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Abstract 

Modern neurosurgical procedures often rely on computer-assisted real-time guidance 

using multiple medical imaging modalities. State-of-the-art commercial products enable the 

fusion of pre-operative with intra-operative images (e.g., magnetic resonance [MR] with 

ultrasound [US] images), as well as the on-screen visualization of procedures in progress1–4. 

In so doing, US images can be employed as a template to which pre-operative images can be 

registered, to correct for anatomical changes, to provide live-image feedback, and 

consequently to improve confidence when making resection margin decisions near eloquent 

regions during tumour surgery1,5,6.  

In spite of the potential for tracked ultrasound to improve many neurosurgical 

procedures, it is not widely used. State-of-the-art systems are handicapped by optical tracking’s 

need for consistent line-of-sight, keeping tracked rigid bodies clean and rigidly fixed, and 

requiring a calibration workflow. The goal of this work is to improve the value offered by co-

registered ultrasound images without the workflow drawbacks of conventional systems. The 

novel work in this thesis includes: 

 the exploration and development of a GPU-enabled 2D-3D multi-modal registration 

algorithm based on the existing LC2 metric; and  

 the use of this registration algorithm in the context of a sensor and image-fusion 

algorithm.  

The work presented here is a motivating step in a vision towards a heterogeneous 

tracking framework for image-guided interventions where the knowledge from intraoperative 

imaging, pre-operative imaging, and (potentially disjoint) wireless sensors in the surgical field 

are seamlessly integrated for the benefit of the surgeon. The technology described in this thesis, 

inspired by advances in robot localization demonstrate how inaccurate pose data from disjoint 

sources can produce a localization system greater than the sum of its parts.  

Keywords: Multi-Modal Medical Image Registration, Image Guided Neurosurgery, Magnetic 

Resonance Imaging, Ultrasound, Medical Imaging, Robot Localization 
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Chapter 1  

1 Image-Guided Neurosurgery 

Neurosurgery spans many procedures that include both the brain and spine. For the 

purpose of this thesis, the focus will be on cerebral procedures. The majority of cerebral 

neurosurgical procedures are image-guided, i.e., they include some kind of medical 

imaging done before, during, and/or after the surgery to inform and evaluate the procedure.   

A typical image-guided neurosurgical procedure can be divided into the following 

activities: 

Modality/ Technology Surgery Phase 

P
re-O

p
 Im

ag
in

g 

  

 

1) Planning 

Identify a region for treatment. Plan a path for 

an interventional tool.  

Some key parameters may be determined intra-

operatively. 

 

S
u
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 w
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p
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tra-O

p
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g
 

2) Navigating 

Guide the tool/treatment device to the region of 

interest. Verify the location if possible.  

3) Treatment and monitoring 

Apply and monitor the treatment. 

 

 

4) Verifying 

Verify that the treatment adhered to the planned 

procedure and had the intended effect. 

  

P
o

st-O
p

 

Im
ag

in
g 

Figure 1: Technologies that inform an image-guided neurosurgery’s activities 
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Per Figure 1, the role of surgical tracking and intraoperative imaging is seen to be 

invaluable for the procedure. Intraoperative imaging can update the surgeon’s knowledge 

of a surgical site in real-time, providing critical feedback regarding the navigation and 

localization of surgical tools, especially in the context of the inevitable anatomic changes 

that occur in neurosurgery. Consequently, there has been much promising work 

investigating the application of ultrasound as an effective intraoperative imaging modality 

for neurosurgery, with some work even showing gains comparable to using intra-operative 

MRI5. Even then, ultrasound imaging is not the norm in neurosurgical operating rooms, in 

part due to major workflow handicaps and the difficulty that arises in its interpretation. It 

is the goal of my work to develop enabling technologies to ameliorate some of these 

technical and workflow issues. 

The breadth and variety of neurosurgical procedures is large. In this thesis, I have 

chosen to narrow the discussion to intracranial tumour resection and tumour biopsy, though 

the technologies developed have applicability to other procedures. 

1.1 Biopsy 

If a region of interest (ROI) identified in the pre-operative image is suspected to be 

a malignant brain tumour, it is often desirable to perform a biopsy in order to develop a 

diagnosis from a histological sample. In this situation, the guidance of the biopsy needle to 

an ROI can be challenging, as the size and depth of the ROI can affect the ability of the 

surgeon to find it7. In addition, there is a risk of hemorrhaging, the consequences of which 

grow more serious as the target approaches the brainstem8. 

Complication rates for biopsies vary widely in the literature, which suggests that 

there is a strong element of skill with regards to candidate selection, trajectory planning, 

and guidance9,10.   

The incorporation of functional information in these procedures allows surgeons to 

avoid critical brain areas. The fusion of needle position with pre-operative images from 

multiple modalities is a challenging task. In this situation, the needle may be physically 
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moving in a direction that is spatially incompatible with what is being shown on the 

display, causing undue mental strain for the surgeon.  

 

Figure 2: Tracked ultrasound-guided biopsy 

Intraoperative imaging with ultrasound can give real-time feedback for the 

localization of the biopsy forceps4,11. Doppler imaging can help identify vessels, and real-

time oblique transformation of the MRI volume to show the matching US slice can help 

decipher the data shown on the US plane. Resection margins may be able to be further 

improved with overlays from Diffusion Tensor Imaging (DTI) to show eloquent brain 

pathways. This method can be especially powerful if a contrast-enhanced MR volume is 

available. 

1.2 Tumour Resection 

Primary intracranial tumours occur relatively infrequently as compared to other 

cancers (4-11 cases per 100,000 people in the developed world12), but the rate of incidence 

has been steadily rising13.  
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For treatment, resection of the tumour is often necessary. Research has suggested a 

correlation between quality of intervention and care and the survival outcomes for 

patients14. In the context of the surgical resection of tumours, the primary limitation of 

surgical access is the avoidance of critical brain structures15. This challenge can be 

improved with information from functional imaging overlaid onto the preoperative image. 

Furthermore, the incorporation of intra-operative imaging, such as with ultrasound, allows 

for better localization of treatment and informs the surgeon of anatomical changes in the 

brain16–19.  

1.3 Common Challenges 

1.3.1 Registration Error and Brain Shift 

A variety of technical issues combine to induce registration errors during 

neurosurgery independent of the method used to navigate the procedure.  

At the very start of a procedure, the choice of imaging modality and its parameters 

can result in spatial distortions. As a modality, Magnetic Resonance Imaging (MRI) can 

occasionally generate images that have several millimeters of spatial distortion as a result 

of external magnetic or gradient field inhomogeneities20, or air/bone-tissue interfaces21. As 

MRI-visible markers are usually placed on the periphery of the imaging volume, these can 

be prone to distortion due to magnetic field inhomogeneity in the bore. 

After the pre-operative imaging is complete, the patient is prepped for surgery. 

Afterwards, he or she is often placed in a different orientation than when scanned. The 

MRI-visible markers used to locate the MRI volume in optical tracking space can move 

slightly at this point as a result of gravity affecting the skin differently. Finally, small 

amounts of brain shift may have occurred even before the surgery begins. These minor 

variations are corrected for in practice during radiotherapy sessions by registering the MRI 

to an intraoperative CT volume (though this is not available for conventional surgical 

procedures).  

Once the surgery has started, the anatomical changes in the brain are exasperated 

after the craniotomy is made. Intracerebral landmarks can move up to a centimeter22,23. The 
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major driver of this “brain shift” is the loss of tissue volume from the resection cavity, 

reduced cerebro-spinal fluid (CSF) pressure, and the force of gravity23. Individually, these 

factors do not predict the entirety of brain shift23. The consequences of brain shift can 

impede a surgeon’s capacity to delineate eloquent brain regions from diseased tissue and 

consequently affect decisions regarding resection radicality.  

Brain shift correction is a major topic of research for medical imaging researchers. 

The majority of systems fuse some sort of intraoperative measurement along with some 

assumptions about the brain shift and the pre-operative image volume. The most 

rudimentary of corrections may take the form of a surgeon placing a pointer tool with a 

measured location on a landmark and manually translating the registration to try to improve 

the local accuracy of a registration.  

1.3.2 Human Factors 

Neurosurgical navigation and planning involve perception and cognition tasks that 

apply in various spatial frames of references. This means the surgeon is tasked with the 

mental fusion of an egocentric frame (with respect to the user), an environment frame (the 

operating room), a display frame (the display), and an object frame (the tracked tool)24,25. 

Abhari et al.25 studied the effects of various visualization methods on spatial reasoning 

tasks related to tumour resection and found a measurable difference in performance as a 

result of the visualization method used25. The results can be extrapolated to come to the 

conclusion that a surgeon’s ability to identify and measure brain shift may be influenced 

by the choice of display, its location, and how visualizations are presented.  

Navigated ultrasound reformats the preoperative image to match the view of the 

intra-operative ultrasound image. This, in principle, reduces the cognitive effort of the 

surgeon in mentally fusing the two co-ordinate frames. 

1.3.3 Sterile Field / Reprocessing 

Designing a system that supports effective reprocessing is a major consideration 

with any technology developed for surgery. Most of the hand-held tools end up falling in 

the “critical device” category of the Spaulding Classification as adopted by the FDA26. 
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Ultrasound probes have specific additional guidance from the FDA in neuro applications. 

For example, ultrasound disinfectants can be pyrogenic, and consequently the probe must 

be thoroughly covered during a procedure27.  

1.4 Stereotactic Frame 

The stereotactic frame is an essential component of image-guided neurosurgical 

procedures worldwide. There are many variants of the frame, but they all share three major 

functions: 

 rigid fixation;  

 adjustment and display of position; and  

 mechanical guidance of surgical tools.  

Stereotactic frames come in a variety of form factors, and may be invasively 

mounted, or non-invasively mounted28. It may not be surprising that in the case of biopsies, 

using a frame instead of performing the biopsy freehand without navigation provides 

marked gains to patient outcomes29. 

