
Open-source software for ultrasound-based guidance in spinal fusion surgery

Houssem-Eddine Gueziria,∗, Charles X. B. Yanb, D. Louis Collinsa

aMcConnell Brain Imaging Center, Montreal Neurological Institute and Hospital, McGill University, Montreal (QC),
Canada.

bJoint Department of Medical Imaging, University of Toronto, Toronto (ON), Canada.

Abstract

Spinal instrumentation and surgical manipulations may cause loss of navigation accuracy requiring
an efficient re-alignment of the patient anatomy with preoperative images during surgery. While
intra-operative ultrasound (iUS) guidance has shown clear potential to reduce surgery time, compared
to clinical CT guidance, rapid registration aiming to correct for patient misalignment has not been
addressed. In this paper, we present an open-source platform for pedicle screw navigation using iUS
imaging. The alignment method is based on rigid registration of CT to iUS vertebral images and has
been designed for fast and fully automatic patient re-alignment in the operating room (OR). Two steps
are involved: first, we use the iUS probe’s trajectory to achieve an initial coarse registration; then,
the registration transform is refined by simultaneously optimizing gradient orientation alignment and
mean of iUS intensities passing through the CT-defined posterior surface of the vertebra. We evaluated
our approach on a lumbosacral section of a porcine cadaver with 7 vertebral levels. We achieved a
median target registration error (TRE) of 1.47 mm (100 % success rate, defined by TRE < 2 mm) when
applying the probe’s trajectory initial alignment. The approach showed a high robustness to partial
visibility of the vertebra with success rates of 89.86 % and 88.57 % when missing either the left or right
parts of the vertebra; and robustness to initial misalignments with a success rate of 83.14 % for random
starts within ±20◦ rotation and ±20 mm translation. Our GPU implementation achieves an efficient
registration time under 8 s, which makes the approach suitable for clinical application.

Keywords: Registration, Open-source navigation platform, Spinal fusion surgery, Ultrasound
guidance, Computed Tomography, GPU.

Introduction

Spinal fusion procedures are employed for
many surgical treatments of pathological spine in-
stabilities. The surgery aims at correcting spinal
deformity, such as severe scoliosis, or limiting the
inter-vertebral movements in the case of spinal de-
generative changes, disk disorder or spinal steno-
sis (Deyo et al., 2004). The instrumentation in-
volves implanting screws into the pedicles in order
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to stabilize the spine with metal rods and bone
grafts. While the placement of pedicle screws is
associated with risks of neurological and/or vascu-
lar injuries, intra-operative 2D fluoroscopy or 3D
computed tomography (CT) guidance have shown
to decrease breach and screw malpositioning rates
(Smith et al., 2014; Austin et al., 2002; Gebhard
et al., 2004). However, the imaging protocol ex-
poses the patient and the operating room (OR)
personnel to risks of harmful radiation, preclud-
ing frequent acquisitions. In addition, the acquisi-
tion time is estimated to be 15-20 minutes, which
significantly interrupts the surgical workflow.

Image-guided surgery (IGS) is based on the
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registration established between pre- or intra-
operative images and the current position of the
patient, allowing for tracking surgical tools with
respect to the anatomy. A common issue in IGS is
the loss of navigation accuracy as the duration of
the surgery increases (Quiñones-Hinojosa et al.,
2006; Stieglitz et al., 2013). Drilling and taping
instrumentation, as well as repetitive contact with
bone tissues may cause non-intentional displace-
ment of the tracked reference attached to the ver-
tebra. As a result, the registration established at
the beginning of surgery is rendered invalid.

Alternative approaches have been investigated
to reduce radiation exposure. Stereovision has
been employed in open spine surgery, where the
reconstruction of exposed posterior surface of ver-
tebrae was registered with pre-operative CT (Ji
et al., 2015). Only a few cases of intra-operative
magnetic resonance (MR) use in spine surgery
have been reported (Woodard et al., 2001; Taka-
hashi et al., 2008, 2009; Tatsui et al., 2017). While
MR imaging provides a good soft tissue visual-
ization, it is associated with high costs and non-
magnetic surgical instruments constraints, limit-
ing its use in the OR. Intra-operative ultrasound
(iUS) guidance has received considerable inter-
est in spine surgery applications. Ultrasound has
many advantages over other imaging modalities.
It has low cost, uses non-ionizing radiation, has
a small footprint and a significantly shorter setup
time in the OR. While iUS imaging is attractive
for IGS, limited field of view and strong shadow
artifacts induced by acoustic absorption of bones
hinder its use in the clinical context for spine
surgery. Instead, iUS scans are often used to col-
lect anatomical features to register pre-operative
CT or MR images to the operative field (Koo and
Kwok, 2016; Wein et al., 2015; Rasoulian et al.,
2012; Gill et al., 2012; Yan et al., 2012a).

In our previous work (Gueziri et al., 2019), we
introduced a method for CT-to-iUS rigid registra-
tion of vertebra images that uses gradient orienta-
tion alignments. The gradients were sampled on
the posterior surface of the vertebra located using
a ray-tracing technique, which occupied over 80
% of the intra-operative processing time. In this
paper, we extend out previous work and present

an open-source platform for radiation-free pedicle
screw navigation for open spine surgery. The plat-
form provides a GPU-based implementation of
CT-to-iUS rigid registration for rapid correction
of patient-to-pre-operative image misalignments.
We make the following contributions: 1) the
correction of patient-to-pre-operative image mis-
alignments is fully-automated and only involves
a single iUS acquisition sweep during surgery; 2)
we combine iUS image intensity in addition to
gradient orientation alignment during registration
to improve optimization convergence and robust-
ness; 3) we obviate the need for the computation
of posterior vertebral surface locations (i.e., bone
segmentation), reducing the intra-operative pre-
processing time; 4) we conducted thorough ex-
periments on a porcine cadaver with multiple iUS
scans and initial transform perturbations to as-
sess the robustness of the registration in clinical
conditions; and 5) we make the software publicly
available for other groups to use. The results
demonstrate that the proposed multi-metric op-
timization strategy significantly improves the ro-
bustness to large misalignments and provides a
final registration that satisfies clinically accepted
accuracy defined as 2 mm for spinal instrumenta-
tion (Cleary et al., 2000).

