

Universidade de Aveiro

2014

Departamento de Electrónica, Telecomunicações e
Informática

Frederico Miguel
do Céu Marques
dos Santos

Arquitectura para coordenação em tempo-real de
múltiplas unidades móveis autónomas

Architecture for real-time coordination of multiple
autonomous mobile units

RTDB
Communication

Manager

local

agent 2

agent 1

agent 3

RTDB
Communication

Manager

local

agent 2

agent 1

agent 3

local

agent 2

agent 1

agent 3

RTDB
Communication

Manager

Network

Universidade de Aveiro

2014

Departamento de Electrónica, Telecomunicações e
Informática

Frederico Miguel
do Céu Marques
dos Santos

Arquitectura para coordenação em tempo-real de
múltiplas unidades móveis autónomas

Architecture for real-time coordination of multiple
autonomous mobile units

 Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Doutor em Engenharia
Electrotécnica, realizada sob a orientação científica do Doutor Luís Miguel
Pinho de Almeida, Professor Associado da Faculdade de Engenharia da
Universidade do Porto e co-orientação do Doutor Luís Filipe de Seabra Lopes,
Professor Associado do Departamento de Electrónica, Telecomunicações e
Informática da Universidade de Aveiro

 Apoio financeiro da FCT no âmbito do
III Quadro Comunitário de Apoio,
através da bolsa de Doutoramento
SFRH/BD/29839/2006

Apoio financeiro através do 7º
Programa Quadro da Comissão
Europeia através do projecto
ArtistDesign ICT-NoE-214373

dedicatória

Catarina,
Joana e Bruno

o júri / the jury

presidente / president Doutor Amadeu Mortágua Velho da Maia Soares
Professor Catedrático da Universidade de Aveiro
(por delegação do Reitor da Universidade de Aveiro)

vogais / examiners commitee Doutora Margarita Marcos-Muñoz
Professora Catedrática da Universidade do País Basco – Espanha

 Doutor Daniel Mossé
Professor Catedrático da Universidade de Pittsburgh – E.U.A.

 Doutor Luís Miguel Pinho de Almeida
Professor Associado da Faculdade de Engenharia da Universidade do Porto
(orientador)

 Doutor António Paulo Gomes Mendes Moreira
Professor Associado da Faculdade de Engenharia da Universidade do Porto

 Doutor Luís Filipe de Seabra Lopes
Professor Associado da Universidade de Aveiro
(co-orientador)

 Doutor Paulo José Lopes Machado Portugal
Professor Auxiliar da Faculdade de Engenharia da Universidade do Porto

 Doutor Artur José Carneiro Pereira
Professor Auxiliar da Universidade de Aveiro

agradecimentos

Durante esta longa jornada, muitas foram as pessoas que intervieram, de
alguma forma, no desenvolvimento do trabalho. A todos, sem excepção, fica o
meu grande agradecimento, pois sem a vossa ajuda nada disto teria sido
possível.
No entanto, dada a sua relevância para o presente trabalho, gostaria de
individualizar os meus agradecimentos a:

Luís Almeida, que me orientou, motivou, ajudou e acompanhou em todas as
fases deste trabalho. A ele fica o meu muito reconhecido agradecimento:
Obrigado Luís!

Luís Seabra Lopes, meu co-orientador e primeiro team-leader da equipa
CAMBADA de futebol robótico da Universidade de Aveiro, pela ajuda prestada.

Daniel Mossé, que me recebeu durante três semanas na Universidade de
Pittsburgh, EUA, assim como a Ihsan Qazi pelas discussões técnicas.

Gustavo Corrente, Ricardo Sequeira e João Alex Cunha, os Cambadistas
student, companheiros de longas jornadas e muitas aventuras.

José Luís Azevedo e Bernardo Cunha, os Cambadistas senior que sempre
acompanharam a CAMBADA.

Nuno Figueiredo, Nelson Filipe e Daniel Martins, o paternalista, o vegetariano
e o vassouras.

Toda a restante equipa CAMBADA, que proporcionou ao longo destes anos,
grandes momentos e muitas vitórias. Viva a CAMBADA!

Paulo Pedreiras, Valter Silva, Ricardo Marau e Rui Santos, os puros e duros
da 319.

Artur Pereira, Tiago Nunes, Milton Gregório e David Ferreira, da Universidade
de Aveiro, pela colaboração no desenvolvimento de um parser para criação
automática dos ficheiros de configuração da RTDB.

Luís Oliveira, Ana Pereira e Fábio Silva, da Faculdade de Engenharia da
Universidade do Porto, pela ajuda nos testes de sincronização de relógio.

Aos meus colegas do Departamento de Engenharia Electrotécnica do Instituto
Superior de Engenharia de Coimbra.

Catarina Santos, minha esposa, por toda a paciência.

A todos um bem-haja pelo vosso apoio

palavras-chave

sistemas multi-robô, sistemas de tempo-real, partilha de informação,
comunicação sem fios, protocolos TDMA, bases de dados distribuídas

resumo

O interesse na utilização de equipas multi-robô tem vindo a crescer, devido ao
seu potencial para cooperarem na resolução de vários problemas, tais como
salvamento, desminagem, vigilância e até futebol robótico. Estas aplicações
requerem uma infraestrutura de comunicação sem fios, em tempo real,
suportando a fusão eficiente e atempada dos dados sensoriais de diferentes
robôs bem como o desenvolvimento de comportamentos coordenados. A
coordenação de vários robôs autónomos com vista a um dado objectivo é
actualmente um tópico que suscita grande interesse, e que pode ser
encontrado em muitos domínios de aplicação. Apesar das diferenças entre
domínios de aplicação, o problema técnico de construir uma infraestrutura para
suportar a integração da percepção distribuída e das acções coordenadas é
similar. O problema torna-se mais difícil à medida que o dinamismo dos robôs
se acentua, por exemplo, no caso de se moverem mais rápido, ou de
interagirem com objectos que se movimentam rapidamente, dando origem a
restrições de tempo-real mais apertadas.

Este trabalho centrou-se no desenvolvimento de arquitecturas computacionais
e protocolos de comunicação sem fios para suporte à partilha de informação e
à realização de acções coordenadas, levando em consideração as restrições
de tempo-real. A tese apresenta duas afirmações principais. Em primeiro
lugar, apesar do uso de um protocolo de comunicação sem fios que inclui
mecanismos de arbitragem, a auto-organização das comunicações reduz as
colisões na equipa, independentemente da sua composição em cada
momento. Esta afirmação é validada em termos de perda de pacotes e latência
da comunicação. Mostra-se também como a auto-organização das
comunicações pode ser atingida através da utilização de um protocolo TDMA
reconfigurável e adaptável sem sincronização de relógio.

A segunda afirmação propõe a utilização de um sistema de memória
partilhada, com replicação nos diferentes robôs, para suportar o
desenvolvimento de mecanismos de percepção distribuída, fusão sensorial,
cooperação e coordenação numa equipa de robôs. O sistema concreto que foi
desenvolvido é designado como Base de Dados de Tempo Real (RTDB). Os
dados remotos, que são actualizados de forma transparente pelo sistema de
comunicações auto-organizado, são estendidos com a respectiva idade e são
disponibilizados localmente a cada robô através de primitivas de acesso
eficientes. A RTDB facilita a utilização parcimoniosa da rede e bem como a
manutenção de informação temporal rigorosa. A simplicidade da integração da
RTDB para diferentes aplicações permitiu a sua efectiva utilização em
diferentes projectos, nomeadamente no âmbito do RoboCup.

keywords

multi-robot systems, real-time systems, information sharing, wireless
communication, TDMA protocols, distributed databases

abstract

Interest on using teams of mobile robots has been growing, due to their
potential to cooperate for diverse purposes, such as rescue, de-mining,
surveillance or even games such as robotic soccer. These applications require
a real-time middleware and wireless communication protocol that can support
an efficient and timely fusion of the perception data from different robots as well
as the development of coordinated behaviours. Coordinating several
autonomous robots towards achieving a common goal is currently a topic of
high interest, which can be found in many application domains. Despite these
different application domains, the technical problem of building an infrastructure
to support the integration of the distributed perception and subsequent
coordinated action is similar. This problem becomes tougher with stronger
system dynamics, e.g., when the robots move faster or interact with fast
objects, leading to tighter real-time constraints.

This thesis work addressed computing architectures and wireless
communication protocols to support efficient information sharing and
coordination strategies taking into account the real-time nature of robot
activities. The thesis makes two main claims. Firstly, we claim that despite the
use of a wireless communication protocol that includes arbitration mechanisms,
the self-organization of the team communications in a dynamic round that also
accounts for variable team membership, effectively reduces collisions within the
team, independently of its current composition, significantly improving the
quality of the communications. We will validate this claim in terms of packet
losses and communication latency. We show how such self-organization of the
communications can be achieved in an efficient way with the Reconfigurable
and Adaptive TDMA protocol.

Secondly, we claim that the development of distributed perception, cooperation
and coordinated action for teams of mobile robots can be simplified by using a
shared memory middleware that replicates in each cooperating robot all
necessary remote data, the Real-Time Database (RTDB) middleware. These
remote data copies, which are updated in the background by the self-
organizing communications protocol, are extended with age information
automatically computed by the middleware and are locally accessible through
fast primitives. We validate our claim showing a parsimonious use of the
communication medium, improved timing information with respect to the shared
data and the simplicity of use and effectiveness of the proposed middleware
shown in several use cases, reinforced with a reasonable impact in the Middle
Size League of RoboCup.

Contents

1 Introduction 1
1.1 Multi-Robot systems . 2

1.1.1 Cooperation . 2
1.1.2 Infrastructure to support cooperation: the middleware 4

1.2 The thesis . 5
1.3 Contributions . 6
1.4 Structure of the dissertation . 9

2 Wireless communications 11
2.1 IEEE 802.11 . 12
2.2 IEEE 802.15.1 . 16
2.3 IEEE 802.15.4 . 20
2.4 Enhanced / overlay protocols . 22
2.5 Comparison . 25
2.6 Summary . 27

3 Collaborative technologies for mobile robotic teams 29
3.1 CORBA . 31
3.2 DDS . 34
3.3 ICE . 37
3.4 SOAP and ROS . 39
3.5 Comparison . 41
3.6 Summary . 42

4 RoboCup MSL communications: problems and requirements 43
4.1 Wireless communication within the MSL . 44
4.2 Logs from the MSL RoboCup . 45
4.3 Problems . 50
4.4 Common misconceptions . 51
4.5 Summary . 53

5 The Reconfigurable and Adaptive TDMA communication protocol 55
5.1 TDMA communications . 56

5.1.1 Configuring the TDMA framework . 59
5.2 Adaptive TDMA . 63

5.2.1 Additional protocol configurations . 66
5.2.2 Limitations of the fully distributed resynchronization approach 68

5.2.3 Resynchronizing with a fixed reference 69

5.3 Dynamic reconfiguration of the TDMA round 70

5.3.1 Recomputing parameters based on the actual number of nodes 70

5.3.2 State machines to support joining and leaving 72

5.3.3 Operation of the Reconfigurable and Adaptive TDMA 73

5.3.4 Time to join the team . 76

5.3.5 Adding multiple slots per node . 78

5.4 Summary . 80

6 Real-Time Database 81

6.1 Architecture . 82

6.2 Configuration . 85

6.3 Internal Structure . 87

6.4 RTDB API . 88

6.5 Synchronization of concurrent read/write accesses 90

6.5.1 Using single buffer synchronization . 90

6.5.2 Using double buffering synchronization 91

6.6 RTDB replication management . 92

6.7 Age of data . 93

6.7.1 Upper bounding the age of data . 94

6.8 Scheduling the dissemination of RTDB items 95

6.9 Summary . 97

7 Experiments 99

7.1 Experimental setup . 100

7.2 Comparing with no synchronization . 101

7.2.1 Latency measurements . 101

7.2.2 Packet losses . 102

7.3 Comparing with non-adaptive TDMA . 103

7.3.1 Evolution of offsets and round period 105

7.3.2 Packet losses with single packet interference 107

7.3.3 Impact of external load bursts . 108

7.4 Operation in real scenarios . 109

7.4.1 Membership vector evolution . 111

7.4.2 Intervals between consecutive transmissions 115

7.4.3 Time to join the team . 115

7.5 Summary . 119

8 The CAMBADA RoboCup MSL team RTDB use case 121

8.1 The CAMBADA robotic soccer team . 122

8.1.1 Hardware . 122

8.1.2 Software . 123

8.2 Building cooperative behaviors on top of the RTDB 125

8.2.1 Collaborative ball detection . 125

8.2.2 Strategy and coordination . 126

8.3 Debugging high level behaviors with the RTDB 128

8.4 Summary . 129

9 Conclusions 131
9.1 Revisiting the contributions . 132
9.2 Validating the thesis . 133
9.3 Future work . 134

Bibliography 137

Annex A Network Occupancy 149
A.1 IEEE 802.11 communications in infrastrutured mode 149
A.2 IEEE 802.11 timings . 151
A.3 Function nodeLoadTime() . 154
A.4 Function extLoadOcup() . 156

Annex B Configuration parameters used by CAMBADA 157

List of Figures

2.1 IEEE 802.11 2.4GHz ISM band channel overlapping 13

2.2 Types of IEEE 802.11 networks . 14

2.3 Simplified Algorithm of CSMA/CA . 15

2.4 IEEE 802.11 power management: multicast and broadcast 17

2.5 Different piconet constellations . 17

2.6 Example of IEEE 802.15.4 board . 20

2.7 IEEE 802.15.4 network topologies . 21

2.8 Wireless sensor network system . 23

3.1 Basic CORBA architecture . 32

3.2 Simple DDS conceptual flowchart . 35

3.3 Example of application of ICE middleware . 38

4.1 Histograms of inter-packet intervals for each team (s) 46

4.2 Histograms of packet sizes for each team . 48

4.3 Inter-packet intervals for one robot of team 2 against teams 1 and 6 49

5.1 TDMA round . 57

5.2 TDMA with round of 4 robots, 100ms period and periodic external interference 58

5.3 Interference of a coherent periodic source in a TDMA framework 58

5.4 IEEE 802.11 effective multicast/unicast bandwidth ratio 60

5.5 Lower bound on Ttup as a function of the total network load Ω 63

5.6 Adaptive TDMA round . 64

5.7 Adaptive TDMA with round of 4 robots, 100ms period and periodic external
interference . 65

5.8 Phase rotation to achieve synchronization . 67

5.9 The scan mode in an actual run with two nodes in a ten slots TDMA 68

5.10 Enhanced Adaptive TDMA round using agent 0 as reference 69

5.11 Dissemination of the membership vectors . 71

5.12 State-machine for capturing the state of another nodes 72

5.13 State-machine for the node itself . 73

5.14 Timelines of three joining situations for adding a new team member 75

5.15 Membership vision of Agent 0 from other Agents over time 77

6.1 Agent-centered view of the RTDB architecture 83

6.2 Network view of the RTDB architecture . 84

6.3 The internal organization of the RTDB blocks in control records and associated
data . 87

6.4 Concurrent access to the same RTDB item 92
6.5 Datum age calculation . 93

7.1 Laboratory (left) and game (right) setups . 100
7.2 Transmission delay . 102
7.3 Timeline of the inter-packet interval from agent 0 103
7.4 Histograms of the number of consecutive lost packets 104
7.5 Clock synchronized TDMA versus Reconfigurable and Adaptive TDMA with

1KB ping every 20ms of external traffic . 105
7.6 Effective round period (T̃tup) of Reconfigurable and Adaptive TDMA for

different total average loads . 106
7.7 Histograms of consecutive lost packets with no ping , or 1KB single packet

ping traffic with variable frequency . 107
7.8 Histograms of consecutive lost packets with bursty ping traffic with 4 and 7

packet bursts and with variable frequency . 108
7.9 Evolution of round structure and number of nodes in the team 110
7.10 Membership Vector dynamics (1/3) . 112
7.11 Membership Vector dynamics (2/3) . 113
7.12 Membership Vector dynamics (3/3) . 114
7.13 Timeline of the inter-packet delay (1/2) . 116
7.14 Timeline of the inter-packet delay (2/2) . 117
7.15 Time to join the team . 118
7.16 Difference between the upper bound and actual joining times 119
7.17 distribution of extra rounds needed in a joining process 119

8.1 Robots used by the CAMBADA MSL robotic soccer team 123
8.2 The biomorphic architecture of the CAMBADA robots 123
8.3 Hardware architecture with functional mapping 124
8.4 Layered software architecture of CAMBADA players 124
8.5 Collaborative ball detection behavior . 125
8.6 CAMBADA team coordination in some different game situations 127
8.7 The base station Main Window . 129

A.1 Transmission methods . 150
A.2 Unicasts in IEEE 802.11 infrastrutured mode 151
A.3 Broadcasts and multicasts in IEEE 802.11 infrastrutured mode 152
A.4 Interframe spacing relationships . 153

List of Tables

2.1 IEEE 802.11 network standards . 13
2.2 Bluetooth power classes . 18
2.3 Evolution of the bluetooth data rate . 19
2.4 Comparison of wireless standards . 25

4.1 Traffic statistics of six MSL teams in RoboCup 2008 49

A.1 IEEE802.11 network parameters . 152
A.2 Encoding for OFDM data rates . 153

B.1 Configuration parameters . 157

Symbols

β Increment in period during the scan mode (initial version of Adaptive
TDMA) (time)

∆ Validity window for transmission delays inside each slot (time)

ε Relative validity window (fraction of slot width)

K Current number of nodes in the team

M Current number of slots per round

N Maximum number of nodes in the team

ndup Update period of a given RTDB item (number of rounds)

Ω Target maximum network utilization (fraction)

R Maximum number of rounds to synchronize using scan mode (initial version
of Adaptive TDMA)

Tjoin Joining latency for arriving team members (time)

Trcpp Producer period of a given RTDB item (time)

Treconf Total reconfiguration latency caused by a joining node (time)

Ttup Team update period - target TDMA round (time)

T̃tup Effective team update period (time)

Twt Transmission time of an RTDB packet

Txwin Width of the TDMA slot (time)

Acronyms

AMP Alternate MAC/PHY

AP Access Point

API Application Programming Interface

BSD Berkeley Software Distribution

BSS Basic Service Set

CAMBADA Cooperative Autonomous Mobile roBots with Advanced Distributed
Architecture

CORBA Common Object Request Broker Architecture

CORBA/e CORBA for embedded

COTS Commercial Off-The-Shelf

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance

CSS Chirp Spread Spectrum

CTS Clear To Send

CW Contention Window

DCF Distributed Coordination Function

DDS Data Distribution Service

DDSI DDS Interoperability

DFS Dynamic Frequency Selection

DIFS Distributed Coordination Function Inter Frame Spacing

DSSS Direct-Sequence Spread Spectrum

DTIM Delivery Traffic Information Map

EDCA Enhanced Distributed Channel Access

EDR Enhanced Data Rate

FFD Full-Function Device

FHSS Frequency Hopping Spread Spectrum

GPL General Public License

HCCA Hybrid Coordination Function Controlled Channel Access

HS/DSSS High Speed Direct-Sequence Spread Spectrum

I/O Input/output

ICE Internet Communications Engine

IDL Interface Description Language

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

ISM Industrial, Scientific and Medical

LR-WPAN Low-Rate Wireless Personal Area Network

MAC Media Access Control layer

MIRO Middleware for Robots

MSL Middle Size League

MTU Maximum Transmission Unit

NAV Network Allocation Vector

OCERA Open Components for Embedded Real-Time Applications

OFDM Orthogonal Frequency-Division Multiplexing

OMG Object Management Group

ORB Object Request Broker

ORCA Open Robot Controller Architecture

ORTE OCERA Real-Time Ethernet

OSI Open Systems Interconnection

PAN Personal Area Network

PC Publisher-Consumer

PHY Physical layer

PI Proportional-Integral

PLCP Physical Layer Convergence Protocol

PS Publish-Subscriber

PSK Phase-Shift Keying

QoS Quality of Service

RF Radio Frequency

RFD Reduced-Function Device

ROS Robot Operating System

RPC Remote Procedure Call

RT Real-Time

RT-Component Real-Time Component

RT-CORBA Real Time CORBA

RT-Middleware Real-Time Middleware

RTDB Real-Time Database

RTPS Real-Time Publish Subscribe

RTS Request To Send

SIFS Short Inter Frame Spacing

SIG Special Interest Group

SIR Signal-to-Interference Ratio

SLAM Simultaneous Localization And Mapping

SOAP Simple Object Access Protocol

SPL Standard Platform League

SSL Soccer Simulation League

TAO The ACE ORB

TDMA Time Division Multiple Access

TIM Traffic Indication Map

U-NII Unlicensed National Information Infrastructure

UDP User Datagram Protocol

UML Unified Modeling Language

USA United States of America

UWB Ultra-Wide Band

V-FTT Vehicular Flexible Time-Triggered

W3C World Wide Web Consortium

WAVE Wireless Access in Vehicular Environments

WLAN Wireless Local Area Network

WPAN Wireless Personal Area Network

WSN Wireless Sensor Network

XML Extensible Markup Language

Chapter 1

Introduction

Coordinating several autonomous mobile robotic agents in order to achieve a common goal

continues to be an active topic of research [55, 93]. The use of several cooperative robots can

increase the system effectiveness, with respect to a single autonomous robot or to a team of

non cooperating robots.

Instead of using a single powerful robot, a multi-robot solution can be easier and cheaper,

can provide flexibility to task execution and can make the system tolerant to possible robot

failures. A multi-robot system can better perform a mission in terms of time and quality, can

achieve tasks not executable by a single robot and can take advantages of distributed sensing

and actuation.

Examples of applications are:

• Search and rescue in catastrophic situations, where the utilization of teams of robots

allows to explore a large area and/or areas inaccessible to persons;

• Transportation of large/indivisible objects, when more than one robot is necessary to

transport such objects and the coordination of the movements is a critical requirement;

• Surveillance, where multiple robots can cover a wider area, either in land, water or sky.

The technical problem of building an infrastructure to support the perception integration

for a team of robots and subsequent coordinated action is common to the above applications,

where robots must interact among them using communication to exchange information and

take decisions based on the team perception of the environment, e.g., fusing sensory data

from all the robots in the team.

2 1. Introduction

1.1 Multi-Robot systems

Multi-robot systems are becoming one of the most important areas of research in robotics, due

to the challenging nature of the involved research and to the multiple potential applications to

areas such as autonomous and mobile sensor networks, building surveillance, transportation

of large objects, air and underwater pollution monitoring, forest fire detection, transportation

systems, or search and rescue in large-scale disasters. Even problems that can be handled

by a single multi-skilled robot may benefit from the alternative usage of a robotic team,

since robustness and reliability can often be increased by combining several robots which are

individually less robust and reliable or have distinct sensors and actuators.

It is possible to find similar examples in human work: several people in line are able to

move a bucket, from a water source to a fire, faster and with less individual effort. Also,

if one or more of the individuals leaves the team, the task can still be accomplished by the

remaining ones, even if slower than before. Another example is the surveillance of a large

area by several people. If adequately coordinated, the team is able to perform the job faster

and possible with reduced cost than a single person carrying out all the work, especially if

the cost of moving over large distances is prohibitive.

The use of multi-robot systems to reach a common goal involves cooperative actions,

i.e., robots acting as a team. In turn, achieving cooperative behavior must rely on an

infrastructure that encompasses such concepts as robot heterogeneity/homogeneity, the

ability of a given robot to recognize and model other robots, and communication ability.

1.1.1 Cooperation

The Merriam-Webster on-line dictionary1 defines cooperate as:

”to act or work with another or others”

”to associate with another or others for mutual benefit”

The meaning of cooperation among robots was defined in [15] as:

• A joint collaborative behavior that is directed toward some goal in which there is a

common interest or reward ;

• A form of interaction, usually based on communication;

1http://www.merriam-webster.com

http://www.merriam-webster.com

1.1 Multi-Robot systems 3

• Joining together for doing something that creates a progressive result such as increasing

performance or saving time.

We propose our own definition for cooperative behavior as follows: ”Given some task

specified by a designer, a multiple-robot system displays cooperative behavior if, due to some

underlying mechanism (i.e., the mechanism of cooperation), there is an increase in the total

utility of the system”.

This definition makes it clear that cooperation does not only imply interaction but a

constructive interaction in the sense that it leads to consistent performance improvements.

With cooperation, multiple robots can exchange their roles, dynamically, according to

physical positioning or ambient constraints, or they can adapt their positions according to

each robot specific sensor and/or actuator systems.

In Robotics, cooperation can take place in different areas [4]:

• Cooperative perception – The robotic system, in a distributed way, is able of retrieve

and interpret sensor data, leading to individual and/or collective understanding of the

environment. A significant number of tasks deeply rely on cooperative perception, e.g.,

cooperative situation assessment, cooperative tracking or cooperative learning from

sensor information;

• Cooperative learning – The ability for a team of robots to learn the features of the

environment and, when relevant, opponent models. Moreover, a team of agents should

be able to learn collective behaviors, such as strategies to pursue their goals in the

environment, in the face of competitors. Learning in multi-robot systems is affected by

specific challenges like multiple goals, noisy perception and actions, and inconsistencies

between the internal states and environment models of the individual robots;

• Cooperative planning and execution – A feature of multi-robot domains is the

uncertainty arising from both perception and action. Another uncertainty is brought

by the presence of other agents that can interfere, while pursuing their own goals or

even by having competing goals. In this context, the robotic team must deal with

external factors and must be able to plan tasks and decisions, in a dynamic and

distributed/decentralized way.

Moreover, cooperation within the team must continue, even with the failure of one or

more robots. Also, a robot that leaves the team, e.g. by moving too far to be in the range of

the others, must possess autonomous capabilities, allowing to continue operating alone.

4 1. Introduction

1.1.2 Infrastructure to support cooperation: the middleware

Despite advances in recent years, multi-robot systems remain complex, with the control

and coordination of these systems being a challenging task. These complexities make the

development of components for multi-robot applications non-trivial and failure prone.

The difficulties in developing multi-robot systems arise from the following:

• Rapid changes in sensors, actuators and computer technologies lead to increased

pressure towards new robot capabilities, e.g. new sensor and actuator systems may

require more sophisticated signal processing algorithms;

• Robotic systems are inherently distributed, i.e. sensors and actuators are distributed

over interconnected subsystems, and in multi-robot systems the distribution scales up;

• Robots, components and processes require to interact in an efficient way;

• Each individual robot requires a tight coupling of its sensing, processing, acting and

abilities;

• Each robot must also be autonomous and incorporate a myriad of algorithms such

as Simultaneous Localization And Mapping (SLAM), obstacle avoidance, navigation

primitives and vision processing algorithms, to mention a few;

• The robotic team must continue operation in a cooperative way in spite of individual

robot crashes and asynchronous restarts as well as robots that move out of reach and

rejoin later.

Consequently, the development of robots capable of sophisticated decision-making, both

individually and as a team, is rather complex. The time and work required to come up with

such a robot system is high. A robot programmer needs to be well informed in a number of

engineering fields, such as signal processing, control, electricity and electronics, in addition

to standard computer science and artificial intelligence background. This diversity typically

requires the collaboration of different developers and groups with specific expertise in those

individual areas, further exacerbating the complexity of building robotic systems.

Concerning the specific case of the software for robotic systems, there is currently a trend

towards developing it on top of a middleware layer. This is connectivity software that consists

of a set of enabling services that allow multiple modular processes (modules/components)

running on board of a robot, and possibly some of them off board, to interact across a

network [16]. This connectivity software also supports component reuse, particularly the

1.2 The thesis 5

reuse of modules for common problems in Robotics, e.g. Extended Kalman filters and SLAM

algorithms. This ’plug and play’ approach has a great potential for the future development

of robotic applications but requires the definition of adequate standards.

In general, integrating modules and components possibly developed separately and with

different technologies is not an easy task. A standard middleware integrates this diversity by

providing abstract interfaces and transparent communication protocols that are platform

independent as much as possible. Then, programmers can concentrate on building the

modules/components independently of the rest of the system, as well as on their integration

and development of the higher level applications. This will lead to faster development of

teams of cooperative robots as well as to increased robot intelligence and to multi-robot

systems that are capable of performing more complex tasks.

In this work we will focus on simplifying the development of cooperative behaviors while

making such cooperation more efficient and effective with an adequate use of communications.

1.2 The thesis

This thesis makes two main claims. Firstly, despite the use of a wireless communication

protocol that includes arbitration mechanisms, namely the standard defined by Institute of

Electrical and Electronics Engineers (IEEE) as IEEE 802.11, the self-organization of the

team communications in a dynamic round that also accounts for variable team membership

effectively reduces collisions within the team, independently of its current composition,

significantly improving the quality of the communications. We will validate this claim in the

scope of infrastructured communications, i.e., through an Access Point (AP), with respect to

the number of packet losses and communication latency. We show how such self-organization

of the communications can be achieved in an efficient way with the Reconfigurable and

Adaptive Time Division Multiple Access (TDMA) protocol, without making use of additional

control mechanisms, e.g., for explicit transmission control or even clock synchronization, and

being resilient to external uncontrolled traffic as that generated by nodes outside the team.

Secondly, we claim that the development of distributed perception, cooperation and

coordinated action for teams of mobile robots can be simplified by using a shared memory

middleware that replicates in each cooperating robot all necessary remote data, the Real-Time

Database (RTDB). These remote data images are locally accessed with fast primitives,

decoupled from the communications, they are extended with age information automatically

computed by the middleware, and they are updated in the background by the self-organizing

communications protocol referred above, at a convenient refresh rate to maintain data

validity. We validate our claim showing a parsimonious use of the communication medium,

6 1. Introduction

an improved timing information with respect to the shared data and the simplicity of use

and effectiveness of the proposed middleware shown in several use cases, reinforced with a

reasonable impact in the Middle Size League (MSL) of RoboCup.

1.3 Contributions

The main contributions resulting from this work were referred above in the thesis, namely

the wireless communication protocol for infrastructured IEEE 802.11 networks called

Reconfigurable and Adaptive TDMA2 and the RTDB lightweight middleware.

The Reconfigurable and Adaptive TDMA wireless communication protocol is responsible

for synchronizing the transmissions of the robotic team members in a cycle without resorting

to a clock synchronization service, reducing intra-team collisions.

This protocol can be directly applied on any infrastructured wireless network and requires

no prior configuration of the robots in the team, which automatically (re)synchronize as soon

as they are launched or restarted.

The Reconfigurable and Adaptive TDMA protocol has been presented in the following

publications:

• Frederico Santos, Lúıs Almeida and Lúıs Seabra Lopes. Self-configuration of an

Adaptive TDMA wireless communication protocol for teams of mobile robots. In

Proceedings of ETFA 2008 - 13th IEEE Conference on Emerging Technologies and

Factory Automation, p. 1197-1204, Hamburg, Germany, September 2008. [Google

Scholar citations: 27]

• Frederico Santos, Gustavo Corrente, Lúıs Almeida, Nuno Lau and Lúıs Seabra Lopes.

Self-configuration of an Adaptive TDMA wireless communication protocol for teams of

mobile robots. In Proceedings of EPIA 2007 - 13th Portuguese Conference on Artificial

Intelligence, p. 657-665, Guimarães, Portugal, December 2007.3

2In previous publications of this protocol we have referred to it as RA-TDMA. However, in this dissertation
we preferred keeping the full name since that acronym has been previously used for Random-Access TDMA,
which is an unrelated technique.

3This and the previous references ended up with the same title by mistake, despite being two substantially
different papers. The previous one has an in depth description and assessment of the protocol focusing on the
self-reconfiguration feature while this one is a short paper addressing both the RTDB and the communication
protocol, and the importance of the latter to the behaviors developed over the former.

1.3 Contributions 7

• Frederico Santos and Lúıs Almeida. On the effectiveness of IEEE802.11 broadcasts for

soft real-time communication. In Proceedings of RTN’05 - 4th International Workshop

on Real-Time Networks, Palma de Mallorca, Spain, July 2005. [Google Scholar

citations: 3]

• Frederico Santos, Lúıs Almeida, Tullio Facchinetti, Paulo Pedreiras, and Lúıs

Seabra Lopes, ”An Adaptive TDMA Protocol for Soft Real-Time Wireless

Communication among Mobile Autonomous Agents”, In Proceedings of WACERTS’04 -

International Workshop on Architectures for Cooperative Embedded Real-Time Systems,

in conjunction with the RTSS04 - 25th IEEE International Real-Time Systems

Symposium, Lisbon, Portugal, December 2004. [Google Scholar citations: 28]

It is worth noting that the publication at ETFA 2008 (the 13th IEEE Conference on

Emerging Technologies and Factory Automation) received the conference Best Paper Award.

The second most relevant contribution is the RTDB middleware which is based on a

shared memory model that is replicated in all nodes and it is rather lightweight when

compared with other standard distributed computing middlewares such as Common Object

Request Broker Architecture (CORBA) or Data Distribution Service (DDS). Moreover, it

also implies a parsimonious use of the communciation medium when compared with other

typical centralized implementations of shared memory such as the Blackboard, which need

two network transactions to accomplish any effective data transfer, while the RTDB does so

with a single network transaction per node.

From the point of view of the nodes, the RTDB behaves as a proxy of the remote data,

providing immediate local access. This allows removing the communication latencies from

the execution time of the programs that use the remote data, contributing to improve their

temporal behavior.

On the other hand, the RTDB also presents some limitations that arise from the options

taken in its conception. For example, it is made for systems in which all the machines have

a similar hardware architecture and run a software in which the data types are similar, too.

The RTDB has been presented in the following publications:

• Frederico Santos, Lúıs Almeida, Paulo Pedreiras, Lúıs Seabra Lopes. A real-time

distributed software infrastructure for cooperating mobile autonomous robots. In

Proceedings of ICAR 2009 - 14th International Conference on Advanced Robotics, p.

923-928. Munich, Germany, June 2009. [Google Scholar citations: 6]

8 1. Introduction

• Lúıs Almeida, Frederico Santos, Tullio Facchinetti, Paulo Pedreiras, Valter Silva,

and Lúıs Seabra Lopes. Coordinating Distributed Autonomous Agents with a

Real-Time Database: The CAMBADA Project. In Cevdet Aykanat, Tugrul Dayar

and Ibrahim Korpeoglu, editors, ISCIS - 19th International Symposium on Computer

and Information Sciences, volume 3280 of Lecture Notes in Computer Science, pages

876-886. Springer-Verlag, 2004. [Google Scholar citations: 42]

Finally, note that the two main contributions mentioned above were developed in the

scope of the Cooperative Autonomous Mobile roBots with Advanced Distributed Architecture

(CAMBADA) RoboCup MSL robotic soccer team from the University of Aveiro. In that

scope, the work in this thesis also led to another contribution, namely a clear assessment and

understanding of the wireless communications within that competition, influencing the rules

of the games at a certain point in time, particularly with respect to bandwidth limitations

per team.

