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Summary

In this thesis four different problems in the area of the robust beamforming in

cognitive and cooperative wireless networks, namely, robust downlink beamform-

ing in cognitive radio networks, robust joint transceiver optimization in MIMO ad

hoc networks, and finally robust relay beamforming for both one-way and two-

way relay channels, are studied. In these problems, it is assumed that the channel

state information is not perfectly known and its imperfection, is modeled using

either a Stochastic Error (SE) model or a Norm Bounded Error (NBE) model. In

the case of the SE model of uncertainty, the average performance measure and in

the case of the NBE model of uncertainty, the worst case performance measures

are optimized. In the former case an algorithm containing second order cone pro-

gramming problems, and in the latter case, an algorithm containing semidefinite

programming problems are proposed to perform the beamforming process. Fi-

nally, numerical simulations are provided as well to assess the performance of the

proposed algorithms.
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Chapter 1

Introduction

Unlike the single antenna transmission in which the radiation pattern of the an-

tenna is fixed, the multiple-antenna (a.k.a. antenna array or smart antenna)

transmission is beneficial to experience higher capacity, higher reliability and space

diversity through a process called “beamforming” [1]. Beamforming is the gen-

eral signal processing technique employed in an antenna array to directionally

transmit (Tx) or receive (Rx) data over the communication channel. To do so,

beamformer controls the phase and relative amplitude of the stimulating/induced

signal of each individual transmit/receive element in the antenna array. To be

able to implement the beamforming, at least one party of a signal transmission

process should be equipped with an antenna array. Beamforming techniques can

be divided into two major categories: conventional beamforming techniques and

adaptive beamforming ones. In the former techniques, a set of fixed weights (in-

cluding phase shifts) is applied to the antenna array to steer the signal towards a

known direction or better receive the signal from a priori-known direction, while

in the latter techniques, this information (direction of arrival/departure of signals)

is combined with the properties of the actual signal received (to be transmitted),

typically to boost the desired signals and reject the unwanted signals. It is note-

worthy that although in this thesis beamforming is a subject applied to adaptively

process the wireless communication physical signals in cognitive radio and cooper-

ative wireless networks, it is also applicable to both radio and sound waves, and is

of great importance in other fields like radar, sonar, seismology, radio astronomy,

speech, acoustics and biomedicine. In the subsequent sections of this chapter, a
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brief review of the cognitive radio and cooperative wireless networks in which the

beamforming process is implemented, is given. Since beamforming process con-

ventionally relies on the Channel State Information (CSI) , perfect CSI transceiver

design and imperfect CSI beamforming, as well as the CSI uncertainty models are

studied subsequently.

1.1 Cognitive Radio Networks

The policy of fixed electromagnetic frequency spectrum assignment to different ra-

dio communication services has led to the problem of spectrum scarcity in which

the reachable spectrum is mostly pre-allocated but is not in frequent use. The

Cognitive Radio Network (CR-Net) concept is an intelligent solution to deal with

this problem [2]. CR-Nets are mainly categorized as opportunistic and concurrent

cognitive networks. In opportunistic CR-Nets (a.k.a. spectrum sensing CR-Nets)

the cognitive (secondary) users (SUs) sense the spectrum and then use it whilst

that frequency hole is vacant and evacuate the frequency spectrum as soon as they

sense that a licensed primary user (PU) is populated. Unlike the opportunistic

CR-Net, in the concurrent CR-Net, SUs utilize the same spectrum as do PUs,

provided that the amount of interference imposed on the PUs is below a certain

threshold. Since each of the PUs and SUs may be equipped with an antenna

array, beamforming is also applicable to the CR-Net setup of a communications

system. The CR-Net itself may act in different configurations widely known as

Broadcast (BC), Multiple-Access (MAC) and Ad Hoc (interfering) networks. In

the BC configuration, a SU-Tx (probably a Base Station (BS)) transmits inde-

pendent data streams towards its intended users while performs the beamforming

process to impose little interference on PU-Rxs. In the MAC configuration, a

set of independent users transmit independent data streams to a single BS while

performing the beamforming process to impose little interference on each other

as well as the PU-Rxs. In the Ad Hoc network configuration, there are several

independent communicating pairs, who transmit towards their unique destination

while protecting at least PU-Rxs.
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A CR-Net is actually a series of software defined radio entities which adapt their

performance to the physical context and show some kind of “cognitive” behavior.

The CR-Net acts based on a three step cognitive cycle.

• Sense Step (spectrum sensing, cognitive pilot channels,...)

• Decide Step (plan, learn, orient, and predict,...)

• Act Step (allocate, code, modulate, transmit,...)

There are three CR-Net paradigms:

1. In an Interweave paradigm, the CR-Net senses the spectrum to find spectrum

holes and uses them whilst they are not occupied by a PU. The SU leaves

these holes and looks for new ones as soon as it senses a PU starting to use

the spectrum. This may disrupt the transmission process of the SU.

2. In the Underlay paradigm, the CR-Net uses the spectrum with this require-

ment that it will not interfere severely with the actual transmission of the

primary radio network. In this paradigm, no cooperation is assumed between

the SU’s and PU’s.

3. In the Overlay paradigm, which is very similar to underlay paradigm, there

is cooperation between the primary and secondary networks.

1.2 Cooperative Networks

Fading has a destructive effect on the quality of a typical transmission process.

Sometimes the destination of a communications system may experience a deep

fade resulting in the abruption of the communications process. It is also possible

that the destination of the communications system is in a distant place which is

not located in the coverage range of the transmitter. To deal with the aforemen-

tioned issues, the cooperative (a.k.a. relay) network concepts are introduced [3].

In the relay networks, a separate node sits in between of the source and the des-

tination of the communications, to facilitate the communication between either
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ends. Based on the nature of the processing of the relay node, relay networks are

divided into three major categories: Compress and forward (CF), Amplify and

forward (AF) and Decode and forward (DF). In these categories different levels

of processing in the relay node is assumed. In AF relay node, there is no further

processing. The relay node receives the noise contaminated and fading degraded

version of the transmitted information, simply amplifies it and retransmits it to

the destination. The AF relays are the simplest among other types of the relays.

On the other hand, the quality of signal and noise are simultaneously affected

leading to no improvement in received signal quality. In DF and CF relays, the

relay node first decodes the transmitted signal and then independently transmits

it to the destination. In these relays the quality of the signal is usually improved

in the system. In CF relays, the transmitted signal of the relay is re-encoded to

improve the spectral efficiency of the system as well. The relay network itself

may operate in different configurations, for example, for a half-duplex communica-

tions, a One-Way Relay Channel (OWRC) and for a full-duplex communications, a

Two-Way Relay Channel (TWRC) are required, respectively. There is also a more

general configuration of the relay networks that cover both OWRC and TWRC,

i.e., Gaussian Interference Relay Channel (GIFRC).

1.3 Uncertainty models and Imperfect-CSI

Transceiver Design

In the design procedure of a communications system, channel gains play an im-

portant role. Conventionally it is assumed that this information (Channel State

Information, a.k.a. CSI) is completely known at the transmit and receive sides.

Mostly it is assumed that the receive side may obtain this knowledge true pilot

transmission process in which a set of certainly known data is transmitted towards

the receiver. As the receiver knows both the transmitted and the received data,

it can determine (estimate) the channel gain coefficients. Also, it is assumed that

there is a perfect feedback channel free of impairments, between the source and

the destination of the communication link through which, it is possible to send
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back the CSI to the transmitter side. Since the beamformer design process relies

on this CSI, it is vital to have CSI perfectly. Unfortunately, due to the erroneous

channel gain estimation, limited feedback rate between the source and the desti-

nation, and rapidly changing environments, this assumption is not a realistic one,

and hence, the CSI is uncertain. Robust beamforming is a methodological solution

to treat the uncertainty of the CSI.

Nowadays, uncertain (imperfectly known) CSI is modeled using the following

notation. If H̃ is to represent the real CSI, uncertain CSI, i.e. H , is modeled as

H = H̃ +∆ (1.1)

where ∆ shows the additive uncertainty of the CSI. To characterize the uncer-

tainty, two models are mainly used: Stochastic Error (SE) model and Norm

Bounded Error (NBE) model. In the SE model, the first and the second statistics

of the uncertainty are assumed to be known and fixed, and in this case, the average

performance measures of the systems are considered in the design process, e.g.,

E∆ [∆] = 0, (1.2a)

E∆ [vec [∆]∗ vec [∆]] = δ, (1.2b)

where δ is a known constant. In the NBE model, however, which is a deterministic

model, it is assumed that

‖∆‖F ≤ δ, (1.3)

where δ is another constant. When the NBE model describes the uncertainty of

the system, the performance measures of the system are optimized using a worst-

case design concept, in which these performance measures are guaranteed not to

fail when the least favorable CSI to the system occurs. In the subsequent chapters

these concepts are revealed in more details. It should be clarified that currently

most of the papers focusing on the robust design of the networks, use the SE

framework to describe the uncertainty and our contribution comes in using the

NBE model. We have mentioned the SE framework here to summarize the current
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state of the art in this field and to also show that, the methods treating these two

different models share a lot of in terms of the basic tools used, and will result in

similar trends and behaviour.