Related work

While many research papers have been pub-
lished on CT-to-iUS registration, there is a lack
of available IGS platforms that can be used for
iUS-guided spine interventions and those that ex-
ist rely on 3D Slicer (Fedorov et al., 2012). For ex-
ample, tracked iUS snapshots have employed for
needle insertion (Ungi et al., 2012) and pedicle
screw navigation (Ungi et al., 2013). The guid-
ance was performed on ultrasound slices and a
3D rendering of CT volume can be added us-
ing manual registration. The use of a statis-
tical model of the spine has been proposed to
augment iUS images for needle insertion in 3D
Slicer, using tracked (Khallaghi et al., 2010; Ra-
soulian et al., 2015) and tracker-less (Brudfors
et al., 2015) ultrasound imaging. Statistical mod-
els provide anatomical data augmentation with-
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out the need for pre-operative CT imaging, which
is often the case for patients undergoing epidu-
ral injections. However, pathological variation in
anatomy of the spine are not covered by such
model-based approaches. For an exhaustive lit-
erature review, we refer interested readers to the
recent survey of iUS-based image-guided spine in-
terventions (Gueziri et al., 2020).

For most open spine interventions, the patient
is placed in prone position and the posterior part
of the vertebra is exposed during surgery. The
vertebra surface is a good feature for rigid reg-
istration. Point-based registration methods are
commonly used to obtain the CT-to-iUS trans-
form, e.g., by minimizing the sum of distances be-
tween the posterior surface points extracted from
iUS and the posterior surface points extracted
from CT images. Using the Iterative Closest
Point (Besl and McKay, 1992) algorithm, Mu-
ratore et al. (2002) reported an average target
registration error (TRE) of 1.33 mm on a plastic
phantom. A multi-vertebra registration frame-
work was proposed by Nagpal et al. (2015), in
which the Coherent Point Drift registration algo-
rithm (Myronenko and Song, 2010) was used to
align the points, achieving an average accuracy
of 0.71-1.70 mm using clinical data. The CT im-
ages offer clear visibility of bony structures, facil-
itating vertebrae segmentation. However, this is
not the case for iUS images. Bony tissues have
a high acoustic impedance causing high response
in ultrasound imaging. The surface of the verte-
bra appears hyperechoic followed by a signal drop
off inducing shadow artifacts. Typically, the ul-
trasound response at a bone surface is 2–4 mm
thick depending on the ultrasound beam pene-
tration and inclination with respect to the bone
surface (Jain and Taylor, 2004), with beams nor-
mal to the surface producing thinner responses.
This causes the ultrasound intensity profile at the
bone surface to be variable due to the shape of
the vertebra. To reduce the effect of the segmen-
tation noise and outliers on the registration accu-
racy, Rasoulian et al. (2012) proposed to use an
unscented Kalman filter (Moghari and Abolmae-
sumi, 2007), to which a biomechanical regulariza-
tion has been added to model the spine curva-

ture. An average TRE of 2.2 mm was achieved on
a sheep cadaver. Despite many efforts deployed
to achieve accurate automatic iUS vertebral sur-
face segmentation (Hacihaliloglu, 2017), the task
is challenging and prone to errors affecting the
final registration.

Alternatively, image-based registration ap-
proaches consist in optimizing a similarity met-
ric that describes the CT-to-iUS alignment. To
account for the intensity differences between the
two modalities, Lang et al. (2012) proposed to
simulate iUS slices from CT images. The similar-
ity between the simulated and the real iUS im-
ages was obtained using linear correlation (Wein
et al., 2008). Using a speckle-tracked ultrasound
on a lumbar section of a lamb cadaver, the av-
erage TRE was 1.61-1.89 mm. Recently, Chan
et al. (2020) reported a positional error of 1.2 mm
±0.5mm and an angular error of 2.2◦ ± 2.0◦ on a
thoracic plastic phantom, using a Gaussian pyra-
mid intensity registration. Segmented posterior
surface images have been used to map both iUS
and CT images into a common intensity space, in
which cross-correlation (Yan et al., 2011; Koo and
Kwok, 2016) and gradient orientation alignment
(Gueziri and Collins, 2019; Gueziri et al., 2019)
have been proposed to achieve the registration.

To obviate the need for iUS vertebra segmen-
tation, Brendel et al. (2002) leveraged the hyper-
echoic response of the bone that produces bright
intensities at the bone-tissue interface. They pro-
posed to maximize the mean of iUS intensities
that pass through the posterior surface of the ver-
tebra on CT images. An improved version com-
pensates for intensity loss due to depth to enhance
bone surface visibility (Winter et al., 2008). The
advantage of using the mean of iUS intensities
(Brendel et al., 2002) is to reduce intra-operative
pre-processing, such as vertebra segmentation,
which is prone to errors and may require addi-
tional computation time. However, high bone re-
flectivity is modulated by the angle of incidence of
the ultrasound beam when penetrating the bone
tissue. In the proposed method, we combine the
use of the mean of iUS intensities with gradient
orientation alignment to take into account struc-
tural information present in both images.

3



Combination of intensity and gradient for reg-
istration is not new. Roche et al. (2001) used a
correlation ratio metric which incorporates inten-
sity and gradient information to register iUS im-
ages to MR brain images. In the context of spine
registration, Chen et al. (2016) proposed a 2D-3D
registration of iUS to CT images, in which a com-
bination of gradient orientation and mutual infor-
mation was used. The approach encodes the 2D
orientation of the gradients in both iUS and CT
slices. The orientation encoding is then used for
estimating the probability density function used
in a mutual information-like metric, named ori-
entation code mutual information (OCMI). They
reported an average TRE of 2.3 mm. There are
three conceptual differences between our method
and the one proposed by Chen et al. (2016): 1)
in contrast to the OCMI in which the combina-
tion of intensity and gradient information is per-
formed as a mutual information metric, we pro-
pose to use a linear combination of the two metrics
improving computation efficiency and robustness
of the registration; 2) while the OCMI approach
uses local phase filtering of iUS images to enhance
bone structures, our approach does not require
pre-processing that increases the intra-operative
computation time; and 3) in the OCMI approach,
the gradient orientations are estimated in 2D im-
ages yielding a miscalculation of the image gradi-
ent in the out of plane direction. Consequently,
there is no guarantee for the metric to be con-
tinuous, as small local changes may lead to large
metric variability on highly curved edges. In our
approach, the gradients are computed in the 3D
reconstructed iUS and CT volumes to take into
account the 3D orientation of the gradients that
represent the complex shape of the vertebra.

