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Introduction



2 Chapter 1

1.1 The liver and common liver problems

Figure 1.1: Liver and the portal venous

system.

The liver is the largest glandular organ of the
human body, see Figure 1.1. It weighs about
three pounds in a full grown adult. It is located
in the upper abdominal cavity of the human
body, under the diaphragm. We cannot gener-
ally feel the liver from outside as it is protected
inside the rib cage.

The liver plays an important role in our
body. All of the blood leaving the digestive tract
passes through the liver. The liver breaks down
the blood, regulates most chemical levels and
creates nutrients for the body. The liver is con-
sidered a gland because it secretes a product
called bile. The bile breaks down the fat, prepar-
ing for further digestion and absorption by the
body. Apart from that the liver also has other
functions like getting rid of the alcohol and
drugs present in the blood, storing glucose and
some essential vitamins and iron. It also aids in
the blood clotting mechanism.

Liver problems are a serious health issue.
According to a survey around 29 million persons alone in Europe suffer from
chronic liver conditions [9]. The common liver problems are hepatitis, fatty liver,
liver cancer and liver damage caused by alcohol abuse or the pain reliever ac-
etaminophen [35]. Continuous, long term disease may cause a condition of the liver
known as the Liver Cirrhosis. Liver cirrhosis makes the liver scarred and hardened
up, see Figure 1.2. In such a situation the liver cannot perform its functions in the
required manner. The common causes of liver cirrhosis are long term alcohol abuse
and hepatitis infection. According to the 2010 disease study [81], per year around
1030,800 people die of liver cirrhosis and around 752,100 people die of liver cancer.
Liver cirrhosis is responsible for approximately 170,000 deaths and liver cancer is
responsible for approximately 47,000 deaths per year in the Europe [9].

Portal hypertension, increase of blood pressure in the portal venous system (Fig-
ure 1.1) is present in most of the liver cirrhosis patients. The portal vein is fed by
the veins which come from the stomach, pancreases or intestines. It enters the liver
and then branches into veins which travel throughout the liver. In case of cirrhotic
liver the blood flow is blocked causing portal hypertension. Other major causes of
portal hypertension include blood clots or blockages in the vein, focal nodular hy-
perplasia and parasitic infection (schistosomiasis). Portal hypertension causes col-
lateral vessels to bypass the liver. These vessels are fragile and may rupture; causing



Introduction 3

bleedings in esophagus and stomach. In addition, portal hypertension causes accu-
mulation of fluid in the abdominal cavity, called ascites. One of the treatments of
portal hypertension is Transjugular intrahepatic portosystemic shunt (TIPS).

Figure 1.2: Left - normal liver, right - cirrhotic liver (Cour-

tesy - wikipedia).

Liver cancer, also known as
hepatic cancer, can be divided
into two types - primary (hep-
atocellular carcinoma) and sec-
ondary (liver metastases) liver
cancer. Liver metastases are
cancerous tumors that have
spread to the liver from some-
where else in the body; hep-
atocellular carcinoma are can-
cers that grow in the liver from
liver cells. Radiofrequency ab-
lation (RFA) is a therapeutic
treatment procedure for liver
metastases and hepatocellular carcinoma [86]. In general, surgical resection is the
preferred treatment for liver cancer, especially when the tumor is confined to one
area. However, it is often not possible in medical conditions like cirrhosis, in cases
where the tumor has spread to nearby blood vessels or in advanced stages of the
cancer. In such cases alternate treatment options like ablation are considered [104].

In this thesis, the focus is on treatment of portal hypertension and liver cancer.

1.2 Minimally invasive interventions

Minimally invasive procedures, where small incisions are made to perform the
surgery are an alternative to open surgery. Replacing classical surgical interven-
tions by minimally invasive alternatives is beneficial for the patient and the health
care system, as it has large potential for reducing complication rates, minimizing
surgical trauma and reducing hospital stay [73][38]. From the socio-economic per-
spective, minimally invasive interventions can help in reducing medical expendi-
tures and increasing worker productivity [1]. However, in these procedures imag-
ing is required due to lack to direct eyesight. Using imaging techniques, physicians
can navigate interventional instruments inside the body without making large in-
cisions.

1.2.1 Imaging modalities

Imaging has traditionally been used for preoperative diagnosis and planning. Intra-
operative imaging provides further information during interventions. Below, some
commonly used interventional imaging modalities are discussed [24].
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(a) X-ray angiography (b) Ultrasound

(c) CT (d) MR

Figure 1.3: Liver images

X-rays : X-ray imaging is 2D technique used to plan therapy and to perform
surgery. Major disadvantages of x-rays imaging is that it produces projection im-
ages and uses ionizing radiation. It also requires contrast agent to highlight the
vessels. However, as it is real-time, it is one of the key imaging techniques used in
interventional procedures.

Ultrasound : Ultrasound imaging uses high-frequency sound waves transmit-
ted longitudinally to image the organs and structures inside the body. Ultrasound
is a safe modality, as it does not use any harmful radiation in the imaging pro-
cess. A combination of good hand-eye coordination and correct positioning of the
probe is required to acquire good image. For acquiring good contrast images, the
ultrasound wave must be reflected off a tissue interface at right angles. The B or
brightness mode provides a greyscale image that is noisy because of loss of sound
waves due to scatter and refraction. Ultrasound imaging is real-time, safe and low-
cost. Compared with other imaging modalities, such as computed tomography and
magnetic resonance imaging, ultrasound is a very mobile device. It is frequently
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used in interventional radiology. However, ultrasound images have limited depth
and the image quality is not as clear and crisp as those obtained with computed
tomography and magnetic resonance imaging [24].

Computed tomography : Computed tomography combines multiple x-ray images
taken from different angles to create cross-sectional slice of the body. Series of cross-
sectional images acquired during a computed tomography scan can be used to
generate three-dimensional images. 3D imaging will help in exact localization of
instruments during intervention. For interventional use, a major disadvantage of
Computed tomography is the lack of real-time imaging. Additionally, similar to
the x-ray imaging it uses ionizing radiation [25][45].

Magnetic resonance imaging : Magnetic resonance shows excellent tissue discrim-
ination and is free of ionizing radiation. It has the ability to characterize functional
and physiological parameters of the treated tissues during minimally invasive di-
agnostic and therapeutic radiologic procedures. The limitations of using interven-
tional magnetic resonance imaging are restricted access to the patient, the associ-
ated expenses, limited real-time possibilities and the need for MR compatible de-
vices [75].

1.2.2 Minimally invasive liver interventions

Minimally invasive interventional techniques can address a large variety of prob-
lems in the liver including both diagnostic and therapeutic interventions [99].

TIPS procedure: In case of portal hypertension and with appropriate clinical con-
dition, TIPS may be the therapeutic option of choice [99] [116]. In a TIPS procedure
a tract in the liver is created that shortcuts two veins in the liver, the portal vein and
the hepatic vein [112][113][66]. The purpose is to decompress the systemic venous
system, which reduces the portal hypertension. Interventional radiologists gener-
ally perform the procedure under x-ray guidance, see Figure 1.4. Access to the liver
is achieved via the jugular vein in the neck. A guidewire followed by a sheath is
advanced, travelling from superior vena cava into the inferior vena cava to gain
access to the hepatic vein. A catheter is advanced over the wire into the hepatic
vein to measure the pressure. Once the wire and the catheter are removed a long
curved needle is advanced through the sheath, pushed through the wall of the hep-
atic vein and liver parenchyma to connect the hepatic vein to the large portal vein.
A balloon is used to inflate the tract created by the needle, see Figure 1.4. The bal-
loon is removed and the sheath catheter is advanced for the stent placement. All
the instruments except the stent are removed, allowing proper blood flow through
the liver. To cross check, pressure in the portal and hepatic vein is measured.

TIPS is one of the most challenging interventional procedures [107]. There are
several procedural complications that may occur during the various stages of the
procedure (vascular access, portal vein localization and access and stent place-
ment). The most challenging step during the procedure is obtaining access to the
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Figure 1.4: Fluoroscopic image of TIPS in

progress (Courtesy - wikipedia).

Figure 1.5: CT scan showing radiofrequency

ablation of a liver lesion (Courtesy - wikipedia).

portal vein [107]. Direct puncture into the main portal vein can cause profuse bleed-
ing with fatal outcome. Injuries to the hepatic artery and the biliary duct are also
possible during the procedure.

The main problem while doing this procedure is the lack of three-dimensional
information about the anatomy and instruments during the intervention. Multiple
needle insertions are often needed during the critical phase of accessing the portal
vein, with a risk of causing complications and lengthening the procedure time [26].
X-ray imaging (fluoroscopy), see Figure 1.4, lacks depth perception [107] and can
result in high radiation doses to patients and staff [140]. According to the guidelines
mentioned in Krajina et al. [63] ultrasound should be used to navigate puncture of
the jugular and portal veins. However, ultrasound guidance suffer from difficult
manual coordination and poor target visibility [68].

RFA procedure: RFA is a minimally invasive procedure used in the treatment
of hepatocellular carcinoma and liver metastases when resection cannot be per-
formed [86]. RFA is an image guided intervention where a needle electrode is placed
through the skin into the liver tumor, see Figure 1.5. High-frequency electrical cur-
rents are passed through the electrode, creating heat that destroys the cancer cells,
without damaging the surrounding liver tissues. A temperature range of 50 to
100◦C is maintained throughout the target region for protein coagulation with irre-
versible damage to the cells [86]. A 1-cm-thick tumor-free margin around the tumor
should be obtained to ablate all viable tumor tissues. Imaging follow-up after the
ablation is necessary as there is little visual feedback on the ablated zone during the
treatment [59]. Other ablation techniques commonly used in the treatment of liver
include cryoablation and microwave ablation.

Hemorrhage is one of the major concerns during thermal ablation. To prevent
hemorrhage the practitioner should try to minimize the number of punctures of the
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liver capsule, avoid crossing major vessels and by cauterizing the needle tract after
ablation [59]. Ablation may also cause thrombosis of the portal vein branch; espe-
cially in cirrhotic liver with already reduced liver function. The most difficult part of
this procedure is the interpretation and selection of oblique views for needle inser-
tion and target visualization. During the procedure computed tomography images
are acquired to check the position and trajectory of the needle, and to mentally
compare these to the planned trajectory. If the needle deviates from the planned
trajectory, then the needle is readjusted. This process is repeated until the target is
reached [127]. Apart from computed tomography, targeting of the lesion is also per-
formed using ultrasound or magnetic resonance imaging, which is generally based
on the operator preference and the availability of the imaging device [86].

1.2.3 Navigation tools

Figure 1.6: Electromagnetic and Optical tracking systems.

Minimally invasive procedures
are challenging for the clini-
cians as there is no direct eye-
sight and conventional imag-
ing modalities have limited ca-
pabilities. Navigation tools are
useful in guiding these inter-
ventions. They provide surgi-
cal assistance in terms of the
location of the devices and
other necessary information
required to successfully drive
the procedure. These tools in-
crease the ability to introduce
or advance instruments like
catheter or needle to a desired
target inside the body. They
provide assistance to physi-
cians during all the phases of
both diagnostic and therapeu-
tic procedures.

Commercial software solu-
tions like the Virtual Naviga-
tor from Esaote and PercuNav
from Philips are focused on in-
terventional imaging, where magnetic resonance imaging/computed tomography
modalities are registered with real-time ultrasound. These systems typically use ex-
ternal tracking systems (e.g. electromagnetic or optical) which report the position
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Figure 1.7: Philips CT scanner. Figure 1.8: iU22 xMATRIX Ultra-

sound System from Philips.

and orientation of specially designed tracking objects with respect to a fixed base.
By rigidly mounting the tracking objects on the devices, various images and instru-
ments can be co-registered for precise overlay of the instrument and multimodal
images. Optical tracking requires clear line-of-sight between cameras and targets;
hence objects inside the body cannot be tracked. Electromagnetic tracking does not
require line-of-sight to operate. However it is sensitive to ferromagnetic objects in
the operating room, which can cause significant distortion to the system.

Figure 1.9: X6-1 ultra-

sound 3D probe from

Philips.

In literature a great deal of work has been published
dealing with image-based needle or instrument navigation
using x-rays, computed tomography, and magnetic reso-
nance imaging [102]. For real-time guidance, x-rays and ul-
trasound are two frequently used imaging modalities. With
its ease of use, improved image quality over the years and
nonionizing energy for imaging, ultrasound is an essential
part of modern diagnostic and therapeutic navigation.

Navigation systems using the tracking devices (e.g., elec-
tromagnetic, optical) are well advanced and cater to clinical
routines of largely rigid anatomical regions e.g. in neuro-
surgery [102]. For interventions of the soft tissue regions like
the abdomen, the support by the navigation systems are limited, because the dis-
placement of the organs caused by factors like the breathing may result in a large
misalignment of the preoperative and the intraoperative data [73][60].
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1.3 4D ultrasound for image guided interventions

Figure 1.10: Demo of the real-time 3D ultrasound based

navigation system for the TIPS procedure developed dur-

ing the project.

Real-time 3D Ultrasound us-
ing a 2D matrix array trans-
ducer is a relatively novel
imaging modality, see Fig-
ure 1.9. It is currently mainly
used for diagnosis. It has a
large potential to be used for
image guidance, but a 2D
slice display or a 3D render-
ing, which currently are the
standard visualizations, do not
provide support for guidance.
Further during these proce-
dures clinicians often hold the
ultrasound probe steady to
visualize a localized area in
the liver ultrasound volume.
Breathing shifts the region of
interest and makes it difficult
to constantly focus on a region
of interest. To overcome this problem an approach to correct for the motion due to
breathing is imperative.

Image fusion of ultrasound and cross-sectional imaging modalities such as com-
puted tomography or magnetic resonance imaging is important in cases where the
lesions are visible in computed tomography or magnetic resonance imaging but not
visible in ultrasound [25].

1.4 This thesis

Purpose of the research presented in this thesis is to develop and evaluate image
processing techniques that enable the effective use of 3D ultrasound for image
guided interventions of the liver, see Figure 1.10. To this end, we worked on the
following four subjects:

1. In Chapter 2 we propose a fast 3D ultrasound registration, in a novel frame-
work that is based on block-matching and game-theory-based outlier rejec-
tion methods, which was implemented on a graphics processing unit. In Chap-
ter 3 this approach is extended to streaming ultrasound data.

2. A two-stage 3D ultrasound tracking approach based on the fast 3D ultra-
sound registration is discussed in Chapter 4. This approach, which was able to
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align pre-operative 3D ultrasound planning data with live 3D ultrasound im-
ages in real-time, was integrated in a system for ultrasound-guided TIPS in-
terventions. The approach was also used for and evaluated in 3D ultrasound
tracking challenge at MICCAI 2015 as discussed in Chapter 5.

3. The pose of the imaging data in a clinical scenario may vary considerably de-
pending on the modality and other factors like the patient position. In Chap-
ter 6 we present a method for rotationally invariant description of landmarks
or regions in 3D using local binary patterns (LBP). The LBP in 3D requires
a spherical sampling, which is represented in a spherical harmonics frame-
work. The framework helps in obtaining rotation invariant representation.

4. In Chapter 7 a fast multi-modal (computed tomography-3D ultrasound) reg-
istration approach, adapting the previously developed block-matching and
outlier rejection strategy to multi-model image registration, proposing a novel
similarity metric and improved outlier rejection is presented.
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Part I

Ultrasound for guidance





Chapter 2

Fast and Robust 3D Ultrasound Registration

Based on:

Jyotirmoy Banerjee, Camiel Klink, Edward D. Peters, Wiro J. Niessen, Adriaan Moelker
and Theo van Walsum, Fast and Robust 3D Ultrasound Registration - Block and
Game Theoretic Matching, Medical Image Analysis, 2015.

Abstract

Real-time 3D US has potential for image guidance in minimally invasive liver inter-
ventions. However, motion caused by patient breathing makes it hard to visualize
a localized area, and to maintain alignment with pre-operative information. In this
work we develop a fast affine registration framework to compensate in real-time
for liver motion/displacement due to breathing. The affine registration of two con-
secutive ultrasound volumes in time is performed using block-matching. For a set
of evenly distributed points in one volume and their correspondences in the other
volume, we propose a robust outlier rejection method to reject false matches. The
inliers are then used to determine the affine transformation. The approach is eval-
uated on 13 4D ultrasound sequences acquired from 8 subjects. For 91 pairs of 3D
ultrasound volumes selected from these sequences, a mean registration error of 1.8
mm is achieved. A graphics processing unit (GPU) implementation runs the 3D US
registration at 8 Hz.
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2.1 Introduction

2.1.1 Clinical motivation

Replacing classical surgical interventions by minimally invasive alternatives is ben-
eficial for the patient and the health care system, as it has large potential for reduc-
ing complication rates, minimizing surgical trauma, and reducing hospital stay. The
minimally invasive character, however, makes these interventions challenging for
the clinician. There is no direct eyesight on the target region and conventional in-
terventional imaging modalities have limited capabilities. Furthermore the user in-
terfacing and interaction with the equipment involved often is not ergonomically
well-designed, and does not match the interventional work flow well. Image guid-
ance is crucial in minimally invasive interventions. Image guidance can be based on
preoperative imaging data (mostly magnetic resonance imaging and computed to-
mography) or intraoperative imaging data (X-ray, ultrasound). Hybrid approaches
can also be useful, in which the diagnostic quality of preoperative images can be
combined with the real-time nature of intraoperative images (also known as fu-
sion imaging). Four dimensional (4D) ultrasound (US) is a relatively novel imaging
modality that currently is mainly used for diagnosis.

Radiofrequency ablation (RFA) and the transjugular intrahepatic portosystemic
shunt (TIPS) procedure are examples of percutaneous minimally invasive image-
guided interventions which are used more and more as alternative to surgical pro-
cedures. 4D US has large potential in assisting the clinicians in these procedures,
as it provides real-time three dimensional (3D) vision. During these procedures the
clinician often holds the US probe steady to visualize a localized area in the liver US
volume. Breathing shifts the region of interest and makes it difficult to constantly
focus on a region of interest, more so in the presence of a catheter. The purpose of
our work is to develop a technique suited for fast 3D ultrasound registration during
image guided minimally invasive intervention to compensate breathing motion. In
addition, our approach would help in keeping the registration up to date in US
fusion imaging.

2.1.2 Related work

Image registration is the process of aligning two or more frames of the same or
similar scene. The basic input data to the registration process are two images: the
fixed image and the moving image. Several methods for US to US registration have
been proposed in literature. These approaches are either feature-based or intensity-
based. Intensity-based methods compare intensity patterns in images via similarity
metrics, registering either images or sub images. If sub images are registered, cen-
ters of corresponding sub images are treated as corresponding feature points.

An important ingredient in a registration framework is the choice of similarity
metric. Sum of squared differences (SSD), sum of absolute differences (SAD) and
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normalized cross-correlation (NCC), see [84], are simple and easy to implement.
The mutual information (MI) metric by [85] has been suggested to be the most
suitable metric for US to US registration in [54]. Mutual information is a power-
ful similarity metric, often used in multi-modal image registration, but it has high
computational complexity, see [46]. In [118] a mutual information-based 3D reg-
istration was used for echocardiographs. [92] used an entropic similarity measure
which is considered to be a generalization of the mutual information measure. Vol-
ume mosaicing was proposed in [65], to generate large US volumes from several
acquired 3D US datasets. An offline method that registers the entire 4D sequence in
a group-wise fashion was discussed in [129].

Ultrasound image acquisition is known to be affected by various factors, such
as acoustic shadowing due to loss of probe contact (inadequate amount of gel) and
a gamut of panel settings such as gain, time gain compensation, focus etc. While US
images, because of these factors, may be of relatively poor quality, they are highly
textured. A texture-based similarity measure was investigated in [34]. [16] used a
combination of texture and edge features.

Feature correspondence based methods find correspondences between image
features. The concept of attribute vectors has been used to define corresponding
voxels in fixed and moving images in [32]. Information theoretic based feature de-
tection was discussed in [134]. Popular 3D Scale Invariant Feature Transform (SIFT)
feature descriptors were used for feature extraction in [93] and [117]. A local phase
based method was employed by [41]. A hybrid feature-based registration approach
using combination of local forces in a variational framework and block-matching
correspondences was reported in [20].

Knowing the correspondence between a number of feature points in images,
the transformation can be determined. Efficient algorithms for the correspondence
problem have been an active research topic in the computational geometry and pat-
tern recognition communities. Establishing correspondences between sparse image
features in natural images using Markov random fields was discussed by [124]. One
popular approach to the correspondence problem involves applying the algorithms
for the more general graph matching problem, see [23]. Spectral matching is an
eigenvector-based method for graph matching, see [56]. A game theoretic approach
to correspondence estimation formulated as a quadratic assignment problem was
presented in [3] and [111].

Intensity based registration has gained popularity over feature-based approaches
in recent years. In feature-based approaches feature images are generated by ex-
tracting features from images, which are then used in subsequent analysis. From
an information theoretical perspective, there is generally information loss in the
process of creating a feature. Any feature constructed from a set of voxel data can-
not contain more information than the same set of voxel data. Nevertheless feature
based approaches are helpful when the noise in the data is significant or an invari-
ant representation of the data is required (e.g. rotational invariance). Feature based
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approaches also help in encoding image content in a way that makes it more dis-
tinctive to be used in classification or registration algorithms. A rigid registration
approach that combines the properties of both intensity based and feature based
approaches and is suitable for parallel implementation is the block-matching ap-
proach, see [22].

There are a few reports on real-time US registration. To address the issue of miss-
ing anatomical structures, near real-time image fusion of multiple single-view real-
time 3D echocardiography using wavelet features was proposed in [106]. Real-time
image based registration of 3D US images from a 4D US sequence is a challenging
task. 3D frames from a 4D sequence have much lower resolution than a static 3D US
image. In [117] and [98] a graphics processing unit (GPU) was employed to develop
a real-time 3D US registration system. Both these methods register consecutive vol-
umes in a 4D sequence and assume that small probe displacements occur between
frames. [98] use SSD as image similarity measure and assume that the anatomical
regions have echoes of similar intensity. [117] employed a feature correspondence
based technique to have a real-time US to US registration.

2.1.3 Overview and contributions

Our ultrasound registration approach is motivated by methods described in ultra-
sound speckle tracking literature, see [47]. A speckle pattern contains densely po-
sitioned targets created by the interaction of ultrasonic beams and the tissue. The
speckle pattern allows highly accurate (sub millimeter level) tracking of tissue mo-
tion, see [114]. Automatic speckle tracking can be performed using block-matching.
In an ultrasound image speckle patterns are found in large collections. The tracking
information from multiple such speckle patterns can be used to perform registra-
tion.

In an ideal scenario, if all the speckle patterns are tracked accurately, the speckle
pattern correspondences can be used to estimate the transformation. However in
practice not all of the speckle patterns will be tracked well, e.g. because of acoustic
shadowing or due to motion decorrelation, see [76]. To address these issues and
to remove false matches, we employ a matching approach, inspired by game the-
ory, to retain only pairs that have been matched correctly. This outlier rejection is
formulated in a game theoretic framework. Speed is an important aspect of our ap-
plication, and a matching strategy reduces over reliance on selecting the speckle
patterns.

In this work, we propose a novel, fast solution to the 3D ultrasound liver regis-
tration problem. Our contributions are fourfold: first, we integrate a fast outlier
rejection approach to improve the result of a block-matching approach, second,
we develop a method to use both the geometric consistency and the appearance
information from block-matching to reject outliers, third, the (non-homogeneous
quadratic) optimization function of the outlier rejection module is mapped to a ho-
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Figure 2.1: Region of interest (ROI) and grid points.

mogeneous quadratic function to be solved efficiently using replicator dynamics,
and fourth, we perform an extensive evaluation on real 3D imaging data. Finally,
we demonstrate that the method is able to perform registrations at 8 Hz.

2.2 Method

Our registration method consists of three basic steps a) naïve point selection, b)
block-matching, and c) outliers rejection followed by an affine transformation us-
ing the inliers. The block-matching step uses a similarity metric to establish corre-
spondences between the selected points in the fixed image and the moving image.
The true displacements are retained and the false displacements are rejected in the
outlier rejection step. The inliers are used to estimate the transformation using [122]
for the affine case and [4] for the rigid case.

2.2.1 Naïve point selection

We sample the points used in our registration pipeline from a regular 3D grid struc-
ture. The grid structure is made up of a series of intersecting axes which are parallel
to the x, y and z axis. The vertices or the junction location of the axes form the set
of points used in the block-matching scheme. Before we sample points from the
US volume based on the grid structure, we define a region of interest (ROI) inside
the cone of the 3D US image. The region outside the ROI, see Figure 2.1, is not
used in the registration process. Instead of a regular grid structure, other choices of
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sampling schemes are equally applicable.