1.4 Related Works

Robust beamforming has a long story which goes back to 1970s with pioneering

works of Frost and Abramovich [4, 5]. In the first days of the research on robust

beamforming, the scholars adopted ad hoc methods to impose the robustness

to the beamforming process. For example, in [4], the author used additional

points or derivative constraints to secure a priori-desired main beam area which

requires too many degrees of freedom for the beamforming problem and reduces

the applicability of this method. In [5], in which the author aimed to design a

Minimum Variance Distortionless Response (MVDR), a penalty term was added

to the objective function resulting to a diagonal loading of the sample covariance

matrix. This method, however, does not promote a rigorous way of choosing the

diagonal loading scale factor in which its optimal value is scenario dependent.

In this line, a systematic overview of limited feedback in wireless communication

systems is provided in [6].

The modern treatment of the robust beamforming started with the seminal

works of Bengtson and Ottersten [7, 8]. In these works, the authors used the

worst-case design approach to guarantee the performance of the beamformer even

when the least favorite channel realizations are occurring. The authors recast the

original formulation to be in a semidefinite optimization form and then relaxed

it to be convex. It is noteworthy that this way of treatment had a great impact

for upcoming research in this area, as the semidefinite relaxation is an important

tool, and is adopted in many beamforming research papers afterwards. A similar

approach was employed in [9] where the authors showed that there is a tight rela-

tion between the worst-case design procedure and the diagonal loading, in which

the optimal value of the diagonal loading factor is computed based on the known

levels of the uncertainty in the steering vector. Robust Capon beamforming was
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the focus of [10, 11, 12]. Capon beamformer [13] is known to be benefited from a

better resolution and a much better interference rejection capability relative to the

standard data-independent beamformers, provided that the Direction of Interest

(DOI) steering vector is correctly and perfectly known. However, steering vector

impairment due to uncertainty might degrade the performance of the Capon beam-

former to become even worse than the standard ones. To settle this issue a robust

counterpart was proposed in [10] and its relation to diagonal loading was clarified

in [11]. A doubly constrained Capon beamformer was also proposed in [12] to cover

both constant norm constraints as well as spherical uncertainty set constraints.

The Robust Minimum Variance Beamforming (RMVB) problem was studied in

[14]. In this paper an ellipsoid based uncertainty set was employed to characterize

the uncertainty. Lagrange multiplier method was used to solve the beamforming

problem and it was also shown that when the uncertainty set is a singleton, the

performance of RMVB is similar to the Capon beamformer. A framework for

designing Multiple-Input Multiple-Output (MIMO) Point to Point (P2P) systems

with nonlinearities, i.e., decision feedback equalization and Tomlinson-Harashima

Precoding (THP) schemes was studied in [15]. A similar approach, but for lin-

ear precoding and decoding was described in [16]-[24]. In the former paper, a

minimum error rate and an average Bit Error Rate (BER) were selected as the

objective of the design procedure.

Unlike the single-user (P2P) communications reviewed above, Multiuser (MU)

communications has attracted many researchers. Multiuser communications re-

search works can be divided into two categories: Multiuser Multiple-Input Single-

Output (MU-MISO), when only one party in the transmission process is equipped

with a single antenna and the other party has multiple antennas; and MU-MIMO,

where both transmit and receive sides come with multiple antennas. In [25] the

robust design of a MU-MISO MAC was dealt, while in [26]-[41] the linear and non-

linear precoding schemes for downlink (BC) was treated. In [26, 27] the authors

exploited the nonlinear precoding schemes while in [28]-[41] the linear precoding

configurations were used. In this line, [42] also focused on the SINR balancing
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problem.

MU-MIMO MAC was the focus of [43]-[49]. In the former research ([43]) a sum

Mean Square Error (MSE) objective function was used to design the MAC while

in the latter one a probabilistically constrained MVDR approach was employed.

In [50, 51] a robust THP-based nonlinear treatment for downlink beamforming

was presented. The DFE treatment of a MIMO-MMSE based system was also

studied in [52]. While the information theoretic aspects of the capacity of MIMO-

BC with partial side information was studied in [53], the robust beamforming

of the MU-MIMO BC was studied extensively in [54]-[67]. In these works both

SE model and NBE model were considered to model the channel uncertainty. In

case of SE model, the mathematical expectation of the objective function and the

constraints were optimized while in the presence of the NBE model, the worst

case design procedure was employed. It is noteworthy that although the original

problem formulation based on Signal to Interference plus Noise Ratio (SINR) or

MSE is a Second Order Cone Programming (SOCP) problem, the robust version is

a Semidefinite Programming (SDP) problem. Since the robust version is usually

in the Linear Matrix Inequality (LMI) form, it is possible to resort to efficient

interior point methods to solve these problems numerically. Just recently in [68]

the authors investigated that the robust counterpart of a SOCP is again another

SOCP with more constraints and variables, which makes this finding a milestone

in the robust optimization framework. Although the complexity of the original

SOCP is increased in this new framework, it is expected that the complexity of

a sparse SOCP, though a larger problem, is smaller than the SDP counterpart.

Unfortunately, although this framework is mathematically appealing, no research

in this area exploited this new framework. It is necessary to resort to this new

framework and benchmark it against the conventional S-Procedure SDP-based

methods. In this line, it is noteworthy that the cognitive radio setup, for both

MIMO and MISO configurations in downlink, is extensively studied by the authors

of [69]-[76].

In [77]-[82] the MIMO ad hoc networks were studied. In [81] a game theo-
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retic approach was used to study the cognitive radio configuration of an ad hoc

network while in [82] a maximum sum-rate capacity objective was used to design

the cognitive radio configuration of an ad hoc network. Although both conven-

tional and cognitive radio configuration were studied, these works lake to cover

the robust design of the linear and nonlinear precoding/decoding schemes. It is

also necessary to study the cooperative transceiver optimization in MIMO ad hoc

networks.

The problem of non-regenerative MIMO relay design with/without a direct

link is introduced in [83, 84] where the authors optimize the capacity or the SNR

between the source and the destination. Both of the optimum canonical coor-

dinates of the relay matrix and the upper and the lower bounds of the optimal

system capacity are discussed respectively. The problem of joint MIMO beam-

forming and power adaptation at source and relay with Quality of Service (QoS)

constraints is discussed in [85, 86]. In these papers, a broadcasting relay scheme

with a MIMO architecture in a source-to-relay link is studied. Both receive and

transmit beamforming is accomplished in the relay station. As a result, opti-

mum beamforming weights and power adaptation are calculated. The linear relay

beamformer for a MIMO relay broadcast channel with limited feedback with zero

forcing and minimum mean square error measures is described in [87]. There it is

concluded that only Channel Direction Information (CDI) feedback is sufficient to

determine the beamforming vector in the proposed scheme which highly reduces

the amount of the required feedback. A similar treatment is also covered in [88]

for the Single-Input Multiple-Output (SIMO)/MISO case with only one set of CSI

imperfectly known. In this paper both systems are designed iteratively. The itera-

tive design of the linear relay precoder and the destination equalizer is considered

in [89]. The joint power and time allocation for multi-hop relay networks are ad-

dressed in [90, 91] based on the SOCP and SDP problems, respectively [92, 93].

In [94] the problem of collaborative uplink transmit beamforming with robustness

against channel estimation errors for a DF relay is addressed. The CSI has a

stochastic error model and the proposed algorithms can be applied to both line of
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sight propagation and fading channels.

Optimal beamforming for a MIMO TWRC with analogue network coding is

addressed in [96] where only the relay station is equipped with multiple antennas.