One of the major drawbacks of this system is that there is limited visualization of 

the frame’s co-ordinate system on the pre-operative image display. Therefore, when 

referring to the pre-operative volume, the surgeon has to do this transformation mentally 

with help from the imaging markers that are co-located on the patient and the volume. For 

live intra-operative visualization, one must use an additional modality with the frame such 

as fluoroscopy, ultrasound, intra-operative Magnetic Resonance Imaging (iMRI), or even 

magnetic/optical tracking.  

The physical presence of the frame is both a blessing and curse. It provides a good 

physical guide for the instrument being used, but the frame itself is bulky, and occasionally 

a burden to fixate on the patient29. The visual fusion of the mechanical device to the 

patient’s head may help cue the surgeon against very large misregistrations, however. In 

addition, one may require a smaller room to perform frame-based surgery instead of a 

frameless surgery30. 
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1.5 Frameless Stereotaxy 

As an alternative, there are many commercial implementations of systems that 

allow for frameless neurosurgical navigation31–33. These systems often consist of an optical 

tracking system combined with pre-operative or intra-operative images.  Such 

neuronavigation systems comprise of a tracking system, computer, and a display that shows 

annotations to aid the surgeon with fusing the various co-ordinate systems together.  

A typical frameless stereotaxy system has the following workflow:  

 fiducial identification from MRI; 

 pointer Calibration (optional); 

 patient preparation / fixation;  

 draping; 

 registration using touchpoint fiducials and surgical tracked pointer; and  

 resection with guidance of reformatted images.  

Unfortunately, for some procedures and workflows, especially those related to 

targets in the deep brain, the accuracy offered by a frameless stereotaxy systems may not 

be enough, and the procedure requires the benefit of an intraoperative modality. In addition, 

there have been experiences documented that suggest that certain frameless stereotaxy 

systems may be systematically worse in terms of procedure time and accuracy34.  

There have also been systems that appear to be a hybrid between the frameless and 

framed stereotactic surgery systems. In these systems, a tracked mechanical arm provides 

a similar function, but without the burden of needing to be fixed to the patient during the 

pre-operative scan29. The major technological leap with these systems is the presence of a 

monitor containing a surgical plan and/or pre-operative images that update with live image-

feedback from the user. The live image feedback can show projected toolpaths and aid the 

surgeon in avoiding damaging eloquent regions when functional images are overlaid. 
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1.5.1 Optical Tracking Error in Frameless Stereotaxy 

There is a certain amount of tracking error inherent in optical tracking systems. 

West et al.35 provide theoretical bounds on the tracking error of tools based on the work of 

Fitzpatrick et al.36, assuming a registration between the expected and measured marker 

locations. In practice, proprietary algorithms used in surgical navigation tracking systems 

produce better rigid-body tracking performance than that predicted by West et al., as 

presented by Wiles et al.37  

Passive marker-based systems have been shown to be immensely popular, though 

they come with a small accuracy penalty over actively tracked systems37,38. From the 

standpoint of a medical devices designer, I can see them to be especially attractive over the 

active markers due to the easier electrical safety-testing requirements39. Sterilization and 

biocompatibility (per ISO 1099340) validation is also easier by virtue of having fewer parts 

and no disassembly. Unfortunately, these benefits come with the major drawback of marker 

degradation and partial occlusion of the markers. The markers get damaged by blood, other 

fluids, and/or incidental contact with hard and/or sharp objects such as surgical tools. To 

my knowledge, the effects of marker damage on system-level accuracy have not been 

publically studied, though my expectation is that the effects are not insignificant. Partial 

occlusions can be mitigated with user-training and informed assumptions on the part of the 

designer, but can be unavoidable depending on the context. The designer may choose to 

cull poses that are prone to partial occlusions by defining a marker-normal or face-normal 

constraint. Thus, there is a compromise between tracking accuracy and line-of-sight when 

such constraints must be used. 

As a result of the trade-offs between reprocessing, tool-life, ergonomics, cost, and 

accuracy, manufacturers choose different accuracy set-points in their various surgical 

navigation systems. Nonetheless, there exists no published data about the system accuracy 

between various neurosurgical navigation systems28.   
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Table 1: Summary of image modalities available for intraoperative guidance   

 Intraoperative 

Modality 

Access Via Image 

Characteristics 

Tool 

Localization 

via 

Examples 

In
crea

sin
g
 In

tera
ctiv

ity
 

 

Intraoperative 

MRI 

No access 

needed 

Good Soft Tissue 

Contrast, 

Functional 

Information 

Image / 

Tracker / 

MRI-based 

Brainlab 

iMRI, 

Polestar 

iMRI, 

Visius IMRI 

(IMRIS) 

Intraoperative 

CT 

No access 

needed 

Bone structure 

visualization, 

localization of 

metal tools 

Image / 

Tracker 

Ubiquitous 

CT scanners 

Pathology 

Samples 

Resection 

Cavity 

Microstructure, 

individual cells 

Visual 

Inspection / 

Tracker 

 

Portable 

Fluoroscopy 
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1.6 Intraoperative Imaging 

A number of neurosurgical procedures rely on intraoperative images for guidance. 

I have summarized some of the considerations for each modality in Table 1.  

These intra-operative imaging modalities provide the surgeon with valuable 

navigation information, and can even augment frameless or framed stereotaxy. While the 

benefit of being able to directly view tools and the region of interest is great, workflow 

issues arise with the inclusion of intra-operative imaging. 

The modern neurosurgical operating room has access to more medical imaging 

modalities than ever before. Each image modality has a role to play in informing the 

surgeon as to where to go to conduct a given procedure. The use of intraoperative MRI 

(iMRI) has been discussed in the literature at length with experiences from systems such 

as those developed by Medtronic and iMRIS41 indicating a possibility for improved patient 

outcomes42. However, these systems are very expensive, require a great deal of technical 

expertise and planning, and increase operating time17. This is unfortunate, as MRI offers 

outstanding soft-tissue contrast, as well as invaluable functional information that can be 

used to inform the live surgery.  

1.7 Ultrasound in Neurosurgery 

Where MRI’s use is almost exclusively pre-operative, ultrasound is used almost 

exclusively intra-operatively, due to the need for a craniotomy. Like MRI, ultrasound offers 

good soft-tissue contrast, but is more difficult to interpret.  

Intraoperative Ultrasound (iUS) is an alternative to iMRI that may have comparable 

gains to patient outcomes without the significant costs5,6,43–47.  By utilizing iUS during a 

neurosurgery session, it is possible to account for the apparent movement and deformation 

of the anatomy as well as calibration issues in the neuronavigation equipment. 

While ultrasound has a long history of use in neurosurgical applications dating back 

to the 1950s using A-mode US images48, it currently is not a dominant modality. One 

reason for this may be that there are a great deal of considerations to take into account for 
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effective US imaging. These issues include patient-positioning, resection planning, 

selection of retraction tools, the management of bleeding, and resection approach, and 

relate to acoustic coupling, and reducing US image artefacts48–51. Another caveat of US 

usage in neurosurgery is that its interpretation benefits greatly from the context provided 

by a reformatted or annotated pre-operative image showing the corresponding region of 

interest.  Finally, ultrasound’s lack of appeal is partly due to the fact that surgeons are not 

as familiar with it52.   

There are now a variety of state-of-the-art systems that allow for the fusion of 

intraoperative ultrasound with pre-operative images, displaying on-screen visualization of 

procedures in progress1–4. In doing so, US images can be employed as a template to which 

pre-operative images can be registered, to correct for brain-shift, to provide live-image 

feedback, and consequently to improve confidence when making resection margin 

decisions near eloquent regions during tumour surgery1,5,6. These systems often make use 

of infra-red camera-based tracking systems that estimate the pose of hand-held tools and 

imaging probes to present helpful interpretive visualizations. As can be surmised from 

Table 1, optically-tracked freehand ultrasound implementations are limited by line-of-sight 

issues, bulkiness of optical tracking tools, cost, maintenance of the sterile field, and space 

constraints in the neurosurgical operating room30,53,54. Despite the many advances in 

commercial and research systems, ultrasound continues to be underutilized. 

It is my view that existing navigated ultrasound systems may have missed the 

appropriate balance between workflow changes and features. A medical device company 

has a tough choice between providing a solution that is agnostic to existing hardware that 

a hospital already owns and is familiar with (e.g., an ultrasound system), or offering a 

solution that is specific to a combination of hardware with tighter integration, but with 

potentially a higher capital/training/infrastructure cost to the hospital requiring it to support 

another vendor’s system. The system-agnostic workflow can clutter the operating room 

space with a great deal of equipment (Figure 3).  
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Figure 3: Conventional tracked ultrasound operating room layout 

An ultrasound agnostic multi-modal imaging system makes compromises with the 

ultrasound tracker calibration. Usually they require a calibration step before the ultrasound 

probe is draped. The risk assessment activities conducted by a medical device designer 

seeking to make a navigated ultrasound product may lead them to classifying the 

calibration hardware as sterile. An alternative to calibration hardware explored by recent 

research may be in-situ calibration55, where a tracked surgical tool is placed inside the 

ultrasound FOV to compute its calibration. 

The burden of optical hardware required for an ultrasound agnostic system, in 

addition to a tracking camera, may include  

 an ultrasound probe “clamp” or fixation device to hold the optically tracked 

sensor (under the ultrasound cover);  

 a tracked rigid body for holding the optical markers allowing for the 

ultrasound cover in between the rigid body and the above device without 

puncturing it; and/or 

 a calibration device or tool.  
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As mentioned in 1.3.3, most of this hardware is likely to be classified as “critical 

devices” and become part of the hospital’s reprocessing workflow. From personal 

experience, an attempt to duplicate the arrangement described by Mercier et al., where the 

spherical optically-tracked markers were snapped onto their posts overtop of the ultrasound 

cover56, resulted in the observation that the fit of the spheres to their posts was often 

compromised, This experience is limited to the ultrasound cover being used, as well as to 

the optical tracking post/marker combination. Consequently, while that arrangement has 

the advantage of reducing the hardware required, it may not be appropriate for a 

commercial product.  

