25 research outputs found

    Neurosurgical Ultrasound Pose Estimation Using Image-Based Registration and Sensor Fusion - A Feasibility Study

    Get PDF
    Modern neurosurgical procedures often rely on computer-assisted real-time guidance using multiple medical imaging modalities. State-of-the-art commercial products enable the fusion of pre-operative with intra-operative images (e.g., magnetic resonance [MR] with ultrasound [US] images), as well as the on-screen visualization of procedures in progress. In so doing, US images can be employed as a template to which pre-operative images can be registered, to correct for anatomical changes, to provide live-image feedback, and consequently to improve confidence when making resection margin decisions near eloquent regions during tumour surgery. In spite of the potential for tracked ultrasound to improve many neurosurgical procedures, it is not widely used. State-of-the-art systems are handicapped by optical tracking’s need for consistent line-of-sight, keeping tracked rigid bodies clean and rigidly fixed, and requiring a calibration workflow. The goal of this work is to improve the value offered by co-registered ultrasound images without the workflow drawbacks of conventional systems. The novel work in this thesis includes: the exploration and development of a GPU-enabled 2D-3D multi-modal registration algorithm based on the existing LC2 metric; and the use of this registration algorithm in the context of a sensor and image-fusion algorithm. The work presented here is a motivating step in a vision towards a heterogeneous tracking framework for image-guided interventions where the knowledge from intraoperative imaging, pre-operative imaging, and (potentially disjoint) wireless sensors in the surgical field are seamlessly integrated for the benefit of the surgeon. The technology described in this thesis, inspired by advances in robot localization demonstrate how inaccurate pose data from disjoint sources can produce a localization system greater than the sum of its parts

    Thoracic wall reconstruction using ultrasound images to model/bend the thoracic prosthesis for correction of pectus excavatum

    Get PDF
    Pectus excavatum is the most common congenital deformity of the anterior thoracic wall. The surgical correction of such deformity, using Nuss procedure, consists in the placement of a personalized convex prosthesis into sub-sternal position to correct the deformity. The aim of this work is the CT-scan substitution by ultrasound imaging for the pre-operative diagnosis and pre-modeling of the prosthesis, in order to avoid patient radiation exposure. To accomplish this, ultrasound images are acquired along an axial plane, followed by a rigid registration method to obtain the spatial transformation between subsequent images. These images are overlapped to reconstruct an axial plane equivalent to a CT-slice. A phantom was used to conduct preliminary experiments and the achieved results were compared with the corresponding CT-data, showing that the proposed methodology can be capable to create a valid approximation of the anterior thoracic wall, which can be used to model/bend the prosthesis.Fundação para a Ciencia e Tecnologia (FCT

    Open-source software for ultrasound-based guidance in spinal fusion surgery.

    Get PDF
    Spinal instrumentation and surgical manipulations may cause loss of navigation accuracy requiring an efficient re-alignment of the patient anatomy with pre-operative images during surgery. While intra-operative ultrasound (iUS) guidance has shown clear potential to reduce surgery time, compared with clinical computed tomography (CT) guidance, rapid registration aiming to correct for patient misalignment has not been addressed. In this article, we present an open-source platform for pedicle screw navigation using iUS imaging. The alignment method is based on rigid registration of CT to iUS vertebral images and has been designed for fast and fully automatic patient re-alignment in the operating room. Two steps are involved: first, we use the iUS probe's trajectory to achieve an initial coarse registration; then, the registration transform is refined by simultaneously optimizing gradient orientation alignment and mean of iUS intensities passing through the CT-defined posterior surface of the vertebra. We evaluated our approach on a lumbosacral section of a porcine cadaver with seven vertebral levels. We achieved a median target registration error of 1.47 mm (100% success rate, defined by a target registration error <2 mm) when applying the probe's trajectory initial alignment. The approach exhibited high robustness to partial visibility of the vertebra with success rates of 89.86% and 88.57% when missing either the left or right part of the vertebra and robustness to initial misalignments with a success rate of 83.14% for random starts within ±20° rotation and ±20 mm translation. Our graphics processing unit implementation achieves an efficient registration time under 8 s, which makes the approach suitable for clinical application