The optimum relay beamforming structure as well as an efficient algorithm to com-

pute the optimal beamforming matrix are proposed in [96]. The effects of trans-

mit CSI at a DF-based MIMO TWRC with two different re-encoding processes,

namely superposition coding and bitwise XOR operation is studied in [97]. The

upper bound of the achievable sum-rate capacity of an AF-based MIMO TWRC

and the relay beamforming matrix design are dealt in [98]. It is assumed that the

relay station has perfect CSI in this study. Optimal distributed beamforming for

TWRC, for three different relaying schemes is the center of [99]. Two solve this

problem they exploit two different approaches, a Signal to Noise Ratio (SNR) bal-

ancing approach, as well as a total power minimization approach. In each approach

they provide different properties of the beamforming weights. Multiuser two-way

AF relay processing and power control methods for the beamforming systems are

studied in [100]. The relay is optimized based on both zero-forcing and Minimum

Mean-Square-Error (MMSE) criteria under relay power constraints, and various

transmit and receive beamforming methods, for example, eigen beamforming, an-

tenna selection, random beamforming, and modified equal gain beamforming are

examined. In [101]-[103], the optimum resource allocation for a two-way relay-

assisted Orthogonal Frequency Domain Multiple Access (OFDMA) is explained.

A new transmission protocol, named hierarchical OFDMA, is proposed to support

two-way communications between the base station (BS) and each mobile user with

or without an assisting relay station (RS). An iterative receiver for a MIMO TWRC

is presented in [104]. A MMSE-based iterative soft interference cancellation (SIC)

unit and an Expectation Conditional Maximization (ECM)-based estimation algo-

rithm is used to build the receiver. The training-based channel estimation under

the AF relay scheme is studied in [105] and a two-phase training protocol for

channel estimation is proposed. The uncertainty of the CSI is modeled using both

stochastic and deterministic models.
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1.5 Motivation and Objectives

Research gaps for the current study of robust beamforming for cognitive and

cooperative wireless networks are summarized as follows:

• In current studies mostly one model of uncertainty is central to the un-

dergone research. Either the stochastic or the deterministic error model is

targeted by the researchers. As mentioned before, there are two different

types of uncertainties that require distinct treatments. Based on the nature

and the amount of information given for CSI, either one of these models is

selected.

• In the study of the robust beamformer for MISO BC, researchers mostly use

SINR as an objective and to maximize SINR, they resort to approximate

solutions while an exact solution is preferred.

• Although the ad hoc networks may be the prominent configuration of wire-

less networks in future, there is no specific study of the robust transceiver

optimization in these networks.

• Relaying is an important concept to extend the coverage area of a telecom-

munication system. But a unified study of the robust beamforming in both

one-way and two-way relay channel is of great importance.

The main purpose of this study was to propose algorithms to robustly design

the transceivers in different configurations of cognitive and cooperative wireless

networks, specifically:

• Except for the MISO BC cognitive beamforming design, we use both SE and

NBE models to model the uncertainty of the CSI and subsequently, and we

propose two different algorithms to optimize the transceivers.

• In the MISO BC cognitive beamforming, we propose an exact solution that

maximizes the SINR.
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• We propose both linear and nonlinear transceiver optimization for MIMO

ad hoc networks.

• We propose algorithms to robustly design the beamformer of the one-way

and two-way relay channels.

It is understood that the current treatments of the uncertainty are conservative,

but we are aware that sometimes this conservative methods are the only way that

may be used to guarantee the performance of the system.

1.6 Thesis Structure

This thesis is composed of seven chapters. In current chapter, which is Chapter 1,

a general overview about cognitive and cooperative wireless networks, uncertainty

and robust design, as well as related works and list of publications are summarized.

In Chapter 2, a general and introductory presentation of mathematical pre-

liminaries is presented. The content of this chapter reviews the basic materials

from linear algebra and convex optimization. This chapter is included to have this

thesis self contained, but it is not intended to be comprehensive. For more details

of the reviewed content, classical texts are cited as well.

In Chapter 3, the problem of cognitive robust beamforming in a multi-user

MISO broadcast channel is presented. It is assumed that the uncertainty of CSI

is modeled using a ball-shaped uncertainty set. The original problem formulation

is a NP-hard problem, and therefore a SDP-relaxed version is solved instead. In

this chapter, unlike the other studies that aim to approximate the maximization

of SINR, an exact solution is provided. In Chapter 4, a multi-user MIMO ad hoc

(interfering) network is studied. Both the robust linear and nonlinear joint opti-

mization of precoder and equalizers are presented. In this chapter and subsequent

chapters the uncertainty is modeled using both SE and NBE models. It is shown

that using SE model, the MU-MIMO ad hoc network transceiver design is a SOCP

while using NBE model, this problem is a SDP.

The problems of robust beamforming in a half-duplex MIMO one-way relay
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channel and a full-duplex MIMO two-way relay channel is are described in Chap-

ters 5 and 6. In these problems as well, it is shown that for the SE model of

uncertainty the robust beamformer design is a SOCP and for the NBE model of

uncertainty, the same problem would be a SDP. Finally Chapter 7 concludes this

thesis and proposes few ways to extend these studies.

1.7 List of Publications

In this section the list of publications are summarized. The content of Chapter 3

covers the following two papers:

1. Ebrahim. A. Gharavol, Liang Ying Chang, and Koen Mouthaan, “Ro-

bust downlink beamforming in multiuser MISO cognitive radio networks,”

Proc. IEEE Int. Symposium on Personal, Indoor and Mobile Radio Com-

munications (PIMRC09), pp. 808 - 812, Sep. 2009.

2. Ebrahim. A. Gharavol, Liang Ying Chang, and Koen Mouthaan, “Ro-

bust downlink beamforming in multiuser MISO cognitive radio networks

with imperfect channel-state information,” IEEE Trans. Vehicular Technol-

ogy, vol. 59, no. 6, pp. 2852 - 2860, Jul. 2010.

The content of Chapter 4 contain the following four papers:

1. Ebrahim A. Gharavol, Liang Ying Chang, and Koen Mouthaan, “Robust

linear transceiver design in MIMO ad hoc cognitive radio networks,” Proc.

IEEE Vehicular Technology Con. (VTC10-Spring), pp. 1 - 5, 16-19 May,

2010.

2. Ebrahim. A. Gharavol, Liang Ying Chang, and Koen Mouthaan, “Ro-

bust cooperative nonlinear transceiver design in multi-party MIMO cognitive

radio networks with stochastic channel uncertainty,” Proc. IEEE Vehicular

Technology Conf. (VTC10-Fall), pp. 1 - 6, Sep. 2010.

3. Ebrahim. A. Gharavol, Liang Ying Chang, and Koen Mouthaan, “Col-

laborative nonlinear transceiver optimization in multi-tier MIMO cognitive
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radio networks with deterministically imperfect CSI,” Accepted to be pub-

lished in Proc. IEEE Global Communication Conf. (GLOBECOM10), 6-10

Dec., 2010.

4. Ebrahim. A. Gharavol, Liang Ying Chang, and Koen Mouthaan, “Ro-

bust linear transceiver design in MIMO ad hoc cognitive radio networks

with imperfect channel state information,” Accepted to be published in IEEE

Trans. Wireless Communications, Nov., 2010.

The content of Chapter 5 is drawn from the following two papers:

1. Ebrahim. A. Gharavol, Liang Ying Chang, and Koen Mouthaan, “Ro-

bust linear beamforming for MIMO relay with imperfect channel state, Proc.

IEEE Symposium on Personal, Indoor and Mobile Radio Communications

(PIMRC10), 26-30 Sep. 2010.
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Chapter 2

Mathematical Preliminaries

In this chapter few identities, theorems and lemmas that are frequently used in the

subsequent chapters are summarized. This chapter is included to make this thesis

self-contained. For more information on the details and proofs of the theorems

and lemmas, the reader should consult the [106, 107, 108, 109] for linear algebra

and [110, 111, 112] for robust and convex optimization.

2.1 Linear Algebra

Lemma 2.1. For any vector x and matrix A, we have the following identity:

x∗Ax = tr [x∗Ax] (2.1)

= tr [Axx∗] . (2.2)

Proof. Please see [106].

The following identities are also frequently used in case of encountering with

matrix norms:

Lemma 2.2. For any matrix A we have

‖A‖2F = tr [A∗A] (2.3a)

‖A‖2F = ‖vec [A] ‖22. (2.3b)

Proof. Please see [109].

The following identity, helps a lot when using the vectorized version of a matrix:
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Lemma 2.3. For any three compatible matrices

vec [ABC] = (CT ⊗A)vec [B] . (2.4)

Proof. Please see [108].

An important special case of the above identity occurs when either of A or

C is the identity matrix I. It is also possible to aggregate the sum-of-norms

expressions in terms of the norm of a single vector.