This work, in the scope of the RoboCup MSL, was presented in the following publications:

• Frederico Santos, Lúıs Almeida, Lúıs Seabra Lopes, José L. Azevedo, M. Bernardo

Cunha. Communicating among robots in the RoboCup Middle-Size League. In

RoboCup Symposium 2009, Graz, Austria, July 2009 (Lecture Notes in Computer

Science LNCS 5949, p. 320-331, Springer 2010, ISBN 978-3-642-11875-3). [Google

Scholar citations: 12]

• António J. R. Neves, José Lúıs Azevedo, M. Bernardo Cunha, Nuno Lau, João

Silva, Frederico Santos, Gustavo Corrente, Daniel A. Martins, Nuno Figueiredo, Artur

Pereira, Lúıs Almeida, Lúıs Seabra Lopes, Armando J. Pinho, João Rodrigues and

Paulo Pedreiras. CAMBADA soccer team: from robot architecture to multiagent

coordination. in Robot Soccer, Vladan Papić (ed), INTECH, p. 19-45, ISBN

978-953-307-036-0, January 2010. available online: http://www.intechopen.com/

books/robot-soccer. [Google Scholar citations: 7]

Moreover, the RTDB middleware with the Reconfigurable and Adaptive TDMA protocol

is an open source project, freely available at http://code.google.com/p/rtdb/ that was

adopted by other RoboCup MSL teams, such as the Tech United from the Technical

University of Eindhoven [1], the NuBot from the National University of Defense Technology in

China and SocRob from the Instituto Superior Técnico – Technical University of Lisbon [63].

The SPL Portuguese Team from Universities of Aveiro, Porto and Minho [70] with a team of

NAOs competing in the RoboCup Standard Platform League (SPL), and CAMBADA@Home

from University of Aveiro [7] with an autonomous robot for helping people with health

problems and reduced capabilities, also use the developed middleware.

http://www.intechopen.com/books/robot-soccer
http://www.intechopen.com/books/robot-soccer
http://code.google.com/p/rtdb/

1.4 Structure of the dissertation 9

From outside the RoboCup competitions, the Rota project with the Zinguer autonomous

robot [61], from University of Aveiro, competes in the Autonomous Driving League of

the Portuguese Robotics Festival4 [54], use the RTDB middleware for local inter-process

communication, only, but extended with the Reconfigurable and Adaptive TDMA for

debugging purposes.

Finally, a three years long national research project, PCMMC - Perception-Driven

Coordinated Multi-Robot Motion Control, developed by the Technical University of Lisbon,

University of Porto and Polytechnic Institute of Porto, ended recently and was funded by

FCT (PTDC/EEA-CRO/100692/2008). It focused on autonomous team formation control

for improved global perception and also used the RTDB middleware with the Reconfigurable

and Adaptive TDMA protocol as architectural central hub to share data and support the

cooperation5 [72, 73].

1.4 Structure of the dissertation

This chapter outlined the scope of this dissertation and briefly addressed the need for

communication and middleware to provide coordination and cooperation in multi-robot

systems. To support our thesis, the dissertation is organized as follows:

Chapter 2 – Presents an overview of some wireless technologies that can be used in

multi-robot systems providing a coverage of up to 100 meters. Both IEEE standard and

non-standard protocols are presented and discussed, concluding with a comparison of

the currently most well known wireless standards for personal- and local-area networks.

Chapter 3 – Discusses the middleware challenges in robotics and presents some of the

currently most used middlewares. Primarily developed to connect applications to robot

sensor and actuator systems, these middlewares include many other features to facilitate

and reduce the time of development.

Chapter 4 – Presents one of the current initiatives that promote scientific research in

Robotics, through competition, using real world scenarios, namely RoboCup. One

of the competitions of RoboCup that focuses on multi-robot coordination is the MSL

where two teams of 5 fully autonomous robots each play soccer against each other.

This chapter characterizes the wireless communications in this competition, highlighting

4http://www.spr.ua.pt/fnr/
5http://welcome.isr.ist.utl.pt/project/index.asp?accao=showproject&id_project=157

http://www.spr.ua.pt/fnr/
http://welcome.isr.ist.utl.pt/project/index.asp?accao=showproject&id_project=157

10 1. Introduction

problems and their sources, and proposing solutions. This chapter presents, in fact, the

motivation for the work in this thesis, clearly defining the problems and identifying

directions that set the grounds for the work that follows.

Chapter 5 – Discusses the Reconfigurable and Adaptive TDMA wireless communication

protocol, which is used to share data periodically among the robots in the team. Special

attention is devoted to the adaptation of the protocol to external interferences and the

automatic reconfiguration due to changes in number of team members.

Chapter 6 – Introduces the RTDB middleware. It addresses its software architecture,

implementation, usability, and support to timing information, namely age of the data

at the moment of retrieval. The remote data inside the RTDB at each node is refreshed

in the background, transparently to the applications, by the protocol defined in the

previous chapter.

Chapter 7 – Presents experimental results concerning the Reconfigurable and Adaptive

TDMA protocol. An extensive profiling is shown to validate the first claim of the

Thesis. In particular, comparative results show the benefits of using a synchronized

TDMA approach to the communications within the team, particularly concerning

transmission latency and packet losses. Low values in these figures of merit are essential

to support the RTDB middleware consistency and consequently an effective integration

of distributed sensor data and cooperative behaviors. Moreover, this chapter also

shows a thorough comparison with a traditional TDMA implementation based on

clock synchronization using the Chrony service [67]. Finally, it shows extensive logs

of RoboCup MSL games that show the protocol operation in a real scenario focusing

on the tracking of the membership information and associated protocol reconfigurations

and packet losses.

Chapter 8 – Describes the CAMBADA robotic soccer team case study, focusing on

supporting cooperation, coordination, strategy and debug of team behaviors. The team

software is built on top of the RTDB middleware with the Reconfigurable and Adaptive

TDMA communication protocol behind. This chapter presents a qualitative validation

of the second claim of the Thesis highlighting the simplicity of developing and debugging

cooperative behaviors on top of the RTDB. A further indirect validation arises from

the results of the CAMBADA team along its history and the middleware adoption by

other teams.

Chapter 9 – Presents the conclusions of this dissertation, discussing the validation of the

Thesis and its contributions, ending with a few open issues in this research that remain

open for future work.

Chapter 2

Wireless communications

The coordination of multi-robot systems requires data exchange using a communication

network. The information that is shared by each robot in a team of mobile robots typically

includes the perceived properties of the surrounding objects, acquired by sensors mounted

on the robot. By integrating the perceptions of multiple robots it is possible to build a more

accurate and complete world state. This makes possible, for example, that each element

makes decisions based on information gathered by the sensors of other robots.

The mobility of robots imposes wireless communications, bringing extra constraints such

as their limited range, throughput and availability. The amount of information shared, the

number of robots within the team and the team distribution in space, are some of the factors

directly influencing the choice of the wireless communication system.

Wireless network systems can be broadly divided in two main groups. One group

follows the standards set by the IEEE, or other standardization bodies, which results in

well defined systems in terms of Physical layer (PHY) and of Media Access Control layer

(MAC), Open Systems Interconnection (OSI) model layer 1 and 2, respectively [104]. The

other group includes non-standard communication systems (a) in part, i.e., system derived

from a standard with slightly modified characteristics, or (b) in whole, i.e., with complete

custom hardware.

The choice for standard over non-standard communication protocols brings some

advantages like hardware compatibility and available Commercial Off-The-Shelf (COTS)

components. Non-standard systems commonly achieve increased efficiency and improved

Quality of Service (QoS).

This chapter presents an overview and a comparison of different wireless communications

technologies typically used in mobile robotic systems.

12 2. Wireless communications

2.1 IEEE 802.11

The IEEE 802.11 standard [34] consists of a series of over-the-air modulation techniques that

use the same basic protocol. The most popular are those defined by the IEEE 802.11a,

IEEE 802.11b and IEEE 802.11g variants. The goals behind the development of such

technology are [24]:

• to deliver services previously found only in wired networks;

• high throughput;

• highly reliable data delivery;

• continuous network connection.

This standard is also commonly known as Wi-Fi and popularized by the Wi-Fi Alliance6,

a trade association that promotes Wireless Local Area Network (WLAN) technology and

certifies products that conform to the IEEE 802.11 standards. Since not all IEEE 802.11

compliant devices are submitted for certification to the Wi-Fi Alliance, the lack of the Wi-Fi

logo does not necessarily imply that the device is incompatible with other Wi-Fi devices.

The IEEE 802.11 standard has evolved since its inception to enhance speed, security and

QoS. The first version was released in 1997 and various Task Groups started working on

amendments, identified by letters, following and improving the base standard. In September

2007 a new version was released including the amendments a, b, d, e, g, h, i and j. The

current version [34] was released in 2012 and includes 10 new amendments.

Within IEEE 802.11 there are three allowed frequency bands, but the most used are

the Industrial, Scientific and Medical (ISM) band at 2.4GHz, and the Unlicensed National

Information Infrastructure (U-NII) band at 5GHz. The third frequency band (used by

IEEE 802.11y) is only available in the United States of America (USA) and operates in

the frequency range 3.65GHz – 3.70GHz.

IEEE 802.11b and IEEE 802.11g use the ISM band and may occasionally suffer

interference from other equipment emitting in the same band such as microwave ovens,

cordless telephones and Bluetooth devices. IEEE 802.11b/g tolerance to interference is

achieved using Direct-Sequence Spread Spectrum (DSSS) and Orthogonal Frequency-Division

Multiplexing (OFDM) modulation, respectively. IEEE 802.11a uses the U-NII band and

OFDM modulation. Table 2.1 summarizes these characteristics.

6http://www.wi-fi.org

http://www.wi-fi.org

2.1 IEEE 802.11 13

IEEE 802.11 Release Freq Bandwidth Data rate
Modulation

amendment date (GHz) (MHz) (Mbps)

(base) Jun 1997 2.4 22 * 1, 2 DSSS, FHSS

a Sep 1999 5.0 20
6, 9, 12, 18, 24, 36,

OFDM
48, 54

b Sep 1999 2.4 22 * 5.5, 11 HR-DSSS

g Jun 2003 2.4 20
6, 9, 12, 18, 24, 36,

OFDM
48, 54

n Sep 2009 2.4/5.0
20

7.2, 14.4, 21.7, 28.9,

OFDM
43.3, 57.8, 65, 72.2

40
15, 30, 45, 60, 90,

120, 135, 150

* Some literature refers to 20MHz [3, 25]

Table 2.1: IEEE 802.11 network standards

Each of the ISM and U-NII bands are divided in channels. The ISM band contains 14

channels with 5MHz separation, but the availability of channels depends of each regulatory

authority. In Europe, channels 1 to 13 are generally available but in the USA the only

allowed ones are channels 1 to 11. For the 5GHz U-NII band a list of 19 channels are

available for Europe and 20 channels for the USA. All the channels in the U-NII band have

20MHz separation resulting in non-overlapping channels as opposed to the ISM frequency

band, where all channels overlap. As a result only a small set of the available ISM channels

can be used simultaneously to avoid overlapping, see Figure 2.1. Security reasons impose

the use of Dynamic Frequency Selection (DFS) in U-NII band since some channels use the

same frequency range as RADARs. With this method, the end-user is not allowed to fix the

communication channel and is the system that, at runtime, automatically chooses the best

channel to use.

Figure 2.1: IEEE 802.11 2.4GHz ISM band channel overlapping [21]

14 2. Wireless communications

The basic building block of an IEEE 802.11 network is the Basic Service Set (BSS), which

is simply a group of stations that communicate with each other. Stations in the same coverage

area can communicate in two different ways, see Figure 2.2: using a) the Independent BSS

or, b) the Infrastructure BSS.

Figure 2.2: Types of IEEE 802.11 networks [31]

In Independent BSS, also known as ad-hoc mode, the stations communicate directly with

each other, meaning that they must be within direct communication range. To create a

minimal Independent BSS, only two stations are necessary. Typically this type of network

is set up for a specific purpose and for a short period of time. For example, to exchange

information during a meeting or to transfer data between two stations.

Infrastructure BSS is distinguished from Independent BSS by using an AP. The AP

mediates all communications, even between stations that could communicate directly. This

connection type forces the use of two hops. Firstly, the originating station sends one frame

to the AP that, secondly, forwards the frame to the destination station. Since the AP is used

as information relay, the coverage area of an Infrastructure BSS is dictated by the coverage

of the AP. Conversely, in an Independent BSS, a station can only communicate with those in

its direct neighborhood. However, using a routing protocol, the coverage of an Independent

BSS can be substantially larger.

In all cases, the most general method to access the medium is the Carrier Sense Multiple

Access with Collision Avoidance (CSMA/CA) method. In IEEE 802.11, all the stations in the

same network share the same radio frequency (channel) so, only half-duplex communication

is possible, meaning that only one station can transmit at a time. Taking advantage of this,

and to decrease the final interface costs, only one radio is used at each device, switching

between transmission and reception as needed. Without the capacity to listen to what is

being transmitted, the sending node cannot detect a collision occurrence. Using CSMA/CA,

the node that wishes to send data has to first listen to the channel for a predefined amount

2.1 IEEE 802.11 15

of time to determine whether or not another node is transmitting on the channel within the

wireless range. If the channel is idle, then the node is allowed to start the transmission. If

the channel is in use, then the node waits for a random period of time (backoff time) and

retries, sensing the channel again. Figure 2.3 shows a simplified flowchart of this process.

Start

END

Using IEEE 802.11 RTS/CTS Exchange

Not Using IEEE 802.11

RTS/CTS Exchange

Assemble

a Frame

Transmit RTS

Transmit

Application Data

CTS Received?

Is the

Channel

Idle?

Wait for Random

Backoff Time

NO

YES

NO

YES

Figure 2.3: Simplified Algorithm of CSMA/CA [56]

Figure 2.3 also includes the Request To Send (RTS) and Clear To Send (CTS) mechanism,

optionally used to help solving the hidden node problem. Before starting the transmission of

a frame, the sender transmits an RTS packet and the receiver answers with a CTS packet.

These packets contain the time needed for the transmission of the original packet, which is

encoded in a parameter called Network Allocation Vector (NAV). Thus, all nodes within the

range of the sender and the receiver, receive either the RTS, the CTS or both packets and

refrain from transmitting for the duration of the main transmission. The hidden node is

common in Infrastructure BSS where nodes within the same network not necessarily have to

be in the range of each other, since they are considered part of the network if they are in

the range of the AP. The hidden node problem occurs when one station wants to transmit

16 2. Wireless communications

during the transmission of an other station that is too far away to be detected. After sensing

the medium, both will be transmitting at the same time and the AP will hear interference,

only, and cannot correctly receive any, discarding both packets.

Finally, another issue that is particularly relevant in the scope of this work is power

management. In fact, since IEEE 802.11 was developed to support mobility, and mobile

stations typically rely on batteries, it is important to reduce the energy consumption of

the wireless communications, which is achieved allowing stations to turn off their wireless

interfaces when not communicating.

In the particular case of the infrastrutured mode, which we adopt for our work, this

turning on and off of the wireless adapters requires synchronizing the stations with the AP

so that the stations have their interfaces active when the AP sends them information. On

the other hand, stations can send packets at any moment to the AP because it is always

active. Then, if needed, the AP buffers any received packets until their destinations have the

wireless adapters activated.

This synchronization is achieved with the periodic transmission of a beacon by the AP.

Each station activates the wireless interface just before the beacon is transmitted so that

it can receive it. The beacon contains a specific field, the Traffic Indication Map (TIM),

which informs the existence of buffered data for each destination. The AP then transmits

the buffered packets right after the beacon and the stations indicated in the map keep their

interfaces active until receiving the packets.

However, broadcast / multicast packets are not signalled in the TIM field because they

are sent to multiple destinations. In this case, the AP still buffers these packets, which are

transmitted from the stations to the AP as unicast packets, and then disseminates them as

broadcast / multicast packets right after a beacon with the signal Delivery Traffic Information

Map (DTIM) on. This signal is activated, setting the DTIM interval, every given integer

multiple of the beacon period.

Figure 2.4 shows an example of the broadcast / multicast delivery in power management

mode. The packets received by the AP from stations 1 and 2 are buffered and transmitted

later, right after the beacon message with the DTIM parameter on.

2.2 IEEE 802.15.1

The IEEE 802.15.1 standard [35], commonly known as Bluetooth, is a wireless technology

for exchanging data at short distances using the ISM band. Created by Ericsson Mobile

Communications in 1994 [12, 39], it was originally conceived as a wireless alternative to

2.2 IEEE 802.15.1 17

Access
Point

Station 1

Station 2
time

TIM TIM DTIM TIMTIM DTIM

Beacon interval DTIM interval

Figure 2.4: IEEE 802.11 power management: multicast and broadcast

RS-232 serial cables. In 1998, a Bluetooth Special Interest Group (SIG)7 was formed joining

Ericsson, Nokia, IBM, Intel and Toshiba. The name Bluetooth comes from a Danish Viking

king, from the tenth century, with a discolored tooth, who was famous for uniting Norway

and Denmark. Just as Bluetooth technology is designed to unite different business sectors

such as computing, mobile phones and automotive industries.

Bluetooth devices use a star connection topology where the central node is named master

and the rest are named slaves, see Figure 2.5. All the communications are managed by

the master, i.e., the only way to establish communication between two slaves is through the

master. The medium access is controlled by the master who has also to frequently poll the

slaves to know if they have data to transmit, typically, in a round-robin fashion.

(a) point-to-point (b) master relaying

(c) separate piconets (d) scatternet

Figure 2.5: Different piconet constellations [43]

7http://www.bluetooth.org

http://www.bluetooth.org

18 2. Wireless communications

A master Bluetooth device can communicate with a maximum of 7 slave devices in a

piconet (an ad-hoc network using Bluetooth technology), though not all masters support

this limit. In a piconet, there is always one and no more than one master. The devices

can switch roles, by agreement, and a slave can become the master. For example, a headset

initiating a connection to a phone will necessarily begin as master, since it is the initiator of

the connection, but may subsequently prefer to be slave.

When multiple piconets cover the same area, it is possible to form a scatternet, see

Figure 2.5.d), in which certain devices simultaneously play the master role in one piconet

and the slave role in another. A device may act as slave in more than one piconet, but it is

only possible to be master in a single piconet.

The coverage area of a piconet is directly related to the class of the devices in use.

Bluetooth defines 3 classes of maximum output power, see Table 2.2. The effective range

varies due to propagation conditions, material coverage, production sample variations,

antenna configurations and battery conditions.

Class
Max Output Power Operating range

mW dBm (approximate)

1 100 20 100m

2 2.5 4 10m

3 1 0 5m

Table 2.2: Bluetooth power classes

In order to decrease susceptibility to interference, Bluetooth deploys Frequency Hopping

Spread Spectrum (FHSS) modulation. The total bandwidth (2402GHz - 2480GHz) is equally

divided in 79 channels with a bandwidth of 1MHz each. Not all the 79 channels are available

all over the world due to national regulation constraints. During communication, the system

makes 1600 channel hops per second, spreading the communication over all the 79 channels

using a long pseudo-random pattern which is generated from the address and clock of the

master station in the piconet [27]. Taking advantaged of this method, different piconets will

use different hop sequences. When a new slave wants to connect to an existing piconet, it

starts by listening the ongoing transmissions and learning the address and clock phase of the

master, computing then the hopping sequence.

2.2 IEEE 802.15.1 19

The first Bluetooth, version 1.0, was released in 1999, and versions 1.1 and 1.2 are from

2001 and 2003 respectively. The PHY and MAC specifications of the Bluetooth releases

1.1 and 1.2 were also rectified as standard IEEE 802.15.1-2002 and IEEE 802.15.1-2005

respectively.

All the following versions are backward compatible with the IEEE 802.15.1 standard that

is no longer maintained. Version 2.x provides an Enhanced Data Rate (EDR) feature that

uses Phase-Shift Keying (PSK) codding improving the maximum data rate. Version 3.0 and

followers provide [90]:

• Improved Speed – The Generic Alternate MAC/PHY (AMP) in Bluetooth high speed

enables the creation of ad-hoc Wi-Fi connection between devices when they need to

transfer high speed and big sized data;

• Power Optimization – The high speed radio is only enabled when it is necessary,

reducing power consumption, which means a longer battery life;

• Lower Latency Rates – Unicast Connection-Less data improves the speed, lowering

latency rates, sending small amounts of data more quickly.

Table 2.3 summarizes the Bluetooth technology evolution.

Core Version
Release Data rate

date Mbps

1.1 Feb 2001 0.7

1.2 Nov 2003 0.7

2.0 + EDR Nov 2004 2.1

2.1 + EDR Jul 2007 2.1

3.0 + HS Apr 2009 up to 24 *

4.0 June 2010 up to 24 *

4.1 December 2013 up to 24 *

* only with AMP. Bluetooth remains 2.1Mbps

Table 2.3: Evolution of the bluetooth data rate

20 2. Wireless communications

2.3 IEEE 802.15.4

IEEE 802.15.4 is a standard which specifies the PHY and MAC for Low-Rate Wireless

Personal Area Network (LR-WPAN) in the range of 10 meters [36]. The initial target was

to provide Radio Frequency (RF) communications to applications that require low data rate

and long battery life at low cost. IEEE 802.15.4 chip vendors typically sell integrated radios

and micro-controllers with flash memory and batteries, resulting in a very small and compact

systems, see Figure 2.6.

Figure 2.6: Example of IEEE 802.15.4 board [19]

Some of the characteristics of the IEEE 802.15.4 standard are:

• Over-the-air data rates of 851kbps, 250kbps, 100kbps, 40kbps, and 20kbps

• Star or peer-to-peer operation

• Allocated short 16bit or extended 64bit addresses

• Optional allocation of Guaranteed Time Slots

• CSMA/CA or ALOHA [2] channel access mechanisms

• Fully acknowledged protocol for transfer reliability

• Low power consumption

• Energy Detection

• Link Quality Indication

• 16 channels in the 2.4GHz band, 10 channels in the 915MHz band, 1 channels in the

868MHz band

2.3 IEEE 802.15.4 21

• optionally: 14 overlapping Chirp Spread Spectrum (CSS) channels in the 2.4GHz band,

16 channels in Ultra-Wide Band (UWB) band (500MHz and 3GHz to 10GHz), and

others special frequencies to be used in China

The standard defines two types of network nodes (see Figure 2.7):

Figure 2.7: IEEE 802.15.4 network topologies [13]

• Full-Function Device (FFD) – It can serve as the coordinator of a Personal Area Network

(PAN) just as it may function as a common node. It implements a general model of

communication which allows it to talk to any other device: it may also relay messages,

in which case it is dubbed a coordinator (PAN coordinator when it is in charge of the

whole network).

• Reduced-Function Device (RFD) – These are meant to be extremely simple devices

with very modest resource and communication requirements; due to this, they can only

communicate with FFD’s and can never act as coordinators.

Networks can be built as either peer-to-peer or star/tree networks. However, every

network needs at least one FFD to work as the coordinator of the network. Networks are

thus formed by groups of devices separated by suitable distances.

Peer-to-peer (or point-to-point) networks can form arbitrary patterns of connections,

and their extension is only limited by the distance between each pair of nodes. They are

meant to serve as the basis for ad-hoc networks capable of performing self-management and

organization. Since the standard does not define a network layer, routing and multi-hop

communications are not directly supported.

22 2. Wireless communications

ZigBee, WirelessHART and MiWi are high level layers, built on top of the IEEE 802.15.4,

to further improve the standard according to the application domain.

ZigBee8 is the most common specification suite of high level communication protocols

based on the IEEE 802.15.4 standard, enhancing the standard by adding network and security

layers and an application framework. ZigBee supports a large number of interoperable

specifications including ZigBee Health Care, ZigBee Home Automation, ZigBee Smart Energy,

ZigBee Telecom Services, and the forthcoming ZigBee Building Automation and ZigBee Retail

Services.

The WirelessHART9 specification aims at process monitoring, control and asset

management in industry plants. Since 1989 the HART Foundation specifies a communication

protocol for smart instruments. WirelessHART technology is a complementary enhancement

to the HART Protocol (wired based), providing an additional capability that can benefit

both existing and new monitoring and control applications.

MiWi is a proprietary protocol designed by Microchip Technology10 for use in PIC and

dsPIC micro-controllers. The MiWi stack is smaller than ZigBee’s (approximately 90%

smaller), permitting its use on very limited memory devices. Although the MiWi software is

available for free from Microchip website, it can only be used with Microchip micro-controllers.

The main application of the IEEE 802.15.4 standard with the referred high level layers is

in Wireless Sensor Network (WSN). These consist of spatially distributed autonomous sensors

that monitor physical or environmental variables and cooperatively route their data through

the network to a main location, the sink, see Figure 2.8.

2.4 Enhanced / overlay protocols

Beyond the direct use of standard wireless communication technologies, such as those

described in the previous sections, there are also other non-standard communication systems

that can be used in Robotics. These systems normally derive from the standards, with changes

in the MAC. Modifications in MAC are carried out either in the device-driver software or

through a firmware modification and are normally the result of research works that seek

efficient medium access, energy efficiency, security or QoS improvement or to maximize the

throughput.

8http://www.zigbee.org
9http://www.hartcomm.org

10http://www.microchip.com

http://www.zigbee.org
http://www.hartcomm.org
http://www.microchip.com

2.4 Enhanced / overlay protocols 23

Figure 2.8: Wireless sensor network system [98]

Changes in the PHY are also used, mostly motivated by the need to avoid the frequency

interference with other communication protocols that share the same radio band. This

is not so common, though, since modified stations cannot interact with standard ones.

However, new standards are frequently born this way. A recent one related with the previous

technologies is the enhancement of IEEE 802.11 for vehicular communications called Wireless

Access in Vehicular Environments (WAVE) and standardized as IEEE 802.11p [95]. However,

once this protocol is standardized, then new overlay software protocols have already been

proposed to improve certain properties in one direction or another, e.g., the Vehicular Flexible

Time-Triggered (V-FTT) protocol for safe communications between vehicles and road side

units [62]. IEEE 802.11p is, however, optimized for stations that interact at high speed

and thus, is it not particularly relevant for multi-robot teams where interaction speeds are

typically much slower.

The space of modified wireless protocols with respect to the standards referred before

is too vast to allow an exhaustive enumeration. In fact, there is a myriad of adaptations

of the standards, frequently developed in diverse scopes, from wireless sensor networks to

mobile ad-hoc networks. Here we refer to just a few that are examples of modifications to

the standards referred above, aiming specific properties.

For example, Haghani, Krishnan and Zakhor [40] propose an adaptive carrier-sensing

technique to be used on IEEE 802.11, which improves the throughput, using a periodic

signal, transmitted by the AP to all the connected stations, providing a way for each station

to adjust the Carrier Sense Threshold in order to mitigate the hidden/exposed node problem.

This technique requires a modified AP that is able to transmit such periodic signal to all

stations. The authors argue that standard stations can still interact with the modified AP

24 2. Wireless communications

and modified stations, since they simply do not recognize the periodic signal. This technique

might be helpful in teams of mobile robots, which, due to mobility, may assume relative

positions that favor hidden-nodes.

Balador and Movaghar [9], present an IEEE 802.11 backoff mechanism, which divides the

contention window range in various levels based on the history (last three states) of channel

status. Instead of resetting the contention window to its initial value at each successful

transmission, the authors propose a smooth decrease of the contention window size, since in

the majority of cases, the medium continues congested. The modified stations require a new

firmware, maintaining the communication capabilities with common standard devices. This

is a general overload mitigation technique and as such, can be also helpful in teams of robots,

for the case in which their concentration and transmission rate saturate the medium.

Tardioli and Villarroel [97] propose a modified MAC for IEEE 802.11 networks that

provides real-time network latency. The protocol works in ad-hoc mode and uses a

token-passing approach to query all nodes about the currently ready packet with highest

priority. This packet is then allowed to be transmitted. Despite the large overhead implied

by one arbitration round per packet, this protocol is an effective solution to carry out

fixed-priority packet scheduling on IEEE 802.11 wireless networks. It does not need an

infra-structure and tracks the current topology by circulating the token during the arbitration

phases.

Another real-time protocol for IEEE 802.11 networks is the one proposed by Costa,

Portugal, Vasques and Moraes [18]. This protocol segregates real-time traffic from

non-real-time, giving higher priority to the former using shorter interframe spaces and

organizing it in a TDMA fashion supported on a beacon that sets the communication round.

However, the TDMA structure for the real-time traffic is fixed, which reduces its efficiency

for dynamic situations with variable number of active stations as common in teams of robots.

Bartolomeu, Fonseca and Vasques [10] proposed a protocol that concentrates the medium

access control in a master node that schedules the network traffic. This can be an effective

solution for periodic traffic scheduling but has the downside of having a single point of failure

and thus, not being very adequate for teams of robots.

Focusing on a different technology, Golmie and Chevrollier [33] propose two techniques

to be applied to IEEE 802.15.1 to improve performance in the presence of IEEE 802.11

interference. One technique is based on controlling the transmitted power and keeping it

proportional to the Signal-to-Interference Ratio (SIR) measured at the receiver. The other

technique takes advantage of the frequency hopping sequence of IEEE 802.15.1 and uses

scheduling with the aim of avoiding the usage of the interference channels.

2.5 Comparison 25

Flammini et al [29] use IEEE 802.15.4 COTS devices with an overlay protocol for real-time

communications adopting a hybrid solution that mixes a TDMA protocol on top of the native

CSMA/CA. The proposed protocol divides each cycle in a joining period and real-time period.

The joining period is where new stations announce their intention to join the network. The

remaining time is devoted to real time data communication that occurs by means of TDMA.

Once a node is linked to the coordinator, it sleeps for most of the time in power saving mode

and periodically wakes up and sends its data. To maintain the clock synchronization and

minimize the clock drift a Proportional-Integral (PI) control loop is used. This protocol does

not strictly require any change to hardware or firmware of COTS devices but its real-time

guarantees are degraded in the presence of uncontrolled traffic, i.e., unaware of the enhanced

protocol.

Adopting custom products, Mahlknecht and Durante [58] propose an energy efficient

MAC protocol using an extra radio for listening, only. The Wakeup Receiver with ultra-low

consumption is permanently active and waiting for incoming requests. This way, complicated

algorithms needed to synchronize nodes in traditional WSN are avoided. Authors argue that

total energy consumption, adopting this strategy, is decreased, in certain conditions, when

compared to common systems. The main disadvantage of the proposal is the use of non

commercially available hardware.

2.5 Comparison

Table 2.4 summarizes the main attributes of the described standard protocols.

Standard IEEE 802.11 IEEE 802.15.1 IEEE 802.15.4

Frequency band 2.4GHz ; 5GHz 2.4GHz
868MHz ; 915MHz ;

2.4GHz

Max bit-rate
54Mbps 2.1Mbps

851kbps
150Mbps (802.11n) 24Mbps (AMP)

Nominal range 100m 10m 10m

Number of channels 14; 20 79 1; 10; 16

Basic cell BSS Piconet Star

Max number of nodes 2007 8 >65000

Table 2.4: Comparison of wireless standards

26 2. Wireless communications

As shown, the preferred radio band is the ISM 2.4GHz. The coexistence of multiple

protocols and/or other devices like microwave ovens, video transmitters and alarm systems

with wireless sensors, cause electromagnetic interference that can reduce the protocol

efficiency. To minimize this problem, IEEE 802.15.1 uses frequency hoping while most

IEEE 802.11 access point devices provide an automatic channel selection based on channel

utilization. Beyond frequency channel selection, both IEEE 802.11 and IEEE 802.15.4 use the

CSMA/CA algorithm that verifies the channel occupancy before each transmission. Sikora

and Groza [91] examine the mutual effects of the three standards, using real-life equipment,

in order to quantify coexistence issues, concluding that the worst scenario is the utilization of

IEEE 802.11 and IEEE 802.15.4 at the same frequency, since none of the standards provides

dynamic adaptation of the frequency channel.

Other differences between the presented standards are the bit-rate and coverage area.

On one hand, IEEE 802.11, that is also known as Ethernet cable replacement, is used world

wide, and available on any portable computer on market. Supporting high bit-rates, this

standard can be used for large data transfer between computers. It is also the standard

that provides the higher area coverage, providing more freedom of mobility. On the other

hand, the IEEE 802.15.1 and IEEE 802.15.4 are both classified as Wireless Personal Area

Network (WPAN), and their main focus is to provide communication to devices with battery

constraints. IEEE 802.15.1 can be used as cable replacement to connect a headset to a mobile

phone, for example, and IEEE 802.15.4 is mostly known for use on WSN providing a cable

free way to monitor the environment or process variables in large plants.

Lee, Su and Shen [53] present a complete comparison between the above standards,

including metrics such as transmission time, data coding efficiency, complexity and power

consumption. The authors do not draw any conclusion regarding the best standard, arguing

that the suitability of network standards is greatly influenced by practical applications beyond

other factors such as communications reliability, roaming capability, recovery mechanism,

device price and installation costs.

For the specific target of supporting cooperation among mobile robots, we believe that

all of the mentioned standards can be used. Again, the choice for one specific communication

protocol must be carried out considering the requirements of the specific application case.

2.6 Summary 27

2.6 Summary

In this chapter we presented an overview of some of the actual wireless technologies that can

be used in multi-robot systems. The standard protocols have the advantage of compatibility

and availability over the non-standard protocols that commonly have as main advantage the

achievement of better efficiency and/or QoS.

Considering our objective of supporting multi-robot systems, the typical technologies they

use and the particular interest on reusable solutions, we chose the IEEE 802.11 standard that

presents an extended coverage and is actually built-in recent laptops and similar electronic

devices.

28 2. Wireless communications

Chapter 3

Collaborative technologies for

mobile robotic teams

Multi-robot system or robotic team are common names used to designate a group of robots

that work together, in cooperation to carry out tasks in an efficient and suitable manner.

To execute cooperative behaviors, autonomous robots need to access remote information,

typically held by other robots in the team, which requires the use of a wireless communication

infrastructure as discussed in chapter 2.

However, building consistent cooperative robotic applications goes well beyond the

development of autonomous robots and wireless communications and is further complicated

by (a) the existence of several independent robots, (b) possibly using different hardware and

(c) with different perceptions and perspectives of the operational environment.

The concept of middleware was introduced to facilitate the task of developing cooperative

distributed robotic applications. Many interesting definitions of middleware exist, all centered

on sets of tools, data and methods that facilitate using networked resources and services.