    Ultrasound-based navigated pedicle screw insertion without intraoperative radiation: feasibility study on porcine cadavers

    Get PDF
    BACKGROUND Navigation systems for spinal fusion surgery rely on intraoperative computed tomography (CT) or fluoroscopy imaging. Both expose patient, surgeons and operating room staff to significant amounts of radiation. Alternative methods involving intraoperative ultrasound (iUS) imaging have recently shown promise for image-to-patient registration. Yet, the feasibility and safety of iUS navigation in spinal fusion have not been demonstrated. PURPOSE To evaluate the accuracy of pedicle screw insertion in lumbar and thoracolumbar spinal fusion using a fully automated iUS navigation system. STUDY DESIGN Prospective porcine cadaver study. METHODS Five porcine cadavers were used to instrument the lumbar and thoracolumbar spine using posterior open surgery. During the procedure, iUS images were acquired and used to establish automatic registration between the anatomy and preoperative CT images. Navigation was performed with the preoperative CT using tracked instruments. The accuracy of the system was measured as the distance of manually collected points to the preoperative CT vertebral surface and compared against fiducial-based registration. A postoperative CT was acquired, and screw placements were manually verified. We report breach rates, as well as axial and sagittal screw deviations. RESULTS A total of 56 screws were inserted (5.50 mm diameter n=50, and 6.50 mm diameter n=6). Fifty-two screws were inserted safely without breach. Four screws (7.14%) presented a medial breach with an average deviation of 1.35±0.37 mm (all <2 mm). Two breaches were caused by 6.50 mm diameter screws, and two by 5.50 mm screws. For vertebrae instrumented with 5.50 mm screws, the average axial diameter of the pedicle was 9.29 mm leaving a 1.89 mm margin in the left and right pedicle. For vertebrae instrumented with 6.50 mm screws, the average axial diameter of the pedicle was 8.99 mm leaving a 1.24 mm error margin in the left and right pedicle. The average distance to the vertebral surface was 0.96 mm using iUS registration and 0.97 mm using fiducial-based registration. CONCLUSIONS We successfully implanted all pedicle screws in the thoracolumbar spine using the ultrasound-based navigation system. All breaches recorded were minor (<2 mm) and the breach rate (7.14%) was comparable to existing literature. More investigation is needed to evaluate consistency, reproducibility, and performance in surgical context. CLINICAL SIGNIFICANCE Intraoperative US-based navigation is feasible and practical for pedicle screw insertion in a porcine model. It might be used as a low-cost and radiation-free alternative to intraoperative CT and fluoroscopy in the future

    The state-of-the-art in ultrasound-guided spine interventions.

    Get PDF
    During the last two decades, intra-operative ultrasound (iUS) imaging has been employed for various surgical procedures of the spine, including spinal fusion and needle injections. Accurate and efficient registration of pre-operative computed tomography or magnetic resonance images with iUS images are key elements in the success of iUS-based spine navigation. While widely investigated in research, iUS-based spine navigation has not yet been established in the clinic. This is due to several factors including the lack of a standard methodology for the assessment of accuracy, robustness, reliability, and usability of the registration method. To address these issues, we present a systematic review of the state-of-the-art techniques for iUS-guided registration in spinal image-guided surgery (IGS). The review follows a new taxonomy based on the four steps involved in the surgical workflow that include pre-processing, registration initialization, estimation of the required patient to image transformation, and a visualization process. We provide a detailed analysis of the measurements in terms of accuracy, robustness, reliability, and usability that need to be met during the evaluation of a spinal IGS framework. Although this review is focused on spinal navigation, we expect similar evaluation criteria to be relevant for other IGS applications

    3-D calibration method and algorithm for freehand image of phased array ultrasonic testing