2.2.2 Block-matching

We employ a straightforward block-matching scheme to find matching homolo-
gous points across volumes. This is achieved by taking a block of a certain size
around the voxel of interest in the fixed image and finding the homologous pixel
within the block in the moving image, while searching in the corresponding neigh-
borhood in the moving image. The size of the block in both the images is given by
B = (Bx, By, Bz). The neighborhood in the moving image is defined by the search
window Ω = (Ωx, Ωy, Ωz). The goal is to find the corresponding (correlated) pixel
that maximizes the similarity. The correspondences for all the input points from the
fixed image to the points in the moving image form the input to our outlier rejection
scheme.

NCC is used as a similarity metric for block-matching. Assuming an affine
transformation and small rotation between the two consecutive volumes, no ro-
tation of the block during matching is applied.

2.2.3 Outlier rejection

A game theoretic perspective on the matching problem is popular in literature,
see [2]. These matching approaches are deduced from clustering approaches pre-
sented in [125], [100]. In these approaches an adjacency matrix (payoff matrix in
game theory) is built from a graph, the vertices of the graph represent the potential
correspondences and the edges embed the pairwise constraints between candidate
assignments. A function of this adjacency matrix is optimized to find the cluster.
The concept of dominant set as discussed in [100], is a game theoretic way of parti-
tioning the graph. The optimization function of a dominant set formulation consists
of a homogeneous quadratic term. Similar formulations are also found in spectral
clustering literature, see [74]. In our work, we discuss the application of game the-
ory in establishing potential correspondences based on (pairwise) geometric con-
straints and appearance information.

2.2.3.1 Geometric constraint

Let P = {ph} and Q = {qh} where 0 < h ≤ m, be the set of locations from fixed
volume and moving volume, respectively, having the highest degree of similarity.
We have a one to one correspondence between the points in the point set P and Q.
As both the points are from volumes representing the same anatomical structure,
the geometric distance between the points ought to be preserved. A point qh in
the moving volume that preserves the geometric distances with most of the other
points in the same set Q has a higher chance of being an inlier, and vice versa.
This criterion of preserving the geometric distances forms the core of our outlier
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rejection scheme, similar to [124]. This information is embedded in a graph struc-
ture and is represented as an adjacency matrix. An adjacency matrix (A) represents
a fully-connected undirected graph whose edges express the relative relationships,
or affinities, between each pair of points in the point set, and is defined as follows:

f geo(x) = ∑
u,v∈O

Au,vxuxv , (2.1)

where

Au,v = e−δ2
u,v/2σA

2
and δu,v =

|‖qu − qv‖ − ‖pu − pv‖|
‖qu − qv‖+ ‖pu − pv‖

.

O = {1, · · · , m} is a set of elements enumerating the bijective association between
the point sets P and Q. For h ∈ O, xh is the probability of qh being an inlier. The
disparity between the pairwise distances is normalized by dividing the pairwise
distance by the sum of the distance between the points. The parameter σA moder-
ates the strength of the term δu,v. It is apparent from the pairwise distances that the
inliers have high similarity with each other and poor similarity with the outliers.

2.2.3.2 Appearance constraint

The appearance constraint is derived from the block-matching scores. This con-
straint favours locations that have high block-matching scores. The appearance
term is defined for each point as follows:

f app(x) = ∑ Buxu , (2.2)

where
Bu = e−γ2

u/2σB
2

,

γu is the appearance term from the uth block, γu = |1 − BMu|, where BMu is the
block-matching score of the uth block. The parameter σB moderates the strength
of the term γu. Appearance and geometric constraints are combined to remove the
false matches and retain true matches.

2.2.3.3 Optimization

Combining the quadratic geometric constraint and the linear appearance constraint,
the function to optimize for our case is:

f (x) = x·Ax + λB·x , (2.3)

where each element xi of x states whether point i is an inlier or not. x ∈ ∆, which is
the unit simplex defined as:

∆ = {x ∈ R
m
+ : e⊺x = 1} , (2.4)
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where e = [1, . . . , 1]⊺ ∈ R
m. The elements of the stochastic vector x are nonnegative

and sum up to one.
By substituting K = A + λ

2 (eB⊺ + Be⊺), Equation 2.3 can be rewritten as:

f (x) = x·Kx , (2.5)

where x ∈ ∆, see [10]. Hence a non-homogeneous quadratic optimization function
of the form of Equation 2.3 is mapped to a homogeneous quadratic optimization
function of the form of Equation 2.5.

Algorithm 1 : x ⇐ Optimize (K, x)

Require: ǫ {Given the initial state f0, ǫ determines whether the function increase
sufficiently. For our application we choose ǫ = 1.0e-06.}

Ensure:
1: x ⇐ 1/m
2: f0 ⇐ xTKx
3: f1 ⇐ 0
4: f2 ⇐ f0

5: while
( f2− f1)

f0
> ǫ do

6: f1 ⇐ f2
7: for all elements of x do
8: xi ⇐ xi

(Kx)i

xTKx
9: end for

10: f2 ⇐ xTKx
11: end while
12: x ⇐ Set Inliers (x)

The replicator dynamics update equation to maximize the above energy term is:

xh(t + 1) = xh(t)
(Kx(t))h

x(t)·Kx(t)
, (2.6)

where xh is the hth term of x, see [100]. The equation ensures that ∀ t, x(t) ∈ ∆. The
trajectory of Equation 2.6 moves towards an asymptotically stable state, see [135].
A fixed point of the replicator dynamics (or any dynamical system) is said to be
asymptotically stable if any small deviations from that state are eliminated by the
dynamics as t → ∞. As matrix K is symmetric in Equation 2.5, the function x·Kx
is strictly increasing along the trajectory of Equation 2.6, see [100]. Hence, we reach
the (local) maxima at the location where the trajectory of Equation 2.6 does not
increase any further. We initialize each element of x to 1/m. The steps are presented
in Algorithm 1. After convergence, the inliers are determined by thresholding the
elements of x, see Algorithm 2.
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Algorithm 2 : x ⇐ Set Inliers (x)

Require: ǫ {The elements of vector x that are outliers should ideally → 0, thus
we choose ǫ = 1.19209e-007, which is the machine epsilon value for the floating
types.}

Ensure:
for all elements of x do

if xi < ǫ then
xi ⇐ 0 {This is an outlier}

else
xi ⇐ 1 {This is an inlier}

end if
end for
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Figure 2.2: Registration results on manu-

ally rotated 3D US datasets. Parameters are

(σA, λ, σB) = (0.1, 0.1, 0.1).
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2.3 Experimental setup

2.3.1 Data and resources

4D US data were acquired with a Philips iU22 xMATRIX US system using the X6-1
PureWave xMATRIX transducer. A proprietary Philips protocol was implemented
for digital streaming via an ethernet link, enabling high quality digital images and
most scan parameters to be transferred from the iU22 xMATRIX system to our com-
puter. The acquisition of the 4D image involves steering the US beam across the
area of interest. Once the area of interest is identified, the operator keeps the probe
steady to acquire continuous volumes (in this case liver volumes) over time. As the
probe was kept steady while acquiring each dataset, the dataset contains a series
of liver volumes capturing the liver motion due to breathing. Fifteen 4D US vol-
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Figure 2.4: Registration error for different

block sizes. The number of grid points is 194.
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number of grid points. The block size is

113 mm3.

ume sequences were acquired from eight healthy volunteers. No specific breathing
protocol (i.e. free breathing) was used during image acquisition. During manual
annotations for ground truth, we found that two of the 4D ultrasound sequences
were hard to annotate, because the ultrasound volume contained a small part or
corner of the liver. It was difficult to find locations in the ultrasound volume that
would form reliable landmarks. We discard these two 4D ultrasound sequences
from the evaluation. The transducer was placed axial mid and coronal while ac-
quiring the scans. The 3D+t US volumes were 192 × 246 × 117 voxels with voxel
size 1.144 × 0.594 × 1.193 mm and acquired at 6 Hz using the proprietary pro-
tocol. From the 4D US sequences, pairs of frames were selected in a systematic
way such that they are representative of the whole breathing cycle. The follow-
ing pairs: (3, 33), (4, 29), (5, 25), (6, 21), (7, 17), (8, 13) and (9, 10) were chosen from
each of the thirteen 4D US sequences. Hence in total 91 pairs of US volumes were
used for evaluation.

The code was implemented in C++ and MeVisLab. The block-matching and out-
lier rejection were additionally implemented in OpenCL, to be run on a GPU. The
GPU implementation was run on a NVIDIA GTX 780 Ti GPU.

2.3.2 Parameter setting

To have an experimental setup invariant to the input data pixel spacing, we work
in the world co-ordinate space (in mm).

Naïve point selection : It is obvious that with an increase in the number of sample
points the number of true correspondences will increase. However, for practical
purpose the number of sample points should be kept low. We restrict the number
of sample points by fixing the grid spacing for the sample points grid. Notice that
with the ROI the number of sample points will be less than if there was no ROI.
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Figure 2.7: RANSAC performance. The num-
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Grid spacings of 22 mm, 18 mm, 14 mm and 11 mm are explored. Grid spacing is
inversely related to the number of grid sample points. The corresponding number
of grid points for the mentioned grid spacing are 52, 101, 194 and 436, respectively.

Block-matching : We choose the number of voxels in each dimension such that
the block size is isotropic in the world co-ordinate space. Block sizes of 73 mm3,
93 mm3, 113 mm3 and 133 mm3 are investigated. The search region is selected such
that it is large enough to capture the shift in the anatomy. For our registration ex-
periments the search region is Ω = 403 mm3, i.e. 20 mm in all directions. We use
normalized cross-correlation similarity metric for block-matching.

Outlier rejection : The respective parameters for our method are σA, λ and σB. In
the experiments, the evaluation range for each of the parameters is {0.01, 0.1, 1.0, 10.0}.

2.3.3 Evaluation metric and ground truth

On the 91 pairs of US volumes, ground truth registration was established using
manual annotations. Let gF

i and gM
i be an annotation pair for the fixed and the

moving image, respectively. We define a mean target registration error (mTRE) to
determine the 3D registration error, where the “targets” in the mTRE calculation
are the annotations in the moving image. The average distance between the points
defines the mTRE:

mTRE =
1
n

n

∑
i=1

‖gM
i − TreggF

i ‖,

where Treg is the transformation determined by a registration algorithm and n
being the number of annotations.
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2.3.4 Experiments

We perform a series of experiments to evaluate the proposed method.

2.3.4.1 Block-matching and outlier rejection

Block-matching may suffer from (large) rotational motion. To this end, we first eval-
uate the robustness of the block-matching (with outlier rejection) approach under
controlled rotational transform of ultrasound data. We used ten 3D ultrasound vol-
umes and rotated the dataset in the range from 0 to 45 degrees with a step size of
5 degrees. The axis of rotation was (x = 1, y = 1, z = 1). All the rotated datasets
paired with their unrotated counterpart, form the input to our experiment. Block
size of 113 mm3 and 194 grid points was used for this experiment.

In the next experiment we evaluate the outlier rejection based on geometric con-
sistency using simulated data. We study the performance of the module given cer-
tain percentages of inliers that are present in the correspondences from the block-
matching scheme. To simulate this scenario, we select a set of points (200 sample
points) using the grid. A known translation (x = 3, y = 9, z = 5) and rotation an-
gle r = 45 degrees along the axis (x = 1, y = 1, z = 1), was applied to the point
set. The transformed point set is our ground truth. The point set is then partitioned
randomly into two subsets, namely the inliers and the outliers. As the inliers ought
to be close to the ground truth, small random displacements are introduced to the
set of inliers. The displacement interval of the co-ordinates of the inliers is given
by δinliers = [0, 3] mm. Similarly, large random displacements are introduced to the
outliers set. This simulates the situation in which outliers are randomly distributed
with respect to the target position. The displacement interval of the co-ordinates of
the outliers is given by δoutliers = [3, 20] mm. We thus simulate a realistic situation
with inliers and outliers representative for the output of the block-matching step.
As we evaluate only the geometric consistency term of the outlier rejection mod-
ule, λ value is set to zero in Equation 2.3. The adjacency matrix is constructed and
evaluated for σA values of {0.01, 0.1, 1.0, 10.0}, see Equation 2.1. The percentage of
inliers is gradually varied from 0% to 100%.

2.3.4.2 Parameter tuning

We investigate the effect of changing block-size and grid spacing. We experiment
with various block sizes keeping the grid spacing fixed. Next we analyze whether
increasing the number of sample points improves the registration results, given a
fixed block-size.

As we narrow down on the appropriate block size and the grid spacing for our
application, we are interested in estimating the optimal σA, λ and σB values, see
Equation 2.1, 2.2 and 2.3. This would complete our parameter optimization step.
To estimate the optimal parameters we first evaluate our registration approach.



Fast and Robust 3D Ultrasound Registration 25

 0

 0.2

 0.4

 0.6

 0.8

 1

(σ
A ,λ,σ

B )=(0.1, 0.1, 0.1)

(σ
A ,λ,σ

B )=(0.1, 0.1, 1.0)

(σ
A ,λ,σ

B )=(0.1, 1.0, 0.1)

(σ
A ,λ,σ

B )=(0.1, 1.0, 1.0)

(σ
A ,λ,σ

B )=(1.0, 0.1, 0.1)

(σ
A ,λ,σ

B )=(1.0, 0.1, 1.0)

(σ
A ,λ,σ

B )=(1.0, 1.0, 0.1)

(σ
A ,λ,σ

B )=(1.0, 1.0, 1.0)

P
e

rc
e

n
ta

g
e

 o
f 

in
lie

rs

Figure 2.8: Inliers statistics on various param-

eter settings of our method. The number of grid

points is 194 and the block size is 113 mm3.

Optimal setting is (σA, λ, σB) = (0.1, 0.1, 0.1).
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Figure 2.9: Box plot of different methods.

We use a leave-one-out cross-validation scheme to assess how the results will gen-
eralize to an independent data set. One round of leave-one-out strategy involves
partitioning a sample of data into complementary subsets, performing the analy-
sis on one subset (called the training set), and validating the analysis on the other
subset (called the validation set or testing set). As the 4D US sequences were ac-
quired from eight different subjects, our testing set consists of image pairs from a
single subject, and the remaining datasets for the training set. The cross-validation
scheme is iterated over all subjects. In each of the iterations, optimal parameters
are estimated over the training set (N-1 subjects) and evaluated on the testing set (1
subject). The validation results are averaged over all rounds to estimate the overall
error. We report the performance of our approach using this leave-one-out cross-
validation scheme. This provides a conservative estimate of the performance of our
method. The parameter set that appears most often (mode) across the leave-one-
out cross-validation rounds is chosen as the optimal parameter. Given the optimal
parameter setting we compare the registration results of our method to the initial
displacement between the fixed and moving image based on the ground truth. We
report the registration error.

2.3.4.3 Comparison with other methods

We compare the registration results of the proposed method with three other meth-
ods: Elastix, similarity-based outlier rejection and RANSAC.

1. Elastix (rigid, affine and B-spline transformation models), see [61]: is an inten-
sity based medical image registration approach. The used parameter settings
can be downloaded from the Elastix parameter file database, see [62]. The pa-
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rameter file uses MI similarity metric. We evaluate the performance of Elastix
for all the three transformation models.

2. Similarity-based outlier rejection (rigid and affine transformations): uses the same
block-matching results, but selects as inliers the block-matching results with
the best similarity scores. The number of inliers is a percentage of the total
number of points. We follow the same leave-one-out strategy as for the pro-
posed method to determine the optimal parameters of the algorithm. We re-
port the resulting registration error.

3. Geometry-based outlier rejection via RANdom SAmple Consensus (RANSAC) (rigid
and affine transformations), see [31], [33]: is an iterative method to estimate
parameters of a mathematical model which describes the observed data con-
taining outliers. RANSAC has the following parameters: t (in mm) - a dis-
tance threshold value for determining when a data point fits a model, d - the
number of data values required to assert that a model fits well to data, r -
the minimum number of data values required to fit the model and k - the
maximum number of iterations allowed in the algorithm. We follow the same
leave-one-out strategy as for the proposed method to determine the optimal
parameters of the algorithm. We report the resulting registration error.

We also evaluate and report the GPU execution time of the OpenCL code for the
block-matching and the outlier rejection modules.

2.3.5 Results

The presented results of the above listed experiments are enlisted below.

2.3.5.1 Block-matching and outlier rejection

Figure 2.2 shows the registration error on the controlled dataset with respect to the
ground truth. The mTRE value for the ten datasets are below 2 mm for rotations
up to 25 degrees of the US volumes. For rotations larger than 25 degrees the error
significantly increases.

Figure 2.3 shows the performance of the outlier rejection module for various
percentage of inliers and for various parameter settings. For σA = 0.1 the mTRE is
small in case of 20% or more of inliers.

2.3.5.2 Parameter tuning

Figure 2.4 shows the performance of the method for various block sizes, ranging
from 73 mm3 to 133 mm3. Figure 2.5 shows the performance of the method with
various grid spacings keeping the block size fixed. The registration results improve
with the increase in the number of sample points. A block size of 113 mm3 and 194
grid points provides good results. Decreasing the grid spacing or increasing the
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block size does not result in a significant gain in performance. Accordingly, we use
a block size of 113 mm3 and 194 grid points for the remaining studies.

Figure 2.4 and Figure 2.5 show that the registration results are stable across the
selected parameter range. Table 2.1 shows the parameter optimization for the func-
tion in Equation 2.3, with and without appearance term, for both rigid and affine
registrations. In Table 2.1 each row corresponds to a leave-one-out cross-validation
round per subject. We choose the parameter σA, λ and σB values that appears most
consistently across the subjects in Table 2.1 as our optimum parameter value. For
our method-Affine the chosen parameter setting is (σA, λ, σB) = (0.1, 0.1, 0.1). Av-
eraging over all the subjects gives a leave-one-out registration error of 1.83 mm,
for 194 grid points and block size of 113 mm3, see Table 2.3. Figure 2.8 shows the
statistics on the number of inliers generated by the outlier rejection module.

2.3.5.3 Comparison with other methods

1. Elastix (rigid, affine and B-spline transformation models): Figure 2.9 shows
the box plot of the registration errors for Elastix. Table 2.3 shows the perfor-
mance of the Elastix registration method for rigid, affine and B-spline trans-
formation models.

2. Similarity-based outlier rejection (rigid and affine transformations): Figure 2.6
shows the performance of the approach for various percentages of the block-
matching results for affine transform. In Table 2.2 we report the leave-one-out
cross-validation estimating the optimal parameters. The registration results
of the method for rigid and affine transforms in Table 2.3. The overall opti-
mal parameter setting for similarity-based-Affine approach is the top 30%, see
Table 2.2.

3. Geometry-based outlier rejection via RANdom SAmple Consensus (RANSAC) (rigid
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and affine transformations): As the number of unknowns of the transforma-
tion to estimate for the affine case is (n2 + n) = 12, where n is the dimension
of the data point, we require greater than or equal to four 3D points to fit an
affine model. Accordingly, we use a r value of four 3D points. t was evaluated
for distances from 0.5 mm to 14.5 mm. The parameter d which determines the
number of data values required to assert whether a model fits well to data,
is dependent on how many correspondences are found in the image and the
anatomy being imaged. Parameter d was varied between 10 to 70 points. Fig-
ure 2.7 shows the performance of the approach for various settings of t, d and
k for affine transform. We fix the maximum number of iterations to k = 6000,
as increasing the number of iterations does not result in a significant gain in
performance, see Figure 2.7. In Table 2.2 we report the leave-one-out cross-
validation estimating the optimal setting for the rest of the parameters. We
then report the performance of the method for rigid and affine transforms in
Table 2.3. Parameters (t, d) = (13.5 mm, 60 points) is the optimal setting for
RANSAC-Affine, see Table 2.2.

Figure 2.9 shows the box plot of the registration errors for different methods. The
leave-one-out error of the different methods are shown in Table 2.3. For the given
dataset, the Elastix approach with a B-spline transformation model has the smallest
registration error, and next best is the proposed method with an affine transforma-
tion model. We also tested if the performance of our method-Affine is statistically
significantly different from other registration methods using a two-sided paired
t-test. For determining statistically significant different results we use a thresh-
old of 0.05 for the p-value of the t-test. The paired t-test shows that our method-
Affine is statistically significantly different from all the other methods except for the
RANSAC-Rigid, Elastix-Affine and Elastix-B-spline methods, see Table 2.3.

The GPU execution time of the OpenCL code for the block-matching and the
outlier rejection modules is shown in Figure 2.10 and Figure 2.11, respectively. For
NCC similarity metric, block size of 113 mm3, 194 grid points and search range
of 203 mm3, the block-matching and outlier rejection take 0.08 and 0.04 seconds,
respectively. Hence with GPU implementation the registration runs at 8 Hz, for
the given parameter settings. Some representative registration results are shown in
Figure 2.12.

2.4 Discussion and conclusion

In this work we presented a 3D US affine registration approach. The approach con-
sists of three steps namely a) naïve point selection, b) block-matching and c) out-
lier rejection followed by a least square affine registration of the inliers. The point
selection is performed by sampling points from a 3D grid. A one-to-one correspon-
dence between the points in the fixed and the moving image is established in the
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Figure 2.12: Registered Volumes: Left - Registration result in checker box view, Middle - Fixed

image, Right - Moving Image.

block-matching step. The block-matching step potentially yields many false corre-
spondences. An outlier rejection module is hence applied to reject the false matches
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and retain the true matches. The outlier rejection module employs geometric con-
sistency and appearance information to find the inliers. The framework maps a
non-homogeneous quadratic optimization problem into a homogeneous quadratic
optimization problem and solves it efficiently using replicator dynamics. The out-
lier rejection module which solves a clustering problem is a generic method and can
be applied to various other similar problems. The GPU execution time as shown in
Figure 2.10 and Figure 2.11, implies that for our given application and with an US
frame rate of 6 Hz, our registration approach can operate in real-time.

Compared with other imaging modalities, such as computed tomography (CT)
and magnetic resonance imaging (MRI), ultrasound transducers are mobile. They
offer high user flexibility, however the field of view is small and usually a large or-
gan like the liver is only partly visible. Hence for our application we assume a affine
transformation between subsequent frames. Further, as we focus on a fast imple-
mentation approach, in a affine registration model, interpolation and resampling
operations are computationally less intensive compared to a non-rigid registration.

In our application, the probe position is fixed. We demonstrated that our ap-
proach is robust to motion induced liver rotation. Our registration approach is tol-
erant to rotation up to 25 degrees, as shown in Figure 2.2. However, during compli-
cated surgical procedures there could be large rotation between consecutive frames
due to large probe displacement or change in patient position. Such motion of the
probe or the patient can be accommodated for using an optical or electromagnetic
tracker, see [11]. Furthermore the block-matching step is not designed to handle
large rotations. To handle large rotations, block-matching can be performed on a
feature space image which is rotationally invariant, see [120].

In order to show the robustness and practical applicability of our method, we
systematically select two frames from the complete sequence and show the perfor-
mance of our method. A leave-one-out experiment was performed on 91 pairs of
US datasets with a performance of 1.8 mm, see Table 2.1. With the voxel size of the
4D US dataset being 1.144× 0.594× 1.193 mm the voxel diagonal was estimated to
be 1.8 mm, hence the error of 1.8 mm is around single voxel diagonal length.

Comparisons with other reports are hard to interpret, as different data and eval-
uation criteria have been used. In [54], for datasets with a voxel resolution of 0.6
mm in each dimension, they show a registration error of 2.99 ± 1.54 mm using the
mutual information metric by Mattes. For ultrasound guided prostate biopsy appli-
cation [57] found mTREs of 2.13 ± 0.80 and 2.09 ± 0.77 mm for rigid and non-rigid
techniques, respectively.

[117] and [93] used a feature-based approach. The similarity between matched
features is estimated by finding the similarity between the underlying transforma-
tions. The matching problem is posed as a robust parameter estimation problem
and is solved using RANSAC, see [31]. RANSAC differs from our approach as it
requires the setting of problem specific thresholds. Apart from geometric consis-
tency criteria, our graph based approach utilizes appearance information to find
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the outliers.
We also compared our method with other approaches, see Figure 2.9 and Ta-

ble 2.3. The registration error of our method-Affine is lower than other methods
except Elastix-B-spline, see Table 2.3, though the difference with RANSAC-Rigid
and Elastix-Affine was not statistically significant in a paired t-test. Additionally,
Figure 2.9 shows that, compared to other approaches, our method-Affine has lower
variability. This indicates the robustness of our approach. The simulation experi-
ment results shown in Figure 2.3 indicate that the outlier rejection module works
efficiently for percentage of inliers ≥ 20%.