Regardless of the aforementioned choice regarding ultrasound vendor 

independence, an optically-tracked ultrasound probe may further burden the ergonomics in 

a task already fraught with repetitive strain injury57. One study found that up to 90% of 

sonographers are imaging with some amount of pain58. Though in a neuro-imaging context 

the throughput would be much smaller, this statistic speaks to the importance of not making 

the use-case worse. Since the optical tracking marker arrangements often fall right on the 

natural gripping points of the probe, add weight, and create line-of-sight constraints, there 

is reason for concern. Even without navigated ultrasound, maintaining line of sight in a 

frameless stereotaxy system is a major challenge59. The line-of-sight issues may be further 

exasperated by the presence of viscous acoustic coupling mediums in the surgical field, 

and fluids on the ultrasound probe cable migrating onto the retro-reflective surfaces of the 

optical markers, thus compromising accuracy. The wider the desired field-of-view and 

accuracy (i.e., size) of the tracked tool, the greater the chance of intrusion by the cable or 

impact during the session. Advocates of optical tracking reason that these issues can be 

designed around though I have yet to find a compromise that makes for a truly positive 

experience. Due to the risk of IR interference between cameras of multiple systems, 

optically tracked ultrasound solutions mandate some level of integration with the 

neuronavigation system. Currently available solutions do not incorporate any workflows 

that work around a stereotactic frame.  
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1.7.1 Ultrasound Imaging Considerations 

The literature documents a few different scenarios for typical ultrasound use, which 

are summarized in the following sections. 

1.7.1.1 Pre-Resection Imaging 

Prior to the resection cavity being made, the ultrasound probe can be used as a quick 

check on the craniotomy location and size. Acoustic coupling may be performed with the 

use of a saline filled sterile bag. As a standoff, this can help bring more of the ROI into the 

field of view of the US probe depending on its location. 

1.7.1.2 Intra-Resection Imaging 

Ultrasound probes can image within the resection cavity by flushing it with saline 

or another coupling medium. This usually requires planning in advance to ensure that the 

resection cavity is oriented with gravity. Alternatively, some surgeons have documented 

the creative use of bone-wax in making “dams” so that the coupling medium can stay in 

place and allow for ultrasound imaging60. Knowledge of common ultrasound imaging 

artefacts benefits its use significantly. The most common artefact is the acoustic 

enhancement artefact that arises from the sound waves being more attenuated outside the 

saline filled cavity than within the cavity. Consequently, the area in which the surgeon is 

most interested (the bottom of the resection cavity) unfortunately shows up as hyper-

echoic. The saline itself shows up with bubbles in the cavity, which can be used to better 

distinguish it from tissue50. Unfortunately, most intra-resection ultrasound imaging 

impedes the use of surgical optics, another key intra-operative imaging modality, unless a 

second craniotomy site is made. Though it comes with significant drawbacks, making a 

second craniotomy site also has the benefit of reducing the effects of the acoustic 

enhancement artefact.  

Another way to avoid the acoustic enhancement artefact and filling the resection 

cavity with saline is to use a miniature ultrasound probe. Coburger et al.47 found this 

method to be a powerful way to differentiate cancerous tissue, with marked gains over 

imaging from the top of the resection cavity.  
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A final, essential consideration, is that as the surgery continues, bleeding tends to 

make the tumour contrast worse.52  

As described by Prada et al.52, typically brain structures show up as follows when 

visualized using ultrasound: 

Table 2: Neurosurgical ultrasound semieology per Prada et al. 

Hyperechoic Structures “…skull, Vessels wall, choroid plexuses, 

arachnoidal folds, ependymal, dural fold, 

brain-lesion interface”52 in addition to 

blood clots, and calcifications 

Hypoechoic Structures “Cereberospinal fluid, ventricles, 

connective fibres”52 

Isoechoic Structures Brain parenchyma 

 There is also the ability to use transcranial ultrasound to develop an understanding 

of the ROI. Unlike iUS, transcranial ultrasound is done with a low frequency US probe 

(<2Mhz) through the temporal bone. This arrangement results in poorer soft-tissue 

contrast, though it is sufficient for a variety of diagnostic tasks61,62. Recent research has 

shown potential in ex vivo tissue for transcranial ultrasound to correct for brain-shift, 

though it has yet to be pursued in a clinical context63.  

1.8 System Design 

Considering the above challenges, the objective of the work presented in this thesis 

is to improve the state-of-the-art of tracked ultrasound systems by incorporating the 

following features:  

 free from calibration, or with minimal calibration;  

 free of manual registration, or robust to large registration errors; 

 independent of surgical navigation system;  

 independent of ultrasound imaging hardware;  
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 less sensitive to line-of-sight issues;  

 minimal hardware to reprocess;  

 can be an optional adjunct to optical tracking;  

 pre-resection workflow; and  

 brain shift visualization.  

This work addresses a different subset of tracked ultrasound problems than those 

that recent research systems attempt to solve, in that it aims to develop a system that 

supports a workflow early in the procedure, prior to the resection cavity. In this situation, 

ultrasound can form a sanity check on the craniotomy location64 and registration, inform 

the surgeon of anatomical changes64, and provide meaningful data on tumour echogenicity. 

This can form an essential component in maintaining a minimal craniotomy, verifying that 

an approach is free of important vasculature, and also guiding a trocar during a minimally 

invasive approach. Even at this point in the procedure, according to Coburger et al.64, 

ultrasound informs the surgery more reliably than the surgical navigation system, and can 

provide marked gains to the productivity of the surgeon by “gaining a confident idea of the 

surrounding structures.”   

The system must be designed in the context of anticipated advances in consumer 

electronics technology. In particular, with major technological companies investing 

significant effort to develop the integration of a variety of inexpensive sensors with 

simultaneous localization and mapping (SLAM) algorithms, it is only a matter of time 

before these kinds of systems find their way into surgical image-guidance. Thus, whereas 

today’s neuro-navigation systems employ a single very accurate tracking system, the future 

of image guidance may feature systems that the integrate measurements from a 

heterogeneous assortment of sensors to perform localization of tools.  

My approach is therefore to develop an alternative way of constraining the multi-

modal registration to produce an intra-operative guidance system that incorporates a multi-

modal image registration algorithm, craniotomy site definition, sensor data, and the motion 

model as components in my system. To my knowledge, this has not been done before. 
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A key component of this system will be a fast and effective 2D-3D multimodal 

registration. A 2D-3D registration will enable a Kalman-filtering based algorithm to treat 

individual ultrasound frames like sensor positioning data in a way similar to commonly 

used in SLAM (Simultaneous Localization and Mapping) algorithms.  

The system that this thesis strives to achieve is in a pre-resection workflow in light 

of the serious workflow impediments that intra-resection ultrasound presents (i.e., 

challenging acoustic coupling and acoustic artefacts that reduce the specificity of 

intraoperative ultrasound during surgery65). Nonetheless, the output of this system may 

feed into a monomodal volumetric brain-shift correction algorithm in future work. 

1.9 Image-Based Registration 

One of the key themes of the work in this thesis is image-based registration. In 

medical applications, the most common form of image-based registration is volumetric. 

Registration can be divided into two sub-algorithms: a similarity metric and the optimizer. 

The similarity metric serves the purpose of a cost function – given two images, it produces 

a number corresponding to two images’ similarity (Figure 4). The optimizer’s function is 

to produce a transform to reformat the “moving image” to produce an output that is most 

similar to the “fixed image” using the output of the similarity metric. Consequently, the 

similarity metric is usually evaluated many times until the optimizer converges on an 

optimal transform for the moving image.  

For example, in the case of this thesis, where a 2D-3D US-MRI registration is 

evaluated, the MRI is the moving image, and the ultrasound is the fixed image. The 

optimizer perturbs the MRI image transform until it matches the location of the ultrasound 

probe.  

The simplest of similarity metrics is the sum of absolute differences (SAD), the 

sum of absolute differences between corresponding pixels between the images. The sum 

of squared differences (SSD), similar to SAD, is the sum of squared differences of pixel 

intensities, but features a steeper slope for better optimizer convergence. SSD divided by 

the number of pixels becomes the mean-squared-error (MSE) metric, resulting in a number 
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that is easier to compare between image sets. Unfortunately, these metrics suffer once the 

images are even slightly different in pixel intensities, i.e., when they have slightly different 

contrast or brightness values, or have varying degrees of overlap. Normalizing the image 

intensities makes these metrics more robust to contrast/brightness values. Normalized 

Cross Correlation (NCC) does just this, demeaning, and normalizing the images with their 

respective ranges. (Essentially, becoming the dot product of the normalized images.) 

Figure 4: Registration similarity metric function 

Images generated from fundamentally physical processes still suffer with the above 

intensity-based metrics, since pixels in one modality may consistently map differently to 

pixels in another. Two of the most established similarity metrics for multimodal 

registration are Mutual Information66 and the Correlation Ratio67.  

Mutual Information (MI) is simply explained as how well a statistical relationship 

formed by the intensities of two images area predict the values of one image from another. 

The variants of mutual information act to reduce the effects of heavy noise, incorporate 

some aspect of the image-formation, or varying relationships between the two images (as 

is especially the case with ultrasound).  

Correlation Ratio (CR), like MI, is related to the statistics of the image-intensities 

between two images, but is not as computationally challenging to compute, and is less 

sensitive to the number of pixels being compared. Roche et al. present it in an ultrasound 
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application by incorporating the MR image gradient, image intensities, and the ultrasound 

image intensities68. CR simplifies to another famous similarity metric, NCC, when the 

relationship between image intensities is linear. 

There is also another class of similarity metrics grounded in the notion of local self-

similarity. Such metrics compare an abstraction of the input images. For example, the 

Modality Independent Neighborhood Descriptor (MIND) multi-modal registration metric 

has been successfully applied to a variety of registration scenarios69 including US/MRI 

registration70. 