Materials and methods

The system architecture is illustrated in Fig. 1.
The registration and navigation features have
been developed as a plugin for the Intraopera-
tive Brain Imaging System (IBIS) navigation plat-
form (Drouin et al., 2017). IBIS is a freely avail-
able platform that provides common functional-
ities used in IGS. It also allows rapid integra-

tion of new functionalities as plugins for specific
applications. Data acquisition is achieved using
the open-source Public software Library for Ul-
trasound (PLUS) (Lasso et al., 2014). The lat-
ter consists in a low-level interface library that
allows the communication with a collection of de-
vices commonly used in IGS. Prior to surgery, the
posterior surface of the vertebra is segmented on
the CT images using the forward-tracing method
(Yan et al., 2011). During surgery, ultrasound
images and tracking data are continuously sent to
IBIS through the OpenIGTLink protocol (Tokuda
et al., 2009). The registration takes place once the
vertebra is exposed and ready to be instrumented.
The open cavity is filled with saline solution to fa-
cilitate ultrasound propagation. IBIS iUS acqui-
sition functionality is used to record a tracked iUS
sequence. The role of the pedicle screw navigation
plugin is two-fold: first, it provides patient-to-pre-
operative alignment using the iUS sequence and
the segmented CT images; second, it allows real-
time visualization of the predicted trajectory of
the pedicle screw on reformatted axial and sagit-
tal planes. Size and length of the pedicle screw
can be adjusted to comply with the surgical plan.
A demo video illustrating the entire navigation
procedure on a Sawbones phantom is provided as
supplementary material. The registration of CT
to iUS images is a key step for accurate IGS nav-
igation. In the following sections, we describe the
proposed registration framework.

Registration framework overview

An overview of our registration framework is
shown in Fig. 2. We use a similar iUS acqui-
sition protocol to the one described in (Gueziri
et al., 2019). The iUS scan consists in a single ax-
ial sweep along the caudo-cranial direction, start-
ing from the inferior to the superior parts of the
vertebra. Thus, the probe’s trajectory forms a
nearly linear path roughly along the midsagittal
axis. Using the standard anatomical orientations
of the CT scanner (i.e., Right-Anterior-Superior),
we coarsely align the CT volume to the iUS vol-
ume without the need for additional manipula-
tions to achieve an initial transformation. While
additional sweeps would provide more informa-
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Figure 1: System architecture of the CT-to-iUS rigid registration framework. Doted boxes indicate the intra-operative
procedure required to be achieved by the surgeon.

tion in the iUS volume that can be used during
registration, the motivation behind the proposed
protocol is its ease of use in a clinical environ-
ment. Considering an open-back surgery, in which
the spinous process and the laminae of the verte-
bra are exposed, the ultrasound signal attenua-
tion is low as it propagates in a saline solution
compared to muscle and fat tissues present in a
percutaneous scan. The surface of the laminae is
orthogonal to the probe’s orientation yielding a
strong ultrasound response. This allows the scan
to capture sufficient features to achieve the regis-
tration. To minimize intra-operative computation
time, the iUS volume reconstruction is performed
on the GPU (Drouin et al., 2017). Starting from
this initial alignment, a multi-metric optimization
strategy is performed to refine the registration.
During the optimization, the CT to iUS align-
ment match is evaluated using two metrics: gra-
dient orientation alignment and mean of iUS in-

tensities.

Gradient orientation alignment metric

Given the hyperechoic appearance of the bone
surface in iUS images, one can expect a strong
gradient where ultrasound beams are normal to
the vertebral surface. Consequently, these points
are good candidates to be evaluated for gradient
orientation alignment (see Fig. 3). Similarly, a
strong gradient is obtained from the segmented
CT image along the posterior surface of the ver-
tebra. De Nigris et al. (2012) showed that the
registration can be improved by evaluating gra-
dient orientation alignment at selected locations
sampled from the iUS image. Therefore, only the
gradients having a magnitude above the 80th per-
centile are selected (as suggested in (De Nigris
et al., 2013)).

The first step of the gradient alignment met-
ric consists in computing the image gradients of
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Figure 2: Flowchart of the proposed registration method.

CT and iUS images. Let ∇ICT denotes the image
gradients of the CT segmented moving image and
∇IUS denotes the image gradients of the iUS fixed
image. Then, candidate gradients are sampled
from the iUS image gradients ∇IUS. For compu-
tation efficiency, gradient images are computed on
the GPU by convolving the original images with
a Gaussian derivative operator. At each itera-
tion of the optimization, the gradient orientation
alignment at a given location x is measured as

SG

(
∇IUS(x),∇ICT(T(x))

)
=〈

∇IUS(x)

|∇IUS(x)|
,
∇ICT(T(x))

|∇ICT(T(x))|

〉n
, (1)

where T(x) is the transformed location of x, 〈., .〉
denotes the inner product operator and n ∈ N is a
free parameter which characterizes the matching
criterion and was set to n = 64 as suggested in
(De Nigris et al., 2013).

To avoid recomputing the moving CT image
at each transformation update, the transformed
moving image gradient is estimated using the

transposed spatial Jacobian matrix of the trans-
form JTT(x) and the original CT image gradient

∇TICT(T(x)), such that

∇ICT(T(x)) = JTT(x) · ∇TICT(T(x)). (2)

Since the evaluation of the metric is performed
on a limited number of sampled locations (i.e.,
|∇IUS| > 80th percentile), the computation of the
metric is highly efficient.

Mean of iUS intensities metric

Because of the high iUS intensity response
along the vertebral surface, when registered, the
surface of the vertebra segmented on the CT im-
age passes through high iUS intensities. The
mean of iUS intensities on vertebral surface points
defined by CT is maximized when the iUS data
is registered with the CT volume. The metric is
given by

SI

(
IUS(x), ICT(T(x))

)
= IUS(x) · ICT(T(x)),

(3)
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Figure 3: Axial slice of a reconstructed ultrasound volume of a vertebra: intensity image (left), gradient magnitude
(middle), and gradient vectors (right). Note that the gradients are computed on the 3D ultrasound volume.

where ICT(x) corresponds to the binary segmen-
tation of the vertebra surface of the CT image.
Subsequently, only intensities along the vertebra
surface segmented on CT are considered during
the computation. Because x points are sampled
from the CT space, Eq 3 can be rewritten as

SI

(
IUS(x), ICT(T(x))

)
= IUS(T−1(x)) (4)

Note that the iUS intensities are normalized.
Therefore, Eq 4 yields values ranged within [0, 1].