It is interesting to note that for the similarity-based algorithm and the RANSAC
algorithm the affine versions perform poorer than the rigid versions of the meth-
ods, see Table 2.3. This shows that RANSAC which is purely based on the geometric
locations of the points and does not employ image intensity information explic-
itly in its formulation, does not extend well to estimate transformations like affine.
However in our method and in Elastix, the affine versions perform better than the
rigid versions of the algorithm, see Table 2.3. In both Elastix and our method, in-
tensity information (or appearance information in our case) is used in the formula-
tion which helps in estimating the deformation. The Elastix-B-spline performs better
than its affine version, suggesting that there is some non-rigid deformation. Fig-
ure 2.9 shows that Elastix-Rigid has large variations in the registration outcomes.
Intensity based registrations may sometime perceive acoustic shadows in US as
large structures and try to align them resulting in false registration results.

Ultrasound image acquisition is known to be operator dependent, and to be
affected by various factors, such as acoustic shadowing due to loss of probe con-
tact (inadequate amount of gel) and a gamut of panel settings such as gain, time
gain compensation, focus etc. These factors lead to rapid changes in image quality.
Hence image similarity metrics are a critical element of an ultrasound registration
problem. A large number of similarity metrics have been proposed in the medical
image community. Unfortunately there are no clear rules about how to select the
most suitable metric, other than trying some of them in different conditions. US
specific similarity metrics by modeling the speckle statistics in US are discussed
in [131], [21], but they are much more computationally intensive. In order to have a
fast implementation we choose to use normalized cross-correlation (NCC) similar-
ity metrics. However, any other choices of similarity metric like the one mentioned
by [131], can be used as one of the similarity metric in the block-matching module.

Figure 2.10 shows the runtime of the block-matching module on a GPU. For the
block size of 113 mm3 and 194 grid points, the runtime reduces by half if either
the block size is reduced from 113 mm3 to 93 mm3 or the number of grid points is
reduced from 194 points to (approximately half) 101 points. The runtime increases
exponentially with increase in search range. In the outlier rejection module the run-
time increase approximately four times on GPU, when the number of grid points is
increased from 101 points to (approximately double) 194 points, as shown in Fig-
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ure 2.11.
There are several avenues of future work that would potentially improve our

method. Incorporating a motion model for better estimating the position and tem-
poral consistency of the US volume could be useful. The work could also be ex-
tended to a non-rigid registration technique. We intend to address both issues in
future work.

In conclusion, we proposed and evaluated a US to US registration approach for
a robust registration of liver volumes. A mean error of 1.8 mm is achieved for 91
non-consecutive pairs of 3D ultrasound volumes acquired from 13 4D ultrasound
sequences. The registration approach is modular and each module has very few
parameters. Registration results are stable with respect to changes in these param-
eters. Additionally we demonstrate that a GPU implementation of our registration
approach can be used in real-time.
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Table 2.1: Leave-one-out cross-validation for our method. Seven pairs of 3D US volumes are extracted from each of the 4D US

sequences in a systematic way such that they are representative of the whole breathing cycle. The time points of the pairs are:

(3, 33), (4, 29), (5, 25), (6, 21), (7, 17), (8, 13) and (9, 10). The number of grid points is 194 and the block size is 113 mm3.

f (x) = xTAx (without appearance term) f (x) = xTAx + λBx (with appearance term)
No. of No. of Rigid Affine Rigid Affine

Subject 4D US 3D US Param Error Param Error Params Error Params Error
seq. pairs (σA) (in mm) (σA) (in mm) (σA, λ, σB) (in mm) (σA, λ, σB) (in mm)

1 1 7 0.1 3.61 0.1 3.66 (0.1 , 1.0 , 0.01) 3.14 (0.1, 0.1, 0.1) 3.07
2 2 14 0.1 1.58 0.1 1.56 (0.1 , 0.01, 1.0 ) 1.58 (0.1, 0.1, 1.0) 1.55
3 2 14 0.1 2.25 0.1 1.98 (0.1 , 0.01, 1.0 ) 2.25 (0.1, 0.1, 1.0) 1.97
4 2 14 0.1 2.32 0.1 2.29 (0.01, 0.1 ,10.0 ) 2.96 (0.1, 1.0,10.0) 2.39
5 2 14 0.1 1.43 0.1 1.33 (0.1 , 0.1 , 0.1 ) 1.48 (0.1, 0.1, 0.1) 1.37
6 2 14 0.1 1.66 0.1 1.56 (0.01, 1.0 ,10.0 ) 1.71 (0.1, 0.1, 0.1) 1.58
7 1 7 0.1 1.83 0.1 1.79 (0.1 , 0.01, 1.0 ) 1.83 (0.1, 0.1, 0.1) 1.79
8 1 7 0.1 0.95 0.1 0.86 (0.01, 1.0 ,10.0 ) 1.16 (0.1, 0.1, 0.1) 0.91

Leave-one-out error (mean) 1.95 1.88 2.01 1.83
Optimal Parameter (mode) 0.1 0.1 (0.1 , 0.01, 1.0 ) (0.1, 0.1, 0.1)
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Table 2.2: Leave-one-out cross-validation for Similarity-based Algorithm and RANSAC. Seven pairs of 3D US volumes are extracted

from each of the 4D US sequences in a systematic way such that they are representative of the whole breathing cycle. The time

points of the pairs are: (3, 33), (4, 29), (5, 25), (6, 21), (7, 17), (8, 13) and (9, 10). The number of grid points is 194 and the block size is

113 mm3.

Similarity-based Algorithm RANSAC
No. of No. of Rigid Affine Rigid Affine

Subject 4D US 3D US Param Error Param Error Params Error Params Error
seq. pairs (%) (in mm) (%) (in mm) (t, d) (in mm) (t, d) (in mm)

1 1 7 10 3.73 30 5.26 ( 9.5, 30) 2.47 (13.5, 60) 3.23
2 2 14 10 2.19 30 2.24 ( 9.5, 30) 1.32 (13.5, 60) 1.41
3 2 14 10 2.98 40 4.99 ( 9.5, 30) 2.34 (12.5, 50) 2.68
4 2 14 10 3.32 30 4.34 ( 8.5, 40) 4.14 ( 9.5, 50) 4.84
5 2 14 10 2.11 30 2.14 ( 9.5, 30) 1.45 (13.5, 60) 1.60
6 2 14 10 2.41 30 2.69 (10.5, 30) 1.98 (13.5, 60) 1.77
7 1 7 10 1.99 30 1.90 ( 9.5, 30) 1.83 (13.5, 60) 1.76
8 1 7 10 1.36 30 1.44 ( 9.5, 30) 0.93 (13.5, 60) 1.01

Leave-one-out error (mean) 2.51 3.13 2.06 2.29
Optimal Parameter (mode) 10 30 ( 9.5, 30) (13.5, 60)
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Table 2.3: Comparison with different methods. The number of grid points is 194 and the block

size is 113 mm3.

Method Sim. Error Paired t-test
Metric (in mm) w.r.t. our method

Elastix-Rigid MI 2.30 0.0231
Elastix-Affine MI 2.18 0.0646

Elastix-B-spline MI 1.80 0.9799
Sim.-based-Rigid NCC 2.51 0.0000
Sim.-based-Affine NCC 3.13 0.0000
RANSAC-Rigid NCC 2.06 0.1202
RANSAC-Affine NCC 2.29 0.0168

Our Method-Rigid NCC 2.01 0.0029
Our Method-Affine NCC 1.83 NA





Chapter 3

4D Liver Ultrasound Registration

Based on:

Jyotirmoy Banerjee, Camiel Klink, Edward D. Peters, Wiro J. Niessen, Adriaan Moelker
and Theo van Walsum, 4D Liver Ultrasound Registration, WBIR, 2014.

Abstract

In this paper we present a rigid registration approach for 4D ultrasound (US) datasets,
where images are registered over time. The 3D registration approach preceding the
4D registration consists of two main steps - block-matching and outlier rejection.
The outlier rejection step removes the spurious matchings’ from the block-matching
module and ensures inverse consistency. For 4D registration, we perform registra-
tion of consecutive US volumes over the time series. Transformation between any
two frames is estimated by taking the product of all the intermediate transforms. To
avoid accumulation of error over the series of transformations, a long range feed-
back mechanism is proposed. A mean total registration error of 1 mm is achieved
across six 4D ultrasound sequences of human liver with an execution speed of 10
Hz.
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3.1 Introduction

Motivation : Ultrasound (US) is a unique imaging modality. Unlike computed to-
mography (CT) and magnetic resonance imaging (MRI), it is mobile and real-time.
This is a desired combination in diagnostic and interventional setup. With the ad-
vent of 4D ultrasound, volumes of human anatomy can be visualized in real-time.
Interoperative imaging using 4D ultrasound has huge potential in minimally inva-
sive surgery of the liver. Image registration is a basic requirement in these appli-
cations and they aid in image stabilization for better visualization. A group wise
4D registration approach takes a stack of US volumes to perform the registration
over the time series [129]. This approach is benefited from looking at US volumes
in hindsight and is suited for offline processes as they have high computational and
storage cost. A more dynamic approach would be to register images in streaming
4D US data. In this scenario, registrations are required to be up to date until the
current time point, appending the registration results of the subsequent US frame.
Given the registration results for the left half of the time axis the challenge is to
move forward in time, keeping the registration up to date. A typical 3D US regis-
tration method when extended in the time domain is likely to face the following
challenges -

• Due to motion (probe, patient or breathing), the region of interest might un-
dergo large displacements, resulting in small overlap between the US frames.

• Over time small errors in the 3D registration could accumulate, yielding widely
diverging outcomes.

• Continuous input stream of US volumes induces heavy computational and
storage burden on the registration approach.

Related work : Image registration is the process of determining the geometrical
transformation that aligns the moving image to the fixed image. 4D registration
extends this notion in the temporal domain. Group wise 4D US registration was
addressed by Vijayan et al. [129], where spatial and temporal smoothness of the
transformations are enforced by using a temporal free-form deformation (TFFD)
model. Shi et al. [119] extend the TFFD model with a sparse representation and
use it to recover smooth motion from time sequence of cardiac US images. Øye et
al. [98] propose a method to perform real time image registration on streaming 4D
ultrasound data, and use it to deduce the positioning of each ultrasound frame in
a global coordinate system. In this chapter, the 3D registration framework which is
precursor to our 4D registration approach is part of an existing work submitted to
a journal. In this work we extend the previous registration framework, to address
the issues related to the 4D US registration problem.

Our Contributions : In this chapter we present a 4D registration approach which
unlike the group wise approaches performs registration dynamically. First, to max-
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imize the chance of overlap between the contents of the frames, we register consec-
utive frames in time. In order to have a robust registration an inverse consistency
criteria is enforced. This ensures consistency between the forward backward trans-
forms. Second, the inverse consistency criteria helps the preprocessing (which in
our case is the block-matching scheme) done in a parallel fashion. Third, to neu-
tralize or reduce the accumulation of registration errors over the time series, we
propose a feedback mechanism over a time gap.

3.2 Method

3.2.1 3D registration

The 3D registration approach is based on block-matching [22]. For a collection of
points from the fixed images the block-matching gives a set of correspondences
in the moving image. As US images are poor in quality, the correspondences may
have lots of spurious matches. We remove the false matches using an outlier rejec-
tion module. A game-theoretic matching approach is employed to reject the false
matches [6]. Our contribution in this chapter is to extend the method to forward-
backward (or inverse consistency based) registration. The true matches are further
used to estimate the rigid transformation using Arun’s et al. least-squares registra-
tion algorithm [4].

3.2.2 4D registration

Let P = {pi} and Q = {qi} where 0 < i ≤ n, be the set of locations from fixed vol-
ume and moving volume, respectively. We have a one to one correspondence be-
tween the point sets from the block-matching. Let a mapping M ⊆ P × Q represent
potential correspondence from the point set P to Q; and similarly in the reverse di-
rection a mapping N ⊆ Q′ × P′ represent potential correspondence from the point
set Q′ = {q′ i} to P′ = {p′i}. Ideally if all the points are tracked well both in the
forward and the backward directions then ∀i p′i = pi ⇒ q′ i = qi and vice-versa (In-
verse consistency). Note that we choose the point sets P and Q′, independently. This
has two advantages, first, inverse consistency is not enforced explicitly, and second,
the block-matching can be executed in parallel. Later we show how we incorporate
the inverse consistency in an implicit way. Further as the point sets are from vol-
umes representing the same anatomical structure, the geometric distance between
the points should be preserved (Geometric consistency). A point qi in the moving
volume that preserves the geometric distances with most of the other points in the
same set Q and their corresponding pi and p′i are in close proximity, have a better
chance of being an inlier. The criteria of preserving the geometric distances, similar
to [124] and the inverse consistency criteria forms the basis of our outlier rejection
scheme.
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The geometric consistency information can be embedded in a graph structure
and can be represented as two affinity matrices (forward):

Ai,j =

{
e
−δ2

ij/2σ2
if i 6= j

0 else
, (3.1)

where δij = (‖qi − qj‖ − ‖pi − pj‖); and (backward),

Bi,j =

{
e−δ′2ij/2σ2

if i 6= j
0 else

, (3.2)

where δ′ ij = (‖p′i − p′ j‖ − ‖q′ i − q′ j‖).
For ensuring an inverse consistency in an implicit way, we combine the for-

ward and backward block-matching information into a single graph. This is done
by combining the matrix A and B into a symmetric matrix G as follows (forward-
backward):

G =




A | CT

− −
C | B


 , (3.3)

where the matrix C is given as:

Ci,j = e−δ′′2ij/2σ2
, (3.4)

where δ′′ ij = (‖qi − q′ j‖ − ‖pi − p′ j‖).
Given a vector x defining the probability of points in {P, Q′} being an inlier, we

try to find a vector x that maximizes F :

maxF (x) = x·Gx subject to x ∈ ∆ , (3.5)

where ∆ = {x ∈ R
n : xi ≥ 0 and ∑

n
i=1 xi = 1}. Finding the internal nodes or the

inliers corresponds to the notion of a dominant set [100].
Equation 3.5 can be optimized (local optimum) using replicator dynamics [100][135].

The replicator dynamics update equation to maximize a energy term of the form
x·Gx, subject to x ∈ ∆ is:

xi(t + 1) = xi(t)
(Gx(t))i

x(t)·Gx(t)
, (3.6)

where xi is the ith term of x. The equation ensures that ∀t, x(t) ∈ ∆. Equation 3.1,
Equation 3.2 and Equation 3.6 are part from our previous work (submitted).
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Figure 3.1: Pairwise 3D Registration for vari-

ous values of σ (See equation 3.1, 3.4).
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Registration for two grid spacings.
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Figure 3.4: 4D vs. 4D with feedback.
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3.2.3 Penalizing Drift

Registration over consecutive frames in a time series is likely to accumulate errors.
To address this issue we bring a strategy that would help in reducing the drift.
Consider T τn

τ0 to be the transformation from frame τ0 → τn. It is estimated by taking
product of all the transformations between successive frames in the sequence, i.e.
T τn

τ0 = T τn
τn−1

× T τn−1
τn−2 × · · · × T τ1

τ0 . To counter the drift we propose occasional long
range interaction between the current frame τn and some previous frame in time,
say τn−d, where d is the feedback gap. The steps of the strategy are as follows:

1. Register frames τn−d and τn. Let the resulting transform be F τn
τn−d

.

2. Let the pointsets Pτn−d
and Pτn be pointsets in the frames τn−d and τn, respec-

tively. These pointsets are related by the transform F τn
τn−d

, i.e. Pτn = F τn
τn−d

∗
Pτn−d

.

3. The projection of the pointsets Pτn−d
over the frame τn−1 is Pτn−1, and is esti-

mated as Pτn−1 = T τn−1
τn−d

∗ Pτn−d
.

4. Include the additional points Pτn−1 and Pτn , in their respective frames, during
the registration (outlier rejection module) of consecutive frames τn−1 and τn.

3.3 Experiments

The code was implemented in C++ and MeVisLab. A laptop with Intel(R) Core(TM)
i7-2720QM CPU @ 2.20 G Hz, 4 Core(s) processor using 64-bit Windows 7 operating
system and 8 GB of RAM is used for processing the code.

The 4D US data is acquired at 6 Hz from iU22 Philips machine. Three volun-
teers were used. From each of the volunteers, two (axial and coronal) sequences of
4D US were captured. The probe was kept steady during the acquisition. We use
Elastix registration toolbox [61] to generate the reference standard. Different grids
were used in the method and the evaluation. From the six 4D US datasets, system-
atically pairs of US volumes were selected to evaluate the performance. For all the
experiments, we use the same set of parameters: block-size of (11, 11, 11) mm and
grid spacing of 14 mm (which translates to around 200 points). The sum of square
distance (SSD) is the similarity metric using in block-matching. The first two exper-
iments are performed to evaluate the registration approach. The third experiment
is performed to evaluate the feedback mechanism.

1. The purpose of the experiment is to study the parameter σ (given in equa-
tion 3.4) and its effect on pairwise 3D registration. The two pairwise regis-
trations evaluated are a) Forward registration (using affinity matrix in equa-
tion 3.1) and b) Froward Backward registration (using affinity matrix in equa-
tion 3.4). The range of σ values evaluated are {2, 4, 6, 8, 10, 12, 14}. We system-
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atically select pairs of 3D US volumes from the six 4D US dataset. The pairs
correspond to the following time points {(0, 4), (0, 8), (0, 12), (0, 16), (0, 20),
(0, 24), (0, 28)} are used in the evaluation. Based on the registration results,
we choose the best σ value for our application and report the corresponding
registration error. We use mean total registration error (mTRE) as the registra-
tion error metric. The mTRE is given as:

mTRE(T̂ τ2
τ1 , T τ2

τ1 ) =
1
n

n

∑
i=1

‖T̂ τ2
τ1 pi − T τ2

τ1 pi‖ , (3.7)

where T̂ τ2
τ1

is the reference standard transformation from time point τ1 to τ2.

2. Next we evaluate the performance of our registration approach over a se-
quence of US volumes. The 4D registration between the time points (2, 5), for
example is estimated by registering 2 → 3, 3 → 4, 4 → 5 time points and
then multiplying the respective transformation sequentially to derive the fi-
nal transform. 4D registration and the pairwise 3D registration are compared
with the reference standard, for the time points {(0, 4), (0, 8), (0, 12), (0, 16),
(0, 20), (0, 24), (0, 28)}.

3. In the third experiment we evaluate the feedback mechanism. Sequential reg-
istration similar to the previous experiment is performed for the time points
{(0, 4), (0, 8), (0, 12), (0, 16), (0, 20), (0, 24), (0, 28)}. Additionally, a feedback
is used to counter the drift. The feedback gap d is set to 4.

Results :

1. Figure 3.1 shows the forward and forward-backward registration results for
various σ values and two different grid space settings. The grid spacing of
14 mm, 18 mm correspond to 200, 100 sample points, respectively. For a fair
comparison between the forward and forward-backward approach, the to-
tal number of points used for registration should be equal. In terms of the
number of points, the forward approach with 200 points is equivalent to
the forward-backward approach with 100 points each way. Figure 3.1 shows
that the forward-backward registration approach performs better than the
forward registration approach, given the number of points are same in the
two methods. For grid spacing of 14 mm, the forward-backward approach
performs best at σ = 10 mm with mTRE of 1 mm. Figure 3.2 shows the
forward-backward registration results for various σ values and two differ-
ent grid space settings. Increase in sample points improves the registration
results.

2. In Figure 3.3 we study the performance of the registration approach when
applied between consecutive frames over the time series. For the first consec-
utive eight frames the mTRE is below 1.2 mm. Beyond these initial frames
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Figure 3.7: 4D Registration results for four datasets: Left - Registration result in checker box view,

Middle - Fixed image, Right - Moving Image. First Row - Registration between time points 0 and

8, Second Row - Registration between time points 0 and 12, Third Row - Registration between

time points 0 and 20, Last Row - Registration between time points 0 and 28.

the registration performance diverge gradually. The results for all the six 4D
US datasets are plotted in Figure 3.6. These results are also compared to the
pairwise 3D registration results and are shown in Figure 3.3. Figure 3.5 and
Figure 3.6 show the registration results on all the datasets.

3. In Figure 3.4 the 4D registration is evaluated with and without the feedback
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mechanism. The 4D registration without feedback graph diverges. The 4D
registration with feedback curve descends and moves closer to the reference
standard. Some representative registration results are shown in Figure 3.7.

3.4 Discussion and Conclusion

In this work we present a registration framework to perform registration over a
time series, and demonstrate its application on 4D US liver dataset. The method
consists of two parts - the first part performs a 3D registration between subsequent
volumes and ensures inverse consistency, the second part uses an feedback mecha-
nism to counter accumulation of registration error.

Figure 3.3 shows that the pairwise registration performs well with mTRE of 1
mm. When applied sequentially, the registration results in Figure 3.3 show that the
sequential registration works well for the first eight to ten frames. However after
that the registration diverges and performance gradually deteriorates. Hence it is
advisable to register back with the original frame after every tenth frame to main-
tain good registration accuracy. We further apply a feedback criterion to counter the
accumulation of registration error over a time series. The initial results as shown in
Figure 3.4 are encouraging. The feedback gap parameter d is data dependent. In
our experiments we select d = 4 as for d − 1 consecutive frames the accumulated
registration error is below (1 mm) a tolerable limit, see Figure 3.3. More in-depth
analysis is part of future work.

The block-matching and forward-backward outlier rejection was additionally
implemented in OpenCL. The implementation was run on a NVIDIA GTX 780 Ti
graphics processing unit. For block-size of (11, 11, 11) mm, grid spacing of 18 mm
(i.e. 100 points) and search range of (20, 20, 20) mm the block-matching algorithm
takes 0.045 seconds. The outlier rejection module with the forward-backward con-
dition takes 0.05 seconds for grid spacing of 18 mm each way. Adding both the
modules results in an execution speed of 10 Hz.

To conclude, we present a forward-backward transformation based registration
approach for 4D US data. We evaluate a strategy to counter the accumulation of
registration error using a feedback mechanism applying long range interaction. The
approach is evaluated using six 4D US sequences with satisfactory results.





Chapter 4

4D Ultrasound Tracking of Liver and its

Verification for TIPS guidance
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Walsum, 4D Ultrasound Tracking of Liver and its Verification for TIPS guidance,
IEEE Trans Med Imaging, 2016.

Abstract

In this work we describe a 4D registration method for on the fly stabilization of
ultrasound volumes for improving image guidance for transjugular intrahepatic
portosystemic shunt (TIPS) interventions. The purpose of the method is to enable a
continuous visualization of the relevant anatomical planes (determined in a plan-
ning stage) in a free breathing patient during the intervention. This requires regis-
tration of the planning information to the interventional images, which is achieved
in two steps. In the first step tracking is performed across the streaming input. An
approximate transformation between the reference image and the incoming im-
age is estimated by composing the intermediate transformations obtained from the
tracking. In the second step a subsequent registration is performed between the
reference image and the approximately transformed incoming image to account
for the accumulation of error. The two step approach helps in reducing the search
range and is robust under rotation. We additionally present an approach to initial-
ize and verify the registration. Verification is required when the reference image
(containing planning information) is acquired in the past and is not part of the
(interventional) 4D ultrasound sequence. The verification score will help in invali-
dating the registration outcome, for instance, in the case of insufficient overlap or
information between the registering images due to probe motion or loss of contact,
respectively. We evaluate the method over thirteen 4D US sequences acquired from
eight subjects. A graphics processing unit implementation runs the 4D tracking at
9 Hz with a mean registration error of 1.7 mm.
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4.1 Introduction

4.1.1 Clinical motivation

Ultrasound (US) is a unique medical imaging modality as it is non-invasive, af-
fordable, portable and real-time. Ultrasonography is widely used in diagnosis. It
is also used for therapy, for instance to guide biopsies and can be potentially used
in percutaneous minimally invasive procedures such as radiofrequency ablation
(RFA) and transjugular intrahepatic portosystemic shunt (TIPS) placement. Radi-
ologists typically place the hand-held probe (called a transducer) on the surface of
the body such that it is directed towards the anatomy of interest. US technology has
recently significantly advanced with the introduction of matrix array transducers
(3D probe). The 3D visualization using a US 3D probe has great potential, com-
pared to conventional 2D US imaging, to further aid radiologists in planning and
interventions. 3D US can create viewing planes which are not possible with a 2D
US probe.

Hepatic vein

Portal vein

Stent 

Figure 4.1: TIPS Procedure - Stent Placement.

In our work we focus on improv-
ing image guidance for TIPS applica-
tions. In a TIPS procedure a bypass is
created (stent is placed) from the hep-
atic vein to the portal vein, see Fig-
ure 4.1. This is an endovascular pro-
cedure, where the liver tissue is punc-
tured with a needle. Such interventions
are complex, mostly because imaging
is inadequate (2D US, or X-ray), failing
to adequately visualize the needle and
target structure in 3D [26]. 4D US has
the potential to improve image guid-
ance as it enables continuous tracking
of the target structure in 3D.