1.9.1 Multimodal US/MRI Image Based Registration in 
Neurosurgery 

Multi-modal registration between ultrasound and MRI using optical tracking for 

the purpose of brain-shift correction has been a topic of research for decades now18,71. In 

the context of US/MRI registration, much work has been done since the release of the Brain 

Images for Tumour Evaluation Database (BITE)56, which provides the ability to validate 

new similarity metrics. The list of similarity metrics validated on the dataset is long, 

including LC272,73, GOA74, COCOMI75, SESAMI76, RAPTOR77, and miLBP78. In addition, 

there has been work creating volumetric pseudo-US images from a segmented MRI 

volume79,80.  

These algorithms have not been used to place individual 2D US slices within the 

space of a 3D MR image in the manner described in this thesis, though the LC2 algorithm’s 

introductory paper displays results for the unreconstructed US data72, unlike the other 

available work74–78,81,82. This model of registration is compelling, as it makes the step of 

gridding the ultrasound voxels unnecessary. 

These similarity metrics developed in the context of US/MR registration, especially 

when used for brain shift correction, are often used in some kind of deformable registration 

framework. In a deformable registration, the spatial location of individual pixels is free to 

move per some defined function within some constraints.  
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Optical tracking error can be significant when propagated to a point in the 

ultrasound field of view. When placed in a grid, the diffeomorphic constraints that are 

applied on algorithms acting on these volumes are violated. A model that takes into account 

optical tracking errors may be better able to place these slices. None of the prior work 

incorporates these models to aid the registration. 

The lack of published data for 2D to 3D registration of individual slices is 

unfortunate, as there has been excellent work showing how a graph-based deformable 

registration can do both slice localization and in-plane slice deformation given a small 

search space. In these experiments, Ferrante et al.83,84 used six sets of ten slices from one 

of the patients in the BITE database, and utilized the first slice’s optical tracking pose as 

an initialization for the following slices. It is possible that this method may have potential 

to work with larger search spaces and with longer series of slices with the use of a more 

sophisticated similarity measure. 

In a monomodal context, there is notable work on 2D-3D Ultrasound slice-volume 

registration for prostate images. De Silva et al.85,86 employ normalized cross correlation to 

refine the pose of a 2D US probe given an existing 3D US volume. Also notable are 

attempts to create real-time tracking of the US probe using 2D-3D registration87. Image-

based 3D-3D monomodal registration is involved with the Koelis Urostation Touch88, 

allowing for image-based ultrasound navigation. 

1.10 Other Pose Estimation methods 

There are methods other than registration or optical tracking that have been used to 

develop a pose estimation for ultrasound probes. For example, out-of-plane probe 

movement can be partially derived from US speckle decorrelation models89–91. Recent 

developments have shown that it may be plausible to help constrain an ultrasound probe’s 

pose in in vivo tissue92–94, but these algorithms rely on obtaining the underlying radio-

frequency (RF) data from the ultrasound probe instead of the fully processed B-mode 

images. Other researchers have worked to develop a pose-estimation system without RF 

data while incorporating visual-servoing, but these efforts have been unable to produce 

similar accuracy95–97. It may nonetheless be plausible to incorporate pose-information from 
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these algorithms into the kind of multi-sensor fusion system I am working on to help 

constrain the registration of a 2D ultrasound probe’s pose.  

1.10.1 Sensor/Data fusion with Kalman Filtering 

The use of multi-sensor data fusion for the computer guidance of freehand tools has 

been described in the literature a number of times. For example, this model has been used 

as a way to improve the accuracy of speckle tracking with inertial measurements98, to create 

optical-inertial hybrid tracking systems99, or to use both electromagnetic and optical 

tracking100 to support a given procedure. Of special interest to me is work that has been 

done to combine speckle tracking with multi-modal registration with spine images101, 

which showed a good deal of success with CT-US registration combined with speckle-

tracking in a spine phantom and in a lamb spine. The work presented in this thesis 

demonstrates how these kinds of powerful sensor-fusion frameworks can be applied in a 

neuro-navigation context when a 2D/3D similarity measure is incorporated. 

Many of the aforementioned sensor fusion systems employ Kalman Filtering. All 

measurements have some uncertainty associated with them, and thus a process that I seek 

to observe is unknowable past a certain threshold of accuracy. Furthermore, the knowledge, 

or “belief” in the state of the system will change with the passing of time as a result of the 

system’s model dynamics. Thus, such systems can be represented as a Markov chain where 

the current state of the system x(t) is measured indirectly through measurements y(t) 

(Figure 5).  
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Figure 5: Hidden Markov Model representation of the evolution of states (x(t)) and 

their measurements (y(t)) in a pose measurement and estimation problem 

The classic implementation of an algorithm that relies on the above model is the 

Kalman Filter, which represents a special case of a Markov chain, where measurements 

combined with the state transition function produce estimates of the tracked object’s pose. 

In this framework, Gaussian distributions represent the belief of the state of the object and 

the measurements. As shown in Figure 6, a measurement update step refines the a priori 

(before the measurement) belief, resulting in the a posteriori (after the measurement) state 

belief. Before the next measurement, a prediction step creates the next a priori belief, 

which, in general, is less certain than the previous a posteriori belief. How much the a 

posteriori state estimate incorporates measurement is determined by the “Kalman Gain” 

matrix, which is a function of the measurement model and its error covariance. The 

prediction step is informed by the state transition function, and the state transition 

x(t-1) x(t) x(t+1) 

y(t-1) y(t) y(t+1) 
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covariance. The recursive nature of the Kalman Filter is made explicit in Figure 6. 

 

Figure 6: Kalman filter algorithm steps 

In pseudo-code form, the algorithm appears as follows (adapted from Thrun et 

al.102, excluding control inputs) in Figure 7.  

 

Figure 7: Example Kalman filtering pseudocode 
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KF_PredictAndUpdate(µt-1, σt-1, zt) 

{ 

 //Prediction 

 µ̅𝑡 =  𝐴𝑡µ𝑡−1 

 σ̅𝑡 =  𝐴𝑡σ𝑡−1𝐴𝑡
𝑇 +  𝑅𝑡 

  

 //Kalman Gain Calculation 

 K𝑡 =  σ̅𝑡𝐶𝑡
𝑇(𝐶𝑡σ̅𝑡𝐶𝑡

𝑇 + 𝑄𝑡)−1 
  

 //Innovation 

 µ𝑡 =  µ̅𝑡 +   𝐾𝑡(𝑧𝑡 − 𝐶𝑡µ̅𝑡)  
 σ𝑡 = (𝐼 − 𝐾𝑡𝐶𝑡)σ̅𝑡 

 Return µ𝑡, σ𝑡 

} 

Legend: 

At – State Transition matrix 

Rt – State Transition Covariance 

Ct – Measurement model matrix 

Qt – Measurment covariance 

Kt – Kalman Gain 

zt – Measurement 

σt – Belief covariance 

µt – Belief mean estimate 
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1.11 Summary 

My work in this thesis comprises the following novel contributions: 

 exploration of the applicability of LC2 in the context of 2D-3D US-MRI 

registration using the Brain Images for Tumour Evaluation Database; 

 development of a new similarity metric based on LC2 called BOXLC2 (this metric 

has a faster GPU implementation by virtue of requiring fewer steps to compute; I 

show this to be approximately equivalent to LC2 in terms of speed); and 

 demonstration of a 2D/3D image similarity metric inside an Unscented Kalman-

Filter (UKF) framework fusing the registration algorithm with noisy sensor 

measurements from an inertial measurement unit (IMU). 

Given the goals mentioned in section 1.8, the UKF algorithm will attempt to 

 perform LOS correction when performing optically navigated ultrasound 

procedures; and  

 be a standalone ultrasound navigation system that meets the requirements set out in 

section 1.9 when combined with an inertial measurement unit. 
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Chapter 2  

2 2D/3D US – MRI Slice to Volume Registration 

2.1 Background 

The existing work on US-MRI slice-to-volume registration is limited, as there is no 

unanimously accepted approach to the challenge103. There has, however, been much work 

in US slice-to-volume registration in a single-modality context85, as well as with US to 

other modalities84,104. 

Wein et al.105 introduced the LC2 similarity metric for the purpose of abdominal 

US-CT registration, as well as a patchwise variant for US-MRI72. The metric was further 

expanded upon by Fuerst et al.73 For the sake of simplicity, we will refer to the patchwise 

variant presented by Fuerst et al.73 Unlike most prior work, which performed a US volume 

reconstruction step to do a volume-volume registration, the LC2 Metric has been validated 

in a multi-slice to volume registration context. This work also included results for 

registration with a sparse collection of slices.  

As presented in Wein et al.72, for a given patch Ψ at location 𝑥𝑖 in image Ω, LC2 

tries to fit an US slice 𝑓(Ψ, 𝑥𝑖) to an MRI slice, as a linear function of the MRI image 

intensities, 𝑝(𝑥𝑖), and gradient magnitude 𝑔(𝑥𝑖) using the following formula:   

 

 𝑓(Ψ, 𝑥𝑖) =  𝛼 𝑝(𝑥𝑖) +  𝛽 𝑔(𝑥𝑖) +  𝛾  
  (1) 

where α, β, and γ are solved for each patch by minimizing the difference between 𝑓(Ψ, 𝑥𝑖) 

and 𝑢(𝑥𝑖) intensities for each voxel-wise patch using least-squares fitting. The LC2 

similarity metric is: 

 𝑆 =
∑ (1− 

∑ |𝑢(𝑥𝑖)−𝑓(𝛹,𝑥𝑖)|
2

𝑥𝑖∈𝛹

|𝛹|𝑉𝑎𝑟(𝑢(𝑥𝑖) | 𝑥𝑖∈ 𝛹)
) 𝛹∈Ω

∑ (𝑉𝑎𝑟(𝑢(𝑥𝑖) | 𝑥𝑖∈ 𝛹)𝛹∈Ω
 

  (2) 

As described by Wein et al.72, the denominator of the similarity function serves to 

attenuate regions with acoustic shadowing (just as it did in the CR similarity metric). 
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2.2 Methods  

2.2.1 Overview 

I have developed a PyCUDA enabled Python module in 3D Slicer106 to explore US 

Slice to MRI volume registration. The software has an implementation of the LC2 metric, 

as well as a variant that I have developed to aid with improving computation time. The 

module can create virtual craniotomy sites from a given pose and then search for the best 

possible pose within those craniotomy sites in 3 degrees-of-freedom (3DOF), reusing the 

orientation pose components from MNI’s Brain Images for Tumour Evaluation (BITE) 

data, or in 6 degrees-of-freedom (6DOF). 