Klingenstein [47] gives a curious definition:

”Middleware is the intersection of the stuff that network engineers don’t

want to do, with the stuff that application developers don’t want to do”

In The Free Dictionary11, middleware is defined as:

”Software that serves as an intermediary between

systems software and an application”

11http://www.thefreedictionary.com

http://www.thefreedictionary.com

30 3. Collaborative technologies for mobile robotic teams

In Robotics the middleware is an abstraction layer that resides between the operating

system and the applications software, designed to handle the heterogeneity of the hardware,

improving application software quality, simplifying application software design and reducing

development costs and time. The middleware can also provide the glue logic to connect

application components, allowing their independent design and development, as well as

their integration with other existing components. Furthermore, if a component needs to

be modified or improved, it is only needed to replace the old one with the new one and

thus, the middleware also plays an important role in improving the maintainability of the

distributed application. Finally, the middleware must also provide a mechanism to exchange

data among the physical or logical entities that compose the application, with appropriate

semantic and meta-data information (e.g., age), to facilitate sensor fusion and/or cooperative

actions.

According to [64, 65] the requirements that a middleware for multi-robot systems must

fulfill include:

1. Simplify the development process – Providing developers with high-level

abstractions using simplified interfaces facilitating software integration and reuse;

2. Support communications and interoperability – Robotic modules can

be developed by different manufacturers/teams and the communication and

interoperability between such modules should be efficient and simple;

3. Provide efficient utilization of available resources – A robot can be a complex

system with different types of sensors, multiple processors and/or microprocessors, one

or more interconnection networks, among other resources. The middleware should

provide an efficient way to interconnect all the resources for different application

requirements without generating significant overhead in any of those resources;

4. Provide heterogeneity abstractions – Robots commonly have heterogeneous

hardware and software modules, that should be interconnected by means of abstraction

layers that hide the complexity of the low-level communication and the diversity of

modules;

5. Support integration with other systems – Different robots, from different vendors

or with different resources can be part of a team. To facilitate the integration among

the different robots, the communication among them should be done in an abstract way

and in real-time;

3.1 CORBA 31

6. Offer often-needed robot services – Common existing algorithms are often

rewritten due to changes in hardware or to adapt to new distributed applications or to

new operating systems, or even because developers change. By using a middleware to

develop such algorithms, those needs for rewriting can be moved from the application

side to the low-level platform software. Thus, the application software remains more

stable and reusability is improved;

7. Provide automatic resource discovery and configuration – Dynamic systems

like mobile robots can be available/unavailable to the other robots in the team and

thus, the team must adapt, at run-time, to the changing configuration and available

resources;

8. Support embedded components and low-resource-devices – Sometimes it

is necessary to interact with embedded devices that have limitations like power,

memory, operating system functionalities and limited connectivity. In these cases, the

middleware should also provide special functions to interact with such devices.

This chapter presents a brief survey of existing distribution middleware technologies and

discusses their suitability for multi-robot applications as well as their compliance with the

requirements defined above.

3.1 CORBA

The CORBA is a standard proposed by a consortium of companies called Object Management

Group (OMG)12, founded in 1989, that enables the inter-operation of objects running on

different platforms, different machines and written in different programming languages. The

OMG does not make software and only creates the specifications. The first version of the

CORBA standard was released in August 1991 and the major version (v.3) is dated from

June 2002. Since 2002 some revisions were made, resulting in versions: 3.1 from January

2008, 3.2 from November 2011 and the most current 3.3 from November 2012 [77].

The CORBA run-time system consists of an Object Request Broker (ORB), which routes

calls from one object to another and returns the results. An ORB handles all the invocation,

such as finding the target object and corresponding arguments. All object invocations go

through the ORB, even if the target object is in the same process.

12http://www.omg.org

http://www.omg.org

32 3. Collaborative technologies for mobile robotic teams

All objects are accessed using interfaces, which are specified in a CORBA-specific Interface

Description Language (IDL). The IDL provides support for exceptions, modules and multiple

interface inheritance. Aside from an ORB, every CORBA implementation also includes an

IDL compiler to generate language-specific proxies. These language-specific proxies are used

to issue and deliver ORB and are known as stubs if running on the client, and skeletons if

running on the server.

Among others, CORBA has a naming service that allows clients to look up server objects

by name.

Figure 3.1 illustrates the high-level paradigm for remote inter-process communications

using CORBA.

Figure 3.1: Basic CORBA architecture [30]

To adapt the CORBA standard to particular specific application domains, several groups

were created. In the Robotics domain the most relevant specifications are:

• Real Time CORBA (RT-CORBA) – Formed with the goal of supporting real-time

applications, particularly those in which there are end-to-end timing constraints across

a distributed system [102]. The RT-CORBA is defined as an extension to CORBA and

the last release is dated from January 2005 [74];

• Robotic Technology Component (RTC) – Specifies a component model that meets

the requirements of robotic systems, extending the general propose CORBA models,

focusing on structural and behavioral features of robotic applications [76];

3.1 CORBA 33

• CORBA for embedded (CORBA/e) – Specifies a CORBA subset specially designed

for systems with limited resources [75]. For small devices, CORBA is too large to meet

size and performance constraints. CORBA/e define two profiles for use with embedded

devices: Compact Profile, formerly known as Minimum CORBA and, Micro Profile for

devices with severely constrained resources.

There are multiple implementations of the OMG CORBA standard and some of them with

special focus on robotic applications, as The ACE ORB (TAO) and Real-Time Middleware

(RT-Middleware), which we will briefly describe next.

TAO is a CORBA implementation designed for high performance and real-time

application [32, 88]. The project was funded by the DARPA Quorum program, National

Science Foundation and several industrial sponsors. The main motivations for development

was:

1. Empirical determination of the capabilities needed to enable RT-CORBA ORBs to

support mission-critical Distributed Real-time and Embedded systems with hard and

soft QoS requirements.

2. Combine the strategies for real-time Input/output (I/O) subsystem architectures and

optimizations with ORBs to provide vertically-integrated ORB end systems that can

support end-to-end throughput, latency, jitter, and dependability QoS requirements.

3. Capture and document the key design patterns and optimization principle patterns

necessary to develop standards-compliant, portable, and extensible QoS-enabled ORBs.

4. Provide a high-quality, freely available, open-source CORBA-compliant middleware

platform that can be used effectively by researchers and developers.

5. Guide various CORBA-related standardization efforts within the OMG, in particular,

the RT-CORBA specification.

TAO has played an important role in influencing key features in the OMG’s RT-CORBA

specification, particularly its capabilities for explicit binding and portable synchronizers.

TAO has also facilitated the application of CORBA to Mobile Robotics. For example,

Middleware for Robots (MIRO) is a distributed object oriented middleware for mobile robot

control, based on TAO technology, developed at the University of Ulm, Germany [23, 99]. To

overcome location and programming language dependencies, all sensor and actuator services

export their interfaces as network transparent CORBA objects, which can be addressed from

any language and platform for which language bindings and CORBA implementations exist.

34 3. Collaborative technologies for mobile robotic teams

RT-Middleware is another example of a Robotics-oriented CORBA-based middleware,

developed by the National Institute of Advanced Industrial Science Technology (AIST),

Japan [6]. The main goal of this middleware is to support efficient development of robot

systems using the Unified Modeling Language (UML) so that their functional parts can be

connected, in a modular way, at the application software level. This work also made several

contributions to the OMG RT-CORBA specification.

In RT-Middleware all the components such as motors, sensors, cameras or even software

algorithms are regarded as Real-Time (RT) functional elements. The software component

of each RT functional element is called Real-Time Component (RT-Component). These

components have interfaces (also called ports) to communicate with other components and to

exchange data. An RT system is constructed by connecting the ports of multiple components

as an aggregation of RT-Component functions.

3.2 DDS

The DDS for real-time systems, also from OMG, is a specification of a Publish-Subscriber

(PS) middleware for distributed systems created in response to the need to standardize a

data-centric PS programming model for distributed systems [79, 80].

A PS model connects information producers (the publishers) with information consumers

(the subscribers). The overall distributed application (the PS system) is composed of

processes, where each could be running in a separate address space or even on different

computers. Each process can be simultaneously a publisher and a subscriber of information.

In DDS the association of a DataWriter object (representing a publication) with a

DataReader object (representing the subscription) is done by means of the Topic, see

Figure 3.2. Each topic has associated a name (unique in the system), a data type, and

a desired QoS related to the data itself. The type definition provides enough information

for the service to manipulate the data (for example serialize it into a network-format for

transmission). The definition can be done by means of a textual language or by means of an

operational ”plugin” that provides the necessary methods.

The information transferred by DDS communications can be further classified into:

• Signals – Represent data that is continuously changing (such as the readings of a

sensor). Signals can often be sent using best-effort transmission approaches;

• Streams – Represent snapshots of the value of a data-object that must be interpreted

in the context of previous snapshots. Streams often need to be sent reliably;

3.2 DDS 35

Figure 3.2: Simple DDS conceptual flowchart [37]

• States – Represent the state of a set of objects (or systems) meaning the most recent

value of a set of data attributes (or data structures). States are transmitted upon change

of their own value, i.e., upon event occurrence, and must be transmitted reliably.

The state of an object does not necessarily change with any fixed period. In fact, events

are asynchronous and cannot be foreseen. Fast changes may be followed by long intervals

without change. Consumers of ”state data” (events) are typically interested in the most

recent state. However, as the state may not change for a long time, the middleware may need

to ensure that the current state is delivered reliably. In other words, if a value is missed, then

it is not always acceptable to wait until the value changes again, i.e., the next event occurs.

The goal of the DDS specification is to facilitate the efficient transmission of data in a

distributed system. Participants using DDS can ”read” and ”write” data efficiently and in a

similar way to the one used to read/write local variables. Underneath, the DDS middleware

will transmit the data so that each reading participant can access the ”most-current” values.

The service creates a global ”data space” that any participant can read from and write to,

and also creates a name space to allow participants to find and share objects.

As initially stated, DDS targets for real-time systems. The Application Programming

Interface (API) and QoS support are chosen to balance predictable behavior and

implementation efficiency/performance [79]. The DDS specification describes two levels of

interfaces:

• A lower Data-Centric Publish-Subscribe (DCPS) level, that is targeted towards the

efficient delivery of information to each recipient;

• An optional higher Data-Local Reconstruction Layer (DLRL) level, which allows for a

simpler integration into the application layer.

36 3. Collaborative technologies for mobile robotic teams

DDS is currently at version 1.2, released in January 2007 [37]. It is available from many

different vendors with support for multiple programming languages, e.g., Ada, C, C++, C#,

and Java.

Given that DDS implementations from distinct vendors must be able to inter-operate, a

DDS Interoperability (DDSI) - Real-Time Publish Subscribe (RTPS) communication protocol

was published. RTPS has the last specification revision in November 2010 [38].

RTPS was specifically developed to support the unique requirements of data-distribution

systems within industrial automation, and contribute to a standard publish-subscribe

wire-protocol that closely matched that of DDS. As a result, there is significant synergy

between DDS and the RTPS wire-protocol designed to run over multicast and connectionless

best-effort transport layers such as User Datagram Protocol (UDP)/Internet Protocol (IP).

The main features of the RTPS protocol include [38]:

• Performance and Quality-of-Service support – to enable best-effort and reliable

publish-subscribe communications for real-time applications over standard IP networks;

• Fault tolerance – to allow the creation of networks without single points of failure;

• Extensibility – to allow the protocol to be extended and enhanced with new services

without breaking backward compatibility and interoperability;

• Plug-and-play connectivity – so that new applications and services are

automatically discovered and applications can join and leave the network at any time

without the need for cold reconfiguration (with the system halted);

• Configurability – to allow balancing the requirements for reliability and timeliness

for each data delivery;

• Modularity – to allow simple devices to implement a subset of the protocol and still

participate in the network;

• Scalability – to enable systems to potentially scale to very large networks;

• Type-safety – to prevent application programming errors from compromising the

operation of remote nodes.

The RTPS specification defines the message formats, interpretation, and usage scenarios

that underly all messages exchanged by applications that use the protocol.

3.3 ICE 37

OCERA Real-Time Ethernet (ORTE) [94] is an open source implementation of RTPS.

RTI Connext DDS [83], formely known as NDDS, is a commercial DDS implementation from

the RTI company13.

ORTE was developed at Czech Technical University from Prague, Czech Republic and

is one of the communication components used by the Open Components for Embedded

Real-Time Applications (OCERA) project14. ORTE is available as an independent package

and is used by some robotic teams [22, 26, 44].

3.3 ICE

Internet Communications Engine (ICE)15 is an object-oriented middleware that provides

object-oriented Remote Procedure Call (RPC), grid computing and PS functionality [42, 103].

Developed by ZeroC and dual-licensed under the GNU General Public License (GPL) and a

proprietary license.

ICE allows to write distributed applications in C++, Java, C# (and other .NET

languages, such as Visual Basic), Python, Ruby, PHP, and ActionScript. ICE is currently

available in three products:

• ICE – The main product for use in mainstream platforms, such as Windows and Linux;

• ICE-E – An implementation of ICE for resource-constrained systems, with support for

C++ and embedded operating systems (Windows CE, Linux). ICE-E does not include

any services. However, ICE-E applications can use most of the services provided by

ICE, so mobile devices can be seamlessly integrated into a distributed system;

• ICE Touch – A specific product for Apple devices (iPhone and iPod touch). ICE Touch

includes an Objective-C implementation with supports for iPhone OS and provides full

access to the Cocoa framework for developing graphical applications for Mac OS X.

With these different versions, ICE allows the use of heterogeneous distributed systems,

with distinct memory and processing capacity, over multiple operating systems and

programming languages, see Figure 3.3.

ICE supports synchronous and asynchronous calls, allows messages to be batched for

efficiency, and permits sophisticated control of threads and resource allocation. Multiple

instances of a server can be deployed on different machines, with transparent fail-over if

13http://www.rti.com
14http://www.ocera.org
15http://www.zeroc.com

http://www.rti.com
http://www.ocera.org
http://www.zeroc.com

38 3. Collaborative technologies for mobile robotic teams

Figure 3.3: Example of application of ICE middleware [59]

a machine crashes or is disconnected from the network. This not only makes applications

resilient against failures, but also increases performance because ICE allows to balance the

load of a distributed system over several servers.

At the network level, ICE uses a protocol that minimizes the bandwidth consumption.

Open Robot Controller Architecture (ORCA) is an open-source framework based on ICE

for developing component-based robotic systems. It provides the means for defining and

developing the building-blocks which can be pieced together to form arbitrarily complex

robotic systems, from single vehicles to distributed sensor networks [59, 60].

The project’s main goal is to promote software reuse in Robotics. The ORCA developers

defined the following middleware requirements:

1. Open-source;

2. Distributed under a license which allows use in commercial applications;

3. Modular;

4. Distributed with a repository of tested and documented modules.

5. General, flexible and extensible;

6. Sufficiently robust, high-performance and full-featured for use in commercial

applications;

7. Sufficiently simple for experimentation in university research environments.

To satisfy these requirements, ORCA:

• Adopts a Component-Based Software Engineering approach without applying any

additional constraints (requirements 3, 5);

3.4 SOAP and ROS 39

• Uses a commercial open-source library for communication and interface definition –

ICE (requirements 5, 6);

• Provides tools to simplify component development but make them strictly optional to

maintain full access to the underlying communication engine and services (requirements

6, 7);

• Uses cross-platform development tools (requirement 5).

3.4 SOAP and ROS

The Simple Object Access Protocol (SOAP)16, defined by the World Wide Web Consortium

(W3C), provides a simple mechanism for exchanging structured and typed information

between peers in a decentralized, distributed environment using Extensible Markup Language

(XML) [20]. Initially named as XML-RPC protocol in 1998 has evolved to SOAP that is

currently at version 1.2, released in April 2007. XML-RPC could be viewed as a subset of

SOAP, since it lacks some descriptors.

SOAP itself does not define any application semantics such as a programming model

or implementation specific semantics. Rather it defines a simple mechanism for expressing

application semantics by providing a modular packaging model and encoding mechanisms for

encoding data within modules. This allows SOAP to be used in a large variety of systems

ranging from messaging systems to RPC.

SOAP consists of three parts:

• Envelope – Defines an overall framework for expressing what is in a message; who

should deal with it, and whether it is optional or mandatory;

• Encoding rules – Defines a serialization mechanism that can be used to exchange

instances of application-defined datatypes;

• RPC representation – Defines a convention that can be used to represent remote

procedure calls and responses.

The Listing 3.1 shows an example of a XML-RPC message.

The most well known implementation of XML-RPC in Robotics is the Robot Operating

System (ROS)17. It is a middleware for robot software development, providing operating

system-like functionality on heterogeneous computers. ROS was originally developed in the

16http://www.w3.org/TR/soap
17http://www.ros.org

http://www.w3.org/TR/soap
http://www.ros.org

40 3. Collaborative technologies for mobile robotic teams

<?xml version ="1.0"? >

<methodResponse >

<params >

<param >

<value ><string >Hello World.</string ></value >

</param >

</params >

</methodResponse >

Listing 3.1: Example of a XML-RPC message

mid-2000s by the Stanford Artificial Intelligence Laboratory within the Stanford AI Robot

(STAIR) project. After 2007, the development continued at Willow Garage for their robot

PR2, but quickly was adopted to be used in other robots. Under a Berkeley Software

Distribution (BSD) open-source license, ROS gradually has become a widely-used platform

in the robotics research community.

ROS provides hardware abstraction, low-level device control, implementation of

commonly-used functionality, message-passing between processes, and package management.

It is based on a graph architecture where processing takes place in nodes. ROS supports both

PS and client–server models.

ROS has two basic sides: The middleware side as described above and the framework

side – ros-pkg, a suite of user contributed packages that implement functionalities such as

simultaneous localization and mapping, planning, perception, simulation, etc.

Taking the best from different middlewares and frameworks, the authors tried to create

a complete solution with gateways to allow interconnection with existing hardware and

software. Several commercial robots and sensors are well supported.

ROS is released under the terms of the BSD license, and is open source software. The

ros-pkg contributed packages are licensed under a variety of open source licenses.

As stated by Quigley et al [81], the philosophical goal of ROS is to be:

• Peer-to-peer – A system built on ROS consists of a number of processes, possibly on

different hosts, connected at runtime in a peer-to-peer topology. The lookup mechanism

to allow processes to find each other at runtime is called name service or master ;

• Tools-based – In an effort to manage the complexity of ROS, the authors opted

for a microkernel design, where a large number of small tools are used to build

and run the various components, avoiding a monolithic development and runtime

3.5 Comparison 41

environment. Examples of these tools are: navigate the source code tree; get and

set configuration parameters; visualize the peer-to-peer connection topology, measure

bandwidth utilization, etc;

• Multi-lingual – ROS was designed to be language-neutral. The ROS specification is

at the messaging layer and the peer-to-peer connection, negotiation and configuration

occurs in XML-RPC, for which reasonable implementations exist in most major

programming languages. To better follow the conventions of each language, the

developers have opted to implement ROS natively in each language;

• Thin – To better re-use algorithms or drivers outside the framework they must be

developed as standalone libraries that have no dependencies on ROS. In this way, unit

testing is often far easier, as standalone test programs can be written to exercise various

features of the library. ROS actually re-uses code from numerous open-source projects:

Player project for drivers, navigation and simulators; OpenCV for vision algoritms;

OpenRAVE for planning algoritms; among others;

• Free and Open-Source – The full source code of ROS is publicly available. Authors

believe this to be critical to facilitate debugging at all levels of the software stack.

3.5 Comparison

As expected, all the mentioned middleware standards and respective implementations clearly

satisfy the first four requirements proposed by [64, 65] presented in the beginning of this

chapter, namely: (1) Simplify the development process; (2) Support communications and

interoperability; (3) Provide efficient utilization of available resources and (4) Provide

heterogeneity abstractions.

The last four requirements are not fully addressed:

• ROS does not support integration with other systems (5) since it lacks support for

Microsoft Windows Operative System;

• ORTE does not offer often-needed robot services (6) since it focuses on communication,

only;

• MIRO does not provide automatic resource discovery and configuration (7);

• CORBA and ICE are the only standards that have specific references to support

embedded components and low-resource-devices (8) using a specific micro kernel.

42 3. Collaborative technologies for mobile robotic teams

For the network utilization, the ROS middleware could theoretically lead to slower

communications because of the verbosity of the XML, when compared with the other

standards.

3.6 Summary

This chapter presented a discussion over the currently most used middlewares in the Robotics

domain.

As stated in Chapter 2 a wireless network is mandatory for mobile multi-robot systems.

However, none of the discussed standards/implementations have a specific focus on the

wireless network constraints.

As a conclusion of this chapter, we refer to [64, 66] which present a specific comparison

of networked robots systems. They observe that, ”although the middleware solution is very

useful, it is difficult to have one middleware platform that can offer all the required features

and functionalities for collaborative robotic systems” and then conclude ”therefore, it is more

practical to consider several approaches suitable for different requirements, while maintaining

some guidelines to facilitate reuse, interoperability and integration”.

Chapter 4

RoboCup MSL communications:

problems and requirements

The RoboCup18 [45, 46] MSL has been an effective test-bed for Cooperative Robotics. In

fact, beyond all the issues associated with the construction of robots for operation in harsh

conditions, each team needs to develop coordinated behaviors to beat the opponent team.

This cooperation is becoming more sophisticated involving the communication of team mates

positions, fusion of ball position information, dynamic role assignment, formations and ball

passes, among others. Most of the participating teams develop cooperative behaviors on

top of a middleware, as presented in Chapter 3, that facilitates information exchange among

the team members. In turn, such middleware relies on a wireless communication protocol,

namely IEEE 802.11, as presented in Chapter 2.

Despite its importance the wireless communication is known to be less reliable than

its wired counterpart with significantly higher bit-error rates, to have limited and variable

bandwidth and to be open to the access by other stations not involved in the team, among

other undesired phenomena [101]. Moreover, the wireless channel must be shared by both

teams involved in a game, thus becoming a critical shared resource.

This chapter presents an analysis of the use of the wireless channel by several MSL teams

during a RoboCup event. It shows a substantial difference between teams, with some of them

making a parsimonious use of the channel while others use substantial slices of the available

bandwidth. Few teams transmit in a sparse periodic fashion and others send bursts of data

within very short time intervals. The patterns of transmission depend to a large extent on

the middleware layer that manages the exchange of information.

18http://www.robocup.org

http://www.robocup.org

44 4. RoboCup MSL communications: problems and requirements

In this chapter we will address the problem of information sharing in the specific case

of the RoboCup MSL. We identify recurring problems and misconceptions and define the

requirements for an adequate solution at the level of the communications protocol and

distribution middleware. We believe that such solution can also be applied to a broad class

of situations among which the RoboCup MSL is just one example.

4.1 Wireless communication within the MSL

Since several years, the MSL rules stipulate that the wireless technology to be used is

IEEE 802.11a/b. The more popular IEEE 802.11g technology is not allowed simply because

it uses the same band as IEEE 802.11b but with fewer non interference frequency channels,

despite with larger bandwidth. This increases the difficulty in channel planning and

assignment per competition area to minimize cross-interference, as discussed in section 2.1.

Generally, one channel is assigned to one competition field and both teams playing therein

must share it. An attempt is always made to assign non-interfering channels to neighboring

fields. Moreover, the communication must be infra-structured, i.e., using access points, while

direct ad-hoc communication is not allowed.

Based on this study, some limitations were introduced in the rules of the MSL RoboCup

2009 edition. The bandwidth allowed to each team was limited to 2.2Mbps until recently19

and the utilization of broadcasts is not allowed. Briefly, the MSL rules, concerning the

wireless communication, currently stipulate:

• IEEE 802.11a/b technology

• Infra-structured mode (through AP)

• Single a plus single b channels per game (each shared by both teams)

• IP v4 addressing within predefined networks

• Only unicasts/multicasts (broadcasts are forbidden)

• Up to 2.2Mbps bandwidth utilization per team (2009-2013)

The bandwidth limitation was calculated considering the lower bandwidth technology

IEEE 802.11b (11Mbps), which is still used by some teams due to national regulations. This

is applied to both types of network, either ’b’ and ’a’ for fairness reasons. Also, the traffic

19In 2013 this limitation was removed simply because of organizational difficulties in verifying it and because
abusive behavior had not been detected for some time.

4.2 Logs from the MSL RoboCup 45

is replicated on both networks, meaning that if during a game each team uses a different

wireless technology, all the traffic is available at IEEE 802.11a and IEEE 802.11b, again for

fairness reasons.

4.2 Logs from the MSL RoboCup

In order to gather information on how teams use the wireless channel, the communications

were monitored during several games of RoboCup 2008, in Suzhou - China, a RoboCup

championship won by our team, CAMBADA. We used a laptop with a wireless adapter

configured in monitor mode, which disables filtering and allows receiving all IEEE 802.11

packets that arrive at its antenna for a predefined channel. The monitoring software was

the Wireshark network protocol analyzer and six teams were monitored, during periods of

approximately 1 minute, randomly taken during the third round-robin games. In all these

games, all communications took place using IEEE 802.11a, but the effective bit-rates achieved

during the competitions varied widely between 6Mbps and 54Mbps with an approximate

average of 36Mbps.

Figure 4.1 shows a set of histograms concerning the distribution of the inter packet

intervals related to each team considering the transmissions of all its members as they are

effectively transmitted in the wireless medium. One can clearly identify three different classes.

One class includes teams 1 and 2, that do some level of traffic spread in the time

domain, exhibiting inter-packet intervals that extend up to approximately 80ms. Team 1

uses multicast packets to share information in a producer-consumer fashion. On the other

hand, team 2 uses unicasts, with the robots exchanging information between them in pairs.

Another class, formed by teams 3 and 4, shows a clear dual mode operation with many

packets sent in sequence but others sent with longer well defined intervals. Looking in more

detail to their logs, it was possible to identify that all robots of team 3 transmit periodically

and synchronized, with all robots transmitting in sequence and then waiting for a period

of approximately 75ms. This team used IP broadcast frames to exchange information in a

producer-consumer fashion. On the other hand, team 4 uses a middleware probably based on

a centralized Blackboard that resides in one particular station to which all robots send their

sensing data periodically, approximately every 150ms, but often faster. Then, such station

carries out some computation, probably sensor fusion, and delivers the result back to the

nodes in unicast packets sent in sequence, thus generating a peak of packets sent within a

very short interval.

46 4. RoboCup MSL communications: problems and requirements

0 0.05 0.1 0.15
10

0

10
1

10
2

10
3

10
4

Inter packet delay (s)
0 0.05 0.1 0.15

10
0

10
1

10
2

10
3

10
4

Inter packet delay (s)

a) Team 1 b) Team 2

0 0.05 0.1 0.15
10

0

10
1

10
2

10
3

10
4

Inter packet delay (s)
0 0.05 0.1 0.15

10
0

10
1

10
2

10
3

10
4

Inter packet delay (s)

c) Team 3 d) Team 4

0 0.05 0.1 0.15
10

0

10
1

10
2

10
3

10
4

Inter packet delay (s)
0 0.05 0.1 0.15

10
0

10
1

10
2

10
3

10
4

Inter packet delay (s)

e) Team 5 f) Team 6

Figure 4.1: Histograms of inter-packet intervals for each team (s)

4.2 Logs from the MSL RoboCup 47

Finally, a third class includes teams 5 and 6, that sent their traffic in an almost continuous

fashion, with very short intervals, leading to numbers of packets that are an order of

magnitude higher, with too high bandwidth utilization levels, when compared to the other

classes.

Figure 4.2 shows the histograms of the packet sizes used by each team, in bytes. Clearly

two situations arise. Teams 1 through 4 use mainly fixed size packets, in some cases with two

different sizes, team 1 with average size packets and teams 2, 3 and 4 with relatively small

packet sizes. In turn, teams 5 and 6, use a wide variability of packet lengths, with significant

use of large (1.5KB) packets. These teams were the only ones sending bursts of information,

too. We detected bursts of up to six consecutive 1.5KB packets in the case of team 5 and up

to twelve consecutive 1.5KB packets in the case of team 6. In the IEEE 802.11a technology,

these twelve consecutive packets, at the maximum bit rate of 54Mbps, cause an interference of

approximately 10ms, but in IEEE 802.11b technology these bursts would imply about 50ms

delays, at the best possible conditions, i.e, without collisions or transmissions errors.

Table 4.1 shows a summary of the main traffic statistics of the monitored teams, covering

inter-packet interval in milliseconds, packet size in bytes, burst size in number of consecutive

1.5KB packets, total number of bytes transmitted in the monitoring interval and respective

approximate utilization in IEEE 802.11a/b channels. The traffic classes that were identified in

the analysis of the histograms are naturally reflected in this table but the information on the

approximate bandwidth utilization of the IEEE 802.11a/b channels reveals the huge variations

in channel utilization. It is curious to see that team 5 was already using approximately 25% of

the IEEE 802.11a channel, which corresponds to about 125% of the width of an IEEE 802.11b

channel. The figures for team 6 are slightly better but still revealing a substantial channel

overuse. The other teams use significantly lower bandwidths, near 2 orders of magnitude less,

which allows them to play without problems among each other using any of the two kinds

of channels. One curious detail is the fact that team 6 was using 11 different computers,

substantially more that the maximum of 6 robots plus one remote station.

Figure 4.3 shows the impact that different opponents can have on the timeliness of the

transmissions of a robot. In this particular case we used robot 1 of team 2 (any other robots

yielded similar results) in two games, one against team 1 that makes a relatively light use

of the channel with good separations between packets and, on the other hand, against team

6 that is one of the heavy users of the channel. The figures clearly illustrate the impact of

playing against a heavy channel user team.

48 4. RoboCup MSL communications: problems and requirements

0 500 1000 1500
10

0

10
1

10
2

10
3

10
4

Packet size (bytes)
0 500 1000 1500

10
0

10
1

10
2

10
3

10
4

Packet size (bytes)

a) Team 1 b) Team 2

0 500 1000 1500
10

0

10
1

10
2

10
3

10
4

Packet size (bytes)
0 500 1000 1500

10
0

10
1

10
2

10
3

10
4

Packet size (bytes)

c) Team 3 d) Team 4

0 500 1000 1500
10

0

10
1

10
2

10
3

10
4

Packet size (bytes)
0 500 1000 1500

10
0

10
1

10
2

10
3

10
4

Packet size (bytes)

e) Team 5 f) Team 6

Figure 4.2: Histograms of packet sizes for each team

4.2 Logs from the MSL RoboCup 49

Team 1 Team 2 Team 3 Team 4 Team 5 Team 6

Inter Packet avr 17.74 15.20 20.03 21.72 1.74 1.90

(ms) std 17.63 14.65 33.23 48.16 3.62 4.44

Packet Size avr 412.87 139.68 160.51 187.67 787.40 497.81

(B) std 73.66 8.03 5.59 93.77 549.09 598.36

Burst Size
– – – – 6 12

(# 1.5KB pk)

Total KB 1158 460 480 517 26154 13072

% of max 4.43 1.75 1.84 1.98 100.00 49.98

Bandwidth 802.11a 1.1% 0.4% 0.5% 0.6% 25% 13%

utilization 802.11b 5.5% 2.0% 2.5% 3.0% 125% 65%

Table 4.1: Traffic statistics of six MSL teams in RoboCup 2008

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
10

0

10
1

10
2

Inter packet delay (s)
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

10
0

10
1

10
2

Inter packet delay (s)

a) Robot 1 of team 2 against team 1 b) Robot 1 of team 2 against team 6

Figure 4.3: Inter-packet intervals for one robot of team 2 against teams 1 and 6

When playing against team 1, the traffic pattern shows a significant regularity, indicating

negligible interference. However, the same robot playing against team 6 shows a significant

change in the traffic pattern with a loss of the previous regularity and wide spread (strong

jitter) of the inter-packet intervals, with a strong peak close to zero, meaning that many

packets are strongly delayed and accumulated at the network interface, being then transmitted

in burst.

50 4. RoboCup MSL communications: problems and requirements

Finally, it is important to refer that in these games the traffic external to the competition,

including beacon frames from the AP, packets from other teams that were not playing,

unknown packets, etc., was always negligible, representing less than 1% of the channel

bandwidth. Another observation, during a different (non-monitorized) game than those

monitored, was the use of raw (non-IP) packets by another team, which is also in violation

with the rules.

4.3 Problems

In MSL, and probably in other RoboCup competitions as well, the wireless communication

has always been a source of concerns, given the frequent occurrence of problems. These

were of diverse kinds and could, in a simplified approach, be classified in four categories:

infrastructure configuration, team communications configuration, lack of policing and channel

overuse by teams.

• Infrastructure configuration. This category includes the cases in which the planning

of the APs placement and channel assignment was non-optimal, frequently caused by

constraints of the physical space in which the competitions must be layed out. Since

it may be impossible to completely avoid this situation, it is necessary to live with a

certain level of background interference, corresponding to an effective lower available

channel bandwidth. Another problem is the interference with pre-installed WLANs for

general Internet access, that must be switched off. This is a relevant issue that local

organizers sometimes overlook.

• Team communications configuration. This has been one of the most common

sources of problems due to frequent poor knowledge of the wireless communications

technology. In fact, it is still common to find teams that bring their own APs and

connect them freely in the team work area, often close to competition fields. Other

times, the teams use erroneous configurations without being aware (e.g. ad-hoc mode),

or send bursts of short packets overloading the network interfaces of the opponent team

and causing some device drivers to crash, disabling communications and preventing a

team from playing. Without an accurate analysis of the situation, the wrong team can

be disqualified due to inability to play.

• Lack of policing. Despite being generally permissive, the MSL rules have dictated

certain constraints for some time. Unfortunately, there was always a lack of policing

to verify their effective application and enforcing them. In some years, the local

organization has hired a specialized company to monitor and control the use of the

4.4 Common misconceptions 51

wireless channels. However, even in such cases it was difficult to mitigate all undesired

situations, given their diversity, the number of wireless-enabled computers in the area,

and the lack of rules compliance verification for the teams. The seek for spurious sources

of interference might require the use of a specific wireless channel monitoring device

that provides information on the channel status, not only at the network protocol level

(transmitted valid packets) but also at the physical level (bit-error rate, spurious packet

fragments, medium spectral analysis, ...).

• Channel overuse by teams. Even without spurious interference, when the channel

utilization approaches high values the channel performance deteriorates in terms of

packet transmission delays and packet losses due to increased collisions and channel

saturation. These delays and losses have a direct negative impact on the quality of

the cooperating behaviors given their real-time character, mainly when they involve

feedback control over the wireless channel. Transient saturation must also be considered

and prevented, such as caused by bursts transmitted by the same station, e.g., raw image

transfers. These can also cause a transient increase in packet delays and losses suffered

by the opposing team that can harm the performance of its cooperative applications.

To prevent these situations the teams must adhere to some kind of control of the

consecutive amount of data that each of their robots transmits in an agreed interval of

time. On the other hand, detecting such situations requires monitoring the traffic with

increased temporal resolution.