Direct visualization of US volumes
does not aid in image guidance for
TIPS: there are no good direct volume
rendering approaches that deal with the speckled nature of the US image and there
is no way of automatically focusing the rendering to the anatomy of interest. Our
proposed solution is to render specific planes (cross-sections) from the US volumes,
i.e. by using planes from a planning US volume, in which the relevant vessels have
been annotated and the planes are chosen such that they show the anatomy of in-
terest, see Figure 4.2 [26]. By using a registration approach, 4D US can be used
while keeping the area of interest in the visualized planes. Such an approach has
two challenges: first, we need an initialization of the registration of the planning
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Figure 4.2: Planning information consisting of appropriate scan planes and the necessary anno-

tations required for easy navigation.

US volume to the live 4D US images. And second, the alignment of the planning
US volume should be maintained over time.

The purpose of this work is to develop and evaluate techniques that will assist
in integrating planning information from the planning US volume to the interven-
tional 4D US sequence in image guided minimally invasive interventions. To this
end, we will address both the initial alignment of the planning information with
the streaming 4D US, as well as compensating the liver motion for continuous vi-
sualization of the region of interest (ROI). The planning information in our clinical
application is selecting the appropriate scan planes and the necessary annotations
required for easy navigation as shown in Figure 4.2.

4.1.2 Related work

Our work is based on image registration, which is the process of spatially align-
ing images. Recently, there has been much interest in 4D registration techniques.
Wachinger et al. [133] proposed a method of aligning multiple images by first reg-
istering consecutive images and then correcting the accumulated error using Lie
normalization for mosaicing of US images. Group-wise 4D registration methods
perform joint alignment of a collection of images. Group wise 4D US registration
for motion compensation of liver was addressed by Vijayan et al. [130]. In their
work, the spatial and temporal smoothness of the transformations are enforced us-
ing a temporal free-form deformation (TFFD) model originally proposed by Metz
et al. [87]. Intensity variance over time is minimized using the group wise similarity
metric mentioned in [8]. Group-wise methods generally use a global cost function
and often do not require an explicit reference image. A maximum likelihood estima-
tion (MLE) [133][132] and congealing [139][69] are other frameworks that have been
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proposed in the literature for simultaneous registration of multiple images. In a
congealing framework a set of images is aligned by minimizing the voxel-wise en-
tropies. Its relationship with the MLE framework was established in [132]. Though
these methods are reported to perform well [132], they are computationally inten-
sive and not suitable for real-time applications.

Speckle tracking and optical flow are alternative approaches that have been
used to register volumetric image data: both result in a (dense) deformation field.
In the context of liver motion, speckle tracking based approaches have been pre-
sented recently by Harris et al. [47] and Bell et al. [7]. Harris et al. [47] developed
speckle tracking-based motion tracking for abdominal organs during therapy. In
their method tracking was performed with respect to a fixed reference frame and
consecutive volumes. In Bell et al. [7] speckle tracking of consecutive volumes and
cumulative addition of displacements was proposed for monitoring liver motion
due to respiration and cardiac activity. Hjertaas et al. [51] used speckle tracking in
4D echocardiography for strain assessments. A 3D optical flow based method for
myocardial motion tracking in echocardiography was presented by Mukherjee et
al. [88]. A spatiotemporal smoothness constraint was incorporated by penalizing
large gradients in the flow vectors at each voxel. The tracking locations are either
manually initialized [82] or a coarse-to-fine multiscale approach is employed [88].
In Brattain et al. [11], real-time 4D registration was performed by tracking the probe
using an electromagnetic (EM) tracking system.

In real-time 4D registration, the continuous input stream of US volumes puts a
heavy computational and storage burden on the registration approach. A pair-wise
solution will be needed to perform direct registration of the current incoming image
(moving volume) to the reference image (fixed volume) [6], referred as Register-to-
Reference (RTR) strategy. However this approach requires a large search range to
cover not only the displacement induced by the breathing, but also due to probe
motion.

Øye et al. [98] used the dead reckoning approach from navigation to perform
real-time image registration on streaming 4D ultrasound data. Instead of regis-
tering the current incoming image to a single reference image, they register to a
compound reference volume generated from a collection of images. This approach
uses a graphics processing unit (GPU) to achieve real-time performance. Unlike
the group-wise methods, real-time approaches use a simple transformation model
like rigid or affine [98][117]. Schneider et al. [117] used a feature-based approach
for real-time 4D US registration. They used SIFT-based [80] features followed by
RANSAC [31][33] to establish correspondences between image pairs. To limit ac-
cumulation of error they maintained a global set of features and integrate them in
their registration framework.

Sufficient proximity or overlap between the fixed and the moving images is re-
quired for a good registration; images that are far apart are harder to register, and
registrations may be more computationally intensive. A detection approach may
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be used to determine if the moving image (placement of the US probe) is well lo-
calized/initialized such that it images the same region of interest as the reference
image. Ni et al. [94] proposed an automatic solution for localizing a fetal abdom-
inal standard plane using an image feature based classification method. Liu et al.
proposed an active appearance model [79] which mimics the visual cues for scan
plane detection in US fetal head images. In radiation therapy Bell et al. [71] address
the problem of tissue deformation caused by a US probe, resulting in a mismatch
between planning and delivery, by using robotic probe placement.

4.1.3 Overview and contributions

In this work we present the following contributions. First, we propose a Register-to-
Reference by Tracking (RTRT) strategy for 4D US tracking to compensate for breath-
ing motion in real-time. The RTRT approach helps in reducing the search range and
is robust under rotation. Second, in a phantom experiment we show that the RTRT
approach is robust under external devices such as needles. Third, we present an
approach for registration verification, that would indicate whether the planning US
volume and the interventional 4D US sequence can be adequately registered. This
criterion will additionally help the registration application to switch from the RTR
mode in the verification to the RTRT mode in the 4D US tracking, whenever re-
quired, automatically. Fourth, we thoroughly evaluate the technique on thirteen
4D US sequences. Additionally, a GPU implementation shows that the approach
runs in real-time, and we demonstrate the application on US datasets.

The rest of the chapter is structured as follows. In Section 4.2 we discuss the
RTRT 4D US tracking approach. In Section 4.3 we discuss the registration verifica-
tion approaches. The experiments and results are presented in Section 4.4, which
are discussed in Section 4.5.

4.2 4D US tracking

The outline of the RTRT approach is described in Figure 4.3. In our approach every
incoming image is aligned with the reference image. The reference image is the US
volume containing the planning information, and could be a US volume that has
been acquired before the intervention. The approach consists of two steps. In the
tracking step (step-I), the most recent consecutive images, i.e. the tn−1 image and
the current incoming image tn are rigidly aligned. The transformation from this
step is combined with the previously estimated transformation between the refer-
ence image tref and the tn−1 image to approximate the transformation between the
reference image tref and the current incoming image tn. In the subsequent refine
step (step-II), a registration between the reference image tref and the current incom-
ing image tn is performed to estimate the final transformation, see Figure 4.3. The
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STREAMING 4D US DATA
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Figure 4.3: Register-to-Reference by Tracking (RTRT). In step-I consecutive images are rigidly

aligned using tracked points. The step-I information is propagated to the step-II. However, compo-

sition of transforms causes accumulation of error. Hence, in step-II the reference image and the

transformed incoming image are realigned.

motivation for this two-step registration is two-fold. First, compared to a direct reg-
istration of the incoming image to the reference image, which needs a large search
range to be able to deal with liver and transducer motion, we can apply two regis-
trations that only require a small search range. This reduces computation time and
the registration is more likely to succeed. Second, compared to a concatenation of
the transforms as in a tracking approach, our approach accumulates minimal error.

In the next subsections, we will first briefly review block-matching and outlier
rejection, which is an essential building block of our 4D US tracking approach (Sec-
tion 4.2.1). We subsequently provide details on the two steps of the 4D US tracking
procedure (Section 4.2.2 and Section 4.2.3).

4.2.1 Block-matching and outlier rejection

We briefly summarize the block-matching and outlier rejection which are impor-
tant components of our 4D tracking process and which were presented earlier; for
complete review and details refer to the Chapter 2 [6]. Given a set of input points
X := {xi}m−1

i=0 in the fixed image, we employ a block-matching strategy to de-
termine the corresponding target points Y := {yi}m−1

i=0 in the moving image, and
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find the best (rigid or affine) transform that matches the displacements from X to
Y . As block-matching in general, and in ultrasound in particular, is bound to fail
in some cases (i.e. for some points), we need to first estimate the true correspon-
dences, and discriminate those from erroneous block-matching results. For this, we
employ a graph-based clustering approach, based on geometric consistency of the
transformation: we use the fact that the distance between two points in X should
not change after block-matching. Therefore, we fill an adjacency matrix A, where
each element aij encodes this geometric consistency (aij is small when the distance
between point i and j before block-matching differs much from the distance be-
tween point i and j after block-matching, and aij is large if the distances are equal).
We also add the appearance information derived from the block-matching scores in
to the adjacency matrix. Subsequently, to find the inliers and outliers of the block-
matching, we maximize the following energy function of the adjacency matrix:

f̂ = arg max
f

fTAf , (4.1)

where f is a stochastic vector and f ∈ ∆, which is the unit simplex defined as:

∆ = {f ∈ R
m
+ : eTf = 1} , (4.2)

where e = (1, . . . , 1)T ∈ R
m. The ith element of f, denoted by fi, indicates whether

the ith point is a true correspondence. A threshold on f̂i’s determines (<) the out-
liers and (≥) the inliers [6].

4.2.2 Estimate transform by tracking

In step-I we track points across the streaming 4D US data. Figure 4.4 provides an
overview of the tracking based registration approach. The inputs are two succes-
sive images tn−1 and tn. Block-matching is used to find correspondences between S
points randomly selected in image tn−1 and image tn. The block-matching may not
always result in true correspondences. The outlier rejection scheme from the previ-
ous section is applied to retain the true matches and remove the false matches. The
inliers are used to determine the rigid transformation between the images using the
method described by Arun et al. [4]. Inliers also form input to the block-matching in
the next cycle, i.e. registration between images tn and tn+1. If the number of inliers,
say N, is less than S, the minimum number of points required for robust tracking,
then (S − N) random points are added. Thus there are always S number of points
used for block-matching. By reusing inliers, the fraction of inliers in the total num-
ber of points is larger than when not reusing inliers. As a certain number of inliers
are required to obtain a good registration, this allows us to reduce the total number
of points to track while keeping a good registration.
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Figure 4.4: Step-I: US Tracking. The flowchart shows the strategy to track points across the 4D

streaming dataset. Inliers from the previous steps are used for the block-matching. If the number

of inliers decreases below a certain threshold (S), the sample points are replenished.

4.2.3 Refine transform

In step-II, given the tracking result from step-I, we determine the registration of
reference image tref to image tn, see Figure 4.3. Consider we know the transforma-
tion between the reference image tref and the image tn−1, written as Tref

n−1. From
step-I we have the transformation Tn−1

n between images tn−1 and tn. Composing
transformation Tref

n−1 and Tn−1
n gives us the approximate estimate of the transforma-

tion Tref
n , written as T̃ref

n = (Tref
n−1 ◦ Tn−1

n ). The images tref and tn are then roughly
aligned using the transformation T̃ref

n . The alignment is not optimal, as the com-
posed transformations may contain errors introduced by the participating transfor-
mations, which will be multiplied by combining the transformations. Hence these
images are registered again to negate the accumulation of error. Note this is equiv-
alent to registering the reference image tref and the image tn, where the sampling
in the block-matching is altered by the transformation T̃ref

n . Implementation wise
the latter approach is more efficient. It does not require explicit rotation and trans-
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lation of the image tn, and such sampling schemes are well supported by the GPU
hardware. The block-matching is followed again by outlier rejection to estimate the
inliers, similar to step-I in Figure 4.4. The inliers are used to estimate the transfor-
mation Tref

n using the approach described by Arun et al. [4] for the rigid case and the
approach described by Späth [122] for the affine case. The newly estimated transfor-
mation Tref

n feeds into the next cycle of registration between the reference image tref
and the image tn+1. In both the steps I and II the initial transformation of the images
used in the registration is close to the transformation to be determined, which helps
in limiting the search range. Finally the motion is modeled by the transformation
Tn

ref between the reference image tref and the input image at time point tn.

4.3 Registration verification

The two-step registration approach from the previous section requires a previously
known registration, and thus cannot be used at the start of a procedure, or at any
moment when the registration between the planning volume and the 4D US vol-
umes is not known. Therefore, in clinical practice, registration will start with an
RTR approach, and a verification step is required to detect the moment from which
the registration between the planning US volume and the 4D US sequence can be
trusted. We use the RTR approach mentioned in [6]. Consider registering a refer-
ence US volume tref with planning information to streaming in 4D US volumes
t = {t0, t1, · · · } from an ultrasound machine. The reference volume was acquired
prior to the streaming 4D sequence, i.e. tref 6= t0, where t0 is the starting image of
the sequence. In clinical practice, the first image of the sequence will not overlap
sufficiently with the reference image to warrant a good registration. We are there-
fore interested in automatically detecting the first ti for which the registration to
the reference image succeeded. Once tref and ti are registered all the subsequent
images in the 4D sequence can be registered to tref using the approach described in
the previous section, see Figure 4.3.

The purpose of the registration verification therefore is to automatically detect
a (sufficiently) good registration while registering according to the RTR approach.
Such detection thus enables to automatically switch to the accurate and fast RTRT
registration, where the only requirement for the human operator is to position the
transducer such that the image is approximately aligned with the reference image
(i.e. within the search range of the RTR approach), which is not a difficult task, as it
is the same as the normal search for the target anatomical structures.

Let the two possible output states of the registration verification be written as
{ΩS, ΩF}, where ΩS is when the images {tref, ti} are registered successfully and
ΩF otherwise, i.e. when the registration failed. We propose two methods to auto-
matically distinguish between the states {ΩS, ΩF} from the registration results. The
underlying assumption of the methods is that, under a slowly moving transducer
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(and slowly moving anatomy), good registrations are consistent over time. This
leads to the following two criteria for deciding whether a registration is successful:
a) consistency of the points that are selected as inliers, b) consistency of the trans-
formation irrespective of the locations of the points in the block-matching. Below,
we describe both methods, based on these two criteria.

4.3.1 Method 1 - Inlier consistency based verification

Let f̂(ref,i) be the distribution of the inliers/outliers from the registration of images
tref and ti, see Equation 4.1. We analyze l consecutive pair-wise registration out-
comes {f̂(ref,i−l+1), f̂(ref,i−l+2), · · · , f̂(ref,i)} over time. If the reference image tref has

sufficient overlap with the images ti
i−l+1 = {ti−l+1, ti−l+2, · · · , ti}, and if the im-

ages are of good quality, then the descriptive locations in image tref and its corre-
sponding locations in images ti

i−l+1 are consistently picked up as inliers during the

outliers rejection optimization process, see Equation 4.1. The vector f̂ represents the
descriptiveness of the different locations of the US volume. Hence it is reasonable
to assume that the vector f̂ does not change significantly during registrations of the
image tref and the sequence ti

i−l+1. On the other hand during improper registra-

tions the vector f̂ may significantly change between the registrations of the image
tref and the sequence ti

i−l+1. Hence the variance of the set of vectors f̂ can be used
as a surrogate to determine the output states ΩS or ΩF of the verification approach.

Principal component analysis (PCA) can be used to estimate the modes of vari-
ations of the random vector f̂. We analyze this by stacking a set of f̂ vectors into a
m×l matrix represented as:

F =
[
f̂(ref,i−l+1) f̂(ref,i−l+2) . . . f̂(ref,i)

]
, (4.3)

where l is the number of images taken into account. The variance of F is given as:

Var[F] =




σ2
0

σ2
1
...

σ2
m−1


 , (4.4)

where {σ2
0 ≥ σ2

1 ≥ · · · ≥ σ2
m−1} are the Eigen values of the covariance ma-

trix 1
l−1 F̂F̂T. F̂ is the mean substracted data given as F̂ = F − UeT, where e =

(1, . . . , 1)T ∈ R
l and U(i) = 1

l ∑
l−1
j=0 F(i, j). The metric to quantify the variations

in f̂ is given by the sum of the Eigen values SI = ∑
m−1
i=0 σi

2. A small SI value implies
f̂ values are similar over a time series, which indicates a successful verification ΩS.
Accordingly a large SI value implies bad verification ΩF. As trace of a matrix is the
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sum of its Eigen values, SI can be efficiently estimated from the covariance matrix
without any matrix decomposition.

4.3.2 Method 2 - Transform consistency based verification

In the second method to detect a good registration, we analyze transformations
from pair-wise registrations over time to determine the verification results {ΩS, ΩF}.
For two different set of input points X1 and X2 in the block-matching, let the trans-
formation from the image tref to image ti be given as Ti

ref(.;X1) and Ti
ref(.;X2), re-

spectively. Given sufficient and evenly distributed input points, the transformation
should be invariant to the location of points X . Let δxi be the difference between
two point sets in image ti, where δxi ∈ R

3k, k is the number of points. The two point
sets are obtained by transforming an arbitrary point set xref in the reference image
tref using the transformations Ti

ref(.;X1) and Ti
ref(.;X2). δxi, which thus is a metric

for the similarity of the transforms Ti
ref(.;X1) and Ti

ref(.;X2), is given as:

δxi =
(
Ti

ref(x
ref;X1)− Ti

ref(x
ref;X2)

)
. (4.5)

For successful verification ΩS we expect δxi to be small. We analyze the random
vector δxi over few images by stacking them into a 3k×l matrix represented as:

X =
[
δxi−l+1 δxi−l+2 . . . δxi

]
, (4.6)

where l is the length of the time series. We again assume that the vector δxi has
small magnitude in case of proper registrations of the image tref and the sequence
ti
i−l+1, implies X → 0. On the other hand in case of improper verification the vector

δxi may have significantly large magnitude between the registrations of the image
tref and the sequence ti

i−l+1.
Similar to SI value in Subsection 4.3.1, the metric to quantify the variations in δxi

is given by a sum of the Eigen values of the covariance matrix of X, ST . A small ST

indicates a successful verification ΩS, and similarly a large ST value implies failed
verification ΩF. Note X → 0 implies Var[X] → 0.

4.4 Experimental Setup

4.4.1 Data and resources

4D US data were acquired with a Philips iU22 Ultrasound Imaging System using
an X6-1 xMatrix Array Transducer. The data is transferred from the ultrasound ma-
chine to a computer via Ethernet. The US volumes were 192×246×117 voxels with
voxel size of 1.144×0.594×1.193 mm3 and were acquired at a frequency of 6 Hz.
Thirteen 4D US sequences from eight volunteers previously acquired for [6] were
used. Additionally four long 4D US sequences (∼3 min) were acquired from three



58 Chapter 4

Table 4.1: Datasets - 4D US Sequences.

No. of Patient or Experiment Probe steady Length
seq.,subj. volunteer No. or motion (in sec)

13,8 Volunteer 4.4.4-1 Steady 6
4.4.4-3
4.4.4-4

4,3 Volunteer 4.4.4-2 Steady 150
4.4.4-4

5,2 Patient 4.4.4-5 Motion 7

volunteers. The volunteers were breathing freely during the acquisition. The oper-
ator manually kept the probe steady while acquiring the real-time 3D volumes of
the liver.

To evaluate the registration verification approaches five patient datasets were
acquired. In these datasets the probe was moved from ‘out’ to ‘in’ of the ROI while
acquiring the real-time 3D volumes. The lengths of the 4D US sequences were ap-
prox. 40 images.

Table 4.1 shows the 4D US datasets and their corresponding experiments. US
data was anonymized before processing and for the patient data informed consent
was obtained.

The code was implemented in C++, OpenCL and MeVisLab. The OpenCL GPU
implementation was run on a NVIDIA GTX 780 Ti GPU.

4.4.2 Parameter setting

In the 4D tracking method mentioned in Section 4.2 we used a block-size of 113

mm3, and for the outlier rejection parameters (σA, λ, σB) we used (0.1, 0.1, 0.1);
these values were optimized in the previous work [6]. We used normalized cross
correlation (NCC) as similarity metric. The number of points and search range is
evaluated in the experimental section below.

In the verification approaches mentioned in Section 4.3 the optimized registra-
tion parameter settings from [6] were used. In the block-matching module we use
a block-size of 113 mm3 and 200 points, and for the outlier rejection parameters
(σA, λ, σB) we used (0.1, 0.1, 0.1). The number of frames l and search range is eval-
uated in the experimental section below.

4.4.3 Evaluation metric

Ground truth registrations were obtained using manual annotations. The annota-
tions establish correspondences between the fixed and the moving volumes in a
limited number of images. Three to four points are annotated per volume. The reg-
istration error is quantified using the mean target registration error (mTRE) metric,
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Table 4.2: Notations.

Symbol Description

l Number of frames
SI Method 1 score
ST Method 2 score
Sτ

I Threshold for SI values
Sτ

T Threshold for ST values
ΩS If SI ≤ Sτ

I or ST ≤ Sτ
T (Successful verification)

ΩF If SI > Sτ
I or ST > Sτ

T (Failed verification)
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measured in mm. mTRE is defined as the average distance between the points esti-
mated by transforming the ground truths from the fixed to the moving volume and
the corresponding ground truths in the moving volume.

In the verification experiments the ground truth was determined by visually
comparing the registered images. For a stack of l images the outcome was consid-
ered positive if and only if all the registrations with the reference image tref were
good, otherwise the outcome was considered negative.

4.4.4 Experiments

We performed a series of experiments to evaluate the 4D registration (1, 2 and 3)
and verification schemes (4 and 5). Refer to Table 4.2 for quick reference of nota-
tions.

1. We investigated the accuracy of the RTRT 4D tracking method. From thirteen
4D ultrasound sequences over eight subjects the following 4D US image pairs
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(3, 33), (4, 29), (5, 25), (6, 21), (7, 17), (8, 13) and (9, 10) were extracted and
annotated. We ran the method over the first 34 images of the sequence. To
find the optimum parameter values, we evaluated the performance of the
method for various settings of number of points and search range in the
tracking step (step-I) and the refine step (step-II) of the RTRT registration ap-
proach. The evaluation range of the number of points in the block-matching
for the tracking step and the refine step are {25, 50, 75, 100} and {100, 125,
150, 175, 200}, respectively. The evaluation range of the search range in the
block-matching for the tracking step and the refine step are {53, 103, 153, 203}
mm3 and {53, 103, 153, 203, 253, 303} mm3, respectively. To determine the num-
ber of points we initially set the search range to the maximum value of the
evaluation range. Hence the search range of the tracking step and the refine
step were set to 303 mm3 and 203 mm3, respectively. Once the number of
points for the block-matching were determined we varied the search range.
Using the optimized settings we investigated inter-observer variability using
a second observer annotating all pairs of seven of the thirteen 4D ultrasound
sequences. We calculated the root mean square (RMS) error between the an-
notations in the fixed image and the moving image and the mTRE for both the
observers. Additionally, the dependency between the observers is evaluated
using a two-sided Wilcoxon signed-rank test between the registration errors
over all image pairs of these seven 4D ultrasound sequences.

2. We next evaluated the robustness of the 4D registration method over long US
sequences. The experiment is designed to evaluate whether the RTRT strat-
egy, see Figures 4.3, performs consistently over long US sequences and does
not accumulate registration error in the process. To demonstrate this we use
four long 4D US sequences. We evaluate the registration after every 100th
image, upto 900 images.

3. The proposed RTRT registration strategy with its two step approach should
be able to compensate for large transformations. To evaluate this, we ap-
plied the RTRT approach under controlled rotational transform of an ultra-
sound image. We selected randomly ten different US volumes and rotated
each dataset from 0 to 180 degrees with a step size of 10 degrees to form a 4D
US sequence per volume. The axis of rotation was (x = 1, y = 1, z = 1).

4. We investigated the optimum parameter values for the location consistency
based verification and the transform consistency based verification approaches pro-
posed in this work. Thereto we quantified the goodness of registration be-
tween the reference image tref and a 4D US sequence ti

i−l+1=(ti−l+1, ti−l+2,
· · · , ti). A successful verification (ΩS) is simulated by choosing the reference
image such that it has significant overlap with the volumes of the 4D US se-
quence, tref ∈ ti

i−l+1. A failed verification (ΩF) is simulated by choosing the
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reference image from the same subject but acquired at a different location
than the 4D US sequence, tref /∈ ti

i−l+1. The evaluation range of the number of
frames l in Equation 4.3 is {2, 4, 6, 8}. We use five 4D US sequences. For each
US sequence we evaluate at 20 different time points, where two consecutive
time points are ten images apart. Hence we have 100 evaluations per param-
eter setting. The evaluation range of the search range for the block-matching
is {103, 203, 303, 403} mm3. Sensitivity and specificity analysis is performed to
find the optimum threshold values Sτ

I and Sτ
T of the two methods. In Equa-

tion 4.5, xref should be a set of at least four non-coplanar points. We select xref

as the eight corners of the US volume.

