12 research outputs found

    Performance analysis of multilayer multicast MANET CRN based on steiner minimal tree algorithm

    Get PDF
    In this study, the multicast mobile ad hoc (MANET) CRN has been developed, which involves multi-hop and multilayer consideration and Steiner minimal tree (SMT) algorithm is employed as the router protocol. To enhance the network performance with regards to throughput and packet delivery rate (PDR), as channel assignment scheme, the probability of success (POS) is employed that accounts for the channel availability and the time needed for transmission when selecting the best channel from the numerous available channels for data transmission from the source to all destinations nodes effectively. Within Rayleigh fading channels under various network parameters, a comparison is done for the performance of SMT multicast (MANET) CRN with POS scheme versus maximum data rate (MDR), maximum average spectrum availability (MASA) and random channel assignment schemes. Based on the simulation results, the SMT multicast (MANET) CRN with POS scheme was seen to demonstrate the best performance versus other schemes. Also the results proved that the throughput and PDR performance are improved as the number the primary channels and the channel’s bandwidth increased while dropped as the value of packet size D increased. The network’s performance grew with rise in the value of idle probability (P_I) since the primary user’s (PU) traffic load is low when the value of P_I is high

    What Will the Future ofUAV Cellular Communications Be?A Flight from 5G to 6G

    Get PDF
    What will the future of UAV cellular communicationsbe?In this tutorial article, we address such a compelling yetdifficult question by embarking on a journey from 5G to 6Gand expounding a large number of case studies supported byoriginal results. We start by overviewing the status quo on UAVcommunications from an industrial standpoint, providing freshupdates from the 3GPP and detailing new 5G NR features insupport of aerial devices. We then dissect the potential andthe limitations of such features. In particular, we demonstratehow sub-6 GHz massive MIMO can successfully tackle cellselection and interference challenges, we showcase encouragingmmWave coverage evaluations in both urban and suburban/ruralsettings, and we examine the peculiarities of direct device-to-device communications in the sky. Moving on, we sneak a peekat next-generation UAV communications, listing some of the usecases envisioned for the 2030s. We identify the most promising6G enablers for UAV communication, those expected to takethe performance and reliability to the next level. For each ofthese disruptive new paradigms (non-terrestrial networks, cell-free architectures, artificial intelligence, reconfigurable intelligentsurfaces, and THz communications), we gauge the prospectivebenefits for UAVs and discuss the main technological hurdles thatstand in the way. All along, we distil our numerous findings intoessential takeaways, and we identify key open problems worthyof further study

    Joint Spatial and Spectrum Cooperation in Wireless Network.

    Get PDF
    PhDThe sky-rocketing growth of multimedia infotainment applications and broadband-hungry mobile devices exacerbate the stringent demand for ultra high data rate and more spectrum resources. Along with it, the unbalanced temporal and geographical variations of spectrum usage further inspires those spectral-efficient networks, namely, cognitive radio and heterogeneous cellular networks (HCNs). This thesis focuses on the system design and performance enhancement of cognitive radio (CR) and HCNs. Three different aspects of performance improvement are considered, including link reliability of cognitive radio networks (CNs), security enhancement of CNs, and energy efficiency improvement of CNs and HCNs. First, generalized selection combining (GSC) is proposed as an effective receiver design for interference reduction and reliability improvement of CNs with outdated CSI. A uni- ed way for deriving the distribution of received signal-to-noise ratio (SNR) is developed in underlay spectrum sharing networks subject to interference from the primary trans- mitter (PU-Tx) to the secondary receiver (SU-Rx), maximum transmit power constraint at the secondary transmitter (SU-Tx), and peak interference power constraint at the PU receiver (PU-Rx), is developed. Second, transmit antenna selection with receive generalized selection combining (TAS/GSC) in multi-antenna relay-aided communica- tion is introduced in CNs under Rayleigh fading and Nakagami-m fading. Based on newly derived complex statistical properties of channel power gain of TAS/GSC, exact ergodic capacity and high SNR ergodic capacity are derived over Nakagami-m fading. Third, beamforming and arti cial noise generation (BF&AN) is introduced as a robust scheme to enhance the secure transmission of large-scale spectrum sharing networks with multiple randomly located eavesdroppers (Eves) modeled as homogeneous Poisson Point Process (PPP). Stochastic geometry is applied to model and analyze the impact of i BF&AN on this complex network. Optimal power allocation factor for BF&AN which maximizes the average secrecy rate is further studied under the outage probability con- straint of primary network. Fourth, a new wireless energy harvesting protocol is proposed for underlay cognitive relay networks with the energy-constrained SU-Txs. Exact and asymptotic outage probability, delay-sensitive throughput, and delay-tolerant through- put are derived to explore the tradeoff between the energy harvested from the PU-Txs and the interference caused by the PU-Txs. Fifth, a harvest-then-transmit protocol is proposed in K-tier HCNs with randomly located multiple-antenna base stations (BSs) and single antenna mobile terminals (MTs) modeled as homogeneous PPP. The average received power at MT, the uplink (UL) outage probability, and the UL average ergodic rate are derived to demonstrate the intrinsic relationship between the energy harvested from BSs in the downlink (DL) and the MT performance in the UL. Throughout the thesis, it is shown that link reliability, secrecy performance, and energy efficiency of CNs and HCNs can be signi cantly leveraged by taking advantage of multiple antennas, relays, and wireless energy harvesting