4.4 Common misconceptions

As it was clear with the previous discussion, most of the problems can be solved or strongly

attenuated with adequate restrictions on the use of the wireless channel and an effective

policing of the channel utilization. Nevertheless, it is interesting to quickly analyze certain

misconceptions that hindered the deployment of such solutions:

• No need for restricting teams transmissions. Ideally, if the channel bandwidth

was infinite and there was no mutual interference between the competing teams,

restricting the teams transmissions would make no sense. However, that is not the case,

and finite bandwidth and mutual interference are facts that need to be considered. As

shown in the section 4.2, while some teams do a parsimonious use of the channel, others

exist that use substantial amount of bandwidth, often in a bursty way, with negative

impact on the timeliness of the transmissions of the opposing team and consequently

on the performance of its cooperative behaviors. Thus, some form of restriction that

52 4. RoboCup MSL communications: problems and requirements

considers both bandwidth and bursts must be enforced. For example, teams must

adhere to some kind of control of the consecutive amount of data that each of their

robots transmits in an agreed interval of time.

• Larger bandwidth solves the problem. Unfortunately, just increasing the available

bandwidth alone, as when moving from IEEE 802.11b (11Mbps) to IEEE 802.11a

(54Mbps), is not a self-sustained solution and tends to generate wasteful patterns in

bandwidth utilization. Such kind of simplistic solutions is always transitory and end up

coming back to the same problem but with a larger magnitude. This trend was verified

with teams 5 and 6 as shown in the previous section.

• Use a technology with QoS support. In order to provide better support to

time-sensitive traffic with respect to non-time-sensitive one in WLANs, IEEE 802.11e

was proposed. Similarly to the original protocol, it includes two channel access

policies, one that is distributed - Enhanced Distributed Channel Access (EDCA) -

and another one that is controlled - Hybrid Coordination Function Controlled Channel

Access (HCCA). The former is the one that is starting to be accessible commercially

while the latter has not received significant adherence by equipment manufacturers.

Unfortunately, the latter is also the one that could bring more advantages to the

RoboCup environment since it allows creating isolated channels with negotiated

bandwidth, thus without mutual interference. The former just creates prioritized traffic

classes, which does not help since, within a game, one team cannot be prioritized with

respect to the other and rules would still be needed to guarantee fairness when sharing

the same priority class. Moreover, there would be no guarantee that other external

sources of interference would not transmit at the same or higher priority level, thus not

avoiding the interference problem. Since it is not clear whether equipment supporting

HCCA will ever be available due to market reasons, and its expected higher cost, it

seems unnecessary to change the current technology. Instead, it seems worth working

on enforcing appropriate bandwidth sharing policies and mechanisms.

• No need for technical verifications. Ideally, teams should verify and enforce

compliance of their equipment with the rules. However, in some cases, particularly

with the wireless communication technology due to its idiosyncrasies, the teams often

lack the knowledge to adequately enforce the needed configurations. Without technical

verifications before the actual competitions, those problems will be discovered in the

game, only, and will be hard to diagnose correctly.

4.5 Summary 53

Finally, the middleware used also has a significant impact. For example, using multicasts

in a producer-consumer style allows a faster dissemination of the information, with better

synchronization, for four or more stations, on average. A preliminary study of the effect

of using multicast/broadcast packets versus unicast ones in a multi-robot scenario is shown

in [85]. Direct pair-wise exchange of information, in a peer-to-peer fashion, tends to generate

much more traffic for disseminating the same information. Similarly, the use of a central

Blackboard used in a client-server fashion requires about twice the transmissions than a

corresponding producer-consumer model with direct robot-to-robot communication.

4.5 Summary

In this chapter we presented an analysis of the issues related to the wireless communications

in the RoboCup MSL. This analysis was based on measurements in a real competition. While

some problems are related to poor layout and/or configuration, other arise from bad usage

by teams, typically associated with channel abuse.

Therefore, we believe that following appropriate programming practices will have a strong

positive impact on the quality of the communications. The main best practices that we

suggest are:

• Middleware that minimizes transmissions – Among the diverse types of

middleware available, as discussed in Chapter 3, using one that relies on

multicast/broadcast transmission, such as a Publisher-Consumer (PC) or a PS model,

will reduce the network utilization and thus flavor a more efficient use of the channel;

• Robot and team control based on state – Opting for a control based on states,

instead of events, typically generates periodic or quasi-periodic traffic patterns that are

amenable to coordination and better packing under high channel utilization. On the

other hand, events tend to generate bursts of communication that lead to moments of

high mutual interference;

• Low bandwidth cooperation – Using cooperation approaches that rely on minimal

information exchange is not only more robust with respect to network problems but

also contributes to a healthy network with low to medium utilization. Note that the

lower the network utilization the shorter will be the incurred delays and packet losses.

Using these best practices as requirements to an adequate communications solution for

RoboCup MSL, we propose a lightweight middleware for state based control with periodic

data exchange. Moreover the communication protocol is able to adapt to instantaneous

54 4. RoboCup MSL communications: problems and requirements

interference by shifting the phase of its periodic communications, and it is also capable of

automatic reconfiguration following the team current composition. In this protocol, the team

communicates in a cycle that is essentially constant, except for a short tolerance to cope

with external interference. The cycle is then divided at each moment according to the actual

number of robots and their communications are always separated as much as possible and

equally divided by all the active team members, creating periodic time gaps for the opponent

team to communicate. This proposed solution is the core of our thesis and will be explained

in detail in the remainder of the dissertation. We believe that this middleware and wireless

communications protocol are a general solution to all situations in which a robotic team

entails strong interaction among its members under potential external interference in an area

of few tens of meters wide.

Chapter 5

The Reconfigurable and Adaptive

TDMA communication protocol

Using wireless communication to support cooperation among members of a team of robots

raises several challenges. In fact, the wireless medium is open and prone to errors and it is

also fast fading leading to limited communication range and other problems such as hidden

nodes and exposed nodes. Moreover, being an inherently shared medium, some kind of access

control is needed.

The option for an existing wireless communication standard solves those problems up to

a certain extent. In the Robotics community the most common protocol is IEEE 802.11

in infrastrutured mode20 and this is also the base technology that we will use. In the

infrastrutured mode all the communications pass through an AP, as described in Section 2.1.

This brings some benefits in terms of team membership consistency, which is enforced by

the AP. An agent is considered as part of the team when it has an active link with the AP,

not necessarily a link with each of the other agents. The coverage range of the team can be

extended placing the AP in the middle of the operational field. This is a realistic option in

many application scenarios. For example, for teams of surveilling robots within large indoor

spaces, such as malls, it is normally feasible to provide an AP that guarantees the radio

coverage of all robots. In de-mining applications, or even search and rescue, it is possible to

place the AP on top of one of the robots deployed near the center of the operations area that

will provide coverage for the other ones.

20Despite the prevalence of the infrastrutured mode, there are many applications that use IEEE 802.11 in
ad-hoc mode such as mining robots, or search and rescue robots, in which it is relevant to allow long topologies
without compromising connectivity.

56 5. The Reconfigurable and Adaptive TDMA communication protocol

Nevertheless, there are two general concerns with respect to using the wireless channel.

On one hand, it is always desirable to reduce transmissions to the minimum possible, which

has a positive effect on keeping the communication load low leading to a better network

behavior in terms of packet delivery and latency. On the other hand, despite the existence of

distributed arbitration mechanisms in IEEE 802.11, access collisions can still occur and their

probability raises significantly with the network load.

This chapter presents a communication protocol that organizes the communications of a

team of nodes in an IEEE 802.11 infrastrutured network so that the probability of collision

is reduced. In particular, the team communications are automatically separated as much as

possible in a periodic TDMA framework. However, as opposed to traditional TDMA schemes,

the protocol does not rely on clock synchronization and allows adjusting to variations in the

team composition.

The resulting periodic traffic pattern is rather permeable, with maximized intervals

between team transmissions, which also alleviates congestion at the network access and makes

the protocol resilient to external traffic, i.e., uncontrolled traffic sent by IEEE 802.11 stations

outside the team.

Moreover, the protocol also includes a phase adaptation scheme that allows escaping from

coherent periodic interfering sources. These sources, which have periods that are integer

multiples or submultiples of the protocol period, can have a significant negative impact in

network performance even with low load.

5.1 TDMA communications

TDMA is a common temporal multiplexing scheme for periodic communications in which

each node has a dedicated fixed duration transmission window or slot. These slots are then

organized in a round that repeats continually in time. Since transmissions from different

nodes are separated in time (they occur in different slots) the occurrence of collisions when

accessing the medium is precluded.

Given the periodic round pattern, the typical implementation of TDMA schemes relies

on a clock synchronization service that allows determining and enforcing the occurrence

instants of all slots into the future as well as synchronizing other activities in the nodes

with the communications schedule. This global synchronization is typically referred to as a

Time-Triggered Architecture [48] and can be advantageous for reducing end-to-end latencies

5.1 TDMA communications 57

of distributed behaviors. The down side is a significant complication of the global system

configuration since triggering instants must be defined for all activities in all nodes and

network, which is not always possible.

In order to tolerate uncontrolled external traffic two requirements must be fulfilled. On

one hand, there must be a collision resolution mechanism since access collisions are now

possible. This is granted by the underlying IEEE 802.11 protocol. On the other hand, the

nodes in the team must use windows that are sufficiently larger than their own transmissions

to make space for the external traffic (Figure 5.1). Under heavy external traffic load, it is

still possible that the transmissions of one node in the team fall inside a following window,

creating interference within the team.

Node 0

Node 1

Node 2

Txwin

Ttup

time

Figure 5.1: TDMA round

Figure 5.2 shows a practical case with four robots and a period of 99.5ms, in which clock

synchronization was achieved with Chrony21. In particular, the top part of the figure shows

the offset of the transmissions of each node in the team as observed by an arbitrary reference

node. The top line shows the offset of the following transmission of the reference node itself,

thus the actual round duration as observed from the communications. In this experiment

there is a residual load of uncontrolled external background traffic, plus a periodic interference

caused by an external node issuing a ping command to the AP with 1KB every 5ms. The

interferences in the offsets are clearly visible in the spikes that affect the respective lines.

The lower part of Figure 5.2 shows the instantaneous network load. It is visible that there

are approximately periodic spikes caused by relative drifts between the team clock and the

clock in the node generating the interference. The spikes occur when the ping packets are

sent very close to the team packets. On the right we can see a histogram of successful team

transmissions, single lost packets and multiple consecutive lost packets.

21http://chrony.tuxfamily.org

http://chrony.tuxfamily.org

58 5. The Reconfigurable and Adaptive TDMA communication protocol

Mean = 26.09ms

Mean = 50.94ms

Mean = 75.97ms

Mean = 99.51ms

0 50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

0.1

0.12

in
te

ra
rr

iv
al

 ti
m

e
(s

)

interarrival time measured to reference station, without considering losses

0 1 2 3 4 5 6
10

0

10
1

10
2

10
3

10
4

10
5

consecutive losses

11990

 133

 4

consecutive packet losses

0 50 100 150 200 250 300

0.26

0.28

0.3

0.32

0.34

0.36

time (s)

ne
tw

or
k

ut
ili

za
tio

n

network utilization over time

Figure 5.2: TDMA with round of 4 robots, 100ms period and periodic external interference.
Top: slots offsets in the round; Bottom left: instantaneous network utilization;
Right: histogram of consecutive packet losses

The pernicious situation caused by periodic interference is shown in Figure 5.3. Given

the fixed TDMA round structure, a periodic interference with a coherent period, will cause

persistent interference, independently of the load, increasing the probability of collisions and

consequent packet losses.

Figure 5.3: Interference of a coherent periodic source in a TDMA framework [78]

In fact, this pernicious phenomenon also happens when the robots in the team transmit

periodically, and with similar periods, but unsynchronized. In this case, each one will be

a coherent periodic interference for the others. Experimental results presented later on

show the negative impact of this phenomenon in terms of packet losses and network latency,

establishing the value of synchronization in these scenarios.

5.1 TDMA communications 59

5.1.1 Configuring the TDMA framework

As mentioned before, one concern that must be taken into account in the context defined

above is the reduction of the communication load generated by the team. This led to two

options, namely a aggregation of the information to send in as few packets as possible, and

the use of multicast transmissions.

Packetization of the information to send

One way to reduce the team generated network load is to have each node aggregation the

information that it wishes to send in a small number of packets, thus saving overhead. In

fact, in all operational scenarios used thus far, one single packet has been enough.

However, if the packets are too large, say above half the typical Maximum Transmission

Unit (MTU) of 1500B22, the probability of packet loss also increases significantly and the

savings in overhead do not compensate. This however, depends on the specific error rates

encountered in the operational scenario.

The protocol, as we have descrived it thus far, does not include fragmentation and

reassembly of large amounts of information. However, using this protocol under a UDP/IP

network stack solves this problem, since it already includes fragmentation and reassembly of

up to 64KB. Nevertheless, care must be taken to make sure the packets fit inside the respective

node slot and still leave sufficient free bandwidth for any expected external traffic23.

Transmissions in multicast mode

On the other hand, the team generated communication load can also be reduced using

multicast transmissions. In this case, the transmissions from each individual node up to the

AP are still unicast, taking advantage of the increased reliability of possible retransmissions.

However, the transmissions down from the AP are in multicast for all team members at once.

The use of multicast transmissions has the advantage of enforcing synchronization of

the multiple receivers upon packet reception and transferring the respective information to

multiple receivers with just one network transaction, making it scalable. On the other hand,

multicast transmissions are unacknowledged, as opposed to unicast ones, thus being less

reliable. Moreover, they are typically transmitted at a lower rate, thus using more bandwidth.

22Note that the MTU, or payload, for Wi-Fi is 2312B but it is typically set to 1500B for consistency with
Ethernet.

23A generic interface that transparently confines any amount of traffic to the node assigned slot is under
way, see future work.

60 5. The Reconfigurable and Adaptive TDMA communication protocol

However, depending on the selected transmission rate for the multicast traffic, this mode

already compensates. Figure 5.4 shows the possible multicast transmission rates and the

minimum number of nodes in the team to compensate bandwidth wise, with respect to a

logical multicast achieved with multiple unicast transmissions.

0 500 1000 1500
0.5

1

1.5

2

2.5

3

3.5

4

4.5

Payload (bytes)

N
um

be
r

of
 n

od
es

Effective multicast/unicast bandwidth ratio

802.11b−1Mbps
802.11b−2Mbps
802.11a−6Mbps
802.11a−12Mbps
802.11a−24Mbps

Figure 5.4: IEEE 802.11 effective multicast/unicast bandwidth ratio

In this respect, it is important to note that lower transmission rates typically improve

transmission reliability but also increase packet transmission latency. The best compromise

depends on the typical error rates of the actual operational scenario. We have successfully

used either 6Mbps or 24Mbps24.

24An example of an empirical study in a mine scenario applied to IEEE 802.11a in ad-hoc mode [89] has
shown that 24Mbps is a good option in that case.

5.1 TDMA communications 61

Setting the TDMA period

The TDMA period is typically a configuration parameter, set offline. In our context, in

which the transmissions are used to share the robots’ internal state information with the

other members of the team, we call it the team update period (Ttup). This parameter has an

important impact in the real-time performance of the network, setting the temporal resolution

of the global communication and affecting the responsiveness of the team.

With respect to the responsiveness, as in any polling system, any change occurred in

the internal state of a node immediately after a state transmission will need to wait for the

next slot, i.e., approximately one period, to be transmitted. For this reason, when there is

a sporadic event that requires urgent transmission, we send it immediately as traffic outside

the protocol. For seldom urgent transmissions, this has practically no impact on the TDMA

framework.

On the other hand, the regular state updates associated to the recurrent sensing and

control activities are disseminated at most once each round, which, thus, sets the temporal

resolution of those updates.

As is typical in regular TDMA frameworks, the round is divided equally by the number

of team members leading to the TDMA slot structure. This sets a relationship between the

round duration, Ttup, the number of robots, N , and the width of the slots, Txwin. This is

expressed in Eq. 5.1.

Txwin =
Ttup
N

(5.1)

Being an important parameter for cooperative behaviors, Ttup must be set considering

the respective real-time requirements. In general, Ttup should take the maximum value that

allows meeting those requirements. Maximizing Ttup, for any given number of nodes, also

maximizes Txwin and thus the tolerance to external traffic.

If we know the expected load imposed by the external traffic, and our communication

requirements, then we can also determine the minimum Ttup that allows accommodating

both. Eq. 5.2, equivalent to 5.3, gives a simplified lower bound for Ttup where Di is the

maximum number of data bytes that node i transmits in any round, frameType can be u

for unicast, m for multicast or b for broadcast, netType is the IEEE 802.11 profile, namely a,

b or g. Then, the function nodeLoadT ime(), described in Annex A, returns the time taken

by the transmission of Di bytes by node i in each round and the function extLoadOcup(),

also described in Annex A, returns the fraction of network occupation taken by the external

load L expressed as a required throughput (Mbps).

62 5. The Reconfigurable and Adaptive TDMA communication protocol

Ttup >
N−1∑
i=0

(
nodeLoadT ime(Di, frameType, netType)

)
+

+ extLoadOccup(L, frameType, netType) ∗ Ttup (5.2)

Ttup >

∑N−1
i=0 nodeLoadT ime(Di, frameType, netType)

1− extLoadOccup(L, frameType, netType)
(5.3)

In practice, this expression does not account for retransmissions, but it already considers

an average transmission rate lower than the maximum as well as an average backoff delay

equal to half of the initial contention window. Nevertheless, even if this expression was

accurate, the associated boundary condition would lead to a nearly saturated network, which

results in poor behavior due to collisions and overload by retransmissions.

Thus, it seems more reasonable to compute a value for Ttup that leads to a target maximum

network utilization of Ω < 1, which can be achieved using Eq. 5.4,

Ttup >

∑N−1
i=0 nodeLoadT ime(Di, frameType, netType)

Ω− extLoadOcup(L, frameType, netType)
(5.4)

For example, consider the case of the CAMBADA RoboCup MSL team in 2008 (when

the logs in Chapter 4 were taken), transmiting in IEEE 802.11a multicast, with 6 robots and

generating 5× 354B+ 548B of data per round. This represents approximately 6ms of traffic

according to the function nodeLoadT ime(). Now, consider a game against team 6, a team

that aggressively uses 13% of the network capacity. If we vary the target total network load

Ω from 1 down to 0.25, the resulting values for the lower bound on Ttup are shown in Fig. 5.5,

going from 6.9ms to 50ms. If the actual real-time constraints of the cooperative behaviors

allow raising Ttup to 100ms, the resulting total network load will be approximately 19%. This

value may already cause significant perturbations to a team traffic, as reported in Fig. 4.3 of

Chapter 4. As mentioned, team 6 issues an interference load of 13% of the network capacity.

5.2 Adaptive TDMA 63

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

Network utilization

T
tu

p (
se

c)

Ω

teamLoadTime = 6ms
extLoadOcup = 0.13

Figure 5.5: Lower bound on Ttup as a function of the total network load Ω

5.2 Adaptive TDMA

One of the problems of the ordinary TDMA framework presented before is the susceptibility

to situations of periodic interference like those illustrated in Fig. 5.3. In fact, given the

absence of any adaptation mechanism, the protocol will continue generating transmissions at

the same time as the interference source for a while, until the clock drifts eventually set those

instants apart.

This was the motivation to develop the Adaptive TDMA protocol which is sensitive to the

delays suffered by team members and uses such delays to rotate the phase of the TDMA round.

In a situation of periodic interference, a transmission of a team member would eventually be

delayed by the interfering source. The remaining members of the team would detect such

delay and would then delay their own transmissions by the same amount of time, effectively

shifting the phase of the TDMA round so that the following transmissions would not collide

with the interfering source again.

Moreover, this technique also carries along a further benefit since each node now

synchronizes with the others in the team by measuring the reception instants of the respective

packets and thus clock synchronization is no longer needed.

64 5. The Reconfigurable and Adaptive TDMA communication protocol

Formally, when the timer that triggers the transmissions in node j fires at time tj,now, it

issues its transmission and sets the timer to fire at tj,next = tj,now +Ttup, i.e. one round after.

However, during this interval, it continues monitoring the arrival of the packets from the

other nodes in the team. When the packet from node i arrives, the delay δi of the effective

reception instant with respect to the expected instant is determined. If this delay is within a

validity window [0,∆], with ∆ being a global configuration parameter, the next transmission

instant is delayed according to the longest such delay among all the packets received from

the team in one round (Figure 5.6), i.e.,

tj,next = tj,now + Ttup +max(δi)i=0..N−1,i 6=j∧δi≤∆ (5.5)

Node 0

Node 1

Node 2

Ttup

δ2
Δ

time

Ttup

δ0

δ2

δ0

Ttup δ1

δ1

Figure 5.6: Adaptive TDMA round

On the other hand, if the reception instant is outside that validity window, then δi is set

to 0 and does not contribute to update tj,next.

The practical effect of the adaptation in the protocol is that the transmission instant of

a packet in each round may be delayed up to ∆ with respect to the predefined period Ttup.

Therefore, the effective period will vary within [Ttup, Ttup+∆]. From a real-time requirements

perspective, the constraints on the round update should now be applied to Ttup + ∆.

With this method the protocol makes run-time adaptations to the current network

load, increasing the effective update period when there are significant delays affecting the

team transmissions, which corresponds to a small reduction in the team generated load,

contributing to stabilize the network.

Figure 5.7 shows a practical case with four robots and a period of 99.5ms, equivalent to

the one shown in Figure 5.2 but using Adaptive TDMA. The top diagram shows the offset

of the reception instants of the transmissions of each node in the team also with respect to

5.2 Adaptive TDMA 65

an arbitrary reference node. The top line shows the offset of the following transmission of

the node used as reference. This situation includes, beyond a residual load of uncontrolled

external background traffic, a periodic interference caused by an external node issuing a ping

command to the AP with 1KB every 5ms. The interferences in the offsets are clearly visible

but, in this case, the offsets tend to be above the configured value due to the increments in

the period made by Adaptive TDMA.

Mean = 26.24ms

Mean = 51.06ms

Mean = 75.93ms

Mean = 100.44ms

0 50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

0.1

0.12

in
te

ra
rr

iv
al

 ti
m

e
(s

)

interarrival time measured to reference station, without considering losses

0 1 2 3 4 5 6
10

0

10
1

10
2

10
3

10
4

10
5

consecutive losses

11771

 66

 1

consecutive packet losses

0 50 100 150 200 250 300

0.26

0.28

0.3

0.32

0.34

0.36

time (s)

ne
tw

or
k

ut
ili

za
tio

n

network utilization over time

Figure 5.7: Adaptive TDMA with round of 4 robots, 100ms period and periodic external
interference.
Top: slots offsets in the round; Bottom left: instantaneous network utilization;
Right: histogram of consecutive packet losses

The bottom diagram of Figure 5.7 shows the instantaneous network load. The periodic

spikes visible in Figure 5.2 do not occur here since the protocol quickly moves away from

the interference source, thus avoiding any periodic interference pattern. On the right we can

see a histogram of successful team transmissions, single lost packets and multiple consecutive

lost packets. Here, we can observe a significant reduction in the number of lost packets. We

conjecture that this reduction is due to the adaptation mechanism of Adaptive TDMA. More

results will be shown further on, in Chapter 7.

66 5. The Reconfigurable and Adaptive TDMA communication protocol

5.2.1 Additional protocol configurations

The Adaptive TDMA protocol inherits the same configurations described for the ordinary

TDMA framework, e.g., in the definition of Ttup and use of multicast packets. However, it is

extended with other parameters and features related with the adaptation capability.

Setting the validity window

The main parameter specific to the adaptation of the protocol is ∆, the validity window,

that filters the delays suffered by the transmissions of the team members. ∆ is predefined

offline, similarly to Ttup, and it defines the stretchability of the protocol. For reasons that

will become clear further on, the value of ∆ is not defined in absolute terms but as a fraction

of the transmission window (Txwin) in the TDMA round (Eq. 5.6).

∆ = Txwin × ε , 0 < ε < 1 (5.6)

Consequently, this relative definition creates a new parameter ε that sets the actual value

of ∆. An ε closer to 1 creates a ∆ closer to Txwin allowing the protocol to adjust more to the

network load but, conversely, it allows larger variations in the effective period with a possibly

noticeable reduction in the system responsiveness. On the other hand, an ε closer to 0 leads

to a smaller ∆ that reduces the protocol capacity to adjust and, ultimately, can prevent the

protocol from synchronizing the team nodes in the common TDMA round.

In our experiments we have frequently used an empiric value of 66% but it must be

adjusted to each case, essentially depending on the magnitude of the delays suffered by the

team transmissions. Higher external load imposes larger delays requiring a larger ε to increase

the probability of keeping the team synchronized.

Transmitting multiple packets

With the Adaptive TDMA protocol it is also possible to send multiple packets in each slot.

As pointed out before, it is necessary to ensure that such transmissions are confined to the

slot, to avoid interference within the team. However, within Adaptive TDMA there is another

concern since the packets are also used for synchronization purposes.

5.2 Adaptive TDMA 67

The way we use to allow multiple packet transmissions is simple. The first packet

transmitted in the slot is marked so that it is used for synchronization purposes. However,

any following packets in the same slot are considered just for the data they carry but ignored

for synchronization purposes.

Fully distributed node resynchronization

When node j does not receive any packet in a round within the respective validity windows,

it updates tj,next using a node specific configuration parameter βj as described in Eq. 5.7.

tj,next = tj,now + Ttup + ∆ + βj : 0 < βj < ∆, βj 6= βi : j 6= i (5.7)

This specific parameter is used to force different effective transmission periods, generating

a sliding phase relative to the other team members thus preventing a possible situation

in which the nodes would all remain transmitting but unsynchronized, i.e., outside the

validity windows of each other, and with the same period Ttup. By imposing different

periods, the nodes are forced to re-synchronize within a limited number of rounds because

the transmissions will eventually fall within the validity windows of each other.

We call this phase rotation the scan mode during which an unsynchronized node uses a

slightly longer update period to rotate its relative phase in the round, see Figure 5.8. The

parameter β sets the speed of phase rotation and since it is different among all the nodes,

the amount of time that each node needs to find its own transmission window is also distinct.

The number of rounds to synchronize should vary uniformly between 0, when the node, by

chance, starts scanning exactly in the slot that was assigned to it, and a certain upper bound,

R, that depends directly on β as expressed in Eq. 5.8.

[Ttup , Ttup + Δ]

Δ
time

validity
window

Ttup + Δ + β

tr
an

sm
is

si
o

n

Figure 5.8: Phase rotation to achieve synchronization

R ≤
⌈
Ttup
β

⌉
(5.8)

68 5. The Reconfigurable and Adaptive TDMA communication protocol

Note that this expression is rather pessimistic since it assumes that the Adaptive TDMA

mechanism is constantly rotating with the maximum period of Ttup + ∆, which would only

occur under heavy external load. However, when the external load is low, the actual TDMA

round will be close to Ttup and thus the maximum R will be closer to
Ttup−∆

β .

Figure 5.9 shows a log from an actual run in which only two nodes were active in a team

of ten. This log shows the offsets of the nodes transmissions with respect to an arbitrary

reference, i.e., one of the two. The diagonal parts of the traces show the scan mode occurring

upon loss of synchronization caused by a sufficiently strong delay.

Figure 5.9: The scan mode in an actual run with two nodes in a ten slots TDMA

5.2.2 Limitations of the fully distributed resynchronization approach

The fully distributed approach to resynchronize the nodes upon an asynchronous restart, or

loss of synchronization was in place and used for some time in the CAMBADA MSL team.

However, it eventually revealed some limitations. As presented previously, each time a node

fails its validity window, it starts transmitting unsynchonized, i.e., outside of its transmission

window, and takes up to R rounds to reach synchronization, as given by Equation 5.8.

A worst case situation was discovered during strong network interference, revealing the

occurrence of cliques. When more than one agent is transmitting unsynchronized at the same

time, thus in the scan mode, it is possible that one would synchronize with the other and,

from then on, both would consider to be synchronized and exit the scan mode, despite being

unsynchronized with the rest of the team. This occurrence of cliques is undesirable since

the transmissions of nodes in different cliques could cause interference to each other, thus

interference within the team.

Another limitation arises from the use of a fixed number of team members N , even when

several are inactive at a certain point in time. This leads to Txwin values smaller than needed,

i.e., the slots are unnecessarily short since some of them are not used. Note that a smaller

5.2 Adaptive TDMA 69

Txwin reduces the leeway to accommodate delays caused by the external traffic and thus

increases the probability of loss of synchronization and possibly leading to collisions within

the team.

Another problem discovered during tournaments was the interference with the power

management mechanisms of the APs as explained in Section 2.1. With these mechanisms,

multicast packets are buffered in the AP and released every DTIM interval right after the

beacon transmission. This imposes rather large delays in the reception of the nodes multicast

packets that only by chance fall within the respective validity windows. Consequently, the

protocol will fail to synchronize.

Interestingly, some APs apparently do not allow switching off the power management

mode, which was the case with those used in some of the RoboCup competitions, thus raising

our awareness of the problem.

The solution to these limitations is discussed next.

5.2.3 Resynchronizing with a fixed reference

The shortcomings arising from the resynchronization approach presented previously were

solved by using only one agent as reference, thus moving from a fully distributed to a

centralized approach. With this method, all the nodes synchronize to the same reference

node, using the reception instants of its packets, and only this node is in charge of adapting

the TDMA round phase to the current network load (Figure 5.10).

Node 0

Node 1

Node 2

Ttup δ2

δ2Δ

time

1 x Txwin

2 x Txwin

Figure 5.10: Enhanced Adaptive TDMA round using agent 0 as reference

This approach prevents the formation of cliques because the synchronization reference

is unique. Moreover, since the transmissions instants are defined with offsets to a common

reference, they continue being effectively separated in their slots avoiding mutual interference

within the team. This is the case even under interference of the DTIM power management

70 5. The Reconfigurable and Adaptive TDMA communication protocol

mechanism. The impact of DTIM is just an enlargement of the effective period caused by

the possible extra delay affecting the reception of the reference packet. This can be easily

determined and accounted for by consulting the AP configuration.

In this case, all nodes compute their next transmission instant based on the reception of

the packet from the node used as reference and an appropriate offset to the respective slot

(Eq. 5.9).

ti,next = t0 + i× Txwin i 6= 0 (5.9)

In this case, node 0, used as reference, determines its next transmission using a slightly

modified version of Equation 5.5 as expressed in Equation 5.10.

t0,next = t0,now + Ttup +max(δi)i=1..N−1,δi≤∆ (5.10)

With this new resynchronization approach, the β parameter used previously to create

phase rotation is not necessary and any node can find its slots immediately after receiving a

packet from the reference node. Thus, the previously mentioned scan mode no longer exists

and resynchronizations are faster, taking at most one round.

5.3 Dynamic reconfiguration of the TDMA round

As stated before the use of a fixed number of nodes, N , independently of whether they are

available or not, leads to a smaller Txwin when compared to the optimal value based on the

total number of actually running agents. It also creates difficulties in synchronization and,

for nodes transmitting in contiguous slots in the TDMA round, the probability of mutual

interference is higher.

5.3.1 Recomputing parameters based on the actual number of nodes

Therefore, we added a self-configuration capability to the protocol, to cope with variable

number of team members and adapt the TDMA round accordingly. This specific mechanism

supports the dynamic insertion/removal of nodes in the round in a fully distributed way.

5.3 Dynamic reconfiguration of the TDMA round 71

The Ttup period continues to be constant, as determined by the real-time constraints of

the cooperative behaviors. However, it is divided equally among the running nodes at each

instant, designated K, with K ≤ N , maximizing the slot width, Txwin, at each moment,

thus leading to maximal separation between the transmissions of the nodes in the team.

Equation 5.1 is then re-written as in Eq. 5.11.

TxwinK =
Ttup
K

(5.11)

The validity window used in the TDMA adaptation also becomes dynamic and a function

of K, namely ∆K as given by Eq. 5.12. Note that its actual value follows the variations in

the width of the slot according to the fraction defined in the configuration parameter ε.

∆K = TxwinK × ε , 0 < ε < 1 (5.12)

However, the number of active team members K is a global variable that must be

consistent so that the TDMA round is divided in the same number of slots in all nodes.

To enforce consistency in the adaptation of the current number of active team members

a membership vector was added to the packet transmitted by each node in each round,

containing its perception of the team status (see Figure 5.11). The number of fields in the

membership vector is the maximum number of team mates N , defined off-line.

Figure 5.11: Dissemination of the membership vectors

One important aspect concerns the identification of slots and nodes. In the Adaptive

TDMA mechanism, each node had a unique ID (0 ≤ i ≤ N−1) that was also used as slot ID.

However, with the reconfiguration mechanism, the slots are dynamic and thus such direct ID

mapping cannot be used.

72 5. The Reconfigurable and Adaptive TDMA communication protocol

Therefore, within this protocol, the nodes are identified by a dynamic ID that corresponds

to the ID of the slot they are assigned to (0 ≤ k ≤ K − 1). A simple rule is used to map

the static unique node ID to a dynamic slot ID. The currently lowest static ID among the

running nodes is assigned slot 0, the following static ID is assigned to slot 1 and so on until

the highest static ID among the running nodes that is assigned to slot K−1. This assignment

is carried out every time there is a change in the slots structure, i.e., every time a node joins

or leaves the group.

5.3.2 State machines to support joining and leaving

The dynamic insertion/removal of nodes is carried out in a distributed way based on the

dissemination of the membership vectors. To manage this process, each node runs the

state machine presented in Figure 5.12 for each of the other potential team members, i.e.,

considering the maximum possible number of nodes N . Thus, for each node, with respect to

each other node, the implemented state machine has four states:

Y not running

Insert Y

Y running

Delete Y

Receive
from Y

Not receive
from Y

Receive from Y and
all agents sees Y

Receive
from Y

Not receive
from Y

Not receive from Y and
no agents sees Y

TDMA slot for node Y

No
Yes

Node X state machine
relative to node Y

Start

Figure 5.12: State-machine for capturing the state of another nodes

• Not running – The node is not powered up or is unreachable, i.e., not associated with

the team wireless AP;

5.3 Dynamic reconfiguration of the TDMA round 73

• Insert – The node started transmitting but has not yet been detected by all the current

team mates. In this state the node has no slot yet in the TDMA round and thus it is

transmitting out of phase as external traffic;

• Running – The node has been detected by all team members and its own slot in the

TDMA round has been created. All nodes resynchronize and continue transmitting in

their new slots;

• Delete – The node is not transmitting or its message was not received, e.g., due to an

error.

On the other hand, the state machine of each node that manages its own internal state

is rather simple (Fig. 5.13) having basically two states, only, Insert and Running. In fact,

in our model a node never deletes itself or assumes to be Not running.