5. Using the optimized threshold values Sτ
I and Sτ

T we evaluate their accuracy
on five 4D US sequences where the probe was moved from ‘out’ to ‘in’ of
the ROI. The accuracy is defined as the ratio between the number of cor-
rect assessments and the number of all assessments, i.e. Accuracy = (TN +
TP)/(TN+TP+ FN+ FP), where TP is true positive, TN is true negative, FN
is false negative and FP is false positive.

4.4.5 Results

1. Figure 4.5 shows that for a fixed number of points in the refine step (step-II)
of the RTRT approach, the mTRE values do not vary much for various num-
ber of points in the tracking step (step-I). For example, for 125 points in the
refine step (step-II), the mTRE values for the number of points in the track-
ing step (step-II) 25, 50, 75 and 100 are 1.75 mm, 1.73 mm, 1.79 mm and 1.81
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mm, respectively. The greater the number of points, the better is the chance
of getting an accurate registration [6], measured using mTRE. However, an
increase in the number of points would increase the time required for the
registration, see Figure 4.15. Considering the speed and the accuracy of the
approach we choose the number of points in the tracking step (step-I) and
the refine step (step-II) as 50 and 125 points, respectively. Given the num-
ber of points in tracking step and the refine step are 50 and 125, respectively,
Figure 4.6 shows that for a fixed search range in the refine step (step-II) of
the RTRT approach, the mTRE values do not vary much for different search
ranges in the tracking step (step-I), except when the search range in the track-
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Table 4.3: Affine registration error - RTR [6] vs. RTRT method.

No. of RTR [6] RTRT
Subject 4D US Error Error

sequence (in mm) (in mm)

1 1 2.75 2.74
2 2 1.55 1.52
3 2 2.31 2.09
4 2 2.08 1.90
5 2 1.41 1.31
6 2 1.71 1.67
7 1 1.83 1.77
8 1 0.96 0.88

Mean error 1.83 1.74

ing step (step-I) and the refine step (step-II) is 53 mm3. The search range used
in the block-matching is directly related to the execution speed. We would
like the search range in the tracking step (step-I) to compensate for the motion
between two successive frames and the search range in the refine step (step-
II) to compensate for the accumulation of error. Considering the speed and
the accuracy of the approach we choose the search range in the tracking step
(step-I) and the refine step (step-II) as 253 mm3 and 103 mm3, respectively.
Table 4.3 shows the mean registration error of 1.74 mm over thirteen 4D US
sequences. Table 4.3 shows the registration error per-subject and is compared
to Banerjee et al. [6]. Table 4.3 show that the RTRT approach has slightly better
accuracy compared to the RTR registration approach mentioned in Banerjee
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et al. [6]. However a two-sided Wilcoxon signed-rank test over all image pairs
shows that the differences in both the approaches are not statistically signifi-
cant. The two tailed Wilcoxon signed-rank test was done for 5% level of sig-
nificance. The inter-observer variability statistics over seven 4D US sequences
is: first observer mTRE 1.59±0.94 mm, RMS error 0.85±0.49 mm; second ob-
server mTRE 1.56±0.86 mm, RMS error 0.99±0.73 mm. A two sided Wilcoxon
signed-rank test shows that the differences in the registrations results, eval-
uated using the annotations of the two observers, are not statistically signifi-
cant.

2. Figure 4.7 shows the registration error of four US sequences over a long pe-
riod. The registration error does not increase over time, which indicates that
in our approach there is minimal accumulation of registration error over time.
Figure 4.7 shows that the affine version slightly outperforms the rigid version
of the RTRT method. The average initial displacement curve in the Figure 4.7
shows the average displacement between the fixed reference image and the
moving image prior to registration.

3. Figure 4.8 shows the registration error on the controlled dataset with respect
to the ground truth. The mTRE value for the ten datasets are below 0.5 mm
for rotations up to 180 degrees of the US volumes.

4. The results of the registration verification methods based on location consis-
tency based verification and transform consistency based verification approaches
are shown in Figure 4.9, Figure 4.10, Figure 4.11 and Figure 4.12. In Figure 4.9
and Figure 4.11 we used a fixed search range (203 mm3) and varied the num-
ber of images used in the verification. In Figure 4.10 and Figure 4.12 we used
a fixed number of images (4) and vary the search range. For a search range of
403 mm3 and number of images l = 4, both the methods are able to distin-
guish between successful verification (ΩS) and failed verification (ΩF). We
would like the RTRT method to have a high specificity i.e. low false positive
rate. From Table 4.4 we choose the value of Sτ

I = 0.012 and the value of Sτ
T =

102.3 for the two methods.

5. Figure 4.13 and Figure 4.14 show the verification score vs. the predicted out-
come for the two initialization methods. In the two plots, the transition from
negative to positive registration (approximately) coincides with the dip in the
verification score from greater than to less than the threshold value. In Fig-
ure 4.13, for one dataset (pink line/plus shape points) the location consistency
based verification method delays the prediction of a positive outcome and for
another dataset (red line/square shape points) the method advances the pre-
diction of a positive outcome. In Figure 4.14, for one dataset (pink line/plus
shape points) the transform consistency based verification method delays the pre-
diction of a positive outcome and for another two datasets (green line/circle
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Table 4.4: Sensitivity (SE) and Specificity (SP) of the Verification Methods - search range = 403

mm3 and number of images = 4.

Method 1 Method 2
SI SE SP ST SE SP

0 0 1 10-0.1 0.02 1
0.012 1 1 100.5 0.23 1
0.024 1 0.99 101.1 0.61 1
0.036 1 0.99 101.7 0.88 1
0.048 1 0.88 102.3 0.97 1
0.06 1 0.44 102.9 1 0.98
0.072 1 0.01 103.5 1 0.85
0.084 1 0 104.1 1 0.06
0.096 1 0 104.7 1 0

Sτ
I → 0.012 Sτ

T → 102.3
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Figure 4.15: GPU timings - Block-matching (left Y-axis and the solid lines) and Outliers rejection

(right Y-axis and the dotted line).

shape points and red line/square shape points) the method advances the pre-
diction of a positive outcome. The accuracy of the registration verification
approaches based on location consistency based verification method with Sτ

I =
0.012 is 96% and transform consistency based verification method with Sτ

T = 102.3

is 92%.

4.4.6 GPU timings

The GPU execution time of the OpenCL code for the block-matching and the outlier
rejection modules is shown in Figure 4.15. For NCC similarity metric, block size of
113 mm3, the number of points in the tracking step and the refine step of 50 points
and 125 points, search range in the tracking step and the refine step of 253 mm3
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and 103 mm3, the block-matching and the outlier rejection in the tracking step and
the refine step combined takes 0.11 seconds. Hence with GPU implementation the
registration runs at 9 Hz, for the given parameter settings.

4.4.7 Video Recordings

In the supplementary material we uploaded five videos showing 4D ultrasound
registrations over long US sequences. The videos contain on the left the registered
image, in the middle the fixed image and on the right the moving image. An addi-
tional video is added showing the registration result on a 4D US sequence where
a TIPS needle was inserted into a phantom and to introduce motion the probe was
displaced slowly.

4.5 Discussion and Conclusion

We presented a 4D US tracking approach (RTRT) and techniques to verify and ini-
tialize registration. These techniques enable 4D US image guidance in minimally
invasive interventions such as TIPS. The RTRT registration approach helps to com-
pensate for the liver motion and it works in real-time using GPU hardware with
mean registration error of 1.74 mm.

The RTRT approach is performed in two steps. The tracking step (step-I) uses a
rigid transformation as this step helps in only finding an approximate transforma-
tion between the fixed reference frame and the streaming input frame. In the refine
step (step-II) the final transformation between the above two frame is determined.
The choice of the final transformation could either be affine or rigid transformation
as shown in Figure 4.7.

We also propose approaches which verify and score the quality of registration,
facilitating the verification and the initial registration of the planning US volume
with the interventional 4D US sequence. Whereas current approaches for integrat-
ing planning data often are cumbersome, requiring external equipment [71] [123],
the proposed verification approaches enable user-friendly integrating the planning
data in the interventional setup. The clinician only needs to move the probe to
search the target region and generate images similar to the planning image. The
verification approaches automatically indicate whether the current images can be
adequately registered to the image on which the planning was performed. Table 4.4
shows that for SI ≤ 0.012 in location consistency based verification and for ST ≤ 102.3

in transform consistency based verification, the methods suggest successful verifica-
tion ΩS. The accuracy of location consistency based verification is 96% and transform
consistency based verification is 92%. As shown in Figure 4.13, Figure 4.14 and dis-
cussed in the results subsection 4.4.5-5, there are few cases of disparity (of one time
point) between the transition from negative to positive vs. the verification score
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from greater than to less than the threshold value. Considering that we are evaluat-
ing an initialization method, the cases where the verification is one time point too
late in detecting a good registration does not have consequences for the use. For the
other cases, where the verification is one time point too early in detecting a good
registration, we observe that the probe enters the capture/search range resulting
in a low verification score as part of the l frames are registered well. However, the
protocol for the human observer was to only label a registration good if all of the
l frames are registered well, which explains the difference in outcome. Again, for
use in practice this is not a problem, as the last frames are registered well and these
are used to start the RTRT approach.

A registration algorithm requires sufficient overlap between the participating
volumes. In practice the probe may be displaced between planning and treatment.
It may be easy to detect when the probe moves away from the ROI using the result-
ing transformation as a cue. However it is much harder the other way round, i.e.
to ensure the probe is brought back such that the planning and treatment images
are adequately aligned. Bell et al. [71] address the problem in radiation therapy us-
ing robotic probe placement. Our verification approaches do not involve external
tracking equipment and are image-based. In the verification approaches, as shown
in Figure 4.10 and Figure 4.12, increase in the search range corresponds to increase
in gap of the SI , ST values for successful (ΩS) and failed (ΩF) verifications. The
verification methods infer from a stack of images, l, hence it introduces a delay
as it evaluates all the registrations between the reference image tref and the images
ti−l+1, ti−l+2, · · · , ti before scoring the result. Given US frequency of 6 Hz and l = 4,
the delay of 0.67 seconds is not significantly large.

The RTRT registration approach as presented has three advantages over the
RTR registration approach discussed in Banerjee et al. [6]. First, points that are con-
sistently tracked well are inherently more descriptive and lesser number of such
points are required for tracking. For the number of points in the tracking step (step-
I) as low as 25 points, Figure 4.5 shows that the mean registration errors are < 2 mm.
Second, at any instance of time, tracking successive images helps in reducing the
search range. For the search range in the tracking step (step-I) as low as 103 mm3,
Figure 4.6 shows that the mean registration errors are < 2 mm. Thus RTRT registra-
tion strategy typically requires less number of points and smaller search range than
RTR registration thus is computationally more efficient. For the number of points in
the tracking step and the refine step of 25 points and 100 points, search range in the
tracking step and the refine step of 103 mm3 and 103 mm3, Figure 4.15 show that
the RTRT 4D US tracking runs in 20 Hz. Such settings may be used in cases where a
probe holder is used to fixate the probe, and thus only breathing motion needs to be
corrected. Such a setup also reduces the personnel for the intervention. It allows fix-
ating the transducer and selecting the visualization planes afterwards, independent
of the probe orientation. Third, unlike the RTR registration approach the RTRT reg-
istration approach is robust (invariant) to large rotations, see Figure 4.8. In Banerjee
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et al. [6] for rotations larger than 25 degrees the registration error significantly in-
creases because the block-matching cannot handle large rotations. Schneider et al.
[117] mention that their method is robust to registration up to 20 degrees.

The RTRT 4D US tracking strategy is conceptually closest to Donoghue et al.
[27]. They propose a global registration framework where affine registrations are
pre-computed in advance for neighbouring images only. When a pairwise image
registration is required the shortest path across the graph is used to estimate the ap-
proximate transformation by composing the intermediate transformations. Lastly
a refinement step is used to further improve the registration accuracy.

In 3D US mosaic applications, non-rigid registration is required for artefact free
stitching. It is however challenging to build a non-rigid real-time 4D US registra-
tion. The optimization and interpolation schemes required for estimating non-rigid
deformation fields are often computationally intensive. Our work uses an affine
transformation model implemented in real-time using GPU hardware and is suf-
ficient for the task of stabilizing the planes in an US volume required for image
guidance in TIPS minimally invasive procedure.

Motion due to respiration also constitutes a major problem in applications such
as radiotherapy. In Kaar et al. [54] registration error was found to be 2.99±1.54
mm for US volume dimensions of 243×227×135 voxels at a voxel resolution of 0.6
mm in each dimension for radiotherapy of the prostrate. Schneider et al. [117] for
US volume dimensions of 144×112×112 voxels and a resolution of 0.55×0.54×0.63
mm/voxel report registration accuracy of 1.1±0.8 mm for cardiac applications. For
therapy using focused US Vijayan et al. [130] found registration error of 1 mm for
liver US volume dimensions of 227×229×227 with isotropic voxels of 0.7×0.7×0.7
mm/voxel using non-rigid registration approach. Our mean registration error of
1.74 mm for voxel size of 1.144× 0.594×1.193 mm/voxel on liver US volumes is
comparable to the existing approaches.

The RTRT 4D US tracking combined with registration verification permits 4D
US guidance of TIPS interventions, and allows seamless integration of planning
information in the intervention, and the registration accuracies obtained may help
in stabilizing the scan planes required for image guidance. We are currently inte-
grating our work in a prototype system for 4D US guidance. Whereas our work
was developed for TIPS interventions, these methods may be relevant for other
image guided interventions as well, e.g. motion tracking for radiotherapy, as dis-
cussed above. When combined with registration of US to other 3D modalities, such
as CT or MRI [67], the RTRT registration would enable multimodal image guidance,
which would be relevant e.g. for percutaneous tumour treatments.

The current approach has been evaluated mainly on healthy volunteers. For
clinical use the test bed should be extended to more patient imaging data. We also
did not test the RTRT method during interventions and in the presence of external
devices such as catheters and needles. However, given the character of our reg-
istration method, we do not expect difficulties when instruments are inserted, as
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demonstrated in the supplementary video where a TIPS needle was inserted into a
phantom and motion was simulated by slowly displacing the probe.

To conclude, we present a 4D US tracking method to compensate breathing mo-
tion, enabling continuous visualization of planning planes in minimally invasive
procedures, e.g. TIPS interventions. The method can register 4D US volumes at 9
Hz, with an accuracy of 1.7 mm. Additionally we proposed methods which facili-
tate the verification and the registration between the planning US volume and the
interventional 4D US sequence. The method runs in real-time and hence can im-
prove image guidance in TIPS and other minimally invasive interventions.





Chapter 5

Tracking anatomical landmarks in 4D

ultrasound of the liver

Based on:

Jyotirmoy Banerjee, Camiel Klink, Erwin Vast, Wiro J. Niessen, Adriaan Moelker
and Theo van Walsum, A combined tracking and registration approach for track-
ing anatomical landmarks in 4D ultrasound of the liver, MICCAI Challenge - CLUST,
2015.

Abstract

In this paper we present a method for tracking of anatomical landmarks in the liver.
Our 4D ultrasound tracking method is based on global and local rigid registration
schemes. We evaluate our method on the dataset that was presented in the MICCAI
2015 Challenge on Liver Ultrasound Tracking (CLUST 2015). On the test set a mean
tracking error of 1.62 ± 0.94 mm is achieved.
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5.1 Introduction

Ultrasound (US) is used by clinicians to image the human anatomy. It is an inex-
pensive, non-invasive and portable imaging modality. It is widely used in diag-
nostics. As US imaging is real-time it can be used for interventions and therapy.
The anatomy can be tracked real-time. Some of the applications are tissue motion
analysis and image guidance during interventions. One of the main purpose of
an US tracking approach is to incorporate (pre-operative) planning information
(to guide visualization), or to integrate preoperative imaging data during inter-
ventions. Tracking or motion compensation algorithms helps to negate the motion
caused by the probe or the patient and the breathing motion in particular.

Several methods for tracking of anatomical landmarks [20, 82, 83] and motion
tracking of liver [7, 70, 98, 105, 117, 130] in US have been proposed in literature. Our
method is based on the previous work described in Banerjee et al. [5] and [6]. The
previous methods were developed to track/register US liver volumes. In this work
these methods are used to perform the specific task of tracking anatomical land-
marks in the liver. The method is evaluated on the CLUST 2015 challenge datasets.

Global Point Set
(Grid Structure)

Local Point Set
(Landmark Neighbourhood)

US Volume - tref US Volume - tn-1 US Volume - tn

RTRT Step 1b: In -> T(ref,n-1)*T(n-1,n); Out -> T(ref,n)

RTRT Step 1a: Out -> T(n-1,n)

Step 1: (RTRT)

Global 4D

Tracking 

Step 2: (RTR)  

Local 3D

Registration

T(ref,n-1) T(n-1,n)

T(ref,n)

US Subvolume - tref US Subvolume - tn

RTR: In ->T(ref,n); Out -> T’(ref,n)

T’(ref,n)

T(ref,n)
Landmark

Figure 5.1: Block diagram - tracking of anatomical landmarks.
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5.2 Tracking anatomical landmarks

We briefly review the register to reference strategy (RTR) [6] in Subsection 5.2.1 and
the register to reference by tracking strategy (RTRT) [5] in Subsection 5.2.2 which
are the core components of our landmark tracking approach. In Subsection 5.2.3 we
discuss the landmark tracking approach, see the block diagram in Figure 5.1.

5.2.1 Step 1: RTR

The RTR approach [6] is a 3D to 3D US registration technique where the streaming
input frame (tn) is directly registered to the reference frame (tre f ). It is based on a
block-matching scheme followed by an outlier-rejection scheme. For a set of points
(generated using a grid structure or a Gaussian distribution, see the global point
set and the local point set in Figure 5.2) located in the fixed image, block-matching
is used to find corresponding locations in the moving image. The correspondences
from the block-matching are inputs to the outlier rejection scheme. The outlier re-
jection scheme uses geometric and appearance consistency criteria to determine the
block-matching results that can be trusted. The method then uses only the selected
block-matching results from the outlier rejection scheme to estimate a rigid trans-
formation using the approach described by Arun et al. [4]. For details refer [6].

5.2.2 Step 2: RTRT

The RTRT approach [5] is a 4D US registration/tracking technique, where the reg-
istration is performed in two steps. In the first step (Step 1a), the streaming input
frame (tn) is registered to the previous frame in the temporal domain (tn−1). In the
second step (Step 1b), the previously estimated transformation (T(re f ,n−1)) and the
transformation from the first step (T(n−1,n)) are used to initialize the registration be-
tween the streaming input frame and the reference frame, by composing the trans-
formations as T(re f ,n−1) ∗ T(n−1,n). To reduce the accumulation of error the reference
frame is re-registered to the streaming input frame which was earlier transformed
using the transformation T(re f ,n−1) ∗ T(n−1,n), resulting in the final transformation,
written as T(re f ,n), see Figure 5.1. The RTRT approach additionally performs effi-
cient tracking of points in the temporal domain. The tracking starts with a set of ℓ
points (generated using a grid structure or a Gaussian distribution, see the global
point set and the local point set in Figure 5.2) located in the fixed/reference im-
age. Points that are consistently tracked are retained and the rest of the points are
rejected. Additional points are introduced from a distribution (could be the same
distribution as used earlier) if the number of points for tracking is less than ℓ. For
details refer [5]. Note that in the next cycle of the RTRT approach, the current es-
timated transformation T(re f ,n) is used in determining the transformation between
the reference volume (tre f ) and the next US volume (tn+1), written as T(re f ,n+1).
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Figure 5.2: Global and local point set: Left - Global point set generated using a grid structure

(blue color), Middle - Local point set (green color), Right - Global cum local point set generated

using a Gaussian distribution (σ=10 mm).

5.2.3 Tracking landmarks

The anatomical landmark tracking approach, see Figure 5.1, consists of the follow-
ing two rigid registration steps. First, in the global 4D registration/tracking step, the
RTRT strategy is used track the whole (liver) US volume (T(re f ,n)). Second, in the lo-
cal 3D registration step, we refine the tracking result by performing registration
using the neighborhood region close to the anatomical landmark (T′

(re f ,n)).

Both the RTR and RTRT strategies use block-matching followed by an outlier
rejection scheme to find correspondences between the US volumes. Input to the
block-matching module is a point set. The portion/region of the image used for the
registration/tracking is determined by the locations of the points in the US volume.
As shown in the block diagram in Figure 5.1, a combination of a global and a local
point set is used to perform a global 4D tracking/registration and only a local point
set is used to perform a local 3D registration. The global point set is generated using
a grid structure spread over the entire US volume, the local point set is a collection
of points in the neighborhood of the anatomical landmark (see Figure 5.2).

5.3 Experiment and results

The CLUST 2015 challenge dataset is used to evaluate the performance of the method.
The challenge contained 16 4D sequences from multiple sources. The summary of
the data is shown in Table 5.1. The data was divided into a training set of 8 4D se-
quences and a test set of 8 4D sequences. For tuning the algorithm, annotations (i.e.
landmarks) across multiple frames per 4D sequence were provided for the training
set. For the test set, one or more annotations in the first frame were provided. These
annotated landmarks were tracked over time. The tracking performance of the test
set was evaluated by the organizers of the challenge. The Euclidean distance be-
tween the tracked points and manual annotations was calculated. The error was
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Table 5.1: Summary of the data

Source Traning Test Image size Image res. Frame rate Scanner Probe
Sequences Sequences [voxels] [mm] [Hz]

EMC 3 2 192x246x117 1.14x0.59x1.19 6 Philips iU22 X6-1
ICR 1 1 480x120x120 0.31x0.51x0.67 24 Siemens SC2000 4Z1c
SMT 4 5 227x227x229 0.70x0.70x0.70 8 GE E9 4V-D
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summarized by the following statistics: mean, standard deviation, 95 percentile,
minimum and maximum distances.

MeVisLab, OpenCL and C++ are used for software development. The OpenCL
code was run on a NVIDIA GTX 780 Ti GPU.

Figure 5.3: Training set tracking results: Left - Reference image manual annotation, Middle -

Moving image automatic annotation, Right - Moving image manual annotation. Row 1 - For the

dataset EMC-03_1 at time point 42, the tracking error is 8.54 mm; Row 2 - For the dataset SMT-

04_1 at time point 76, the tracking error is 15.14 mm.

Parameter setting : We used a block-size of 113 mm3 for the block-matching. The
block is evenly sampled 18x18x18 times. The similarity metric used is normalized
cross correlation (NCC), (σA, λ, σB) = (0.1, 0.1, 0.1) is used as the outlier rejection
parameters. These values were optimized in the previous work [6]. The number of
points for the block-matching (step one and step two) of the RTRT approach and the
RTR approach are set to 100, 200 and 400 points, respectively. The search range for
the block-matching (step one and step two) of the RTRT approach and the RTR ap-
proach is set to 403 mm3, 103 mm3 and 203 mm3, respectively. The search range (step
one and step two) of the RTRT approach and the RTR approach are evenly sampled
60x60x60 times, 15x15x15 times and 30x30x30 times, respectively. The sampling de-
termines the step size for the block-matching. A local point set of 1000 points is
generated using a Gaussian distribution with mean located at the anatomical land-



Tracking anatomical landmarks in 4D ultrasound of the liver 77

mark and standard deviation of 10 mm. The adjacent horizontal/vertical nodes
of the grid structure used to generate the global point set are 10 mm apart, see
Figure 5.2. The points required for the block-matching in the RTR and the RTRT
approaches are sampled from the global and the local point sets.
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Figure 5.4: Tracking examples from the training set.

The training set and the test set results are presented in Table 5.2 and Table 5.3,
respectively. The mean tracking error for the training set and the test set are 3.26
± 2.62 mm and 1.62 ± 0.94 mm, respectively. The average run time of the Step
1 (RTRT) and the Step 2 (RTR) of our approach as shown in Figure 5.1 are 6.68
seconds and 4.18 seconds, respectively. Hence for the given parameter settings the
GPU implementation runs at 11 seconds per frame.

5.4 Discussion and conclusions

In this chapter we perform the task of tracking anatomical landmarks using a com-
bination of previous methods by Banerjee et al. [5] and [6]. A mean tracking error
of 1.62 ± 0.94 mm is achieved on the test set. In the first step, the point set used for
the global 4D tracking step is a combination of a global point set generated from a
grid structure and the local point set generated randomly in the neighborhood of
the anatomical landmark. This combination of point set ensures a high percentage
of points close to the landmark position during the global 4D tracking step. The lo-
cal point set is intended to track a specific landmark well, whereas the global point
set helps in increasing robustness in tracking. In the second step, the local point
set is again used in the local 3D registration step. This step is designed to track the
landmark in the presence of local deformations.

