002).  Clerc & Kennedy also suggest that maxV  should be 

equal to maxX  for all dimensions in X , thereby enforcing a boundary constraint. The maxX  

parameter is defined as the maximum value a particular dimension can take and still be valid 

within a solution; in practice, maxX  is usually implemented as maxX , thereby constraining 

positive and negative values for each dimension.  

Empirical results in Shi & Eberhart (1998a) and Higashi & Iba (2003) provide evidence 

that such an improvement is inevitable, purely because it restricts the effect of both the 

social and cognitive parts of the equation, thereby moderating the step size in accordance 

with the combined value of the acceleration coefficients given by  . It does not, however, 

affect the convergent properties enforced through the constriction coefficient, but merely 

speeds convergence. 
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The introduction of the constriction coefficient defines a formalised relationship 

between the velocity equation parameters. The dependence on the problem-specific 

parameter maxV  is significantly reduced. One trend has been for using the maxV parameter as 

a boundary constraint, rather than a means of controlling particle explosion (Wachowiak et 

al., 2004; Ratnaweera et al., 2004, as suggested by Eberhart & Shi, 2000). 

2.1.4 Guaranteed Convergence Particle Swarm Optimisation (GCPSO) 

Guaranteed Convergence Particle Swarm Optimisation (GCPSO) was a development by 

van den Bergh (2002), to produce a globally convergent variant of PSO. He argues, with the 

use of mathematical proof, that the standard PSO heuristic velocity equation is neither a 

global nor a local optimiser. This finding holds whichever implementation of the velocity 

equation is used: inertia weight, constriction coefficient or its original form. This realisation 

resulted in the development of the GCPSO variant. The characteristics of GCPSO follow from 

the realisation that when a particle becomes the global best it then ceases to contribute 

improving solutions to the swarm; and because other members of the swarm are drawn to 

that point, there is no guarantee of any further improvement. Such an improvement would 

depend on a better region existing between the current global best and the current position 

of all other particles. Therefore, in order to become a global optimisation technique, a 

randomisation or reset element needs to be added. Hence, GCPSO was developed, which 

implements a concept that changes the velocity equation for the gbest particle such that 

stochastic changes are made to the position within a hypercube space of the current 

position. If an improved solution is not discovered the size of the hypercube is increased for 

the next iteration (van den Bergh, 2002; van den Bergh & Engelbrecht, 2004). 

 An interesting implementation of GCPSO is presented by Messerschmidt & Engelbrecht 

(2004), in which GCPSO is used to train neural network weights to learn to play the game tic-
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tac-toe. In the paper they compare the lbest and gbest versions of PSO, with the new GCPSO 

version. In their experiments GCPSO significantly outperforms the other variants, when 

implemented in the lbest configuration. 

2.1.5 Time-Varying Acceleration Coefficients with Self Organising 

Hierarchies and Mutation 

Another variant of the original PSO velocity equation is Time-Varying Acceleration 

Coefficients with Self-Organising Hierarchies and Mutation (Ratnaweera et al., 2004). The 

proposal is to vary the acceleration coefficients in the velocity equation over the lifetime of a 

run, with a view to increasing the swarm’s convergence potential during the latter stages. 

Their suggestion is to increase the coefficient controlling the cognitive component, while 

decreasing the coefficient controlling the social component, leading to growing influence of 

the particle’s own previous experience. This paper also introduces the mutation operator. 

However, we suggest that the more significant development is the variation in the 

acceleration coefficients since it is the first time such a method has been applied.  

Ratnaweera et al. (2004) report that varying the coefficients showed significant 

improvement over the version of PSO with the inertia weights. The method demonstrated 

significant potential by applying a fairly simple change to the existing velocity equation: they 

call this PSO-TVAC. Another variant Ratnaweera et al. (2004), a hierarchic variant that is 

different from our own hierarchical variant which we present in Chapter 6, removes the 

previous velocity from the new velocity equation, and when the velocity of a particle equals 

zero it is reinitialised with a random velocity proportional to. maxV . The results presented 

show that the proportion of maxV required to improve performance is very dependent on the 

test function landscape, requiring prior knowledge of the problem to be solved. 
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Moreover, the mutation operator (Ratnaweera et al., 2004) devised is a less effective 

strategy on the same test functions, and additionally has higher computation costs, than the 

mutation operators presented in previous work (e.g., Angeline, 1998b; Jing Liu et al., 2005; 

Cui-Ru Wang et al., 2005; Junfeng Chen et al., 2006; and Ning Li et al., 2004). This is because 

each mutation operation requires that the rate of change for each dimension is calculated 

for each particle, regardless of whether a subsequent mutation is applied to the value of a 

dimension. Whilst this method of mutation seems a useful strategy, it is computationally 

expensive and – the results demonstrate – less effective, when compared with the 

hierarchical variant also presented in Ratnaweera et al. (2004).  

2.1.6 Other Hierarchical PSO Implementations 

There are several hierarchical swarm implementations in the literature, in addition to   

Ratnaweera et al. (2004) discussed earlier. These include: Janson & Middendorf (2005), 

Janson & Middendorf  (2003), Lin Lu et al. (2008),  Rezaei & Azadi (2009),  Scheutz (2007),  

Yen & Wen-Fung Leong (2009) and  Weibo Wang & Quanyuan Feng (2010), Senthilnath et al.  

(2012), Po-Hung Chen  (2012). We briefly discuss the two of the Janson & Middendorf 

papers here. These papers develop a hierarchical model of PSO in which the better particles 

move up a level in the hierarchy. Janson & Middendorf  (2005) also introduce a variation to 

the velocity equation such that the gbest particle is implemented with a randomised search 

within the local area after it has failed to find an improved solution for a period of time. 

  Lin Lu et al. (2008) implement the transfer of complete particle position vectors, both 

between layers and between swarms on the same layer. Although facilitating information 

transfer, the experiments reported in Chapter 6 show this results in premature convergence: 

rather than perturbing the particle’s position: the best particles are accelerated to 

stagnation through the duplicated action of the velocity equation at each layer.  Rezaei & 
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Azadi (2009) present a novel variant and application that of MRI scan alignment for the 

surgical identification of brain tumours. The variant is based on Janson & Middendorf (2005), 

and is a variation on a single swarm which works through implementing a hierarchical 

neighbourhood structure in which each particle changes position in the hierarchy, 

dependent on its performance in the previous iteration. One potential disadvantage of this 

strategy is that the worst performing particles are moved away from the best performing 

particle. This in turn leads to a situation where the worst performing particles are directly 

influenced by particles with similar performance scores, and only indirectly influenced, 

through intermediate layers, by better performing particles.  Scheutz (2007) also presents a 

real-time application for facial recognition also based on Janson & Middendorf. The paper 

reports significant improvements over single swarm facial recognition, without the reliance 

on the “Haar” facial detector technique used in Janson & Middendorf.  Unfortunately, there 

is insufficient implementation detail for conclusions to be drawn on the reason for such an 

improvement, or whether the improvement is application specific.  Yen & Wen-Fung Leong 

(2009) implements a dynamic multiple swarm implementation, which aims to optimise a 

multi-objective problem using an adaptive swarm scenario where the number of swarms 

increase and reduce adaptively to the function landscape, in accordance with the swarms’ 

progress. Each swarm is designated a search area to explore, depending on the success of 

another swarm and allowing the combined swarms to exploit the search areas. Conversely, 

the number of swarms is reduced if an area proves to be unproductive.  Weibo Wang & 

Quanyuan Feng (2010) implement a multi-swarm hierarchal structure where several bests 

are selected per iteration from the lower layer swarms to form the higher level swarm. Each 

particle in the higher layer swarm is then perturbed using a chaotic search within a certain 

radius. This is analogous to van den Bergh’s single swarm GCPSO, van den Bergh (2002), the 

modification here applied to the gbest particle attracts the criticism that it ignores the 

solution space information and becomes a stochastic optimiser.  
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Although  Po-Hung Chen (2012) refers to a hierarchical approach, it is essentially a two-

phased approach with a hybrid expert system-PSO solution to solve a unit commitment (UC) 

problem. The first phase of this creates candidate solutions which satisfy the rules of the 

expert system, with a second phase that optimises these candidate solutions using a variant 

of PSO which Po-Hung Chen refers to as Elite-PSO. Elite-PSO is implemented such that each 

particle has a group of best positions which can be learned from, rather than a single best, 

these positions being the historical best positions for the particle, thus implementing a 

memory with the potential to lead back to a previous best position. An interesting aspect of 

the implementation is that, rather than having vectors, the particle swarms are 

implemented as two-dimensional matrices. 

For completeness, we briefly list some other hierarchical swarm research that we 

consider relevant: Bhattacharya & Bhattacharyya (2012); Xue Wang & Sheng Wang (2011); 

Senthilnath et al. (2012); Cheng-Chi Wu et al. (2013). 

2.1.7 Comprehensive Learning Particle Swarm Optimizer (CLPSO) 

Comprehensive Learning Particle Swarm Optimizer (CLPSO) (Liang et al., 2006) offers an 

innovation based on the concept that any particle should be able to learn from any other 

particle for each dimension. This is achieved by modifying the velocity equation as follows: 
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where f defines which particle’s pbests a particle should follow, the process for 

updating a particle’s position is defined in Figure 3: 
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Figure 3: Selection of examplar dimensions for particle i reproduced from Liang et al. (2006) 

CLPSO is tested using several standard test functions and against several different 

standard variants of PSO. The test functions are split into four different groups, Groups A-D. 

Groups C and D represent complex rotated functions and functions which have Gaussian 

noise added. CLPSO outperforms all other variants on these functions in Groups C and D. 

This is an interesting result, as it implies that introducing more variation into the possible 

influences for velocity update results in an increase in the convergence potential, regardless 

of the nature of the function being optimised. A potential limitation of this variant is that the 

velocity modification considers each dimension independently. This may affect problems 

with a high degree of interdependence between the dimensions: that is, a value on one 

dimension is strongly correlated with some value in another dimension. This issue is 

potentially addressed by the FDR-PSO variant considered below. 
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2.1.8 Fitness Distance Ratio (FDR) Particle Swarm Optimisation 

Fitness Distance Ratio Particle Swarm Optimisation (FDR-PSO) is a variant of PSO 

developed by Peram et al. (2003) which, although similar to CLPSO (Liang et al., 2006), uses 

the fitness distance of the particles’ best solution so far, rather than the Euclidean distance, 

to determine the influence on a particle of other particles. 

FDR-PSO is conceptually similar to an early idea of my own Kenny (2005), in that it 

attempts to include particles which are similar in fitness to the current particle. My variant 

was inspired by Differential Evolution (DE) (Storn & Price, 1995; Price, 2005) to address the 

issue of stagnation, in which I state: 

…. Taking influence from differential evolution, it is arguable that rather than being 

influenced solely by some sort of population best and its own previous best, an individual 

particle should be influenced, at least partly, by closer neighbours to itself. It is believed, 

although not currently confirmed through experiment, that this would lead to [a] system less 

influenced by local optima and therefore more fully explore the solution space. 

A possible formula for [the] velocity vector, is therefore: 

vxx

xpxrxrv

ii

iii b






 )()()( 321 21 

  

where 1 , 2 and 3  are defined as a function of the total ‘influence space’ rather than 

just random values, with no relationship to the distance, and are therefore dynamic and 

effectively define the attractiveness of the distant particle. 1r  and 2r  are neighbours, 

possibly randomly chosen, with iprr g  21 , where i is the current particle and gp  is 

the population best. The total sum of 1 , 2 and 3  should sum to no more than 2.0, in 

order to ensure convergence, which is consistent with the usual PSO condition. 
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FDR-PSO works by updating each particle’s velocity in accordance with the following 

modified velocity equation: 
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where jp  is the particle that maximises the above equation, fitness is the objective 

function which returns a measure of how good the solutions contained in jp and are. 

Although this variant adds computational cost per iteration, it also brings an 

improvement when tested against standard test functions, in that the variant is less 

susceptible to premature convergence. The introduction of the element expressing a 

relationship between the fitness distance of a particle to that of the next best particle to 

maximise the fitness equation has made FDR-PSO one of the best performing variants on the 

test functions in Baskar & Suganthan (2004), Liang et al. (2006), Liang & Suganthan (2005), 

and Veeramachaneni et al. (2003). 

2.1.9 Adaptive Particle Swarm Optimisation 

Another development, Zhan et al. (2009), represents a substantial development on the 

velocity equation, and builds on the development of Ratnaweera et al. (2004), Peram et al. 

(2003), and van den Bergh (2002).  Zhan et al. identify four stages of convergence to which 

they apply different settings of the PSO parameters as shown below: 

ip
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Table 1: Strategies for setting the acceleration coefficients reproduced from Zhan et al. (2009) 

 Each of the strategy said above are employed depending on the stage the swarm is in. 

This is determined by the following equation reproduced from Zhan et al.: 
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with the 0,1 divided into 4 ranges to identify the current stage. 

 

Table 2: Search result comparisons among eight PSOs on 12 test functions, reproduced from Table VI,  

Zhan et al. (2009). GPSO: Global PSO; LPSO: Local PSO; VPSO: von Neumann topological structured PSO; FIPS: 

fully informed particle swarm; HPSO-TVAC: PSO with time-varying acceleration; CLPSO: Comprehensive-

learning PSO; APSO: Adaptive PSO 
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Table 2, reproduced from Zhan et al. (2009) shows the experiment results. The results 

show that, for most of the test problems, this implementation of PSO outperforms the other 

implementations. The implementation is interesting because it attempts to give the heuristic 

adaptability depending on the stage of convergence. 

 Other papers which modify the velocity equation include:  Changhe Li et al. (2012) 

and Zhi-Hui Zhan et al. (2011). 

Developing the PSO model 

We now consider developments on the PSO model that extended the original heuristic. 

A feature of PSO algorithm is that systems have converged poorly, especially at the end of 

the execution lifetime. As a result, many researchers have made modifications that take it 

outside the swarm analogy. The aim is to produce a converging optimisation technique 

rather than model the phenomena present in nature. In this section, the main methods and 

themes will be covered. 

2.1.10 Neighbourhood Topologies 

The introduction of neighbourhood topologies into PSO is probably one of the most 

significant areas of PSO research. In a given solution space, the neighbourhood topology 

simply describes the way in which the particles are dispersed and how they ‘relate’ to each 

other: that is, how they communicate their solutions, and how the total solution space is 

divided by the subpopulations of particles. 

Of the many works on the subject, the most significant are Kennedy (1999), Kennedy & 

Mendes (2002), Mendes et al. (2004) and Iacoban et al. (2003a, 2003b).  Kennedy (1999), 
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Mendes et al. (2004), Huang & Mohan (2005) and  Tsujimoto et al. (2012) explore a number 

of different neighbourhood options. 

   Kennedy (1999) and Tsujimoto et al. (2012) specifically explore the effect of several 

sociometries3, with the introduction of direct connections between individuals in the 

population, in addition to the gbest and lbest topologies. These configurations were tested 

using the constriction coefficient version of particle swarm optimisation.  Mendes, et al. 

(2004) explore the effect of several differing topologies, namely, gbest, lbest, pyramid, von 

Neumann and four clusters. These are defined as: 

 gbest or Fully Informed Particle Swarm (FIPS) treats the entire population as the 

individual’s neighbourhood. 

 lbest where adjacent members of the population comprise the neighbourhood, such 

that, if n represents the number of neighbours and n = 3, the neighbourhood 

consists of 3 particles: the current particle and the adjacent neighbour on the right 

and left. Note, that adjacent refers to the indexing of the particles and not their 

position in the solution space. 

 pyramid a three-dimensional wire-frame triangle, shown in Figure 4. 

 von Neumann a square lattice in which the extremities connect as a torus. 

 four clusters, completely interconnected, and connected among themselves by a few 

shortcuts, shown in Figure 5. 

                                                           
3 Sociometry: the quantitative study of social relationships. 
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Figure 4: Pyramid neighbourhood 

 

Figure 5: Four clusters neighbourhood 

 Although no best topology was found, the authors report that using a neighbourhood 

topology preserves greater population diversity since it slows down the spread of 

information between population members. 

A particle swarm’s ability to solve a given problem has been found to be dependent on 

the neighbourhood topology, (Kennedy, 1999; Mendes et al., 2004). To some extent this is to 
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be expected, given the variable nature of the solution spaces, although there is an implicit 

conclusion in Mendes et al. (2004): 

 “Even though the von Neumann sociometry seems to be a very good performer, it is 

important to understand why it is such a good choice. It seems also important to 

consider the implications of apparently not needing to consider the past experience of 

the individual. Also, these new variants need to be thoroughly tested with different 

problems, to attest for their robustness.” 

 Reinforced by observations by Iacoban et al. (2003a) regarding the effect of variable 

interactions in a swarm, it is possible to draw a tentative conclusion that at the end of a run 

convergence is affected by the neighbourhood topology. We shall return to the notion that 

the structure, and to some extent the behaviour, of a swarm affects its ability to converge, 

since it is clear that if the ability of the algorithm to converge during the latter stages of a run 

is not strong enough sub-optimal solutions are likely to result. Potentially, this could be made 

worse by a poor relationship structure between the particles. 

Other neighbourhood papers include: Qu et al. (2013), Wu & Chow  (2013), Yan-Liang Li 

et al. (2013), and Bala Krishna & Doja (2011). 

2.1.11 The gbest inclusion in FIPS 

At this point it is worth pausing to make an observation on the inclusion of the gbest 

particle in its own neighbourhood. There is an inconsistency in the literature as to whether in 

a Fully Informed Particle Swarm (FIPS) neighbourhood a particle can be its own gbest. For 

example Kennedy (1999) and Jun-Jie & Zhan-Hong (2005) explicitly exclude the gbest particle 

from its own neighbourhood, while others (e.g., van den Bergh & Engelbrecht, 2002; 

Engelbrecht et al., 2005) imply the gbest is included in its own neighbourhood. This is 
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contrasted with the lbest neighbourhood where the particle is included in its own 

neighbourhood Kennedy & Mendes (2003). The inclusion of gbest in its own neighbourhood 

means that the particle is drawn at a proportion of twice its new velocity towards its 

previous best. 

This minor difference results in the gbest particle ceasing to move, since the new velocity 

becomes a zero sum (at least more rapidly). It is arguable that this contributed to the 

development of GCPSO van den Bergh (2002). If the gbest particle is not included in its 

neighbourhood it then becomes subject to the second best particle in the FIPS 

neighbourhood and hence continues to have limited exploration abilities. Of course, this may 

not make much difference within a closely converged swarm. However, in earlier stages it 

means that gbest retains a dual influence in its velocity from its own best position and the 

best position of the second best particle. It also maintains the oscillatory movement 

between the best and second best. 

 It is of course arguable that the gbest particle will not really benefit from a particle that 

is being influenced by another particle relatively close by. However, in the early stages of 

convergence, excluding the gbest particle from its own neighbourhood means that the gbest 

particle has an additional influence other than its own best position. If a particle is the best 

particle in a neighbourhood and used as the neighbourhood’s best, the velocity update 

equation is equivalent to: 
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The difference between the above equation and the usual velocity update equation is 

that the particle’s best has been used in place of what would normally be the 

neighbourhood best. This would be the case if the particle were the best particle in the 

neighbourhood. In this case, the particle becomes influenced by its own best position twice, 
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effectively doubling its velocity to its own best position, and thus increasing the likelihood of 

stagnation for the particle. The decay in velocity via the inertia weight leads to convergence 

on a point within a hypersphere between its current position and its best position. The 

particle will not escape the area already searched. 

2.1.12 Boundary Conditions 

We briefly consider what options are available when a particle reaches the condition 

where its position in a given dimension equals Xmax . In summary, the general options 

are either that the particle's position in that dimension is reflected back, or it is mirrored, or 

has a random perturbation added to move it away from the boundary, or it is made 

increasingly difficult for a particle to reach the Xmax value. The few papers that explicitly 

consider what happens under boundary conditions in PSO include:  Huang & Mohan (2005), 

Xu & Rahmat-Samii (2007),  Mikki & Kishk (2007),  Wenhua et al. (2011),  and Khan & Brown 

(2012).  Helwig et al. (2013) review a number of alternatives on several test functions. These 

include:  Hyperbolic, Random Back, Nearest-Z, Random-Z, Reflect-Z, Rounded Mirror, 

Infinity, Infinity-C . Each of these Boundary Methodologies is tested on the CEC’05 set of test 

functions, with a full description of each boundary methodology given in the paper. 

Although the researchers use an extensive suite of test functions, it is notable that no 

boundary condition outperforms another over the entire suite. 

2.1.13 Mutation Operators 

Work has been carried out to improve on this performance of PSO by drawing on 

researchers’ previous experience with genetic algorithms, in which mutation operators or 

other heuristic techniques play a part. 
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The use of mutation or crossover operators to enhance PSO is exemplified by: Higashi & 

Iba (2003), Wen-Jun & Xiao-Feng (2003) and Abdelbar & Abdelshahid (2004).  The latter adds 

a local search operator. The former take the option of perturbing a stagnated swarm by 

using Gaussian mutation, effectively nudging the particles to explore slightly farther afield.  

Wen-Jun & Xiao-Feng (2003) reports on the combination of the Differential Evolution (DE) 

(Storn & Price, 1995; Price, 2005) crossover operator to calculate a new position vector for a 

particle. In DE the crossover operator constructs a new solution by probabilistically 

introducing the difference between two vectors or the value of the parent vector, such that: 

)( iiii cbFay   

where a, b and c are randomly selected from the population and }2,0{F . The 

mutation operator is applied if two random variables r and CR , }1,0{, CRr meet the 

following criteria CRr   otherwise the standard velocity update is used. 

 Of significance in this variation is that the particle only moves to the new position if that 

position is better than its previous position, as defined by the objective function. Effectively, 

the selection process improves exploration capacity if the existing solution cannot be 

exploited, because the velocity is small and the landscape surrounding the candidate 

solution results in non-improving solutions. However, it should be noted that, as with any 

crossover operator, the combination of good values matched with a combination of poor 

values might in fact just miss the global optimum. 