Insert
running alone

Start

Running

wait 1 Ttup

Some nodes are
transmitting

All other nodes
are not running

Figure 5.13: State-machine for the node itself

5.3.3 Operation of the Reconfigurable and Adaptive TDMA

When a new node arrives, it starts transmitting its periodic information in an unsynchronized

way, i.e., as external traffic, with its own state as Insert. Meanwhile, all nodes, including the

new one, continue updating their membership vectors with the received frames. During this

initial period, which we call the agreement phase, the new node has no slot in the round,

thus no dynamic ID, and the TxwinK value remains unchanged.

74 5. The Reconfigurable and Adaptive TDMA communication protocol

At the instant of its following transmission, one round later considering no packet losses

or a few rounds later otherwise, the new node checks if all current team members have agreed

on its existence, i.e., they all detected its transmissions and signalled it marking the new

node in their membership vectors as Insert. This will eventually occur, leading to the end of

the agreement phase and the start of the reconfiguration phase.

In the reconfiguration phase, the new node updates the number of active team members,

K, and the slot duration, TxwinK , reassigns the dynamic IDs locally, computes the offset of its

slot in the new round configuration, updates its state to Running and transmits its packet,

still unsynchronized. Upon the reception of the next reference packet (dynamic ID 0), the

slot offset is used to set a timer and trigger the new node transmission in its new slot thus

concluding the integration of the new node.

However, the complete reconfiguration process only ends when all nodes adhere to the

new round configuration. This is carried out node by node, as their transmission instants

occur. Basically, every time a transmission instant fires, the respective team member checks

whether any new node has joined during the past round and has been acknowledged by all

other members, i.e, it already transmitted with Running status. If it has, then this node also

reconfigures the round updating K and TxwinK , reassigning the dynamic IDs and computing

the offset of its slot in the new round configuration. Then it transmits its packet, which is

still in the slot of the previous configuration. Only after receiving the next reference packet,

the new offset is used and the next transmission occurs in the new slot.

If this node did not receive the new node message with Running status in the previous

round, it keeps the current round structure for one round more. Note that this can occur

due to the phase adjustment of the transmissions of the new node when transiting to its

new slot, but it can also occur due to packet losses, which simply cause an extension of the

reconfiguration phase for an extra round.

The removal of an absent node uses a similar process. When in the previous m rounds,

currently 10, no reception from a node is detected, the state of that node is changed to Delete.

When all other running team members have also marked that node as Delete then the node

is considered as Not Running, the number of active members K is decremented, the slot

duration Txwin is increased, the dynamic IDs reassigned and the slot offsets recomputed.

Figure 5.14 shows an example of the reconfiguration process of the TDMA protocol caused

by the inclusion of a new node in the team. Note that the arrows denote the instants of

transmission and the following blocks are the respective membership vectors, not representing

the duration of the respective frame transmission in the wireless medium.

5.3 Dynamic reconfiguration of the TDMA round 75

R R R

Node 0

Node 1

Node 2

time

Legend: N – Not running I – Insert R – Running

Node 0

Node 1

Node 2

A B C D E

E

time

R N R

R R N

R R N R R N R R I R R R R R R

R R R

R R RR R R

R R R

R R IR R N

I I R

R N R R N R R I R R R R R R R

R N R

I I R

R I R R R R R R R

R R RR R RR R R

Node 0

Node 1

Node 2

time

N R R

N R R N R R R I R

R R R

N R R

R I I

R I R R R R R R R

R R RR R R

R R R

A B C D

EA B C D

Figure 5.14: Timelines of three joining situations for adding a new team member
Top: joining member has highest ID; Middle: joining node has an intermediate ID;
Bottom: joining node has the lowest ID and will become the new reference

The upper timeline in Figure 5.14 represents a situation in which the joining node is the

one with the highest physical ID. The agreement phase is delimited by A and B. The new

node is integrated at D, which also corresponds to the end of the reconfiguration phase.

The middle timeline represents a situation in which the joining node has an intermediate

physical node ID with respect to the nodes already in the team. In this case, the node will

be integrated in the round and the reconfiguration phase ends one slot after.

Finally, the lower timeline represents a situation in which the joining node has the lowest

physical ID with respect to the nodes already in the team and thus it will become the new

reference. Note that once it changes its state to Running, it reconfigures the round internally

76 5. The Reconfigurable and Adaptive TDMA communication protocol

and immediately becomes the new reference node with dynamic ID 0. Thus, it is integrated

as soon as the agreement phase ends, and all the other nodes will recompute their offsets with

respect to its transmission. The reconfiguration phase ends with the last slot of this round.

The relevant points in the reconfiguration process timeline, namely A through E, are

explained next.

• A – A new node has connected to the network and, after waiting Ttup, it starts

transmitting, unsynchronized;

• B – After one round, the new node has received messages from all the other nodes with

their membership vectors indicating the new node as Insert. Thus, the agreement phase

is over and the reconfiguration phase is started. In its membership vector, it updates

all states to Running, increments the number of team members to K = 3, updates the

slot duration to Txwin =
Ttup

3
, computes the offset of its slot and transmits its packet.

Upon reception of this packet, all the other nodes update the state of the new node to

Running and perform a similar round reconfiguration to 3 slots;

• C – The next reference packet is transmitted and received by all nodes. Upon this

reception, each node sets up a timer to trigger the respective packet transmission in

the right slot;

• D – The timer of the new node expires and this node transmits its packet in its newly

allocated slot;

• E – The last node to transmit its packet in the new round configuration ends the

reconfiguration phase.

Figure 5.15 shows the dynamic adjustment of the number of running nodes in a concrete

scenario. In this case, there are initially six nodes running. Then a seventh node joins the

team, with dynamic ID 3. Soon after, the node with dynamic ID 4 leaves the team. Later

on, the node with dynamic ID 4 leaves the team for a while. While it is absent, the team is

reconfigured to 5 running nodes. In particular, note the capacity of the protocol to maximize

the time gap between the transmissions of the team members.

5.3.4 Time to join the team

As seen in the previous Section, we define the joining latency, Tjoin, as the interval since a

new node starts transmitting, unsynchronized, until it is integrated in the team and starts

transmitting in its own slot.

5.3 Dynamic reconfiguration of the TDMA round 77

150 200 250 300 350
0

0.02

0.04

0.06

0.08

0.1

Dynamic Adjustment

Time (s)

In
te

rv
al

 ti
m

e
(s

)

Figure 5.15: Membership vision of Agent 0 from other Agents over time

As explained, the joining process has two phases, the agreement and the round

reconfiguration. Under normal operation, i.e., without packet losses, the first phase takes one

round, as depicted in Figure 5.14. If there are packet losses affecting the team transmissions

in this period, the agreement phase is extended another round, and possibly more rounds

until it succeeds.

Then, the round reconfiguration phase starts with the new node already transmitting with

status Running. This phase can be further divided in two intervals, until the next reference

packet is received and from then on until the first transmission of the last node to transmit

in its slot in the new round configuration. This is the total reconfiguration latency, which we

will refer to as Treconf . However, the joining latency Tjoin only accounts for the interval until

the first transmission of the new node in its new slot.

The first of these intervals, i.e., until the reference packet is received, depends on the

relative phase between the new node initial transmissions and the initial round. In the best

case, it lasts the transmission time of the reference packet tpacket and in the worst-case, it

takes one round plus the largest delay ∆K−1 that the reference packet might have suffered

in this round, where K is the number of running nodes, including the joining one. In the

presence of packet losses, this interval can be further extended by one or more integer rounds.

78 5. The Reconfigurable and Adaptive TDMA communication protocol

The second interval is given by the offset of the new node slot, i.e., i × Txwin where i is

the dynamic ID of the new node in the new round configuration. Therefore, Tjoin can be

bounded by Eq. 5.13, without considering packet losses.

Ttup + tpacket ≤ Tjoin ≤ 2× Ttup + ∆K−1 + i× Txwin (5.13)

When considering the impact of errors and consequent packet losses, the upper bound

needs to include the extra rounds incurred as given by Eq. 5.14 where n(b, p) is the number

of extra rounds that need to be considered for a given probability p of successful packet

reception and given a bit error rate b.

Tjoin ≤ (2 + n(b, p))× Ttup + ∆K−1 + i× TxwinK (5.14)

Similarly, the reconfiguration latency can be upper bounded by Eq. 5.15.

Treconf ≤ (2 + n(b, p))× Ttup + ∆K−1 + (K − 1)× TxwinK (5.15)

Note, however, that the analytic model of the n(b, p) function was not considered in this

work. In Chapter 7 we show an experimental estimation of the distribution of this function.

5.3.5 Adding multiple slots per node

In certain use cases with teams of robots, different nodes can have different real-time

constraints, some requiring higher reactivity than others as imposed by diverse collaborative

behaviors. For example, a robot could be equipped with a special sensor that would require

an update rate of 25ms while the other team members would just require a rate of 100ms to

share their own state.

In this case, we can setup a round of 25ms and then have the remaining (slower) robots

transmitting four times more often than needed, imposing an overhead penalty. Alternatively,

the slower robots could transmit only once every four rounds, but this would then impact

the team synchronization negatively.

5.3 Dynamic reconfiguration of the TDMA round 79

Another option is to setup a round of 100ms and have the faster robot transmitting four

times in each round. This option is preferable from an overhead and synchronization points of

view but its implementation in a dynamic round structure is not trivial since it is important

to guarantee that the additional transmissions inside the round occur separated as close to

25ms as possible, even during round reconfigurations.

To implement this feature we use two mechanisms. On one hand, we allow each node to

define several physical IDs instead of just one. The protocol interprets these physical IDs

as different nodes and thus creates the desired extra slots that the node needs. Then we

developed a more elaborate mapping of physical IDs to slots that forces the multiple slots of

each robot to be separated from each other as much as possible in the round phase space.

This mapping is achieved with Algorithm 1, in which M is the total number of slots

required in the round, computed dynamically (lines 1-5), and reqSlots is the number of

required slots per node. The slots of a node i are now identified by a duplet (i, j) where

j is an associated index. Moreover, bxe represents rounding x to the nearest integer and

freeSlotNeighbor() is a function that returns the next free slot.

Algorithm 1 Allocation of multiple slots per node

1: M ← 0
2: for i← each node do
3: reqSlots[i]← # required slots for node[i]
4: M ←M + reqSlots[i]
5: end for
6: for i← each node in descendant order of required slots do
7: firstFree← first slot free
8: slotSpace←M/reqSlots[i]
9: for j = 0 to reqSlots[i]− 1 do

10: s = firstFree+ bj × slotSpacee
11: if slot[s] is not free then
12: s = freeSlotNeighbor(s)
13: end if
14: slot[s] = #id(i, j)
15: end for
16: end for

Line 8 computes the optimal distance between consecutive slots of the same node while

the cycle of lines 9 to 15 assigns IDs of the node to slots with such separation. If one slot

is busy (line 12), the next free slot is taken. This creates a deviation to the regular spacing

between the node slots. Therefore, to minimize the impact of such deviation, the outer cycle

(lines 6 to 16) that goes through all nodes starts from those that require more slots, which

tolerate less these deviations, to those that require less slots, which tolerate larger deviations.

80 5. The Reconfigurable and Adaptive TDMA communication protocol

All remaining protocol structures and control variables, such as the membership vector,

are now defined in terms of the maximum number of slots, which are taken as virtual nodes.

5.4 Summary

This chapter presents the Reconfigurable and Adaptive TDMA protocol, to be used over the

IEEE 802.11 standard for wireless communication.

The described protocol allows to periodically share the state data of each node to the

remaining members of the robotic team, using a method similar to the TDMA, without

the need of a global clock synchronization. The main advantages over the common TDMA

method are:

• Copes with the presence of external non-controlled traffic (channel sharing);

• Adapts the update period to the external interferences;

• Dynamically reconfigures according to the number of team members.

Chapter 6

Real-Time Database

Effective collaboration among robots requires data exchange, for example, to accomplish

coordinated tasks or to carry out sensor fusion to improve and/or extend the knowledge

about the surrounding environment.

The adoption of a middleware, as discussed in Chapter 3, allows accelerating the process of

develop collaborative behaviors hiding the complexities associated to data exchange between

processes, particularly across different nodes.

In this chapter we present a simple middleware, the RTDB, that provides an abstraction

of remote data presenting it as if it is local, using proxies. These proxies are updated in

the background, transparently to the user applications that access the data, at a rate that

ensures its temporal validity. Moreover, the proxies also provide age information together

with every data item, which allows application processes to use temporal models of the

respective processes to estimate the current value of the real entity at the time it is read from

the proxy.

This allows a separation between the network data exchanges and the execution of

application processes that is rather beneficial for the latter, in terms of temporal behavior.

It is also a rather simple abstraction to support construction of collaborative behaviors,

contributing to speed up their development. For this reason, this middleware has generated

some interest among robotics groups and was used in several contexts, particularly in teams

of the MSL of RoboCup.

82 6. Real-Time Database

6.1 Architecture

The architecture of the RTDB is based on that of the classical Blackboard architecture [17,

41], developed in the early days of the artificial intelligence field and still widely adopted

in many applications. A Blackboard is a public repository of information where multiple

processes publish their data. The repository is a shared resource, that can be local or remote,

where all the processes can read and write data. The Blackboard can include raw input data,

partial and final solutions, and control information. It also acts as a communication medium

and buffer. [17] discuss similarities and complementarities between Blackboard-based systems

and multi-agent systems.

The RTDB uses a similar approach to the Blackboard with the extension to provide

interfaces to multiple machines (agents) with data proxies for fast access. This is accomplished

replicating in all the agents the data that each one shares, resulting in a data structure in

each node that encompasses local data together with copies (proxies) of shared remote data.

A specific communication manager refreshes the RTDB contents, see Figure 6.1, ensuring

consistency between the original data entities and their proxies. This way, all the processes

running on an agent can access remote data items as if they were local, thus in a fast way,

without communication delays.

The replication of the contents shared by one agent in the RTDB to the other agents

implies the utilization of network resources that can be subject to several constraints as

with wireless communication (Chapter 2). Noting that not all the information generated

by an agent needs to be shared with others, for instance data used in local inter-process

communication or temporary data, the volume of data to replicate can be small. Thus, the

RTDB is internally divided in two distinct memory areas:

• Local - Used to hold the data that is only relevant to local processes and will not be

broadcast to the other agents;

• Shared - That keeps the data that is relevant for cooperative behaviors and thus will be

broadcast. This area is organized in blocks, one dedicated to each agent. In particular,

one block contains the data that the holding agent shares, which will be broadcast by

this agent, while the remaining blocks contain the data shared (broadcast) by the other

agents.

Each process connects to the RTDB through the local RTDB API that provides the

necessary methods to access the data, transparently to the block in which the data actually

resides inside the RTDB.

6.1 Architecture 83

RTDB
Communication

Manager

RTDB

R
TD

B
 A

P
I

Local client
Process

1 R
TD

B
 A

P
I

Local client
Process

N

RTDB API

Lo
ca

l c
lie

n
t

P
ro

ce
ss

3

RTDB API

Lo
ca

l c
lie

nt

Pro
ce

ss

2

AGENT X AGENT YNetwork

AGENT Z

Figure 6.1: Agent-centered view of the RTDB architecture

The heterogeneity of agents generates different requirements for memory usage and

consequently different RTDB block sizes, see Figure 6.2. The size of each block and the choice

of data that must be broadcast or kept locally is defined a priori through a configuration file.

As mentioned above, the access to remote data is done without explicit use of

communication, abstracting away the data distribution itself. The refreshment of the remote

data is carried out in the background by the communication manager that must consider the

specific temporal validity of the data items, the constraints of the communication medium

and the amount of data to exchange. A communication manager that does cyclic refreshment

of the RTDB shared areas at an adequate rate is the subject of Chapter 5. However, note that

other refreshing policies and protocols are possible. In fact, there is a complete separation

between the communication protocol used for RTDB refreshing and the RTDB itself.

84 6. Real-Time Database

RTDB
Communication

Manager

local

agent 2

agent 1

agent 3

RTDB
Communication

Manager

local

agent 2

agent 1

agent 3

local

agent 2

agent 1

agent 3

RTDB
Communication

Manager

Network

AGENT 1 AGENT 2 AGENT 3

Figure 6.2: Network view of the RTDB architecture

It is also possible to use the RTDB for local inter-process communication, only, within a

single agent. In fact, it has been successfully used in such configuration, for example, in the

CAMBADA@Home [7] and ROTA [57, 61] projects. In this case, the RTDB becomes a local

Blackboard, just with the local block, but still extended with additional information on age,

which is always present, either in local or distributed implementations as explained next.

Note that, despite the fast local access to data provided by the RTDB to the local processes

in each agent, the data itself always has a certain age (analyzed in detail in Section 6.7). This

age represents an estimate of the time elapsed since the original data item was written to the

RTDB by the producer process at the source agent until it is retrieved by a consumer process

in a remote agent.

The knowledge of this age can be of great importance to the programmers of collaborative

behaviors. For example, it allows detecting stale data, i.e., data that is too old to be useful.

It can also be used with temporal models to predict the actual value of that item at the time

it is consumed given the value it had at the time it was produced. Therefore, the RTDB

keeps a field for each data item indicating the age of the data since it was written for the last

time. This age is provided to the users through the API methods as we will see in Section 6.4.

6.2 Configuration 85

The design of the RTDB architecture was motivated by the problems identified in

Chapter 4, found in the MSL of RoboCup. However, it was devised using a generic approach,

so that it could be used in different applications. Basically, we believe it is a useful component

to develop teams of cooperative autonomous robots that collaborate through state sharing.

6.2 Configuration

In order to be used the RTDB must be configured adequately. In its current form, the RTDB

is a static component with a structure defined offline based on knowledge of the specific team

characteristics and the data to be included.

The configuration of the RTDB is done automatically by parsing a configuration text file

that specifies the team characteristics and the RTDB composition. As mentioned previously,

the team can be composed of multiple agents with different roles and equipped with different

sensors and actuators, thus having distinct data requirements for either local and global

communication. Hence, the configuration file allows describing each agent from the data

point of view and altogether represents the team model. Listing 6.1 shows the model used in

the RTDB configuration.

AGENTS = <<id_ag >> [, <<id_ag >> , ...] [;]

ITEM <<id_it >> { datatype = type; [headerfile = <<filename >>]; [period = <<number >>]; }

...

SCHEMA <<id_sc >> { [shared = <<id_it >> [, <<id_it >>, ...] ;]

[local = <<id_it >> [, <<id_it >>, ...] ;]

...

ASSIGNMENT { schema = <<id_sc >>; agents = <<id_ag >>, ... ; }

...

Listing 6.1: The RTDB configuration model

The meaning of each of the constructs is explained next:

• AGENTS – Set of agent unique identifiers that specify the agents that compose the team.

Each agent identifier (id_ag) will also be used in the actual application code when

accessing remote data in the RTDB to specify which agent to retrieve the data from;

• ITEM – This is a data unit kept in the RTDB and handled as an integer piece of

information. Each such item is identified by a unique identifier (id_it) together with

the following three attributes:

86 6. Real-Time Database

– datatype – This is the actual type of the item data and it is used to compute the

data size in bytes, necessary to hold the item in memory. It can be a predefined

type, such as int or double , or a user defined type;

– headerfile – This attribute is needed if the data type is user defined, only. It

contains the path and name of the C language header file where the data type is

defined;

– period – Sets the item refresh period in multiples of the communication cycle. This

allows adjusting the RTDB communication requirements to the actual dynamics

of its items. It is used in shared items, only.

• SCHEMA – Set of local and shared ITEMS produced by a given agent type. Each schema

has a unique identifier (id_sc). There can be one or more schemas. The ITEMS are

thus specified in two lists, accordingly:

– shared – The list of ITEMS to be shared, i.e., broadcast;

– local – The list of ITEMS that are available to local processes, only;

• ASSIGNMENT – Associates one SCHEMA to one or more AGENTS and thus allows defining

all RTDB instances. There can be one or more assignments depending on the number

of different agent types.

To better explain how the configuration file is used, Listing 6.2 shows an example of a

configuration for a team of three AGENTS with two similar mobile robots (robot1 and robot2),

that explore the environment using a camera, and a base station (base), that is responsible

for data fusion and world model construction.

AGENTS = robot1 , robot2 , base ;

ITEM image {datatype = struct image ; headerfile = image.h ; }

ITEM position { datatype = struct pos ; headerfile = pos.h ; period = 1 ; }

ITEM obstacles { datatype = struct obstacles ; headerfile = obstacles.h ;

period = 1 ; }

ITEM fuse_data {datatype = struct fuse ; headerfile = fuse.h ; period = 1; }

SCHEMA robot { shared = position , obstacles ;

local = image ; }

SCHEMA base_st { shared = fuse_data ; }

ASSIGNMENT { schema = robot ; agents = robot1 , robot2 ; }

ASSIGNMENT { schema = base_st ; agents = base ; }

Listing 6.2: Example of an RTDB configuration file

6.3 Internal Structure 87

The image acquisition processes running on the robots save the raw images data in the

local item image. The self-localization and obstacle detection processes read the image item

and save the results of self-position and obstacles localization in the shared items position

and obstacles, respectively. These two items will be broadcast to the other agents each

communication cycle.

A third node (base) equipped with a powerful computing system, not necessarily a mobile

robot, is responsible for constructing the world model of the environment, combining the

data received from the robots. This world model is then shared with the robots, for example,

allowing them to choose areas that are still to be explored, improving the efficiency of a

collaborative SLAM approach.

This example shows the capacity of the RTDB middleware to support collaborative

applications among heterogeneous agents. However, the team composition and data

requirements must be known a priori, when the code of the agents is compiled, and thus

cannot be changed during execution. Note, nevertheless, that a team can be configured

according to its maximum dimension and requirements. Then, at run time, the actual number

of working robots can be less but the collaborative applications need to be prepared for this

possibility.

6.3 Internal Structure

As shown in Figure 6.2, the RTDB is formed by a set of shared memory blocks, one of which

is used only for local data, while the other ones are used for data distribution. Physically,

these blocks are implemented in two areas each, one containing a set of records that are

needed for data control purposes and the other holding the actual data (Figure 6.3). In turn,

the data area is divided in two banks (bank[0] and bank[1]) implementing a double buffer

reader-writer synchronization per item, as explained in Section 6.5.

Figure 6.3: The internal organization of the RTDB blocks in control records and associated
data

88 6. Real-Time Database

Each record describes an item, containing the fields referred in Listing 6.3, specified in the

C language. These are: an internal item identifier id that is a sequential number generated

by the parser, corresponding to the item identifier id_it in the configuration file; an offset

from the beginning of the shared memory block to the data area of the respective item, as

shown in Figure 6.3; the size in bytes of the item data; the update period, as defined in the

configuration file, reflecting the dynamics of the respective item; a timestamp with the local

time of the last write operation at each bank, for computing the age of the data; and, the

read_bank control field used for managing the double buffering.

typedef struct {

int id;

int offset;

int size;

int period;

struct timeval timestamp [2];

int read_bank;

} TRec;

Listing 6.3: The fields of a generic RTDB record

6.4 RTDB API

The RTDB is fully implemented in C language. The functionality of the RTDB is available

through a very simple API with only four methods, as shown in Listing 6.4. Two additional

methods are used internally for updating the remote items.

public:

int DB_init (void)

void DB_free (void)

int DB_put (int id_it , void *data)

int DB_get (int id_ag , int id_it , void *data)

protected:

int DB_comm_init(RTDBconf_var *rec)

int DB_comm_put(int id_ag , int id_it , int size , void *data , int age);

Listing 6.4: The RTDB interface methods

The DB_init method is called once by every process that needs access to the RTDB and

handles initialization issues. The actual memory allocation for holding the RTDB in each

agent is executed by the first process to invoke such call. Subsequent calls just increment an

6.4 RTDB API 89

internal process counter with the number of processes that are currently linked to the RTDB.

Conversely, the method DB_free does the corresponding clean up and detaches a process from

the RTDB. It decrements the process counter and, when zero, frees the respective memory

blocks. Both DB_init and DB_free return the value 0 upon successful execution or -1 in

case an error occurs.

The actual access to the RTDB memory areas is carried out with the non-blocking

methods DB_put and DB_get. Both methods use the item identifier id_it defined in the

configuration file as well as a pointer to the data to be written to or read from the RTDB,

respectively. DB_get further requires the specification of the agent id_ag from which the

item to be read belongs to, which is used to identify the respective data area in the database.

This method returns the age of the data retrieved from the RTDB in milliseconds or -1 in

case of error. The method DB_put returns the total number of bytes copied to the RTDB or

-1 indicating an error. For consistency purposes, as explained in Section 6.5, a writer process

can only invoke DB_put once per RTDB item in each execution cycle.

The access to items defined as local or shared is transparent since the item identifier

id_it is unique for all the items saved in the RTDB. This allows transforming a local item

to shared, or vice-versa, with a simple change in the configuration file, simply moving the

that item across the respective lists. This can be very useful for debugging purposes, to have

temporary access to agents’ local data at run time, in a monitoring station.

Finally, the RTDB API includes two other methods that are protected (DB_comm_init

and DB_comm_put) and thus, not available to an ordinary user process. These are used

exclusively by the communications manager in each agent.

With respect to the RTDB access, the communications manager is rather similar to an

ordinary user process, also making use of the same DB_init, DB_free and DB_get methods

to begin and finish the access to the RTDB and to read data from the RTDB shared areas.

However, it uses DB_comm_init, invoked once when the process is launched, to retrieve

communications relevant information from the RTDB, such as period and size for all items

that are to be broadcast by this agent, allowing to compute an internal transmissions schedule

that determines which items to broadcast in each communications cycle.

On the other hand, the DB_comm_put method is used to write in the shared RTDB areas

the remote data received through the communications interface. The size parameter is

used for a simple validation of the received data, comparing the received data size with the

expected data size. The age parameter is the age of the received data at the reception instant,

thus including the producer and transmission components of the age. This is an age offset

that will be written in the RTDB that will allow computing the total data age at the time of

data consumption, by the DB_get method, as presented in Section 6.7.

90 6. Real-Time Database

6.5 Synchronization of concurrent read/write accesses

The underlying data sharing model of the RTDB consists of concurrent writer processes that

generate data and reader processes that consume it. However, each data item has only a

single writer process while it can be read by multiple reader processes. This is a typical

single writer multiple readers synchronization case. In this situation, the multiple readers

can access concurrently each data item freely, without access control. On the other hand,

concurrent accesses between the writer process and any of the reader processes need to be

controlled to avoid data corruption.

This is a well known synchronization situation in the access to shared data which, under

certain circumstances explained further on, can be solved with a double buffering technique.

In the RTDB we make use of this technique due to its simplicity and reduced blocking, despite

an extra cost in memory usage.

6.5.1 Using single buffer synchronization

An initially developed version of the RTDB used a single buffer technique [49]. However, this

technique requires that the writer has higher priority than the readers in case of a preemptive

system. The readers need to use a consistency flag that is set by the writer whenever it

interrupts a reading operation. The readers use this flag at the end of the reading operation

and repeat the reading if the flag is set.

In our case, the higher priority of the writer is easy to enforce in the network-to-RTDB

transfers by giving the communications manager higher priority then any other user process.

In the RTDB-to-network transfers, we would need to give the communications manager a

priority lower than all user processes. This could be achieved separating the communications

manager in two processes, to handle the transfers in each way, with different priorities, or

using a single process but changing priority dynamically. However, giving the communications

manager a low priority decreases the control on its transmission instants, which is undesirable

from the communications scheduling point of view. Moreover, in the local communications

it would be impossible in the general case to give the writer higher priority than any reader,

as many processes would be writers and readers.

An alternative to maintain the single buffer approach would be to disable preemption

during buffer accesses, either for writing or reading. For short data items, this is an effective

solution, but when the data items are large, this technique may also imply a significant

blocking of the respective processes, which is also undesirable for the communications

manager.

6.5 Synchronization of concurrent read/write accesses 91

However, in complex operating systems, e.g., Linux, disabling preemption or assigning

a higher priority level requires administrator (root) rights. Carrying out these operations

within user level processes is a path to bugs that may compromise system robustness as it

exposes the core system integrity to user programming errors. Therefore, the single buffer

synchronization approach was excluded leading to the option for double buffering. We still

use higher priority in the communications manager since it is a system component and

it is relevant to reduce its execution blocking to achieve better timeliness. Nevertheless,

all user processes run exclusively at user level, without need for root execution rights and

independently of the scheduling policy in place.

Finally, the option for a priority-independent solution also drifts our work away from other

works in the general field of real-time databases and services [82] that aim at ensuring the

timeliness of the read and write transactions and the freshness of the data through appropriate

scheduling techniques typically based on priority management.

6.5.2 Using double buffering synchronization

The double buffers are implemented with the two banks per item shown in Figure 6.3. At

each moment, all the reader processes of a given item read from the same bank indicated by

the read_bank field in the item control record. When the respective writer process wishes to

write a new value, it checks the bank currently in use by the reader processes, i.e., indicated

by the read_bank field, and saves the data in the other bank. When it finishes, it updates the

read_bank field to point to the bank with the new data. This way, the readers will always

fetch from the bank with the most fresh data.

Nevertheless, under concurrent preemptive execution, it is important to analyze potential

race conditions involving the writer and reader processes. In general, given the use of different

banks for the writer process on one hand and the reader processes on the other, there is no

consistency problem. The situation that raises more concerns is when the writer process

preempts a reader, since the former updates the read_bank field while the latter is still

reading. This situation is shown in Figure 6.4. However, the reader continues reading from

the same bank until the end of that instance and there is no data corruption. As a drawback,

the data retrieved by the reader is not the most fresh, but using the data age associated with

each bank, the reader process can adopt a reactive procedure and, for example, carry out a

new reading if beneficial.

92 6. Real-Time Database

Writer

Reader

preempted

time

Write access

Read access

Figure 6.4: Concurrent access to the same RTDB item

The absence of data corruption in the situation shown in Figure 6.4 holds as long as the

writer does not issue consecutive write operations while preempting the reading. In such case,

the first write would change the read_bank at the end of its execution to point to the bank in

use by the reader and a second write would overwrite that bank corrupting the reader data.

Nevertheless, consecutive writes on the same data item by the same process during

one execution instance should not occur, representing an erroneous design pattern. A

correct pattern of each process execution instance starts with data reading, followed by data

processing and ending with writing the results, once per item and per execution cycle.

Another situation that could generate problems is one in which the writer, despite issuing

a single write operation in each instance, would be quickly reactived so that it could preempt

the reading operation twice. Again, this situation cannot occur in our setting since the period

of the processes used is in the order of a few tens of miliseconds, which is much longer than

the time to access the data items.

Therefore, the presented double buffering technique is safe in our execution context.

6.6 RTDB replication management

Figure 6.2 provides a network view of the RTDB architecture, highlighting the replication

of its shared components in all nodes. Managing this replication is relatively easy in our

approach because of two aspects.

Firstly, there is a single writer for each shared item, which avoids complicated arbitration

mechanisms that would be needed if there were multiple writers and would necessarily increase

the potential for inconsistency.

Secondly, we use state semantics in the RTDB contents, which is more tolerant to small

inconsistencies during item updates than if an event semantics was used. In fact, the

contents of the RTDB represent samplings of continuous time signals. If, during an update

operation, one inconsistency occurs, for example, caused by a local communication error, this

inconsistency will only last until the next successful update, normally one item communication

6.7 Age of data 93

period later. Moreover, such inconsistency may represent just a small inaccuracy in the local

signal representation and can be partially mitigated using the age information and temporal

models of the items dynamics, or even control approaches that cope with errors and vacant

sampling.

The RTDB database management system is embedded in the communications manager.

In fact, it is this component that controls the dissemination of information and thus, the

updating of the remote proxies of each shared item. As explained in Chapter 5, this updating

is carried out with broadcast communication, thus making an effective use of the network

bandwidth and further contributing to the global RTDB consistency.

One important aspect is the clear separation between the RTDB itself and its database

management system, i.e., its communications manager. This separation was already referred

in a different context but it is also relevant here. For example, it is possible to use the RTDB

with an event semantics simply by changing the communications manager adequately. In

such case, an event would trigger an update of the respective item. However, this approach

would need reliable communications, with acknowledging mechanisms, to prevent lasting

inconsistencies to occur.

6.7 Age of data

Knowing the age of the data can be very useful for collaborative behaviors to detect and

possibly mitigate situations of loss of temporal validity. However, for the sake of simplicity,

our middleware does not include a global clock service implying that the clock in each robot is

not correlated. To circumvent such difficulty, the middleware computes time intervals, only.

Consumer
robot 1 robot 2

RTDB

TX

t
1

t
2

t
3

t
4

Producer

RTDB

RX

tp T
wt

tc

Figure 6.5: Datum age calculation

94 6. Real-Time Database

When a producer writes an item in the RTDB, the local time t1 is saved in the timestamp

field of the item record, as shown in Figure 6.5). Later on, when the communications manager

fetches the data to disseminate it to the other agents, it computes for each item to be

transmitted the difference between the current local time t2 and the saved t1, which is the

age of each datum at the time of transmission in the producer side. The datum age at the

producer side tp = t2 − t1 is attached to each datum itself and transmitted together in the

network packet.

When the packet is received by the communications manager at the consumer side, each

item is individually written in the RTDB shared area that corresponds to its producer. The

data age received from the producer is subtracted from the current local time at the consumer,

t3, and the result, t3 − tp, is saved in timestamp. When a consumer process retrieves the

item from the RTDB, the difference from the current time to the value saved in timestamp is

computed, resulting is an estimate of the age of the data, from the moment it was produced

to the moment in which it was consumed.

This estimation, however, still lacks the transmission time (Twt), which depends on the

actual bit rate, on the latency to access the medium and on possible re-transmissions.

However, as shown in Chapter 7, the communication protocol that we use together with

this middleware (Chapter 5) has a positive impact on the transmission time, leading to a

relatively constant latency that can be easily added to the age estimation to improve its

accuracy.

6.7.1 Upper bounding the age of data

The communication protocol we currently use (see Chapter 5) is not synchronized with the

control system of the robots, due to the adaptive nature of the protocol that keeps changing

its cycle duration. This may lead to extra delays in the refreshing of the remote data that

the programmer must be aware of.

In particular, when a robot accesses a local image of a datum from another team member,

that datum can be as old as:

max data age = min(Trcpp, ndup ∗ Ttup) + Twt + (ndup ∗ Ttup) (6.1)

This worst case data age corresponds to when the communications manager fetches the

data in the RTDB for transmission just before that data being updated by the respective

producer process in the respective robot. Thus, at that point, that data can be as old as one

period of the respective producer (Trcpp).

6.8 Scheduling the dissemination of RTDB items 95

However, this latency cannot be larger than the item update period configured in the

RTDB (ndup ∗ Ttup) thus, the minimum of the two must be considered. Note that ndup is the

refresh period in integer number of communication cycles defined in the item control record,

and Ttup is the communication cycle duration, defined in Chapter 5 as the Team Update

Period.