The mean tracking error for the training set is 3.26 ± 2.62 mm. Two of the
datasets (EMC-03_1, SMT-04_1) from the training set have large tracking errors, see
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Figure 5.5: Test set registered Volumes: Left - Reference image manual annotation, Middle -

Registration result automatic annotation, Right - Moving Image. Row 1 - dataset EMC-04_1, time

point 124; Row 2 - dataset SMT-05_1, time point 66; Row 3 - dataset SMT-07_2, time point 74.

Figure 5.3. In the EMC-03_1 4D US sequence the anatomical landmark is located
on a vessel which undergoes large deformations due to blood flow and in the SMT-
04_1 4D US sequence the anatomical landmark is located outside the liver. Some
of the tracking results from the training set are shown in Figure 5.4. In the test set
the SMT-05_1 4D sequence has large tracking error. In rest of the dataset the track-
ing performance is satisfactory. Some representative test set registration results are
shown in Figure 5.5.

The speed depends on the number of points, search range size, number of sam-
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Table 5.2: Training set results

Landmarks Mean Std 95th% Min Max
(in mm) (in mm) (in mm) (in mm) (in mm)

EMC-01_1 0.94 0.51 1.65 0.36 1.79
EMC-02_1 1.19 0.47 1.83 0.80 2.01
EMC-02_2 2.28 1.10 3.62 1.02 3.80
EMC-02_3 2.05 0.58 2.80 1.48 2.96
EMC-02_4 1.80 0.54 2.39 1.14 2.41
EMC-03_1 5.55 2.28 8.20 1.78 8.54

EMC 3.01 2.42 7.85 0.36 8.54
ICR-01_1 1.57 0.56 2.36 0.27 2.83
SMT-01_1 2.06 0.41 2.74 1.08 2.97
SMT-01_2 3.46 0.55 4.43 2.42 4.61
SMT-01_3 3.00 0.42 3.75 1.91 3.89
SMT-02_1 1.65 1.60 2.20 0.6 16.49
SMT-02_2 1.92 0.47 2.74 0.91 3.27
SMT-02_3 3.72 0.70 4.79 2.30 5.59
SMT-03_1 2.29 0.72 3.43 1.19 3.62
SMT-03_2 2.09 0.60 3.14 0.68 3.54
SMT-04_1 8.88 3.82 15.04 0.97 15.31

SMT 3.30 2.64 9.20 0.60 16.49

Tracking Results 3.26 2.62 8.55 0.27 16.49

ples in the search range (step size), block size and number of samples in the block.
The current approach runs at 11 seconds per frame. For tracking of liver, real-time
(faster than image temporal resolution) speed is achieved by Banerjee et al. [5] by
selecting appropriate parameters for the US data acquired from Philips iU22 ma-
chine with X6-1 probe.

To conclude, we extended our current registration approaches for 3D and 4D US
volumes such that it enables tracking of anatomical landmarks in 4D US sequences.
The method is evaluated using CLUST 2015 challenge datasets. For a test set of
eight 4D US sequences, an accuracy of 1.62 ± 0.94 mm is achieved.

After the challenge, accuracy of 1.80 ± 1.64 mm was reported by the challenge
organizer on the entire test set.
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Table 5.3: Test set results

Landmarks Mean Std 95th% Min Max
(in mm) (in mm) (in mm) (in mm) (in mm)

EMC-04_1 1.10 0.63 2.28 0.26 2.31
EMC-05_1 1.79 0.36 2.16 1.15 2.17

EMC 1.45 0.61 2.18 0.26 2.31
ICR-02_1 1.65 0.37 2.14 0.80 2.15
SMT-05_1 3.39 2.53 10.13 0.90 10.24
SMT-05_2 0.97 0.36 1.58 0.21 1.91
SMT-06_1 1.56 0.37 2.11 0.57 2.49
SMT-06_2 2.01 0.52 2.77 0.99 3.69
SMT-06_3 1.37 0.35 1.95 0.43 2.18
SMT-07_1 1.83 0.42 2.49 1.02 2.92
SMT-07_2 1.79 0.39 2.46 1.04 2.69
SMT-08_1 1.48 0.41 2.26 0.22 2.44
SMT-08_2 1.09 0.29 1.52 0.37 1.77
SMT-08_3 2.10 0.73 3.37 0.87 3.91
SMT-09_1 1.10 0.35 1.70 0.14 1.89
SMT-09_2 0.96 0.38 1.66 0.10 1.87
SMT-09_3 2.25 0.60 3.16 0.18 3.73

SMT 1.63 0.94 2.86 0.10 10.24

Tracking Results 1.62 0.93 2.84 0.10 10.24
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3D LBP-based Rotationally Invariant Region

Description

Based on:

Jyotirmoy Banerjee, Adriaan Moelker, Wiro J. Niessen and Theo van Walsum, 3D
LBP-based Rotationally Invariant Region Description, ACCV Workshops, 2012.

Abstract

Local binary patterns [LBP] [96] are popular texture descriptors in many image
analysis tasks. One of the important aspects of this texture descriptor is their rota-
tional invariance. Most work in LBP has focused on 2D images. Here, we present
a three dimensional LBP with a rotational invariant operator using spherical har-
monics. Unlike Fehr and Burkhardt [30], the invariance is constructed implicitly,
without considering all possible combinations of the pattern. We demonstrate the
3D LBP on phantom data and a clinical CTA dataset.
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Visual tasks such as detection, localization, categorization, and recognition are
important subjects of study in computer vision and image analysis. These tasks
are often difficult due to apparent within-class inhomogeneity or variability. Part
of this within-class variability may be due to the image formation process. Invari-
ant image descriptors extract information from images which is invariant to the
variability introduced due to the imaging process, such as noise, distortions, illu-
mination, scale changes, occlusion, etc. One class of such descriptors is texture pat-
terns. Texture have received considerable attention [128] [126] [40] with application
in areas of medical imaging [91] [121], image retrieval, remote sensing and object
recognition [18]. The local binary patterns [LBP], introduced by Ojala et al. [95], is
an efficient method for texture description in 2D. The aim of our work is to extend
the conventional LBP and its rotational invariant property mentioned in [96], to a
3D paradigm.

LBP - LBP is a simple and computationally efficient way to describe local im-
age content, with impressive texture discriminative properties. Applications of LBP
descriptors are evident in texture classification and face analysis [53]. Though it en-
capsulates textural information, the conventional LBP operator has a number of
limitations which are discussed by Liu et al. [78]. The prominent disadvantages
are: weak spatial support and sensitivity to noise. Ojala et al. [96] addressed the
first issue by introducing a multi-resolution framework. The sensitivity to noise
was addressed by grouping the noisy patterns into one bin and defining the re-
mainder of the patterns as “uniform”, corresponding to binary label sequence that
has no more than two transitions between “0” and “1” among all pairs of the adja-
cent binary labels. However, in practice this is an oversimplifying assumption. The
uniform LBPs extracted from texture images having more complicated shapes may
not necessarily be the patterns dominating the texture. Lioa et al. [77] proposed a
method that makes use of the most frequently occurring patterns to capture textu-
ral information. The frequently occurring or dominant patterns are estimated from
training examples. An adaptive framework was proposed by Guo et al. [44] to ob-
tain most discriminative patterns.

Complementary measures - To boost the descriptive power of LBP, several com-
plementary measures were proposed. Ojala et al. [96] included local contrast. Guo
et al. [43] and Liu et al. [78] incorporated intensity information, considering the in-
tensities of the center pixel and those of its neighbors. Orientation information was
incorporated by Chen et al. [19]. Nanni et al. [91] considered different shapes for
neighborhood calculations.

Rotational Invariance - Rotational invariance was originally described by Ojala
et al. [96], where the pixel pattern is circularly bit-wise right shifted and the unique
identifier is minimum of the generated patterns. Guo et al. [44] consider a rotation-
invariant strategy from nonrotation-invariant histograms of LBPs. The method keeps
the original rotation-variant features but finds a matching strategy to deal with the
rotation. Invariance is globally constructed in Zhao et al. [138] for the whole region
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by histogramming noninvariant LBPs. Unlike Ojala et al. [96], they achieve rota-
tional invariance implicitly in the Fourier domain, without considering all possible
combinations of the patterns. Their frequency domain representation of LBP his-
tograms is a band-limited representation which ignore higher frequencies. This is
shown to be robust to other histogram-based invariant texture descriptors, which
normalize rotation locally. However, smaller footprints or regions would lead to
sparse histograms. Fourier representation of sparse signals are not conducive to
similarity measures.

3D LBP - Recently there has been interest in dynamic texture analysis. LBP de-
scriptors were proposed to deal with rotations and view variations in video. They
essentially analyze dynamic texture in 2D time series. Zhao et al. [138] have de-
signed invariance for 2D images and extended to 2D time series using bi-planes.
Extending LBP to full 3D volume presents few challenges. A circle in 2D would
translate to a sphere in 3D. Equidistant sampling on a sphere is not as trivial as on a
circle. The notion of ordering is lost in 3D because of the dimensionality, which was
an essential step in calculating rotational invariance in 2D. Fehr and Burkhardt [30]
proposed a rotationally invariant LBP on volume data. For each LBP computation,
correlation between the gray values of all points on the neighborhood sphere with
radius R and the weight factor which is a volume representation in an arbitrary
but fixed order binomial factors {20, . . . , 2P−1}, is performed in the spherical har-
monic domain. Similar to Ojala et al. [96], rotational invariance is achieved from the
computation of the minimum over all angles.

Our method - In this work, we present a rotationally invariant 3D LBP, where un-
like Fehr and Burkhardt [30], the invariance is constructed implicitly, without con-
sidering all possible combinations of the pattern. Spherical harmonics is the math-
ematical foundation behind our computation [42]. The theory of spherical harmon-
ics states that any rotation of a spherical function does not change its L2-norm [58].
These features capture invariance to rotation, however with some ambiguity. There
will be different signals having similar L2-norm [29]. The ambiguity is due to loss
of phase information. Fehr [29] additionally used bispectrum to address the issue.
We choose a simple statistical measure, which encodes the phase angle of a signal.
Gluckman [39] has shown that the phase information in an image has relationship
with the non-Gaussian statistics, such as kurtosis.

Similar to the Fourier representation of Zhao et al. [138], our harmonic represen-
tation of LBP, increases spatial support. However, unlike Zhao et al. [138], where
invariance is calculated globally, our method estimates it locally. This is useful in
describing regions with small footprints. Our method is a complete three dimen-
sional rotationally invariant modeling of LBP.
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Figure 6.1: Icosahedron Spherical Sampling. Left Fig.: 42 Sample points (P1), Right Fig.: 162

Sample points (P2).

6.1 Method

We present a method for rotationally invariant description of landmarks or regions
in 3D using LBP. The LBP in 3D requires a spherical sampling, which is represented
in a spherical harmonics framework [42]. The framework helps in obtaining rota-
tion invariant representation. Further, the region information is collected to a set of
histograms that are invariant to rotation. The similarity between any two regions
can be computed using the Chi-square distance measure [17] between the corre-
sponding set of histograms.

6.1.1 Spherical harmonics

Spherical harmonics (SH) is a mathematical framework, generally used to describe
a function on a sphere [42]. They are essentially a spherical analog to the Fourier
basis. Spherical harmonic functions are defined on imaginary numbers. We are in-
terested in approximating real functions over the sphere, so we will use the real
basis of spherical harmonics. The real spherical harmonic function Ym

ℓ
(θ, φ) of de-

gree ℓ and order m is given by

Ym
ℓ
(θ, φ) =





√
2Km

ℓ
cos(mφ)Pm

ℓ
(cos θ) m > 0√

2Km
ℓ

sin(−mφ)P−m
ℓ

(cos θ) m < 0
K0
ℓ
P0
ℓ
(cos θ) m = 0

(6.1)

where P is the Associated Legendre polynomials and K is

Km
ℓ
=

√
(2l + 1)

4π

(n − |m|)!
(n + |m|)!

and θ, φ are azimuthal, polar angles respectively.
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Projecting spherical harmonic functions into spherical harmonic coefficients is
straight forward. To calculate a coefficient for a band we integrate the product of
the function f and the spherical harmonic function Y, in effect projecting how much
the function is like the basis function:

cm
ℓ
=

∮
f (θ, φ)Ym

ℓ
(θ, φ)dΩ

where Ω represents the sphere and (θ, φ) ∈ Ω.
The function can be reconstructed to a band-limited approximation (n-th order),

by reversing the above step

f̃ (θ, φ) =
n−1

∑
ℓ=0

m=ℓ

∑
m=−ℓ

cm
ℓ

Ym
ℓ
(θ, φ)

6.1.2 Three Dimensional Rotational Invariant LBP

For convenience we use the similar notation as used by Ojala et al. [96]. Texture
representation f T in a local neighborhood of a monochrome volume is defined as
the joint distribution of the binary values of P voxels:

f T ≈ t(s(g0 − gc), s(g1 − gc), . . . , s(gP−1 − gc))

where

s(x) =

{
1 if x > 0,
0 if x < 0.

and gray value gc corresponds to the gray value of the center voxel of the local
neighborhood and gp(p = 0, . . . , P − 1) correspond to the gray values of P equally
spaced sample points on a sphere of radius R, around the center voxel.

Spherical harmonics can be used to obtain a rotation invariant representations [58]
in 3D. As any rotation of a spherical function does not change the L2-norm, a set
of equally spaced pixels on a sphere of radius R can be represented using an index
invariant to rotation.

We define the rotationally invariant local binary pattern per voxel as

LBPri3D
P,R = {‖ f0‖, ‖ f1‖, . . . , ‖ fℓ‖, . . . } (6.2)

where fℓ are the frequency components [58] of a function f T , given by

fℓ(θ, φ) =
m=ℓ

∑
m=−ℓ

cm
ℓ

Ym
ℓ
(θ, φ)

and

‖ fℓ‖ =
(

∑
θ

∑
φ

| fℓ(θ, φ)|2
)1/2
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where (θ, φ) is an element of the spherical sampling scheme ΩS.
However, as mentioned by Fehr [29], the power spectrum features are ambigu-

ous, i.e. two different signals may have the same power spectrum. The ambiguity
is due to loss of phase information. Variance cannot be used for discrimination,
as same power spectrum shares the same variance. We propose the use of kurto-
sis to address the ambiguity. Gluckman [39] in his work has reported relationship
between the phase angle of a signal and the non-Gaussian statistics, kurtosis. It is
shown that both local and global correlations in the phase angle lead to many of
the statistical regularities, such as kurtosis.

Kurtosis measures how sharply peaked a distribution is, relative to its width,
and is defined as

κ =
µ4

µ2
2 − 3

where µi denotes the ith central moment and in particular, µ2 is the variance. The
kurtosis is normalized to zero for a Gaussian distribution.

The 3D rotationally invariant texture feature per voxel is then described as

κLBPri3D
P,R = {LBPri3D

P,R , κ}. (6.3)

Note that the spherical harmonics are performed on the binary texture pattern
f T and kurtosis κ is estimated over the gray level intensity distribution obtained
from the spherical sampling.

6.1.3 Spherical sampling in 3D

Three dimensional LBP construction requires sampling over a sphere of radius R.
It is non-trivial to have an equidistant sampling over a sphere. To approximate this
we use the icosahedron. Icosahedron structure is used to sample the surface of the
sphere. To make an icosahedron approximate a sphere more closely, the triangles
making up the icosahedron can intuitively be subdivided by splitting the edges of
the triangle and then making the new split edges into more triangles [37]. The fre-
quency component f represents how many times the struts of the base icosahedron
have been subdivided. Icosahedrons of frequency 2 and 4 as shown in Figure 6.1
have 10 f 2 + 2 number of vertices, i.e. 42 and 162 sample points, respectively. In the
voxel grid, trilinear interpolation is used to estimate the gray value at the vertices
of the icosahedron.

6.1.4 Histogram matching

The 3D rotationally invariant texture feature is a set of real numbers (see Equa-
tion 6.3) per voxel, where the number of elements in the set is equivalent to the
number of spherical harmonic bands plus one. The additional term is due to the
inclusion of kurtosis. After the rotationally invariant texture feature for each voxel
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(a) (b) (c) (d) (e)

Figure 6.2: Surface rendered images of 3D vessel-like structures - (a) All angles are 120◦, (b)

One of the angle is 60◦, other angles are 150◦ each, (c) All angles are 90◦, (d) Straight and (e)

Angle is 90◦. The volume has binary intensity values. The vessel shapes have voxel intensity

1 and the rest of region in the volume have voxel intensity 0. The shapes are constructed out of

cylindrical branches with diameter D each. Shapes in (a), (b) and (c) are made of three cylindrical

arms, shape in (d) is made of one cylindrical arm and shape in (e) is made of two cylindrical arms.

is estimated according to Equation 6.3, a set of histograms can be built to represent
the texture region. Each histogram corresponds to an element in the rotationally
invariant texture feature. Similarity/dissimilarity between two regions can be es-
timated using the distance measure between the histograms. The Bhattacharyya
measure (or coefficient) and Chi-square measure [17] are two popular measures of
similarity between two distributions. The final matching score is derived by adding
scores from all the histogram pairs.

6.2 Experiments and results

We investigated the properties of both the rotationally invariant features and their
application in histogram-based region descriptors, using phantom data. Addition-
ally, we demonstrate the application of our method to the localization of landmarks
in medical imaging data.

6.2.1 Evaluation of rotational invariant features

Purpose of the first experiment is to investigate to what extent our propose features
are indeed rotationally invariant, and can be used to discriminate between various
3D patterns. To this end, we compute the correlation of the rotationally invariant
features (Equation 6.3) on several rotated versions of phantom volumes with dif-
ferent embedded vessel-like structures (see Figure 6.2).

Phantom volumes with different embedded vessel-like structures - The images shown
in Figure 6.2 are the surface rendered images of five cubic digital phantoms with
different embedded vessel-like structures. Vessels shown in Figure 6.2 constitute
foreground while the rest is background. The volumes have binary intensity levels,
with foreground and background intensity levels as 1 and 0, respectively. The cen-
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(a) MA vs MB, R = 7 (b) MB vs MC, R = 7

(c) MA vs MB, R = 9 (d) MB vs MC, R = 9

Figure 6.3: Voxel level texture feature correlation between different vessel-like structures in Fig-

ure 6.2; Parameters - Diameter of the cylindrical arms D = 11 (in Figure 6.2); P2 = 162 sample

points; Sampling Radius R.

Rotation Matrix Center Axis (x, y, z) Angle (in radians)

MA (63.5, 63.5, 63.5) - -
MB (63.5, 63.5, 63.5) (0, 0, 1) π/2
MC (63.5, 63.5, 63.5) (1, 1, 1) π/3

Table 6.1: Rotation Matrix

troids of the different shapes are located at (63, 63, 63), in their respective volumes
of size [128× 128× 128]. The vessel-like structures are constructed from cylindrical
branches with diameter D each.

In Figure 6.2(a) all angles between the vessel branches are 120◦. In Figure 6.2(b)
one of the angle is 60◦, other angles are 150◦ each. In Figure 6.2(c) all angles be-
tween the vessel branches are 90◦. Figure 6.2(d) vessel structure has no branches
and is linearly oriented. Figure 6.2(e) the vessel structure is bent at 90◦. Shapes in
Figures 6.2(a), 6.2(b) and 6.2(c) are made of three cylindrical arms, shape in Fig-
ure 6.2(d) is made of one cylindrical arm and shape in Figure 6.2(e) is made of two
cylindrical arms.

Rotation matrix - The rotation matrices used to rotate the phantoms shown in
Figure 6.2 are described in Table 6.1. The rotation center coincides with the center
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(a) MA vs MB, R = 9 (b) MB vs MC, R = 9

(c) MA vs MB, R = 13 (d) MB vs MC, R = 13

Figure 6.4: Voxel level texture feature correlation between different vessel-like structures in Fig-

ure 6.2; Parameters - Diameter of the cylindrical arms D = 15 (in Figure 6.2); P2 = 162 sample

points; Sampling Radius R.

of the vessel structure. Rotation matrix MA denotes no rotation. Matrix MB rep-
resents rotation along z-axis by π/2 radian angles. Matrix MC represents rotation
along (1, 1, 1) axis by π/3 radian angles. The rotation matrices when applied to
the five volumes shown in Figure 6.2, rotate the shapes around the center of the
vessel structure. The voxel location and the rotation center in our evaluation are
(63, 63, 63) and (63.5, 63.5, 63.5), respectively.

We evaluate the rotational invariant property of the texture feature (see Equa-
tion 6.3), evaluating it per voxel location. Various intensity patterns can be obtained
by sampling around any given voxel from the different volumes in Figure 6.2. For
evaluation purpose we choose the centroids of the vessel structures appearing in
these volumes. The results are shown in Figure 6.3 and Figure 6.4. They show the
correlation between the κLPB index per voxel location obtained from the five dif-
ferent volumes in Figure 6.2, and their rotated versions. Various intensity patterns
can be generated from Figure 6.2 by varying the sampling radius R or the diam-
eter D of the cylindrical arms of the vessel-like structures. In Figure 6.3 we use a
sampling radius R of 7 and 9, keeping the diameter D at 11. In Figure 6.4 we use a
sampling radius R of 9 and 13, changing the diameter D to 15. To ensure different
intensity patterns with each sampling, the sampling radius is chosen greater than
the radius of the cylindrical arms in Figure 6.2. In Figure 6.3 and Figure 6.4 the
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(a) P1 = 42 sample points. (b) P2 = 162 sample points.

Figure 6.5: Chi-square distance measure between five regions from Figure 6.2, and their rotated

versions (Rotation Matrix MC). Parameters - Diameter of the cylindrical arms D (in Figure 6.2) =

11; Sampling Radius R = 9; Descriptor Radius K = 5.

κLPB feature of a voxel from the volumes in Figure 6.2, correlates very well with
its rotated version. Correlation ranges from −1.00 to +1.00. A correlation of 1.00, is
a perfect correlation, while a correlation of 0 means there’s no relationship between
the two variables.

6.2.2 Evaluation of region descriptors

In the next experiment, we investigate the rotationally invariant property of the
histogram-based region descriptors. To evaluate the rotational invariance property
of the histogram-based region descriptors, the region ought to be spherical. The ra-
dius of spherical region is the descriptor radius K. We select five spherical regions
from the volumes in Figure 6.2. The center of the regions coincides with the cen-
troid of the vessel-like structures. Since the rotationally invariant texture feature
(see Equation 6.3) is a set of real numbers, the region description is accumulated to
multiple histograms, each histogram corresponding to one of the texture features.
In Figure 6.5(a) and Figure 6.5(b) the number of sample points P are 42 and 162,
respectively. The descriptor radius K is set to 5. Increase in sampling rate, improves
the spherical function approximation, which translates to improved discriminative
ability of the descriptor (see Figure 6.5). We use the Chi-square distance [17] to mea-
sure the difference between regions from all the volumes and their rotated version,
as shown in Figure 6.5. The lower the Chi-square score, the more similar are the
histograms. Figure 6.5 shows that the regions correlate very well with its rotated
version, and weekly correlates with other regions.

6.2.3 Clinical examples / evaluation

To investigate the use of LBP as a 3D texture descriptor in medical image analysis
(e.g. [91], [121]), we test our approach to describe a region or landmark in liver CTA
volume. The liver CTA volume shown in Figure 6.6(a), is rotated on axis (0, 0, 1)
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(a) Volume A. (b) Volume B. (c) Axial Dist Map.

(d) Sagittal Dist Map. (e) Coronal Dist Map.

Figure 6.6: Liver CTA volume: A landmark location is selected in Volume A. The same landmark

location is then searched in the Volume B; a) Volume A, b) Volume B: Obtained by rotating Volume

A on axis (0, 0, 1) by π
3 radians, c) The axial Chi-square distance map, d) The sagittal Chi-square

distance map and e) The coronal Chi-square distance map. Parameters - Sampling Radius R = 5;

Descriptor Radius K = 5; Sample points P1 = 42.

by π/3 angle to obtain the new volume, shown in Figure 6.6(b). The parameters,
sampling radius is set to R = 5; descriptor radius is set to K = 5; and sample points
is set to P1 = 42. A landmark location is selected in the left-hand side volume in
Figure 6.6(a). The same landmark is then searched in the rotated volume, and as
shows in the Figure 6.6(b) we are able to retrieve back the landmark location. The
Chi-square distance map for the axial, sagittal and coronal planes are shown in
Figure 6.6(c), Figure 6.6(d) and Figure 6.6(e), respectively. The distance maps have
a peak at the selected landmark location. Figure 6.7 show the histograms of the
descriptor at various locations in the liver CTA volume like thin vessel structure,
large vessel structure, liver tissue and liver boundary. The histograms show the
first three elements of the rotationally invariant feature from the Equation 6.2. The
histogram-based region descriptor has different signature for different structural
location in the liver CTA volumes, which show its discriminative ability in visual
classification tasks.
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1)Thin liver vessel 2)Large liver vessel

3)Liver tissue 4)Liver boundary

Figure 6.7: Histogram descriptors of various locations in liver CTA volume. Histograms show

the first three features from the Equation 6.2. Parameters - Sampling Radius R = 5; Descriptor

Radius K = 5; Sample points P1 = 42.