Optimization

Let φ be the translation and rotation param-
eters of the rigid transform T. To optimize for φ,
we used the covariance matrix adaptation evolu-
tion strategy (CMA-ES) (Hansen and Ostermeier,
2001) as it has been shown to provide good re-
sults for rigid vertebra registration (Winter et al.,
2008). The optimized metric S is a linear combi-
nation of the gradient orientation alignment and
the mean of iUS intensities along the vertebra sur-
face, such that

S(IUS,T(ICT, φ)) =

λ

[
1

|ΩUS|
∑

x∈ΩUS

SG

(
∇IUS(x),∇ICT(T(x))

)] 1
n

+

(1− λ)

[
1

|ΩCT|
∑

x∈ΩCT

SI

(
IUS(x), ICT(T(x))

)]
,

(5)

where T(ICT, φ) denotes the transformed CT im-
age, ΩUS is the set of selected iUS samples satis-
fying gradient magnitude selection criterion, ΩCT

is the set of samples lying on the CT posterior
surface of the vertebra and λ a hyperparameter
balancing the two metrics. Note that the gradi-
ent orientation alignment metric in Eq. 1 yields
small values when n is large. Therefore, the term
1
n

is used in Eq. 5 to normalize the metric values.
Note that powering the gradient term to 1

n
does

not affect the metric sensitivity to gradient mis-
alignment as discussed in (De Nigris et al., 2012).
This is because the normalization term is glob-
ally applied to the metric after the summation of
the gradient’s dot products in order to match the
iUS mean of intensities metric. Eq. 5 accounts for
gradient orientation misalignment of strong struc-
tures present on the images and the misalignment
of the visible vertebral surface. Finally, the regis-
tration transform is obtained by

T reg = arg max
φ

S(IUS,T(ICT, φ)). (6)

Visualization

Once the registration completed, the surgeon
can navigate using a pointer-like tracked instru-
ment, e.g., a stylus, a pedicle probe or a drill.
During screw insertion, high complication risks
are often associated with medial and anterior
breaches, which can be assessed post-operatively
using X-ray or CT imaging. Breaches are in-
spected by visualizing axial and sagittal views
of the screw passing through bone anatomy. To
highlight the predicted trajectory of the inser-
tion intra-operatively, a similar visualization tech-
nique is used, in which axial and sagittal views
are reformatted to match the pointer’s orienta-
tion (Fig. 4). Specifically, during navigation, each
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Figure 4: Graphical window interface for pedicle screw navigation with reformatted axial and sagittal views: tracked
instrument (red), screw cross-section (green), screw length 35 mm and screw diameter 5.5 mm.

view follows the instrument’s axial (or sagittal)
orientation and the CT slice associated with this
view is recomputed in real-time. A cross-section
of the screw is displayed at the tip of the in-
strument indicating the current trajectory. The
screw length and diameter can be modified to cor-
respond to the desired depth and pedicle width,
to prevent anterior and lateral breaches, respec-
tively.

Implementation

Algorithm 1 outlines the implementation de-
tails of the method. Note that lines 16 and
21 are performed on GPU threads, which allows
both gradient orientation alignment and mean of
iUS intensity metrics to be efficiently computed
in parallel. The algorithm was implemented in
C++ based on the registration framework used
in the Insight Segmentation and Registration
Toolkit (ITK) (Yoo et al., 2002). In addition,
the Elastix (Klein et al., 2010) was used for the
CMA-ES optimization and the OpenCL library
(Stone et al., 2010) for GPU computing. The
source code is freely available on GitHub (https:
//github.com/IbisNeuronav/Ibis). All com-
putations were performed using an Intel c© CoreTM

i7-3820 CPU at 3.6 GHz × 8 station and a
NVIDIA GeForce GTX 670 graphics card with
4 Gb of memory.

We conducted a pilot experiment (similar to
one described in Section Experiment 2: Robust-
ness to initial alignment), in which 3 vertebral
levels were involved and λ was varied from 0.1

to 0.9 by increments of 0.1. For each vertebra,
10 registration trials were performed. The initial
registration transform was obtained by perform-
ing a probe’s trajectory alignment followed by a
random misalignment within ±15 mm translation
and ±10◦ rotation. We observed comparable re-
sults when λ is in the range [0.4, 0.8]. The regis-
tration behaviour tends towards gradient orienta-
tion alignment when λ > 0.8 and towards mean
of iUS intensities when λ < 0.4. We did not ob-
serve any abnormal registration behaviour with
the variation of the parameter. In all of our ex-
periments, we empirically set λ = 0.7.

Other parameters that may influence the reg-
istration outcomes are: the percentile of gradient
magnitude, the resolution of the iUS volume, the
resolution of CT volume, the thickness of the pos-
terior vertebra surface, and the parameters for the
CMA-ES optimizer. Here, we briefly discuss the
setting of each parameter. The percentile of gradi-
ent magnitude used to select gradient samples was
set to 80th percentile based on the original work by
De Nigris et al. (2013). The choice of the parame-
ter’s value is related to the quality of the iUS im-
ages, and more specifically how clear the bone sur-
face appears on iUS images. When the contrast
produced by the bone surface is high, values over
or equal to 80 % tend to isolate good gradient can-
didates for the registration. On the other hand,
on images where the bone surface intensity is not
prominent (e.g., due to signal absorption/loss of
posterior muscles or high bone penetration), a
lower threshold is recommended to allow gradient

8



Algorithm 1 Pseudo-code for the proposed multi-metric registration approach.
Input: IUS, /* iUS reconstructed volume */

ICT, /* segmented CT volume */
λ /* metric balance parameter */

Output: Treg: registration transform
/* Gradient orientation */

1: GUS ← gradient(IUS)
2: GCT ← gradient(ICT)
3: tUS ← percentile(GUS, 0.8)
4: ΩUS ← sample(GUS, tUS)
5: Load GCT and ΩUS on GPU

/* Mean of iUS intensities */
6: ΩCT ← sample(ICT)
7: Load IUS and ΩCT on GPU

/* Probe’s trajectory alignment */
/* (see (Gueziri and Collins, 2019)) */

8: {xUS
mass,x

US
distal,x

US
sup} ← probe trajectory

9: {xCT
mass,x

CT
distal,x

CT
sup} ← scanner RSA(ICT)

10: Tinit ← arg min
T

∑
i
||T(xCT

i )− xUS
i ||

11: T← Tinit

/* Optimization */
12: φ← get transform parameters(T)
13: while stop condition not met do
14: mG ← 0
15: for x ∈ ΩUS do /* Parallel GPU thread */
16: mG ← mG + 〈GUS(x), GCT(T(x))〉n
17: end for

18: SG ←
(
mG

|ΩUS|

) 1
n

19: mI ← 0
20: for x ∈ ΩCT do /* Parallel GPU thread */
21: mI ← mI + IUS(T−1(x))
22: end for
23: SI ←

mI

|ΩCT|
24: S = λSG + (1− λ)SI

25: φ← update(φ, S)
26: T← calculate transform(φ)
27: end while
28: Treg ← T

sampling on regions with moderate contrast. The
iUS volume resolution was set to 1 × 1 × 1 mm3.
In our previous work (Gueziri et al., 2019), we
investigated different reconstructed iUS volume
resolutions varying between 0.5 × 0.5 × 0.5mm3

and 1.5 × 1.5 × 1.5 mm3 using gradient orienta-
tion registration. While the computation time in-
creases with finer resolution, no significant impact
on the accuracy was observed. The resolution and
slice thickness of the CT volume were fixed to
0.35 × 0.35 mm2 and 2 mm, respectively. The ef-
fect of different parameters of the CT scan has
not been investigated in this study. The thickness
of the posterior vertebral surface extracted from
CT images was set to 2 mm based on the work
by Yan et al. (2011). A typical value range is 1–
3 mm and depends on the CT image resolution. A
too small value produces a discontinuous surface,
while a too large value may result in a decrease
of registration accuracy. Finally, parameters af-
fecting the convergence of the CMA-ES optimizer
can be modified through the advanced options of
the graphical user interface. Table 1 summarizes
a list of recommended values for each parameter.