Dynamic and Multi-objective Problems 

In this sub-section we consider adaptations to PSO in order to handle optimisation 

problems which have dynamic or multi-objective optima. These are characteristics which 

add significant overheads to the processing required by the swarm in order to maintain 
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convergence on the true optima. Both of these areas are still the subject of significant PSO 

research, for dynamic problems:  Eberhart & Shi (2001), Eberhart & Shi (1998), Carlisle & 

Dozier (2000, 2001), Roberge et al. (2013).  And for multi-objective problems:  Coello Coello 

et al. (2004), Hu & Eberhart (2002), Coello Coello & Maestria (2002), Xu et al. (2006),  Xiao et 

al. (2003), Blackwell & Branke (2004), Yen & Wen-Fung Leong (2009), Zeng et al. (2011), 

Changhe Li & Shengxiang Yang (2012). 

2.1.14 Dynamic Problems 

There are many techniques in the literature to deal with dynamic problems, where the 

characteristics of the problem and therefore the optimal solution change. One common 

approach considers the re-initialisation of part of the swarm; another uses a sentinel 

approach.  

In the re-initialisation case (Eberhart & Shi, 2001, 1998), two options were considered. 

First, periodically ‘forgetting’ the previous gbest and using the existing swarm positions as 

starting positions for the new swarm. Second, re-initialising the swarm with new randomised 

starting positions. This has proven to be effective, (Carlisle & Dozier, 2000, 2001) in 

maintaining track of the best solution in dynamic environments; but clearly it is essentially 

rerunning the swarm. 

  Eberhart & Shi (2001) suggests that the parameter USEBETTER, a parameter discarded 

in PSO’s early development Kennedy & Eberhart (1995), might be used in optimisation of 

systems where the dynamic change in the optimal value is small. The effect of the 

USEBETTER parameter is to change the particle’s current position only if the new position 

results in an improved solution. However, it is noted here that such an implementation 

decision requires additional prior knowledge of the dynamics of the problem domain. 
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The second solution for dynamic problems was presented by Carlisle & Dozier (2000, 

2001), in which a sentinel particle is proposed; the sentinel periodically checks the optimal 

value of its existing solution, forcing the other particles to re-evaluate their solutions if a 

change in the optimal solution has been detected.  A random particle is selected as the 

sentinel on iteration, storing a copy of its score for its current position. Before updating its 

current position in the next iteration, it re-evaluates its old position; if the two results differ, 

then the whole swarm re-evaluates. This solution has the benefit of retaining the previous 

experience of the other particles for consideration as a new best solution. However, both 

solutions affect the dynamics of the swarm, in that between periodic updates it is possible 

that particles are optimising to an out-of-date optimal value.  Carlisle & Dozier (2000) 

evaluate the sentinel solution on several types of dynamic environment, in all cases it 

outperforms other PSO variants. 

2.1.15 Multi-Objective Applications and their Problems 

Multi objective problems are problems with multiple independent variables to be 

optimised simultaneously. Many real-world problems are of this type, for example Chemical 

Reaction Engineering, Chemical Plant Design, Printed Circuit Board Design, Process 

Optimisation, Facial Recognition, Structural Support Compliance and Antenna Arrays. The 

proposals we consider the most significant are discussed below. All research reported in this 

section uses Pareto front dominance4. 

 Coello Coello et al. (2004) represents a significant contribution. It contains a significant 

review of the other work completed and presents substantial developments which 

                                                           
4 Pareto front dominance is a line defined by solutions in a multi objective solution space, which are not 

completely dominated by other optimal solutions on the line. A vector x* is called Pareto optimal if there 
exists no feasible vector x which would decrease some criterion without simultaneously increasing at least one 
other criterion. The Pareto front is therefore, the line containing Pareto optimal points. 
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significantly improve on the existing PSO algorithm for multi-objective problems. Sample 

results are below in Table 3: 

 

Table 3: Summary of results reproduced from Coello Coello et al. (2004), Table XX showing runtimes.  

MOPSO: Multiobjective PSO; NGSA-II: nondominated sorting genetic algorithm; microGA: microgenetic 

algorithm form multiobjective optimisation; PAES: Pareto archive evolutionary strategy. 

The algorithm is developed and refined through four experiments. The authors’ strategy 

is to maintain an extended archive of Pareto dominated solutions. A solution is replaced in 

the archive by a new solution only if the new solution dominates an existing solution. The 

original velocity equation for PSO is then modified to include a random Pareto dominant 

solution from the existing archive, thereby extending the role of gbest in the original 

equation. In addition, to address a shortcoming identified in previous work Coello Coello & 

Maestria (2002), a mutation operator is used to mutate a reducing subset of the population 

in order to avoid premature convergence on a non-dominated Pareto front. It should also be 

noted that the same mutation operator is applied to the ranges of each dimension, gradually 

reducing the size of the solution space as the position of the Pareto front is identified. The 

researchers’ findings are summarised as: 

 Introduce a mutation operator, whose range of action varies over time to improve 

the exploratory capabilities, eliminating the need to fine tune the inertia weight.  

 Introduce a results repository of size 250. 
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 On average a population of 100 particles is best to optimise the Pareto front for all 

test functions. 

 A grid of 30 divisions for the solution space is optimal. 

 Hu & Eberhart (2002) proposes a different technique: that of a dynamic neighbourhood. 

This again uses Pareto dominated solutions, although this implementation finds solutions on 

the Pareto front less successfully than the system proposed by Coello Coello et al. In Hu and 

Eberhart’s algorithm, the Euclidean distance from every particle to every other particle is 

calculated per iteration; the particle then selects its neighbourhood for that generation from 

the nearest n particles. The local optimum within the new neighbourhood is then calculated. 

In addition, the particle’s best is only updated if the current solution dominates all previous 

bests in the particle’s history. Other multi-objective research, not discussed here, includes:  

Ki-Baek Lee & Jong-Hwan Kim (Ki2013), Xiangtao Li & Minghao Yin  (2013), Senthilnath et al.  

(2013), Lixin Tang & Xianpeng Wang (2013), Rubio-Largo et al. (2012), Sarikhani & 

Mohammed (2011), Ashabani & Mohamed (2011), Xiaodong Li & Xin Yao  (2012),  and 

Maltese et al. (2015). 

Multi Swarm Implementations 

Multi-swarms are implementations of PSO in which multiple swarms are used to 

maximise exploration and exploitation. There have been several implementations of multi-

swarms, of which our innovation in Chapter 6 is one. Notable among these are Hardin 

(2005), Blackwell & Branke  (2006), Zhao et al. (2008), Meng-xin et al. (2014) and Srivastava 

& Singh (2015). The aim of these multi-swarm implementations is generally to try and 

maintain a balance between exploitation and exploration. The implementation used in 

Hardin (2005) divides the swarm into particles in one of two modes. In the first mode the 

particles are operating far apart, defined as proportional to the particles’ velocity and 
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distance. When the particles have settled in an area close to each other they are ejected to 

the next wave, determined by an index value. Particles only interact with other particles in 

the same wave. The WoSP variant is tested on a multi-objective problem, with some success, 

see below: 

 

Table 4: The relative performance of the basic PSO and WoSP algorithms, reproduced from Hardin (2005). 

The innovation in Zhao et al. (2008) by contrast arranges the particles into sub-swarms 

based on their solution fitness with the addition of a randomised regrouping interval to 

allow for the global communication of information. This variant was tested on the 7 Test 

Function from CEC’08, namely: 

F1: Shifted Sphere Function 
F2: Shifted Schwefel’s Problem 

F3: Shifted Rosenbrock’s Function 

F4: Shifted Rastrigin’s Function 

F5: Shifted Griewank’s Function 

F6: Shifted Ackley’s Function 

F7: FastFractal “DoubleDip” Function 

Although the innovation reports good results on all functions, no comparative results are 

reported. Other multi-swarm innovations, not discussed here, include:  Chen (2009), Röhler 

& Chen (2011), Chen & Montgomery (2011), Xue Wang & Sheng Wang (2011), Röhler & Chen 

(2012), and Changhe Li & Shengxiang Yang (2012). 
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Observation on Swarm Behaviour 

From the literature review presented above, there is significant uncertainty over which 

implementation of PSO is best for given problem domains, though Clerc (2006) and van den 

Bergh (2002) suggest useful parameter settings. Given that PSO is a very effective 

convergent technique, it is reasonable to suppose that it would be effective working on real-

world data, which will inevitably include noise. Some examples of papers which consider 

noisy applications are:  Kennedy & Eberhart (1995), Eberhart & Kennedy (2004), Slade et al. 

(2004), Wachowiak et al. (2004), Lei & Liying (2005), Scriven et al.  (2010), Ying Li et al.  

(2011), Kachroudi et al. (2012), Fodorean et al. (2013), and Senthilnath et al. (2013). Many 

the applications researched rely on pre-preparation, either in the form of user adjustment or 

pre-processing of the data before subjecting it to the particle swarm, and usually in support 

of another heuristic such as Artificial Neural Network (ANN). An interesting exception is Ince 

et al. (2009), in which PSO is used to develop the structure of the ANN as well as find its 

weights, for patient specific ECG classification. Nevertheless, a useful research topic would 

result from processing some well-defined, but noisy, real-world data with a suitably defined 

objective function. Could PSO discriminate between wanted and unwanted information 

successfully?  

In the remainder of the section, we briefly discuss an observation that has been little 

explored in the literature. In the discussion above, one of the recurring themes has been the 

swarm’s inability to converge at all, or a tendency to stagnate around the optima. The 

following is a brief discussion and analysis, which attempts to highlight an underlying theme 

in PSO research. It is a theme which appears for the most part to have been explicitly missed 
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and some examples of work which is implicitly acknowledged. It concerns what happens to 

the gbest5 particle. 
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In the inertia weight variant, above Shi & Eberhart (1998b), if no further improvement is 

found, the velocity of gbest would decrease to zero. In this scenario, once the particle 

becomes gbest then it effectively ceases to be an effective contributor to the swarm’s 

convergence potential. 

We would suggest that this should not be the case, and that gbest should continue to 

explore, adopting an exploration method which reflects its previous experience. Instead of 

the arbitrary resetting of the velocity equation to a randomised re-initialisation value (e.g., 

Ratnaweera et al., 2004), the particle might explore using the difference between its 

previous velocity, the velocity before arriving at gbest, and the velocity which caused its 

arrival at the gbest position. Another possibility is to use the gradient descent technique to 

find the optimal solution in the area of the solution space surrounding the current gbest. 

This remains an open research question.  

The problem of gbest stagnation was identified by van den Bergh (addressed in van den 

Bergh, 2002; van den Bergh & Engelbrecht, 2004), with the development of the idea of 

Guaranteed Convergence PSO. The behaviour of the particles once a non-improving gbest 

has been found leads to the stagnation condition, van den Bergh (2002). This is a weakness 

in the behaviour of PSO: the inertia behaviour of a swarm means that the necessary diversity 

required to build the momentum to escape is lost before stagnation is reached. 

                                                           
5 Although we consistently refer to gbest, this is for convenience. The argument applies equally to the 

neighbourhood best. The term pbest for “population best” is not used here to avoid confusion between 
population and particle best. 
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A more recent attempt to addressing stagnation is a Triangular Particle Swarm 

Optimisation Qais & AbdulWahid (2013). This paper implements a cosine modification to the 

velocity equation as follows: 
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The inclusion of the cosine of the ratio of the particle’s best position to the particle’s 

current position will have the effect of reducing the length of the vector produced by the 

equation. Theoretically, this will mean that the swarm will be better able to find improved 

solutions at convergence. However, the solution was only tested on standard test functions, 

and it would be interesting to see the effect where real-world data introduces noise or has a 

significant number of local optima. 

Research on Real-World Data 

As discussed earlier PSO was originally developed as a model of social interaction. It was 

later developed as an optimisation technique. However despite this, there were relatively 

few real-world applications developed in PSOs early development. Both Eberhart & Kennedy  

(2004), and Slade et al. (2004) use PSO to successfully categorise different datasets. Given 

this success, it is perhaps surprising that further applications on real-world data were not 

developed earlier. The following paragraphs briefly review the real-world PSO literature. 

The PSO literature to include real-world data has become very broad, for example: Wen-

Tsai Sung et al. (2014), Li et al. (2013), Peng et al. (2014), Siano & Mokryani (2013), Chen et 

al. (2013), Wu et al. (2008), Sun et al. (2014), and Antoniou et al. (2013).  Kulkarni & 

Venayagamoorthy (2011) present a review and include useful analysis of issues and PSO 

variants applied to optimising Wireless Sensor Networks.  Senthilnath et al. (2012, 2013) and 

Kit Yan Chan et al. (2013) include applications as diverse as medical analytics, through 
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product sale forecasting, multiple sequence alignment (Bioinformatics), wireless data traffic 

management, and image alignment through to short-term vehicle traffic flow prediction. Of 

these, probably the most interesting are Wen-Tsai Sung et al. (2014), Antoniou et al. (2013), 

and Kit Yan Chan et al. (2013). The first, Wen-Tsai Sung et al. (2014), uses PSO to provide 

analytics to life sign data collected through Bluetooth and ZigBee sensors in Android devices; 

PSO is then used to provide analytical functionality before the data is forwarded to the 

Cloud. This application has significant potential within the field of telemedicine, allowing 

clinicians to assess patient data on a near real-time basis, and thus potentially avoiding 

unnecessary acute admissions to hospital. Such an application of PSO emphasises the 

flexibility of PSO to produce useful analytical functionality without being part of a bigger 

hybrid solution.  Kit Yan Chan et al. (2013) present an alternative application, that of 

reducing vehicle traffic congestion by optimising mobility in real-time using data gathered 

from road sensors. In Antoniou et al. (2013), PSO is applied to the application of wireless 

network congestion. The application uses PSO to produce an adaptive traffic management 

policy in real-time, depending on the network traffic at that point in time. This application is 

interesting because of its real time use of PSO. 

Since PSO has become an established optimisation technique, there have been 

numerous other papers concentrating on biomedical data, including Delgado Saa & Cetin 

(2013) and Cheng-Chi Wu et al. (2013).  Kentzoglanakis & Poole (2012) used a combination 

of PSO and ACO to reverse engineering gene expression for the Escherichia coli bacterium. 

Perhaps one of the most intriguing applications of PSO is Matsumura et al. (2013). 

Although strictly speaking, real-world data is not used, these researchers develop a hybrid 

algorithm combining PSO with Evolutionary Strategies in order to produce an optimisation 

model (see Section 0 for a discussion of evolutionary strategies). The paper initially presents 

a series of experiments on standard test functions and demonstrates that the hybrid 
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algorithm is more consistent, although not always better, than the comparative algorithms. 

The paper goes on to use the algorithm relatively successfully to produce computer models 

of dinosaur gaits. A useful enhancement would be to see how well it models the gait of 

current carnivores or similar living flightless birds or lizards. 

Other Optimisation Techniques 

In this section we touch on several other optimisation techniques that are used within 

the computational optimisation community to find solutions for complex mathematical 

problems. As we have seen above, many of the adaptations to PSO have been inspired by 

other successful optimisation techniques. This section briefly discusses the details of three of 

the more widely used techniques and some of the principles used in applying them to 

specific problems We also briefly discuss the difference between test and training data, and 

multiple linear regression, which is used as the benchmark comparison technique in this 

thesis. 

2.1.16 Genetic Algorithms 

Genetic algorithms (GAs) attempt to mimic the way genomes evolve (Goldberg, 1989; 

Michalewicz, 1996), using three main operators: selection, mutation and crossover 

(crossover is sometimes called recombination). For each generation, one or all of the 

operators may be applied in order to create the new population for the next generation. GAs 

are normally suited to discrete problem representations, usually binary. 

An initial population of candidate solutions is randomly generated, each generally a bit 

array representing a possible solution to the problem. Each successive generation is a 

recombination of selected individuals from the current generation, using a combination of 

the mutation and crossover operators. The process of forming the next generation starts by 
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selecting the fittest or best solutions in the current generation, as measured by a fitness 

function, a function which evaluates each candidate solution and returns an evaluation of its 

quality as a solution to the problem in question. After randomly selecting at least two of the 

fittest solutions as parents, the mutation and crossover operators are chosen 

probabilistically. The mutation operator may randomly flip one or more bits from its original 

state before adding it to the new solution. The crossover operator randomly selects one or 

more points in the bit array, and the arrays then exchange bits after, or between, these 

points. Although GA uses the best solutions to generate the next generation, the GA model is 

not directly influenced by the landscape of the solution space being searched. Rather, it 

comprises a randomised re-pairing of the existing good solutions. A more complete 

discussion is available in Goldberg (1989), Michalewicz & Fogel (2004), and Michalewicz 

(1996). 

2.1.17 Evolutionary Strategies 

Evolutionary Strategies (ES), (Corne et al., 1999; Storn & Price, 1995), generate new 

offspring by calculating some sort of 'difference' between two or more selected parents. 

However, ES differs from GA in that it only uses the mutation operator to generate the next 

population. When implemented, the individuals making the parents for the next generation 

are derived from either of the following possibilities: 

(μ + λ): In this variant the selection of the parents for the next generation is derived 

from the parents and offspring. The worst performing parents are then discarded to 

keep the population constant. 

(μ, λ): In this variant only the offspring are considered for possible selection as 

parents for the next generation. Obviously in this version better performing parents 

from the previous generation are "forgotten". 
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The other advantage of ES, as with PSO, is that it works efficiently in the real number 

space. 

2.1.18 Artificial Neural Networks 

Artificial Neural Networks (ANNs) are inspired by the central nervous system attempting 

to model the interactions between neurons. In artificial intelligence, they are typically used 

for machine learning and recognition tasks. Although there are different types of ANN all 

have a similar structure of layers of nodes interconnected by weights. A sample ANN is 

illustrated in Figure 6. 

    Inputs 

 

Output 

Figure 6: Example Multilayer Artificial Neural Network  

In the above figure, the red dots are nodes; each node incorporates a mathematical 

function that varies depending on the network topology – typical functions used are sum or 

the sigmoid. Each connection between the nodes is weighted with a numerical factor, which 
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represents the importance of the contribution made by that node. Nodes receiving no input 

connections are referred to as biases, and allow for the relative influence of the nodes to 

which they are connected to be modified. ANNs need to be trained in order to find the 

optimal values of the weights connecting the nodes. There are two main types of training 

paradigm, supervised and unsupervised. In supervised learning the weights are found 

through the identification of a training set to which the weights are trained. In unsupervised 

learning the ANN is provided with a cost function, and the aim is to find the set of weights 

which minimises this function. More detailed information can be found in Haykin (1998). 

2.1.19 Multiple Linear Regression 

Multiple linear regression is a statistical technique used to model the dependence of a 

variable on one or more independent variables. To be more specific, simple linear regression 

models the relationship between a pair of variables, multiple linear regression includes 

multiple variables. Multiple linear regression also differs from logistic regression in that it 

models a relationship of the form: 

hXy  B  

where Xy, and h are vectors, B is the matrix which defines the relationship between 

the variables in y . The size of the matrix X determines the degrees of freedom in the model. 

The degrees of freedom are the number of variables which are free to change in order to 

model the relationship between the dependent variable and the independent variables. 

Multiple linear regression is useful when the independent variables are not highly 

correlated; this is particularly useful for establishing trend lines. Example applications are: 

risk analysis, epidemic spread, and the prediction of consumer spending. Further 

information on multiple linear regression can be found in Murphy (2012). 
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2.1.20 Test and Training Data Sets in Optimisation 

In developing an optimisation model, typically the data is split into test and training sets. 

The training data is the dataset used to refine the model such that it can then make 

successful predictions on data contained in the test set. The test data set is used to validate 

the model, and typically will be smaller than the training data set, but will contain a range of 

sample input datasets which represent the full dataset as a whole. 

The training data set will contain input values, each normally in the form of a vector, as 

is the case in this thesis. Output values will also be represented as a vector. The validation of 

a model against the test data set is important and should be performed using data that is 

independent of the training set. One of the potential complications which arise is that the 

model may over fit the training data: that is, the model matches the required outputs of 

training data so well that it is unable to predict new inputs which are not included in the 

training dataset. Further details on test and training data can be found in Haykin (1998), 

Goldberg (1989) and Michalewicz  (1996). 

Such models are usually termed regression models, two forms of which are linear 

regression and logistic regression. Linear regression is discussed in greater detail below. 

Logistic regression is used to measure the dependency between one categorical variable and 

one or more independent variables. In the following chapters we use Multiple Linear 

Regression for validation of our techniques. 

This section has provided a brief introduction to heuristics used for problem 

optimisation. For a more complete discussion, see Corne et al. (1999) and de Castro & Von 

Zuben (2004). 
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Summary 

This chapter presented a brief history of the development of particle swarm 

optimisation. The aim has been to present a roughly chronological account of development 

of the original heuristic, and of the enhancements made to it since inception in 1995. In 

addition, we have presented some of the specific implementations of the heuristic. We 

contend that PSO is better than other techniques for the following reasons: 

 A small population size is required compared with other evolutionary algorithms. 

 On a typical problem, fewer iterations are required to find an acceptable solution. 

 PSO adapts its solutions between exploration and exploitation during convergence. 

Uses a guided search such that the values between the current and best solutions 

have to potential to be exploited 

Sections 0 - 0 established the background, with subsequent sections exploring the major 

developments of, and modifications made to, the original algorithm, required by specific 

implementations for given problems, such as dynamic and multi objective problems. We 

suggested that many of the changes made to PSO in its early development were essentially 

modifications to the equations which claimed to be an improvement over another variant; 

this is also recognised by de Oca et al. (2009) who, in a detailed paper, evaluated a 

composite PSO algorithm integrating the modifications of others based on the modification’s 

merit. 

In the next chapter, we build on the foundations established in this chapter to offer a 

critique of past, and more recent, research. We develop a taxonomy of particle swarm 

optimisation, the purpose of which is to establish the weaknesses in the research and 

establish the basis for our suggested innovations.
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Chapter 3  

A Critique of Past Research 

Particle swarm optimisation was developed with a view to modelling social behaviour, 

rather than the optimisation of nonlinear problems. In this section, we present a critical 

analysis of some of the developments of PSO since its inception.  