2.2.2 GPU LC2 Implementation 

My implementation is partially derived from the example MATLAB code107 in 

addition to the published work on LC273. For the gradient computation, I employed the 

Scharr operator108 in the vertical direction only, since the computation of other gradient 

components had no effect on the registration. Arguably, my implementation is more 

consistent with the physics of US image formation.  

The example MATLAB code also has some additional caveats not mentioned in 

the original publications in that the MATLAB implementation does not compute the pixel-

wise similarity for patches that have a majority of nonzero pixels, or if the ultrasound image 

variance is zero. This feature enhances the stability of the registration metric, by ensuring 

that there are enough pixels to compute the  𝑓(Ψ, 𝑥𝑖) term. 

Finally, as a deviation from the published work and the example MATLAB code, I 

chose to skip the accumulation of pixels that correspond to zero-values in the US image, 

providing a significant speed improvement without degrading the registration metric. 

Pseudocode for my implementation is shown in Figure 8. 

In my experiments, re-slicing, gradient computation, and US patch weightings are 

computed in a different kernel or on the computer’s central processing unit (CPU). 
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Figure 8: Pseudocode for LC2 GPU kernel 

2.2.3 Boxcar Filter Normalized LC2 (BOXLC2) 

As the |𝑢(𝑥𝑖) − 𝑓(𝛹, 𝑥𝑖)| term in the numerator of equation 2 requires an additional 

memory access of complexity O(n2) with the patchsize after already traversing the pixels 

in the patch to compute 𝑓(𝛹, 𝑥𝑖), there may be room to improve the computational 

efficiency without affecting accuracy. By removing this expensive memory access, and 

replacing it with another measure of the metric’s fit, I can potentially improve the metric’s 

speed.   

Boxcar Filter Normalized LC2 (BOXLC2) posits that the US image-generated 

voxelwise by 𝑓(𝛹, 𝑥𝑖)  will resemble an US image where each pixel is the mean of the 

pixels in the input patch when the registration is poor (otherwise known as a boxcar filtered 

image). Consider the situation where a patch of ultrasound data is fitted to a patch of noise 

of the same size. Solving for eq. 1, 𝑓(𝛹, 𝑥𝑖) would give the average ultrasound intensity, 

𝑢(𝑥𝑖)̅̅ ̅̅ ̅̅ ̅ of the patch centered at a given 𝑥𝑖, as that is the best fit that can be found for 

uncorrelated noise. As the desired MRI slice should perform better locally than 

LC2_Kernel(USImg, ReslicedMRIImg, ReslicedMRIGradImg) 

{ 

 For each pixel in this patch's columns: 

 { 

Copy data from USImg, ReslicedMRIImg and ReslicedMRIImg into shared memory 

  Synchronize Kernels 

  For each pixel in this patch's rows 

  { 

If the US image intensity is > 0, accumulate intensities for solving LC2 Coefficients from 

shared memory 

  } 

 } 

 Return early if most of this US image patch is zero. 

 Solve for LC2 coefficients from accumulated intensity values. 

 For each pixel in this patch's columns: 

 { 

  Copy data from USImg, ReslicedMRIImg and ReslicedMRIImg into shared memory. 

  Synchronize Kernels 

  For each pixel in this patch's rows 

  { 

   Accumulate the difference between the LC2 function and US pixel intensity 

  } 

   

 } 

Similarity = Sum of differences between LC2 function and US pixel intensity divided by the US 

image variance divided by the number of pixels 

} 
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uncorrelated noise, one can see how 𝑓(𝛹, 𝑥𝑖) would move towards 𝑢(𝑥𝑖) from 𝑢(𝑥𝑖)̅̅ ̅̅ ̅̅ ̅ . 

Therefore, a normalized dissimilarity measure is formed by dividing 𝑓(𝛹, 𝑥𝑖) −  𝑢(𝑥𝑖) by 

𝑢(𝑥𝑖)̅̅ ̅̅ ̅̅ ̅ − 𝑢(𝑥𝑖). As a similarity metric, it thus takes the form of: 

𝑆(𝑢) = 1 − ∑ |
|𝑓(𝛹,𝑥𝑖)−𝑢(𝑥𝑖)|

|𝑢(𝑥𝑖)−𝑢(𝑥𝑖)̅̅ ̅̅ ̅̅ ̅̅ |
|𝑥𝑖∈Ω  , where 𝛹 is a patch centered on 𝑥𝑖  (3) 

 

 

Figure 9: The voxelwise evaluation of f(Ψ, xi ) creates simulated ultrasound image 

that resemble boxcar filtered US image as image dissimilarity increases 

Pseudocode for BOXLC2 is shown in Figure 10. 

 

Figure 10: Pseudocode for BOXLC2 GPU kernel 

Increasing 

Dissimilarity 

Voxelwise evaluation of 𝑓(𝛹, 𝑥𝑖) when 

computed with an MRI slice corresponding to 

the US probe pose in the BITE dataset 

Voxelwise evaluation of 𝑓(𝛹, 𝑥𝑖) when 

computed with an arbitrary MRI slice 

BOXLC2_Kernel(USImg, ReslicedMRIImg, ReslicedMRIGradImg) 

{ 

 For each pixel in this patch's columns: 

 { 

  Copy data from USImg, ReslicedMRIImg and ReslicedMRIImg into shared memory. 

  Synchronize Kernels 

  For each pixel in this patch's rows 

  { 

   If the US image intensity is > 0, accumulate intensities for solving LC2 Coefficients 

  } 

   

 } 

 Calculate pixel-wise weight as the ultrasound pixel intensity minus the average US pixel intensity 

 If the number of nonzero pixels in this patch is smaller than half the patch area, return 

 Solve for LC2 coefficients from accumulated intensity values. 

Solve for similarity as the LC2 function evaluated at this pixel minus the US pixel intensity 

clamping the output value to a range of zero to one 

} 
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2.2.4 Particle Swarm Optimizer 

I have implemented a stochastic optimizer known as a particle swarm optimizer109. 

In this optimization technique’s canonical form (inspired by the behaviours of social 

animals searching for a common goal), a “swarm” of particles represented by a vector of 

length N search through an N dimensional objective function search space, with attraction 

to the swarm’s best value, and each particle’s respective previous best value (Figure 11). 

The optimizer has been used in a wide variety of applications ranging from tuning 

algorithms such as neural networks, electrical grid optimization, biological system 

modelling, and robot path planning110. One of the attractive features of this optimizer is 

that it doesn’t require the derivative of the objective cost function, since its maxima can 

often be narrow, and easily missed by a conventional gradient based optimizer. My 

implementation, based on the pyswarm library111, is true to the original description 

presented by Eberhardt et al.109, with the caveat that when a particle passes a constraint, it 

gets randomly placed in the search space with memory of its previous best location.  

 

Figure 11: Particle swarm iteration pseudo-code 

The behaviour of the particle swarm is affected by constants Ω, Φ_p and Φ_g, 

where Ω determines the momentum of particles, and the Φ_p and and Φ_g terms weight 

the influences of local and global best evaluations respectively. I chose a small Ω value of 

0.15 to keep the particles within the search space, g and p values of 0.5, with the exception 

of the orientation component aligned with depth axis of the US probe, which I set at 0.3. I 

chose a swarm size of 30,000 particles, with an iteration limit of 50 and without any other 

PSO_Iteration (particles ) 

{ 

 f =  similarityfunction(particles) 

 gbest = best particle in f 

 For each particle: 

  Store the best historical particle position in pbest[particle] 

  v_particle = Ω v[particle] + Φ_p×rand()× (pbest-particle_position) + Φ_g× (gbest-

particle_position) 

  particle_postion = particle_position+v_particle 

  If particle is outside bounds: 

   reinitialize particle within bounds 

} 
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stopping criteria, taking advantage of the massively parallel computation abilities of the 

GPU to mitigate the risk of missing a maxima.  

2.3 Testing Approach  

To test the slice-based registration performance, I made use of the BITE database56. 

Group 2 of the dataset comprises 14 cases with tracked pre-resection US slices, pre-surgical 

T1-weighted contrast-enhanced MRI volumes, and expert-identified homologous 

landmarks in both modalities.  

To computationally constrain the problem, for each US probe pose I simulated 

small craniotomy sites (2cm x 2cm x 2cm) based on the original pose information and the 

skull-stripped brain surface. This approach was chosen to mirror clinical practice, where 

the craniotomy size is influenced by tumour size, and also to shrink the objective function 

search space for quick evaluation. 

To create the craniotomy site, I employed the Brain Extraction Tool (BET) from 

the FSL neuroimaging pipeline112 to get an estimate of the dural surface. I expect some 

error in the dural surface with the default settings, but since my search space has to be 

widened to accommodate for brain-shift, dural segmentation errors will not be 

consequential. 

Using the distance between expert-identified homologous landmarks in both 

modalities, one can determine a target registration error (TRE). A caveat is that these 

landmarks were identified in reconstructed US volumes, and thus I execute this algorithm 

on the 2D US slice that is closest to each landmark. 

Since the US slices included in these tests require them to be within 0.3mm of an 

expert-identified landmark in the reconstructed US volume, some of the landmarks are 

culled out of the BITE dataset. In addition, if during processing multiple targets appear in 

the same US slice, only the landmark that is closest to the original US slice’s imaging plane 

is used.  For the remainder of this paper, I shall refer to these as slice-target pairs. 