6.3 Discussion and Conclusion

Volumetric data, like their 2D counterpart have an inherent textural property. The
textural property of a 3D region can aid in its region description. LBP which was
conventionally designed for image texture description is extended in this work to
region description of volumetric data. The rotational invariance property helps in
view invariant region detection. We show the application of our histogram-based
region descriptors in distinguishing various vessel-like structures in phantom data
and landmark detection in medical imaging data.

The method presented has several parameters that need to be determined ap-
propriately. The LBP parameters, spherical sample points P and sampling radius
R are related as the spherical neighborhood corresponding to a given R contains a
limited number of non-redundant sample points. To capture the vessel-like struc-
tures well (Figure 6.2) in the phantom experiments, the sampling radius R is chosen
greater than the radius of the cylindrical arms. The 3D region descriptor covers a
spherical region of radius K and is described in terms of multiple histograms. His-
togram bins provide an estimate of the number of corresponding texture patterns.
It is relevant to choose the appropriate number of bins and their range that appear
in the histogram carefully, as they directly affect the distance measure. If we use
too few bins, the histogram doesn’t really portray the data very well. If we have
too many bins, we get a broken comb look, which also doesn’t give a sense of the
distribution. Care should be taken so that there are enough bins and are utilized
well.

To measure the similarity between two regions we use the Chi-square histogram
distance metric, since it is popular in previous works [138] [44]. During experimen-
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tations we considered the Bhattacharya distance; however from our pilot experi-
ments we found Chi-square metric to be more discriminative.

In our work we focus on a rotationally invariant representation of the 3D LBP.
Many of the proposed complementary measures [43] [78] [19] are independent of
the LBP representation, and thus could easily be integrated in our 3D approach.

Concluding, we presented a method for rotationally invariant 3D LBP, using
spherical harmonic decomposition. We applied the method on vessel-like phantom
data and a clinical dataset, with encouraging results. More in-depth analysis and
integration of complementary measures is part of future work.
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Multiple-correlation similarity for fast CT

and ultrasound fusion

Based on:

Jyotirmoy Banerjee, Camiel Klink, Renske Gahrmann, Wiro J. Niessen, Adriaan
Moelker and Theo van Walsum, Multiple-correlation similarity for block-matching
based fast CT and ultrasound fusion in liver interventions, submitted

Abstract

In this work we present a fast approach to perform registration of CT and ultra-
sound volumes for image guided intervention applications. The registration method
is based on a novel similarity metric, where the intensity and the gradient of the CT
images along with the US volumes are the input images. The multimodal similarity
metric uses multiple correlation coefficient in a block-matching framework, to find
correspondences between regions in the CT and the US volumes. Geometric consis-
tency and smoothness criteria are imposed to refine the block-matching results. The
improved block-matching results are used to determine the affine transformation
between the CT-US volumes. The training dataset consists of 8 CT and US pair from
5 patients and the testing dataset consists of 21 CT and US pairs acquired from 12
patients. A mean registration error of 3.5 and 4.3 mm is achieved over the training
and testing dataset, respectively.
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7.1 Introduction

7.1.1 Clinical motivation

Computed tomography (CT) is a popular diagnostic imaging technique with high
image resolution and, due to fast imaging speed, few motion artifacts. Vessels are
not always clearly visible in CT. To image blood vessels, scans are performed af-
ter the introduction of the contrast material. Contrast enhanced CT scans are fre-
quently used for tumor diagnosis and treatment planning of the tumors (cancer).

Unlike CT, ultrasound (US) does not use ionizing radiations. It uses high fre-
quency sound waves for imaging and is used to image soft tissues, e.g. in the ab-
domen. With recent matrix array probes US provides real-time 3D imaging. It can
be potentially used as an intraoperative imaging modality, e.g. in thermal ablation
tumor therapy. However, tumors are not always clearly visible in US. Preoperative
CT can be combined with 3D US during interventions to incorporate complemen-
tary information. Additionally, incorporating CT data during intervention will add
greater definition and precision to the US based navigation system.

The purpose of our work is to enable live overlay of CT in US guided tumor
ablations. Towards this end we propose a fast registration technique between (pre-
operative) CT and (intraoperative) real-time 3D US data. Such a method would pro-
vide real-time virtual image overlay of CT on 3D US and thus help the clinicians
to accurately visualize the target during the intervention. For example, with CTA
overlay the tumor location can be precisely visualized on the US images during the
intervention, which is very relevant as the tumor is often difficult to visualize using
only US.

7.1.2 Related work

In literature there have been attempts to address the registration of CT and US
volumes. Lee et al. [72] used an electromagnetic tracking based fusion imaging of
real-time US and CT/MR images for percutaneous hepatic intervention of the liver.
Crocetti et al. [25] performed a feasibility study of CT-US fusion imaging system
on ex vivo (calf) livers using a commercially available multimodality fusion imag-
ing system. Recent advancements in treatment of liver tumors using image guided
ablation techniques are discussed in Kang et al. [55].

There exist commercial interventional software solutions that perform CT-US
registration. These systems typically use external tracking systems (e.g., electro-
magnetic, optical) to co-register multimodal images. Optical tracking requires clear
line-of-sight between cameras and targets; hence objects inside the body cannot be
tracked. Electromagnetic tracking does not require line-of-sight to operate, how-
ever are sensitive to ferromagnetic objects. These external tracking based systems
provide limited support for soft tissue regions like the abdomen.
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Registration methods using image information do not suffer from the limita-
tions of tracking based approaches. Lange et al. [67] proposed an algorithm that
uses intensity and few additional landmark positions to perform non-rigid regis-
tration of preoperative CT and intraoperative US volumes. They used the normal-
ized gradient field (NGF) to measure the similarity. To automate the estimation of
the initial transformation a graph based edge matching algorithm was proposed
by Nam et al. [90], where the edges are extracted from the segmentation of vessels.
Their approach performs registration of US and CT volumes of the liver regard-
less of the patient or probe motion. However, robust segmentation of vessels in US
is a challenging task. Nagpal et al. proposed a combination of intensity and point
based registration methods to perform multi-vertebrae CT to US registration of the
lumbar spine [89]. They used a spring model to constrain the movement of the
individual vertebraes. In Penney et al. the ultrasound and the MR images are con-
verted into vessel probability maps, which are then registered using normalized
cross-correlation similarity metric [101]. Apart from the fact that accurate detection
of vessels in ultrasound is a challenging task, the method does incorporate infor-
mation like liver surface and liver tissue characteristics in the registration task.

Others have tried to directly register US images to CT images. As the physics
behind US image formation is different from CT, the choice of the similarity metric
for the registration algorithm is non-trivial and critical. Mutual information (MI) is
the most generic similarity metric used in multimodal registration where statistical
dependency between the modalities is used [52, 103].

The correlation-ratio (CR) similarity metric uses the functional relationship y =
f (x) between the modalities [109]. To address the spatial intensity inhomogeneity
in the US images, Rivaz et al. used a local estimate of the CR similarity metric us-
ing patch based registration approach [108]. A bivariate version of the CR was first
introduced by Roche et al. [110]. It assumes a polynomial functional relationship
of the form y = f (x1, x2), where x1 is the intensity image and x2 is the gradient
image. The gradient of a CT or Magnetic resonance (MR) image is considered to
approximately replicate the US imaging as the impedance mismatch at tissue bor-
ders results in a bright signature between tissues in the US images. Wein et al. [136]
and Fuerst et al. [36] assume a linear function of the form y = ax1 + bx2 + c, where
the coefficients of the function (a, b and c) are estimated locally during the similarity
metric evaluation.

In Wein et al. [136] simulation of US type physical phenomena is used to gener-
ate pseudo US images from CT data. The simulated US images are then registered
to the real-time US images. In MR imaging, there is a less direct relationship be-
tween the voxel intensities and tissue characteristics relevant for US imaging. To
that end, Kuklisova-Murgasova et al. [64] pre-segments MR volumes before con-
verting them into pseudo US volumes, which are further registered to US fetal brain
volumes.

Self-similarity based methods exploit neighborhood relationships. These mea-



100 Chapter 7

Figure 7.1: Input points for block-matching: Left - CTA volume and overlayed liver mask, Middle

- US volume and overlayed US mask, Right - Overlayed intersection of US and liver mask and

input points for the block-matching.

sures are relative and independent of the imaging modality. They are inspired by
the success of the image denoising methods like non-local means [13, 14, 15]. As
corresponding regions in different imaging modalities have a similar neighborhood
relationship, they share similar self-similarity descriptors/signatures. The descrip-
tors are extracted and compared across modalities using monomodal similarity
metrics like sum of squared distances (SSD) or sum of absolute differences (SAD).
The modality independent neighborhood descriptor (MIND) was used in Heinrich
et al. [49] for the registration of CT and MR scans. A similar self-similarity based
method was later used by Heinrich et al. [50] to register 3D US and MRI scans for
neurosurgery.

7.1.3 Our contributions

This work has four main contributions: First, we propose a fast multiple correlation
coefficient based similarity metric to perform multimodal registration of CT and
US volumes. Second, we discuss an efficient implementation of this new similarity
metric, which unlike MI and CR and similar to SAD and SSD, can be computed
in a single pass. To the best of our knowledge this similarity metric is for the first
time used in multimodal registration. Third, to improve the block-matching results,
we extend our previously presented outlier rejection method based on a geometric
consistency [6] with smoothness criteria. Fourth, we evaluate the approach on a
large set of patient data.

The remaining of the chapter is structured as follows. In Section 7.2 we discuss
the CT and real-time 3D US registration approach. The experiments are described
and the results are presented in Section 7.3. The results are analyzed and discussed
in Section 7.4.
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7.2 Method

The method consists of three steps - selecting a set of input points for the block-
matching, followed by block-matching based on a similarity metric and an out-
lier rejection step to remove the false correspondences from the block-matching.
These steps are similar to the earlier work presented in Banerjee et al. [6] for the
US-US registration. For multimodal CT-US registration, we propose the following
two changes to the previous framework - first, we propose a fast multimodal sim-
ilarity metric for the multimodal block-matching and second, the outlier rejection
step is adapted and improved over the earlier work presented in Banerjee et al. [6].

In our approach, for a set of points located in the reference/fixed image, block-
matching is used to find corresponding locations in the moving image using a mul-
tiple correlation coefficient based multimodal similarity metric. The correspondences
from the block-matching are inputs to the outlier rejection scheme. The outlier re-
jection scheme uses geometric consistency and smoothness criteria to determine
the block-matching results that can be trusted. The method then uses only the se-
lected block-matching results from the outlier rejection scheme to estimate a rigid
transformation using Arun et al. [4] and an affine transformation using Späth [122].

7.2.1 Selecting point set for block-matching

The registration method is based on block-matching strategy [22, 97]. Block-matching
helps in finding a set of corresponding location form the reference image {pi} to the
moving image {qi}, where 1 ≤ i ≤ n and n is the number of elements in the set.
Input point set locations for the block-matching are selected randomly from the re-
gion of interest (ROI). The ROI is the intersection of the following regions - liver
mask and (initialized/roughly aligned) US volume mask, see Figure 7.1. Manual
segmentation was performed to obtain the liver mask from the CTA volume, but
(semi-)automated methods [48] could be applied as well.

7.2.2 Multimodal block-matching

We use a multiple correlation coefficient (MCC) similarity metric for the multi-
modal block-matching. The multiple correlation coefficient (MCC) finds the correla-
tion between the target variable y and the multiple predictor variables x1, x2, · · · , xm

using a linear function. The square of the coefficient of multiple correlation R is
given as:

R2 = c⊺R−1
xx c , (7.1)

where

Rxx =




rx1x1 · · · rx1xm

...
. . .

...
rxmx1 · · · rxmxm


 ,
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c =
[
rx1y · · · rxmy

]⊺ and ruv is the correlation between the variables u and v.
Similar to Wein et al. [136] and Fuerst et al. [36] we assume a linear functional

relationship between the CTA intensity volume x1, the CTA gradient volume x2
and the US volume y, where y = ax1 + bx2 + c. However, unlike the regression
based method described in [36, 136] we determine the strength of the association
between the variables in an implicit way using a correlation based method. Similar
to the normalized correlation coefficient (NCC) an estimate of the coefficients of
the linear function is not required to estimate the correlation coefficient in MCC.
For MCC with two predictor variables x1 and x2, Equation 7.1 can be rewritten as:

R2 =
r2

x1y + r2
x2y − 2rx1yrx2yrx1x2

1 − r2
x1x2

, (7.2)

where R ∈ [0, 1]. R2 is also called coefficient of determination.
The correlation coefficient ruv is calculated using a single-pass approach [28]:

ruv =
s ∑ uivi − ∑ ui ∑ vi√

s ∑ ui
2 − (∑ ui)

2
√

s ∑ vi
2 − (∑ vi)

2
, (7.3)

where s is the number of samples. Substituting Equation 7.3 in Equation 7.2, re-
sults in a single-pass MCC expression for two predictor variables, which can be
efficiently implemented on a graphics processing unit (GPU).

7.2.3 Outlier rejection

Here we first briefly review the geometric constraint used in the outlier rejection
step, originally proposed for the US-US registration [6]. Subsequently, we propose
an additional spatio-temporal smoothness constraint to improve the outlier rejec-
tion step, required for a robust CT-US registration.

The outlier rejection method that detects the false correspondences from the
previous multimodal block-matching steps is based on the following two criteria:

Geometric criterion: The geometric consistency criterion preserves pairwise dis-
tance between locations in the reference image P = {pi} and their corresponding
locations in the moving image Q = {qi}, where 1 ≤ i ≤ n. The pairwise informa-
tion is encoded in an adjacency matrix G, where an element of the matrix is given
as:

Gi,j =

{
e−δi,j

2/2σG
2

if i 6= j

0 otherwise ,
(7.4)

where

δi,j =
|‖qi − qj‖ − ‖pi − pj‖|
‖qi − qj‖+ ‖pi − pj‖

.
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Smoothness criterion: As the geometric consistency criterion does not involve
orientation consistency, we added a spatio-temporal smoothness constraint that
ensures that the displacement vectors from the block-matching are directionally
consistent. Conceptually, this is similar to the piecewise smooth flow field crite-
ria described in the optical flow based method in Brox et al. [12]. However, un-
like the optical flow based approach in [12], which tries to find the displacement
field between two nearby/consecutive images using a local approach, we address
the problem of finding correspondences between two images using a graph-based
global approach. The smoothness information is encoded in an adjacency matrix S,
where an element of the matrix is given as:

Si,j =

{
e−ζi,j

2/2σS
2

if i 6= j

0 otherwise ,
(7.5)

where

ζi,j =
|
−−−−−→
(qi − pi)−

−−−−−→
(qj − pj)|

‖qi − qj‖
.

Notice that for sufficiently close points qi and qj in space, ζi,j is the magnitude of
the gradient of the flow/deformation vector. Combining the geometric consistency
and the smoothness constraint, the optimization function to be maximized is given
as:

(1 − η)w·Gw + η w·Sw , (7.6)

where 0 ≤ η ≤ 1 and w ∈ ∆. ∆ is the unit simplex defined as:

∆ = {w ∈ R
n : w ≥ 0 and e⊺w = 1} , (7.7)

where e = [1, . . . , 1]⊺ ∈ R
n. The elements of the stochastic vector w are nonnegative

and sum up to one.
The replicator dynamics update equation to maximize the equation 7.6 is:

wi(t + 1) = wi(t)
(Kw(t))i

w(t)·Kw(t)
, (7.8)

where K = (1 − η)G + η S. The update Eq. 7.8 ensures that ∀t, w(t) ∈ ∆, see [135].
A local maximum is reached at the location where the trajectory of Eq. 7.8 does not
increase any further, see [100]. Each element wi of the vector w states whether the
ith point is an inlier or not. If wi < ǫ, then wi is considered as an outlier and the rest
of the points are considered as inliers, where ǫ is a small positive real number.
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Table 7.1: Notations and parameters to optimize in the training experiment.

Symbol Description

Block-matching -
n Number of points
Block-size Block-size
σCT Standard deviation of Gaussian derivative,

required to calculate CT gradient
Outlier rejection -
σG Standard deviation of geometric term
σS Standard deviation of smoothness term
η Constant in the outlier rejection equation

determines the relative weight of the
geometric term vs. the smoothness term

7.3 Experiments

7.3.1 Data and resources

CT and 3D US were acquired from 17 patients. Informed consent was obtained
from all patients prior to the data acquisition. 3D US data was acquired using a
Philips iU22 US system with an X6-1 probe. Liver US data was acquired from the
intercostal and the sub-xiphoidal regions. The subjects were asked to breathe freely
during the image acquisition. The data from 17 patients were divided into train-
ing and testing set. The training set consists of 8 CT-US pairs from 5 patients which
were randomly picked from the overall dataset and the rest of the data was the test-
ing set. The testing set consists of 21 CT-US pairs from 12 patients. The US volumes
were 512×378×222 voxels with voxel size of 0.420mm×0.387mm×0.629mm. The
contrast-enhanced CT was acquired in the portal venous phase. The CT slice thick-
ness was 3 mm, slice spacing was 2 mm except for one case, where slice spacing
was 3 mm, and pixel size varied from 0.39 mm to 0.75 mm.

MeVisLab, OpenCL and C++ are used for software development. The OpenCL
code was run on a NVIDIA GeForce GTX 780 Ti GPU.

7.3.2 Evaluation metric

Manual annotations were performed to obtain ground truth registrations. Vessel
bifurcations were predominantly used for annotations as corresponding locations
could uniquely be identified in CT and US data. The registration error is estimated
using the mean target registration error (mTRE), measured in mm. mTRE is the
average distance between the ground truth annotations from the fixed image to the
moving image.
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Figure 7.2: Block-matching parameters: Num-

ber of points, block-size and σCT. The outlier

rejection parameters are set as follows: σG =

0.3, σS = 0.5 and η = 0.3.
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7.3.3 Experiments

We perform the following experiments to evaluate the proposed registration method.

• Parameter tuning on training set: The training set is used to estimate the op-
timal parameters of the algorithm, see Table 7.1. We first evaluate the block-
matching parameters of the algorithm. We investigate the effect of change in
a) sigma (σCT) used in calculating the gradient of the CT volume, b) block-size
and c) number of points used in the block-matching. The parameter ranges
for the sigma of the gradient, block-size and number of points were {1 mm, 2
mm, 3 mm}, {93 mm3, 113 mm3, 133 mm3, 153 mm3} and {200, 300, 400, 500},
respectively. The block-matching search range and search grid spacing are set
to 403 mm3 and 1 mm, respectively. Next we evaluate the outlier rejection pa-
rameters. We investigate the effect of change in a) σG, b) σS and c) η. We apply
a known translation (x, y, z) = (10 mm, 10 mm, 10 mm) to the US image which
was earlier aligned using the ground truth annotations. The evaluation range
of σG is {0.1, 0.2, 0.3, 0.4, 0.5}, of σS is {0.1, 0.2, 0.3, 0.4, 0.5, 0.6} and η is {0.1, 0.2,
0.3, 0.4, 0.5}. The ǫ value is set to 1.19209e-07 (machine epsilon value for the
floating type). From the parameter evaluation range we decide the optimal
parameter settings on the training set data based on the mTRE metric.

• Rotation: In the next experiment we evaluate the robustness of the similarity
metric and the block-matching under rotation. We used five CT-US pairs ran-
domly selected from the test set and aligned them based on the ground truth
annotation. We rotated the US volume in the range from 0 to 30 degrees with
a step size of five degrees, where the axis of rotation was (x = 0, y = 0, z = 1).
The CT and the corresponding rotated US volumes are then registered.
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Figure 7.6: Registration results on test set for small (median error of 3.9 mm) and large displace-

ments (median error of 3.6 mm). Ref. - error in ground truth (median error of 2.3 mm).

• Evaluation on testing set - small displacement: Given the optimal parameter
setting we study the robustness of the registration approach for a set of small
displacements with respect to the ground truth alignment on the test set. We
apply a set of small displacements: (0.7 mm, 0.7 mm, 0.7 mm), (0.7 mm, 0.7
mm, 1.0 mm), (0.7 mm, 1.0 mm, 0.7 mm), (0.7 mm, 1.0 mm, 1.0 mm), (1.0 mm,
0.7 mm, 0.7 mm), (1.0 mm, 0.7 mm, 1.0 mm), (1.0 mm, 1.0 mm, 0.7 mm) and
(1.0 mm, 1.0 mm, 1.0 mm).
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Table 7.2: Testing set error statistics for small and large displacements: Ref. - error in ground

truth, Init. - error before registration and Reg. - error after registration.

Small displacement Large displacement
Ref. Init. Reg. Init. Reg.
(in mm) (in mm) (in mm) (in mm) (in mm)

Mean 2.3 2.7 4.1 14.9 4.5
Median 2.3 2.7 3.9 15.1 3.6

• Evaluation on testing set - large displacement: Given the optimal parameter
setting we study the robustness of the registration approach for a set of large
displacements with respect to the ground truth alignment on the test set. We
apply a set of large displacements: (7 mm, 7 mm, 7 mm), (7 mm, 7 mm, 10
mm), (7 mm, 10 mm, 7 mm), (7 mm, 10 mm, 10 mm), (10 mm, 7 mm, 7 mm),
(10 mm, 7 mm, 10 mm), (10 mm, 10 mm, 7 mm) and (10 mm, 10 mm, 10 mm).

7.3.4 Results

The results of the above listed experiments are presented below.

• Parameter tuning on training set: Figure 7.2 shows the registration results on
various block-matching parameter settings for the training set. It shows that
increasing block-size improves registration performance. Registration result
over the training set is best when the σCT is 1 mm, the block-size is 153 mm3

and the number of points is 300. Reduced block-size of 133 mm3, increased
number of points of 400 and σCT of 1 mm have similar registration error as
the previous parameter setting. Figure 7.3 shows the registration results on
various outlier rejection parameter settings for the training set. Registration
result over the training set is best when σG is 0.3, σS is 0.5 and η is 0.3. For
the optimized parameter settings mean and median registration errors of 3.5
mm and 3.1 mm, respectively is achieved over the training set. The number
of inliers for various outlier rejection parameter settings over the training set
are shown in Figure 7.4.

• Rotation: Figure 7.5 shows that the registration results on the rotated dataset.
The mTRE value is consistent until 20 degrees of rotation. The registration
results deteriorate for rotation angle of 25 degrees or more.

• Evaluation on testing set - small displacement: Figure 7.6 shows registration
results on small displacement. The mean and median registration errors are
4.1 mm and 3.9 mm, respectively is achieved over the testing set. In Table 7.2,
we show the error in the ground truth, given small displacement error before
the registration and error after the registration.
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Figure 7.7: Training set registration results: Left - Fixed volume, Middle - Moving volume and

Right - Registered volume. Initial displacement for all the volumes is (x, y, z) = (10, 10, 10). Row

1 - mTRE = 2.6 mm, Row 2 - mTRE = 3.7 mm and Row 3 - mTRE = 3.8 mm.

• Evaluation on testing set - large displacement: Figure 7.6 shows registration
results on large displacement. The mean and median registration errors are
4.5 mm and 3.6 mm, respectively is achieved over the testing set. In Table 7.2,
we show the error in the ground truth, given large displacement error before
the registration and error after the registration. Considering both small and
large displacement the mean and median registration errors over the testing
set are 4.3 mm and 3.8 mm, respectively.

Examples of the training set registration results are shown in Figure 7.7 and ex-
amples of testing set registration results are shown in Figure 7.8 and Figure 7.9. The
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Figure 7.8: Testing set registration results: Left - Fixed volume, Middle - Moving volume and

Right - Registered volume. Initial displacement for all the volumes is (x, y, z) = (10, 10, 10). Row

1 - mTRE = 5.2 mm, Row 2 - mTRE = 2.1 mm and Row 3 - mTRE = 3.2 mm
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Figure 7.9: Testing set registration results: Left - Fixed volume, Middle - Moving volume and

Right - Registered volume. Initial displacement for all the volumes is (x, y, z) = (10, 10, 10). Row

1 - mTRE = 3.8 mm, Row 2 - mTRE = 3.9 mm and Row 3 - mTRE = 3.0 mm.

GPU timings of the block-matching and the outliers rejection module are shown in
Figure 7.10 and Figure 7.11, respectively. For 300 points, block-size of 153 mm3 and
search range of 203 mm3, the block-matching and outlier rejection modules take
0.72 seconds and 0.13 seconds, respectively. Hence the GPU implementation runs
the CT and US registration at 1.2 Hz.