The transmission of the data over the air takes some time that must also be accounted

for (Twt).

Finally, when the consumer accesses the data on its side, the data can be waiting in the

respective item buffer for at most another item update period (ndup × Ttup).

Within the above expression, only the wireless transmission delay is unknown and may

vary with the traffic load in the network, requiring an adequate estimation.

The minimum age of any datum corresponds to the situation in which the transmission

takes place right after the producer updated the item and the consumer accesses the item

right after it has been received, being thus given by

min data age = Twt (6.2)

This large difference between maximum and minimum age shows that the item age can

be affected by high jitter as is typical in situations in which items are propagated through

unsynchronized cycles. The order of magnitude of the max data age determines the dynamics

of the collaborative behaviors that this database management system can cope with.

6.8 Scheduling the dissemination of RTDB items

In a state based approach, as we are currently following, the update of remote shared items

is done cyclically, controlled by the communications manager. As mentioned above, the basic

communications cycle is Ttup and each item becomes ready to be shared every ndup cycles.

This parameter is specified individually per item and allows reducing the communication load

whenever some of the items have lower dynamics than the communications cycle and thus

can use a higher ndup parameter. Moreover, the communications manager also encapsulates

multiple items in the same network packet to reduce communications overhead.

96 6. Real-Time Database

When all the shared items in the RTDB have ndup = 1, then they are scheduled for

transmission every communication cycle and there is no need for additional scheduling

mechanisms. However, when the RTDB contains items with ndup > 1 then there is need

to carry out additional items scheduling, for example, to balance the communication load

generated by each agent from cycle to cycle.

Currently, we specify at configuration time a given total payload in bytes (Di) available

for each of the N possible agents (i = 0..N−1) to transmit RTDB items per cycle. This total

payload may involve several network packets and may be different for each agent, depending

on the individual communication requirements.

The items scheduling model that we use is rather simplified. It takes into account, for a

generic item k in agent i its size in bytes (Cki) and its period in number of communication

cycles nkdup,i. Then we follow a Rate Monotonic approach according to which we schedule

the items with shorter periods first, considering all of them ready at RTDB start time, and

implicit relative deadlines equal to their periods.

In each cycle, the communications manager schedules ready items until
∑

l(C
l
i) becomes

as close as possible but below Di, where l is an index to the ready packets already scheduled

in that cycle. At that moment, any pending ready packets are left to be scheduled in the

following cycles.

The maximum value of Di must be set so that the respective transmission time is

sufficiently below the minimum slot time Txwin = Ttup/N so that there is time free for extra

load in the medium as well as for retransmissions upon error. Following the same terminology

and reasoning of Eq. 5.3 in Chapter 5, we can express the upper bound on Di as in Eq. 6.3.

Di ≤ D̄i :
nodeLoadT ime(D̄i, frameType, netType)

Ω− extLoadOcup(L, frameType, netType)
≤ Txwin (6.3)

However, in order to balance the communication load imposed by agent i in all

communication cycles, we may be interested in determining which is the minimum value of

Di that allows transmitting all its items within the respective periods. This can be achieved

using a server design technique from the hierarchical real-time scheduling theory [5, 11],

in which the server capacity in bytes is given by Di corresponding to one or more packets

transmitted non-preemptively with a maximum packet length of Pkt. This model is also

similar to one kind of limited preemption proposed recently in single processor scheduling to

improve schedulability [14].

6.9 Summary 97

Finally, to determine the right packet size Pkt it is important to balance both

communication overhead and robustness. Longer network packets incur in lower overhead but

also higher probability of corruption by errors. Therefore, average packet lengths typically

represent a better compromise that depends strongly on the bit error rate of the specific

operational environment. Lower bit error rates allow longer packets with overhead reduction

benefits. Computing the maximum packet size for a given reliability target is beyond the

scope of this work. In our current work Pkt is set empirically.

6.9 Summary

This chapter presented a distributed shared memory middleware named RTDB that follows

a similar approach to the typical Blackboard but enhanced to reduce communications and

data access times, and to provide information on data age. It is particularly suited to support

global state sharing among a team of autonomous mobile agents/robots.

We described the RTDB architecture, configuration model and the programming interface

of the RTDB. Then we addressed the reader/writer synchronization problem and explained

the option for a double buffer mechanism. This chapter also discussed the replication

management approach, based on a dissemination protocol that updates remote items

transparently to the applications, in the background, with a frequency adapted to the

dynamics of each item.

This chapter also explained how the information on age is computed and maintained.

This is one of the main features of this middleware that allows detecting stale data as well

as estimating the current value of data items using models of their dynamics.

Comparing the RTDB with the middlewares presented in Chapter 3, it is considerably

simpler exploring the fact that common applications of collaborative robotics frequently use

a team of known robots, with a priori known features, and with a known maximum number

of robots. This allowed using a static RTDB, leaving the support for run-time addition of

new agents or new data items for future work.

Another option taken towards favoring simplicity was the use of a memory copy type of

interaction. This explores the fact that, frequently, teams of robots have a similar computing

architecture. This limitation can be easily mitigated using abstract data types inside the

RTDB and it was also left for future work.

98 6. Real-Time Database

Chapter 7

Experiments

This chapter presents experimental results that aim at validating the claimed properties of

the Reconfigurable and Adaptive TDMA protocol. These, in turn, have a direct impact on

the consistency and timeliness of the RTDB middleware and thus on the performance of the

collaborative applications that run on top.

We start by showing the benefits of using a synchronized TDMA approach in the

communications for a team of cooperating autonomous agents. We show benefits on both

transmission latency and packet losses. Then, we also show a thorough comparison with a

traditional TDMA implementation based on clock synchronization. The results show the

desired effect of our adaptive approach on increasing the resilience to coherent periodic

interferences, i.e., those with a similar period or with a period that is close to an integer

(sub)multiple. However, the advantage of our approach with respect to the clock synchronized

one seems to disappear in the presence of strong bursty external traffic. This is also expected

as discussed further on.

Finally, we validate the protocol operation in real operational conditions, particularly in

RoboCup MSL games. We show the control and correctness of the membership management

system, particularly the integration and removal of nodes, as well as delays and packet losses.

We end with an analysis of several temporal parameters, namely the effective round period

and the time to join the team.

100 7. Experiments

7.1 Experimental setup

In order to test the benefits of the Reconfigurable and Adaptive TDMA communication

protocol, several experiments were conducted to assess the number of lost packets with and

without additional traffic load, with and without the synchronization scheme and with two

different synchronization approaches. The network was configured in infrastrutured mode,

i.e., all transmissions were carried out through the AP.

We used an experimental setup in a laboratory comprising four nodes and a monitoring

station that time-stamped and logged frame receptions in monitor mode (Fig. 7.1 left). The

monitoring station did not transmit and was not included in the TDMA round.

The experiments in real operational scenarios, taken during RoboCup games, include six

robots, a base station and the monitoring station. The robots and base station were all

integrated in the TDMA round. However, the base station was connected through Ethernet

to the AP (Fig. 7.1 right).

#4

#3#2

#1

Monitor StationInterference
Generator

Access Point

team

Monitor Station

ethernet

Access
Point

Base Station

Robot 2 Robot 3

Robot 4

Robot 5 Robot 6

Robot 1

Figure 7.1: Laboratory (left) and game (right) setups

All the packets received in the configured frequency channel were saved in a file dump for

later analysis. Note, however, that such logs do not necessarily represent the whole traffic in

the network but just the perspective of the monitoring station. Nevertheless, despite using

different computers in different experiments and different nodes, given that the physical layout

of the experimental setup was relatively small in space, we believe the results shown are still

representative of the traffic generally received by all nodes in the setup.

7.2 Comparing with no synchronization 101

7.2 Comparing with no synchronization

These experiments aim at comparing the Reconfigurable and Adaptive TDMA protocol with

a situation in which the same sources transmit the same information in the same way but

without synchronization. In this case, the drifts of the respective nodes clocks can always

lead to a situation in which several nodes will be transmitting approximately at the same

time during a relevant interval as shown in Figure 5.3.

Therefore, we recreated the worst-case situation in which all robots will be transmitting

at the same time causing maximum contention among the team members. This was achieved

starting all nodes at the same time using a trigger signal sent by an external laptop used to

generate interfering traffic. This was done in both cases, with and without Reconfigurable

and Adaptive TDMA. We will see that, in the former case, the team communications will

immediately be reorganized in the synchronized framework reducing collisions while in the

latter they will continue colliding, generating a period of poor channel quality, independently

of the channel load.

The experiments used IEEE 802.11b with multicast packets carrying 379 bytes of payload.

The team included four nodes with a Ttup of 50ms and logs were extracted for about 9 minutes

of continued operation. The interfering traffic was generated by an external laptop pinging

the AP using 1000B packets at a rate of 5 and 10ms in two different experiments. The

former case already corresponded to a saturated network. A third experiment was carried

out without generating external traffic.

7.2.1 Latency measurements

The results concerning the wireless transmission delay are shown in the histograms of Fig. 7.2

with Reconfigurable and Adaptive TDMA (a) and without synchronization (b). In each case

we include the three referred load situations.

It is clear that, in the former case, the synchronization imposed by the protocol

immediately sorts out the high contention caused in the starting instant and the interference

among team members is practically eliminated. In particular, from these measurements we

can extract the Twt parameter used in computing the age of the data items in the RTDB,

as explained in Section 6.7. According to Fig. 7.2.a) we set Twt = 4ms with IEEE 802.11b.

Based on similar experiments with IEEE 802.11a, in such case we use Twt = 1ms.

102 7. Experiments

a) with Reconfigurable and b) without synchronization
Adaptive TDMA

Figure 7.2: Transmission delay

Without synchronization, the team members continue interfering with each other, leading

to a substantial increase in the transmission delay. Moreover, the impact of the interfering

traffic is also worse without synchronization, showing the benefit of using our adaptive

synchronized framework.

7.2.2 Packet losses

The impact in terms of packet losses is shown indirectly in Figure 7.3, which shows the

intervals between consecutive packets received from another agent when using interfering

pings every 10ms. The other load cases presented similar patterns. Normal intervals are

roughly between 50 and 60ms due to the adaptive feature of the protocol. Jumps to higher

values represent consecutive losses, basically one loss per additional 50ms jump.

The case without synchronization shows much more continued losses given the high

contention at the medium access and the high number of collisions.

Figure 7.4 shows the respective histograms of the number of consecutive lost packets

for the three load cases, with and without synchronization. These histograms confirm the

strong asymmetry between using and not using synchronization, with clearly higher figures

in the latter case. They also show a surprising reduction in packet losses as the network load

increases, without synchronization. The case without extra load is particularly visible.

This is paradoxal but illustrates a weakness of the IEEE 802.11 protocol. When two

sources transmit at the same time, they both sense the medium free and trigger their

communications immediately leading to an immediate collision. On the other hand, if there

7.3 Comparing with non-adaptive TDMA 103

0 100 200 300 400 500
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Inter−packet delay with Rec. Adap. TDMA

time (s)

in
te

r−
pa

ck
et

 d
el

ay
 (

s)

0 100 200 300 400 500
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Inter−packet delay without synchronization

time (s)

in
te

r−
pa

ck
et

 d
el

ay
 (

s)
a) with Reconfigurable and b) without synchronization

Adaptive TDMA

Figure 7.3: Timeline of the inter-packet interval from agent 0

is more traffic in the network, then such sources will occasionally find the medium busy,

leading to a backoff and retry, which is done according to the CSMA/CA rules that reduce

collisions stochastically. As we increase the network load, the CSMA/CA arbitration rules

will be applied more and more, reducing collisions and thus, packet losses.

These results show that it is beneficial using synchronization to improve the resilience of

multicast packets and consequently, the timeliness of the system.

7.3 Comparing with non-adaptive TDMA

After having validated the positive impact of the TDMA kind of synchronization in reducing

network delays and packet losses, it is also interesting to compare different alternatives to

TDMA implementation, particularly with the typical one based on clock-synchronization.

When comparing Reconfigurable and Adaptive TDMA with clock synchronized TDMA

there is one immediate difference. The former merges synchronization and data transmission

while the latter needs a clock synchronization service and then implements data transmission

alone. Moreover, the clock synchronization service requires transmissions of its own which

must be accommodated by the data transmissions protocol. For these reasons we believe that

Reconfigurable and Adaptive TDMA is simpler to deploy and use.

104 7. Experiments

0 1 2 3 4 5
10

0

10
1

10
2

10
3

10
4

10
5

 (
99

.6
9%

)

 (
0.

31
%

)

 (
0.

00
%

)

 (
99

.7
4%

)

 (
0.

26
%

)

 (
99

.7
8%

)

 (
0.

22
%

)

consecutive lost packets with Rec. Adap. TDMA

Consecutive lost packet

Without interference
Interf ping 1KB 10ms
Interf ping 1KB 5ms

0 1 2 3 4 5
10

0

10
1

10
2

10
3

10
4

10
5

 (
95

.4
1%

)

 (
4.

32
%

)

 (
0.

27
%

)

 (
97

.4
3%

)

 (
2.

49
%

)

 (
0.

07
%

)

 (
98

.0
5%

)

 (
1.

89
%

)

 (
0.

05
%

)

consecutive lost packets without synchronization

Consecutive lost packet

Without interference
Interf ping 1KB 10ms
Interf ping 1KB 5ms

a) with Reconfigurable and b) without synchronization
Adaptive TDMA

Figure 7.4: Histograms of the number of consecutive lost packets

Another relevant issue is that clock synchronization algorithms typically use a

master-slave approach, frequently without master redundancy, which makes them sensitive

to single point failures. Conversely, Reconfigurable and Adaptive TDMA is fully distributed

and thus resilient by nature to the failure of any of its nodes.

Finally, TDMA implementations based on clock synchronization are typically static.

Thus, they perform poorly when facing coherent periodic external transmissions. In

such cases, there will be recurrent periods of high interference that may cause significant

degradation due to excessive collisions as shown in Figure 5.3. Conversely, the adaptive

feature of Reconfigurable and Adaptive TDMA delays the round whenever the team

transmissions suffer delays, quickly moving the phase of the TDMA round away from such

interferences.

The following experiments aim at validating this feature of the protocol. Thus, we created

growing levels of interference using the ping command from an external computer with

large packets and varying burstiness to increase the impact of interference. The results were

extracted from a sequence of logs of the team with four nodes, during 5min of operation,

using a round of 99.5ms. The reason for such period is to make it slightly different from

that of the ping traffic, which was set to submultiples of 100ms. With this difference in

7.3 Comparing with non-adaptive TDMA 105

periods, we expect a high contention interval between both types of traffic to occur recurrently

approximately every 20s, resulting from the difference of the frequencies of the interfering

periodic processes.

The clock synchronized TDMA was implemented using the Chrony clock synchronization

service, thus the respective results are referred as chrony. Those concerning the

Reconfigurable and Adaptive TDMA are referred as Rec Adap TDMA.

7.3.1 Evolution of offsets and round period

Figure 7.5 shows the offsets of the nodes transmissions in the TDMA round, with respect

to the transmissions of node 0, for both synchronization methods and with additional ping

traffic of one 1KB packet every 20ms. In this plot, we have excluded larger intervals caused

by message losses for the sake of clarity. At the right side of the plot we show the mean

value of the respective slot offset. The top line represents the interval between consecutive

transmissions of node 0, thus showing the effective round period, which we refer to as T̃tup.

Mean = 25.57ms

Mean = 50.49ms

Mean = 75.37ms

Mean = 99.48ms

Chrony

0 50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

0.1

0.12

in
te

ra
rr

iv
al

 ti
m

e
(s

)

time (s)

interarrival time measured to reference station, without considering losses

Mean = 26.36ms

Mean = 51.06ms

Mean = 75.91ms

Mean = 100.51ms

Rec Adap TDMA

0 50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

0.1

0.12

in
te

ra
rr

iv
al

 ti
m

e
(s

)

time (s)

interarrival time measured to reference station, without considering losses

Figure 7.5: Clock synchronized TDMA versus Reconfigurable and Adaptive TDMA with
1KB ping every 20ms of external traffic

106 7. Experiments

In general, we can observe a pattern in which the clock synchronized approach exhibits

more symmetrical variations in the slot intervals, which is expected given the fixed regular

average slot offsets. This is also observed with Reconfigurable and Adaptive TDMA for the

slots, which use fixed offsets with respect to node 0 transmissions. However, the adaptive

approach incorporates the delays suffered by the team transmissions in the round period,

thus leading to effective periods that are typically longer than the programmed Ttup. This

is seen in the top line of the plots. Conversely, the clock synchronized TDMA maintains an

average round period close to the programmed one, i.e., 99.5ms. Finally, the patterns were

approximately similar for all other load cases.

The actual evolution of the measured round period for the Reconfigurable and Adaptive

TDMA case is shown in Figure 7.6 as a function of the total average network load in each log.

The figure shows a linear stochastic dependence, which is expected since more load generates

more frequent delays in team packets, possibly longer, thus more frequent compensations.

0.2 0.25 0.3 0.35 0.4
0.1

0.1005

0.101

0.1015

0.102

0.1025

0.103

0.1035

0.104

0.1045

Network utilization

T̃
tu
p

Figure 7.6: Effective round period (T̃tup) of Reconfigurable and Adaptive TDMA for different
total average loads

7.3 Comparing with non-adaptive TDMA 107

7.3.2 Packet losses with single packet interference

In order to compare the two synchronization methods in what concerns packet losses, we

show the respective histograms in different situations. Fig. 7.7 shows such histograms for

the cases without injected external ping traffic and with growing load of single 1KB packet

pings. Note that, in the first case, there is still a certain residual level of external traffic that

was circulating in the medium at the time the experiments were carried out.

0 1 2 3 4
10

0

10
1

10
2

10
3

10
4

10
5

12
08

6

52

 8

 1

 3

12
08

6

52

 8

 1

 3

12
08

6

52

 8

 1

 3

12
08

6

52

 8

 1

 3

12
08

6

52

 8

 1

 3

11
83

5

38

 1

11
83

5

38

 1

11
83

5

38

 1

11
83

5

38

 1

11
83

5

38

 1

consecutive losses

Without interference

Chrony
Rec Adap TDMA

0 1 2 3 4
10

0

10
1

10
2

10
3

10
4

10
5

12
06

4

70

12

 1

12
06

4

70

12

 1

12
06

4

70

12

 1

12
06

4

70

12

 1

12
06

4

70

12

 1

11
71

0

59

 5

11
71

0

59

 5

11
71

0

59

 5

11
71

0

59

 5

11
71

0

59

 5

consecutive losses

Interf ping 1kB 50Hz

Chrony
Rec Adap TDMA

0 1 2 3 4
10

0

10
1

10
2

10
3

10
4

10
5

12
05

1

 1
08

 3

 1

 1

12
05

1

 1
08

 3

 1

 1

12
05

1

 1
08

 3

 1

 1

12
05

1

 1
08

 3

 1

 1

12
05

1

 1
08

 3

 1

 1

11
73

8

64

 3

11
73

8

64

 3

11
73

8

64

 3

11
73

8

64

 3

11
73

8

64

 3

consecutive losses

Interf ping 1kB 100Hz

Chrony
Rec Adap TDMA

0 1 2 3 4
10

0

10
1

10
2

10
3

10
4

10
5

11
96

0

 1
33

 4

11
96

0

 1
33

 4

11
96

0

 1
33

 4

11
96

0

 1
33

 4

11
96

0

 1
33

 4

11
74

1

66

 1

11
74

1

66

 1

11
74

1

66

 1

11
74

1

66

 1

11
74

1

66

 1

consecutive losses

Interf ping 1kB 200Hz

Chrony
Rec Adap TDMA

0 1 2 3 4
10

0

10
1

10
2

10
3

10
4

10
5

11
67

6

 2
77

 9

11
67

6

 2
77

 9

11
67

6

 2
77

 9

11
67

6

 2
77

 9

11
67

6

 2
77

 9

11
29

6

 2
42

 3

 1

11
29

6

 2
42

 3

 1

11
29

6

 2
42

 3

 1

11
29

6

 2
42

 3

 1

11
29

6

 2
42

 3

 1

consecutive losses

Interf ping 1kB 500Hz

Chrony
Rec Adap TDMA

Figure 7.7: Histograms of consecutive lost packets with no ping , or 1KB single packet ping
traffic with variable frequency

The results show an advantage of Reconfigurable and Adaptive TDMA which is expected.

If the teams transmissions collide at a given moment with the interfering ping packets,

eventually a team transmission will be delayed shifting the whole TDMA round so that the

following transmissions move away from the interference.

108 7. Experiments

This does not happen with the clock synchronized method, which keeps transmitting in

moments of high collision probability until the clock drifts separate the transmitting instants

of the interfering processes, which may take a significant amount of time.

7.3.3 Impact of external load bursts

We also tested the effect of external interference caused by bursty traffic. For this purpose we

generated ping streams with 5KB and 10KB, involving 4 and 7 consecutive MAC packets,

respectively, most of them with 1500B payload.

The results are shown in the histograms of Figure 7.8. Interestingly, the results are

different from the previous single interfering packet case. For lighter interfering loads, the

performance in packets lost in both synchronization methods becomes approximately similar

but for higher loads, the adaptive approach becomes worse.

0 1 2 3 4
10

0

10
1

10
2

10
3

10
4

10
5

12
03

7

98

 5

12
03

7

98

 5

12
03

7

98

 5

12
03

7

98

 5

12
03

7

98

 5

11
68

6

99

 2

11
68

6

99

 2

11
68

6

99

 2

11
68

6

99

 2

11
68

6

99

 2

consecutive losses

Interf ping 5kB 50Hz

Chrony
Rec Adap TDMA

0 1 2 3 4
10

0

10
1

10
2

10
3

10
4

10
5

11
99

8

 1
26

 4

11
99

8

 1
26

 4

11
99

8

 1
26

 4

11
99

8

 1
26

 4

11
99

8

 1
26

 4

11
60

8

 1
46

 4

11
60

8

 1
46

 4

11
60

8

 1
46

 4

11
60

8

 1
46

 4

11
60

8

 1
46

 4

consecutive losses

Interf ping 5kB 100Hz

Chrony
Rec Adap TDMA

0 1 2 3 4
10

0

10
1

10
2

10
3

10
4

10
5

11
90

7

 1
56

 5

11
90

7

 1
56

 5

11
90

7

 1
56

 5

11
90

7

 1
56

 5

11
90

7

 1
56

 5

11
43

0

 1
88

10

 1

11
43

0

 1
88

10

 1

11
43

0

 1
88

10

 1

11
43

0

 1
88

10

 1

11
43

0

 1
88

10

 1

consecutive losses

Interf ping 5kB 200Hz

Chrony
Rec Adap TDMA

0 1 2 3 4
10

0

10
1

10
2

10
3

10
4

10
5

11
97

2

 1
38

 5

11
97

2

 1
38

 5

11
97

2

 1
38

 5

11
97

2

 1
38

 5

11
97

2

 1
38

 5

11
56

9

 1
33

 4

 2

11
56

9

 1
33

 4

 2

11
56

9

 1
33

 4

 2

11
56

9

 1
33

 4

 2

11
56

9

 1
33

 4

 2

consecutive losses

Interf ping 10kB 50Hz

Chrony
Rec Adap TDMA

0 1 2 3 4
10

0

10
1

10
2

10
3

10
4

10
5

11
79

2

 2
13

 5

11
79

2

 2
13

 5

11
79

2

 2
13

 5

11
79

2

 2
13

 5

11
79

2

 2
13

 5

11
32

9

 2
41

 7

11
32

9

 2
41

 7

11
32

9

 2
41

 7

11
32

9

 2
41

 7

11
32

9

 2
41

 7

consecutive losses

Interf ping 10kB 100Hz

Chrony
Rec Adap TDMA

Figure 7.8: Histograms of consecutive lost packets with bursty ping traffic with 4 and 7
packet bursts and with variable frequency

7.4 Operation in real scenarios 109

We believe there are two different phenomena contributing to this situation. On one

hand, bursty interferences have a higher probability of causing longer delays, in some cases

beyond the adaptability threshold of the protocol (∆k as expressed in Eq. 5.12). Such delays

will be ignored and the protocol will adapt less, tending to a behavior similar to that of clock

synchronized TDMA.

The other phenomenon is related to the fact that the delays used by the adaptive method

maybe be frequently shorter than the length of the bursts. This means that the protocol,

trying to escape from an interference will still fall within the next instance of the interfering

burst, a situation that can occur in several consecutive rounds. Note, too, that if the

interfering stream has a slightly longer period than that of the team round, which is the case,

delaying the team transmissions will most likely prolong the interference over an interval of

more consecutive rounds.

In these cases, the clock synchronized TDMA approach will probably end up leaving the

high contention period faster, thus leading to lower losses. However, for the general case of

interference with non-bursty periodic interferences, the Reconfigurable and Adaptive TDMA

approach is better, effectively avoiding periodic interferences and thus reducing collisions and

packet losses.

Therefore, the Reconfigurable and Adaptive TDMA approach is particularly well suited

when mitigating non-bursty interference. Nevertheless, its reconfigurable feature still makes

it a better choice than the clock synchronized TDMA approach, in situations where the team

composition is dynamic, maximizing the slots in each operational team configuration.

7.4 Operation in real scenarios

In this section we show logs obtained from a real operation scenario, namely from one

RoboCup GermanOpen 2010 MSL game in Magdeburg, Germany, in which we used six

mobile robots and a base station, thus seven nodes. We show the evolution of the team

control information, namely the membership vector as perceived by each of the robots, as

well as the intervals between consecutive transmissions for each of the robots. These logs

show the correct protocol operation even in the presence of highly dynamic conditions, with

frequent packet losses, including asymmetric ones, and robots that leave and join the team.

110 7. Experiments

A plot of the slots offsets under dynamic team composition in this scenario is shown

in Figure 7.9. This figure clearly shows the dynamic reconfiguration of the TDMA round

according to the total number of running agents at each instant. It also illustrates the

maximization of the time interval between consecutive transmissions of team members as the

team composition changes.

Finally, we end the section with an analysis of the time that a team member that is

outside the team takes to rejoin.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
5

6

7
K

D
yn

am
ic

 K

Time (s)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.02

0.04

0.06

0.08

0.1

Dynamic Adjustment

In
te

rv
al

 ti
m

e
(s

)

Figure 7.9: Evolution of round structure and number of nodes in the team

7.4 Operation in real scenarios 111

7.4.1 Membership vector evolution

As presented in Section 5.3, a membership vector is locally updated each round in each robot,

keeping track of the receptions from other team members, and then broadcast to the others.

Thus, all agents in the team keep their own membership vectors together with a copy of the

membership vector of all other team mates. This allows the team to come up with a consistent

view of the current team composition and thus configure the TDMA round appropriately.

Figures 7.10 to 7.12 show the dynamics of the team state, where we can see the evolution

of the membership vector in each agent. The states of the robots, as perceived by each of

them, are coded as:

0. Not Running

1. Insert

2. Running

3. Delete

By inspecting these logs we can see that agent 0 has better reception characteristics and

typically receives from all active team members. This is expected as it corresponds to the

base station, which has a cabled (Ethernet) connection to the AP. Thus, the communications

with the base station are wireless just in the part between mobile agents and AP. All

other agents, i.e., the mobile robots, show frequent packet losses, visible through the state

oscillations between 2 – Running and 3 – Delete. However, such losses are filtered by the

team management local state machines and do not generally cause variations in the team

composition. Nevertheless, a few situations occur that quickly converge, as we explain next.

The actual team composition is the following. Initially, all agents except 3 are active.

Agent 3 joins around second 200. Note that before being admitted, it sees all other nodes in

state 1 – Insert. Soon after, agent 4 leaves and rejoins shortly before second 600. These are

the major changes clearly visible in the logs.

However, there are other short duration reconfigurations, typically caused by resets in

mobile robots. For example, agent 5 leaves momentarily the team around second 300, being

registered as state 0 – Not running by the remaining agents, but rejoining soon after as

indicated by the state 1 – Insert in its own vector. The same happens with agent 6 slightly

before second 1000 and after second 1900. Apart from these cases, there are occasional glitches

caused by transient errors that do not cause any persisting inconsistency in the global team

state.

112 7. Experiments

0
1
2
3

A
ge

nt
 1

0
1
2
3

A
ge

nt
 2

0
1
2
3

A
ge

nt
 3

0
1
2
3

A
ge

nt
 4

0
1
2
3

A
ge

nt
 5

Membership Vector of Agent 0 relative to

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0
1
2
3

A
ge

nt
 6

time(s)

0
1
2
3

A
ge

nt
 0

0
1
2
3

A
ge

nt
 2

0
1
2
3

A
ge

nt
 3

0
1
2
3

A
ge

nt
 4

0
1
2
3

A
ge

nt
 5

Membership Vector of Agent 1 relative to

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0
1
2
3

A
ge

nt
 6

time(s)

Figure 7.10: Membership Vector dynamics (1/3)

7.4 Operation in real scenarios 113

0
1
2
3

A
ge

nt
 0

0
1
2
3

A
ge

nt
 1

0
1
2
3

A
ge

nt
 3

0
1
2
3

A
ge

nt
 4

0
1
2
3

A
ge

nt
 5

Membership Vector of Agent 2 relative to

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0
1
2
3

A
ge

nt
 6

time(s)

0
1
2
3

A
ge

nt
 0

0
1
2
3

A
ge

nt
 1

0
1
2
3

A
ge

nt
 2

0
1
2
3

A
ge

nt
 4

0
1
2
3

A
ge

nt
 5

Membership Vector of Agent 3 relative to

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0
1
2
3

A
ge

nt
 6

time(s)

Figure 7.11: Membership Vector dynamics (2/3)

114 7. Experiments

0
1
2
3

A
ge

nt
 0

0
1
2
3

A
ge

nt
 1

0
1
2
3

A
ge

nt
 2

0
1
2
3

A
ge

nt
 3

0
1
2
3

A
ge

nt
 5

Membership Vector of Agent 4 relative to

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0
1
2
3

A
ge

nt
 6

time(s)

0
1
2
3

A
ge

nt
 0

0
1
2
3

A
ge

nt
 1

0
1
2
3

A
ge

nt
 2

0
1
2
3

A
ge

nt
 3

0
1
2
3

A
ge

nt
 4

Membership Vector of Agent 5 relative to

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0
1
2
3

A
ge

nt
 6

time(s)

Figure 7.12: Membership Vector dynamics (3/3)

7.4 Operation in real scenarios 115

7.4.2 Intervals between consecutive transmissions

Figures 7.13 and 7.14 show the intervals between transmissions of the same agent, for agents 0

to 2 and 3 to 5, respectively. On the right we can see the associated histograms of consecutive

packet losses. As expected, the adaptation mechanism forces baseline intervals that are close

to but generally above the 100ms line. As we already explained before, when there is a

packet loss we see a jump to 200ms, and more consecutive losses imply additional 100ms of

amplitude.

7.4.3 Time to join the team

Finally, we analyzed the time taken by team members that were outside the team to (re)join.

This is a relevant parameter since until the join process is concluded, the node transmissions

are unsynchronized with the team, thus with lower reliability.

Therefore, we measured the time to join of all joining processes detected in these logs,

following the definition in Chapter 5, namely the interval A-D in Figure 5.14. This is the

interval between the joining node first transmission and its first transmission in the new slot

upon round reconfiguration. This interval should be upper bounded by Equation 5.14.

Figure 7.15 shows the measured joining intervals. As discussed in Section 5.3.3, this

should vary between 1 and 2 rounds plus a fraction corresponding to the slot assigned to the

new node. However, any error in a round during the joining phase will prolong this phase

with one more round. Basically, the process ends with an error-free round, only.

The measured values are interestingly close to the minimum for each situation of extra

rounds needed (represented by function n(b, p) as in Section 5.3.4). This has a specific

explanation. In fact, most joining cases were rejoins after a glitch departure, e.g., a reset of

the network card while the communications process would continue working, attempting

to transmit every round. Thus, when the network card became operational again, the

communications process would continue transmitting very close to the slot that would be

assigned upon reintegration, which was the slot that was assigned before. This is the case

that leads to minimum joining time (Section 5.3.4).

In more general situations with agents that join at arbitrary times, joining times should

exhibit a higher dispersion.

116 7. Experiments

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.05

0.1

0.15

0.2

0.25

0.3

0.35
Agent 0

Time (s)

In
te

r
pa

ck
et

 d
el

ay
 (

s)

0 1 2 3 4
10

0

10
1

10
2

10
3

10
4

10
5

Agent 0

consecutive lost packets

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.05

0.1

0.15

0.2

0.25

0.3

0.35
Agent 1

Time (s)

In
te

r
pa

ck
et

 d
el

ay
 (

s)

0 1 2 3 4
10

0

10
1

10
2

10
3

10
4

10
5

Agent 1

consecutive lost packets

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.05

0.1

0.15

0.2

0.25

0.3

0.35
Agent 2

Time (s)

In
te

r
pa

ck
et

 d
el

ay
 (

s)

0 1 2 3 4
10

0

10
1

10
2

10
3

10
4

10
5

Agent 2

consecutive lost packets

Figure 7.13: Timeline of the inter-packet delay (1/2)

7.4 Operation in real scenarios 117

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.05

0.1

0.15

0.2

0.25

0.3

0.35
Agent 3

Time (s)

In
te

r
pa

ck
et

 d
el

ay
 (

s)

0 1 2 3 4
10

0

10
1

10
2

10
3

10
4

10
5

Agent 3

consecutive lost packets

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.05

0.1

0.15

0.2

0.25

0.3

0.35
Agent 4

Time (s)

In
te

r
pa

ck
et

 d
el

ay
 (

s)

0 1 2 3 4
10

0

10
1

10
2

10
3

10
4

10
5

Agent 4

consecutive lost packets

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.05

0.1

0.15

0.2

0.25

0.3

0.35
Agent 5

Time (s)

In
te

r
pa

ck
et

 d
el

ay
 (

s)

0 1 2 3 4
10

0

10
1

10
2

10
3

10
4

10
5

Agent 5

consecutive lost packets

Figure 7.14: Timeline of the inter-packet delay (2/2)

118 7. Experiments

3.6 3.8 4 4.2 4.4 4.6 4.8 5
0

0.1

0.2

0.3

0.4

0.5

Time to join with Ttup=0.1s
T

im
e

(s
)

Medium occupation (%)

Figure 7.15: Time to join the team

In order to check the upper bound determined in Equation 5.14, we plotted the difference

between this and measured values in Figure 7.16. The obtained values are all positive showing

that they respect that upper bound. These results also give information on how far the upper

bound is with respect to actually measured values. For the cases in this game, the upper

bound is essentially between 1 and 2 rounds above the actual values.

Another information we extracted from these measurements is the distribution of extra

rounds needed because of errors and collisions. This is given by function n(b, p) where b is

the bit-error rate and p the probability of successful packet reception. This distribution is

shown in Figure 7.17 where we can see that most of the joining processes require none or one

extra round, with just a few cases of more rounds needed.