Lemma 2.4. For all α, β, θ, φ ∈ R and a ∈ Cα, b ∈ Cβ,

θ‖a‖22 + φ‖b‖22 =
∥

∥

∥

∥

[√
θa√
φb

]∥

∥

∥

∥

2

2

. (2.5)

Proof. Please see [110].

Lemma 2.5. Assume xxx is a random variable with the statistics of Ex [xxx] = µµµ and

Var{xxx} = ΣΣΣ and also assume that AAA is a symmetric matrix, then

Ex [xxx
∗AAAxxx] = tr [AΣAΣAΣ] + µµµ∗AAAµµµ. (2.6)

Proof. Please refer to [113].

Schur Complement Lemma which is one of the most important lemmas that is

used in this thesis, is stated in the following lemma.

Lemma 2.6. [Schur Complement Lemma] Let Q and R be symmetric ma-

trices. Then the following two expressions are equivalent.

{

R � 0,

Q− S∗R−1S � 0,
(2.7a)

[

Q S

S∗ R

]

� 0. (2.7b)

Proof. Please refer to [113].

Especially when Q is a scalar, S is a vector and R is equal to the identity

matrix I, (2.7a) is to express a second-norm constraint in terms of an LMI like

(2.7b).
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Lemma 2.7. [S-Procedure] Let F 0, · · · ,FN be quadratic functions of the vari-

able ζ ∈ Rn: F i(ζ) , ζTT iζ + 2uT
i ζ + vi, i = 0, · · · , N where T i = T T

i . The

following condition F 0(ζ) ≥ F i(ζ), ∀i = 1, · · · , N holds if and only if there exists

N positive reals τ1 ≥ 0, · · · , τN ≥ 0 such that F 0(ζ)−
∑N

i=1 τiF i(ζ) � 0. This last

expression is simple a LMI:

[

T 0 u0

uT
0 v0

]

−
N
∑

i=1

τi

[

T i ui

uT
i vi

]

� 0.

Proof. Please see [114].

Lemma 2.8. [“Nemirovski” Lemma] Given matrices P ,Q,A with A = A∗,

the semi-infinite LMI of the form of

A � P ∗XQ+Q∗X∗P , ∀X : ‖X‖ ≤ ρ,

holds if and only if ∃ ǫ ≥ 0 such that

[

A− ǫQ∗Q −ρP ∗

−ρP ǫI

]

� 0.

Proof. Please See [115].

For real valued matrices, the aforementioned lemma is called Petersen’s Lemma

on matrix uncertainty [116] and is generalized in [117]. This lemma is handy when

there is only one uncertain matrix. In case of having multiple uncertainty sources,

it is possible to extend this lemma as follows:

Theorem 2.1. [Generalized “Nemirovski” Lemma] Given matrices {P i,Qi}Ni=1

with A = A∗, the semi-infinite LMI of the form of

A �
N
∑

i=1

(P ∗
iX iQi +Q∗

iX
∗
iP i) , ∀X i : ‖X i‖ ≤ κi, i = 1, · · · , N ; (2.8)

holds if and only if ∃ ǫ1, · · · , ǫN ≥ 0 such that

[

A−∑N

i=1 ǫiQ
∗
iQi mat

[

{−κiP i}Ni=1

]∗

mat
[

{−κiP i}Ni=1

]

diag
[

{ǫiI}Ni=1

]

]

� 0. (2.9)

Proof. It is known that

A �
N
∑

i=1

(P ∗
iX iQi +Q∗

iX
∗
iP i) , ∀X i : ‖X i‖ ≤ κi, i = 1, · · · , N ; (2.10)
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holds if and only if for every x

x∗Ax ≥ max
{Ci}Ni=1

N
∑

i=1

(x∗P ∗
iX iQix+ x∗Q∗

iX
∗
iP ix) (2.11)

= 2

N
∑

i=1

κi‖P ix‖‖Qix‖ (2.12)

where

Ci = {∀X i : ‖X i‖ ≤ κi} , i = 1, · · · , N. (2.13)

Using the Cauchy-Schwarz inequality the above equation can be expressed as

x∗Ax− 2

N
∑

i=1

κiℜ{y∗
iP ix} ≥ 0, ∀x,yi : ‖yi‖ ≤ ‖Qix‖, i = 1, · · · , N.

(2.14)

Since ‖yi‖ ≤ ‖Qix‖ is equivalent to xQ∗
iQix− y∗

iyi � 0, it is possible to express

it in terms of a quadratic expression. By choosing z = [xT ,yT
1 , · · · ,yT

N ]
T , it is

possible to write the above quadratic expression as the z∗Miz ≥ 0 where Mi is

a block partitioned matrix, i.e., Mi , [M [i]
j,k](N+1)×(N+1) where

(

M [i]
)

j,k
=











Q∗
iQi j = k = 1,

−I j = k = i,

0 otherwise.

(2.15)

Based on this notation it is possible to write the result of the implication (2.14)

as another quadratic form, i.e.,

x∗Ax− 2
N
∑

i=1

κiℜ{y∗
iP ix} ≥ 0 ≡ z∗

M0z ≥ 0 (2.16)

where M0 is a block partitioned matrix as well,

M
[0] =

[

A MAT
[

{−κiP i}Ni=1

]∗

MAT
[

{−κiP i}Ni=1

]

0

]

(2.17)

Based on these notations, it is possible to reformulate (2.14) as follows:

z∗
Miz ≥ 0, i = 1, · · · , N ⇒ z∗

M0z ≥ 0 (2.18)

Using the general form of S-procedure for quadratic functions and non-strict in-

equalities which is summarized in the following lemma, (2.18) holds if there exists

ǫ1, · · · , ǫN ≥ 0 such that
[

A−∑N

i=1 ǫiQ
∗
iQi mat

[

{−κiP i}Ni=1

]∗

mat
[

{−κiP i}Ni=1

]

diag
[

{ǫiI}Ni=1

]

]

� 0 (2.19)

which completes the proof.

18



2.2 Convex and Robust Optimization

The fundamental concepts of convex sets and convex functions are central to the

convex, biconvex and robust optimization theories. A set C is convex if the line

segment between any two points in C lies in C, i.e., for any x1,x2 ∈ C and any

θ ∈ R with 0 ≤ θ ≤ 1 we have

θx1 + (1− θ)x2 ∈ C. (2.20)

A set B ⊆ X × Y is said to be biconvex, if both x- and y-sections of it, which are

defined below, are themselves convex sets. The x- and y-sections of B which are

denoted using Bx and By, respectively, are defined as follows:

Bx = {y ∈ Y : (x, y) ∈ B}, (2.21a)

By = {x ∈X : (x, y) ∈ B}. (2.21b)

A function f : Rn → R is convex if domf is a convex set and if for all x,y ∈ domf ,

and θ ∈ R with 0 ≤ θ ≤ 1, we have

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y). (2.22)

A concave function f : Rn → R is a function such that −f is convex.

A function f : B → R over a biconvex set B is called biconvex if

fx(·) , f(x, ·) : Bx → R (2.23)

is a convex function over Bx for every fixed x ∈ X and

fy(·) , f(·,y) : By → R (2.24)

is a convex function over By for every fixed y ∈ X .

2.2.1 Convex Optimization

The generic standard form of an optimization problem is as follows:

minimize
x

f0(x) (2.25a)

subject to fi(x) ≤ 0, i = 1, · · · , m; (2.25b)

hi(x) = 0, i = 1, · · · , p. (2.25c)
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This notation is to describe a problem which tries to find the minimum value of

the objective function f0(x) subject to m and p inequality and equality constraint,

respectively. Domain of this problem is the set of all points for which the objective

and constraint functions are defined:

D =

m
⋂

i=0

domfi(x) ∩
p
⋂

i=1

domhi(x) (2.26)

A point in this domain is feasible if it satisfies all the inequality and equality

constraints. It is possible to reorder this problem to have a linear objective func-

tion. Sometimes this linear-objective problem is called the standard form of an

optimization problem:

minimize
x,t

t (2.27a)

subject to f0(x)− t ≤ 0; (2.27b)

fi(x) ≤ 0, i = 1, · · · , m; (2.27c)

hi(x) = 0, i = 1, · · · , p. (2.27d)

This version is called the epigraph form of an optimization problem and is mostly

used in this thesis.