7.4 Discussion and conclusion

The fusion of CT and US volumes would provide complementary information from
CT during US based image guidance in interventions. In this work we presented
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a fast CT to 3D US affine registration approach, based on a previously proposed
fast US-US registration framework [6], that enables multimodal registration. The
approach consists of three steps namely a) point selection, b) block-matching and
c) outlier rejection. The block-matching step uses MCC as similarity metric to find
correspondences between the CT and the US volumes. We proposed a multimodal
similarity metric, which can be efficiently implemented using the GPUs. The block-
matching may yield many false correspondences; an outlier rejection step was used
to remove the false correspondences. For the optimum outlier rejection parameter
setting of σG = 0.3, σS = 0.5 and η = 0.3, figure 7.4 shows the number of inliers
on the testing set. The inliers from the outlier rejection are used to estimate the
affine transformation. The method is generic and maybe used in other multimodal
registration.

Increase in the σG value would reduce the number of fine edges from the CT
gradient volume. Figure 7.2 shows, increase in the σG value would deteriorate the
accuracy of the method. Figure 7.4 shows, small values of σG and σS would result
in insufficient number of inliers for a good registration, as shown in Figure 7.3.
Similarly large values of σG and σS would result in high number of inliers with
many false-positives, which would increase the registration error. Figure 7.3 also
shows that at the optimum outlier rejection parameter setting and its vicinity the
performance of the method is stable.

In the case of large initial displacement, as shown in Table 7.2 the registration
error is smaller than the initial error, indicating that the method improves the align-
ment. However, in the case of small initial displacement, as shown in Table 7.2
the registration error is greater than the initial error, indicating that the method
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marginally deteriorates the alignment. This could be due to factors like error in the
ground truth annotations and the non-rigid deformation in the liver.

Wein et al. [136] performed affine registration of simulated US from CT and US
to achieve a mean registration error of 8.1 mm on 25 liver dataset. They report an
average computation time of 28 seconds (C++ implementation) using the LC2 simi-
larity measure. The LC2 similarity measure uses the same functional modal as ours
y = ax1 + bx2 + c, but unlike our correlation based method it uses a regression
based approach to estimate the similarity. A GPU (NVIDIA GeForce GTX TITAN
with 2688 cores) implementation of the LC2 similarity measure applied to MR and
US registration by Fuerst et al. [36] report an average time of 2.32 seconds for a cap-
ture range of 15 mm. The average run-time of our registration method on a GPU
(NVIDIA GeForce GTX 780 Ti with 2880 cores) is 0.85 seconds for a search range
of 203 mm3. Lange et al. [67] performed non-rigid registration on clinical liver data
sets of three different patients and achieve a mean registration error of 3.7 mm.
Nam et al. [90] performed affine registration with the joint use of vessels and the
liver surface to achieve a fiducial registration error of 3 mm over 20 clinical dataset.
Rucker et al. [115] using sparse surface data performed non-rigid registration of CT
and US and achieved a mean registration error of 3.3 mm over 5 phantom defor-
mation dataset. The method we presented has a mean registration error of 4.3 mm,
which is comparable to other existing registration approaches.

US and CT fusion guided RFA has been shown to be a safe and effective treat-
ment for liver cancer [137]. In RFA of the liver, interventional radiologist ablates an
additional 1 cm thick tumor-free margin around the tumor to avoid reoccurrence
of the tumor [86]. The registration error of the method presented is within this
ballpark. Compared to existing, tracker-based approaches, an image-based fusion
approach as presented would logistically be simpler, and would permit automatic
updating of the fusion in case of patient motion (such as respiration). For a fast
continuous registration of 4D US with CT, the registration to reference by track-
ing (RTRT) [5] strategy could be used. The RTRT strategy would help in further
reducing the number of points and the search range used in the registration, and
would help in improving the run-time of the method. However, real-time 3D US on
our system was of inferior image quality (especially the resolution) compared to a
static 3D US (3D sweep, obtained in < 1 sec using the 2D matrix array transducer).
Newer systems may have superior image quality, and permit a live update of the
fused images.

Obtaining accurate CT-US ground truth annotation was a challenging task, es-
pecially because the initial orientation of the US data with respect to the CT was not
accurately known, as we did not use any external tracking device. To address this
we performed annotations in two steps - in the first step we perform rough align-
ment using an approximate of a few landmark annotations and in the next step we
refine the annotation to obtain accurate ground truth annotations.

The current approach has been evaluated on data obtained from a single cen-
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ter and a single US device. Validation on a larger test bed should be performed
before applying it to clinic. Other avenues of future work include incorporating a
respiratory motion model and extension to fast non-rigid registration approaches.

In conclusion, we proposed and evaluated a fast CT to US affine registration
which is based on a novel similarity metric. A mTRE of 3.5 is achieved over 8 CT
and 3D US training pairs acquired from 5 patients and 4.3 mm is achieved over 21
CT and 3D US testing pairs acquired from 12 patients. For a search range of 203

mm3, the method performs CT and US registration at 1.2 Hz. The proposed fast CT
and US fusion method can be potentially used to improve image guidance in liver
interventions.





Chapter 8

Summary and Future Perspectives
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8.1 Summary

In this thesis we proposed and evaluated algorithms for image guidance in liver
interventions. We presented rotationally invariant features computation and image
based motion compensation of the real-time 3D ultrasound (US) images of the liver.
In addition a method to fuse computed tomography (CT) and US is proposed and
evaluated. In this chapter we summarize the main findings of the work presented
in this thesis and discuss future research directions.

Real-time 3D US can be potentially used for image guidance in minimally in-
vasive liver interventions. Motion caused by patient breathing shifts the liver and
makes it hard to continuously visualize a specific target area. Respiratory motion
also hampers continuous accurate alignment with pre-operative data. In Chapter
2 we developed a fast affine registration framework to compensate liver motion
or displacement due to breathing. The affine registration of two consecutive US
volumes was performed using a fast combined block-matching and outlier rejec-
tion approach. For a set of evenly distributed points in one volume, their corre-
spondences in the other volume were determined via block-matching. Next, a ro-
bust outlier rejection method was used to detect and reject false block-matching
matches. The inliers were then used to determine the affine transformation. The
registration approach was evaluated on 13 4D US sequences acquired from 8 sub-
jects. For 91 pairs of 3D US volumes selected from these sequences, a mean registra-
tion error of 1.8 mm was achieved. We implemented the method in GPU harware.
The GPU implementation runs the 3D US registration at 8 Hz.

In Chapter 3 we presented an extension of the work of Chapter 2 to 4D US im-
age sequences. For 4D registration, we performed registration of consecutive US
volumes over the time series. Transformation between any two frames was esti-
mated by taking the product of all the intermediate transforms. To avoid accumu-
lation of error over the series of transformations, a long range feedback mechanism
is proposed. A mean total registration error of 1 mm was achieved across six 4D US
sequences of human liver. The GPU implementation runs the registration at 10 Hz.
The limitations of this approach are that it requires large search range and cannot
handle all rotations.

In Chapter 4 work we improved on the method in Chapter 3, which was earlier
tested on a limited dataset and for shorter time sequences. Here we described a fast
and robust 4D registration method for on the fly stabilization of US volumes for im-
proving image guidance for transjugular intrahepatic portosystemic shunt (TIPS)
interventions. This enables continuous visualization of relevant anatomical planes
determined in a planning stage at the start of the intervention. It requires mapping
the planning information to the interventional images, which was achieved in two
steps. In the first step tracking was performed across the streaming US volumes. An
approximate transformation between the reference image and the incoming image
was estimated by composing the intermediate transformations obtained from the
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tracking. In the second step a subsequent registration was performed between the
reference image and the approximately transformed incoming image to account
for the accumulation of error. The two step approach helped in reducing the search
range and was robust under rotation. We evaluated the method over thirteen 4D US
sequences acquired from eight subjects. A graphics processing unit implementation
runs the 4D tracking at 9 Hz. A mean registration error of 1.7 mm was achieved.
Tests over long US sequences showed that the registration error did not increase
over time. We additionally presented an approach to initialize and verify the reg-
istration. The verification method helped to detect and validate the registration
outcome, and was used to automatically initialize the 2-step registration described
above. It indicated whether the reference image (containing planning information)
was aligned well with the (interventional) 4D US sequence.

In Chapter 5 we presented a method for tracking of anatomical landmarks in the
liver. This 4D US tracking method was based on global and local rigid registration
schemes. Our method was based on the previous work described in Banerjee et al.
[5] and [6], which are in turn based on the work described in the Chapters 2 and 4.
We evaluated our method on the dataset that was presented in the MICCAI 2015
Challenge on Liver US Tracking (CLUST 2015). On the test set a mean tracking error
of 1.80 ± 1.64 mm was achieved.

Rotationally invariant feature may help in matching images acquired from dif-
ferent orientations, which is relevant in analysis of medical images acquired from
different scanners. Local binary patterns [LBP] is a popular texture description
method used mainly in 2D image analysis tasks. The 3D LBP-based rotationally
invariant region description described in Chapter 6 extracts the texture features
from volumetric data which are view/pose invariant. The 3D rotationally invariant
texture feature generates a set of variables per voxel, where the number of variables
are equivalent to the number of spherical harmonic bands plus the kurtosis. A set
of histograms from each of the variables was used to describe a region. Similar-
ity/dissimilarity between two regions can be estimated using histogram based dis-
tance measures like the Bhattacharyya measure (or coefficient) and the Chi-square
measure. We applied the method for vessel detection on vessel phantom data and
a clinical dataset to show its discriminative ability in visual classification tasks with
encouraging results.

In Chapter 7 we presented an approach to perform registration of CT and US
volumes for image guided liver intervention applications. The registration method
was based on our previous block-matching approaches, and includes a novel mul-
timodal similarity metric that fits our framework. The intensity and the gradient
of the CT images along with the US volumes are the input images to the block-
matching. The multimodal block-matching approach used multiple correlation co-
efficient similarity metric to find correlation between the CT and the US volumes.
The geometric consistency criteria for outlier rejection were combined with smooth-
ness criteria to further adapt the outlier rejection to the multi-modal registration
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cases. The block-matching results after outlier rejection were used to determine the
affine transformation between the CT and the US volumes. The training dataset
consisted of 8 CT and US pairs from 5 patients and the testing dataset consisted of
21 CT and US pairs acquired from 12 patients. A mean registration error of 3.5 and
4.3 mm was achieved over the training and testing dataset, respectively.

8.2 Future Perspectives

In this work we developed a fast (real-time) registration approach for liver interven-
tions. We addressed the issue of stabilizing the liver motion due to breathing. Liver
tissue is not rigid, and the liver may deform during respiratory motion. However,
in our work we have considered an affine transformation model for the following
reasons:

• We focused on a fast implementation approach using graphics processing
unit hardware which facilitates such real-time applications. In an affine reg-
istration model, interpolation or resampling operations are computationally
less intensive compared to a non-rigid registration.

• The optimization schemes associated with estimating non-rigid deformation
fields are often computationally intensive.

• The field of view in US is not large and usually a large organ like the liver is
only partly visible. Because of this, an affine transform may be a sufficiently
good approximation.

• An affine transformation model implemented in real-time is sufficient for the
task of stabilizing the planes in an US volume required for image guidance in
minimally invasive procedure.

Having mentioned the above points for the choice of transformation, we believe
that there is merit in exploring and extending the method to a real-time non-rigid
registration framework. This would require further research and development, and
it may further improve the accuracy and enable extension to other interventions.
Further, as our 4D US registration work mentioned in Chapter 4 was primarily
developed for TIPS interventions, these methods may be relevant for other image
guided interventions as well, e.g. motion tracking for radiotherapy.

In Chapter 7, we present US and CT registration method. It would be interesting
to study the relationship between the CT-US registration and the phase of the con-
trast enhanced CT acquisition. Another interesting study would be performing the
multimodal registration approach in a 4D registration framework which would po-
tentially enable multimodal image guidance. This will be relevant for percutaneous
treatments like tumors in the liver and other organs.
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Figure 8.1: The real-time 3D US based navigation system

for the TIPS procedure at Erasmus MC.

Incorporating a motion model
for better estimating the posi-
tion of the liver would be use-
ful. The work could also be
extended to a non-rigid regis-
tration technique. The CT-US
registration method can be po-
tentially used in other multi-
modal registrations like mag-
netic resonance imaging and
US registration. From a clin-
ical perspective the techno-
logical advancements should
be augmented with ergonomi-
cally well-designed user inter-
face. The orthogonal planes to
the plane parallel to the 4D
US acquisition (and the plane
containing the long axis of the
transducer), typically suffers from low resolution. Hence, improving the 4D US im-
age quality is required, as oblique planes are required for image guidance during
interventions.

Concluding, in this thesis, we presented methods and evaluated their accuracies
that demonstrate the use of real-time 3D US and its fusion with CT in potentially
improving image guidance in minimally invasive US guided liver interventions.
The fast US based registration method has been implemented in a 4D US guidance
system for TIPS, see Figure8.1. Further extensions to multi-modal guidance and
non-rigid registration methods are relevant directions for future research. From a
clinical perspective, a larger clinical validation is required before using these sys-
tems in the clinic.
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Samenvatting

In dit proefschrift hebben we algoritmen voor beeldgeleiding in leverinterventies
gepresenteerd en geëvalueerd. We hebben de berekening van kenmerken die inva-
riant zijn onder rotatie en beeld-gebaseerde bewegingscompenstatie van real-time
3-dimensionale (3D) ultrageluid beelden geïntroduceerd. Daarnaast hebben we een
methode voor de fusie van computer tomografie (CT) en echografie (ultrasound,
US) gepresenteerd en geëvalueerd. In dit hoofdstuk vatten we de belangrijkste vin-
dingen van dit werk samen en bespreken richtingen voor verder onderzoek.

Real-time 3D echografie zou gebruikt kunnen worden voor beeldgeleiding in
minimaal invasieve ingrepen van de lever. Ademhaling van de patiënt zorgt ervoor
dat de lever verschuift, en maakt het moeilijk om continu een specifiek doelgebied
af te beelden. De beweging veroorzaakt door ademhaling maakt ook een nauwkeu-
rige combinatie met pre-operatieve data moeilijk. In hoofdstuk 2 ontwikkelden we
een snelle affine registratiemethode die kan compenseren voor leverbewegingen
veroorzaakt door de ademhaling. De registratie van twee opeenvolgende echogra-
fie beelden gebeurde door een gecombineerde snelle blok-vergelijking en verwer-
ping van uitschieters. Voor een verzameling van gelijkmatig verdeelde punten in
het ene beeld werden de corresponderende posities in het andere beeld bepaald
door blok-vergelijking. Vervolgens werd een robuuste methode om uitbijters te de-
tecteren toegepast, en werden de uitbijters verworpen. De overgebleven punten
werden gebruikt om de transformatie te bepalen. Deze aanpak is geëvalueerd op
13 4D echografie series die verkregen zijn van 8 personen. Voor 91 paren van 3D
echografie beelden kregen we een gemiddelde registratiefout van 1.8 mm. De me-
thode is geïmplementeerd in een GPU, en deze implementatie verwerkt 3D beelden
met een snelheid van 8 Hz.

In hoofdstuk 3 presenteerden we een uitbreiding van het werk van hoofdstuk
2 naar 4D echografie beeldseries. Voor 4D registratie registeerden we een serie op-
eenvolgende 3D echografie volumes. De transformatie tussen twee volumes werd
geschat door de combinatie van alle tussenliggende transformaties. Om opeensta-
peling van fouten over een serie transformaties te voorkomen werd een lange-
afstand terugkoppel mechanisme gepresenteerd. Een totale gemiddelde fout van
1 mm werd verkregen over zes 4D echografie beeldseries van de menselijke lever.
De methode verwerkte beelden met een snelheid van 10 Hz. De nadelen van de
methode zijn dat het een grote zoekruimte nodig heeft, en niet kan omgaan met
grote rotaties.
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In hoofdstuk 4 presenteerrden we een verbetering van de methode uit hoofd-
stuk 3, die slechts getest was op een beperkte dataset, op korte beeldseries. In
hoofdstuk 4 beschreven we een snelle en robuuste 4D registratie methode voor
het real-time stabiliseren van echografie beeld om beeldgeleiding in transjugulaire
intrahepatische portosystemische shunt (TIPS) ingrepen te verbeteren. Hiermee
wordt een continue afbeelding van de relevante anatomische vlakken, die vooraf
in een planning bepaald zijn, mogelijk gemaakt. De methode vereist een transfor-
matie van de planningsinformatie naar de beelden die tijdens de ingreep gemaakt
zijn. Dit werd gerealiseerd in twee stappen: in de eerste stap werd de beweging
tussen opeenvolgende beelden in de 4D echografie beeldserie bepaald. Hiermee
werd een schatting gemaakt van de transformatie tussen het referentiebeeld (met
de planning) en het real-time echografie beeld. Met behulp van deze transformatie
werd vervolgens een registratie uitgevoerd van het real-time echografie beeld met
het referentiebeeld, om accumulatie van fouten te voorkomen. Deze twee-stappen
aanpak hielp in het klein maken van de zoekruimte en is robuust onder rotatie van
de beelden. De methode is geëvalueerd op 13 echografie beeldseries van 8 perso-
nen. Middels een GPU implementatie verwerkte de methode beelden met een snel-
heid van 9 Hz met een gemiddelde registratiefout van 1.7 mm. Experimenten met
lange beeldseries lieten zien dat er geen accumulatie van de registratiefout plaats-
vindt. We presenteerden ook een methode om de registratie te initialiseren en te
verifiëren. De verificatie methode hielp in het detecteren en valideren van de regi-
stratieresultaten, en werd gebruikt om de registratie zoals hierboven beschreven te
initialiseren. De methode bepaalde of het referentiebeeld (met de planningsinfor-
matie) goed geregistreerd is met de beelden uit de real-time 4D echografie serie.

In hoofdstuk 5 presenteerden we een methode voor het volgen van anatomi-
sche herkenningspunten in de lever. Deze methode was gebaseerd op een globale
en lokale rigide registratie. De methode is gebaseerd op het werk dat gepresenteerd
is in de hoofdstukken 2 en 4. De methode is geëvalueerd op de beelden die gepre-
senteerd zijn in de "MICCAI 2015 Challenge on Liver Ultrasound Tracking (CLUST
2015). Met de beelden die beschikbaar waren om de methode te testen verkregen
we een fout van 1.80 ś 1.64 mm.

Beeldkenmerken die niet gevoelig zijn voor rotatie kunnen helpen in het re-
gistreren van beelden die verkregen zijn onder verschillende oriëntaties, wat bij-
voorbeeld van belang is bij het registreren van beelden die verkregen zijn met ver-
schillende echografie apparaten. Lokaal binaire patronen (LBP) is een populaire be-
schrijving van textuur die met name in 2D beeldanalyse gebruikt wordt. In hoofd-
stuk 6 werd een 3D rotatie-invariante beschrijving gepresenteerd die gebaseerd is
op 3D LBP. Deze methode genereert een aantal textuurkenmerken per beeldpunt,
die onafhankelijk zijn van de oriëntatie van het beeld. Het aantal kenmerken is
equivalent met het aantal sferische harmonischen plus de kurtosis. De verdeling
van kwantitatief beschrijvende waarden van elk van de kenmerken kan gebruikt
worden om een gebied te karakteriseren. De vraag of twee gebieden in twee beel-
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den op elkaar lijken (of niet) kan dan beantwoord worden door afstandsmaten die
toe te passen zijn op de waardeverdelingen te gebruiken, zoals bijvoorbeeld de
Bhattacharyya maat of the Chi-square maat. We hebben de methode toegepast om
vaten in beelden van een fantoom te detecteren, en ook in een beeld van een patiënt.
De resultaten lieten zien dat het mogelijk was om met deze maat visuele classifica-
tietaken uit te voeren.

In hoofdstuk 8 presenteerden we een methode voor registratie van CT-beelden
en echografie beelden voor beeldgeleide ingrepen in de lever. De methode was ge-
baseerd op de eerder beschreven blok-vergelijkingsmethode, en bevatte ook een
nieuwe maat die voor beelden van verschillende oorsprong kan bepalen of ze op
elkaar lijken. De blok-vergelijking gebruikte de intensiteit van het CT beeld en
de grootte van de afgeleide van het CT-beeld en een echografie beeld. De blok-
vergelijking gebruikte een meervoudige correlatie coëfficiënt om de correlatie tus-
sen het CT-beeld en het echografie beeld te bepalen. De geometrische consistentie
voor het detecteren van uitschieters was uitgebreid met maten voor de gladheid.
De blok-vergelijking resultaten nadat de uitschieters verwijderd zijn, werden weer
gebruikt om de transformatie te bepalen. Acht paren van een CT-beeld en echo-
grafie beeld van vijf patiënten zijn gebruikt om de instellingen van de methode te
optimaliseren, wat resulteerde in een fout van 3.5 mm. Evaluatie van de methode
op 21 andere paren van beelden van 12 patiënten lieten een fout zien van 4.3 mm.

Toekomstige ontwikkelingen

In ons werk hebben we een een snelle registratiemethode voor leveringrepen ont-
wikkeld, en we hebben hierbij gekeken naar het stabiliseren van de beelden onder
invloed van bewegingen door de ademhaling. Het leverweefsel is niet rigide, en
de lever kan ook vervormen tijdens de ademhalingsbeweging. We hebben ons in
ons werk echter gericht op rigide en affine transformaties, vanwege de volgende
overwegingen:

• We richtten ons op een methode die snel kan werken op een GPU, wat real-
time toepassing mogelijk maakt. Bij een affine registratie model zijn interpo-
latie operaties veel minder rekenintensief dan bij niet-rigide registratie mo-
dellen.

• De optimalisatie-schema’s die nodig zijn voor niet-rigide vervormingen kos-
ten vaak veel meer rekenkracht.

• Het beeldvolume in echografie is niet heel groot, en vaak is een groot orgaan
als de lever niet geheel in beeld. Daarom zou een affine transformatie een
voldoende goede benadering kunnen zijn.

• Voor de taak van het stabilizeren van de planningsvlakken voor beeldgelei-
ding is een affine registratie voldoende.
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Met bovenstaande in gedachten, zijn we toch van mening dat het onderzoeken en
uitbreiden van de methode naar een niet-rigide methode zin kan hebben voor het
verder verbeteren van de nauwkeurigheid en verbreding van het toepassingsge-
bied. Hiervoor is meer onderzoek en ontwikkeling nodig. Ook zou onze methode
uit hoofdstuk 4, die in eerste instantie ontwikkeld was voor TIPS ingrepen, relevant
kunnen zin voor andere toepassingen, zoals bijvoorbeeld radiotherapie.

In hoofstuk 7 hebben we een methode gepresenteerd voor de registratie van
CT- en echografie beelden. Het kan interessant zijn om de relatie tussen de kwa-
liteit van de afbeelding van de vaten in deze beelden te relateren aan de kwaliteit
van de registratie. Een andere interessante studie zou het integreren van de regi-
stratie tussen beelden van verschillende scanners in de registratie met beeldseries
zijn. Zo’n methode zou relevant kunnen zijn voor percutane behandelingen, zoals
van tumoren in de lever en andere organen. Het gebruiken van een bewegingsmo-
del om nog beter de plaats van de lever te kunnen schatten zou ook nuttig zijn. En
ook dit werk zou uitgebreid kunnen worden naar niet-rigide registratie. De CT -
echografie registratie zou ook uitgebreid kunnen worden naar andere soort beel-
den, zoals magnetische resonantie tomografie (MRI) en echografie beelden. Vanuit
een klinisch perspectief zou deze technologisch vooruitgang gepaard moeten gaan
met ergonomisch goed ontwikkeld gebruiksgemak. De vlakken die loodrecht staan
op de vlakken zoals die in de echografie beeldseries verkregen worden hebben ech-
ter nog vaak te lijden onder een lage resolutie. Daarom is ook verdere ontwikkeling
van de beeldkwaliteit van 4D echografie nodig, omdat deze vlakken relevant zijn
voor adequate beeldgeleiding.

Concluderend, in dit proefschrift hebben we methoden gepresenteerd en hun
nauwkeurigheid geëvalueerd om real-time 3D echografie beelden te registreren en
te fuseren met CT-beelden. Deze methoden kunnen mogelijk gebruikt worden om
echografie geleide ingrepen aan de lever te verbeteren. De snelle echografie regi-
stratie methode is geïmplementeerd in een systeem voor 4D echografie beeldgelei-
ding voor TIPS, zoals zichtbaar in figuur 8.1. Verdere uitbreiding naar niet-rigide
registratie en registratie met ander type beelden zijn relevante richtingen voor ver-
der onderzoek. Vanuit klinisch gezichtspunt is een grotere validatie studie nodig
voordat deze systemen in de kliniek toegepast kunnen worden.
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