7.5 Summary 119

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28
T

im
e(

s)
(2 + n(b, p))× Ttup +∆K−1 + i× Txwin)− Tjoin

Figure 7.16: Difference between the upper bound and actual joining times

0 1 2 3
0

5

10

15

20

25

30

35

40
Histogram of n(b,p)

extra rounds to join

(22%)

(65%)

(10%)

(4%)

Figure 7.17: distribution of extra rounds needed in a joining process

7.5 Summary

In this chapter we showed several experimental results to validate the claimed properties

of the proposed Reconfigurable and Adaptive TDMA protocol. Particularly, we showed

that when comparing to non-synchronized periodic transmissions, our proposal reduces the

transmission latency and the number of packet losses. Then we also compared to a clock

120 7. Experiments

synchronized TDMA approach. We could see that we achieve better results in packet losses

when the external load is not bursty, even for considerable loads. However, results with

bursty interferences seem to indicate a better performance of the clock synchronized approach.

Nevertheless, the reconfigurable feature of our protocol, that is capable of maximizing the

slots assigned to the team agents in each instant, still outperforms the potential benefit of

the clock synchronized approach with bursty periodic interferences.

Finally, we showed logs of a real operational scenario, in a RoboCup MSL game,

which validated the team management mechanisms, in particular the global membership

management which is used to drive the reconfiguration of the TDMA round. It was

visible that even under highly dynamic conditions, the protocol maintained consistency and

effectiveness in keeping a low number of packet losses. We ended this section with an analysis

of the time to join the team actually taken by the joining agents in the game log. These

measurements validated the analysis on the time to join presented in Section 5.3.4. We also

used these experimental data to deduce the distribution of the n(b, p) function, which gives

us the number of extra rounds needed in the joining process, given a bit-error rate and a

probability of successful packet reception.

Chapter 8

The CAMBADA RoboCup MSL

team RTDB use case

The software of the CAMBADA robotic soccer team is built on top of the RTDB middleware

with the Reconfigurable and Adaptive TDMA communication protocol behind. This chapter

describes how the developed communication and database mechanisms support high-level

cooperation and coordination in the team as well as the debug of team behaviors.

The RTDB middleware, together with the Reconfigurable and Adaptive TDMA protocol,

is an open source project freely available at http://code.google.com/p/rtdb/. It was also

adopted by other RoboCup MSL teams, such as Tech United, from the Technical University

of Eindhoven [1], NuBot, from the National University of Defense Technology in China, and

SocRob, from the Instituto Superior Técnico - Technical University of Lisbon [63]. The

SPL Portuguese Team, from the Universities of Aveiro, Porto and Minho [70], a team of

NAO humanoid robots competing in the RoboCup SPL, and CAMBADA@Home, from the

University of Aveiro [7], with an autonomous robot for helping people with health problems

and reduced capabilities, also use the developed middleware.

Beyond RoboCup, the RTDB was used in a national FCT-funded project,

PCMMC - Perception-Driven Coordinated Multi-Robot Motion Control, conducted by

the Technical University of Lisbon, University of Porto and Polytechnic Institute of

Porto (PTDC/EEA-CRO/100692/2008)to support autonomous team formation control for

improved global perception [73, 72].

http://code.google.com/p/rtdb/

122 8. The CAMBADA RoboCup MSL team RTDB use case

Moreover, the Rota project with the Zinguer autonomous robot from the University

of Aveiro competed in the Autonomous Driving League of the Portuguese Robotics

Festival using the RTDB middleware for local inter-process communication, only, with the

Reconfigurable and Adaptive TDMA used for debugging purposes.

These applications of our work allow us to qualitatively validate the second claim of our

thesis, that states that the RTDB middleware facilitates the development of collaborative

applications. We will elaborate more on the CAMBADA case study, since the RTDB was

originally developed within and for CAMBADA.

8.1 The CAMBADA robotic soccer team

CAMBADA is the RoboCup MSL soccer team from the University of Aveiro. The project

started in 2003, coordinated by the Transverse Activity on Intelligent Robotics of the Institute

of Electronics and Telematics Engineering of Aveiro (IEETA). This project involves people

working on several areas for building the mechanical structure of the robot, its hardware

architecture and controllers, and the software development in areas such as image analysis

and processing, sensor and information fusion, reasoning and control, cooperative sensing,

communications among robots and the development of an efficient base station.

8.1.1 Hardware

The CAMBADA robots (Figure 8.1) were completely designed and built in-house. The base

platform is cylindrical and the mechanical structure of the players is layered and modular.

Each layer can be easily replaced by an equivalent one. The first layer contains the motors,

wheels, batteries and an electromagnetic kicker. The second layer contains the control

electronics and the third layer consists of a laptop computer, an omni-directional vision

system, a frontal camera and an electronic compass. The players are capable of holonomic

motion using three omni-directional roller wheels.

The architecture of the robots follows a biomorphic paradigm (see Fig. 8.2), being

centered on a main computer (a laptop), the brain, which is responsible for the higher-level

behavior coordination, i.e. the coordination layer. This main computer also handles external

communication with the other robots as well as high bandwidth sensors, typically vision,

directly attached to it.

Finally, this unit receives low bandwidth sensing information and sends actuating

commands to control the robot attitude by means of a distributed low-level sensing/actuating

system (Figure 8.3), the nervous system, that uses a Controller Area Network (CAN) bus.

8.1 The CAMBADA robotic soccer team 123

Figure 8.1: Robots used by the CAMBADA MSL robotic soccer team

8.1.2 Software

The software architecture is also distributed. In each robot, five different processes execute

concurrently in the laptop computer with Linux. All the processes run at the robot’s

processing unit in Linux and communicate using the RTDB (Annex B). This architecture

is shown in Figure 8.4.

The main processes running in the CAMBADA robots are the following:

Vision is responsible for acquiring the visual data from the vision system cameras, processing

the data to extract relevant features and transmitting the relevant information to the

CAMBADA agent namely the position of the ball, the lines detected for localization

purposes and positions of obstacles. Given the structured environment in which the

robots play, all this data is currently acquired by color segmentation [69, 71] but it is

correlated with shape, e.g., the ball detection.

Figure 8.2: The biomorphic architecture of the CAMBADA robots

124 8. The CAMBADA RoboCup MSL team RTDB use case

Figure 8.3: Hardware architecture with functional mapping [92]

Agent is the process that integrates sensor information and constructs the robot’s world

state. The agent then decides the command to be applied, based on the perception of

the worldstate, according to a predefined strategy [51, 52].

Comm handles the inter-robot communication, receiving the information shared by the team

mates and transmitting the data from the shared section of its own RTDB [86, 87].

Figure 8.4: Layered software architecture of CAMBADA players [8]

8.2 Building cooperative behaviors on top of the RTDB 125

HWcomm is the hardware communication process responsible for transmitting the data to

and receiving data from the low-level sensing and actuation system.

Monitor checks the state of the remaining processes relaunching them in case of abnormal

termination.

8.2 Building cooperative behaviors on top of the RTDB

The complete control software of the CAMBADA robots is relatively complex and includes

several behaviors designed for specific phases of the game. In this section we refer to two of

them as illustrative examples that use the RTDB.

8.2.1 Collaborative ball detection

Figure 8.5 illustrates the general ball detection and tracking approach adopted in the

CAMBADA team.

Figure 8.5: Collaborative ball detection behavior [68]

126 8. The CAMBADA RoboCup MSL team RTDB use case

Due to the central role of the ball in a soccer game, when a robot cannot detect it by its

own visual sensors (omni or frontal camera), it is still important to try to know the position

of the ball by consulting with the team mates. This is achieved by having each robot sharing

its perception of the ball position in the RTDB.

Using the age field of the ball data structure in the RTDB, it is possible to know for how

many cycles its position was not updated. When the age of the last seen ball position is more

than a given number of cycles the robot assumes that it cannot detect the ball on its own at

that moment.

When the ball is not visible, or its perceived position is not valid, the robot uses the

information of the ball position communicated by the other running team mates to know

where the ball is. Note that this information is available locally in the RTDB and can be

accessed without using communications. The ball positions as detected by the other robots

in the team are averaged and the standard deviation computed. This is done to define a

validity region around the average. Outliers are considered invalid positions. Then, the valid

ball information of the team mate that has a shorter distance to the ball is chosen [51].

When detecting the ball directly, the same algorithm is used to validate the information,

eliminating possible fake balls detection.

8.2.2 Strategy and coordination

In CAMBADA, each robot is an autonomous agent that coordinates its actions with its team

mates through communication and information exchange over the RTDB. In order to achieve

effective cooperation, each individual robot must be integrated in a global team strategy that

defines roles and behaviors, the latter being basic robot sensorimotor skills like moving to

a given location, and the former being selections of specific behaviors to be applied at each

instant.

In general, coordination techniques have long been explored in the RoboCup Soccer

Simulation League (SSL) [84, 96] and soon after applied to the MSL [100] upon a few necessary

modifications. One of such techniques is formation control in which each player receives

a coordinated motion behavior. In the case of the CAMBADA team [51, 52], the agents

can be dynamically assigned to specific positionings. A positioning is defined in a strategy

configuration file based on three items of information:

Home position is the assigned starting player position, used when (re)starting a game;

Region is the part of the field where the player can move;

8.2 Building cooperative behaviors on top of the RTDB 127

Ball attraction parameters used to compute how a player is attracted to the ball.

Different home positions and ball attraction parameters lead to different strategic

movement models, from defensive to wing, midfielder and attack. Figure 8.6 shows an example

of team formation for several ball positions.

IV. POSITIONINGS AND ROLES IN OPEN PLAY

For open play, CAMBADA uses an implicit coordination

model based on notions like strategic positioning, role and

formation. These notions and related algorithms have been

introduced and/or extensively explored in the RoboCup

Soccer Simulation League [40][36]. In order to apply such

algorithms in the MSL, several changes had to be introduced.

The approach is presented in detail in this section.

A. Formations and strategic positionings

A formation defines a movement model for the robotic

players. Formations are sets of strategic positionings, where

each positioning is a movement model for a specific player.

The assignment of players to specific positionings is

dynamic, and is done according to some rules described

below. Each positioning is specified by three elements:

− Home position, which is the target position of the player

when the ball is at the centre of the field

− Region of the field where the player can move, and

− Ball attraction parameters, used to compute the target

position of the player in each moment based on the

current ball position

All these items of information are given in a strategy

configuration file. Using different home positions and

attraction parameters for the positionings allows a simple

definition of defensive, wing, midfielder and attack strategic

movement models. Fig. 3 shows the formation of the team

used in RoboCup’2008 for several ball positions.

The definition of formation in terms of strategic

positionings was introduced in the SBSP model [36] for the

Soccer Simulation League. This model also introduced

specific notions of tactic and strategy, which are currently

not used in CAMBADA.

B. Roles in open play

As mentioned before, the CAMBADA players use only

three roles in play-on mode: RoleGoalie, activated for the

goalkeeper, RoleSupporter and RoleStriker. RoleStriker is an

“active player” role. It tries to catch the ball and score goals.

The striker activates several behaviors that try to engage the

ball (bMove, bMoveToAbs), get into the opponent’s side

avoiding obstacles (bDribble) and shoot to the goal (bKick).

The bKick behavior can perform 180º turns while keeping

possession of the ball.

In a consistent role assignment, only one player at a time

takes on the role of striker. The striker is helped by other

teammates which take on RoleSupporter [25]. Supporters

maintain their target positions as determined by their current

positioning assignments and the current ball position. As a

result, supporters accompany the striker as it plays along the

field, without interfering. In case the ball is captured by the

opponent, some supporter hopefully will be in a good

position to become the new striker. Occasionally, supporters

can take a more active behavior. This happens when the

striker can’t progress with the ball towards the opponent goal

and, instead, the ball remains behind the striker for more than

some pre-defined time (e.g. 2 seconds in the adopted

configuration). In this case, the closest supporter to the ball

also approaches the ball, acting as “backup striker”.

Fig. 3. Target player positions for several different ball positions

Algorithm: role and positioning assignment

Input:

 POS - array of N positionings

 BallPos - ball position

Input/output:

 PL – array of K active players (K =< N)

Local:

 TP - array of N target positions

{

 clearAssigments(PL);

 TP = calcTargetPositions(POS,BallPos);

 for each POS[i], i ∈∈∈∈ 1..N, in

 descending order of priority

 {

 if there is no free player

 then return;

 p = the free player closest to TP[i];

 PL[p].positioning = i;

 PL[p].targetPosition = TP[i];

 if POS[i] has highest priority

 then PL[p].role = striker;

 else PL[p].role = supporter;

 }

}

Fig. 4. CAMBADA Positioning and role assignment algorithm

C. Role and positioning assignment

Previous work on role assignment algorithms for robotic

soccer is based on the concept of role exchange, measuring

the utility of that exchange to decide its activation [37][40].

However, in MSL the number of available players varies as a

result of several common situations, namely hardware and

software malfunctions and referee orders. As the number of

robots is small and varies a lot, the usefulness of role

exchanges is reduced. The algorithm used in CAMBADA for

role and positioning assignment is based on considering

different priorities for the different roles and positionings, so

that the most important ones are always covered.

The algorithm is presented in Fig. 4. Consider a formation

with N positionings and a team of K ≤ N available field

players (not counting the goal-keeper which has a fixed role).

To assign the role and positioning to each robot, the

Figure 8.6: CAMBADA team coordination in some different game situations [50]

The team coach, running in the base station, is able of adapting the team strategy

according to the current game situation. For example, if the team is not scoring, it might

be important to define more robots as attackers. Or in an important game where the team

should not suffer any goal, it might be better to increase the number of defenders.

The parameters that guide the strategy are shared through the RTDB (see Annex B)

with the player robots, defining their roles and ultimately their behavior in the game. The

state sharing nature of the RTDB is very adequate to support this kind of applications

since the robots receive continuously a refresh of their current roles avoiding, for example,

the possibility of missing a role change and continue on a wrong role. Moreover, the RTDB

facilitates the synchronized roles reassignment, which enhances team coordinated movements,

and particularly dynamic formations.

128 8. The CAMBADA RoboCup MSL team RTDB use case

8.3 Debugging high level behaviors with the RTDB

When programming collaborative behaviors, debugging becomes more complex because it

involves the state of all the robots in the team. Accessing all such states simultaneously is a

problem since they are local. One typical approach is to have them logged locally and analyzed

jointly later on, offline. This is rather inefficient, though, imposing long test-correction cycles

and, moreover, it requires clock synchronization in order to allow recovering a consistent

vision of the global team.

Alternatively, these difficulties can be significantly reduced using the RTDB. In this case,

the RTDB at each agent is configured to share relevant local state variables, just during the

debug phase. This simple action allows receiving all such states, inherently synchronized, in

a base station for online analysis [28]. Moreover, the monitoring station can also log these

states consistently, which allows them to be replayed back for offline analysis, if desired, at

any time without losing the synchronization.

Beyond the mere observation of distributed state, the RTDB can also support interactive

tuning of such collaborative behaviors by including in the base station configuration

parameters that are shared online with the agents and used by these to adjust their behaviors

locally.

In the specific case of the CAMBADA team, several commonly relevant state variables are

always shared by the robots and displayed in a base station, such as their positions. The base

station also receives the ball position as detected by each robot and fuses all such individual

perspectives in a single consistent ball position that is displayed on the screen, in the game

field area (Figure 8.7).

There are also other state variables that are shared, such as role and behavior state

variables, as well as an operational vector that indicates, for each of the main subsystems of

the robot, the run/stop state, battery level and health status. This information is displayed

in the lower part of the screen. On the right side of the screen there is an area that displays

game state information as received from the referee box that is used by the referees.

This same base station interface allows sending basic commands to the team, such as

global and individual start/stop, go to home positions, return to the team support area, etc.

Beyond these general parameters that are exchanged between the players and the base

station, there is also a debugging variable per robot that allows receiving in the base station

any additional internal robot variable that the programmer wishes to track online. This

debugging variable is a two dimensions vector that can represent a position on the game

field, such as the locally fused ball position that the robots use internally, or the position of

8.4 Summary 129

Figure 8.7: The base station Main Window [28]

the opponent goal as seen by each robot, etc. Then, there is a switch in the base station

that, if set, allows displaying the debug point in the game field online, together with the

representation of the robots.

8.4 Summary

In this chapter we showed some particular aspects of the main use case of the RTDB

middleware, which is the RoboCup MSL team CAMBADA, from the University of Aveiro.

We briefly described this team and then showed how the RTDB is effectively used to support

collaborative behaviors with a couple of examples, namely the collaborative ball tracking and

the global team strategy execution.

Then we discussed how the RTDB can be used to effectively solve the problem of

distributed state observation and logging, as well as to support the debugging of high level

global team behaviors.

130 8. The CAMBADA RoboCup MSL team RTDB use case

We believe that the continued use of the RTDB by the CAMBADA team, which was

then adopted by other MSL teams and several other robotics projects, validates the second

thesis claim that it is an effective platform to develop collaborative behaviors, simplifying

the respective development, deployment and control. In fact, this adoption and use of our

middleware is an indirect confirmation of its advantage with respect to the other existing

middleware alternatives.

Chapter 9

Conclusions

Cooperative robotics has the potential to increase the performance and robustness in many

applications domains. One example is area coverage applications, such as search and rescue,

surveillance or cleaning. Another example is robotic applications where robots needs to

operate continuously. In this case, faulty robots can be immediately replaced by back up

robots. Yet another example is robotic applications where expensive actuating robots can be

complemented with multiple inexpensive sensing robots. This way, cooperative robotics has

become a topic of high interest in the robotics and multi-agent systems research communities.

Developing, deploying and operating such teams of cooperating robots raises many

difficulties associated with the needed synchronization and information sharing, many of

which are related with the use of a wireless communication medium. Therefore, making

a rational, parsimonious and organized utilization of the communication channel becomes

particularly relevant, which is related with the control of the transmissions but also with the

organization and storage of the data.

The work we carried out in this Thesis, which fits in this scope, produced tools to support

the development and operation of teams of cooperating autonomous robots. In particular,

it was motivated and essentially developed within RoboCup, which is one example of an

initiative aiming at fostering research in cooperative robotics through competitions involving

teams of robots. Within this initiative, which includes many different competitions, we

focused on the robotic soccer Middle-Size League where all robots of each team are fully

autonomous and global knowledge is unavailable.

Nevertheless, in spite of the RoboCup motivation, the final results are usable well beyond

that initiative and have, in fact, been successfully used in different scopes. In this chapter we

briefly revisit our research contributions and we discuss open research lines for future work.

132 9. Conclusions

9.1 Revisiting the contributions

This work led to two main contributions, namely the Reconfigurable and Adaptive TDMA

protocol, explained and analyzed in detail in Chapter 5, and the RTDB light middleware,

presented and discussed in Chapter 6.

The former is a specific Wi-Fi-based wireless communication protocol that reduces

medium access collisions among team members in the presence of uncontrolled interfering

(allien) traffic, using a modified TDMA scheme. We named it Reconfigurable and Adaptive

TDMA highlighting its capability to automatically reconfigure the TDMA round structure

to the actual number of active team members at each instant, as well as the capability to

adjust the round phase to escape from persistent periodic interfering traffic. These features

contribute to a better timeliness of the communications.

The Reconfigurable and Adaptive TDMA protocol sets a cyclic framework that allows

maintaining all robots in the team synchronized to each other without resorting to clock

synchronization.

The latter contribution is a novel middleware to support collaborative behaviors that

relies on a real-time database, partially replicated, containing both local and remote state

variables, in a distributed shared memory style.

The RTDB creates a temporal gateway between the internal processes in each robot and

the communication activity. In fact, user processes have access to remote variables through

local copies (proxies), while the communication activity to keep these proxies updated is

carried out transparently in the background at an adequate rate that ensures their temporal

validity. Therefore, the RTDB access primitives are local, not including the communication

delays, thus contributing to a better timeliness of the local processes execution.

An important real-time feature of the RTDB is the provision of age information together

with every RTDB access to remote data. This is achieved with a novel time-stamping

mechanism that lets the application know how old a data item is at the time of consumption

without a global synchronized clock. With this knowledge, applications can detect stale data

as well as estimate the evolution of each item using appropriate temporal models.

A last feature that we would like to highlight in this summary for its importance in the

development of real-time distributed applications arising from a combination of the RTDB

with the synchronous Reconfigurable and Adaptive TDMA protocol. In fact, this combination

enables the remote observation of local variables in a synchronized way, as well as their

consistent logging. This feature also supports the consistent log replay of the whole team

state, a very important feature to analyze and correct collaborative behaviors.

9.2 Validating the thesis 133

Finally, this work also generated a third contribution specifically within RoboCup, which

is a study and characterization of the communications in the Middle Size League, which was

presented in Chapter 4.

9.2 Validating the thesis

The Thesis that we presented in Chapter 1 contains two main claims. The first one claims

that using a self-organizing approach in the communications that take place within a team of

cooperating agents reduces mutual interferences and thus contributes to reduce the network

delay and packet losses. Particularly, we claim that the proposed Reconfigurable and

Adaptive TDMA protocol achieves such benefits without needing additional traffic control

mechanisms or clock synchronization.

The validation of this claim is essentially carried out through experiments, which are

shown in Chapter 7. We show that the Reconfigurable and Adaptive TDMA protocol achieves

lower network delays and packet losses under severe mutual interference than an approach in

which the team members transmit periodically but without synchronization. On the other

hand, we show that the adaptive feature of the protocol allows escaping from persistent

periodic interfering traffic with coherent periods, while a traditional clock synchronized

TDMA approach does not. However, we observed that such advantage disappears when

the interfering traffic is strongly bursty. Nevertheless, the clock synchronized approach also

lacks the reconfigurable capability of the protocol, leading to lower capacity to accommodate

interfering traffic when just a small number of the team agents are active.

Finally, we validated the operation of the Reconfigurable and Adaptive TDMA protocol

in many real operational scenarios and we discussed logs of one specific RoboCup MSL game

that illustrates the protocol dynamics.

The second claim states that the distributed shared memory paradigm provides an

adequate abstraction to facilitate the development, deployment and operation of cooperative

behaviors. In particular, we claim that the RTDB middleware, following such paradigm,

provides such benefits while exhibiting a parsimonious use of the network and enhanced age

information when accessing remote variables.

This claim was essentially validated in a qualitative way in Chapter 8 by showing a

non-trivial use case in which the RTDB middleware was clearly beneficial. Moreover, we

believe that the positive impact and receptivity that the RTDB middleware had in the

RoboCup MSL community, as well as in other RoboCup leagues and in several other robotic

applications also contribute to validate our claim.

134 9. Conclusions

9.3 Future work

The work conducted in the context of this thesis unveiled some interesting research ideas

that are worth further exploration. In this section we refer to several of these ideas, some of

which are more practical and others more fundamental.

Ad-hoc topology

One research line that evolved from this work concerned the extension to an ad-hoc topology.

In this case, there is no AP and the information to share among the team members needs to

be propagated through the network, for example, using flooding. The synchronization among

the nodes becomes more complex to enforce so as consistency across the team. This line has

been researched in parallel with our thesis work along the past years and some results can

be observed in [73, 72].

Our research has, however, stayed with infrastructured topologies where the presence of

an AP helps significantly in enforcing consistency across the team even under highly dynamic

scenarios. We believe that the use of an AP does not necessarily impose a strong limitation in

the range of possible applications. In fact, our robotic team can be deployed in unstructured

areas and the AP can be carried by one of the team members that can position itself in a way

to maximize the team coverage. Alternatively, the AP can stay near a monitoring station,

positioned in a convenient location in the operational area.

The following are open research lines that apply to our AP-based approach.

Generic traffic interface

Our Reconfigurable and Adaptive TDMA protocol has been designed with a specific interface

to support the RTDB, allowing only a few Wi-Fi packets transmitted in each slot. This is

a limitation since there may be situations in which the protocol can be useful without the

RTDB on one hand, and could be applied in an ordinary protocol stack in a general purpose

operating system on the other, to support generic communications from any communicating

application. The interest in this possibility arises from the capacity of our protocol to organize

the communications among a set of transmitters reducing collisions under high traffic loads,

e.g., several servers streaming video to diverse clients.

9.3 Future work 135

The insertion of our protocol in a protocol stack, namely between the Wi-Fi driver and

the IP stack, seems simple to achieve using either iptables or Tun/Tap interfaces. The

challenge consists in controlling the amount of traffic that a node can transmit during its slot

to make the best possible use of its duration while still avoiding overruns that would destroy

the mutual isolation between slots.

This line has already been started but there are no clear results, yet.

Dynamic adjustment of system parameters

Despite the adaptive and reconfigurable features of our protocol, there are a few parameters

defined statically, by configuration, such as the TDMA round (Ttup), which establishes the

responsiveness and temporal resolution of the protocol, and ε, which defines the range of

delays to which the protocol will adapt.

With respect to the former, it could be interesting to use a shorter value for Ttup during

periods of intense team dynamism, while a larger value could be adequate for periods of

quietness, profiting from less transmissions. The on-line adaptation of Ttup also requires a

consensus procedure, similarly to the membership vector referred in Chapter 5. However, if

there is a need for a sudden change from a large to a short Ttup, the nodes with such need

can start transmitting asynchronously until the consensus is achieved.

Concerning ε, note that a smaller value will make the protocol adapt less, thus keeping

the actual round period closer to Ttup while a larger value allows stronger Ttup fluctuations.

Thus, in an attempt to improve the regularity of the round time without giving away the

adaptivity, one could think of a dynamic value for ε keeping it low for periods of sporadic

larger delays, which would be filtered out, and enlarging it upon persistence of larger network

delays.

Stochastic analysis of the time to join

In Chapter 5 we have provided guidelines to configure our protocol according to the expected

bandwidth of external interfering traffic and the communication requirements of the team.

However, we left the computation of the n(b, p) function in Equations 5.14 and 5.15 for future

work. This function gives us the number of extra rounds that need to be considered in the

joining of a new node during a reconfiguration given a bit error rate b and a consequent

probability p of successful packet reconfiguration. This requires stochastic analysis that still

needs to be done. A measurement of the distribution of this function in a specific operational

scenario was already shown in Chapter 7.

136 9. Conclusions

Generalization and dynamism of the RTDB

During the design of the RTDB several options had to be taken and two of them were

considered from the beginning as aspects for future improvement. These are related to the

dependence on the computing platform and the static configuration.

Currently, the RTDB uses a memory copy model of data transfer that requires

homogeneous hardware architectures and similar data types. Thus, one desirable feature

would be to use abstract data types so that heterogeneous computing platforms could be

integrated. This seems relatively simple to implement.

On the other hand, it would also be desirable to circumvent the static configuration

and allow the dynamic creation of RTDB items. This is a more challenging feature that

would allow, for example, dynamically integrating robots that were developed separately but

providing services that could be useful to others in specific contexts. How to announce both

new services and service needs, and how to compose dynamically collaborative behaviors out

of such independently developed services seems a rather interesting line of research.

Bibliography

[1] W.H.T.M. Aangenent, J.J.T.H. de Best, B.H.M. Bukkems, F.M.W. Kanters, K.J.

Meessen, J.J.P.A Willems, R.J.E. Merry, and M.J.G. v.d. Molengraft. Tech United

Eindhoven - Team Description Paper. Technical report, Technical University of

Eindhoven, 2009.

[2] Norman Abramson. THE ALOHA SYSTEM: Another Alternative for Computer

Communications. In Proceedings of the November 17-19, 1970, Fall Joint Computer

Conference, AFIPS ’70 (Fall), pages 281–285, New York, USA, 1970. ACM.

[3] AirMagnet. 802.11n Primer. Technical report, AirMagnet Inc., August 2008.

[4] H. Levent Akin, Andreas Birk, Andrea Bonarini, Gerhard Kraetzschmar, Pedro Lima,

Daniele Nardi, Enrico Pagello, Monica Reggiani, Alessandro Saffiotti, Alberto Sanfeliu,

and Matthijs Spaan. Two ”Hot Issues” in Cooperative Robotics: Network Robot

Systems, and Formal Models and Methods for Cooperation. Technical report, EURON

Special Interest Group on Cooperative Robotics, 2008.

[5] Lúıs Almeida and Paulo Pedreiras. Scheduling Within Temporal Partitions:

Response-time Analysis and Server Design. In Proceedings of the 4th ACM International

Conference on Embedded Software, EMSOFT ’04, pages 95–103, Pisa, Italy, 2004. ACM.

[6] Noriaki Ando, Takashi Suehiro, Kosei Kitagaki, Tetsuo Kotoku, and Woo-Keun Yoon.

RT-Middleware: Distributed Component Middleware for RT (Robot Technology). In

Proceedings of the IROS 2005 - IEEE/RSJ International Conference on Intelligent

Robots and System, pages 3933–3938, Alberta, Canada, August 2005.

[7] José L. Azevedo, Cristóvão Cruz, João Cunha, Manuel B. Cunha, Nuno Lau, Ciro

Martins, António J. R. Neves, Eurico Pedrosa, Artur Pereira, António J. S. Teixeira,

and Mário Antunes. CAMBADA@Home 2011 – Team Description Paper. Technical

report, University of Aveiro, 2011.

138 Bibliography

[8] José Lúıs Azevedo, Bernardo Cunha, and Lúıs Almeida. Hierarchical Distributed

Architectures for Autonomous Mobile Robots: a Case Study. In Proceedings of the

ETFA 2007 - IEEE Conference on Emerging Technologies and Factory Automation,

pages 973–980, September 2007.

[9] Ali Balador and Ali Movaghar. The Novel Contention Window Control Scheme for

IEEE802.11 MAC Protocol. In Proceedings of the NSWCTC 2010 - 2nd International

Conference on Networks Security, Wireless Communications and Thrusted Computing,

Wuhan, China, April 2010.

[10] Paulo Bartolomeu, José Alberto Fonseca, and Francisco Vasques. Implementing the

wireless ftt protocol: A feasibility analysis. In Proceedings of the ETFA 2010 - IEEE

Conference on Emerging Technologies and Factory Automation, pages 1–10, Bilbao,

Spain, September 2010.

[11] Moris Behnam, Thomas Nolte, and Nathan Fisher. On optimal real-time

subsystem-interface generation in the presence of shared resources. In Proceedings of

the ETFA2010 - IEEE Conference on Emerging Technologies and Factory Automation,

pages 1–8, Bilbao, Spain, September 2010.

[12] Bo Bernhardsson, Johan Eker, and Joakim Persson. Bluetooth in Control. In Dimitrios

Hristu-Varsakelis and William Levine, editors, Handbook of Networked and Embedded

Control Systems, Control Engineering, pages 699–720. Birkhäuser Boston, 2005.

[13] Chiara Buratti, Andrea Conti, Davide Dardari, and Roberto Verdone. An Overview on

Wireless Sensor Networks Technology and Evolution. Sensors, 9(9):6869–6896, August

2009.

[14] Giorgio C. Buttazzo, Marko Bertogna, and Gang Yao. Limited Preemptive Scheduling

for Real-Time Systems. A Survey. IEEE Transactions on Industrial Informatics,

9(1):3–15, February 2013.

[15] Y. Uny Cao, Alex S. Fukunaga, and Andrew B. Kahng. Cooperative Mobile Robotics:

Antecedents and Directions. In Ronald C. Arkin and George A. Bekey, editors, Robots

Colonies, volume 4 of Autonomous Robots, pages 7–27. Kluwer Academic Publishers,

Norwell, MA, USA, 1997.

[16] Eric Colon. Annex G - Survey of Software Frameworks for Robotics Applications.

Technical Report RTO-TR-IST-032, Robotics Laboratory – Royal Military Academy,

January 2002.

Bibliography 139

[17] Daniel D Corkill. Collaborating Software: Blackboard and Multi-Agent Systems & the

Future. In Proceedings of the International Lisp Conference, New York, USA, October

2003.

[18] Robson Costa, Paulo Portugal, Francisco Vasques, and Ricardo Moraes. A

TDMA-based mechanism for real-time communication in IEEE 802.11e networks. In

Proceedings of the ETFA 2010 - IEEE Conference on Emerging Technologies and

Factory Automation, pages 1–9, Bilbao, Spain, September 2010.

[19] Crossbow. MICAz: Wireless Measurement System.

[20] Edward Curry. Message-Oriented Middleware. In Qusay H. Mahmoud, editor,

Middleware for Communications, chapter 1, pages 1–28. John Wiley and Sons,

Chichester, England, 2004.

[21] Cisco Validating Design. Enterprise Mobility 7.3 Design Guide. Technical report, Cisco

Systems, Inc., September 2013.

[22] Nuno Alexandre Neto Dias. Supervisão, Comando e Controlo para Sistemas Robóticos.

Master’s thesis, Departamento de Engenharia Electrotécnica, Instituto Superior de

Engenharia do Porto, Porto, October 2009.

[23] Stefan Enderle, Hans Utz, Stefan Sablatnog, Steffen Simon, Gerhard Kraetzschmar,

and Gunther Palm. Miro: Middleware for Autonomous Mobile Robots. In Proceedings

of the IFAC-01 - Conference on Telematics Applications in Autonomous and Robotics,

Weingarten, Germany, July 2001.

[24] Mustafa Ergen. IEEE 802.11 Tutorial. Technical report, Department of Electrical

Engineering and Computer Science, University of California Berkeley, June 2002.

[25] Extricom. 802.11n for Enterprise Wireless LANs. Technical report, Extricom Ltd, 2010.

[26] Hugo Ferreira, Alfredo Martins, André Dias, Carlos Almeida, José M. Almeida, and

Eduardo P. Silva. ROAZ Autonomous Surface Vehicle Design and Implementation.

Robótica - Controlo, Automação e instrumentação, 2 trimestre(67), July 2007.

[27] Erian Ferro and Francesco Potort́ı. Bluetooth and Wi-Fi Wireless Protocols: a Survey

and a Comparison. IEEE Wireless Communications, 12(1):12–26, February 2005.

140 Bibliography

[28] Nuno M. Figueiredo, António J. R. Neves, Nuno Lau, Artur Pereira, and Gustavo

Corrente. Control and Monitoring of a Robotic Soccer Team: The Base Station

Application. In Lúıs Seabra Lopes, Nuno Lau, Pedro Mariano, and Lúıs M. Rocha,

editors, Progress in Artificial Intelligence, volume 5816 of Lecture Notes in Computer

Science, pages 299–309. Springer Berlin Heidelberg, 2009.

[29] A. Flammini, D. Marioli, E. Sisinni, and A. Taroni. A real-time Wireless Sensor Network

for temperature monitoring. In Proccedings of the ISIE 2007 - IEEE International

Symposium on Industrial Electronics, pages 1916–1920, June 2007.