Experiment

Porcine data

Porcine lumbar spines are frequently used as
an alternative to human specimens for spinal in-
strumentation as they share some similar anatom-

ical and functional properties (Dath et al., 2007;
Sheng et al., 2010). A lumbosacral section of a
porcine cadaver was obtained from a certified lo-
cal butcher. The specimen presents 7 vertebral
levels (T15 to L6) and was scanned with a PQ6000
CT scanner (Picker International Inc., Cleveland,
OH, United States). Superior to inferior axial
slices were acquired in supine position. The CT
acquisition has been done following the preopera-
tive spine neurosurgery protocol at the Montreal
Neurological Institute and Hospital. Typically,
CT imaging is performed with bone enhancement
calibration and a slice thickness of 2 mm, unless
otherwise required by the surgeon. In this study,
we are interested in single vertebra alignment in
order to assess the quality of the proposed reg-
istration approach without introducing errors re-
lated to the spine curvature. Therefore, the CT
volume was manually divided into sub-volumes,
each one containing a single vertebra.

The iUS acquisitions were collected using a
HDI 5000 ultrasound with a phased array probe
P4-7 (Philips, Amsterdam, Netherlands) and an
optical tracking camera (Polaris, Northern Digital
Inc., ON, Canada) was used to track the probe.
Ultrasound probe calibration was performed using
a N-shaped wire phantom (Drouin et al., 2017).
The phantom consists in 4 planes of N-shaped
wires. When intersecting with the ultrasound
plane, each N-shaped wire creates points on the
ultrasound image that are manually identified by
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Parameters Recommended value(s) Description

λ 0.4 – 0.8 Large values emphasize gradient orientation
Small values emphasize mean iUS intensities

Gradient sampling (percentile) 80th percentile Decrease for low contrasted bone surface
iUS volume resolution 0.5× 0.5× 0.5 mm3 to Finer is better, but increases computation time

1.5× 1.5× 1.5 mm3

CT vertebral surface thickness 1–3 mm Decrease for high CT resolution
CMA-ES optimizer Population size: 60 Number of samples generated per iteration
(Hansen and Ostermeier, 2001) Max iterations: 300 Maximum number of iteration

Initial σ: 1 The initial standard deviation used to generate
offspring

Tolerance: 0.0001 Tolerance value for convergence

Table 1: Summary of and recommended values for parameters that can influence the registration results.

the operator on IBIS. Because the geometry of
the N-shaped wires is known the calibration ma-
trix is estimated by establishing the correspon-
dence between the ultrasound image coordinate
points and world coordinate points. Accuracy
of the calibration was measured using a second
cross-wire phantom and varies between 0.49 mm
and 0.82 mm (Mercier et al., 2011).

For each vertebra, three iUS scans were ac-
quired: iUScentered, a caudo-cranial transverse
scan centered on the spinous process, iUSleft, a
caudo-cranial transverse scan 1 cm to the left of
the spinous process, and iUSright, a caudo-cranial
transverse scan 1 cm to the right of the spinous
process. The iUS volume is reconstructed by av-
eraging a Gaussian distance weighted intensity for
each voxel inside a 2 mm search radius.

The navigation system was operating on the
IBIS platform. Using bone-implanted fiducial
markers, a ground truth registration transform
was obtained for each vertebra. Each fiducial
consists in a plastic pipette containing a metal-
lic sphere visible on CT images. Pre-operatively,
the coordinates of the sphere centers on CT im-
ages were obtained using a threshold segmenta-
tion. Intra-operatively, before ultrasound scan,
the patient coordinates of each fiducial were mea-
sured using a tracked pointer. Then, a pair-wise
point correspondence between both set of points
was employed to determine the ground truth reg-
istration. To validate the quality of the ground
truth and account for inter-operator manipulation
errors, measurements of the fiducial in patient
coordinate space were repeated 50 times, yield-
ing a median fiducial registration error (FRE)

of 0.452 mm and an interquartile range (IQR)
of 0.122 mm. In addition, 20 anatomical land-
marks were manually identified on the CT im-
age and used to compute the target registration
error (TRE) of the 50 repetitions. The median
TRE was 0.718 mm and the IQR was 0.462 mm
(Yan et al., 2012b). The reported target regis-
tration error (TRE) was measured on 7 anatomi-
cal points located on the vertebra surface, corre-
sponding to the apex of the spinous process, left
and right laminae, left and right superior articu-
lar processes and left and right inferior articular
processes. We define the success rate (SR) as the
proportion of registrations achieving a TRE be-
low 2 mm as suggested by Cleary et al. (2000) for
lumbar spine intervention.

Experiment 1: Clinical setup

In order to evaluate our method, we compared
three variants of the proposed metric: (G) us-
ing only gradient orientation alignment metric,
(I) using only mean of iUS intensities metric, and
(G+I) the proposed combined metric Eq. 5. The
experiment aims at evaluating the proposed reg-
istration framework for a clinical setup. For each
iUS acquisition, the 7 vertebral levels were reg-
istered individually using the iUS probe’s tra-
jectory initial alignment followed by the multi-
metric registration. The CMA-ES optimizer is
non-deterministic and yields slightly different re-
sults at each registration runtime. To account for
stochastic convergence variability, the registration
trials were repeated 100 times for each vertebra.
A total of 2,100 trials were performed for each
metric condition (3 iUS acquisitions × 7 verte-
bral levels × 100 repetition).
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Figure 5 shows qualitative registration results
obtained with L4. The overall accuracy and com-
putation time results are summarized in Table 2.
With the suggested sweep, iUScentered, the pro-
posed (G+I) metric resulted in a registration TRE
below 2 mm for all vertebral levels (Figure 6),
yielding 100 % success rate and a median TRE
of 1.47 mm. The success rate of the registra-
tions is the highest when using the (G+I) metric
for all the iUS acquisitions (SR(G+I) = 89.86 %
for iUSleft and SR(G+I) = 88.57 % for iUSright).
The accuracy obtained using only the gradient
orientation alignment on the centered acquisition
(TRE(G) = 1.20 mm) decreases when using left
and right acquisitions (TRE(G) = 1.97 mm and
TRE(G) = 1.99 mm, respectively), highlighting a
lack of robustness owing to partial visibility of
the vertebra in iUS images. A repeated-measure
analysis of variance (ANOVA) (Chambers and
Hastie, 1992) reveals a statistically significant ef-
fect of the registration method on the TRE value
(F2,12 = 8.01, p = 0.006). Specifically, post
hoc pair-wise comparisons using the Tukey HSD
test with Bonferroni correction indicated a sig-
nificant difference between the gradient (G) and
the combination (G+I) metrics (p < 0.001), but
the difference was not statistically significant be-
tween intensity (I) and combination (G+I) met-
rics (p = 0.056), nor between intensity (I) and
gradient (G) metrics (p = 0.31).