A convex optimization problem, which is the most general subclass of this

problem that can be solved efficiently using interior point methods [122], is an

optimization problem in which f0, · · · , fm are all convex functions and h1, · · · , hp

should be affine ones. Since systematically may absorb the equality constraints in

inequality ones, from now on, we will not mention them in the problem formula-

tions. There are especial cases of convex optimization problems that are mostly

used in science and technology, namely Linear Programming (LP) problems, Sec-

ond Order Cone Programming (SOCP) problems and Semidefinite Programming

(SDP) problems. In this thesis we mostly focus on SOCP and SDPs, as the ob-

jective and constraints of beamforming design problems are stated using these

problems.
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A SOCP is a problem of of the form of

minimize
x

cT0 x (2.28a)

subject to ‖Aix+ bi‖2 ≤ cTi x+ di, i = 1, · · · , m. (2.28b)

The constraints of this problem are called to be in SOC form. Sometimes the

constraints of our problems are not in SOC form. The most frequent form of our

constraints are SOC-squared constrained, i.e., ‖Aix+ bi‖22 ≤ cTi x+ di. Using the

following trick it is possible to convert them back to the standard form.

‖Aix+ bi‖22 ≤ t (2.29a)

=

(

t + 1

2

)2

−
(

t− 1

2

)2

(2.29b)

resulting in

∥

∥

∥

∥

[

Aix+ bi
(t− 1)/2

]∥

∥

∥

∥

2

≤ t+ 1

2
, (2.29c)

which is in its standard form. In the remainder of this thesis, it is shown that

the objective and constraint functions of our interest are all in SOC form. It is

noteworthy that these SOCP problems are usually in semi-infinite forms, i.e., our

problems of interest have infinite constraints. It is also shown that the robust

treatment of our problems would lead to SDPs. In the remainder of this chapter,

first an standard SDP and then biconvex and robust optimization problems are

introduced. A SDP is a convex optimization problem as follows:

minimize
x

cT0 x (2.30a)

subject to

n
∑

i=1

xiF i +G � 0 (2.30b)

where G and F i are symmetric matrices.

2.2.2 Biconvex Optimization

Any problem of the form

minimize
x,y

f(x,y) (2.31a)

subject to (x,y) ∈ B (2.31b)

21



where B is a biconvex set and f(x,y) is a biconvex function is called a biconvex

optimization problem. Since this problem is not a convex problem, originally it

is hard to be solved. In the following, an algorithm which is well-studied in the

mathematics texts [118], is summarized. This algorithm is called Alternate Convex

Search (ACS). It should be noted that this algorithm cannot guarantee the global

optimality of the solutions. Only sub-optimal solutions are provided generally.

In the following algorithm, the decision variables are divided into two disjoint

groups and in each iteration, one group is assumed to be fixed. The resulting

sub-problem is a convex problem and can be solved to update the selected set of

decision variables. In the next iteration, the role of the variables is changed, and

since the problem is bilinear, the resulting sub-problem is also a convex problem.

This new sub-problem can be solved efficiently to update the value of the rest

of the decision variables. In the case of a multi-linear problem, this process can

be done for any number of disjoint variable sets. In this text, however, we only

consider the bilinear case.

Algorithm 2.1. [Alternate Convex Search (ACS) Algorithm]

Assume that a biconvex optimization problem like (2.31) is given.

Step 1: Choose an arbitrary starting point z0 = (x0,y0) and set i = 0.

Step 2: Solve for fixed yi the convex optimization problem

minimize
x

f(x,yi) (2.32a)

subject to x ∈ Byi. (2.32b)

If there exists an optimal solution xopt ∈ Byi to this problem, set xi+1 = xopt,

otherwise STOP.

Step 3: Solve for fixed xi+1 the convex optimization problem

minimize
y

f(xi+1,y) (2.33a)

subject to x ∈ Bxi+1
. (2.33b)
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If there exists an optimal solution yopt ∈ Bxi+1
to this problem, set yi+1 = yopt,

otherwise STOP.

Step 4: Set zi+1 = (xi+1,yi+1). If an appropriate stopping criterion is satis-

fied, then STOP, otherwise increase i by 1 and go to Step 2.

It should be noted that the order of Step 2 and Step 3, in the aforementioned

algorithm can be permuted. It is also important that it is possible to define

different stopping criterion, e.g., the absolute value of the difference of zi and

zi−1, the absolute value of the difference in their function values, or the relative

change in the z variable relative to the last iteration. The convergence of the

sequence of {f(zi)}i∈N is proven in [118].

2.2.3 Robust Optimization

In practice, usually the data based on which the optimization problems are built, is

uncertain. As stated before, there are different models to describe this uncertainty.

An uncertain optimization problem is as follows:

minimize
x

f0(x,D0) (2.34a)

subject to fi(x,Di) ≤ 0, i = 1, · · · , m. (2.34b)

where D0, · · · ,Dm represent uncertain data. It is usually assumed that Di ∈ Di,

where Di describes the uncertainty set, and the objective and constraints must be

satisfied for any occurrences of the data in the uncertainty set Di. Since there are

infinite number of realizations for this data, the uncertain optimization problems

are called semi-infinite problems. As it is known, these problems are hard to solve,

and therefore, three different approaches are considered to relax the semi-infinite

problems in this area. In each approach, a known mechanism is exploited to reduce

the number of constraints. These approaches are namely:

1. Stochastic Approach: Especially when the data uncertainty is described

using the SE model, the optimization is to optimize the average (mathemat-

ical expectation) of the objective and constraints (performance measures).
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In this case, the robust counterpart of the uncertain problem would be:

minimize
x

ED0
[f0(x,D0)] (2.35a)

subject to EDi
[fi(x,Di)] ≤ 0, i = 1, · · · , m. (2.35b)

2. Sampling Approach: In this approach, the original problem is replaced

with a regular problem which contains a large but finite sample of realization

of the uncertain data. This method is an approximate way to replace the

uncertainty with special cases.

minimize
x

t (2.36a)

subject to f0(x,D
[k]
0 ) ≤ t, k ∈ K (2.36b)

fi(x,D
[k]
i ) ≤ 0, i = 1, · · · , m. (2.36c)

where K represents a set containing relatively large samples of the problem

data.

3. Worst-case Approach: In this approach the objective and constraint func-

tions are replaced with their least favorable representations:

minimize
x

max
D0∈D0

f0(x,D0) (2.37a)

subject to max
Di∈Di

fi(x,Di) ≤ 0, i = 1, · · · , m. (2.37b)

It is generally understood that starting from a SOCP problem with uncertain data,

would lead to a SDP. To convert the original SOCP to its SDP representation the

Nemirovski lemma, or its generalization are frequently used. Finally it should be

mentioned that in this thesis we only resort to stochastic and worst-case robust

counter parts, as the sampling approach requires many ad hoc parameter selections

and is not well-understood or well-appreciated in the literature.

2.2.4 Interior Point Methods

Unlike the conventional way of solving a linear programming problem, which scans

over the vertexes of the feasible region of the problem, an interior point algorithm
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Fig. 2.1: Overview of an interior point problem

takes a path toward the optimal point that crosses this region. For example, in

Fig. 2.1 an illustration of such an algorithm is given. In this example, the feasible

region of the problem is described using a set of linear equations leading to a

polytope with possibly many vertexes. Using the simplex-like algorithms [119],

to find the optimal point, the algorithm should check the vertexes of this region

in an smart way. But for large problems, this means that the algorithm should

should meet with thousands of vertexes before reaching the optimal solution. In

this case, it is better to find an algorithm which does not depend on the geometry

of the feasible region. Interior point algorithms are such algorithms which relax

this dependence. Among many proposed algorithms, path-following interior point

algorithms, potential reduction methods, predictor-corrector methods, and self-

dual methods are subject to a polynomial worst-case and average-case complexity

issue, and are mostly implemented in software packages. For more information

about these methods and their complexity please see [120]-[122].
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Chapter 3

Robust Downlink Beamforming
in MU-MISO CR-Nets

3.1 Introduction

Cognitive Radio (CR) is a promising solution to solve the spectrum scarcity prob-

lem [2], [123]. In a Cognitive Radio Network (CR-Net), the Secondary Users (SUs)

are allowed to operate within the service range of the Primary Users (PUs), though

the PUs have higher priority in utilizing the spectrum. There are two types of

CR-Nets: opportunistic CR-Nets for which the SUs sense the spectrum and try to

utilize the channels when they are not occupied by PUs; and concurrent CR-Nets

in which SUs are allowed to use the spectrum even when PUs are active, provided

that the amount of interference power to each PU receiver is kept below a certain

threshold [123]. In this chapter, we are interested in concurrent CR-Nets.