Although in its original form PSO has proved to be a very fast converging algorithm, 

Kennedy & Eberhart (1995), it suffered from poor convergence to a good quality solution. 

The reason for this is that towards the end of its run the social and cognitive elements of the 

velocity equation contribute only a small value to the overall result, rather than being the 

dominant contribution, as they are in the earlier stages when the particles are more 

dispersed. The particle’s most significant influence becomes its previous velocity, causing it 

to ‘over-fly’ the area of solution space containing the best solution. Therefore, no further 

improvement is seen from any other particle in the population, leading to a stagnation 

condition. Many researchers have attempted to develop improvements to address this. 

What follows is an analysis of the developments in PSO grouped into four main classes 

these are:  

1) Heuristics or Trial and Error: drawing from existing heuristics with a trial and error 

approach to finding improvements. 

2) Lack of Analysis: the initial developments in PSO lacked a strong analytical theme. 

3) Pragmatic Modification: these are modifications which were considered sensible 

by researchers to improve on results 
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4) Velocity Equation Modification: changes to the velocity equation after analysis of 

PSO convergence performance. 

The chapter ends with a section covering later work important to PSO’s development. 

An important point is that in doing this type of analysis we are intending to draw out the 

many themes which we have identified in the early development of PSO, and not to judge 

which of these is best, although developments in subsequent chapters draw more from 

analytical approaches. 

Mathematical Analysis of PSO convergence 

Investigation of the mathematical features of PSO has led to some advances. For 

instance, Shi & Eberhart (1998a, 1998b) and Clerc & Kennedy (2002) developed the inertia 

weight and constriction factor versions of the velocity equations respectively, along with 

developments such as van den Bergh & Engelbrecht (2002, 2004) and van den Bergh (2002), 

as discussed above, and Ratnaweera et al. (2004). However, there is still little detailed 

analysis of the performance of the particle swarm heuristic during the latter stages of 

convergence, when the majority of the particles are in the same area of the solution space 

and the dominant influence on new positions is the difference between the respective bests 

multiplied by the acceleration coefficients. Early approaches (Clerc & Kennedy, 2002; van 

den Bergh, 2002) analysed this phase of the PSO by removing the stochastic elements from 

the velocity equation, effectively reducing successive iterations to a recurrence relation. 

However, this also has the effect of reducing the swarm to a deterministic swarm while the 

analysis is being carried out, with the stochastic characteristics of the swarm not considered. 

The passivity theorem and Lyapunov stability analysis is used by a later analysis 

(Kadirkamanathan et al., 2006) retained the stochastic nature of PSO and used the passivity 
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theorem and Lyanunov stability analysis to understand the dynamics of the particle swarm 

algorithm.  

Incorporating features from genetic algorithms 

There are several papers in which authors use mutation in some form to perturb the 

stagnation state in a pragmatic way; examples are: Higashi & Iba (2003), Jian et al. (2004), 

and Stacey et al. (2003). It is not our intention to imply that mutation within PSO algorithms 

can never be a useful operator. Rather, it is to suggest that using it purely to resolve the 

stagnation condition at the end of a run cycle addresses the issue of stagnation after it has 

occurred. 

As noted above, Angeline (1998a) has also produced a variation on the existing PSO 

algorithm, using the concept of selection to remove poor performing individuals. The 

variation includes the tournament selection algorithm, in which each individual particle 

competes against k other individuals. The result of the tournament is then sorted to produce 

a rank table. The particles in the bottom half of this table have their current positions and 

velocities replaced with those of the top half of the table whilst retaining their own best 

positions. The results presented in the paper demonstrate a significant improvement in the 

time taken to find the optima for most selected test functions, indicating that refining the 

population’s performance in this way would seem to be a reasonable step. However, it is 

noted here that nudging the particle’s position and effectively moving it towards the 

direction of the last improvement means that one is assuming that the solution landscape 

has a definite direction of improvement. However, we do not intend to imply that 

tournament selection should not be considered as part of a particle swarm implementation, 

but that the implementation used should respect the swarm’s integrity and the velocity 
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equation, not the pragmatics of a particular application, thereby preserving the collective 

learning strengths of PSO. 

 Wen-Jun & Xiao-Feng (2003) use the crossover technique first developed by Storn & 

Price (1995) for differential evolution. The basic principle behind this crossover operator is 

that new solutions are generated by recombining parents using a different operator, similar 

to the strategy used in conventional evolutionary algorithms. If the new solution is an 

improvement on the existing one, as measured by the objective function, it forms a member 

of the new population replacing the existing pbest – otherwise the new solution is discarded. 

Rather intriguingly, it is the particle’s best which receives modification rather than the best 

particle’s current position; although not explicitly stated, the rationale would appear to be 

that this has the effect of giving the particle two simultaneous ways of finding an improved 

solution and is an attempt to introduce an adaptive learning process to the gbest. This 

development preserves the velocity equation and therefore the swarm’s collective 

cognition. The recombination operator means that the solutions effectively perform 

hyperspatial jumps in the selected dimensions, potentially disconnecting them from the 

converging swarm. The tendency not to replace good solutions with inferior solutions, 

combined with hyperspatial jumps, also means potential convergence difficulties in a 

solution space with small feasible regions or a variable contour landscape.  

Velocity Equation Modification 

In the discussion above, we have considered modifications comprising the addition of 

operators derived from other optimisation techniques could be considered as ‘tinkering’ 

with the convergent properties of PSO. In this section, we will discuss suggested variants of 

PSO that are founded on analysis of the basic equations. It should be made clear that the 

significance of the modifications have mostly resulted from analysis prior to the modification 
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being made, rather than a post experiment adaptation. For this reason, more weight should 

be placed on the validity of the arguments presented. 

The first two velocity equation modifications, namely inertial weight and constriction 

factor, have already been discussed, together with time varying coefficients in Ratnaweera 

et al. (2004). They are reviewed below to complete the discussion. 

The equations below are the canonical PSO particle update equations: 
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where ip


 is the particle’s previous best, and gp


is the global best, iv 


is the particle’s 

velocity, ix


 is the particle's current position, w  is an inertia weight i1  and, i2 , are the 

acceleration coefficients. Following experimentation, Shi & Eberhart (1998b), found the best 

results were gained by reducing the inertia weight from a starting value of 0.9 to 0.4 over 

the course of a run. This relatively simple change has led to its wide adoption, because it 

allows the swarm to converge.  

Through the use of formal mathematical proof, Clerc & Kennedy (2002) showed that the 

constriction factor produces particle behaviour which is guaranteed to converge. The use of 

the constriction factor model also removes some of the parameter choice decisions from the 

implementer. Subsequent work reported by Eberhart & Shi (2000) comparing the velocity 

equation implemented with the inertia weight and constriction factor showed that the 

constriction factor resulted in a better rate of convergence on most test functions. However, 

for some test functions the constriction factor failed to reach the error threshold within a 

reasonable number of iterations; therefore Vmax was reintroduced, such that Vmax = Xmax, 

to avoid the swarm diverging too far from the optima. It was noted in Clerc & Kennedy 
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(2002) that the reintroduction of Vmax is presented as necessary, whereas in fact, as 

pointed out in Eberhart & Shi (2000), it only speeds up the inevitable convergence. With 

reference to van den Bergh (2002), Section 3.3, it should be noted that GCPSO, discussed in 

Chapter 2, is not guaranteed to converge on a global or even local optimum; it merely 

guarantees that the swarm will converge.  

In sum, Clerc’s substantive work formalised the relationship between the parameters of 

the velocity equation. Clerc also demonstrates a significant improvement in the algorithm’s 

ability to find the optima when the constriction factor was tested on a suite of test 

functions. The problem still remains that there is no guarantee of convergence on local or 

global optima. In addition, an understanding of the interaction and relationship between 

particles in a swarm has yet to be defined. 

Other modifications 

We will now briefly discuss some of the other investigations carried out on the original 

particle swarm heuristic.  

 van der Merwe & Engelbrecht (2003) apply particle swarm optimisation to data 

clustering using the K-means technique (Lloyd, 1957, 1982). This presents a different model 

to the classic PSO implementation, which is not strictly consistent with the usual 

understanding of how PSO works. Rather than flying the particles through the solution 

space, the data vectors are brought individually to each particle representing a candidate 

cluster centroid; the data vector is assigned to the closest cluster centroid by Euclidian 

distance. Although the authors’ description of the technique is somewhat incomplete (for 

example, is it possible to stop the swarm gravitating to a single centroid point?), an 

important question is this: will the clusters, in fact, be defined by the initial conditions in the 

swarm? The particle is a greater distance from most of the data values to be clustered 
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resulting in a high initial velocity. The description given in the paper implies that a particle on 

the boundary of the solution space would only receive influence in the direction which leads 

away from the boundary. Since the author describes a process of allocating data values to a 

cluster centroid, we assume that the data value cannot be allocated to other cluster 

centroids in a given iteration. Returning to our boundary particle representing a cluster 

centroid, initial iterations are likely to produce a high velocity value in this centroid. Such a 

centroid potentially leads to a cluster made up of data values which are not necessarily close 

to each other. They just happened to be closer to the particle which started on the 

boundary, and while they are allocated to this cluster centroid they cannot be allocated to 

another cluster with which they may have more affinity. The centroid particle may thus 

come to rest at the equilibrium point between two clusters, with data values from each 

cluster forming an unnatural cluster around the candidate centroid, the member data values 

forming part of this cluster are also not able to join other potential clusters around other 

candidate centroids. Due to the relationships within the velocity equation between the 

particle’s current position, its best position and the neighbourhood best, we conjecture that 

this effect will be more pronounced if the granularity of the solution space is coarse or the 

positions of the data to be clustered are widely spread. 

Another PSO clustering paper, Yuwono et al. (2014), addresses the limitations identified 

in van der Merwe & Engelbrecht (2003). This is achieved by developing the original 

algorithm presented by van der Merwe & Engelbrecht to reduce the number of evaluations 

performed each iteration. Specifically, the limitations, identified and addressed in the paper 

are: 1) high computational cost with high data volumes and/or high dimensionality, 2) the 

PSC algorithm identified in van der Merwe & Engelbrecht has a tendency to stagnate on 

clusters which represent local optima dependent on the starting position of the particles 

(Yuwono et al., 2012) – this observation mirrors our concerns on reading van der Merwe & 
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Engelbrecht, 3) the maximum number of clusters is pre-determined by the number of 

particles in the swarm. The paper introduces the following innovations to address the issues 

identified: 

 each particle’s position is updated once per iteration, after all particles closest to 

that particle are calculated 

 the distance matrix is updated only after all particles have been updated 

 a fitness function is used to minimise the sum of the intracluster distances 

 each cluster is represented by a group of particles, allowing for an increase in swarm 

size without increasing the number of clusters 

 two strategies to detect swarm stagnation and convergence are employed, to 

identify and address convergence on local optima 

These innovations are then tested on seven datasets from the UCI machine learning 

repository against alternative algorithm. The innovations demonstrate an improvement 

across all benchmark datasets, whilst reducing computational cost, when compared with 

the alternative algorithms. 

In contrast to van der Merwe & Engelbrecht (2003) and van den Bergh & Engelbrecht 

(2004), Abraham et al. (2008), develop a new variant of PSO, called MEPSO, which they test 

successfully on four real-world datasets. The key feature of MEPSO is the implementation of 

a growth rate through which the algorithm ensures that the new global best will be the 

particle best, which they call the local best, with the highest growth rate, as shown below: 
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Figure 7: MEPSO Algorithm reproduced from Abraham et al. (2008) 

The advantage of MEPSO is that it preserves the particles with the greater potential to 

improve in addition to improving the solution fitness over the previous best particle. 

 van den Bergh & Engelbrecht (2004) develop a cooperative swarm model of PSO, in 

which each swarm optimises a single dimension of the problem. The best particle from each 

swarm is then combined with the other bests to provide an overall solution. The authors’ 

motivation is that in standard PSO, improvements in individual dimensions may be lost due 

to cumulative deteriorations in other dimensions. This problem is common to other 

optimisation techniques, as discussed by Clearwater et al. (1992). Van den Bergh & 

Engelbrecht’s approach to recombining the individual particles into a single solution is to 

provide a context vector, which is initially the overall gbest derived from concatenating the 

gbest from each swarm. In subsequent iterations, the dimension optimised by each swarm is 

updated with each particle in turn to update the swarm’s gbest. This is a novel development, 

but the implementation, in which a single particle is updated at a time, ignores the potential 

for improvement in combination. The authors argue that their technique copes with 
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deceptive spaces or limitations within the objective function. Arguably the implementation 

only addresses some issues: for example, if there exists a complex non-linear relationship 

between several dimensions, the individual swarms will not be able to represent this in 

terms of emergent behaviour within a swarm. As we shall see later in Chapter 5 , these 

issues can be addressed by making the search space more independent of the solution 

space. 

A paper applying PSO to a clustering application takes a different, and in our view, more 

flexible approach.  Li (2004) uses a Euclidean distance measure to identify clusters through 

the identification of species – hence, SPSO. Each species is defined as being those particles 

within a radius, , with the distance being measured as follows: 
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where x  is a vector, i and j  are the indices identifying the individual particles and k  is 

the dimension index, n is the number of dimensions and d is the distance function. One 

significant advantage of this approach over those discussed above is that it does not require 

the number of clusters to be specified. One of its shortcomings is that the radius 

represented by , which determines the species separation, needs to be set to a reasonable 

value for the given problem, requiring a prior understanding of the solution space. However 

it may be possible to derive a self-adaptive solution – this is an open research question. 

Another paper, interesting for its potential for global optimality, is that of Xiao-Feng Xie 

et al. (2002). This uses a technique of mass extinction, which has the effect of resetting the 

population. Unfortunately, however, the description given in the paper implies that the 

whole of the population is reset, as if the swarm was being restarted. It is unclear whether 

the previous bests of the particles are retained during the reset. Rationally, one has to 


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assume that the best positions of each particle are retained, since failure to do so would 

render it effectively a standard genetic algorithm: in a standard GA the previous history of a 

gene does not directly influence the mutation or crossover for the next generation – only 

the current generation has any direct influence. If it is the case that all the current positions 

of the particles are lost, this might provide the potential for global optimality. However, 

resetting the whole swarm, rather than, say, the worst 50%, undermines the strength of 

particle swarm optimisation, in that the convergence potential is lost.  

Work by Secrest & Lamont (2003) provides a way to visualise the activity of a swarm 

during convergence, and also takes an analytical approach before suggesting changes to the 

algorithm. The stated aim of the paper is to use a visualisation technique to improve the 

performance of particle swarm optimisation by moving the swarm a Gaussian distance from 

the local and global best. However, the authors use a variant of the velocity equation: 

)()( ,2lg,11 iiiitt XPRandCXPrandCwVV g    

where   is the vector addition operator. V Is the velocity of the particle, w is the 

inertia weight, 1C and 2C are the acceleration coefficients, X represent the particle’s 

current position, P the best particles and rand and Rand are random numbers in the 

range 0..1. 

iP lg, and are defined as “The neighbourhood (from i to g) best position” and “The global 

best position”, respectively. If iP lg,  is defined and implemented as stated, the velocity of a 

given particle should be expected to be more erratic than if it was the particle’s own 

previous best 

. It is unclear what affect this difference in the way the authors implement the standard 

versions of PSO equations has on the results presented in the paper. 
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A Taxonomy of PSO Developments 

The following table draws together the taxonomy of early PSO developments we have 

established, in order to more clearly define our relation between the approach taken and 

the modification made: 

 Hybrid: Genetic Algorithm 

Operators & Selection 

Velocity Equation Modification 

Heuristically or 

Trial and Error  

Angeline, 1998b 

Higashi & Iba, 2003 

Jian et al., 2004 

Stacey et al., 2003 

Wang & Li, 2004 

Wen-Jun & Xiao-Feng, 2003 

Ratnaweera et al., 2004  

Ratnaweera et al., 2004 

Shi & Eberhart, 1998b 

Peram et al., 2003 

After Analysis of 

PSO 

Clerc & Kennedy, 2002 Clerc & Kennedy, 2002 

van den Bergh, 2002 

van den Bergh & Engelbrecht 2004 

Table 5: A taxonomy of the early developments in PSO. 

The above table contains only those papers which have recommended specific changes 

to the original PSO equations and is not intended as a full analysis. The intention is to focus 

on the manner in which developments in PSO have been made. It is noticeable that the 

lower left box of the table, that which identifies the addition of an evolutionary operator 

after analysis, has no entries. This supports our conjecture that many of the amendments 

suggested resulted from the researchers’ previous Genetic Algorithm and Evolutionary 
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Strategies knowledge, rather than understanding based purely on the behaviour of Particle 

Swarm Optimisation. 

Conclusions 

Developments to PSO have tended to introduce ad hoc amendments to the original PSO 

equations, tailored to certain specific problems. We have been critical of many of the 

developmental papers written on PSO. This has been for three main reasons: 

 Much of the research into PSO incorporates other evolutionary based techniques, 

rather than identifying the strengths of PSO and building on these strengths. We 

suggest that this has led to modifications to PSO that are not easily transferrable 

to other problems. 

 Many of the researchers have addressed the symptoms of premature 

convergence, rather than directly examining the causes inherent in PSO. 

 Many applications of PSO have been to pre-process data in support of other 

techniques such as artificial neural networks, rather than using PSO alone for 

problem-solving. 

We argue that there is significant potential remaining under-researched in the PSO 

heuristic. This potential is to be found in a greater understanding, and modelling, of natural 

behaviours, in order to produce a more flexible approach to optimisation, which can be 

done without undermining the strengths inherent in the velocity equation. 

Finally, it is worth noting that the main developments in PSO have been evaluated 

against standard test functions, usually drawn from the genetic algorithm field. Very few 

applications have explored the use of PSO on a variety of noisy real-world data, and many of 
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the real-world implementations of PSO to date have involved significant pre-processing of 

the data before applying the algorithm. Can PSO be made to discriminate effectively 

between wanted and unwanted data, noise, successfully? 
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Chapter 4  

Innovations to PSO  

In the first section of this chapter we offer reflections on the benefits of the PSO velocity 

equation and a principled analysis of how PSO actually performs as it converges on a solution. 

This then leads to a second section, in which we offer three innovations to PSO, each of which is 

then tested in the succeeding chapters. 

The Value of Velocity  

Previously, we have considered the developments to the particle swarm equations from the 

point of view of the convergent behaviour and subsequent performance of the swarm. As 

already discussed, arguably the most important of these developments in the early development 

of PSO are: the inertia weight variant Shi & Eberhart (1998b), improving the convergent 

behaviour of PSO; the constriction factor variant Clerc & Kennedy (2002) formalising the 

necessary relationships between the PSO parameters to affect convergence; and development 

of Guaranteed Convergence PSO (van den Bergh, 2002) – a variant which, the author argues, is 

guaranteed to converge on local optima. The inertia weight variant and the constriction factor 

variant were compared by Eberhart & Shi (2000), who argue that the constriction factor variant 

is a special case of the inertia weight variant, defining the optimal relationship for convergence 

between the parameters.  

The Stages in Convergence 

We will now consider the behaviour of the swarm, using data from the River Severn model, 

which is discussed in detail in Chapter 5. Four separate stages of convergence can be observed in 
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the lifetime of a swarm. The exact point at which each stage ends and the following stage begins 

is difficult to define: this depends on the application. However, it can be argued that these 

stages are, in principle, identifiable. Figure 8 shows three graphs of converging swarms on 

different datasets from the River Severn. The graphs show the change in position of the gbest 

and its velocity as a proportion of the particle’s position, simply stated as
p

v
 where  is the 

current velocity of a given particle and  is the particle’s current position. By considering the 

velocity as a proportion of the change in position, one can see the particle’s relative potential for 

change, and therefore its potential to improve on its previous best solution. In addition, it is 

possible to see from this which of the major influencing factors, the velocity or the current 

position, contributes most to the next position adopted by the particle.  

The following stages four stages were identified from observation of swarm convergence 

sampled from experiments completed on all the datasets used in our research. 

First stage: assuming a uniformly distributed swarm at the outset, two things are happening: 

firstly a particle’s distance from the other particles’ positions in the solution space is relatively 

large; and therefore, even given the reduction that the inertia weight applies, the particle will 

perform relatively large oscillations across the solution space. Secondly, the particle’s personal 

best is moving rapidly through the solution space6. These two factors will combine to produce 

large changes in velocity, each particle building up an alternating positive/negative momentum. 

Second stage: During this stage, the momentum of all particles in the swarm levels off, as 

the velocity reduces. This stage is characterised by a plateau in the velocity expressed as a 

proportion of the position for a given particle. (The plateau is relatively clearly defined in Figure 

                                                           
6 We are using the phrase solution space as analogous to phase space in this context. The states which represent the 

candidate solutions are moving more rapidly through the phase space of possible solutions. 

v
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8c, but in Figure 8a it is slightly difficult to see, due to the complex nature of the graph; this 

section of the graph has been enlarged in Figure 8b to show iterations 150 to 175 and the 

plateau). The reason for these distinct changes is that the amplitude of the oscillations 

progressively reduces, due to the closeness of its relative position to its own previous best and 

the neighbourhood’s best. 

Third stage: We define this stage as the final stage before convergence, where the collective 

sum of the oscillations builds to a point substantial enough to start off a series of new 

oscillations. This is caused by outlying particles converging towards the gbest on different 

trajectories and finding improved solutions some distance from the previous best. The new 

momentum comes from the cumulative element of the velocity equation, so that a single 

improved solution found some distance from the existing gbest has the potential to significantly 

increase the momentum in the velocity for the next iteration, in turn increasing the exploration 

potential in subsequent iterations, before declining under the influence of the inertia weight. By 

referring to momentum in a particle’s velocity we mean the existing value of v . The velocity 

equation can be described as an attractor and the behaviour is analogous to other attractors7 

such as the Lorenz attractor (Lorenz, 1963), defined by the following equations: 

 

where  is the Prandtl number, 
cRa

Ra
r   Ra is the Rayleigh number, cRa is the critical 

Rayleigh number, 3/8b , the geometric factor Tabor (1989). 