The TRE results obtained with the combi-
nation (G+I) metric outperforms the results re-
ported in (Yan et al., 2012b) and are compara-
ble to ones reported in (Gueziri et al., 2019) on
the same dataset. The results are comparable
to other state-of-the-art methods reporting TRE
on animal experiments: 1.48 mm (in 116 s) (Yan
et al., 2012a) and 2.18 mm (in 100 s) (Koo and
Kwok, 2016) on a porcine cadaver, 2.2 mm (in
29 min) (Rasoulian et al., 2012) and 0.62-2.26 mm
(in 43 min) (Gill et al., 2012) on a sheep cadaver,
and 1.61 mm (in 15–30 min) (Lang et al., 2012) on
a lamb cadaver. However, our parallel GPU im-
plementation allows a highly effective metric com-
putation. The registration time is not severely af-
fected when combining both metrics (Time(G) =
5.57 s, Time(I) = 5.25 s and Time(G+I) = 6.62 s).

Note that the high computation time in (Rasou-
lian et al., 2012) and (Gill et al., 2012) involves
multiple vertebrae registration, which can not be
directly compared to a single vertebra registra-
tion. The time required for the initial alignment
using the probe’s trajectory is negligible (0.05 s on
average).

Experiment 2: Robustness to initial alignment

A second experiment was carried out to assess
the robustness of the multi-metric registration
method to initial misalignment. In this experi-
ment we consider the transverse centered iUS ac-
quisition, iUScentered. For each vertebral level, 100
initial misalignments were generated by adding a
random rotation followed by a random transla-
tion to perturb the initial probe trajectory-based
transform. The random translation and rotation
were respectively sampled from a uniform dis-
tribution bounded within [−20 mm, 20 mm] and
[−20◦, 20◦] in every spatial direction. Table 3
shows median TRE and success rates obtained for
each vertebral level. The combination of gradients
and intensities metric (G+I) yields the best ro-
bustness to initial misalignment with an average
success rate of 83.14 %. Because the success rate
represents a categorical dependent variable (i.e.,
1 if the TRE is below 2 mm and 0 otherwise), a
generalized logistic regression model (McCullagh
and Nelder, 1989; Bates, 2005) was considered to
analyze the statistical significance of the differ-
ence in robustness results. Similar to the repeated
measure ANOVA carried out in the first experi-
ment, the registrations obtained for each vertebral
level are considered to be correlated. This is ex-
pected as the registration error is relative to the
ground truth transform for each vertebral level.
Therefore, in our model, we consider the verte-
bral level to be a random effect and the regis-
tration method to be a fixed effect with variable
average deviations across vertebral level (Quené
and van den Bergh, 2008). Considering the com-
bination (G+I) metric as the baseline (i.e., the
intercept refers to the combination metric in the
linear model), we found a statistically significant
difference in success rate results (p < 0.01), with
odds ratios OR(G+I) = 7.37, OR(G) = 3.58 and
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(a)

(b)

(c)

Figure 5: Qualitative registration results of L4: (a) centered acquisition, (b) left acquisition and (c) right acquisition.
Ultrasound intensities are displayed in hot color map and posterior surface of the vertebra is highlighted in green.

OR(I) = 0.07, for the combination, gradient and
intensity metrics respectively.

Figures 7a and 7b show histogram distribu-
tion of the final TRE. The combination metric
(G+I) shows the highest population of TREs that
are below the clinical acceptance threshold. For
the intensity metric (I) and the combination met-
ric (G+I), the TREs of the trials that failed reg-
istration are significantly higher with a median
TRE of TRE(I) = 17.90 mm (IQR = 28.31 mm)
and TRE(G+I) = 29.15 mm (IQR = 10.17 mm).
This could be due to the optimization converging
to a local maximum or failing the convergence.
On the other hand, registration failures using the
gradient metric (G) have a lower median TRE of
3.24 mm (IQR = 23.28 mm), which may indicate
difficulties of the optimizer to locate the global
maximum. To analyze the effect of the initial

misalignment on the registration accuracy, den-
sity scatter plots of the final TRE according to the
initial TRE generated from the random initializa-
tion are shown in Figs. 7c and 7d. Increasing the
TRE of the initial misalignment does not seem
to be linearly correlated with the loss of registra-
tion accuracy (Pearson’s correlations r(G) = 0.21,
r(I) = 0.19 and r(G+I) = 0.17).

To gain more insight into how the proposed
metric behaves with respect to local image mis-
alignment, we monitored the metric values as
the iUS and CT images are being gradually mis-
aligned. Starting from the ground truth trans-
form, we incrementally apply a 0.05 mm trans-
lations in every direction and measure (G), (I)
and (G+I) metrics. Similarly, the metrics are
monitored with an incremental rotation transform
of 0.05◦ in every direction. The total range of
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TRE (mm) Success Time (s)
Method median IQR rate (%) Reconstruction Registration Total

iU
S
c
e
n
te

re
d Gradient (G) 1.20 0.66 85.14 1.84 3.73 5.57

Intensity (I) 1.50 0.92 71.43 1.94 3.31 5.25
Combination (G+I) 1.47 0.39 100 1.93 4.69 6.62

Yan et al. (2012b) 1.93 0.72 – – – ∼120
Gueziri et al. (2019) 1.48 0.68 84.42 – – 10.79

iU
S
le
ft

Gradient (G) 1.97 0.72 53.57 1.99 3.89 5.87
Intensity (I) 1.44 1.01 71.57 1.99 3.33 5.33

Combination (G+I) 1.63 0.78 89.86 1.97 5.11 7.07
Yan et al. (2012b) 2.31 1.17 – – – ∼120

Gueziri et al. (2019) 1.69 0.63 71.42 – – 11.63

iU
S
ri
g
h
t

Gradient (G) 1.99 0.59 50.57 2.18 4.15 6.34
Intensity (I) 1.23 1.00 71.43 2.19 3.34 5.53

Combination (G+I) 1.21 0.57 88.57 2.19 5.21 7.39
Yan et al. (2012b) 1.93 1.38 – – – ∼120

Gueziri et al. (2019) 1.70 0.78 68.4 – – 10.58

IQR: interquartile range.