Fig. 3.1 illustrates the downlink scenario of a single-cell multiuser multiple-

input single-output (MISO) CR-Net with K SUs coexisting with L PUs. In this

configuration, the CR-Net is installed far enough from the PU-Transmitter (PU-

Tx). Although the PU-Tx is interfering with normal operations of CR-Net, the

power received from the intended transmitter SU-Tx is much larger, i.e., the inter-

fering power from PU-Tx can be accumulated as a part of its noise term. There-

fore, there are only two sets of relevant channel state information (CSI) which play

important roles in the system design: one set describes the channels between SU-

Transmitter (SU-Tx) and SU-Receivers (SU-Rx’s) while the other set describes

the channels between SU-Tx and PU-Rxs. For simplicity, we term the first set of
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Fig. 3.1: Overview of a single-cell CR-Net coexisting with a single-cell PR-Net

CSI as SU-link CSI and the second set as PU-link CSI. When PUs are inactive,

the system becomes a conventional multiuser MISO system, and SU-link CSI is

needed for transmission design. This knowledge is usually acquired through trans-

mitting pilot symbols from SU-Tx to SU-Rx’s, and feeding back the estimated CSI

from SU-Rxs to SU-Tx. In practice, however, because of the time-varying nature

of wireless channels, it is not possible to acquire the CSI perfectly, either due to

channel variation and/or channel estimation error and/or feedback error. On the

other hand, when PUs are active, PU-link CSI is further needed at SU-Tx for

the purpose of controlling interferences at the PU-Rx’s. This CSI knowledge has

to be acquired by SU-Tx through environmental learning [124], which again may

have errors. In this chapter we consider the transmit design for a multiuser MISO

CR-Net with uncertain CSI in both SU-link and PU-link.

Previously in conventional radio network design, ad-hoc methods, such as di-

agonal loading [125], were proposed to design robust beamforming systems. Quite

recently these designs are based on well-known mathematical methodologies, such

as the systematical worst case design [9]-[14]. These methods consider a Mini-

mum Variance Distortionless Response (MVDR) problem in the signal processing

domain and show that the problem may be recast as a Second-Order Cone Pro-

gram (SOCP) [92]. Also, it was shown that this worst case design scenario is
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equivalent to an adaptive diagonal loading [9]. One of the first worst case designs

was published by Bengtsson and Ottersten [7]-[8]. They showed that the robust

maximization of SINR would lead to a Semi-Definite Program (SDP) [92], after

a simple Semidefinite Relaxation (SDR). Sharma et al., [128] developed a model

to cover the Positive Semi-definiteness (PSD) of the channel covariance matrix.

They proposed two SDPs, a conventional SDP and a SDP based on an iterative al-

gorithm. Also Mutapcic et al., [129] proposed a new tractable method to solve the

robust downlink beamforming. Their method is based on the cutting set algorithm

which is also an iterative method. Also [38],[130]-[131] target the robust design of

a beamforming system using the worst case scenarios for Quality-of-Service (QoS)

constraints.

Quite a few works are published on the robust design for CR-Nets [71], [72]

and [74]. Zhang et al. [71] have studied such a CR-Net from an information

theoretic perspective. The CR-Net considered in [71] consists of one PU-Rx and

one SU-Rx, and the SU-link CSI is assumed to be perfectly known, but the PU-

link CSI has uncertainty. A duality theory was developed to cope with the CSI

imperfectness. Additionally, the authors proposed an analytic solution for this

case. Also, Zhi et al. [72] designed a robust beamformer for a CR-Net, where

the system setup is the same as in [71], however there may be some uncertainty

in both the channel covariance matrix as well as the antenna manifold. Finally,

Cumanan et al. [74] considered a CR-Net having multiple PUs and only one SU.

In this work, both channels are assumed to be imperfect. They also used the

worst case design method to come up with a convex problem that can be solved

efficiently.

In this chapter, we consider a downlink system of a CR-Net with multiple SU-

Rx’s coexisting with multiple PU-Rx’s whose relevant CSI is imperfectly known.

The imperfectness of the CSI is modeled using an Euclidean ball. Our design

objective is to minimize the transmit power of the SU-Tx while simultaneously

targeting a lower bound on the received Signal-to-Interference-plus-Noise-Ratio

(SINR) for the SUs, and imposing an upper limit on the Interference-Power (IP)
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at the PUs. The design parameters at the SU-Tx are the beamforming weights,

i.e. the precoder matrix. The proposed methodology is based on a worst case

design scenario through which the performance metrics of the design are immune

to variations in the channels. To solve the problem, we reformulate our initial

design problem and translate the uncertainty in CSI to the uncertainty in its

covariance matrix. We propose three approaches based on convex programming

for which efficient numerical solutions exist. In the first approach, the worst case

SINR is derived by using loose upper and lower bounds on the terms appearing

in the numerator and denominator of the SINR. Working in this line, a SDP is

developed which provides us the robust beamforming coefficients. In the second

approach, the minimum SINR is found through minimizing its numerator while

maximizing its denominator. Different from the first method, we chose exact

upper and lower bounds on the previously mentioned terms. This approach does

not lead to a SDP, but the resulting problem is still convex and may be solved

efficiently. Finally, in our third approach, we find the exact minimum of SINR

directly, and this method is also a general convex optimization problem.

Fig. 3.1 illustrates the downlink scenario of a single-cell MU-MISO CR-Net

with K SUs coexisting with L PUs. In this configuration, the CR-Net is installed

far enough from the PU-Tx. Although the PU-Tx is interfering with normal

operations of CR-Net, the power received from the intended transmitter SU-Tx

is much larger, i.e., the interfering power from PU-Tx can be accumulated as a

part of its noise term. Therefor, there are only two sets of relevant CSI which

play important roles in the system design: one set describes the channels between

SU-Tx and SU-Rxs while the other set describes the channels between SU-Tx and

PU-Rxs. For simplicity, we term the first set of CSI as SU-link CSI and the second

set as PU-link CSI. When PUs are inactive, the system becomes a conventional

multiuser MISO system, and SU-link CSI is needed for transmission design. This

knowledge is usually acquired through transmitting pilot symbols from SU-Tx

to SU-Rx’s, and feeding back the estimated CSI from SU-Rxs to SU-Tx. In

practice, however, because of the time-varying nature of wireless channels, it is
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not possible to acquire the CSI perfectly, either due to channel variation and/or

channel estimation error and/or feedback error. On the other hand, when PUs

are active, PU-link CSI is further needed at SU-Tx for the purpose of controlling

interferences at the PU-Rx’s. This CSI knowledge has to be acquired by SU-

Tx through environmental learning [124], which again may have errors. In this

chapter we consider the transmit design for a MU-MISO CR-Net with uncertain

CSI in both SU-link and PU-link.

In this chapter, we consider a downlink system of a CR-Net with multiple SU-

Rx’s coexisting with multiple PU-Rx’s whose relevant CSI is imperfectly known.

The imperfectness of the CSI is modeled using an Euclidean ball. Our design

objective is to minimize the transmit power of the SU-Tx while simultaneously

targeting a lower bound on the received SINR for the SUs, and imposing an up-

per limit on the Interference-Power (IP) at the PUs. The design parameters at

the SU-Tx are the beamforming weights, i.e. the precoder matrix. The proposed

methodology is based on a worst case design scenario through which the perfor-

mance metrics of the design are immune to variations in the channels. To solve the

problem, we reformulate our initial design problem and translate the uncertainty

in CSI to the uncertainty in its covariance matrix.

We propose three approaches based on convex programming for which efficient

numerical solutions exist. It should be stressed that the first two approaches are

well-known in the literature [7]- [12], and we mentioned them here to provide a

unified approach which considers CR-Net scenarios as well. Our contribution in

this chapter comes in the form of the third method, namely Exact Robust Solution

(ExRS), wich outperforms the first two methods as can be seen in the simulation

results. In the first approach, the worst case SINR is derived by using loose upper

and lower bounds on the terms appearing in the numerator and denominator of

the SINR. Working in this line, a SDP is developed which provides us the robust

beamforming coefficients. In the second approach, the minimum SINR is found

through minimizing its numerator while maximizing its denominator. Different

from the first method, we chose tight upper and lower bounds on the previously
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mentioned terms. This approach does not lead to a SDP, but the resulting problem

is still convex and may be solved efficiently. Finally, in our third approach, we

find the exact minimum of SINR directly, and this method is also a general convex

optimization problem.

The rest of the chapter is organized as follows. In Section 3.2, the model

of under-study system is described and the robust design of a MU-MISO CR-

Net with multiple SUs and multiple PUs is considered. In Section 3.3, we show

that the resulting optimization problem, using loose upper and lower bounds, is a

SDP. In Sections 3.4 and 3.5 we propose two more general problem formulations

based on a stricter bound and an exact bound on the minimum value of SINR,

respectively. In Section 3.6 the simulation results that demonstrate the robustness

of the proposed schemes are presented. Finally, Section 3.7 concludes the chapter.