                                                           
7 An attractor is a set of states towards which a dynamic system evolves over time. 
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These equations produce an oscillatory pattern between two centres of influence, which is 

similar to the behaviour of PSO when the momentum in the velocity equation nears zero. The 

question of using PSO to find the attractor for existing datasets – that is to use PSO to find a set 

of transformations for which the attractor is close to the original set – is potentially an area of 

further research.  

Final stage: this is a state in which the distances between the particles are so small relative 

to the size of the solution space that their influence on the velocity becomes negligible. At this 

point the swarm has converged and there is relatively little potential for any other particle to 

find an improved solution, and therefore to influence the swarm. The dominant influence on the 

velocity is now the reduction applied by the inertia weight, as described above. However, 

assuming the inertia weight has a value guaranteed to produce convergence, the momentum 

built into the velocity equation reduces to zero. In this phase, changes in velocity caused by the 

momentum have little influence on the particles’ direction. At this stage, the swarm is tightly 

clustered, and the momentum is gradually reduced by the inertia weight or constriction factor 

variants of the PSO equations. (The constriction factor variant is a special case of the inertia 

weight variant, van den Bergh (2002)). Clearly, the stages we identify above are similar to the 

stages identified in Zhan et al. (2009). Whilst this is reassuring, our reason for presenting the 

detail above is to establish the theoretical basis for our developments in later chapters. 

The swarm eventually reaches a stagnation state, with the velocity tending to zero, when 

the particles’ positions become closer to the best known position. The best known position, 

however, may be far away from the true optimal value. We have shown that the reduction in a 

particle’s momentum continues throughout all stages of convergence. In order to explore 

further, the swarm as a whole is dependent on the oscillatory nature of the particles’ behaviour 

to build up momentum.  
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Given uniformly distributed starting positions and a direction of improvement, it is 

reasonable to assume the particle which is the swarm’s gbest changes more often in the early 

stages of a run, due to the initially larger step size of all particles. In addition, assuming a uniform 

distribution in the initial widely-spread swarm, the gbest has a larger negative effect on a 

particle’s velocity than a particle’s own previous best. As the swarm converges, the new element 

of the velocity has a proportionally reducing influence on a particle’s existing velocity. If a 

particle is to converge, it follows an oscillating trajectory with a decaying orbit around the 

influences of the gbest and its own previous best. This, in turn, means that the diminishing 

velocity of particles makes them less and less effective at exploration. The most significant 

influence on the velocity is the effect of the inertia weight, but this merely reduces the velocity 

to zero, limiting a particle’s advance, which in turn reduces a particle’s ability to escape the 

converged neighbourhood. The ability to explore beyond the converged neighbourhood is 

particularly important for real-world applications, for example, data such as EEG, temperature 

readings or hydrological data containing complex relationships between variables in real number 

space. Clearly, this points to a need to develop an extension to PSO that makes the velocity more 

independent of a particle’s converged position. 

 A possible source of inspiration is Generalised Extremal Optimisation (GEO) de Castro & Von 

Zuben (2004). GEO was developed as a local search for bitstrings; the technique takes the 

weakest solutions in the population and probabilistically flips a bit, or bits, proportionally to the 

improvement it makes to the solution. This could be extended to PSO such that a move is made, 

per dimension, probabilistically proportional to the improvement it contributes to the overall 

solution. An alternative solution is to consider the abstraction of the particle solution space 

away from the problem being solved: for example, as in the hydrographical flow data model 

highlighted in this chapter, where the solution space in which PSO operates does not directly 
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represent a solution in terms of hydrographical flow for the River Severn, but rather a matrix 

space for mapping inputs to the desired output. 
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(c) 

  

 

Figure 8: the convergent patterns of two swarms on different datasets. The respective figures show the difference in position (sharply oscillating line), and the velocity as a 

proportion of the position (smaller oscillating line), (b) shows an enlarged portion of (a) to highlight the plateau

0 50 100 150 200 250 300 350 400
Velocity as Proportion of
Particle's Position

Difference from Particle's
previous Position



73 

 

Indeed, the convergence proof in van den Bergh (2002) identifies one of the significant 

intrinsic characteristics of PSO, when compared with other heuristics such as GA, simulated 

annealing or branch and bound, (these techniques are discussed in Corne et al. (1999)). As 

PSO converges towards an optimal value, it is being directed by the shape of the landscape it 

is searching. GA, by contrast, converges due to the retention of previous experience, 

achieved through the offspring of bitstrings, or the retention of the fittest parent strings 

from previous generations. Improved solutions are found almost by accident through the 

randomised recombination of existing solutions Goldberg (1989). In our opinion PSO’s direct 

connection with the solution landscape is a significant strength of swarm computation 

heuristics. It is of course possible to argue that this would potentially make PSO more 

susceptible to a deceptive landscape. However, we suggest that because PSO learns directly 

from the shape of the solution landscape itself, at least one of the particles within a swarm 

will avoid being deceived. 

The PSO process of finding optima 

     In this section we will consider the behaviour of the swarm in cases where the 

function to be optimised is a minimisation function: for example, where the aim is to 

minimise the distance travelled or costs incurred. As discussed previously, the equations for 

PSO are as follows: 

 

 where ip


 is the particle’s previous best, and gp


is the global (or neighbourhood) best, 

iv 
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is the particle’s velocity, ix


 is the particle's current position, w  is an inertia weight i1  
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and, i2 , are the acceleration coefficients. Recall that, to ensure convergence, the inertia 

weight  is conventionally set to 0.729 and to 1.5 after van den Bergh (2002), 

consistent with Clerc & Kennedy (2002) and Eberhart & Shi (2000). The velocity will always 

reduce towards zero with a reduction of 0.729 of its previous value per iteration. As the 

swarm converges the increase in velocity also becomes minimal. 

Assuming for the moment that the gbest particle does not change its best, the remaining 

particles will still converge to the gbest point, eventually reaching the same state of zero 

velocity. This is compounded if the gbest is part of its own neighbourhood since the gbest 

particle is only influenced by its own best position. The effect of the gbest’s inclusion in its 

own neighbourhood, influence on itself and ability to avoid stagnation are discussed further 

in Chapter 7, where we develop a dynamic neighbourhood structure based on the 

contribution made to a particle’s improved position. In sum, the term ‘convergence’ 

misrepresents the swarm’s behaviour: it has been assumed that convergence meant 

converging on local optima, a point made in Yong-ling Zheng et al. (2003). In fact, 

convergence should be understood as ‘the swarm stops moving in roughly the same area’. 

4.1.1 The possible advantage of Vmax 

It should be clear from the above that a swarm converges more quickly at the beginning 

of a run. One of the effects of this is that larger, and potentially optimal, areas of the 

solution space can be ‘flown over’ and never exploited. By using Vmax  the velocity can be 

restricted, increasing the probability of optimal areas being found. Shi and Eberhart (1998b) 

note that not including a Vmax  parameter can lead to divergent particle trajectories 

resulting the swarm failing to converge at all. However, our initial trial experiments 
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demonstrated that Shi & Eberhart’s (1998a) suggestion to set XmaxVmax   also leads to 

the explosion of a swarm, wherever the solution space is large. Therefore, we use a value of

Vmax consistent with the combined observations in van den Bergh (2002), Eberhart & Shi 

(2000) and Clerc & Kennedy (2002), that of the range of the solution space consistent with 

implementing a torus boundary condition. Although this will lead to a slower convergence, 

this is not necessarily detrimental. 

In summary, the characteristics of each of the four separate stages of development as 

the swarm progresses towards a converged state result from the relative influences of the 

various components of the velocity equation. A closer analysis suggests that PSO has several 

limitations after the swarm has converged to a point beyond which new improved candidate 

solutions, some distance from the current best solution, are not found. This was also shown 

to be a product of the velocity equation.
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Innovations  

We now introduce three innovatory changes to PSO, designed to meet some of the 

objections to existing research, as described in Chapter 3. These innovations are tested on 

real-world data in Chapters 5, 6 and 7 respectively.  

Hyperspatial solutions 

Rather than training a swarm in which each particle directly represents a possible 

solution to the optimisation or predictive problem in hand, instead a matrix of weights is 

trained using PSO. The aim is for the swarm to find the matrix  in the first equation to 

yield a solution r in the second equation below.  

  

is a vector of the (generally real numbered) problem inputs,  is the sum of the 

components of the vector, the square root is applied to scale the value down, reducing the 

effect of rounding errors in the initial calculations, and r is the proposed solution.  thus 

provides a hyperspatial solution to the problem, a search space which is abstracted from the 

problem data. By using a matrix of weights in this way we are better able to model the 

interactions between the inputs by retaining more degrees of freedom, which introduces 

greater scope for finding a combination of weights which in turn should improve the 

accuracy of the result.  

This approach is tested in Chapter 5, with a problem of predicting river flow from 

historical results.  
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Hierarchical multi-swarms 

4.1.2 Principles 

The strengths of PSO can be utilised effectively to produce a dynamic optimisation 

heuristic and apply it to complex datasets, but the convergence process in the generic PSO 

algorithm, described in above, is such that only a single dataset can be optimised at any one 

time. However, multiple inter-related subsets are common in real-world data, in particular in 

chaotic systems analysis. This is usually a result of the initial data collection, but may also 

result from the need to isolate discrete events such as epileptic seizures or seismic activity 

from the rest of the data stream, or simply because the data stream is not continuous. One 

answer to this problem is to optimise more than one swarm.  

Multi-swarm implementations were briefly covered in section 0. Our interest in the 

multi-swarm model is to simultaneously optimise a number of datasets, to improve on the 

results that could be obtained from a single swarm, or to work with time-series data in 

which a single swarm would be unrepresentative. For example, with medical data such as 

EEG8 scans, several measurements are collected at intervals over a finite time period, and if 

two scans are conjoined, the model derived is based on an erroneous assumption that the 

data represents a continuous reading – a flawed model. Therefore, standard PSO can only 

accurately consider a single scan per patient. The inability to analyse multiple readings 

within a single dataset is a serious limitation of any optimisation algorithm, as there is no 

feasible method of aggregating data which has been collected in non-contiguous distinct 

                                                           
8 Electroencephalography (EEG) is the recording of neuronal electrical activity along the scalp produced from 

within the brain. 
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subsets, such as EEG or river flow readings taken on different days. Clearly, treating such 

data as a single dataset risks distorting the result, since the distinct characteristics of each 

data subset are merged. It is also clear that to process data from a highly dynamic system, 

such the human brain, or a glacier, multiple data subsets are needed and the final results 

must be aggregated in order to produce a statistically meaningful result. 

The multi-swarm technique preserves and extends PSO’s advantage of being directly 

connected to the solution space. However, its major benefit is that it gives PSO the ability to 

work in a data space in which there are discrete subsets within the overall dataset. Multi-

swarm PSO also, by its nature, allows different objective functions to be applied to the sub-

swarms within the solution space. The objective function used might depend on the level of 

each swarm within the hierarchy; alternatively, each child swarm could operate with a 

completely different objective function: for example, each child swarm could optimise a 

different type of data. A child swarm’s processing is then aggregated by the hierarchical 

super-swarm. One can imagine a multilevel hierarchical swarm applied to climatology 

modelling, for example, with each level of the swarm integrating a different type of data: for 

example, atmospheric and oceanographic, with the lower level swarms in the hierarchy 

producing optimal models for each type. Higher-level swarms would integrate the results, 

eventually arriving at an overall model of a climate system – the complete model being a 

bottom to top integration of the gbest solutions from each swarm. In addition, each parent 

swarm communicates its children, encouraging them to explore more areas of the fitness 

landscape. This maintains each swarm's cohesion and allows indirect communication 

between sibling swarms. This combination of factors improves the solutions found by the 

child swarms and hence improves the solution found by the whole hierarchy of swarms.  
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4.1.3  Dynamic hierarchical swarm implementation 

To implement this model, we need to consider the behaviour of the proposed extension 

to PSO further, specifically the actions of the swarm at higher levels of the hierarchy. The 

canonical PSO velocity equation: 

 

essentially acts as an attractor, drawing the particles towards the best positions. If the 

standard velocity equation is applied at each level, the convergence of the child swarms 

would potentially be hastened to a point within their respective solution spaces which was 

closest in value to the global best, perhaps the universal best, in the master swarm. This 

could lead to premature convergence, a factor which is of greater significance in the later 

stages of convergence. Furthermore, if the master swarm also operates as an attractor, it 

duplicates the actions of the child swarms and may lead to the swarm converging on a 

suboptimal solution, negating some of the advantages of using child swarms.  

However, in the proposed hierarchical model an adaptation is made to perturb the 

trajectories of the super swarm particles to have a repellent rather than attractive effect. A 

repulsive implementation in the master swarm forces the gbest particle in each child swarm 

to explore new areas of its own solution space. This directly addresses the stagnation 

problem identified by van den Bergh (2002) and van den Bergh & Engelbrecht (2002). 

However van den Bergh’s solution, GCPSO, tackles the problem without being influenced by 

the nature of the solution space; we consider that every particle should have the 
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opportunity to find improved solutions rather than only the gbest. Recall from Chapter 5 

that at this stage of convergence the particles are in the same area of the solution space. 

A dynamic hierarchical swarm is visualised as a swarm of the gbests of each child swarm, 

with the master swarm applying a repellent force on these, as illustrated in Figure 11. The 

particle swarm velocity equation needs to be reformulated to reflect this interaction. The 

modification is given below: 

 

where  is the particle’s previous best, and is the global best, is the particle’s 

velocity,  is the particle's current position,  is an inertia weight  and, , are the 

acceleration coefficients. This equation modifies the canonical particle equation by reversing 

its addition and subtraction operators, leading to large increments in the step size for all the 

particles in the swarm, with the potential to reverse the sign of the velocity. 

By taking the gbests from each child, the repellent equation pushes each of them further 

away from their best positions, encouraging further exploration but without losing the 

overall coherence of the master and child swarms. The child swarms continue to operate 

using the standard PSO equations. The master swarm is dependent on the VMax parameter 

to prevent it from exploding. This has the later advantage of contributing more to the 

movement in the particle’s position when the swarm has converged. 
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Figure 9: A graphical representation of the interaction between the Master and Child Swarms 

  

 

If there is more than one level of hierarchy, the repellent force would only be applied to 

the gbests once per iteration in the master swarm, with the canonical velocity equation then 

being applied to each child swarm.  
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This amendment to the velocity equation applied to the master perturbs the oscillatory 

trajectories of the gbest particles between the particle’s best and the gbest child swarms. 

Unlike van den Bergh’s GCPSO solution to premature convergence van den Bergh (2002), 

which only changes the velocity equation for the gbest particle, the proposed solution 

maintains the particles’ interactions within the particle swarm paradigm. It also has the 

advantage of preserving the stochastic influence characteristic of the original PSO equations, 

represented by the and  terms, which enhance the exploratory characteristics of the 

swarm. It also differs from the Hierarchical Structure Poly-Particle Swarm Optimisation 

(HSPPSO) (Bo Liu et al., 2006) which implements bidirectional transfer of the best positions 

between the layers. 

1 2
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Figure 10: Pseudo code for Hierarchical Particle Swarm Optimisation 

Initialise child swarm particles to uniformly random 

positions and velocities to zero 

Repeat 

 Populate master swarm with the bests from all the 

child swarms 

 Set best particle as global best 

For each particle in the master swarm do 

Calculate particle’s velocity according to the 

equation (a) above 

Update particle’s position according to equation (b) 

above 

End Do 

Copy the updated particle positions and velocities 

back to the respective child swarm from where the 

particle originated 

Repeat 

Calculate particle fitness in child swarms, if 

better than previous best change particles previous 

best 

Set best particle as global best 

For each particle do 

Calculate particle’s velocity according to 

the canonical velocity equation 

Update particle’s position according to 

equation (b) above 

End Do 

Until Termination condition met 

Until Termination condition met 
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Our hierarchical swarm model is tested in Chapter 6. 

Dynamic Neighbourhoods 

As discussed in Chapter 2, a particle swarm implementation also supports the notion of 

neighbourhoods. For the purposes of the discussion that follows, a particle’s membership of 

a neighbourhood is identified by particle identifiers rather than its topographical position on 

the landscape, meaning that the starting positions of particles in a neighbourhood may be 

topographically scattered. In our neighbourhood implementations, a particle is not 

considered to be a member of its own neighbourhood for the purposes of influencing its 

trajectory; this is in contrast to, for example, van den Bergh & Engelbrecht (2002) and 

Engelbrecht et al. (2005) where the gbest is included in its own neighbourhood. This means 

that the best particle will only be influenced by its own best position once, and receive a 

further influence from the best position of the second best particle in a neighbourhood.  

A novel neighbourhood topology which is independent of, but can be combined with, 

the hierarchical swarm technique, has been developed. The aim is to provide a topology that 

is more responsive to the success of particles than the conventional static topologies, 

swarms or sub neighbourhoods within a swarm, and is inspired by the dynamic social 

groupings of humans or other higher species. We argue that particle swarm should have a 

neighbourhood model based on social groupings: a neighbourhood should be a network, the 

connections within which relate to the contribution that a particular particle makes to the 

improvement of other particles over time. This innovation is tested in Chapter 7. 
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4.1.4 Existing Neighbourhood Topologies 

Each of the standard neighbourhoods we reviewed in Chapter 2 is based on the topology 

of the particles, so that the particles are linked normally by their index position to one or 

more other particles. For example, the lbest neighbourhood topology is one in which 

adjacent members of the population comprise the neighbourhood In a Fully Informed 

Particle Swarm (FIPS) every particle directly interacts with every other particle. 

Our aim is to develop a neighbourhood that is based on network theory, where a 

particle’s membership of a neighbourhood is based on the value of its contribution to other 

particles in the neighbourhood. 

4.1.5 Network theory 

Network theory is a branch of mathematics concerned with the study of the spread of 

information through an interconnected network. The concept of small world networks has 

been used by Watts & Strogatz (1998) to explore many phenomena, from information flow 

over the Internet, to the interconnectedness of Hollywood actors. Watts & Strogatz identify 

two factors which measure the interconnectedness of a network: the length and the 

clustering coefficient. When the network is viewed in graph theoretic terms, the length refers 

to the minimum number of edges from the set of all edges, , required to connect two 

vertices, and . The clustering coefficient is defined as the average of the local clustering 

coefficients for all vertices, as described by the following equations Watts (2003): 
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where is the immediately connected neighbours for , is the edge between 

vertices and , represents the number of neighbours for vertex ,

represents the number of edges that could exist in the network, and is the clustering 

coefficient for vertex, . 

 

Interconnectedness is defined as the number of edges connected to a vertex, divided by 

the number of edges required for all the members of the network to be connected. A small 

world network is a class of random network which has both short path lengths and a 

clustering coefficient significantly higher than that of a random network. 

Small world networks often occur in social and biological systems (Strogatz, 2004; Watts, 

2003) where they are associated with more robust network topologies and rapid 

communication of signals across the network. As an important mechanism in PSO 

optimisation is the communication of the gbest location to many, but not necessarily all, 

particles, it seems reasonable to experiment with small world networks to model the 

neighbourhood topologies in PSO swarms. 

 Although PSO was originally developed for social interaction modelling by Kennedy & 

Eberhart (1995), a neighbourhood implementation from the perspective of network theory 

has never been considered. Our network theory inspired, small world model attempts to 

capture the group’s cohesion in a way which is related to a particle’s performance, rather 
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than on a Euclidean distance measure: the neighbourhood does not depend on the particles' 

indices, but dynamically relates to a particle’s performance within the group. Therefore, 

particles effectively able to improve the quality of their neighbour’s solutions rather than 

waiting for those neighbours to improve. 

The guiding principles of this new formulation are: 

 It is preferable to have connections than not to have connections. To use an 

analogy, it is better to have friends from whom you can learn, rather than not to 

have friends. 

 It is better to recruit a higher ranked particle than a lower ranked one. 

Conversely, it is better to drop a lower ranked particle than a higher ranked one. 

 After recruiting a new neighbour there should be a period of time before 

another neighbour is recruited. This is so that initially the influence of the new 

neighbour can be maximised. 

 Conversely, after a particle is recruited there should be an increased probability 

that it will remain in the neighbourhood. This probability decreases over time. 

The dynamic neighbourhood offers a way to approximate interactions between 

individuals based on the value they place on each other within their local group. It should be 

stressed, of course, that this is merely an analogy, and not a complete model of social 

interaction. However, the elements of the equations that follow attempt to represent certain 

elements we have identified as being important in social interaction. 
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The model proposed here consists of two formulae – one to recruit, and one to drop, a 

neighbour, given specific small probabilities. The formula below is used to determine if the 

particle will join a neighbourhood. 

(
1

𝑘
𝜑1 + (1 −

1

𝑡 − 𝜏
)𝜑2) > 𝜑3 

To recruit a new neighbour, a prospective neighbour is selected such that, , 

where is the prospective new neighbour particle and is the neighbourhood of the 

current particle.  

To drop a particle from a neighbourhood, a random particle is selected such that, 

, where is the prospective neighbour to be dropped and is the neighbourhood 

of the current particle. The formula below is then used to determine if the particle will leave 

the neighbourhood: 

((1 −
1

𝑘
)𝜑1 + (1 −

1

𝑡 − 𝜏𝑟
)𝜑2) > 2𝜑3 

 

where k is determined by the fitness of the particle to be recruited or dropped, t is the 

current iteration, r is the iteration at which the particle considered for removal was 

recruited as a neighbour, and  is the iteration at which the recruiting particle last recruited 

a neighbour. The three random values 1, 2, 3 are selected uniformly from the range 0..1 

influence the probability of a neighbour being dropped or recruited. In the formula to drop a 

particle, 3 is multiplied by 2 to reduce the probability that the result of evaluating the 

equation will result in a particle being removed from the neighbourhood. Conversely, in the 
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formula to recruit a particle, 3 is not multiplied by 2 in order to increase the probability that 

the evaluation of the formula will result in a new neighbour being recruited.  