[30] David Flanagan, Jim Farley, William Crawford, and Kris Magnusson. Java Enterprise

In a Nutshell. O’Reilly and Associates, Inc., 1999.

[31] Matthew Gast. 802.11 Wireless Networks: The Definitive Guide. O’Reilly Media, Inc.,

April 2002.

[32] Aniruddha Gokhale and Douglas C. Schmidt. Techniques for optimizing CORBA

middleware for distributed embedded systems. In Proceedings of the IEEE INFOCOM

’99 - Eighteenth Annual Joint Conference of the IEEE Computer and Communications

Societies, volume 2, pages 513–521, New York, USA, March 1999.

[33] Nada Golmie and Nicolas Chevrollier. Techniques to improve Bluetooth performance

in interference environments. In Proceedings of the MILCOM 2001 - Military

Communications Conference. Communications for Network-Centric Operations:

Creating the Information Force, volume 1, pages 581–585, October 2001.

[34] IEEE 802.11 Working Group. IEEE Standard for Information Technology

- Telecommunications and information exchange between systems - Local and

metropolitan area networks - Specific requirement. Part 11: Wireless LAN Medium

Access Control (MAC) and Physical Layer (PHY) Specifications. Technical report,

IEEE, Inc, February 2012.

[35] IEEE 802.15 Working Group. IEEE Standard for Information Technology

- Telecommunications and information exchange between systems - Local and

metropolitan area networks - Specific requirement. Part 15.1: Wireless medium access

control (MAC) and physical layer (PHY) specifications for wireless personal area

networks (WPANs). Technical report, IEEE, Inc, June 2005.

Bibliography 141

[36] IEEE 802.15 Working Group. IEEE Standard for Information Technology

- Telecommunications and information exchange between systems - Local and

metropolitan area networks - Specific requirement. Part 15.4: Wireless Medium

Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless

Personal Area Networks (WPANs). Technical report, IEEE, Inc, June 2011.

[37] Object Management Group. Data Distribution Service for Real-time Systems, Version

1.2. Technical Report formal/07-01-01, Object Management Group, Inc., 2007.

[38] Object Managment Group. The Real-time Publish-Subscribe Wire Protocol DDS

Interoperability Wire Protocol Specification (DDS-RTPS), Version 2.1. Technical

Report formal/2010-11-01, Object Management Group, Inc., 2010.

[39] Jaap Haartsen and Sven Mattisson. Bluetooth - A New Low-Power Radio Interface

Providing Short-Range Connectivity. Proceedings of the IEEE, 88(10):1651–1661,

October 2000.

[40] Ehsan Haghani, Michael N. Krishnan, and Avideh Zakhor. Adaptive Carrier-Sensing for

Throughput Improvement in IEEE 802.11 Networks. In Proceedings of the GLOBECOM

2010 - IEEE Global Communications Conference Exhibition and Industrial Forum,

Miami, Florida, December 2010.

[41] Barbara Hayes-Roth. A blackboard architecture for control. Artificial Intelligence,

26(3):251–321, July 1985.

[42] Michi Henning. A New Approach to Object-Oriented Middleware. IEEE Internet

Computing, pages 66–75, January/February 2004.

[43] Dimitrios Hristu-Varsakelis and William S. Levine, editors. Handbook of Networked and

Embedded Control Systems. Birkhäuser, 2005.

[44] Tran Duy Khanh, Zidek Martin, Benda Jan, Kubias Jiri, and Sojka Michal.

Autonomous robot running Linux for the Eurobot 2007 competition. In Proceeding

of the 9th Real-Time Linux Workshop, Linz, Austria, November 2007.

[45] Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, and Eiichi Osawa.

RoboCup: The Robot World Cup Initiative, 1995.

[46] Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, and Eiichi Osawa.

RoboCup: The Robot World Cup Initiative. In Proceedings of the First International

Conference on Autonomous Agents, AGENTS ’97, pages 340–347, New York, USA,

1997. ACM.

142 Bibliography

[47] Kenneth J. Klingenstein. Middleware: The Second Layer of IT Infrastructure.

CAUSE/EFFECT journal, 22(4), 1999.

[48] Hermann Kopetz and Günther Bauer. The Time-Triggered Architecture. Proceedings

of the IEEE, 91(1):112–126, January 2003.

[49] Hermann Kopetz and Johannes Reisinger. The non-blocking write protocol NBW:

A solution to a real-time synchronization problem. In Proceedings of the Real-Time

Systems Symposium, pages 131–137, December 1993.

[50] Nuno Lau, Lúıs S. Lopes, Gustavo Corrente, and Nuno Filipe. Multi-robot team

coordination through roles, positionings and coordinated procedures. In Proceedings

of the IROS 2009 - IEEE/RSJ International Conference on Intelligent Robots and

Systems, pages 5841–5848, St. Louis, MO, USA, October 2009.

[51] Nuno Lau, Lúıs Seabra Lopes, Gustavo Corrente, Nelson Filipe, and Ricardo Sequeira.

Robot Team Coordination using Dynamic Role and Positioning Assignment and Role

Based Setplays. Mechatronics, 21(2):445–454, 2011. Special Issue on Advances in

intelligent robot design for the Robocup Middle Size League.

[52] Nuno Lau, Lúıs Seabra Lopes, and Gustavo A. Corrente. CAMBADA: Information

Sharing and Team Coordination. In Proceedings of the 8th Conference on Autonomous

Robot Systems and Competitions, Portuguese Robotics Open – ROBOTICA, pages

27–32, Aveiro, Portugal, April 2008.

[53] Jin-Shyan Lee, Yu-Wei Su, and Chung-Chou Shen. A Comparative Study of Wireless

Protocols: Bluetooth, UWB, ZigBee, and Wi-Fi. In Proceedings of the IECON 2007

- 33rd Annual Conference of the IEEE Industrial Electronics Society, pages 46–51,

November 2007.

[54] P.U. Lima. Robotics Educational Activities in Portugal: A Motivating Experience.

IEEE Robotics Automation Magazine, 14(2):16–17, June 2007.

[55] Yabo Liu, Jianhua Yang, Yao Zheng, Zhaohui Wu, and Min Yao. Multi-Robot

Coordination in Complex Environment with Task and Communication Constraints.

International Journal of Advanced Robotic Systems, 10, 2013.

[56] Jianhua Ma. Computer Networks (Digital Communication and Networks) Course,

Lecture Notes, Lecture 4. School of Computer and Information Sciences, Hosei

University, Tokyo, Japan.

Bibliography 143

[57] Ricardo Jorge Silva Machado. Ambiente de simulação 3D para um véıculo de condução

autónoma. Master’s thesis, Universidade de Aveiro, Aveiro, Portugal, 2011.

[58] Stefan Mahlknecht and Marco Spinola Durante. WUR-MAC: Energy efficient wakeup

receiver based MAC protocol. In Proccedings of the IFAC-FeT 2009 - 8th International

Conference on Fieldbuses and Networks in Industrial and Embedded Systems, volume 8,

Republic of Korea, May 2009.

[59] Alexei Makarenko, Alex Brooks, and Tobias Kaupp. Orca: Components for Robotics.

In Proceedings of the IROS 2006 - IEEE/RSJ International Conference on Intelligent

Robots and Systems, Beijing, China, October 2006.

[60] Alexei Makarenko, Alex Brooks, and Ben Upcroft. An Autonomous Vehicle using ICE

and ORCA. Connections - ZeroC’s Newsletter for the Ice Community, April 2007.

[61] Patrick Ferreira Marques. Concurrent architecture for control of an autonomous driving

vehicle. Master’s thesis, Universidade de Aveiro, Aveiro, Portugal, 2010.

[62] Tiago Meireles, José Fonseca, and Joaquim Ferreira. Vehicular Flexible Time-Triggered

Protocol (V-FTT). Technical Report 01/2003, Embedded System Group -

Telecommunications Institute, Aveiro, Portugal, March 2013.

[63] João Messias, Aamir Ahmad, João Reis, Miguel Serafim, and Pedro Lima. Socrob

2013 - team description paper. Technical report, Institute for Systems and Robotics,

Instituto Superior Técnico, 2013.

[64] Nader Mohamed and Jameela Al-Jaroodi. Characteristics of Middleware for Networked

Collaborative Robots. In Proceedings of the CTS’2008 - International Symposium on

Collaborative Technologies and Systems, Irvine, CA, USA, May 2008.

[65] Nader Mohamed, Jameela Al-Jaroodi, and Imad Jawhar. Middleware for Robotics: A

Survey. In Proceedings of the RAM’08 - IEEE Conference on Robotics, Automation

and Mechatronics, pages 736–742, Chengdu, China, September 2008.

[66] Nader Mohamed, Jameela Al-Jaroodi, and Imad Jawhar. A Review fo Middleware

for Network Robots. Proceedings of the IJCSNS - International Journal of Computer

Science and Network Security, 9(5):139–148, May 2009.

[67] Fred Mora. Bring an Atomic Clock to Your Home with Chrony. Linux Journal,

2002(101), September 2002.

144 Bibliography

[68] António J. R. Neves, José Lúıs Azevedo, Bernardo Cunha, Nuno Lau, João Silva,

Frederico Santos, Gustavo Corrente, Daniel A. Martins, Nuno Figueiredo, Artur

Pereira, Lúıs Almeida, Lúıs Seabra Lopes, Armando J. Pinho, João Rodrigues, and

Paulo Pedreiras. CAMBADA Soccer Team: from Robot Architecture to Multiagent

Coordination. In Vladan Papi, editor, Robot Soccer, pages 19–45. InTech, 2010.

[69] António J. R. Neves, Gustavo A. Corrente, and Armando J. Pinho. An Omnidirectional

Vision System for Soccer Robots. In António José Neves, Manuel Filipe Santos, and

Jos Manuel Machado, editors, Progress in Artificial Intelligence, volume 4874 of Lecture

Notes in Computer Science, pages 499–507. Springer Berlin Heidelberg, 2007.

[70] António J. R. Neves, Nuno Lau, Lúıs Paulo Reis, Bruno Pimentel, João Silva, Alina

Trifan, Nima Shafii, Vasco Santos, Sanaz Zadegan, and Sanaz Bahmankhah. Portuguese

Team: Team Description Paper for RoboCup 2013. Technical report, University of

Aveiro, University of Porto and University of Minho, 2013.

[71] António J. R. Neves, Daniel A. Martins, and Armando J. Pinho. A hybrid

vision system for soccer robots using radial search lines. In Proceedings of the 8th

Conference on Autonomous Robot Systems and Competitions, Portuguese Robotics

Open – ROBOTICA, pages 51–55, Aveiro, Portugal, April 2008.

[72] Lúıs Oliveira, Lúıs Almeida, and Frederico Santos. A Loose Synchronisation

Protocol for Managing RF Ranging in Mobile Ad-Hoc Networks. In Thomas Röfer,

Norbert Michael Mayer, Jesus Savage, and Uluç Saranlı, editors, RoboCup 2011: Robot

Soccer World Cup XV, volume 7416 of Lecture Notes in Computer Science, pages

574–585. Springer Berlin Heidelberg, 2012.

[73] Lúıs Oliveira, Hongbin Li, and Lúıs Almeida. Experiments with navigation based on

the rss of wireless communication. In ROBOTICA2010: 10th Conference on Mobile

Robots and Competitions, 2010.

[74] Object Management Group (OMG). Real-time CORBA Specification, Version 1.2.

Technical Report formal/05-01-04, Object Management Group, Inc., 2005.

[75] Object Management Group (OMG). Common Object Request Broker

Architecture (CORBA) for embedded Specification), Version 1.0. Technical Report

formal/2008-11-06, Object Management Group, Inc., 2008.

[76] Object Management Group (OMG). Robotic Technology Component (RTC), Version

1.1. Technical report, Object Management Group, Inc., 2012.

Bibliography 145

[77] ISO Technical Committee on Information Technology (ISO/IEC JTC1) and the Object

Management Group (OMG). Common Object Request Broker Architecture (CORBA)

Specification, Version 3.3. Technical Report formal/2012-11-12, Object Management

Group, Inc., 2012.

[78] Bernardo Ordoñez. Estratégia de controle cooperativo baseado em consenso para um

grupo multi-véıculos. PhD dissertation, Universidade Federal de Santa Catarina,

Florianópolis, Brazil, May 2013.

[79] Gerardo Pardo-Castellote. OMG Data-Distribution Service: Architectural Overview.

In Proceedings of the ICDCSW’03 - 23rd International Conference on Distributed

Computing Systems Workshops, pages 200–206, Providence, Rhode Island, USA, May

2003.

[80] Gerardo Pardo-Castellote. OMG Data Distribution Service: Real-Time

Publish/Subscribe Becomes a Standard. RTC Magazine, January 2005.

[81] Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote, Jeremy Leibs,

Eric Berger, Rob Wheller, and Andrew Ng. ROS: an open-source Robot Operating

System. In Proceedings of the ICRA’09 - IEEE International Conference on Robotics

and Automation, Kobe, Japan, May 2009.

[82] Krithi Ramamritham, Sang H. Son, and Lisa Cingiser DiPippo. Real-Time Databases

and Data Services. Real-Time Systems, 28(2-3):179–215, 2004.

[83] Inc. Real-Time Innovations. RTI Connext DDS Professional, 2013.

[84] Lúıs Paulo Reis, Nuno Lau, and Eugénio Oliveira. Situation Based Strategic Positioning

for Coordinating a Team of Homogeneous Agents. In Markus Hannebauer, Jan Wendler,

and Enrico Pagello, editors, Balancing Reactivity and Social Deliberation in Multi-Agent

Systems, volume 2103 of Lecture Notes in Computer Science, pages 175–197. Springer,

2001.

[85] Frederico Santos and Lúıs Almeida. On the effectiveness of IEEE802.11 broadcasts

for soft real-time communication. In Proceedings of the RTN’05 - 4th International

Workshop on Real-Time Networks, Palma de Mallorca, Spain, July 2005.

146 Bibliography

[86] Frederico Santos, Lúıs Almeida, Paulo Pedreiras, Lúıs Seabra Lopes, and Tullio

Facchinetti. An Adaptive TDMA Protocol for Soft Real-Time Wireless Communication

among Mobile Autonomous Agents. In Proceedings of the WACERTS’04 - Workshop on

Architectures for Cooperative Embedded Real-Time Systems, Satellite event of the RTSS

2004 - 25th IEEE International Real-Time Systems Symposium, Lisbon, Portugal,

December 2004.

[87] Frederico Santos, Gustavo Currente, Lúıs Almeida, Nuno Lau, and Lúıs S. Lopes.

Self-configuration of an Adaptive TDMA wireless communication protocol for teams

of mobile robots. In Proceedings of the 2nd Workshop on Intelligent Robotics (IRobot

2007), Satellite event of the EPIA 2007 - 13th Portuguese Conference on Artificial

Intelligence, Guimarães, Portugal, December 2007.

[88] Douglas Schmidt, David Levine, and Sumedh Mungee. The design of the TAO real-time

object request broker. Computer Communications, 21(4):294–324, 1998.

[89] Domenico Sicignano. Analysis, evaluation and improvement of RT-WMP for real-time

and QoS wireless communication: Applications in confined environments. PhD

dissertation, University of Zaragoza, Zaragoza, Spain, March 2013.

[90] Bluetooth SIG. Specification of the Bluetooth System version 4.1. Technical report,

Bluetooth SIG, Inc., December 2013.

[91] Axel Sikora and Voicu F. Groza. Coexistence of IEEE802.15.4 with other Systems in

the 2.4 GHz-ISM-Band. In Proceedings of the IMTC 2005 - IEEE Instrumentation and

Measurement Technology Conference, volume 3, pages 1786–1791, May 2005.

[92] Valter Silva, Ricardo Marau, Lúıs Almeida, Joaquim Ferreira, Mário Calha, Paulo

Pedreiras, and José Fonseca. Implementing a distributed sensing and actuation

system: The CAMBADA robots case study. In Proceedings of the ETFA 2005 - 10th

IEEE Conference on Emerging Technologies and Factory Automation, volume 2, pages

781–788, Catania, Italy, September 2005.

[93] Hendrick Skubch. Modelling and Controlling of Behaviour for Autonomous Mobile

Robots. Springer Vieweg, 2012.

[94] Petr Smolik and Pavel Pisa. ORTE: The Open Real Time Ethernet. In Proceedings

of the RTN’08 - 7th International Workshop on Real-Time Networks, Prague, Czech

Republic, July 2008.

Bibliography 147

[95] IEEE Vehicular Technology Society. IEEE Standard for Wireless Access in Vehicular

Environments Security Services for Applications and Management Messages. Technical

report, IEEE, Inc, April 2013.

[96] Peter Stone and Manuela Veloso. Task Decomposition, Dynamic Role Assignment

and Low Bandwidth Communication for Real Time Strategic teamwork. Artificial

Intelligence, 110(2):241–273, 1999.

[97] Danilo Tardioli and José Luis Villarroel. Real Time Communications over 802.11:

RT-WMP. In Proceedings of the MASS 2007 - 4th IEEE International Conference on

Mobile Ad-hoc and Sensor Systems, pages 1–11, Pisa, Italy, October 2007.

[98] Yu Tian, Yang Lv, and Ling Tong. Design and application of sink node for

wireless sensor network. COMPEL: The International Journal for Computation and

Mathematics in Electrical and Electronic Engineering, 32(2):531–544, 2013.

[99] Hans Utz, Stefan Sablatnog, Stefan Enderle, and Gerhard Kraetzschmar. Miro:

Middleware for Mobile Robot Applications. IEEE Transactions on Robotics and

Automation, 18(4):493–497, August 2002.

[100] Thilo Weigel, Jens-Steffen Gutmann, Markus Dietl, Alexander Kleiner, and Bernhard

Nebel. CS Freiburg: coordinating robots for successful soccer playing. IEEE

Transactions on Robotics and Automation, 18(5):685–699, Oct 2002.

[101] Andreas Willig, Kirsten Matheus, and Adam Wolisz. Wireless Technology in Industrial

Networks. Proceedings of the IEEE, 93(6):1130–1151, June 2005.

[102] Victor Fay Wolfe, Lisa Cingiser DiPippo, Roman Ginis, Michael Squadrito, Steven

Wohlever, Igor Zykh, and Russell Johnston. Real-time CORBA. In Proceedings of

the 3rd IEEE Real Time Technology and Applications Symposium, pages 148–157,

Montreal, Quebec, Canada, June 1997.

[103] ZeroC, Inc. ICE Manual - Distributed Programming with ICE, Version 3.5.1, 2013.

[104] Hubbert Zimmermann. OSI Reference Model - The ISO Model of Architecture for Open

Systems Interconnection. IEEE Transactions on Communications, 28(4):425–432, April

1980.

148 Bibliography

Annex A

Network Occupancy

The medium occupancy in a IEEE 802.11 network is non-trivial to compute and the exact

value is even impossible to obtain since the medium is shared, uncontrolled and the link may

suffer disruption, interference of different sources, and even the transmission speed may vary

dynamically.

Nevertheless, in this Annex we present an estimation that is valid under certain

operational assumptions. We start by introducing some basic background that is needed

to carry out the computations and then we present specific formulae that provide the desired

estimation. In particular, we explain the inner computations of two functions used in

Chapter 5, namely nodeLoadT ime() and extLoadOcup().

A.1 IEEE 802.11 communications in infrastrutured mode

In IEEE 802.11 operating in infrastrutured mode, i.e., infrastructured, communication

between nodes can be divided in three types (Figure A.1):

• Unicast is a one-to-one transmission method in which the network carries a packet

to one receiver. In the unicast method, when multiple receivers require the same

information from a sender, a similar data packet has to be sent multiple times. The

guarantee of successful delivery is provided by an acknowledgment that is sent from the

receiver back to the sender. If the acknowledgement is not received in a defined period

of time, the sender retransmits the packet.

150 Annex A. Network Occupancy

Receiver

Unicast

Receiver

Receiver

Receiver
Broadcast

Receiver

Receiver

Multicast

Sender Sender Sender

Figure A.1: Transmission methods

• Broadcast is a one-to-all transmission method in which the network carries a packet to

all devices at the same time. Broadcast packets are sent to every node on the network

and are not filtered or blocked by a router. Due to the nature of this method, it is

impossible to provide a simple acknowledgment service;

• Multicast is a one-to-many transmission method in which the network carries a packet

to multiple receivers at the same time. Multicast is similar to broadcasting, except that

multicasting means sending to a specific group, whereas broadcasting implies sending

to everybody, whether they want the traffic or not. This method does not provide

acknowledgment, either.

In IEEE 802.11 networks working in infrastrutured mode, all the communications go

through the AP, as explained in Section 2.1. A transmission from sender node A to destination

node B involves in fact two transmissions. Initially, node A transmits to the AP and finally

the AP retransmits to the destination node B. In a unicast interaction, each of these two

transmissions is acknowledged (Figure A.2). A broadcast or multicast interaction with origin

in node A is transformed in a unicast transmission from node A to the AP, i.e., acknowledged,

and then the AP retransmits in broadcast/multicast fashion, respectively (Figure A.3). Note

that when using a shared medium like the air, all types of interaction use the medium in an

exclusive way, i.e., parallel transmissions are not possible.

A.2 IEEE 802.11 timings 151

Access Point
Node BNode A

Frame

Frame

Acknowledge

Acknowledge

Tim
e

Figure A.2: Unicasts in IEEE 802.11 infrastrutured mode

A.2 IEEE 802.11 timings

As presented in Section 2.1, there are distinct IEEE 802.11 network types. The use of two

frequency bands, 2.4Ghz and 5GHz, creates the IEEE 802.11b/g and IEEE 80211a types,

respectively.

In a simplified way, considering only the operation under the Distributed Coordination

Function (DCF), before transmitting each node must sense the medium during a specified

amount of time, namely Short Inter Frame Spacing (SIFS) or Distributed Coordination

Function Inter Frame Spacing (DIFS). The former is used for higher priority transmissions,

like acknowledgment packets. The latter applies to data packet transmissions (Figure A.4).

If the channel is sensed busy, then the node must wait until the channel is sensed free

again and then wait for DIFS plus a random backoff interval. The backoff interval TBO is

used to reduce collisions among multiple nodes trying to transmit at the same time and is

determined as:

TBO = random(0, CW)× tslot (A.1)

CW = 2n − 1 (A.2)

152 Annex A. Network Occupancy

Access Point
Node A

Frame

Frame

Acknowledge

Tim
e

Node B Node C Node D

Figure A.3: Broadcasts and multicasts in IEEE 802.11 infrastrutured mode

The Contention Window (CW) parameter is adapted dynamically depending on collision

occurrences. Each time a collision occurs, n is incremented. The minimum and maximum

values of n are shown in Table A.1.

802.11b
802.11g

802.11a
mixed only g

tslot (µs) 20 20 9 9

TSIFS (µs) 10 10 10 16

TDIFS (µs) 50 50 28 34

CW
nmax 10 10 10 10
nmin 5 5 4 4

Tpreamble (µs) 192 192 26 20

maxBitRate (Mbps) 11 54 54 54

avrBitRate (Mbps) 5.5 24 24 24

ackBitRate (Mbps) 2 2 24 24

multiBitRate (Mbps) 1 1 6 6

Table A.1: IEEE802.11 network parameters

Each IEEE 802.11 network type defines a group of transmission bit rates as previously

presented in Table 2.1. The bit rate selection is automatically adjusted by the transmitting

node and is a function of the link quality. However, there are other causes that affect the bit

rate. For instance, each time a transmission in not correctly acknowledged the retransmission

is carried out at the next lower bit rate.

A.2 IEEE 802.11 timings 153

Figure A.4: Interframe spacing relationships [31]

The transmission mode also limits the bit rate. Unicast transmissions can be carried out

at any available bit rate, being maxBitRate the maximum allowed. Since it is practically

impossible to predict the actual bit rate that will be used, we opted for using an average

value (avrBitRate) in the following computations. On the other hand, acknowledgements

have a specific bit rate (ackBitRate) and the broadcast or multicast frames use a lower value

(multiBitRate) to increase their robustness and consequently the chances that they arrive

at all nodes in the AP neighborhood, independently of the link quality.

Table A.1 presents a summary of these parameters for each network type. Note that g

type is retro-compatible with b type. In fact, in a g network, each time a b node registers,

all the other nodes must revert to the b type timing values to ensure compatibility, even if

they could otherwise continue transmitting data using g higher bit rates.

The computation of the payload transmission time depends on the number of payload

bytes and the bit rate in use. For IEEE 802.11b, using High Speed Direct-Sequence Spread

Spectrum (HS/DSSS) modulation, the relation between both values gives the amount of

time required. But, IEEE 802.11a/g use a distinct modulation technique (OFDM) with

large amount of bits per transmission symbol, as presented in Table A.2. Each symbol,

independently of the bit rate in use, has a fixed duration of 4µs.

Bit rate (Mbps) # bits/symbol

6 24
9 36
12 48
18 72
24 96
36 144
48 192
54 216

Table A.2: Encoding for OFDM data rates [31]

154 Annex A. Network Occupancy

A.3 Function nodeLoadTime()

nodeLoadT ime(Di, frameType, netType) returns an approximate value of the amount of

time that the network will be occupied by a transmitter node, being:

• Di – The maximum number of data bytes that the node could transmit in a round;

• frameType – The communication type in use, that can be:

– u – Unicast;

– m – Multicast;

– b – Broadcast.

• netType – The IEEE 802.11 type in use, which can be:

– a – IEEE 802.11a;

– b – IEEE 802.11b;

– g – IEEE 802.11g.

As shown in Figures A.2 and A.3 the type of communication used defines the number of

exchanged frames, leading to (u means unicast type):

nodeLoadT ime(Di, frameType, netType) =


Tunicast(Di, netType) : frameType = u

Tmulticast(Di, netType) : frameType 6= u

(A.3)

A unicast transmission from node A to node B is in fact composed by two data frames

and respective acknowledgements:

Tunicast(Di, netType) = Tframe(Di, avrBitRate(netType), netType) + Tack(netType)+

+ Tframe(Di, avrBitRate(netType), netType) + Tack(netType)

(A.4)

For multicast or broadcast transmissions, the transmission time is estimated as:

A.3 Function nodeLoadTime() 155

Tmulticast(Di, netType) = Tbroadcast(Di, netType)

= Tframe(Di, avrBitRate(netType), netType) + Tack(netType)+

+ Tframe(Di,multiBitRate(netType), netType)

(A.5)

Each data frame transmission then takes the duration of DIFS (TDIFS), a backoff time

(TBO), a fixed duration of the preamble plus other additional data (sum and Physical Layer

Convergence Protocol (PLCP)) (Tpreamble) and the payload data (Tpayload) transmited at a

designated bitRate:

Tframe(Di, bitRate, netType) = TDIFS(netType) + TBO(netType) + Tpreamble(netType)+

+ Tpayload(Di, bitRate, netType)

(A.6)

On the other hand, acknowledge frames are given high priority through the use of SIFS,

the preamble time (Tpreamble) and the payload time corresponding to 12 bytes at ackBitRate

bit rate:

Tack(netType) = TSIFS(netType) + Tpreamble(netType)+

+ Tpayload(12, ackBitRate(netType), netType) (A.7)

To complete equations A.6 and A.7 we need to compute the time required to transmit D

bytes of payload at bit rate bitRate, using the netType IEEE 802.11 type:

Tpayload(D, bitRate, netType) =


D × 8

bitRate
: netType = b

⌈
D × 8

bitsPerSymbol(bitRate)

⌉
× 4µs : netType 6= b

(A.8)

The bitsPerSymbol() function returns the number of bits per symbol directly from

Table A.2.

156 Annex A. Network Occupancy

A.4 Function extLoadOcup()

extLoadOcup(L, frameType, netType) returns an approximate value of the network

occupancy corresponding to a certain amount of uncontrolled external traffic, given by the

required throughput L in Mbps, using frames of frameType and a netType IEEE 802.11

type of network, with the options described in Section A.3.

Avoiding the knowledge of which payload size is used in the frames corresponding to L,

we adopt the same approach of using an average value. Given the typical MTU of 1500B,

the corresponding average payload size D is 750B. Following the same reasoning as in the

previous section, then we can directly expressed the desired function as:

extLoadOcup(L, frameType, netType) =

=



⌈
L

750× 8

⌉
× Tunicast(750, netType) : frameType = u

⌈
L

750× 8

⌉
× Tmulticast(750, netType) : frameType 6= u

(A.9)

Annex B

Configuration parameters used by

CAMBADA

The CAMBADA team of robotic soccer robots was not only a motivation but also the scope

within which most of this work was carried out. Moreover, this team was used in several of

the validation experiments referred along this document, and it is also one of the main users

of the RTDB middleware with the Reconfigurable and Adaptive TDMA wireless protocol.

Therefore, it is illustrative and also relevant to address the configuration used in both

communications protocol and middleware. The former configuration parameters are defined

in Table B.1.

Update period Ttup 100ms

Communication time
Twt @ IEEE802.11a 1ms
Twt @ IEEE802.11b/g 4ms

Ratio transmission window used for sync ε 2
3

Max. number of agents max{N} 10

Max. number of items in RTDB max{ITEM} 100

Table B.1: Configuration parameters

The RTDB configuration is shown in Listing B.1, encompassing one base station and six

robots. Note the similar configuration of all the robots, which is justified by the dynamic

role assignment policy used by the team, meaning that any robot can play in any position in

the field. Moreover, both the software and hardware architectures are identical in all robots,

thus leading to similar RTDB items.

158 Annex B. Configuration parameters used by CAMBADA

AGENTS = BASE_STATION , CAMBADA_1 , CAMBADA_2 , CAMBADA_3 , CAMBADA_4 , CAMBADA_5 ,

CAMBADA_6;

ITEM ROBOT_WS { datatype = RobotWS; headerfile = RobotWS.h; }

ITEM LAPTOP_INFO { datatype = LaptopInfo; headerfile = SystemInfo.h; }

ITEM COACH_INFO { datatype = CoachInfo; headerfile = CoachInfo.h; }

ITEM VISION_INFO { datatype = VisionInfo; headerfile = VisionInfo.h; }

ITEM FRONT_VISION_INFO { datatype = FrontVisionInfo; headerfile = VisionInfo.h; }

ITEM FORMATION_INFO { datatype = FormationInfo; headerfile = CoachInfo.h; }

ITEM CMD_VEL { datatype = CMD_Vel; headerfile = HWcomm_rtdb.h; }

ITEM CMD_POS { datatype = CMD_Pos; headerfile = HWcomm_rtdb.h; }

ITEM CMD_KICKER { datatype = CMD_Kicker; headerfile = HWcomm_rtdb.h; }

ITEM CMD_INFO { datatype = CMD_Info; headerfile = HWcomm_rtdb.h; }

ITEM CMD_HWERRORS { datatype = CMD_HWerrors; headerfile = HWcomm_rtdb.h; }

ITEM CMD_GRABBER { datatype = CMD_Grabber; headerfile = HWcomm_rtdb.h; }

ITEM LAST_CMD_VEL { datatype = CMD_Vel; headerfile = HWcomm_rtdb.h; }

ITEM REMOTE_CMD { datatype = RemoteCMD; headerfile = rtdb_remoteControl.h; }

ITEM CMD_IMU { datatype = CMD_Imu; headerfile = HWcomm_rtdb.h; }

ITEM CMD_SYNCIMU { datatype = int; headerfile = stdio.h; }

ITEM CMD_GRABBER_INFO { datatype = CMD_Grabber_Info; headerfile = HWcomm_rtdb.h; }

ITEM CMD_GRABBER_CONFIG { datatype = CMD_Grabber_Config; headerfile = HWcomm_rtdb.h; }

SCHEMA BaseStation

{

shared = COACH_INFO , FORMATION_INFO , REMOTE_CMD;

}

SCHEMA Player

{

shared = ROBOT_WS , LAPTOP_INFO;

local = COACH_INFO , VISION_INFO , FRONT_VISION_INFO , CMD_VEL , CMD_POS , CMD_KICKER ,

CMD_INFO , CMD_HWERRORS , CMD_GRABBER , LAST_CMD_VEL , CMD_IMU , CMD_SYNCIMU ,

CMD_GRABBER_INFO , CMD_GRABBER_CONFIG;

}

ASSIGNMENT { schema = BaseStation; agents = BASE_STATION; }

ASSIGNMENT { schema = Player; agents = CAMBADA_1 , CAMBADA_2 , CAMBADA_3 , CAMBADA_4 ,

CAMBADA_5 , CAMBADA_6; }

Listing B.1: The CAMBADA RTDB configuration

	Introduction
	Multi-Robot systems
	Cooperation
	Infrastructure to support cooperation: the middleware

	The thesis
	Contributions
	Structure of the dissertation

	Wireless communications
	IEEE 802.11
	IEEE 802.15.1
	IEEE 802.15.4
	Enhanced / overlay protocols
	Comparison
	Summary

	Collaborative technologies for mobile robotic teams
	CORBA
	DDS
	ICE
	SOAP and ROS
	Comparison
	Summary

	RoboCup MSL communications: problems and requirements
	Wireless communication within the MSL
	Logs from the MSL RoboCup
	Problems
	Common misconceptions
	Summary

	The Reconfigurable and Adaptive TDMA communication protocol
	TDMA communications
	Configuring the TDMA framework

	Adaptive TDMA
	Additional protocol configurations
	Limitations of the fully distributed resynchronization approach
	Resynchronizing with a fixed reference

	Dynamic reconfiguration of the TDMA round
	Recomputing parameters based on the actual number of nodes
	State machines to support joining and leaving
	Operation of the Reconfigurable and Adaptive TDMA
	Time to join the team
	Adding multiple slots per node

	Summary

	Real-Time Database
	Architecture
	Configuration
	Internal Structure
	RTDB API
	Synchronization of concurrent read/write accesses
	Using single buffer synchronization
	Using double buffering synchronization

	RTDB replication management
	Age of data
	Upper bounding the age of data

	Scheduling the dissemination of RTDB items
	Summary

	Experiments
	Experimental setup
	Comparing with no synchronization
	Latency measurements
	Packet losses

	Comparing with non-adaptive TDMA
	Evolution of offsets and round period
	Packet losses with single packet interference
	Impact of external load bursts

	Operation in real scenarios
	Membership vector evolution
	Intervals between consecutive transmissions
	Time to join the team

	Summary

	The CAMBADA RoboCup MSL team RTDB use case
	The CAMBADA robotic soccer team
	Hardware
	Software

	Building cooperative behaviors on top of the RTDB
	Collaborative ball detection
	Strategy and coordination

	Debugging high level behaviors with the RTDB
	Summary

	Conclusions
	Revisiting the contributions
	Validating the thesis
	Future work

	Bibliography
	Annex Network Occupancy
	IEEE 802.11 communications in infrastrutured mode
	IEEE 802.11 timings
	Function nodeLoadTime()
	Function extLoadOcup()

	Annex Configuration parameters used by CAMBADA