31 

 

Thus, I have selected 329 slices from the original 392. The mean TRE is 4.1mm for 

this set of target-slice pairs. This set of US slices forms the basis of my testing when I 

report TRE values. Figure 12 shows a histogram of errors for target-slice pairs that 

correspond to TRE values less than 5mm is shown in. 

Both image-similarity metrics are operated on the MRI volume masked by the US 

image field-of-view. It is also pertinent to mention that voxels that fall outside of the brain-

mask generated by FSL-BET are also removed from the computation. 

Table 3: Slice-target pairs used in my experiments 

Patient 

Number 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 

No. of 

Landmarks 

in BITE 

Database 

37 35 40 32 31 37 19 23 21 25 25 21 23 23 

Mean initial 

TRE (mm) 
4.9 6.5 9.4 3.9 2.6 2.3 3 3.6 5.1 3 1.5 3.7 5.1 3.8 

No. of 

Landmarks 

in test subset 

32 30 13 29 28 35 15 22 19 20 24 19 21 22 

Mean TRE 

in test subset 

(mm) 

5.3 6.3 9.7 4 2.6 2.3 4.3 3.9 4.9 3 1.5 3.7 5 3.8 

 

 

 

Figure 12: Histogram of TRE values associated with slice-target pairs in the subset 

of the targets from the BITE dataset (errors >5mm are not shown) 
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In summary, my approach is as follows: 

 skull strip MR data and estimate segmented dural surface (done with FSL-BET’s 

default parameters);   

 search for US slices that have expert identified landmarks in them from the 

reconstructed US volume within 0.3mm (this reduced the number of expert 

landmarks available, as not all expert landmarks fell so close to an US slice); and  

 for each US Slice with a landmark: 

o create a rectangular craniotomy site by projecting the head of US probe onto 

the dural surface;  

o search for the best US probe pose using the metric and particle swarm 

optimizer; and  

o calculate the error between the expert identified landmarks in the US probe 

slice, and the MRI volume. 

These steps were conducted first on one dataset (Patient 5) in a 3DOF search-space 

holding constant orientation, varying patch size and downsampling ratio to determine 

appropriate parameters for both metrics. Then those parameters were used to evaluate the 

performance across all data in the BITE dataset with pre-resection US images and MRI 

volumes. This helped determine whether BOXLC2 is a viable metric in comparison to the 

more established LC2.  

I then evaluated the metric’s capacity to direct an optimizer to the best US probe 

pose constrained to realistic probe poses in 6DOF. This makes the search space 2cm x 2cm 

x 2cm x 90° x 90° x 360°.   

I determine the trade-offs in accuracy and speed between BOXLC2 and LC2 for 

various patch sizes by sampling the craniotomy site in 3DOF first.  
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2.4 Results 

 

 

 

Figure 13:  Comparison of BOXLC2 and LC2 with varying patch sizes and 

downsampling ratios resulting in different TREs and kernel execution speeds 

2.4.1 3DOF Pose Recovery 

Figure 13 demonstrates the effect of patch sizes between 3 and 12, as well as 

downsampling ratios between 1 and 5 on the TRE. Only 3DOFs were used, retaining the 

original orientation information from the BITE dataset. The original LC2 paper went with 

a 3x US downsampling ratio, to match the real-world pixel-size between MRI and US. The 

performance data presented in this work is generated on a PC with an Intel Core i7-4790, 

an Nvidia Tesla graphics processing unit, and 32GB of RAM. 
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As mentioned in Wein et al.72, there is a tradeoff between accuracy and patchsize 

(and thus, speed). One can see that though the metrics are similar, BOXLC2 is much more 

sensitive to lower patchsizes and downsample ratios. In other words, BOXLC2 requires a 

larger patch as measured in real-world coordinates (a function of both patchsize and 

downsample ratio). In this experiment, both metrics perform nearly equally well with larger 

downsampling ratios, with diminishing returns on larger patchsizes.  

The limited data (and my desire to avoid overfitting by using more cases) prevents 

me from claiming these to be the most optimal parameters. This constraint also prevents 

me from determining BOXLC2 to be better than LC2, but I can conclude that BOXLC2 

produced comparable results to the LC2 metric with a measurable improvement in speed 

for my implementation.  

I then explored the effects BOXLC2 and LC2 using the downsampling ratios and 

patchsizes of 5 and 6, as well as 3 and 9, respectively. The downsampling ratio of 3, and 

patchsize of 9 corresponds to the experiments conducted by Wein et al.72 (though the 

aforementioned was conducted a multislice registration context). 

In the original dataset, 185 slice-target pairs had a bettter alignment than the mean 

TRE of 4.1mm. After conducting the BOXLC2 registration in 3DOF with a patchize of 6 

and downsampling ratio of 5, 246 slice-target pairs had a better alignment than the original 

mean TRE. Similarly, the LC2 experiment running with the same parameters produced 240 

slice-target pairs better than the original mean TRE. 

2.4.2 6DOF Pose Recovery via Particle Swarm Optimization 

Using the particle swarm optimizer described in Section 3, I searched in 6DOF for 

the best US pose associated with each US slice in its virtual craniotomy site (2cm x 2cm x 

2cm x 90° x 90° x 360°). Table 5 presents the results. I have included some sample 

registrations for a visual demonstration of the algorithms successes and failures (Figure 

15).  
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Table 4. Results from image-based registration, solving for translation components 

with orientation used from original dataset 

Patient No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
Mean 

(all 

slices) 

Mean Initial Error 

(mm) 
5.3 6.3 9.7 4 2.6 2.3 4.3 3.9 4.9 3 1.5 3.7 5 3.8 4.1 

BOXLC2 Mean 

Error (mm) 

Patchsize=6, 

Downsampling=5  

5.4 2.5 3.4 2.4 2.4 3.8 5.1 3.2 3.6 2.3 2.8 3.7 4.1 3.9 3.4 

BOXLC2 Mean 

Error (mm) 

Patchsize=9, 

Downsampling=3  

6.2 2.6 6 2.5 2.8 4.4 7.4 4.4 4.2 2.5 2.7 3.7 4.6 4.9 3.3 

LC2 Mean Error 

(mm) Patchsize=6, 

Downsampling=5  

6.2 2.2 2.9 2.4 2.5 4 4 3.6 2.9 2.4 3.1 3.8 4.3 3.8 3.5 

LC2 Mean Error 

(mm) Patchsize=9, 

Downsampling=3  

7.0 2.6 4.3 2.6 2.9 4.3 4.8 4.1 3.3 2.7 2.7 4 4.6 3.9 3.2  

 

   

 

Figure 14: Histogram of TRE values for slice-target pairs in the BITE dataset from 

conducting a craniotomy-site constrained registration in 3DOF.  

This data is also presented in histogram form in Figure 16, showing the slice-target 

pairs with errors less than 5mm. 135 out of the 329 slice-target pairs have a TRE less than 

4.1mm (the mean initial TRE for all slices in the dataset).  
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6DOF Registration Visual Comparison 

 

 

 

 

 

 

Figure 15: Some example cases from the slice based registration algorithm with 

calculated pose results (brown) and original pose results (purple) shown in 3D (left 

column) alongside the original ultrasound image (centre-left column), reformatted 

MRI slice corresponding to the calculated US pose (centre-right column), and 

reformatted MRI slice corresponding to the original US pose (right column) 
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Table 5: Mean TRE values associated with slice-based registration solving for the full 

pose of the US probe 

Patient No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Mean initial 

TRE 5.3 6.3 9.7 4.0 2.6 2.3 4.3 3.9 4.9 3 1.5 3.7 5 3.8 

Mean TRE after 

slice-based 

registration 30.7 10.2 26.7 9.97 6.82 18.3 31.3 19.8 10.5 12.6 17.5 16 17.9 17.6 

#of Poses better 

than the mean 

initial TRE for 

the given case 3/32 18/30 4/13 16/29 15/28 14/35 5/15 5/22 12/19 5/20 3/24 8/19 7/21 7/22 

   

Figure 16: Histogram of TRE values for slice-target pairs with poses resulting from 

Particle Swarm optimization with the BOXLC2 metric (slice-target pairs with TRE 

values >5mm are not shown) 

2.5 Discussion 

I have presented BOXLC2, a variation on the LC2 metric, which produces a 

measurable speed improvement over LC2, while retaining similar performance in the 

context of 2D slice-to-volume registration. However, it is difficult to determine whether a 

given implementation is the most efficient for all GPU hardware. I would expect that if 

shared memory increases on GPUs, the cost of accessing global and shared memory in LC2 

a second time would be mitigated (as several rows of pixels could be loaded into shared 

memory at once instead of needing to load one row at a time into shared memory twice). 
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My results show that for a given pose, one can recover the translation components 

of an US probe for a given individual US slice to a degree of accuracy comparable to or 

better than the mean initial errors in the BITE dataset. As the orientation components of 

the pose were the most problematic, one can envision a system where an inertial 

measurement unit and gyroscope sensor help constrain the range of possible orientations 

to guide the algorithm to the correct US probe pose. This embodiment could also constrain 

the search space of the US probe using image-based techniques such as speckle-

tracking90,113. Segmenting structures in US and MRI may also aid with correcting for 

distortions caused by a mismatch between the speed of sound for a given tissue and the 

speed of sound assumed by the US machine. 

The 6DOF registration attempt was unsuccessful. In the dataset, there are 

ultrasound images that have too few or too weak features, regions that fall outside the skull-

stripped brain boundary, and/or potential MRI slices that have structures that align better 

with the single slice’s-image data. All of these factors make it challenging to register the 

US slices. It would be interesting to see if there is potential to develop a better measure of 

the structural information in an US slice beyond the patch-wise US image variance as used 

by Wein et al.105 and then use this measure to identify slices that are more prone to 

positioning error per this algorithm. 

With any experiment that operates on small numbers of patient cases, such as ours, 

there is a risk of overfitting the parameters to match the data. To avoid overfitting the 

limited data, I chose to develop the similarity metric using just one of the cases (Case 5). 