    Get PDF
    Phased array ultrasonic testing (UT) is an advanced technique applying ultrasound wave vibration theory to detect the flaw in tested materials by imaging. In this research, computer 3-D visualization of the flaw through calibrating the ultrasonic phased array image is proposed. 3-D calibration for ultrasonic phased array image is a procedure to calculate the spatial transformation matrix, spatial relationship between the US image plane and the tracker attached to the UT probe. The calibration method depends on a cross-string phantom and the corresponding algorithm. The phantom with a set of crosses guiding the operator quickly to find the scanning plane. The ten string crosses in the scanning plane provide the coordinates and spatial vectors for the calibration algorithm, thus the calibration algorithm can be realized based on the least-squares fitting method of the homologous points matching. Select the points having different distances and angles with the reference point to calculate the matrix and average them as the final result. The results show that the scanning plane positioning time is no more than 5 s. The precision and the accuracy results are the same as that is obtained through the other published methods in the medical 3-D ultrasound image calibration. The results make the 3-D flaw model reconstruction possible in phased array ultrasonic NDT. It will reduce the difficulties in the flaw recognizing and localization

    Augmented Reality Ultrasound Guidance in Anesthesiology

    Get PDF
    Real-time ultrasound has become a mainstay in many image-guided interventions and increasingly popular in several percutaneous procedures in anesthesiology. One of the main constraints of ultrasound-guided needle interventions is identifying and distinguishing the needle tip from needle shaft in the image. Augmented reality (AR) environments have been employed to address challenges surrounding surgical tool visualization, navigation, and positioning in many image-guided interventions. The motivation behind this work was to explore the feasibility and utility of such visualization techniques in anesthesiology to address some of the specific limitations of ultrasound-guided needle interventions. This thesis brings together the goals, guidelines, and best development practices of functional AR ultrasound image guidance (AR-UIG) systems, examines the general structure of such systems suitable for applications in anesthesiology, and provides a series of recommendations for their development. The main components of such systems, including ultrasound calibration and system interface design, as well as applications of AR-UIG systems for quantitative skill assessment, were also examined in this thesis. The effects of ultrasound image reconstruction techniques, as well as phantom material and geometry on ultrasound calibration, were investigated. Ultrasound calibration error was reduced by 10% with synthetic transmit aperture imaging compared with B-mode ultrasound. Phantom properties were shown to have a significant effect on calibration error, which is a variable based on ultrasound beamforming techniques. This finding has the potential to alter how calibration phantoms are designed cognizant of the ultrasound imaging technique. Performance of an AR-UIG guidance system tailored to central line insertions was evaluated in novice and expert user studies. While the system outperformed ultrasound-only guidance with novice users, it did not significantly affect the performance of experienced operators. Although the extensive experience of the users with ultrasound may have affected the results, certain aspects of the AR-UIG system contributed to the lackluster outcomes, which were analyzed via a thorough critique of the design decisions. The application of an AR-UIG system in quantitative skill assessment was investigated, and the first quantitative analysis of needle tip localization error in ultrasound in a simulated central line procedure, performed by experienced operators, is presented. Most participants did not closely follow the needle tip in ultrasound, resulting in 42% unsuccessful needle placements and a 33% complication rate. Compared to successful trials, unsuccessful procedures featured a significantly greater (p=0.04) needle-tip to image-plane distance. Professional experience with ultrasound does not necessarily lead to expert level performance. Along with deliberate practice, quantitative skill assessment may reinforce clinical best practices in ultrasound-guided needle insertions. Based on the development guidelines, an AR-UIG system was developed to address the challenges in ultrasound-guided epidural injections. For improved needle positioning, this system integrated A-mode ultrasound signal obtained from a transducer housed at the tip of the needle. Improved needle navigation was achieved via enhanced visualization of the needle in an AR environment, in which B-mode and A-mode ultrasound data were incorporated. The technical feasibility of the AR-UIG system was evaluated in a preliminary user study. The results suggested that the AR-UIG system has the potential to outperform ultrasound-only guidance

    Advancements and Breakthroughs in Ultrasound Imaging

    Get PDF
    Ultrasonic imaging is a powerful diagnostic tool available to medical practitioners, engineers and researchers today. Due to the relative safety, and the non-invasive nature, ultrasonic imaging has become one of the most rapidly advancing technologies. These rapid advances are directly related to the parallel advancements in electronics, computing, and transducer technology together with sophisticated signal processing techniques. This book focuses on state of the art developments in ultrasonic imaging applications and underlying technologies presented by leading practitioners and researchers from many parts of the world

    Advances in Biomedical Applications and Assessment of Ultrasound Nonrigid Image Registration.