Each of the two formulae above has two main elements: the first element to select a 

particle based on its ranking, and the second element to introduce a time delay to slow 

down the frequency of recruitment of a particle to, or removal from, the neighbourhood. 

The three random coefficients in these equations allow for a small, but increasing over time, 

probability of recruiting or dropping a neighbour. The neighbourhood of a given particle is 

updated on each iteration of the PSO process, and the particle’s neighbourhood is then used 

to update the velocity equation before the formula to remove the worst performing particle 

from the particle’s neighbourhood is applied. If there is only one particle left in the particle’s 

neighbourhood, then there are two implementation possibilities: one is for the last 

remaining particle in a neighbourhood always to be retained; the second is that the gbest 

particle could be used in the place of the neighbourhood best in the velocity equation. The 

option of retaining a minimum number of particles in a neighbourhood has the advantage of 

retaining the neighbours which have previously influenced the particle, and this is the option 

we have implemented in our experiments.  

Such a dynamic neighbourhood model should improve the exploitation potential of the 

swarm by enhancing the information flows between interconnected sub-networks. The 

existing PSO neighbourhood topologies, with some exceptions – for example:  Janson & 

Middendorf (2005) and Clerc’s TRIBES (2006) – implement static topologies.  In social 

networks individuals make choices based on the value they place on another individual’s 

contribution to their network, and so connections between individuals are made and broken 

over time  (Watts, 2003, 2004; Watts et al., 2002). 
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To summarise, for the dynamic neighbourhood, once per iteration the formulae for the 

dynamic neighbourhood were applied as follows: 

 

The above illustrates the process of identifying a particle’s neighbourhood per iteration. 

After this has been completed, the new neighbourhood is used to update the velocity 

equations, using the inertia weight variant given below: 

 

Our dynamic neighbourhood model is a significantly different topology to that of the 

dynamic neighbourhoods in Emara (2009), Hu & Eberhart (2002) and Akat & Gazi (2008), 

because we allow a particle to select its neighbours based on the performance of the 

prospective neighbour. Although Janson & Middendorf (2005) suggest an adaptive hierarchy 

of particles, their neighbourhoods are defined by particle index, not location in the fitness 

landscape. The notion of hierarchy should be treated as if the levels in the hierarchy were 

analogous to separate social networks, introducing an element of interaction between the 
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For each particle do 

 Probabilistically add particle to the 

particle's neighbourhood 

Retrieve a copy of the particle's 

neighbourhood 

Probabilistically remove a particle from 

the particle's neighbourhood 

Return the copy of the neighbourhood to 

update the velocity equations 

End Do 
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particles beyond the particle’s own neighbourhood, and using the notion of scale introduced 

by Watts et al. (2002). An analogy would be the difference between a social and work life. 

The interactions between both areas influence each other, but happen on different scales 

with different degrees of interaction. 

Testing the innovations 

In the following chapter, we demonstrate a model for the hydrological flow prediction 

using River Severn data and demonstrate a way to abstract the problem landscape from the 

landscape searched by PSO. Our analysis of the behaviour of the velocity equation in the 

course of PSO’s convergence is extended in Chapter 6 into a hierarchical model to address 

issues of premature convergence. Finally, Chapter 7 tests out our suggested neighbourhood 

model. 

We base our experiments on real-world data which by its very nature includes noise. The 

experiments that follow address the question as to whether our techniques, discriminate 

between noise and descriptive data successfully. 

Experimental methods 

All of the experiments completed during the course of our research were run on a 

custom designed test bed written in Java. The test bed allows flexibility in the configuration 

of PSO, which is used and allows the dataset to which the swarm as applied to be selected. 

The following figure shows a screenshot of the test bed: 
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Figure 11: Screen capture of test bed written to complete our experiments 

After an iteration is completed, the test bed allows the results from the best performing 

particle or all particles to be stored in XML format for subsequent analysis. 

All swarms used the hyperspatial transfer functions described in section 4.5 above, 

except for the highly complex Parkinson’s data in section 7.1. 

Unless otherwise stated, all experiments used 1000 steps for the PSO to find the 

solution. Each experiment was repeated for 20 runs, with the swarm giving the best results 

from training data used for generating the presented results using the testing data. 

Each PSO model uses the canonical inertia weight variant of the equation for all swarms: 
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In chapter 6, the master swarms in the hierarchy use the modified equations from 

section 4.6 above, reproduced below. 

 

 The parameter values used in all experiments are given in Table 6, after Shi & Eberhart 

(1998b) and  van den Bergh (2002), to ensure the swarm converges. These parameters are 

used for all swarms, including both the master and child swarms in the hierarchical PSO 

experiments of Chapter 6. 

Parameter Value 

 0.729 

 1.5 

 1.5 

 4.0 

Particles 40 

Table 6: PSO parameter values used. 

In addition, to the parameters given above and consistent with Helwig et al. (2013), 

which shows that no boundary condition implementation outperforms another on a suite of 

test functions, we implement a boundary condition consistent Infinite model, in which the 

search space effectively wraps as if toroidal. Our reasoning for this is that we effectively 

abstract the search space from the solution space in our model, and therefore by wrapping 
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the search space in a continuous loop, we avoid making assumptions about the 

characteristics of the search space and retain our problem independence. 

In addition to the PSO parameters, we need to introduce some parameters for the 

dynamic neighbourhood, providing a framework for the recruitment of particles into a 

neighbourhood. For our experiments the dynamic neighbourhood parameters were set as 

follows: 

Parameter Value 

Initial number of particles in each 

neighbourhood 

4 

Minimum number of particles in a particle’s 

neighbourhood 

5 

Maximum number of particles in a particle’s 

neighbourhood 

10 

Table 7: Dynamic neighbourhood parameter settings used in the experiments. 

These settings were derived by experiment, in order to maintain sufficient influence for 

a particle to converge whilst restricting the maximum neighbourhood size. We recognise 

that this is a pragmatic decision but the aim of our experiments is to explore the effect of 

neighbourhood membership, a restriction on the maximum neighbourhood size avoids the 

neighbourhood growing to include every particle, a potential drawback of FIPS, and the 

neighbourhood topology being used for comparison. 
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Chapter 5  

Hydrographical flow prediction of the River 

Severn using PSO 

This chapter presents experimental results from an implementation of PSO used to 

predict hydrographical flow in the River Severn. This implementation uses the hyperspatial 

transfer function introduced in section 0. The aim is to produce projections at least as good 

as simple multiple linear regression, as proof of concept for a generalised method of 

modelling hydrographical flow using PSO. The data used is from the Centre for Ecology and 

Hydrology Plynlimon Research Catchments (Kirby et al., 1991). The results represent a 

significant statistical improvement on the results presented previously using the same data.  

Flow Data 

The Centre for Ecology & Hydrology in the UK, www.ceh.ac.uk, has been recording the 

flows from the Severn River and its three tributaries, the Hore, Hefren and Tanllwyth – 

referred to as the Plynlimon Research Catchments – over a period of years. The purpose of 

the research supported by the Centre has been to collect data for comparison between 

forested and grassland catchment areas, based on data collected from these between 1972 

and 2004 (Kirby et al., 1991; Mount & Abrahart, 2011). In this chapter we present the results 

of our application of PSO using a subset of this dataset covering 1980 to 1990, the purpose 

of which is to develop a predictive hydrological flow model for the River Severn based on the 

historical data. Figure 12 shows a map of the catchment area. 

http://www.ceh.ac.uk/
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Figure 12: Plynlimon catchment, shown in darker Green 

First, it is necessary to introduce some technical terms which are used below. In 

Hydrology a catchment refers to the drainage basin or area of land where surface water, rain 

or snow melt converges at the exit of the basin. Run-off refers collectively to all of the water 

which enters the river system from the surrounding hills. Lag refers to the time after a 

rainfall event: for example, until the run-off has entered the river system and has an 

influence on the hydrological flow. Dry bulb temperature refers to the air temperature taken 

with thermometers shielded from moisture. In addition, we will refer to certain events as 

occurring at time t. In order to be an effective predictive model the model must be able to 
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predict events at time t using data available before time t. Much of the existing 

hydrographical predictive modelling using artificial intelligence (AI) techniques do not 

achieve this: rather, they model a specific event using the data values taken at the time the 

event occurred. There have been no attempts to model River Severn flow using either AI or 

non-AI techniques and, interestingly, no other attempts to model the River Severn using the 

data we have from the Pylynlimon research data. Obtaining a successful model would mean 

being able to predict flood events. Of the non-AI hydrographical flow models, the following 

are of interest: Domniţa et al. (2009), Ward et al. (2009) and Shin-jen Cheng (2010). These 

papers all develop specific models for each river basin being modelled and do not attempt to 

make predictions, choosing instead to model a particular event. The models are evaluated 

by how closely the model fits the actual event. 

There have been a number of experiments which attempt to model hydrographical flow 

using artificial intelligence techniques other than PSO. These mainly rely on Artificial Neural 

Networks (ANN) and model the outflow from the basin at time t only on the basis of data 

from the run-off at time t, without allowing for accumulation or lag. For example, Turan & 

Yurdusev (2009), Kerh & Lee (2006) and Imrie et al. (2000) depend on predicting hydrological 

flow at time t using recorded values also from time t. This has no predictive value since the 

data values are taken from the time at which the event occurred.  

A predictive model needs to be able to predict events ahead of time so that action can 

be taken to mitigate the effects of the predicted event. In this chapter, we develop a model 

using input data at t to predict the out flow at t + 1 and t+2. In our models t refers to the day, 

so t + 1 refers to the following day, and so on for t + n. This requires making predictions 

using data from readings taken before the event. Three significant recent papers in this area 

are: Tapoglou et al. (2013), Kuok et al. (2010), and Chau (2007), which use PSO to optimise a 

neural network were discussed in Chapter 3. However, Kuok et al. (2010) use data from time 
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t only; we argue this has the same limitation with regard to the flood prediction as is the 

case with Turan & Yurdusev (2009), Kerh & Lee (2006) and Imrie et al. (2000). In addition, as 

we have previously argued in Chapter 2, for Eberhart & Kennedy (2004) PSO only acts to 

support another technique, in this case ANNs. Whilst this is a valid goal, it fails to exploit 

PSO’s potential to find optimal solutions using more straightforward mathematical 

techniques.  

A recent review of artificial intelligence techniques used to model hydrographical flow 

has been conducted by Mount & Abrahart (2011), which calls into question the validity of 

using such techniques to predict hydrographical flow. Obviously it is a significant challenge 

to the computational community as a whole to justify the use of AI techniques, in preference 

to linear regression, for example. As identified above, a shortcoming the techniques 

discussed in Mount & Abrahart, and the models developed there, is that they also use data 

taken at time t to predict events at time t, modelling a particular event rather than 

predicting future events. This is also a shortcoming of Kuok et al. (2010), the implicit criticism 

made by Mount & Abrahart  (2011) of Turan & Yurdusev (2009). In their reply to Mount & 

Abrahart, Turan & Yurdusev (2011) argue that the purpose of their earlier work was to 

compare the techniques considered rather than produce a model which can be used to 

make predictions. However, our aim is to predict future hydrographical events. The 

application of AI techniques seek to predict well by including more degrees of freedom, 

which in turn allows the model to produce acceptable predictions on new datasets which are 

subsequently presented to the model. However, multiple linear regression is not effective in 

the context of prevention when there is a high degree of interaction between the 

independent variables (Keskin et al., 2013). Although we also use a linear model, we make 

the assumption that our model reduces overfitting. Any prediction model also assumes that 
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the system on which prediction is being made is not random, and in this case, we assume 

that hydrological systems are chaotic in nature. 

Hydrological Implementation 

In order to predict hydrological flow for the Severn a matrix of weights is multiplied by 

the vector representing earlier flow readings, providing a hyperspatial solution in the form of 

the matrix, (see section 4.5). The aim is for the swarm to find the matrix  in the first 

equation to minimise the error. A  is also derived from a search space which is abstracted 

from the hydrological data: 
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a difference of +1. Each particle is given a random starting position in the range +2 to -2. The 

value of ±2 is the smallest integer required to allow the inputs to be mapped to the output. 

Once per iteration, the particles’ candidate solutions are compared against the historical 

data. In the current implementation, a single swarm concentrates on a single year, with the 

swarm thus being run once for each year. Developing a model on a year’s worth of data is 

useful, because it allows each year’s model to be compared in subsequent analysis. 

Discussion and Results 

In assessing how predictable the hydrographical flow in the River Severn is, initially 

several models were considered. The available data from the hydrographical readings taken 

from the Plynlimon research (Kirby et al., 1991) were augmented by dry bulb and rainfall 

data. However, this led to inaccuracies in the predictions for the hydrographical flow 

through the river. It is reasonable to assume that this was because the weather data 

recorded the environmental conditions at the time the measurements were taken and did 

not take into account the time lag required for these to have an effect on the river system. 

Therefore, the final model was only based on the hydrographical flow through the River 

Severn’s tributaries, ignoring weather and temperature data.  

The hydrographical flow readings for a given day are averaged to provide a daily figure. 

The calibration of the readings from the Tanllwyth was reported as problematic by Marc & 

Robinson (2007). With reference to Figure 7 in Marc & Robinson, reproduced below, the 

discrepancies between the actual flow and the measurement recorded are characterised by 

a steady increase in flow for the Tanllwyth. 
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Figure 13: Reproduction of Figure 7 from Marc & Robinson (2007); (a) Time series of annual flows for the 

Severn and its sub-basins. (b) Cumulative annual flows for the Severn and the Tanllwyth.  
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Figure 13b shows the flows for the River Severn and Tanllwyth, the blue dotted line is 

the River Severn flow and the pink dotted line the Tanllwyth. The Tanllwyth flow is shown to 

be steadily increasing relative to that of the River Severn. According to Marc & Robinson, 

this was originally attributed to tree felling which started at about the same time. However, 

the flow continued to increase, pointing to erroneous measurements from the gauge. In 

addition, the Tanllwyth is enclosed between the Hore and Hefren rivers within the 

catchment (see Figure 12); thus the possibility of erroneous rainfall measurements or 

leakage can be eliminated, as this would also be seen in the Hore and Hefren data – see 

Marc & Robinson (2007). The discrepancies due to the erroneous flow measurements are 

more apparent in the period after the decade covered by these experiments. We took the 

view that, although measurements from this river were problematic, it was likely that they 

remained useful in producing a predictive model. Our rationale for this is that although the 

readings were incorrect, this was due to an incorrect calibration of the instrumentation and 

the readings retained a consistent pattern, which reflects elements of the actual flow. For 

this reason, they were included as inputs to produce the model. The data represents daily 

averaged flows for the River Severn tributaries. The input data was rearranged to allow the 

prediction of the current flow using input measurements taken at an earlier time. Each unit 

of time represents the flow for a day. Computer runs were completed using input 

measurements from t to predict flow at t + 1 and t + 2 respectively, therefore allowing 

predictions to be made ahead of time based on previous readings. The data presented in 

Appendix A gives sample results for t + 2. 

Figure 14 shows a sample plot of the converging swarm for 1988, included to show the 

typical convergent behaviour of a swarm. The figure shows the position of the particle 

oscillating before converging on the optimum. This is a strength of the PSO paradigm, 
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allowing a particle to ‘fly’ past its previous best to explore farther regions of the solution 

space. 

 

Figure 14: Sample convergence to optima for 1988. 

Appendix A shows the results for the experiments using the hydrological data collected 

from the River Severn. All of the tables as referenced below can be found in this Appendix. 

The tables show the R-squared statistic values, the R-squared is a statistical measure of how 

well the model approximates the actual data points in the range 0..1; the closer the R-

squared value is to 1, the closer the fit to the data. Table 12 shows the R-squared value for 

each year, using the matrix calculated for the corresponding year. The rows indicate the 

years, and the columns indicate the matrix used. The best performing matrix, that is the 

matrix with the least mean squared error, is shown as white text on a black background in 

Table 12, Appendix A. It is interesting to note that the matrix produced for a given year is not 

necessarily the one to produce the best result for that year: for example, 1980 and 1989 are 

not the best performers for any year. This suggests that there is a local optimum within the 

dataset, which prevents convergence on the true optimum. The matrix produced using the 

1981 data, for example, produces the best results for 1981 and also for 1980. This is also 

true for 1989, which is outperformed by the 1988 matrix. It is important to recognise that 

the model has no knowledge of the data’s origin, characteristics or accuracy. Therefore, the 

finding that a model developed from the data from another year produces better results 
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than the native model for that year suggests the hydrographical flows in the river system are 

very stable, with external environmental factors having little effect on the hydrographical 

flow. The possibility that the solution matrices for the years that perform poorly are 

converging to locally optimal points suggests that using a hierarchical swarm model and 

sharing sample solutions between swarms during a training run may help find the true 

optimum for that year. Table 13 shows a comparison between the R squared results 

produced by PSO and MLR in every case the model is sufficiently accurate to predict the 

flows so the flow properties of the River Severn are stable over time. The model trained now 

should continue to be valid in years to come. 

Table 14 shows the matrix which produced the R-squared values produced from our 

model and multiple linear regression, for each year. As already remarked, certain years do 

not produce the best performing matrix for that year. For further verification, the 

experiment was run twice more on 1980, to see if the matrix produced improved results. 

Neither of the runs improved, either for 1980 or another year, leading us to speculate that 

this is due to characteristics of the data for that year, which are yet to be identified. Table 12 

presents a statistical analysis of the accuracy of each model for a given year. Appendix A 

presents a summary of the error statistics for each year. The years 1983 and 1986 are less 

predictable than the other years for which data was provided. The R-squared values for 

these years in Table 12 are lower, indicating that the flow is less predictable, when using the 

same model. From the matrices for these years in Table 14, it is difficult to conclude 

anything about the nature of the data. However, the result would indicate that this may be a 

result of the interdependencies between the variables for 1983 and 1986 being more 

complicated, or dependent on factors which are not included in the model, leading to a 

reduction in the convergence.  
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The size of the matrix by which the vector is multiplied arises mainly from historical 

development of the model. Originally, the dry bulb value and the rainfall data were included, 

providing five input values. As already stated, the number of rows represents the number of 

variables available to map a single value in the result vector; initially this was set as a 5 x 5 

matrix. As with any regression, the number of variables has an influence on the achievable 

accuracy. When the model was reduced to the tributaries only, we initially ended up with a 5 

x 3 matrix; later reducing this to a 3 x 3, to improve computational efficiency; this resulted in 

a typical loss of accuracy at 10-3 in the R squared value. With any model, there is a trade-off 

between accuracy and computational efficiency. Of course, once the matrix for a given year 

has been found, it is possible to combine the rows into a single weighting factor for each 

tributary. The matrix size determines the degrees of freedom available to the model: 

experimentation shows an average reduction in predictive accuracy of 0.7% between the 5 x 

3 and 3 x 3 matrixes respectively. 

The values in the matrix probably have no physical significance – the matrix is just an 

abstract agent of transformation. However, the values do model the effects of lag, 

evaporation, etc., inherent in the system. If this were not the case the model would not have 

the predictive accuracy demonstrated. Although the results are based on daily averaged 

flows, and probably do not model daily lag, the success of the model suggests that the time 

taken for the run-off to enter the river system, particularly that resulting from rainfall, is 

represented. One would expect a reduction in accuracy after a rainfall event if run-off was 

not being modelled. Indeed, this may have been a contributory factor to the reduction of 

model accuracy when the rainfall and dry bulb temperature were included, due to the time 

lag before the effects of evaporation and runoff enter the watercourse. Further, the results 

in Table 12 for these years are representative of every experimental run. This indicates the 

existence of features in the data which cause the swarm to converge to a local optimum. It is 
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unclear why a model trained on one dataset would perform worse than a model trained on a 

second dataset when that model is applied to the first dataset, and when all the data comes 

from the same catchment area. A possible reason for this would be that a particular dataset 

contains local optimum values which cause the swarm to over fit. There are also differences 

in the numerical components of the matrices developed for each year. A suggested area of 

further investigation is therefore to analyse the shape of the data landscapes of each year 

and the factors influencing the convergence. Although, the components of the matrix do not 

represent physical features of the landscape or rivers, comparative analysis of matrices 

derived from different river systems might be illuminate hydrographical characteristics 

indicative of the physical landscape surrounding the river system. 

The initial model is successful at improving on the results of existing hydrographical 

models, but the model should be further developed to enhance its applicability to a wider 

time range, this is further examined in Chapter 6. In addition to avoiding convergence to 

locally optimal values within a given year, a two layer hierarchical swarm version of the 

model is likely to lead to faster and possibly more accurate convergence, due to the 

exchange of data between the swarms which allows each to be guided by the experience of 

other swarms on datasets collected in different years. 

5.1.1 Predicting floods  

The data presented above shows an R-squared value of about .98 for the entire group of 

datasets. Q95 refers to the probability that a river’s flow is exceeded 95% of the time, and 

therefore measuring the top 5% of flow, where flood events occur. The model was rerun 

using a dataset consisting of only the Q95 values. 

The data was divided into training and test sets. Interestingly, and encouragingly, the 

model maintains an R-squared value of about .958 for each of the test datasets modelled. 



 107 

This provides an improvement of .02 over a multiple linear regression on the training data, a 

statistic which was subsequently maintained on the test data. The improvement of 0.02 over 

the multiple linear regression was reported in a private communication by Nick Mount, 

Associate Professor of Hydroinformatics, School of Geography, University of Nottingham. 