Table 2: Registration accuracy and computation time results for each iUS acquisition. Best TREs and success rates are
indicated in bold.

Gradient Intensity Combination
Level TRE (mm) SR (%) TRE (mm) SR (%) TRE (mm) SR (%)

T15 1.03 (20.84) 52 30.39 (8.02) 22 22.55 (35.12) 43
L1 2.61 (0.39) 3 2.45 (23.27) 0 1.76 (0.20) 77
L2 1.11 (0.18) 93 1.50 (0.01) 92 1.20 (0.04) 92
L3 1.80 (0.20) 93 1.31 (0.03) 93 1.57 (0.09) 96
L4 1.13 (0.18) 92 1.50 (0.03) 76 1.37 (0.03) 84
L5 1.22 (0.56) 94 1.18 (0.02) 88 1.16 (0.03) 97
L6 1.06 (0.36) 80 2.26 (0.03) 0 1.54 (0.24) 93

All 1.27 (1.24) 72.43 1.70 (1.13) 53.00 1.52 (0.52) 83.14

TRE: median target registration error (interquartile range), SR: success rate.

Table 3: Registration accuracy results for probe’s trajectory misalignment within ±20 mm translation and ±20◦ rotation.

transformations was [−10 mm, 10 mm] in transla-
tion and [−10◦, 10◦] in rotation. Figure 8 shows
the results of each metric obtained with all ver-
tebrae. Note that the metric values are centered
by subtracting the mean to facilitate comparison.
Despite the flattened shape of the gradient metric
(G) curve, the median global maximum (blue line)
approximates the ground truth (black line). The
intensity metric (I) has a smoother curve. While
the translation variations resulted in a curve with
a narrow width favoring optimization of the global
maximum, the curve obtained from rotation vari-
ations is wider with a less accurate global max-
imum. The combination metric (G+I) takes ad-
vantage of both metrics: 1) it reduces the noise
of the gradient metric (G) curve resulting in a
smoother curve while preserving the global shape
of the intensity metric (I). The global maximum
of the (G+I) lies somewhere between the peak of
the (G) curve and the peak of (I) curve. The hy-

perparameter λ acts as a trade-off between the
shape of the two curves, such as increasing λ re-
sults in a metric behaving like the gradient orien-
tation alignment (G) whereas decreasing λ would
force the metric to behave like mean of iUS inten-
sities (I).

Discussion

The quality of the iUS acquisition may have a
significant impact on the quality of the registra-
tion. In a clinical condition, parts of the anatomy
may be missing on the iUS scan. Experiments
on a porcine cadaver demonstrated that our iUS-
based registration framework achieved a success
rate of 100 % with the proposed caudo-cranial
iUS acquisition protocol, and showed a high ro-
bustness to missing anatomy with success rates
of 89.86 % and 88.57 % achieved using left and
right shifted acquisitions, respectively. In addi-

13



1

2

3

T15 L1 L2 L3 L4 L5 L6
Vertebral level

T
R

E
 (

m
m

)

Metric Gradient Intensity Combination

(a)

1

2

3

T15 L1 L2 L3 L4 L5 L6
Vertebral level

T
R

E
 (

m
m

)

Metric Gradient Intensity Combination

(b)

1

2

3

T15 L1 L2 L3 L4 L5 L6
Vertebral level

T
R

E
 (

m
m

)

Metric Gradient Intensity Combination

(c)

Figure 6: Boxplot of the target registration error for all
vertebral levels: (a) centered acquisition, (b) left acquisi-
tion and (c) right acquisition.

tion, the approach showed low sensitivity to initial
misalignment as no correlation was found between
the initial misalignment error and the final regis-
tration error. This is important as during surgery,
the iUS acquisitions are expected to be captured
by the surgeon, whose level of expertise with ul-
trasound imaging may be variable. The one-
sweep caudo-cranial acquisition protocol reduces
the burden of intra-operative imaging, and yields
100 % success rate for registration. It is impor-
tant to note that the caudo-cranial sweep is only
used to establish an initial alignment. During reg-
istration, the metric is optimized based on the re-
constructed iUS volume. Hence, one can consider
doing a first caudo-cranial sweep (for alignment)
followed by arbitrary scans that can be merged to
reconstruct an iUS volume with more information

(for registration). While this feature is not yet
available in our platform, the approach is being
investigated as potential future work. The high
success rate of 83.14 % obtained when randomly
perturbing the probe’s trajectory alignment of up
to ±20 mm translation and ±20◦ rotation high-
lights the robustness of our proposed registration
framework to the iUS acquisition conditions. In
addition, the registration is performed under 8
seconds of processing time, including ∼ 2 s to re-
construct the iUS volume and ∼ 6 s to align the
images. This leverages the real-time functionality
of ultrasound to perform frequent correction of
the patient misalignment during surgery. In the
case of unsatisfactory acquisition or initial align-
ment, most of the registration failures were vi-
sually identifiable as the resulting TRE was sig-
nificantly large (over 20 mm), which provides the
surgeon with the option of quickly re-acquiring
additional iUS scans.

In addition to iUS image quality, artifacts af-
fecting preoperative CT images influence the over-
all navigation accuracy. Partial volume artifacts,
metal artifacts, image distortion and pathologi-
cal factors, decrease or alter anatomical visibility
of the vertebral surface on CT images. Specif-
ically, two types or error may occur during pa-
tient alignment: 1) the image registration fails
because of a too poor image quality; and 2) the
image registration succeeds but the patient align-
ment fails. The former case can be due to a
pathology or metal artifacts altering the CT im-
ages and can be assessed by visual inspections
after the registration is completed. In the later
case, the CT image is no longer representative of
the actual anatomy, due to image distortion or
partial volume artifacts. Therefore, a good im-
age alignment does not necessarily induces a good
patient alignment. While patient misalignment
is more difficult to assess visually, CT artifacts
can be corrected preoperatively using specific ac-
quisition protocols, physics-based or image-based
pre- or post-processing (Barrett and Keat, 2004;
Gjesteby et al., 2016). In our study, the quality
of the CT images is limited to the clinical stan-
dard acquisition protocol with a fixed slice thick-
ness and resolution on a non-pathological animal
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Figure 7: Target registration error distribution: (a) histogram of the TRE, (b) a zoom in of (a) in the range [0 mm,
5 mm], (c) scatter plot of the final TRE according to the initial misalignment TRE, (d) a zoom in of (c) in the range
[0 mm, 5 mm]. The 2 mm threshold is indicated by a dark line.

subject, which prevent assessing the effect of such
artifacts. Further investigation would be required
to understand the limitation of the proposed reg-
istration framework in this context.