    Robust Beamforming for Cognitive and Cooperative Wireless Networks

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Temperature aware power optimization for multicore floating-point units

    Full text link

    Performance analysis of 4G wireless networks using system level simulator

    Get PDF
    Doutoramento em Engenharia ElectrotécnicaIn the last decade, mobile wireless communications have witnessed an explosive growth in the user’s penetration rate and their widespread deployment around the globe. In particular, a research topic of particular relevance in telecommunications nowadays is related to the design and implementation of mobile communication systems of 4th generation (4G). 4G networks will be characterized by the support of multiple radio access technologies in a core network fully compliant with the Internet Protocol (all IP paradigms). Such networks will sustain the stringent quality of service (QoS) requirements and the expected high data rates from the type of multimedia applications (i.e. YouTube and Skype) to be available in the near future. Therefore, 4G wireless communications system will be of paramount importance on the development of the information society in the near future. As 4G wireless services will continue to increase, this will put more and more pressure on the spectrum availability. There is a worldwide recognition that methods of spectrum managements have reached their limit and are no longer optimal, therefore new paradigms must be sought. Studies show that most of the assigned spectrum is under-utilized, thus the problem in most cases is inefficient spectrum management rather spectrum shortage. There are currently trends towards a more liberalized approach of spectrum management, which are tightly linked to what is commonly termed as Cognitive Radio (CR). Furthermore, conventional deployment of 4G wireless systems (one BS in cell and mobile deploy around it) are known to have problems in providing fairness (users closer to the BS are more benefited relatively to the cell edge users) and in covering some zones affected by shadowing, therefore the use of relays has been proposed as a solution. To evaluate and analyse the performances of 4G wireless systems software tools are normally used. Software tools have become more and more mature in recent years and their need to provide a high level evaluation of proposed algorithms and protocols is now more important. The system level simulation (SLS) tools provide a fundamental and flexible way to test all the envisioned algorithms and protocols under realistic conditions, without the need to deal with the problems of live networks or reduced scope prototypes. Furthermore, the tools allow network designers a rapid collection of a wide range of performance metrics that are useful for the analysis and optimization of different algorithms. This dissertation proposes the design and implementation of conventional system level simulator (SLS), which afterwards enhances for the 4G wireless technologies namely cognitive Radios (IEEE802.22) and Relays (IEEE802.16j). SLS is then used for the analysis of proposed algorithms and protocols.FC

    Multi-hop cognitive radio networking through beamformed underlay secondary access

    No full text
    This paper introduces a transmit beamforming strategy taking into account the positions of primary, secondary victim and intended secondary receivers, to achieve underlay secondary access in multihop cognitive radio networking. The transmit beamforming strategy defines a novel path optimization scheme that deviates from a preselected path given by the routing module, based on local information and according to a relay selection metric. This metric is designed to improve both coexistence with primary/secondary victim receivers and performance of the secondary cognitive network. Simulations compare the proposed strategy with a baseline solution that does not adopt beamforming, and with a strategy that applies beamforming on each hop without modifying the original path. Results show that the proposed strategy is capable of improving coexistence with primary/secondary victims, and highlight that a trade-off exists between the meeting of coexistence constraints and maximisation of secondary network performance. © 2013 IEEE
    corecore