The details of the model used to produce these results were not forthcoming. We therefore 

reproduced our own R squared model to verify this result. Using the Q 95 data for t-2, we 

were able to verify that they are more at least as good as the multi-linear regression model 

with an R squared value of .93. This is consistent with the results reported by Professor 

Mount, and indicates that our model produces sustainable improvement over other 

techniques even for the Q 95 data which in turn improves the ability to predict flood events. 
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As a final validation check, we compared the distribution of residuals (errors) from 

predictions made by multiple linear regression and the PSO predictors. An R-squared test on 

the residuals gave a result of 0.99, indicating that the residuals from both predictors were 

highly similar. We used a Kolmogorov-Smirnov test to quantify this intuition. If the 

distribution of residuals from both predictors were similar, we could say that the two 

predictors were behaving similarly. The Kolmogorov-Smirnov test is used to determine if two 

distributions are significantly different. (We considered using Student’s t-test, but this test 

assumes that the distributions being compared are approximately normal, and the 

distributions generated by the predictors are not normally distributed.) Figure 15 shows the 

K-S results for the River Severn data: 

Year KS statistic Critical value Different? (95% confidence) PSO MLR 

1980 0.112022 0.191379 Same 0.997 0.998 

1981 0.123288 0.191379 Same 0.998 0.998 

1982 0.134247 0.191379 Same 0.992 0.992 

1983 0.142466 0.191379 Same 0.99 0.991 

1984 0.155738 0.191379 Same 0.998 0.998 

1985 0.021918 0.191379 Same 0.995 0.995 

1986 0.29863 0.191379 Different 0.994 0.994 

1987 0.060274 0.191379 Same 0.996 0.996 

1988 0.180328 0.191379 Same 0.996 0.996 

1989 0.320548 0.191379 Different 0.995 0.995 

1990 0.128767 0.191379 Same 0.997 0.997 
Figure 15: K-S River Severn Results Summary 

Following best practice for the K-S statistic, we separated the residuals into equally sized 

buckets. The results show that the residuals are drawn from the same distribution and 

therefore support the R squared statistic analysis that PSO performs similarly to MLR on the 

River Severn data. 

The results reported demonstrate the robustness of our method for abstracting the 

search space from the physical data to be modelled. Significantly, the results show an 

improvement over Mount & Abrahart (2011) and also demonstrate the robustness of our 
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model, which uses PSO directly to produce a transformation matrix with better predictive 

validity than the artificial neural-network-based model in Kuok et al. (2010). 

It should be noted that the technique for predicting flood values used by hydrologists 

could be improved. The hydrologists’ models only include the values in which are interested 

in, rather than the complete dataset of measurements taken over the period of time. The R-

squared statistic is also arguably the wrong measure to be using in order to develop a 

predictive model. Used in this way, the R squared value only indicates best fit for the 

selection of data used – in this case the flood values. In this case, it would be better to treat 

the problem as a classification problem with inputs classified as either flood or non-flood 

values. If successful, this would produce a model for predicting flood independent of the 

values on which it had been trained. Nevertheless, we have continued to use the R squared 

statistic in the fashion in which hydrologists use it in order to present comparable results. 

Summary of River Severn Experiments 

The aim of this chapter has been to present an initial account of the PSO techniques 

used to predict the hydrological flows of the River Severn from historical data. Essentially 

the results constitute a proof of concept which later chapters will develop. Key to this model 

was the abstraction of the search space from the solution space. We achieve this through 

the use of a matrix of weights which is then multiplied by the input vector of previous flow 

values. We demonstrated, through the use of the R squared statistic results, that our 

method outperforms previous results presented by Mount & Abrahart (2011). In particular, 

we draw the reader’s attention to the results in section 5.1.1 which demonstrate a 

significant improvement on the ability to predict flood within the River Severn catchment. 

We also demonstrated that our model was able to find matrices capable of making accurate 

predictions on different datasets. This finding supports our hypothesis that abstracting the 
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search space from the data space is of benefit when using PSO. We were able to show that 

the accuracy of our predictions held for t+1 and t+2, improving on the results of other 

models such as that of Kuok et al. (2010). 

The benefits of the model presented above are that it is relatively easy to implement 

and produces accurate predictions of the flow rate from historical data within approximately 

300 iterations, completing the process of optimisation in a third of the time available. The 

result is a matrix for each year which generates a series of predictions which can be 

compared to the predictions made by other techniques. Furthermore the matrix is able to 

make accurate predictions on new datasets. However, a shortcoming of the model is that it 

is not very sensitive to extremes; this is possibly because the training dataset was too small 

and lacked the necessary variability in the data. These extrema normally result from periods 

of heavy rainfall which are not represented explicitly in the model. Early experiments 

showed that including rainfall and temperature data directly made the model less accurate, 

although clearly rainfall is a factor in the river flows 

The results of the River Severn experiments demonstrate that PSO can outperform 

multiple linear regression. It also showed that the model developed on one training set can 

perform better than another model trained on another dataset. The analysis of the velocity 

during the convergence of the swarm also identifies transitions during the convergence 

process which can cause the swarm to stagnate prematurely (see Chapter 4). With these 

findings in mind, in the following chapter we develop a hierarchical model using a more 

complex dataset.
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Chapter 6  

Dynamic Hierarchical Particle Swarm 

Optimisation 

The previous chapter demonstrated an improvement over the R squared values of multiple 

linear regression on the hydrological flow for the River Severn. This chapter introduces experimental 

results for a hierarchical extension to PSO. The generic particle swarm equations only allow one 

dataset to be considered concurrently. In this chapter we test a hierarchical particle swarm to 

accommodate discrete data sets that are part of a larger whole. The hierarchical swarm was 

described in section 0. The experiments in this chapter use two data sets: a glacier outflow data first 

presented in Stott & Mount (2007) and Mount & Stott (2008); and gas spectrometry data 

(Fonollosaa et al., 2015). We are using different datasets from the River Severn hydrographical 

dataset, because the experiments on this dataset show that a PSO implementation performed at 

least as well as multiple linear regression, and we therefore wanted a dataset which would enable us 

to show a clear difference, either better or worse, between the single and hierarchical swarm 

models. Although the results presented show an improvement, they do not outperform those 

produced by multiple linear regression. Although this may be considered a shortcoming of our 

research, especially as the results are from a single dataset, the significant improvement in the 

hierarchical results over those of the single swarm demonstrates the value of our technique on 

datasets with complex characteristics to which PSO may be applied. 
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Glacier Data 

We shall first describe the data from Stott & Mount (2007) and Mount & Stott  (2008), 

introducing some of the terminology. Figure 16 reproduced from Mount & Stott (2008) shows the 

area of the Ecrins National Park, France where the data was collected.

 

Figure 16: The glaciers Noir and Blanc and the Pre de Mme Carle. Reproduced from Mount & Stott (2008) 

Our experiments use a subset of the glacial flow data originally published by Stott & Mount 

(2007, 2008), with the data covering 10th – 18th July 2005. The data was collected at two monitoring 

stations downstream of each glacier. Each monitoring station recorded the suspended sediment 

concentration (SSC) and discharge (Q) at 10 minute intervals. Suspended sediment is defined as 

sediment that moves in suspension in water and is maintained in suspension; discharge refers to the 
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quantity of sediment transported in suspension (Colby et al., 1953). The air temperature was also 

recorded. Rainfall data was not included in the data provided, and therefore air temperature is the 

only independent environmental variable in the data. The emission of rainfall data is potentially 

important as its inclusion would provide a direct measurement of the amount of water falling as rain 

in the catchment, which was independent of the amount of water held within the glacier. The SSC 

discharge at the road bridge was also recorded. The aim of the study was to predict the discharge at 

the road bridge using the values taken at the monitoring stations as inputs. We also define proglacial 

as the area immediately in front of the glacier into which the melt drains. 

As we argued in section 0, PSO, unlike most other optimisation techniques, is influenced by the 

landscape of the solution space being searched. Pulled in the direction of better solutions, the flight 

across the landscape is informed by the topography of that landscape. Extending this strength of 

PSO to a higher-level swarm means that discrete data subsets can be processed separately. The 

relationships between the subsets can be exploited to improve solutions within each subset. 

6.1.1 The Need for a Hierarchical Approach? 

Inter-related subsets are common throughout real-world data, in particular in chaotic systems 

analysis. The strengths of PSO can be utilised effectively to produce a dynamic optimisation heuristic 

and apply it to complex datasets, but the convergence process in the generic PSO algorithm, 

described in section 0, is such that only a single dataset can be optimised at any one time in order to 

maintain the separation of discrete measurements over a finite period. Thus our interest in the 

multi-swarm model is to simultaneously optimise different datasets, to improve on the results of a 
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single swarm. For example, with medical data such as EEG9 scans, measurements are collected over 

a finite time period. If two scans are conjoined, the model derived is based on an erroneous 

assumption that the data represents a continuous reading: treating such data as a single dataset 

risks distorting the result, since the distinct characteristics of each data subset are merged. 

Therefore simple PSO can only accurately consider a single scan per patient. This is a limitation in 

terms of being able to analyse multiple readings within a single dataset. It is not feasible to develop 

a generic method of aggregating data in cases where the data is collected in distinct, non-contiguous 

subsets, such as EEG or glacier readings. But it is also clear that in order to process data from a highly 

dynamic system, such as the human brain, or a glacier, multiple data subsets are needed and the 

final results must be aggregated in order to produce a statistically meaningful result. The multi-

swarm technique preserves and extends the advantage PSO gains from being directly connected to 

the solution space, while giving PSO the ability to work in more generic forms of data space, in which 

there are discrete subsets within the overall dataset. The technique also, by its nature, allows 

different objective functions to be applied to the sub-swarms within the solution space. The 

objective function used might depend on the level of each swarm within the hierarchy; alternatively, 

each child swarm could operate with a different objective function: for example, each child swarm 

could be optimising a different type of data. A child swarm’s processing is then aggregated by the 

hierarchical super-swarm. One can imagine a multilevel hierarchical swarm applied to climatology 

modelling, for example, with each level of the swarm integrating a different type of data – for 

example atmospheric and oceanographic. At the lower levels of the hierarchy the swarms produce 

optimal models for each type of data. At higher levels of the hierarchy the swarms work on 

integrations of the results from lower levels. As the sub-models are communicated up the hierarchy 

                                                           
9 Electroencephalography (EEG) is the recording of neuronal electrical activity along the scalp produced from within the 

brain. 
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they are then integrated and further processed by the child swarms higher up the hierarchy in order 

to produce an overall model for a climate system; the complete model will be a bottom to top 

integration of the gbest solutions from each swarm. The technique proposed also maintains each 

swarm’s cohesion. By applying this behaviour across the child swarms, the better particles within 

each child swarm are shown to successfully inform improvements to the best solution found within 

each child swarm. 

6.1.2 Glacier Flow Implementation 

The description of how hierarchical swarm works can be found in section 0. The experimental 

parameters and methods are described in section 4.9.  

The experiments in Chapter 5 show that PSO converged very well on the River Severn 

hydrological flow data. Therefore a further improvement will be difficult to achieve, even with our 

new technique. In order to demonstrate the advantage of the hierarchical swarm technique, data 

that require subsets to be considered independently is needed. The glacial data satisfies this 

criterion, since the data collected is non-contiguous. 

A relevant question to ask here is why glacier data is difficult to analyse. Recall the aim is to 

predict the discharge at the road bridge using the values taken at the monitoring stations as inputs. 

Predicting glacial flow is difficult because we lack a complete understanding of the factors affecting 

how such flows develop, combined with the difficulties of accurately recording the data. This often 

results in inconsistencies and incomplete datasets. However, there is significant value in modelling 

the dataset to obtain a prediction model from which a subsequent extreme events model could be 

developed. 
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As with ANN training (Haykin, 1998), using weights from multiple linear regression is prone to 

overfitting, and proves a poor forecast model due to the Mean Squared Error elimination techniques 

used (Tetko et al., 1995; Kuok et al., 2010). The convergence to optima is influenced by the previous 

best experiences rather than attempting to reduce the error explicitly. 

6.1.3 Results 

A transfer function similar to that used with the hydrographical flow data reported in Chapter 5. 

As with the River Severn data model, the implementation uses a position vector, where the number 

of dimensions is defined by 5 multiplied by the number of input variables, the vector is then 

reorganised into a matrix defined as n5 , where n  is the number of input variables. The choice of 

5 as a multiplier was chosen due to the success on the hydrographical data, giving 5 degrees of 

freedom per input given the loss of accuracy when a multiplier of 3 was used, (see Chapter 5). With 

the glacier data, we are trying to predict the SSC, given glacial discharge as the inputs, rather than 

the flow. We used the same hyperspatial transfer function as described in section 4.5, reproduced 

below: 

 
n

fAr
1

 

deriving the predicted suspended sediment concentration, where A  is the matrix defined above 

from the values of the particle’s current position – the values the swarm is optimising, r  is the 

predicted SSC and f  is the vector representing glacier discharge. This is a similar scoring function to 

the equation shown below except that n  now represents the number of observations taken during a 

day. Unlike the River Severn model, the air temperature is included, as it is the only factor within the 

available data which represents a change in the environment. In Stott & Mount (2007), the authors 
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comment that rainfall is not included because their aim was to record the SSC in the glacier’s 

outflow. However, the rainfall value is not being measured in the SSC directly and therefore forms 

an independent indicator of environmental changes. The glacier flow measured includes the effects 

of rainfall, as we shall see, but this is combined with melt and therefore not independent of the SSC 

output measured. 

In order to demonstrate the improvement in the predictive model produced by the hierarchical 

swarm compared with the single swarm model we again use the R-squared statistic, the single 

swarm model was run using the data from each day to produce benchmark results for 1000 

iterations. Our River Severn experiments showed 1000 iterations to be sufficient for convergence on 

a good solution. The results were compared with running a hierarchical swarm of eight child swarms, 

one swarm for each day, and a master swarm, as described above, also for 1000 iterations. Although 

the number of iterations was set to 1000, both experiments found an optimal value significantly 

earlier. The solution space is also modelled such that it wraps in every dimension. The 

implementation has a boundary of 2020  ix  where is the position vector. 

Recall from Chapter 5 that the R-squared value is a measure of the goodness of fit between the 

predicted values and the actual values. An R-squared value closer to 1 is a better fit between the 

predicted and actual values and therefore indicates a better predictive model overall. The following 

table shows a summary of the results obtained for each day for both the hierarchical and single 

swarm models together with the R-squared results obtained from Multiple Linear Regression: 

x
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R-squared Summary 

Date Single Hierarchy Regression 

10/07/2005 0.55 0.51 0.60 

11/07/2005 0.27 0.27 0.43 

12/07/2005 0.02 0.78 0.80 

13/07/2005 0.74 0.74 0.79 

14/07/2005 0.22 0.43 0.68 

15/07/2005 0.71 0.72 0.77 

16/07/2005 0.48 0.49 0.74 

17/07/2005 0.48 0.48 0.61 

18/07/2005 0.60 0.74 0.78 

 

Table 8: Representative sample of results from hierarchical and single swarm experimental runs for each day. 

 

Table 8 shows the R squared values produced from runs of the hierarchical swarm model and 

the single swarm model for each day. As with the River Severn results, we are using the R-squared 

statistic for comparison with hydrographical results, so the same caveats in Chapter 5 apply. 

Although only a single result is given for each day per swarm model, the relationships between the 

results are representative of all results. The hierarchal swarm results are better than the single 

swarm results however there is still a significant difference between the hierarchical swarm and 

multiple linear regression R squared results. This is a disappointing result, as we were expecting a 

closer match between the hierarchical R-squared results and those of multiple linear regression. 

However, it is interesting to note that the multiple linear regression results are also relatively low 

scoring. One of the reasons for this may be that the dataset does not include environmental 
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measurements other than the air temperature. This would indicate that the glacier melt is affected 

by other variables which are not included in the dataset – for example rainfall, wind speed, light 

intensity etc. Nevertheless, our experiments do show that the hierarchical swarm variant 

consistently outperforms the single swarm variant on the dataset tested. The purpose of this 

experiment was to demonstrate that sharing information between swarms, using a hierarchical 

model produced a better outcome for all swarms. This observation builds on our findings in Chapter 

5 that data sets which were not included in the training data for that swarm were outperformed by 

the model produced by the swarm. The glacier dataset is a more complex dataset to optimise, 

arguably because it omits environmental variables which may contribute to the SSC in the melt. 

We completed a K-S statistic analysis. The results are given below. Again, the statistical results 

show that the errors for MLR and PSO are drawn from the same probability distribution, indicating 

that their performance is comparable on this data set. 

Date KS statistic Critical value Different? (95% confidence) 

10 0.25 0.277608838 Same 

11 0.295238095 0.13272241 Different 

12 0.066666667 0.185072558 Same 

13 0.38317757 0.131476163 Different 

14 0.112149533 0.113333333 Same 

15 0.271028037 0.113333333 Different 

16 0.112149533 0.113333333 Same 

18 0.341176471 0.147512711 Different 
Table 9: K-S statistics results on the glacier data 

 

6.1.4 Discussion 

Of interest are the results for the 13th, 12th and 10th July 2005. In all experiments completed for 

the 13th and the 10th the single swarm slightly outperforms the hierarchical swarm model. It is 
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instructive to consider what is causing this slight deterioration in performance, given that there are 

more influences trying to improve the values used to populate the transformation matrix. A . The 

hierarchical swarm performs less well on these two days when compared with the single swarm. 

However, the overall performance of the hierarchical swarm model produces better R squared 

values than the single swarm model. In order to understand why the hierarchical swarm performs 

less well, recall that the master swarm reverses the arithmetic operations in the velocity equation 

and that this is only applied to the gbest particles in the child swarms once per iteration. It is 

perhaps logical to conclude that there is a particularly variable characteristic to the data space for 

these two days, such as seeing by a sudden change in weather. This would imply that the influence 

of the master swarm is to ‘distract’ the improvement in the respective child swarm gbest. Thus 

preventing the child swarm gbest particle from reducing to the smaller scale required to converge 

on the optimum for that day’s data. In the early stages, convergence is slowed due to the 

perturbation of the gbest trajectory within the child swarm. Other particles within the swarm still 

converge on the gbest position: we consider this an advantage of the hierarchical technique, as it 

reduces overfitting and increases the predictive power of the model. A plot of the data for 10th – 13th 

July 2005 is shown in Figure 17. The inputs ‘in2’ and ‘in3’ are the melt for the glaciers Noir and Blanc 

respectively, and inputs ‘in4’ and ‘in5’ are the sedimentary load for glaciers Noir and Blanc 

respectively. The 12th July 2005 predicts poorly using single swarm; according to Stott & Mount 

(2007), a rainfall event occurred on 11th July 2005. However, in a hierarchical swarm model, there is 

a significant increase in predictive success.  

Table 8 only shows a single result for each day, the result shown for 12th July 2005 is one of the 

higher R-squared values produced over a series of runs. Given the increase in predictability, as 

shown by the R-squared statistic, it is reasonable to conclude that the data collected from the other 

24-hour periods is influencing the convergence, since the effect of a rainfall event will have a time 



 

121 

 

lag on the glacier flow. Extending this logic, the days which score least well in comparison with their 

single swarm equivalents, are 10th and 13th July 2005. These are characterised by a decreasing 

temperature, presumably before and after the weather system passes.  

Another interesting observation that can be made from the graphs in Figure 17 is that there 

seems to be a correlation between the air temperature value and the value of ‘in4’. This input is 

identified in Stott & Mount (2007) and Mount & Stott (2008) as the suspended sediment load at the 

Glacier Noir measuring station. This measuring station is at a lower elevation than Glacier Blanc and 

we conclude a higher sediment load is being registered, due to the greater volume of melt and 

associated proglacial discharge following an increase in temperature. Nevertheless, the correlation is 

quite strong between this measure and the air temperature. We conclude that the hierarchical 

results show some improvement over that of the single swarm based on a single dataset. It is too 

early to determine whether or not the improvement holds for other applications or datasets. 
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Figure 17: Data plot for 10th – 13th July 2005. The values for ‘in2’ – ‘in5’ are the melt and Suspended Sediment measurements upstream of the basin at ‘out’, see  Stott & Mount Stott 

& Mount (2007). 
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Stott & Mount (2007, 2008) refer to the use of random variables: we take this to be a 

reference to modelling the chaotic nature of glacier behaviour. Mount & Stott model suspended 

sediment concentration using a Bayes Network which uses random values to infer probabilities 

from which the predicted SSC is derived. It is important that we recognise that randomness and 

chaos are not the same thing, chaotic systems can be deterministic. We propose that glacier 

behaviour is chaotic and not random therefore it is our view that a model should endeavour to 

reflect its chaotic characteristics. However, the authors suggest, especially in Mount & Stott 

(2008), that a way to model these chaotic processes is to introduce additional random variables 

into the chosen model. We suggest that this is not a complete solution to modelling unknown 

data, since although the glacial system is chaotic there are other unmeasured processes, which 

are not random, contributing to the glacier’s behaviour. Introducing more random variables has 

the effect of adding more degrees of freedom with which to find the factors which map the 

inputs to the expected outputs. An alternative would be to use known data, for example the 

statistical residual values from Multiple Linear Regression, to provide information about the 

unknown factors or factors which are not recorded. Here we are using the term residual to refer 

to the error difference between the expected value and the predicted value produced by the 

model. As the values in the candidate model converge, producing improved predictions, there 

remains a pattern in the residuals which we suggest is indicative of the unmeasured data. The 

current dataset for example, includes a direct measure of rainfall rather than the effect of 

rainfall measured as part of the melt. The hierarchical PSO model demonstrates the possible 

strength of this idea through the way it finds the degrees of freedom represented in matrix A . 

The process is analogous to back propagation in ANNs Haykin (1998) where the differences 

between the predicted and actual values, the residuals, are propagated back through the ANN. 

Our suggested technique has the benefit that the residuals are subsequently used as an input 
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introducing another input which is responsive to changes in the system. If the mean residual 

value is used for subsequent iterations, rapid fluctuations in value of the residual would be 

reduced and, at least in part, the error would approximate the pattern of the unmeasured 

variables. 