There is sufficient heterogeneity within US-probe registration and the MRI volumes in the 

BITE dataset to mitigate some of the risk. There is additional risk from the fact that the 

metric is based on another that was validated on the same BITE dataset. Consequently, I 

acknowledge that this data may be insufficient to arrive at a firm conclusion and look 

forward to experimenting with more sources of data in the future. This experiment is further 

limited by the fact that a given target’s depth will affect the resultant TRE values. 
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Chapter 3  

3 An Unscented Kalman Filter Multi-Data Fusion Algorithm 
for Neurosurgical Ultrasound Guidance 

3.1 Background 

As presented in Chapter 2, the 2D-3D registration shows promise in the context of 

localizing slices that are constrained in orientation, but free to move in translation. 

Consequently, a sensor that is able to constrain or partially constrain the ultrasound probe 

orientation may provide a feasible MRI-guided ultrasound system without some of the 

drawbacks of optical tracking. 

As described in Section 1.8, my goal is to develop a system that is able to function 

in pre-resection workflow to avoid introducing complicated arrangements to maintain 

acoustic coupling in the resection cavity, and acoustic enhancement artefacts. In 

constraining the workflow for this system, I hope to make progress towards a system that 

 adds minimal hardware;  

 is free from calibration, or requires minimal calibration;  

 is free of manual registration, or robust to large registration errors;  

 is independent of ultrasound systems;  

 is less sensitive to line-of-sight issues;  

 can be an optional adjunct to an existing optical tracking session, providing line-of 

sight correction; and  

 provides brain shift visualization.  

To fuse the 2D-3D Image-based registration with the sensor measurements, I 

employ a Kalman Filter. The essence of this powerful algorithm based on Bayes’ theorem 

is that the model of the system, combined with a model of the various sensors that are 

indirectly measuring the system, can yield a more precise estimate of the state of that 

system. 
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There has been significant work in and outside of the surgical image guidance 

literature on the use of Kalman Filtering in its various forms. Within the medical imaging 

field it has been employed for registering point clouds derived from 3D ultrasound images 

and CT volumes114,115, fusing optical and magnetic tracking systems100, fusing inertial and 

magnetic tracking sensors116, and fusing electromagnetic tracking with speckle-tracked 3D 

freehand ultrasound98.  

3.2 Methods 

3.2.1 Overview 

The same PyCUDA-enabled Python module utilized in Chapter 2 was modified to 

include an unscented Kalman filtering and smoothing provided by the pykalman117 library. 

In addition, the module enabled virtual craniotomy sites to be defined manually in Slicer. 

3.2.2 Unscented Kalman Filtering and Smoothing 

The unscented Kalman filter is an extension to the Kalman filter to enable non-

linear state transition equations118–120. The unscented Kalman filter propagates a few 

sample points called sigma points located at the mean and symmetrically along the 

principle axis of the confidence ellipsoid through the non-linear system model to estimate 

the posterior mean and covariance. To refine prior ultrasound poses as incoming data is 

captured, I employ the Unscented Kalman Smoothing algorithm which refines prior poses 

as new poses are computed. 

I am including two different system models in the evaluation. The first has 15 state 

variables – three translation variables with two derivatives each, and three yaw-pitch-roll 

Euler angle variables and their first derivatives. The second system includes the state 

variables of the first along with three gyroscope bias terms, and three orientation placement 

error terms for allowing for the calibration of the inertial unit on the on the ultrasound probe 

(thus, the model has 21 state variables). A drawback of this system model is the use of 

Euler angles, which leave the possibility open for mathematical singularities121 in the 

algorithm. However, in testing, issues only arose if the posterior state covariance neared π 

(as there would be multiple solutions to a given pose). The Euler angle simplification 
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allowed me to use the same state variables within the search space of the particle swarm 

optimizer with minimal modification 

The state transition covariance was derived from an assumption that the 

acceleration of the probe will be discontinuous and discrete at each time step per filterpy 

library’s dscrete_white_noise function122, assuming a typical acceleration step of 60mm/s2 

and a typical angular velocity step of 2rad/s.  

To fuse the 2D/3D registration algorithm described in Chapter 2, I conducted 

preliminary experiments using the particles from the particle-swarm to provide the 

measurement-update covariance. Unfortunately, this made for an unstable algorithm, 

occasionally shrinking the posterior covariance to a miniscule point. Consequently, I 

settled on using a fixed measurement-update covariance to yield consistent and 

reproducible results. 

3.2.3 Particle Swarm Optimizer 

The particle swarm optimizer is the same as in Section 2.2.4, with the exception 

that its constraint is formed by the union of the craniotomy site and the posterior covariance 

ellipsoid from the UKF. Particles that exit the constraint criteria are given an infinite cost. 

The number of particles also varies with the volume of the ellipsoid. I used 200 iterations 

with a particle count ranging from 800 to 25000 proportional to the volume of the 99.5% 

percentile confidence ellipsoid. These changes helped convergence within the ellipsoidal 

shape.  

3.2.4 Simulated Data 

I once again employed the Brain Images for Tumour Evaluation (BITE) Database 

as the source for testing data. However, as the BITE database does not include inertial 

measurements, I had to generate these synthetically. This was achieved by 

 taking the second differences of each translational measurement in the dataset;  

 smoothing each component of the differences alongside orientation components 

with the Lowess smoothing built into Matlab; and  
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 using the MATLAB Simulink “Three Axis Inertial Measurement Unit” block to 

transform the above second derivatives into IMU measurements (adding the effects 

of gravity). The noise power terms were generated from the specifications sheet of 

the PhidgetSpatial inertial measurement unit from Phidgets123.  

Craniotomy sites were manually defined for each of the patients using four points 

on the segmented brain surface. The software allows 1.6cm into and out of the brain to 

allow for brain-shift correction, if needed. 

To make the simulation more realistic, the orientations for each patient were 

perturbed in a randomly chosen direction by five degrees, thus, giving an opportunity for 

the algorithm to show its ability to handle calibration/placement/registration error. 

This approach has inherent limitations, as the motions recorded in the optical 

tracking data in the BITE data may not be representative of what happens in other operating 

rooms. In addition, the simulated noise may not sufficiently capture the noise dynamics of 

the sensor hardware.  

3.2.5 Phantom Experiments 

An off-the-shelf MRI PVA phantom was used for multi-modal US-MRI imaging. 

The phantom was submerged in a plastic container and placed on a neoprene sheet to aid 

with reducing reflection artefacts in the ultrasound image. 

After I conducted an MRI scan of the phantom, an optically-navigated ultrasound 

workflow was set up using Slicer106, PLUS124, a Northern Digital Polaris Spectra optical 

tracking system, and an Ultrasonix L-14 probe. In addition, a PhidgetSpatial Precision 

3/3/3 High Resolution inertial measurement unit was attached to the ultrasound probe, 

forming an inertial/optical hybrid tracking system.  

Touch point registration was performed in Slicer using the six multimodal fiducial 

markers. Tracker to ultrasound calibration was done using the Z-Bar phantom calibration 

hardware and routines in the PLUS library. Data were collected with several participants 
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performing the experiment imaging around the locations of simulated tumours in the 

phantom. Virtual craniotomy sites were added after the fact. 

 

Figure 17:  Multi-Modal Phantom (left) and ultrasound probe instrumented with 

IMU and optical tracker (Right) 

3.2.6 Analysis 

I present individual TRE Histograms for each case along with a cumulative TRE 

histogram using the same landmarks that were part of the analysis in Chapter 2. The TRE 

histograms give a sense of the precision and accuracy of the algorithms when looking at 

clinically relevant errors. Outliers, like in Chapter 2, are defined as TREs >5mm, and are 

excluded from the histograms.   

3.2.7 MRI-Guided Neurosurgical Ultrasound with Image-
Registration and Inertial Tracking Only 

In this experiment, I assume an approximate initial orientation knowledge of the 

IMU and ultrasound probe with respect to the patient (within ten degrees). The translational 

components are initialized with the centroid of the craniotomy site. The registration 

“measurements” were given a covariance value of 100mm2 in the translation components, 

and 0.4°2 in the orientation components. The large measurement update covariance helps 

the algorithm recover from false positives in the similarity metric. 
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3.2.8 Line of Sight Correction in an MRI-Guided Ultrasound System 
Using Inertial Measurements and Image-Based Registration 

In this experiment, I used the first frame of optical tracking data to initialize the 

ultrasound probe location, and allowed for the inertial measurements and 2D/3D 

registration to locate the ultrasound probe location. The registration “measurements” were 

given a covariance value of 64mm2 in the translation components, and 0.2°2 in the 

orientation components. 

3.2.9 Analysis 

As in Chapter 2, I use the expert identified landmarks in the BITE dataset to validate 

the algorithms as I do not have a patient dataset with ground-truth ultrasound poses.  

3.3 Results 

3.3.1 Line of Sight Correction Using UKF Algorithm 

I find very comparable TRE histograms when comparing the optically tracked 

probe and the probe tracked with the optical/inertial/registration tracking. The UKF 

algorithm with additional state variables suffers a penalty with regards to accuracy. 

Looking at the cumulative results, the 15-state UKF algorithm has a lower mean TRE than 

the original data, where the 21-state algorithm does not. The histograms show that there 

are fewer outliers than in both versions of the UKF algorithm. The 15-state UKF algorithm 

produces a comparable mean TRE (within 2.5 mm or better than the optical tracking) in 

each case except for patient 14. The 21-state UKF algorithm produces a comparable mean 

TRE in 11 of 14 patient cases (Table 6) although it occasionally generated very large 

outliers, as shown in patient 7, since the search space was large enough that the registration 

algorithm could fall into a false optimum point in the similarity function far away.  Both 

algorithms required 15 seconds per frame in my implementation running on a PC with an 

Intel Core i7-4790, an Nvidia Tesla graphics processing unit, and 32GB of RAM. 
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Table 6: Comparing TRE histograms between the UKF sensor fusion line-of-sight 

correction algorithms to the original data.  
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3.3.2 MRI-Guided Ultrasound Without a Conventional Tracking 
System 

Here one finds an accuracy penalty introduced by having a less constrained 

initialization (Table 7). The UKF algorithm is able to recover the ultrasound poses with a 

comparable accuracy (within 2.5mm or better than optical) in 10 out of 14 cases using the 

simpler UKF algorithm with 15 state variables. Just as with the line-of-sight correction 

algorithm, I see an accuracy penalty with moving to the 21-state variable system, with the 

larger search space giving opportunity for the similarity metric to guide it to false peaks. 