3.2 System Model and Problem Formulation

Fig. 3.2 shows the downlink scenario of a MU-MISO CR-Net coexisting with a

Primary-Radio Network (PR-Net) having L PUs each equipped with a single an-

tenna. The SU-Tx which is equipped with N antennas, transmitting independent

symbols, sk, to K different single antenna SU-Rxs. It is assumed that the trans-

mitted symbols are all zero-mean, independent and identically distributed. Each

symbol is precoded by a weight vector, {wk ∈ CN×1}Kk=1, resulting in a vector

signal, {sk = wksk}Kk=1, for each one. The channel from SU-Tx to each SU-Rx is

determined using a complex-valued vector, {hk ∈ CN×1}Kk=1 which is not perfectly

known and there is some kind of uncertainty in channel gains. This uncertainty

is described using an uncertainty set, Hk, which is defined as an Euclidean ball

Hk = {h|‖h− h̃k‖ ≤ δk}. (3.1)

In this definition, the ball is centered around the nominal value of the channel

vector, h̃k, and the radius of the ball is determined by δk which is a positive

constant. Using this notion, the channel is modeled as

hk = h̃k + ak, (3.2)
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(a) Symbolic representation
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Fig. 3.2: A Typical multiuser MISO CR-Net system with uncertain CSI

where ak is a norm-bounded uncertainty vector, ‖ak‖ ≤ δk. In our notation, hk

is the actual channel which is subject to uncertainty and is not known perfectly.

We only know the nominal value of the channel and some information about its

perturbation. This information is given by the chosen model of the uncertainty.

The SU-Tx combines the signals and transmits the combination, x,

x =

K
∑

k=1

sk = Ws, (3.3)

where s = [s1, · · · , sK ]T ∈ C
K×1 contains the transmitted symbols and W =

[w1, · · · ,wK ] ∈ CN×K , is called the precoding matrix. The design objective is to

determine this precoding matrix W based on certain criteria that is discussed in

the next few paragraphs.

The channel from the SU-Tx to a PU-Rx is also defined using a complex valued

vector, i.e., {gℓ ∈ CN×1}Lℓ=1. Here it is assumed that the CSI for these users is
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also uncertain. We use the same notation to describe the uncertainty for these

channels. The uncertainty is defined using a set, Gℓ, which is

Gℓ = {g|‖g − g̃ℓ‖ ≤ ηℓ}. (3.4)

Equivalently, we may write

gℓ = g̃ℓ + bℓ, (3.5)

where bℓ is a norm-bonded uncertain vector, ‖bℓ‖ ≤ ηℓ and g̃ℓ is the nominal value

of the channel.

For the system depicted in Fig.3.2 the total transmitted power, TxP, is given

by

TxP , Ex

[

‖x‖2
]

=
K
∑

k=1

‖wk‖2. (3.6)

The received signal at the kth SU-Rx is

yk = h
†
kwksk +

K
∑

i=16=k

h
†
kwisi + nk. (3.7)

The right-hand side of (3.7) has three terms. The first term is the received signal of

the intended message, while the second and the third terms show the interference

from other messages and noise, which is white and Gaussian, i.e. nk ∼ CN (0, σ2
n),

respectively. The SINR at kth SU-Rx, SINRk, is given by

SINRk ,
|w†

khk|2
σ2
n +

∑K

i=16=k |w†
ihk|2

. (3.8)

Also, the received signal at the ℓth PU is

zℓ =
K
∑

k=1

gℓwksk + νℓ, (3.9)

where νℓ is the received noise. The interference power, IPℓ, to this PU-Rx is

IPℓ ,

K
∑

k=1

|w†
kgℓ|2. (3.10)

Our design objective is to minimize the transmitted power, TxP, while guaran-

teeing that the SINR at each SU-Rx for all the channel realizations is higher than

the QoS-constrained threshold, {SINRk ≥ γi}Kk=1, and simultaneously IP at each
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PU-Rx is less than the PR-Net–imposed threshold, {IPℓ ≤ κℓ}Lℓ=1, respectively.

Mathematically, this problem can be described as

minimize
{W k}

K
k=1

TxP (3.11)

subject to SINRk
∀hk∈Hk

≥ γk, k = 1, · · · , K

IPℓ
∀gℓ∈Gℓ

≤ κℓ, ℓ = 1, · · · , L.

The above problem is a problem with an infinite number of constraints. To deal

with such a problem one well-known method is to find the minimum and max-

imum values of SINRk and IPℓ, respectively, related to those realizations of the

channels which are claimed as the “worst ones”. The worst channel realizations

for SINR and IP would lead to the minimum and maximum value of SINR and IP,

respectively. In that case, the problem will guarantee that the smallest possible

SINR and largest possible IP also satisfy the constraints. Using this worst case

design methodology, we could recast (3.11) to a simpler problem set as follows:

minimize
{W k}

K
k=1

TxP (3.12)

subject to min
hk∈Hk

SINRk ≥ γk, k = 1, · · · , K

max
gℓ∈Gℓ

IPℓ ≤ κℓ, ℓ = 1, · · · , L.

In this problem quadratic expressions with the form of |w†
khk|2 are frequently

used. These expressions contain the design variables and parameters as vectors

for which it is mathematically appealing to write them in covariance matrix form.

We can write

|w†
khk|2 = w

†
k(h̃k + ak)(h̃k + ak)

†wk

= w
†
k(H̃k +∆k)wk, (3.13)

where H̃k = h̃kh̃
†

k is the constant covariance matrix of the nominal CSI and ∆k,

which shows the uncertainty in this matrix, is given by

∆k = h̃ka
†
k + akh̃

†

k + aka
†
k. (3.14)
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Note that ∆k is a norm bounded matrix, ‖∆k‖ ≤ ǫk. It is straightforward to find

the following relation:

ǫk ≥ ‖∆k‖ = ‖h̃ka
†
k + akh̃

†

k + aka
†
k‖

≤ ‖h̃ka
†
k‖+ ‖akh̃

†

k‖+ ‖aka
†
k‖

≤ ‖h̃k‖ ‖a†
k‖+ ‖ak‖ ‖h̃

†

k‖+ ‖ak‖2

= δ2k + 2δk‖h̃k‖. (3.15)

Using (3.15) it is possible to choose ǫk = δ2k + 2δk‖h̃k‖. We use the identity

x†Ax = tr
[

Axx†
]

to further simplify expression and obtain

|w†
khk|2 = tr

[(

H̃k +∆k

)

W k

]

. (3.16)

where W k = wkw
†
k. It is noted that, from now on, similar expressions will be

used for the other terms of SINRk. Again using similar formulation as |w†
khk|2, we

get

|w†
kgℓ|2 = tr

[(

G̃ℓ +Λℓ

)

W k

]

, (3.17)

where G̃ℓ is a constant matrix, G̃ℓ = g̃ℓg̃
†
ℓ and Λℓ is the norm bounded uncertainty

matrix, ‖Λℓ‖ ≤ ξℓ. Similarly we know that ξℓ = η2ℓ + 2ηℓ‖g̃ℓ‖.

Adopting the above notations, we rewrite (3.12) as

minimize
{W k}

K
k=1

K
∑

k=1

tr [W k] (3.18)

subject to min
‖∆k‖≤ǫk

tr
[(

H̃k +∆k

)

W k

]

σ2
n +

∑K

i=16=k tr
[(

H̃k +∆k

)

W i

] ≥ γk,

k = 1, · · · , K

max
‖Λℓ‖≤ηℓ

K
∑

k=1

tr
[(

G̃ℓ +Λℓ

)

W k

]

≤ κℓ, ℓ = 1, · · · , L.

It should be mentioned that the aforementioned steps are indispensable due to

the form of our primary problem (3.12). Even for the non-robust case, (3.12) is

a separable homogeneous Quadratically Constrained Quadratic Problem (QCQP)

which is a NP-Hard problem [132]. Regardless of the nature of its variables (real
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or complex) (3.12) is NP-hard and should be transformed to a more proper form to

be solved. To the best of our knowledge, SDP relaxation is the most well-studied

way to overcome this ill-conditioning. The uncertainty regions in (3.18) are the

result of the direct application of a quadratic transformation of the uncertainty

regions of (3.12) as summarized before. The bounds of this uncertainty are derived

by triangle inequality and multiplicity of the second norm, and are tight enough.