Gas Spectrometry 

While a hierarchical PSO can successfully predict glacial outflow, we need to apply the 

hierarchical PSO to other data sets. The identification of a gas within a mix of gases is an 

interesting scientific problem, particularly in the field of health and safety (Brown et al., 2014; 

Haitao Li et al., 2014). We used the dataset available from 

https://archive.ics.uci.edu/ml/datasets/Gas+sensor+array+under+dynamic+gas+mixtures, 

further details of this dataset are available in Fonollosaa et al. (2015). The dataset is a time series 

dataset collected from 16 chemical sensors exposed to gas mixtures at various concentrations, in 

particular two gases, ethylene and methane in air and ethylene and CO in air. The aim is to 

predict the identities and concentrations the gases. 

This is a suitable data set for testing the hierarchal PSO approach as each time series dataset 

can be used by a separate swarm with the parent swarm used to coordinate them and find a 

globally optimal solution. 

6.1.5 Method and Results 

In these experiments, we use the same technique as we did with the glacier data that of the 

hierarchical swarm technique. As before, the data was also split into test and training sets. The 

data set is extremely large, with about 8.2 million rows of data, so we used a random subset of 

https://archive.ics.uci.edu/ml/datasets/Gas+sensor+array+under+dynamic+gas+mixtures


 

125 

 

1500 rows for each category for both training and testing sets. We chose this size pragmatically, 

as it was the largest data set that could reliably fit in memory in the PSO test bed. 

The data classification was categorical (gas name and concentration), but the hyperspatial 

transfer function produced by the PSO give real-valued results. Therefore, we encoded the 

categories by using the ASCII codes of the sample names. This may appear slightly unusual, 

however, it is an effective way to produce a numeric value which it does not assume any 

inherent order to the gas concentrations.  

We used seven child swarms, one for each different combination of gases and 

concentrations in the dataset (including one for no test gas being present in the sample). Each 

child swarm optimised a transfer matrix from the input data to an indicator value. A presented 

data set was classified by comparing the output from each swarm's transfer matrix to that 

swarm's target value, with the closest match indicating the assigned classification. 

For comparison, we trained a standard multiple linear regression predictor on the data, 

taking the output classification as being the class whose encoded value was closest to the MLR 

output.  

This was a challenging data set, as the differences between the sample classes were small. 

The classifiers could detect differences in gas composition, but neither was reliably able to 

differentiate between concentrations of the same gas. Therefore, we used just sample gas 

composition when evaluating the results.  

As the classification is categorical, evaluation of the results is simple: we counted the data 

rows where the predictor made the correct prediction for gas composition, regardless of the gas 
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concentrations. The hierarchical swarm correctly identified 65% of the samples, while the MLR 

predictor correctly identified 70% of the samples.  

While this result is disappointing, the results show that the hierarchical swarm can optimise 

multiple datasets and perform approximately as well as conventional statistical analysis. 

Conclusion 

This chapter has considered the implementation of a dynamic hierarchical particle swarm 

with the intention of providing a technique to process multiple datasets, while preserving the 

separate identity of each dataset. The underlying mapping model has been successfully applied 

using a single swarm, to River Severn hydrographical flow prediction in Chapter 5. We extended 

it to a multi-swarm model and applied it to a statistically less predictable dataset. We have 

shown that such a model produces an extension of PSO which is able to find an improved 

solution over the single swarm. In our example a transformation matrix is found, without the 

requirement to implement a second technique, for example in the paper by Imrie et al. (2000) 

PSO is used in conjunction with an ANN to make hydrographical predictions. The hierarchical 

system provides an effective aggregation of the discrete results from the lower level swarms. Our 

method has an advantage over other techniques that use aggregation, such as ANNs, in that 

each swarm contributes to the convergent potential, which is the momentum and guided 

direction of travel to find improved solutions. The aggregation used in our technique does not 

impede the potential for a single swarm to converge, and information is not lost for use in later 

stages of the convergence process. Further, by using separate swarms to process each dataset 

and then aggregating the results in a master swarm of the gbests from each child swarm, an 

improvement is seen over the results generated from each swarm on its own.  
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However the hierarchal swarm results on the glacier data are still less accurate than those 

produce by Multiple Linear Regression. In section 6.1.3 and section 6.1.5, we observed that the R 

squared results for multiple linear regression were also relatively poor and attributed this to the 

dataset, not including variables which contribute to the amount of SSC measured within glacier 

melt. A possible solution to this is to optimise a set of data transformations, see section 0 on 

further work. From the point of view the hierarchical particle swarm, we have to conclude that 

although our experiments, on both the glacier and gas spectrometry datasets, demonstrate the 

benefits of our technique in improving the performance of PSO to problems, where PSO is well-

suited. We have also shown that there continue to be limitations in PSOs ability to find the 

optimum on complex datasets. Understanding why an improvement is seen, but without 

achieving optimum is a possible area of future research as achieving an understanding would be 

useful for developing complex predictive models.  
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Chapter 7  

Network Theory Inspired Neighbourhoods for 

PSO  

In the previous two chapters, we have demonstrated techniques in applying PSO to datasets, 

with complex interactions between the inputs and demonstrated a stable improved prediction 

using the techniques we developed. Using inspiration from the hierarchical swarm model we 

realised that it was possible that the structure of the neighbourhood was contributing to 

convergence on local optima. In this chapter we test our new neighbourhood model, as 

described in section 0. In this model, neighbours are determined by their influence on a 

particle’s performance.  

The dynamic neighbourhood PSO used in this chapter shows a large improvement on the 

results produced from the fully informed particle swarm neighbourhood and an improvement 

over the lbest neighbourhood. 

In order to demonstrate the dynamic neighbourhood, given our success with a 

hydrographical data and the desire to test more complex datasets, we turned to medical and 

cosmological data for these experiments. These data sets are larger and more complex than the 

data sets described earlier in the dissertation. The use of these data sets also illustrates the 

applicability of PSO to other domains enables the model to be developed independently from 

the hydrological and glacier data sets. 
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All experiments in this chapter use the same experimental setup and parameters as before, 

as described in section 0.  

Parkinson’s Speech Data 

Our experiments using the hydrographical data in the previous two chapters showed that the 

development from a single swarm to a hierarchical swarm improved the accuracy of the 

predictions made by our model. We concluded that due to the relatively low R squared values 

from multiple linear regression on the glacier data was of poor quality. By poor quality we are 

referring to the way and types of data collected. With this in mind we sought a new dataset. Our 

rationale in selecting the data set was to apply the dynamic neighbourhood to a completely 

different dataset with more complex interactions between the inputs and with a known data 

quality from previous results (2009). Our reasoning behind this was that a complex dataset 

would benefit from a more adaptive neighbourhood structure. With this in mind we turned to 

medical data, which is notoriously difficult to optimise because of its time series nature and 

complex interactions between the inputs. To test our neighbourhood model we used the 

Parkinson’s speech data available from the machine learning repository at 

http://archive.ics.uci.edu/ml/datasets/Parkinsons (Retrieved: 27 July 2012). This data was 

originally published in Little et al. (2007) and contains speech data from patients with Parkinson’s 

disease and from a control group of subjects without the disease. The Parkinson data was 

selected in particular because voice recognition represents a complex dataset and the ability to 

differentiate between a patient with Parkinson’s and an individual without Parkinson’s presents a 

computationally difficult task to develop a model which allows the progression of Parkinson’s to 

be monitored through the use of voice patterns. The Parkinson’s datasets also is a high quality 

http://archive.ics.uci.edu/ml/datasets/Parkinsons
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dataset, the data was collected in a clinical environment, with the advantage of having published 

results to use as comparison. 

For many people with Parkinson’s disease, it is necessary to make several trips to hospital in 

order to assess the progression of the disease. In recent years there have been attempts to 

produce a predictive model to assess the severity of the patients’ symptoms based on their 

speech patterns (Little et al., 2007). Successful application of the technique would allow for 

telemonitoring of the patient using Internet-based telecommunications, therefore reducing the 

number of hospital visits needed. 

The Parkinson data was selected in particular because of the complexity of the data in the 

data set. Developing a model to differentiate between a patient with Parkinson’s and an 

individual without Parkinson’s is a computationally difficult task. There have been several models 

for the detection of dysphonia in Parkinson’s disease. Many of the existing techniques using 

conventional analytical tools were unreliable in distinguishing between Parkinson’s patients and 

healthy controls (Little et al., 2009). We suggest that one of the reasons for this, based on our 

own experience in using speech recognition software, is that presentation of dysphonic 

characteristics in a given patient is highly variable throughout the day, and therefore the speech 

presentation is inconsistent. 

The approach we have adopted with our transfer function, see the equation below, is similar 

to that of Little et al. (2009). However, the purpose of this chapter is to demonstrate the value of 

a dynamic neighbourhood in comparison to FIPS. Our experiments use the standard 10 inputs 

used by Little et al and we did not attempt to find the optimal set of characteristics for our 

method. Further improvements to our results may be achievable. The data used contains the 

standard voice measures of pitch of vocal oscillation, absolute sound pressure level (indicating 
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the relative loudness of speech), jitter (the extent of variation in speech from vocal cycle to vocal 

cycle), shimmer (the extent of variation in speech amplitude from cycle to cycle) and noise-to-

harmonics ratios (the amplitude of noise relative to tonal components in the speech).  Little, et 

al. also added new statistical measures referred to as pitch period entropy; we include this 

measurement in our experiments. Table 10, reproduced here, shows details of the data used in 

our experiments. 

 

Table 10: Reproduced from Little et al. (2009); lists the subjects and measurements. 

Little et al. performed some pre-processing to identify the attribute subsets which are more 

effective at predicting which group the subject is in a Parkinson’s patient or control subject 

without Parkinson’s. Their findings, shown in Table 11, show that the derived characteristics 

which they introduce are better at predicting which group the subject is in than the raw 

measured data. 



 

132 

 

7.1.1 Experiments 

The description of dynamic neighbourhood swarms can be found in section 0. The 

experimental parameters and methods are described in section 4.9.  

As stated above, we used all 10 variables identified as ‘yes’ in Table 10 as the input vector to 

the model. In order to compare the dynamic neighbourhood, we also ran experiments using the 

FIPS neighbourhood. The results for each neighbourhood are given in Table 15: below. 

Due to the complexity of the interactions between the input variables, we modified the 

scoring function used for the hydrological data – the modified function is shown in the equation 

below. The rational for the change is to reduce the relative influence of the dimensions with a 

larger value range to the same scale as base dimensions with a smaller range values. To achieve 

this, the equation below takes the square root of the value of the first element in the vector and 

then alternately the cosine and sine of the vector values, Epps & Ambikairajah (2005). As with 

the hydrological flow data presented in Chapter 5, we use a matrix of weights multiplied by the 

vector representing the speech characteristics, providing a hyperspatial solution in the form of 

the matrix, A . The aim in this experiment is for the swarm to find and B  to minimise the 

error, , in the third equation below: 
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 
n

rexpectede
1

 

A is a matrix, B  is a vector; PSO is used to find the component values of A and B , f  is a 

vector representing the real numbered voice characteristic input values, is the result vector 

from the matrix multiplication. The vector B is used to allow for the convergence on a 

translation element to the model. r  is the sum of the result of the conditionally determined 

function for each of the components in the vector and is the value which predicts if the subject is 

a Parkinson’s patient or not. The function used to aggregate the result vector s was modified to 

make the result more responsive to changes in the vector, suggested by Epps & Ambikairajah 

(2005). The effect of this technique is to reduce the relative influences of each dimension to the 

same scale, and therefore avoid a dimension with a larger range having a bigger effect for a 

relatively small change in value. As with the hydrographical data, by using a matrix of real 

numbers we are better able to model the interactions between the inputs through retaining 

more degrees of freedom, thus introducing greater scope to find a combination of weights 

which in turn improve the accuracy of the predictions. The third equation aggregates the errors 

between the predicted and expected values to give an overall score for the particle. 

As with the other experiments in this thesis to guarantee that the swarm converges, we 

used the parameter settings for the swarm given in section 4.9. 

7.1.2 Results and Discussion  

Our experimental aim is to use the data to explore the effectiveness of a dynamic 

neighbourhood by comparing it to the performance of the FIPS neighbourhood on the same 

dataset. Accordingly, we used the same filtered subset of 10 inputs identified in Table 10 used in  

s
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Little et al. (2009). The voice patterns in the data are complex and have multiple interactions 

between the measured variables, making the characteristics of the particles’ convergence 

erratic. This makes the data suitable for demonstrating the relative effectiveness of the different 

neighbourhood topologies. 

 

Table 11: List of SVM classification performance results, reproduced from Table III in Little et al. (2009) 

The second row of Table 11 contains the results presented by Little et al. (2009) for the 

combination of features we tested. Each row of the table identifies the group of features tested 

and the results achieved. It is unclear from Little et al. from where the ±4.1 confidence is 

derived: one percentage point equates to the misclassification of two subjects. Table 15: shows 

the results from our experiments for the overall correct, true positives and true negatives. Our 

initial experiments showed an overall correct for the FIPS neighbourhood of 74.26% and 88.72% 

overall correct for the dynamic neighbourhood. We then carried out a series of additional 

experiments to demonstrate the range in accuracy; these results are shown in Table 15:. In 
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contrast to the confidence interval presented for all the results in this table, our results show an 

average accuracy of 89.90% using the dynamic neighbourhood compared with an average 

76.99% for the FIPS neighbourhood with a similar range for both neighbourhoods. The 

improvement in the accuracy of the dynamic neighbourhood is due to more true positives, 

although the percentage of true negatives is still relatively low. 

  FIPS Dynamic 

  % Correct 
True 
Positive 

True 
Negative 

% Correct 
True 
Positive 

True 
Negative 

  85.64% 93.20% 62.50% 91.19% 97.96% 68.75% 

  87.69% 94.56% 66.67% 90.26% 94.56% 72.92% 

  70.36% 96.60% 16.67% 89.23% 94.56% 68.75% 

  74.26% 100.00% 0.00% 88.72% 93.20% 62.50% 

  71.97% 100.00% 2.08% 90.26% 96.60% 64.58% 

  70.50% 97.96% 27.08% 89.74% 97.28% 68.75% 

Mean 76.74% 97.05% 29.17% 89.90% 95.69% 67.71% 

Standard 
Deviation 

0.08 0.03 0.29 0.01 0.02 0.04 

 

Table 15: Summary of Results 

Taken together, the percentage correct and the percentage of false predictions demonstrate 

it is possible to predict whether a subject has Parkinson’s from the characteristics of their voice 

pattern, see Table 15:. However our model demonstrates a relatively low true negative value 

which would need more work in order to be useful in a clinical setting. Prior to the work of Little, 

et al. (2007), using voice pattern analysis to monitor the clinical progression of Parkinson’s 

Disease had not been considered. The subset of voice parameters used in our experiments, and 

those of Little et al., includes measurements derived from the voice data. The reason that these 

derived measurements produce improved accuracy needs to be better understood, in order to 

reduce the false-positives produced when processing data. Our results indicate that the reason 

for not attaining 100% accuracy with the dynamic neighbourhood is largely due to false positives: 
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that is, subjects without Parkinson’s were being treated as if they had Parkinson’s. Understanding 

the reason for this will be important if the results are to be used to inform the clinical 

management of a patient’s presentation10. The high degree of accuracy seen in these results is 

interesting, but we suggest that further research is needed to find improved analysis before our 

technique is used for the telemonitoring of Parkinson’s patients. Telemonitoring of Parkinson’s 

patients has been achieved by Little et al. (2009), albeit with a relatively small group of subjects. 

Recently the Parkinson’s Voice Initiative http://www.parkinsonsvoice.org was established with 

the aim of gathering voice data to develop the authors’ algorithm. 

Since we completed this experimental work, two additional papers have been published  

(Tsanas et al., 2012a, 2012b) using an enhanced technique and a larger dataset than used in  

Little et al. (2009). The published results show an improvement over our results however the 

dataset or details of the technique have not been published. Therefore a comparison to the 

technique we use has not been possible. 

                                                           
10 In a clinical setting a patient’s presentation refers to the constellation of symptoms which taken together leads to a 

diagnosis 

http://www.parkinsonsvoice.org/
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Iteration Neighbourhood Iteration Neighbourhood 

0 23,11,26,13 199 2,38,9,12,13 

1 1,2,33,6,27,28 299 2,38,7,10,26,12,13 

2 34,23,6,26,28,14 399 34,2,38,7,12,13 

3 18,5,6,7,13 499 0,19,38,7,12,13 

4 20,39,11,13,28 599 19,32,3,7,13,14 

5 20,39,22,11,13,28 699 19,38,37,7,12,13,14,30 

7 20,39,22,11,29,13 799 2,19,38,7,13,14 

8 0,20,22,11,29,13 899 34,19,3,38,6,8,12,13,14 

9 0,20,22,11,13 999 19,38,9,12,13,14 

99 32,2,9,10,13,14,15   

Table 16: A sample neighbourhood of the gbest particle over a series of iteration when processing Parkinson’s 

speech data. The second column lists the identities of the particles in the neighbourhood. 

An examination of the detail of the dynamic neighbourhoods shows how the swarm 

organises around the particles that have found the best solutions. Table 16: shows the 

neighbourhood membership of the gbest particle, for the first 10 iterations, then in steps of 100 

over the 1000 iterations. The second column lists the identities of the particles in the gbest’s 

neighbourhood. It is important to bear in mind that the identity of the gbest is not the same 

from iteration to iteration. In the earlier stages of convergence, the recruitment, see 95, results 

in an increased probability of a particle recruiting more neighbours and therefore more 

influences on its trajectory. As the convergence progresses, each particle’s neighbourhood 

becomes a stable set of other particles. For example, particles 13, 14, 19 and 38 become stable 

members of the gbest’s neighbourhood. A characteristic suggesting the adoption of key 

influencers based on these particles’ continuing success. This is consistent with the way social 

networks develop and stabilise around a few key influencers (Watts et al., 2005).  We find it 

intriguing that our neighbourhood model seems to have some of the characteristics of a social 

network, yet by selecting members based on the value of their contribution, the swarm 

outperforms one in which the neighbourhood connects all particles to every other particle (FIPS). 
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The emergence of a stable group of key influencers, and frequent changes in the 

neighbourhood for particles outside this group, occurred in all the experiments we completed. 

This suggests the equations used to recruit and remove neighbours are effective in finding the 

improving particles. A note of caution is needed, however: the key influencers in a particle 

swarm may be non-improving particles centred on local optima, rather than particles which are 

continuing to improve to the global optimum. However, our results consistently demonstrate an 

improvement over the comparable results presented in Table 11 which would suggest that the 

global optimum is being found. 

a) b)  

Figure 18: a) Convergent pattern for a Dynamic Neighbourhood b) Convergent pattern for a FIPS 

Neighbourhood 

Figure 18a shows the convergent pattern of the gbest particle over the same iterations for 

the dynamic neighbourhood. Figure 18b, shows the results using the FIPS neighbourhood. The 

convergence is slower in the dynamic neighbourhood, resulting from the reduction in the 

number of influences on the particle; this is seen in the more stepped line. The dynamic 

neighbourhood generates more diverse influences on a particle’s velocity, therefore enhancing a 
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particle’s capacity for exploration. This is demonstrated by the slightly later convergence to a flat 

line in Figure 18a, when compared with Figure 18b. The changing influences on a particle are 

demonstrated through the changing membership of the gbest’s neighbourhood. 

Lbest Neighbourhood Results 

We completed five experiments using the lbest neighbourhood. The lbest neighbourhood is 

typically characterised by setting 3n . We were expecting that this neighbourhood topology 

would perform similarly to the dynamic neighbourhood, anticipating that the reason the 

dynamic neighbourhood performed better was due to the smaller neighbourhood size. However 

the lbest neighbourhood performed statistically less well than the dynamic neighbourhood, with 

a mean of 81.35%±1.88% predictions correct. This suggests the dynamic neighbourhood’s 

method of selecting neighbours improves convergence on the global best for the Parkinson’s 

voice data. 

Cosmology Data 

There are significant amounts of cosmology data available from the 2dF-SDSS LRG and QSO 

(2SLAQ) website, http://www.2slaq.info/. In order to further demonstrate the usefulness of our 

dynamic neighbourhood concept we decided, following advice, to predict the redshift using the 

data set as true labels of each objects' redshift. Using the following datasets combined on the 

object identifier – Croom et al. (2009) and Collister et al. (2007) – to obtain the redshift value z 

photo; this was the value we wanted to predict from a subset of measurements taken from 

distant galaxies. We used the following subset of data values with which to predict z photo value, 

[20 Petrosian Mag u], [21 Petrosian Mag g], [22 Petrosian Mag r], [23 Petrosian Mag i], [24 

Petrosian Mag z]. The meaning of these attributes is defined in Blake et al. (2007). Briefly, the 

parameters represent the Petrosian Magnitude in each band. For further discussion on how the 

http://www.2slaq.info/


 

140 

 

Petrosian Magnitude for each band is calculated, see Blake et al. (2007)  and Blanton et al. 

(2001).  

The scientific aim is to predict the redshift. This parameter set was selected to see if it was 

possible to improve the prediction of the redshift value using a smaller dataset then the full set 

of variables which include derived statistics. Due to the time constraints, we have the outcome 

therefore is whether or not PSO, using the dynamic neighbourhood, can improve over MLR on 

this dataset for the R squared statistic. Our aim was to show that the dynamic neighbourhood 

performed better than the multiple linear regression on the same dataset. A similar model has 

not been published on this data, which is why we made the comparison multiple linear 

regression.  Machine Learning has previously been used to identify interstellar bubbles; 

Beaumont et al. (2014) is included here is a sample of the work using machine learning in the 

field of cosmology. 

 

7.1.3 Method and Results 

As with the Parkinson’s data, we constructed a model by using the parameters given in 

section 0 for the dynamic neighbourhood. This is to see if we can obtain good results using a 

proven convergent set of parameter values. 

After a series of five runs, due to available computing time, the average R squared statistic 

for the dynamic neighbourhood was a value of 0.025, with a range of 0.0152 to 0.029 compared 

with the multiple linear regression of 0.008. This is clearly an improvement on the multiple linear 

regression value. But this is not a scientifically useful prediction technique. 