The 21-state variable algorithm also produces comparable accuracy to the original optical 
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tracking data in 10 of 14 cases, but is penalized relative to the performance of the 15-state 

variable algorithm due to the larger search space. Both variants required approximately 

370 seconds per frame at the start of ultrasound slice sequence, but settled to 15 seconds 

per frame as the search space of the registration shrunk with incoming data. 

Table 7:  Comparing TRE histograms between the UKF sensor fusion pose estimation 

algorithms to the original data. 
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3.3.3 Phantom Experiment Results 

Unfortunately, the algorithm generated no meaningful data from the experiment. 

There are many differences between the phantom and the simulated data generated from 

the patient data in the BITE images. Visually, the phantom’s MRI image had significant 
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noise on one side of the phantom. The ultrasound images had a very different visual 

appearance from those in the BITE dataset as well, with far fewer features contributing to 

the similarity metric (Figure 18 and Figure 19). The contrast to noise ratio (CNR) from MR 

scan of the phantom varied between 0.23 and 1.2 depending on the location in the scanning 

volume, where in patient one of the BITE dataset, it was 28.1. Within the ultrasound slices, 

the CNR was 5.8 in a representative US slice of the BITE dataset, but 0.08 from a 

representative slice in the phantom imaging session. CNR was calculated as the difference 

in mean intensity between the white/grey matter and the background divided by the 

variance of the background intensities in the MRI. In Ultrasound images, CNR was 

calculated as the difference in mean intensity between the white/grey matter and the 

ventricles. 

I chose to use an off-the-shelf MRI brain phantom as a multi-modal imaging 

phantom, as it is outside the scope of this thesis to develop a high-performance multi-

modality ultrasound phantom. Thus, I have noted some areas for improvement with this 

setup: 

 the phantom was submerged under water to help with acoustic coupling, 

however, this reduced the apparent contrast of the cortical surface boundary; 

 reflections from the bottom of the container proved to be quite hyperintense, 

in spite of the neoprene sheet placed underneath; 

 the phantom lacked ultrasound scatterers to make a more realistic image; 

and 

 while the phantom had ventricles, it lacked the density of structures that 

exist in live tissue. 

I conducted a 3DOF registration experiment parallel to that conducted in 2.3. When 

searching a 20mm cube search space around a given ultrasound slice, I found that the 

similarity metric was being pulled to the extremes of the bounding box more often than not 

(Figure 20 and Figure 21).  
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Figure 18: MR slice from original optical tracking pose (top left) alongside original 

ultrasound image (top right), patchwise similarity metric weight (bottom centre), and 

patchwise unweighted similarity (bottom left) 
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Figure 19: MR slice matching original US pose from BITE dataset (top left) alongside 

ultrasound image (top right), patchwise similarity metric weight (bottom centre), and 

patchwise unweighted similarity (bottom left) 

 

Figure 20: Histogram of distances from UKF algorithm pose to optical tracking pose 
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Figure 21: BOXLC2 similarity metric search space visualizations centered around 

the optical tracking pose in two of the failure cases showing unclear optimas in the 

similarity function in the translation components 

 

 

Figure 22: Spatial distortion in MRI image volume 

The MRI volume itself had deformations of 5mm near its periphery (Figure 22) 

though judging by the consistently good agreement between the optically tracked 

5mm horizontal distortion 
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ultrasound probe and the reformatted images in Slicer, this is unlikely to be a major cause 

of the algorithm’s registration errors (Figure 23).  

 

Figure 23: Example ultrasound image registered to MRI volume using optical 

tracking with manually placed landmarks in common co-ordinate space for 

visualization 

I also ran the experiment without the registration-update and found that there was 

visually strong agreement between the orientation of the ultrasound probe generated by the 

UKF algorithm and the optical tracking. Thus, registration algorithm’s poor performance 

is likely to be the source of the overall algorithm’s failure. 

Other strategies pursued to post-process the images included manual skull 

stripping, changing the gradient calculation in the similarity metric, and changing the 

ultrasound mask to have a shorter field of view.  

3.4 Discussion 

I have shown good experimental data for the UKF algorithm recovering the original 

pose of the ultrasound probe pose in the BITE dataset when used as a line-of-sight 

correction, in spite of using only one optical tracking frame as initialization. The 
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cumulative results indicate that there are fewer outliers with the UKF pose estimation 

algorithm when used in this way.  

The results with the UKF algorithm running without optical tracking data are also 

encouraging. Both algorithms produced the comparable mean TREs in 10 out of 14 cases.  

The total number of outliers is also fewer for both of the UKF algorithm’s results, though 

the results with the algorithm running as a LOS correction for optical tracking are better.  

The phantom experiments may indicate a limitation with regards to drawing 

conclusions about the effectiveness of ultrasound-MRI multimodal similarity metrics after 

verification on the BITE dataset. Unfortunately, as the experiment had quite a few 

limitations, it is challenging to pinpoint the precise cause of the failure of the algorithm.  

Neither of the algorithms presented produced real-time or near-real-time results. I 

revisited the line-of-sight correction experiment and ran it with 30 iterations and a 

maximum particle count of 1000, and found that the computation speed improved to 2 

seconds per frame. The mean error of 3.5mm remained unchanged with these parameters. 

These faster parameters proved impractical for the UKF algorithm running without optical 

tracking as an initialization, with it unable to find the similarity function’s optimal point.  
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Chapter 4  

4 Conclusions 

In Chapter 2, I presented a new metric based on LC2 called BOXLC2, which I 

developed to expedite the search for an optimal pose of a 2D US slice. I also presented the 

ability of the BOXLC2 similarity metric to distinguish the pose of an ultrasound probe 

given an MRI volume and the craniotomy site as comparable to LC2 with a measureable 

speed improvement. I found promise in the metric’s ability to distinguish the translation 

components of an US pose given a small craniotomy site, though the metric was unable to 

recover the orientation components. To my knowledge, this is the first presentation of how 

a 2D/3D multimodal similarity metric functions on individual ultrasound slices in the BITE 

dataset.  

In Chapter 3, I presented a demonstration of how a 2D/3D multi-modal similarity 

metric may be used in conjunction with a SLAM-like sensor/data fusion algorithm. To my 

knowledge, this is the first presentation of such a registration-sensor fusion algorithm in 

the literature. The results showed excellent results with the algorithm used as a line-of-

sight corrector, augmenting the optical tracking data with synthetic inertial measurements 

on the BITE database. When used without the optical tracking as an initialization, the 

algorithm still produced meaningful TRE values. Neither algorithm operated in real-time, 

however with a move away from my Python implementation, it is not unrealistic to discuss 

the possibility for real-time performance in the future. As mentioned in 3.4, the UKF 

algorithm could produce reasonable accuracy as a line-of-sight corrector, operating at two 

seconds per frame. With smaller craniotomy sites, finer initialization from either user-input 

or other sensors, and faster graphics cards, I am optimistic for the evolution of this solution.  

More advanced sensor fusion techniques, such as a multi-hypothesis unscented 

Kalman filter or particle filtering, may yield further improvements, as approximating the 

similarity metric’s accuracy as a Gaussian of fixed variance leaves room for the algorithm 

to settle into false maxima, producing erroneous trajectories of the probe.  
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With further validation on patient data, such frameworks for ultrasound probe 

localization may show themselves to provide a major improvement to multi-modal 

ultrasound imaging sessions, providing enhanced ease of use with a minimal burden of 

equipment. 

In this work specifically, the UKF based algorithms were able to demonstrate a 

potential for a system that meets the goals outlined in 3.1, though further work is necessary 

to validate it, as my phantom experiments were limited. 

4.1 Future Work 

In the short term, I expect my work will directly connect to the existing prior art in 

the following ways: 

 the exploration of a 2D US slice to 3D MRI volume similarity metric will improve 

the performance of the graph-based deformable 2D-3D registration conducted by 

Ferrente et al.;  

 estimates of the ultrasound probe location, resulting in 3D US volumes, should 

enable registration from the various sophisticated volumetric algorithms such as 

those mentioned in section 1.9.1, which would enable larger brain shift correction 

than that immediately provided by this algorithm; and  

 the UKF algorithm should be able to incorporate existing ultrasound-based speckle 

correction algorithms to further enhance the pose estimation. 

In the medium/long term, the work presented here can be extended in the following ways:  

 gross brain shift correction may be possible by use of a monomodal US registration 

by combining the output of the UKF algorithm, with additional US volumes made 

during the procedure;  

 the particles in the particle swarm optimizer for incoming frames could be 

initialized using the prior pose estimate, resulting in quicker convergence; 

 probe calibration parameters in an optical tracking context could be solved for as 

state variables in the UKF algorithm; 
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 magnetic field biases could be solved for using the output of the registration 

algorithm, aiding the performance of magnetically tracked ultrasound probes in 

neurosurgery, as opposed to optical tracking; 

 additional sensors of varying accuracy can be incorporated into the UKF algorithm; 

and 

 image-based tracking of surgical tools within the ultrasound field of view may be 

possible when additional sensors are attached. For example, with an 

ultrasonic/time-of-flight sensor, and an IMU, the orientation and depth of a biopsy 

forceps can be determined. When combined with an ultrasound image of the cross-

section of the forceps, all components of the biopsy forceps can be determined 

(Figure 24).  

 

Figure 24: A multi-sensor fusion tracked biopsy forcep using image-based tracking, 

inertial measurements, and an ultrasonic range finder 
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