It is worth noting that the current registra-
tion framework does not allow for spine curva-
ture correction as we only consider rigid regis-
tration. Group-wise rigid registration of multiple
vertebrae has shown promising results on sheep
cadavers (Rasoulian et al., 2012; Gill et al., 2012;
Nagpal et al., 2015) to compensate for the poten-
tial post-operative supine to intra-operative prone
spinal curvature. This type of registration re-
quires performing a rigid registration for each sin-
gle vertebra before adjusting the final registration
to account for the global curvature. The fast con-
vergence using the proposed GPU implementa-
tion is a good candidate for such an application
and will be considered for future work. For now,
a practical approach would be to perform a single
rigid registration per treated vertebra. Consider-
ing a typical 20–30 s to complete the iUS acquisi-
tion (Winter et al., 2009), the whole registration
procedure can be achieved under 1 minute per

vertebral level, minimizing the surgical workflow
interruption.

Conclusion

In this paper, we presented an open-source
software for iUS guidance in fusion surgery. The
platform involves two major components: i) reg-
istration of the patient position to the operative
field; and ii) visualization of the predicted screw
trajectory for vertebra instrumentation. To re-
cover from the loss of navigation accuracy during
spinal surgery, the registration procedure needs
to be accurate and computationally efficient, so
that the surgical workflow does not suffer from
frequent interruptions. We have shown that com-
bining gradient orientation and iUS intensity with
an initialization based on probe position results
in 100 % registration success (i.e., final TRE =
1.47 mm, smaller than the 2 mm clinical thresh-
old) in under 8 seconds on 7 vertebrae of a porcine
cadaver. The method is robust and results in
89.86 % and 88.57 % success when partial verte-
bra is visible on iUS; and 83.14 % success when
experimented with initial misalignments of up to
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Figure 8: Results of metric values according to the image misalignments: (a) translationnal misalignment and (b)
rotational misalignment.

20 mm and 20◦. We believe that the platform will
encourage collaborative work and help the devel-
opment of future iUS-based techniques for guid-
ance in spine interventions. Future work will in-
volve investigating the performance of the multi-
metric approach in a slice-to-volume registration
framework. This will obviate the need for iUS
volume reconstruction, further reducing the intra-
operative workload processing.

Supplementary materials

Video 1: Demo video showing the registration
and navigation procedures on a spine
phantom.
https://hgueziri.github.io/assets/

videos/spineVideo.mp4

Acknowledgments

This study was funded by grants from the
Canadian Institutes of Health Research (246067)

and from the Natural Sciences and Engineering
Research Council of Canada (396395).

References

Austin MS, Vaccaro AR, Brislin B, Nachwalter R, Hili-
brand AS, Albert TJ. Image-Guided Spine Surgery A
Cadaver Study Comparing Conventional Open Lamino-
foraminotomy and Two Image-Guided Techniques for
Pedicle Screw Placement in Posterolateral Fusion and
Nonfusion Models. Spine, 2002;27:2503–2508.

Barrett JF, Keat N. Artifacts in ct: Recognition and avoid-
ance. RadioGraphics, 2004;24:1679–1691.

Bates D. Fitting linear mixed models in r. R news,
2005;5:27–30.

Besl PJ, McKay ND. A method for registration of 3-d
shapes. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 1992;14:239–256.

Brendel B, Rick SWA, Stockheim M, Ermert H. Registra-
tion of 3d ct and ultrasound datasets of the spine using
bone structures. Computer Aided Surgery, 2002;7:146–
155.

Brudfors M, Seitel A, Rasoulian A, Lasso A, Lessoway VA,
Osborn J, Maki A, Rohling RN, Abolmaesumi P. To-
wards real-time, tracker-less 3D ultrasound guidance for

16



spine anaesthesia. International Journal of Computer
Assisted Radiology and Surgery, 2015;10:855–865.

Chambers JM, Hastie TJ. Statistical models in S.
Wadsworth & Brooks, 1992.

Chan A, Coutts B, Parent E, Lou E. Development and
Evaluation of CT-to-3D Ultrasound Image Registration
Algorithm in Vertebral Phantoms for Spine Surgery.
Annals of Biomedical Engineering, 2020:1–12.

Chen F, Wu D, Liao H. Registration of ct and ultrasound
images of the spine with neural network and orientation
code mutual information. In: Zheng G, Liao H, Jannin
P, Cattin P, Lee SL (Eds.), Medical Imaging and Aug-
mented Reality. Cham, 2016. pp. 292–301.

Cleary K, Anderson J, Brazaitis M, Devey G, DiGioia A,
Freedman M, Grönemeyer D, Lathan C, Lemke H, Long
D, Mun SK, Taylor R. Final report of the technical
requirements for image-guided spine procedures work-
shop. Computer Aided Surgery, 2000;5:180–215.

Dath R, Ebinesan A, Porter K, Miles A. Anatomical mea-
surements of porcine lumbar vertebrae. Clinical biome-
chanics (Bristol, Avon), 2007;22:607—613.

De Nigris D, Collins DL, Arbel T. Multi-modal image
registration based on gradient orientations of minimal
uncertainty. IEEE Transactions on Medical Imaging,
2012;31:2343–2354.

De Nigris D, Collins DL, Arbel T. Fast rigid regis-
tration of pre-operative magnetic resonance images
to intra-operative ultrasound for neurosurgery based
on high confidence gradient orientations. International
Journal of Computer Assisted Radiology and Surgery,
2013;8:649–661.

Deyo RA, Nachemson A, Mirza SK. Spinal-fusion
surgery—the case for restraint. The Spine Journal,
2004;4:S138 – S142.

Drouin S, Kochanowska A, Kersten-Oertel M, Gerard IJ,
Zelmann R, De Nigris D, Bériault S, Arbel T, Sirhan D,
Sadikot AF, Hall JA, Sinclair DS, Petrecca K, DelMae-
stro RF, Collins DL. IBIS: an OR ready open-source
platform for image-guided neurosurgery. International
Journal of Computer Assisted Radiology and Surgery,
2017;12:363–378.

Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-
Robin JC, Pujol S, Bauer C, Jennings D, Fennessy F,
Sonka M, Buatti J, Aylward S, Miller JV, Pieper S,
Kikinis R. 3d slicer as an image computing platform for
the quantitative imaging network. Magnetic resonance
imaging, 2012;30:1323–1341.

Gebhard F, Weidner A, Liener UC, Stöckle U, Arand M.
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