In order to validate whether or not it was the dynamic neighbourhood topology led to the 

poor predictions we ran equivalent experiments, but this time using the FIPS and lbest 
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neighbourhoods, the latter with five neighbours included in each neighbourhood. The results 

were similarly disappointing, with the R squared values of 0.024 for both neighbourhoods. This 

demonstrates that the dataset is not highly predictable, and that the topology used does not 

statistically affect the predictions. However, the dynamic neighbourhood PSO gave the best 

results of all the PSO alternatives, indicating that it is able to extract the most useful information 

from this small selection of parameters. 

Conclusion 

We have tested a new dynamic neighbourhood topology inspired by research in network 

theory. The aim was to explore the potential of particle swarm with the use of the standard 

velocity equation to model certain characteristics of social network interaction. 

The dataset on which we chose to test our neighbourhood contains complex relationships 

between the inputs. Our results show a significant improvement over a fully connected network, 

and a smaller but nevertheless significant improvement over the lbest neighbourhood, compared 

with our dynamic neighbourhood on the same data which in turn showed an improvement on 

the results presented by Little et al. (2009). Our experiments show that the dynamic 

neighbourhood demonstrates improved solutions over all other neighbourhoods tested. The 

difference between the dynamic neighbourhood and the other topologically based 

neighbourhoods is that the selection of neighbours is dynamic and based on a particle’s rank. We 

therefore conclude that the dynamic neighbourhood is able to converge to an improved final 

solution because the particles’ trajectories are being influenced by particles that have solutions 

which already have the potential to improve. The improvement over the lbest neighbourhood 

suggests that the quality of the information shared, rather than the quantity, is also important in 

facilitating improved convergent potential. This is a significant research finding in terms of the 
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application of neighbourhood topologies and PSO. Although the classical PSO neighbourhoods 

lead to information dissemination which is roughly equal throughout the swarm, our model 

results in the particles receiving a more directed path to convergence. We describe the 

information dissemination as roughly equal because although some of the classical 

neighbourhood topologies support local neighbourhoods the whole swarm remains 

interconnected in a linear structure, resulting in changes to the identity of particles influencing a 

given particle. We suggest that a network based neighbourhood is also better suited for 

modelling real-world social networks, and therefore could be used in modelling the spread of 

epidemics (Watts et al., 2005). Watts et al. recognise that their model is too simplistic; they 

model a population as a nested hierarchy of subpopulations that interact within local contexts: 

schools, workplaces etc. However the Watts et al. model assumes the level of interaction within 

a subpopulation is uniform. We suggest that our dynamic neighbourhood is a suitable model to 

introduce an element of variability into the interactions within the subpopulation. 

We note the results presented in this chapter show a significant variation in the membership 

of a particle’s neighbourhood. We see this as a strength of our model, which leads to greater 

diversity in the influences on a particle’s velocity. Further development of the formulas used to 

update a neighbourhood may lead to a more flexible social network model for the dissemination 

of information to solve complex combinatorial problems. Finally, although our results show a 

significant improvement, only one voice pattern dataset was tested and it should be noted that 

we did not test on the variety of parameter subsets used by the original authors. Further study is 

required to verify the results on a wide variety of datasets. 
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Chapter 8  

Conclusion 

In this thesis we considered the performance of several enhancements to PSO on five 

real-world datasets. For each of these datasets our aim was to demonstrate the performance 

of PSO, with this in mind we used a parameter configuration guaranteed to converge. Using 

the River Severn dataset we demonstrated the principle of our technique showing an 

improvement on flood prediction over multiple linear regression. We introduced innovations 

to the PSO heuristic: hierarchical swarm organisation and dynamic neighbourhoods, and 

tested these innovations on large, complex, real-world data sets, with varying success. 

However we conclude that our enhancements improve the performance of PSO on all 

datasets tested 

Summary 

We identified the following issues with existing PSO techniques: 

 PSO has a tendency to converge prematurely to local optima. 

 Many of the real-world applications of PSO required some combination of a 

problem-specific implementation of the PSO heuristic, pre-processing of the 

data, or additional techniquest which PSO supplemented 

 The original PSO can only optimise a single dataset at a time. This makes it 

difficult to optimise a group of discrete but related datasets 
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 The standard neighbourhoods used by PSO are based on a particle’s index 

position, rather than a measure of its contribution. This is important because the 

index-based neighbourhoods are essentially random, unchanging groupings of 

particles. 

The contributions to knowledge in this thesis are as follows: 

 The use of a problem-independent model to find the objective function values 

for problems which involve prediction or modelling of a system. This was 

introduce in section 0 and tested in Chapter 5, using hydrographical flow data. 

The introduction of our model enabled PSO, in its single swarm variant, to find a 

predictive model with accuracy comparable to multiple linear regression, but 

with the advantage of being applicable to datasets which had not been not used 

to train the model. 

 We identified four stages in the swarm’s convergent behaviour characterised by 

the dominant influence on the particle’s velocity. Through the identification of 

these stages we found a limitation of the PSO velocity equation that becomes 

apparent when the swarm reaches the stage where improved solutions are not 

found some distance from the current gbest. Without any increase in velocity at 

this stage, the velocity of all particles reduces, and with it the swarm’s capacity 

for further exploration. This insight informed our subsequent development of 

hierarchical PSO. 

 The hierarchical form of PSO was described in section 0 and tested in Chapter 6. 

Each swarm can optimise a subset of data and influence the other swarms’ 
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convergence. The significant feature of this version of PSO, which gives it an 

advantage over competing variants, is that it continues to respect the 

interactions between particles in both the master and child swarms. 

We demonstrated the value of dynamic, hierarchical PSO with glacier outflow 

data and gas spectrometry data. The results of both sets of experiments showed 

that the hierarchal swarm was consistently able to outperform a single swarm. 

However, rather disappointingly, the technique was outperformed by the MLR 

results, on both glacier and gas spectrometry datasets. We therefore conclude 

that our hierarchical technique improves PSO’s performance on problems that 

are represented by discrete data sets which need to be processed 

simultaneously. 

 We developed a dynamic neighbourhood topology for PSO in section 0. In this 

variant, particles select their neighbours based on the contribution made to the 

particle’s success. This variant was tested in Chapter 7. The advantage of such a 

topology is that the particles’ neighbourhoods adapt to the value each particle 

places on the other particles. When applied to the Parkinson’s voice data, the 

dynamic neighbourhood demonstrated a significant improvement over the FIPS 

neighbourhood model. Not only did the dynamic neighbourhood converge to a 

lower optimal value and was able to do so consistently. These results were 

repeated when the dynamic neighbourhoods were applied to the cosmological 

data. Although this data set produced much lower quality results than the 

Parkinson's data, the dynamic neighbourhoods performed the best of the 

approaches we used. The results presented in Chapter 7 represent a significant 
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contribution to the application of neighbourhood topologies with particle swarm 

optimisation. 

Further Work 

The ideas for further research which have presented during our research are briefly 

summarised below: 

Understanding the Benefits of Hierarchical Particle Swarm Optimisation 

We saw in Chapter 6 that hierarchical particle swarm optimisation was able to improve 

on the results produced by a single swarm. Future development of this PSO variant will 

include testing on different complex datasets, and the development of different objective 

functions to produce a comparison with which to benchmark the hierarchical variant against 

other variants of PSO. A key element of this work will be determine the general properties of 

the data set and fitness landscape that control the hierarchy's ability to identify the global 

maximum in a complex fitness landscape and with disjoint data sets. 

Convergent Behaviour of PSO on Real-World Data 

An analysis of the convergence behaviour of PSO using real-world data, so that the 

relationship between the particle bests and the particle’s current position can be further 

understood, especially where the data is noisy as with most real-world data. In this thesis we 

have deliberately used a parameter configuration guaranteed for convergence van den Bergh 

(2002). Further analysis may lead reformulation of the velocity equation. Although Blackwell 

(2012) summarises the recent research on Bare Bones PSO development of  Kennedy (2004) 

by  Krohling (2005), Wang et al. (2008), and Krohling & Mendel (2009), the paper 

concentrates on test functions.  Blackwell points out that the Bare Bones implementation is 

problem-specific and that classes of problems remain unexplored.  The Bare Bones variant of 
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PSO uses probability distribution sampling as its velocity update rule.  An improved 

understanding of convergence to solutions in real-world problems is needed in order to 

better understand how convergence is achieved by the inertia weight and constriction factor 

variants of PSO. This research should also consider the influence of larger distances between 

particle’s positions, especially during the early stages of a run, and the effect of this on the 

particle’s cumulative velocity. Further consideration needs to be given to the relative 

influences of the existing velocity, the change in velocity and the position of the particles’ 

bests. 

Advantage of the Dynamic Neighbourhood 

An interesting effect of the dynamic neighbourhood, demonstrated in Chapter 7, is that 

particles improve to better solutions without necessarily having the gbest in their 

neighbourhood. The neighbourhood memberships have shown that the dynamic 

neighbourhood performed better without gbest. The convergent behaviour of particles 

without the influence of gbest in their neighbourhood needs to be explored, so that the 

dissemination of information within the swarm can be better exploited. Our experiments 

establish stable groups which are analogous to the way social networks develop. We believe 

this to be a significant observation, which could lead to a better understanding of the 

dissemination of information through a social network. It would be interesting to apply our 

dynamic neighbourhood to the work done by Watts et al. (2005), to explore the spread of 

information and disease through social networks. Current research in this area lacks an 

effective model of an individual’s interaction within the group. The dynamic neighbourhood 

offers a way to model interactions between individuals based on the value they place on 

each other within their local group. 
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Function interdependence 

The current implementation of PSO uses a single vector for a particle’s velocity and a 

single vector for its position. This means that PSO is unable to optimise a series of inter-

dependent functions. One example of this would be an iterated function system Barnsley 

(2000). An iterated function system (IFS) is a closed set of functions which are iteratively 

applied according to the probability associated with the function. Each function is a matrix of 

values and an associated probability. In addition, each function is inter-dependant. PSO 

could be extended such that the velocity and position vectors are replaced by matrices so 

that an IFS for a given dataset may be found. Specifically, an extension could be developed 

to make use of the collage theorem Barnsley (2000), to compare the characteristics in two or 

more natural phenomena, such as weather systems. The collage theorem states that for any 

given dataset it is possible to find a set of mathematical transformations which approximate 

the dataset Barnsley (2006). The theorem describes a distance measure, the Hausdorff 

distance, a measure of the similarity of two datasets. If a smaller set of transformations can 

be identified, this may be used as a reference set from which a comparison can be made. 

There is currently no universal method for finding iterated function systems for a given 

dataset. It is expected that solving this problem would allow the models we use in Chapter 6 

and Chapter 7 to be extended to model more complex interactions. This in turn would mean 

that a dynamic comparison between historical and current data could be made to perhaps 

an early warning system or to add a degree of adaption to an existing model. 

Adaptive Vmax 

Finally, in Chapter 4, we briefly touched on the potential advantage of using Vmax to 

enhance exploitation in the early stages. Although PSO has had some notable real-world 

successes – for example: Slade et al. (2004), Eberhart & Kennedy (2004) and Lei & Liying 

(2005), a more adaptive velocity may lead to stronger exploitation potential and therefore 



 

149 

 

slower convergence, which in turn may provide better convergence as there would be an 

improved probability of finding better solutions. We suggest that a possible enhancement is 

to allow Vmax to adapt based on the clustering coefficient of the swarm and the elapsed 

iterations. Such a methodology could be explored to allow the swarm to be more responsive 

to the solution space as improved solutions are found. 

This thesis has considered the application of swarm computation, specifically, particle 

swarm optimisation to several real-world computational optimisation problems. We have 

shown that PSO is able to improve on other optimisation techniques when suitable 

abstractions are made from the problem domain. 
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Glossary 

Ant Colony Optimisation (ACO): a population based, socially inspired, optimisation 

technique. The technique uses the generation of an artificial pheromone trail to influence the 

discovery of improved solutions. 

Candidate Solution: a member of a population of possible solutions that satisfy all 

constraints. 

Convergence: the point at which the candidate solutions, in a population of solutions, stop 

making further significant improvement. 

Degrees of Freedom: the number of values in the final calculation of a statistic that are free 

to vary. 

HydroTest (www.hydrotest.org.uk) is a free statistical analysis site for comparing observed 

(i.e., expected) and modelled (i.e. forecast or predicted) time series data produced by 

hydrological systems. This was used to validate the hydrological results. 

Mean Squared Error (MSE): a measure of the average error between the actual and 

predicted values produced by a particular mathematical model.  

Objective Function: the function to be optimised in an optimisation problem. 

Particle Swarm Optimisation (PSO): a population based, socially inspired, optimisation 

technique. The technique uses the positions of the particles in the population to influence the 

discovery of improved solutions. 

http://www.hydrotest.org.uk/
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R squared: a statistical measure of how well predicted data approximates real data points. R 

squared is a descriptive measure between zero and one, indicating how good one term is at 

predicting another, a value nearer one indicates a better fit. R squared needs to be applied 

carefully since it can produce erroneous readings, for example, it cannot be used for scoring a 

model directly rather a measure of the goodness of fit between the predicted and real datasets. 

R squared is a standard measure used for hydrological data. 

Residual: an observable estimate of an unobservable error. In this thesis it is equivalent to 

the squared statistical error.
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Appendix A River Severn Results 
 Matrix 

Year 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 
1980 0.996839 0.997227 0.996854 0.996452 0.996240 0.994221 0.993638 0.993361 0.995548 0.996922 0.994534 
1981 0.997534 0.997834 0.997698 0.997094 0.996478 0.994002 0.994384 0.994446 0.995948 0.997574 0.995318 
1982 0.990806 0.989359 0.991478 0.985667 0.986877 0.981749 0.983913 0.986615 0.985281 0.990348 0.985454 
1983 0.982645 0.985706 0.983107 0.989361 0.982568 0.980592 0.970462 0.967039 0.976651 0.979486 0.971078 
1984 0.997678 0.998180 0.996824 0.997005 0.997889 0.995788 0.997286 0.997348 0.997705 0.997553 0.997512 
1985 0.990863 0.992703 0.988377 0.994015 0.994761 0.995298 0.994228 0.993163 0.994218 0.990811 0.993491 
1986 0.988676 0.990308 0.987268 0.990377 0.992413 0.993403 0.993315 0.992345 0.993096 0.990003 0.992862 
1987 0.994598 0.995321 0.993491 0.994744 0.996213 0.995347 0.996180 0.996437 0.996143 0.995265 0.996250 
1988 0.992434 0.993526 0.991118 0.993025 0.995091 0.995103 0.995523 0.995075 0.995512 0.993502 0.995400 
1989 0.993406 0.993923 0.992656 0.993460 0.994315 0.993412 0.993892 0.993894 0.994345 0.993933 0.994187 
1990 0.993094 0.994124 0.992269 0.992635 0.995338 0.994882 0.996370 0.995802 0.996337 0.994608 0.996430 

Table 12: Shows the R-squared value for each year, using the matrix calculated for the corresponding year. The rows indicate the years, whereas the columns indicate the matrix used. The best 

performing matrix for each year (row), is shown as white text on a black background.  
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 Matrix  

Year 1980 1981  1982  1983  1984  1985 
 PSO MLR PSO MLR PSO MLR PSO MLR PSO MLR PSO MLR 

1980 0.997 0.998 0.997 0.997 0.997 0.997 0.996 0.995 0.996 0.997 0.994 0.997 
1981 0.998 0.998 0.998 0.998 0.998 0.997 0.997 0.997 0.996 0.998 0.994 0.998 
1982 0.991 0.991 0.989 0.991 0.991 0.992 0.986 0.984 0.987 0.991 0.982 0.991 
1983 0.983 0.985 0.986 0.987 0.983 0.978 0.989 0.991 0.983 0.986 0.981 0.987 
1984 0.998 0.998 0.998 0.998 0.997 0.998 0.997 0.996 0.998 0.998 0.996 0.998 
1985 0.991 0.995 0.993 0.995 0.988 0.994 0.994 0.993 0.995 0.995 0.995 0.995 
1986 0.989 0.994 0.990 0.994 0.987 0.994 0.990 0.992 0.992 0.994 0.993 0.994 
1987 0.995 0.996 0.995 0.996 0.993 0.996 0.995 0.994 0.996 0.996 0.995 0.996 
1988 0.992 0.996 0.994 0.996 0.991 0.996 0.993 0.993 0.995 0.996 0.995 0.996 
1989 0.993 0.995 0.994 0.995 0.993 0.995 0.993 0.993 0.994 0.995 0.993 0.995 
1990 0.993 0.996 0.994 0.996 0.992 0.996 0.993 0.991 0.995 0.996 0.995 0.996 

             
             
 Matrix  

Year 1986 1987 1988 1989 1990   
 PSO MLR PSO MLR PSO MLR PSO MLR PSO MLR   

1980 0.994 0.997 0.993 0.997 0.996 0.997 0.997 0.997 0.995 0.997   
1981 0.994 0.998 0.994 0.997 0.996 0.998 0.998 0.998 0.995 0.997   
1982 0.984 0.992 0.987 0.992 0.985 0.992 0.990 0.992 0.985 0.992   
1983 0.970 0.985 0.967 0.979 0.977 0.983 0.979 0.985 0.971 0.978   
1984 0.997 0.998 0.997 0.998 0.998 0.998 0.998 0.998 0.998 0.998   
1985 0.994 0.995 0.993 0.995 0.994 0.995 0.991 0.995 0.993 0.994   
1986 0.993 0.994 0.992 0.994 0.993 0.994 0.990 0.994 0.993 0.994   
1987 0.996 0.996 0.996 0.996 0.996 0.996 0.995 0.996 0.996 0.996   
1988 0.996 0.996 0.995 0.996 0.996 0.996 0.994 0.996 0.995 0.996   
1989 0.994 0.995 0.994 0.995 0.994 0.995 0.994 0.995 0.994 0.995   
1990 0.996 0.996 0.996 0.996 0.996 0.996 0.995 0.996 0.996 0.997   

Table 13: PSO and MLR R-squared value for each year, using the matrix calculated for the corresponding year for the River Severn data. 
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 1980    1981    1982  

0.9020003 0.2258762 -0.0854694  -0.1388691 0.2967863 1.0017402  0.8321009 0.4835061 -0.0701966 

1.0944389 -0.5518632 0.5336288  0.6853794 0.2295014 0.354013  -0.5671766 0.7972709 0.7893756 

0.6702101 0.7906727 0.2933398  1.0373192 0.3912027 -0.7237264  0.4516507 -0.0098882 0.9244932 

0.0082921 0.5325794 -0.1875138  -0.4901823 0.7174507 0.5141762  -0.5146601 3.0009955 -0.9377654 

0.7079931 1.1027036 1.0074612  0.7120208 0.1442158 -0.1036047  -1.1271209 0.8984909 1.0875029 

 

 
1983    1984   1985 

 

-0.4299736 1.2318652 0.0471777  0.95477 0.2355716 -0.0758961  -0.2964126 0.9906163 0.3738213 

0.8380171 0.1159662 0.8155107  -0.5855584 1.4229962 0.3453872  0.292582 0.8056453 0.2099769 

0.1139792 0.2956568 -0.3303402  0.9850552 -0.0156539 -0.0221437  0.3378603 -1.2356507 1.4281871 

0.3916767 1.1350075 0.2977395  0.9469464 1.0458464 -0.4724834  0.979089 0.7522917 -1.0892461 

-0.6509684 0.378837 -0.1824708  0.548535 0.2127135 1.3791959  -0.3223854 0.7779104 0.3959591 
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1986 

  1987 
 

  1988 
 

0.5409889 0.0436789 0.7458592  0.1372002 0.791111 0.2502757  0.4302483 0.7864755 0.1063979 

-0.7763194 0.61663 0.8696689  0.8805642 0.1514472 -0.4326657  -1.0734431 0.7203413 1.2172224 

1.3573117 -0.0058835 0.2561779  0.5096498 1.059988 0.9564073  -0.1009305 0.679235 0.8737182 

-0.0365886 -0.2661736 0.6693748  0.9892667 -0.0498011 -1.7321703  -0.5291489 0.38397 0.2241048 

-0.0107959 1.5350743 0.2345025  -0.4052139 -1.2543292 0.3359835  0.9612146 0.3265471 1.0282882 

 1989    1990      

0.4302483 0.7864755 0.1063979  0.5149596 0.3714018 0.4912907     

-1.0734431 0.7203413 1.2172224  0.2834194 -0.0544639 0.4420213     

-0.1009305 0.679235 0.8737182  -0.0468538 0.7184712 0.9660215     

-0.5291489 0.38397 0.2241048  1.2425462 0.1658419 0.1055337     

0.9612146 0.3265471 1.0282882  -0.0699174 1.2824912 0.7892265     

Table 14: The matrices used to produce the results shown above in Table 12. 
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1980 1981 1982 1983 1984 1985 

Absolute Maximum Error 0.331357241 0.298768385 0.530524 0.553257126 0.202459984 0.215174 

Mean Absolute Error 0.02553114 0.022345887 0.028773 0.035123682 0.015817037 0.022603 

Mean Error -0.00279994 0.000160084 -0.00137 0.009874805 0.001755782 0.000715 

Relative Absolute Error 0.055196402 0.042076961 0.066144 0.066523363 0.03774992 0.0595 

Root Mean Squared Error 0.820477645 0.799976339 1.154756 1.580000352 0.540903214 0.716143 

Score Result 9.344397066 9.344397066 9.344397 9.344397066 9.344397066 9.344397 

 1986 1987 1988 1989 1990 

Absolute Maximum Error 1.079355482 0.426909269 0.382871 0.585613975 0.36657 

Mean Absolute Error 0.026416795 0.019454292 0.0305 0.029682618 0.022984 

Mean Error -0.00168795 -0.00020902 0.006351 0.005498083 0.003258 

Relative Absolute Error 0.050222136 0.04608796 0.068921 0.062250191 0.047359 

Root Mean Squared Error 1.418531229 0.766620913 0.913229  1.176722403 0.825732 

Table 20: Sample per year statistics from experiment run on the 11 years of data. 