    Full text link
    Image volume based registration (IVBaR) is the process of determining a one-to-one transformation between points in two images that relates the information in one image to that in the other image quantitatively. IVBaR is done primarily to spatially align the two images in the same coordinate system in order to allow better comparison and visualization of changes. The potential use of IVBaR has been explored in three different contexts. In a preliminary study on identification of biometric from internal finger structure, semi-automated IVBaR-based study provided a sensitivity and specificity of 0.93 and 1.00 respectively. Visual matching of all image pairs by four readers yielded 96% successful match. IVBaR could potentially be useful for routine breast cancer screening and diagnosis. Nearly whole breast ultrasound (US) scanning with mammographic-style compression and successful IVBaR were achieved. The image volume was registered off-line with a mutual information cost function and global interpolation based on the non-rigid thin-plate spline deformation. This Institutional Review Board approved study was conducted on 10 patients undergoing chemotherapy and 14 patients with a suspicious/unknown mass scheduled to undergo biopsy. IVBaR was successful with mean registration error (MRE) of 5.2±2 mm in 12 of 17 ABU image pairs collected before, during or after 115±14 days of chemotherapy. Semi-automated tumor volume estimation was performed on registered image volumes giving 86±8% mean accuracy compared with a radiologist hand-segmented tumor volume on 7 cases with correlation coefficient of 0.99 (p<0.001). In a reader study by 3 radiologists assigned to mark the tumor boundary, significant reduction in time taken (p<0.03) was seen due to IVBaR in 6 cases. Three new methods were developed for independent validation of IVBaR based on Doppler US signals. Non-rigid registration tools were also applied in the field of interventional guidance of medical tools used in minimally invasive surgery. The mean positional error in a CT scanner environment improved from 3.9±1.5 mm to 1.0±0.3 mm (p<0.0002). These results show that 3D image volumes and data can be spatially aligned using non-rigid registration for comparison as well as quantification of changes.Ph.D.Applied PhysicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/64802/1/gnarayan_1.pd

    Fast 4D Ultrasound Registration for Image Guided Liver Interventions

    Get PDF
    Liver problems are a serious health issue. The common liver problems are hepatitis, fatty liver, liver cancer and liver damage caused by alcohol abuse. Continuous, long term disease may cause a condition of the liver known as the Liver Cirrhosis. Liver cirrhosis makes the liver scarred and hardened up causing portal hypertension. In such a situation the collateral vessels try to bypass the liver as blood cannot freely flow through the liver; causing internal bleeding. One of the treatments of portal hypertension is Transjugular intrahepatic portosystemic shunt (TIPS). In a TIPS procedure a tract in the liver is created that shortcuts two veins in the liver, reducing the portal hypertension. Radiofrequency ablation (RFA) is use for the treatment of liver cancer. In RFA, a needle electrode is placed through the skin into the liver tumor. High-frequency electrical currents are passed through the electrode, creating heat that destroys the cancer cells, without damaging the surrounding liver tissues. TIPS and RFA are minimally invasive procedures, where small incisions are made to perform the surgery and are alternative to open surgery. A minimally invasive alternative has large potential in reducing complication rates, minimizing surgical trauma and reducing hospital stay. However, in these procedures, due to lack of direct eyesight, three-dimensional imaging information about the anatomy and instruments during the intervention is required. The most difficult part of these procedures is the interpretation and selection of oblique views for needle/instrument insertion and target visualization. In our work we develop and evaluate techniques that enable the effective use of 3D ultrasound for image guided interventions. Ultrasound is low cost, mobile and unlike CT and X-rays does not use any harmful radiation in the imaging process. During these procedures, breathing shifts the region of interest and makes it difficult to constantly focus on a region of interest. We provide an approach to correct for the motion due to breathing. Additionally, we propose a method for image fusion of interventional ultrasound and preoperative imaging modalities such as CT for cases where the lesions are visible in CT but not visible in ultrasound. Incorporating CT data during intervention additionally adds greater definition and precision to the ultrasound based navigation system. Concluding, in this thesis, we presented methods and evaluated their accuracies that demonstrate the use of real-time 3D US and its fusion with CT in potentially improving image guidance in minimally invasive US guided liver interventions
    corecore