Although the uncertainty regions in (3.12) and (3.18) are different in nature but

they have a nice interrelation summarized in (3.15). In the next sections, we will

solve the robust problem (3.18) and will show that this problem can be recast as

a series of simple optimization problems.

3.3 Loosely Bounded Robust Solution (LBRS)

In this section we will deal with the problem of (3.18). In [7] and [8], it is suggested

to minimize the SINR through minimizing the numerator while maximizing its

denominator. So the first constraint of (3.18) is equivalent to

min
‖∆k‖≤ǫk

tr
[

(H̃k +∆k)W k

]

− γk

K
∑

i=1
i 6=k

max
‖∆k‖≤ǫk

tr
[

(H̃k +∆k)W i

]

≥ γkσ
2
n. (3.19)

As it is known, this method is a loose approximate way to find the minimum of

the SINR.

3.3.1 Minimization of SINR

To minimize the numerator,

min
‖∆k‖≤ǫk

tr
[(

H̃k +∆k

)

W k

]

, (3.20)

we adopt a loose lower bound, proposed by [7], [8]. Using this lower bound, we

have

min
‖∆k‖≤ǫk

tr
[(

H̃k +∆k

)

W k

]

≈ tr
[(

H̃k − ǫkIN

)

W k

]

, (3.21)

and to maximize the denominator, the following term should be maximized

max
‖∆k‖≤ǫk

tr
[(

H̃k +∆k

)

W i

]

. (3.22)
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Using a similar approximation, we have

max
‖∆k‖≤ǫk

tr
[(

H̃k +∆k

)

W i

]

≈ tr
[(

H̃k + ǫkIN

)

W i

]

. (3.23)

Using these results, the problem of SINR minimization as the first constraint of

(3.18), is recast as

tr
[(

H̃k − ǫkIN

)

W k

]

− γk

K
∑

i=16=k

tr
[(

H̃k + ǫkIN

)

W i

]

≥ σ2
nγk, ∀k, (3.24)

and by regrouping the left hand side of this equation we find

tr

[

H̃k

(

W k − γk

K
∑

i=16=k

W i

)]

− ǫktr

[

W k + γk

K
∑

i=16=k

W i

]

≥ σ2
nγk, ∀k. (3.25)

3.3.2 The Whole Conventional Program

Using the same methodology, IP maximization in the second constraint of (3.18)

leads to the following problem

K
∑

k=1

tr
[(

G̃ℓ + ξℓIN

)

W k

]

≤ κℓ, ℓ = 1, · · · , L. (3.26)

Then the whole program targeting to solve the robust downlink optimization

in MISO CR-Nets becomes

minimize
{W k}

K
k=1

K
∑

k=1

tr [W k] (3.27)

subject to tr

[

H̃k

(

W k − γk

K
∑

i=16=k

W i

)]

−

ǫktr

[

W k + γk

K
∑

i=16=k

W i

]

≥ σ2
nγk, k = 1, · · · , K

tr

[

(

G̃ℓ + ξℓIN

)

K
∑

k=1

W k

]

≤ κℓ, ℓ = 1, · · · , L,

W k = W
†
k, k = 1, · · · , K,

W k � 0, k = 1, · · · , K.

Please note the fact that the last two constraints are inherent in the structure

of the problem formulation. Also note that to come up with a convex problem
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formulation, a non-convex constraint, rank{W k} = 1, is eliminated [126], [7], [128].

This final form of the problem is an SDP and can be solved using efficient numerical

methods [133]. Finally it should be noted that unlike [128] the beamforming

weights are not exactly1 the principal eigenvector2 of the matrix solution. To get

the beamforming weights, the eigen decomposition of the W k is used. In this

decomposition, W k may be decomposed to a series of rank one matrices, i.e.,

W k =
N
∑

n=1

λn,k en,k e
†
n,k, (3.28)

where in this expansion, λn,k denotes the nth eigenvalue and en,k is its correspond-

ing eigenvector. The solution matrix of W k itself is a rank one matrix, then all

the eigenvalues are equal to zero except one, let’s say λN,k. Therefore the above

mentioned equation may be written as

W k = λN,k eN,k e
†
N,k

= (
√

λN,k eN,k)(
√

λN,k eN,k)
†

= wkw
†
k, (3.29)

where wk =
√

λN,k eN,k.

Recently a rigorous proof in [132] shows that for the case of Vandermonde CSI,

which is the usual case for MISO beamforming using Uniform Linear Array (ULA),

the matrix solution is always rank one and the proposed relaxed SDP is equivalent

to our original problem [132]. If the solution of this problem is not rank-1, standard

randomization techniques are available to produce the beamforming vectors from

the matrix solution (Please refer to [9] and the references therein). The next two

sections consider the same problem but in different ways. It should be noted that

the next two problems are not SDP and are generally convex problems, but, for

these problems we use the same formula to acquire the beamforming weights from

the solution matrix.

1A simple but important scaling is needed.
2The principal eigenvector of a rank one matrix is the eigenvector corresponding to the only

non-zero eigenvalue.
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3.4 Strictly Bounded Robust Solution (SBRS)

In the previous section, the minimum of SINR was found using loose upper and

lower bounds for its constituent terms. In this section, we try to minimize the

SINR using the same method: we minimize the numerator and maximize the

denominator. But here, we try to find the exact maximum and the exact minimum

for each term respectively:

min
‖∆k‖≤ǫk

tr
[

(H̃k +∆k)W k

]

− γk

K
∑

i=1
i 6=k

max
‖∆k‖≤ǫk

tr
[

(H̃k +∆k)W i

]

≥ γkσ
2
n. (3.30)

Our main tool, is the Lagrangian Multiplier method.

3.4.1 Minimization of SINR

We start with the first minimization problem.

Proposition 3.1. For the terms tr
[(

H̃k +∆k

)

W k

]

, using a norm-bounded

variable ∆k, ‖∆k‖ ≤ ǫk, the minimizer and maximizer would be

∆min
k = −ǫk

W
†
k

‖W k‖
, (3.31)

and

∆max
k = ǫk

W
†
k

‖W k‖
, (3.32)

respectively.

Proof. The Lagrangian function, using an arbitrary positive multiplier, λ ≥ 0, is

L(∆k, λ) = tr
[

(H̃k +∆k)W k

]

+ λ(‖∆k‖2 − ǫ2k)

= tr
[

(H̃k +∆k)W k

]

+ λ(tr
[

∆k∆
†
k

]

− ǫ2k). (3.33)

By differentiating this Lagrangian function with respect to ∆∗
k and equating it to

zero [134],

∇∆∗

k
L(∆k, λ) = W

†
k + λ∆k = 0, (3.34)

we will find the optimal solution ∆k, which is denoted by ∆opt
k ,

∆opt
k = −1

λ
W

†
k. (3.35)
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To eliminate the role of arbitrary parameter of λ, again, we differentiate the La-

grangian function with respect to this unknown parameter and then equate it to

zero

∇λL(∆k, λ) = 0, (3.36)

to get the optimal solution for λ, denoted as λopt,

λopt =
1

ǫk
‖W †

k‖. (3.37)

By combining these results, finally, we come up with

∆opt
k = −ǫk

W
†
k

‖W k‖
. (3.38)

To test if this solution is a minimum, we should observe that the second derivative

at the optimal solution point should be positive semi-definite,

∇2
∆∗

k
L(∆opt

k , λopt) = λopt (vec [IIIN ] vec [IIIN ])
T � 0. (3.39)

which completes our claim. To find the maximum of such a term, a similar pro-

cedure is undergone.again, using a positive arbitrary Lagrangian multiplier, we

build a Lagrangian function:

L(∆k, λ) = tr
[

(H̃k +∆k)W i

]

− λ(‖∆k‖2 − ǫ2k)

= tr
[

(H̃k +∆k)W i

]

− λ(tr
[

∆k∆
†
k

]

− ǫ2k). (3.40)

By differentiating it with respect to ∆k and equating it to zero

∇∆∗

k
L(∆k, λ) = W

†
i − λ∆k = 0, (3.41)

we will get

∆opt
k =

1

λ
W

†
i . (3.42)

Again, by differentiating the Lagrangian function with respect to λ and equating

it to zero,

∇λL(∆k, λ) = 0, (3.43)

40



we are able to get the optimizer.

λopt =
1

ǫk
‖W i‖, (3.44)

∆opt
k = ǫk

W
†
i

‖W i‖
. (3.45)

To prove if this solution is a maximum, we should observe that its second derivative

is negative semi-definite:

∇2
∆∗

k
L(∆opt

k , λopt) = −λopt (vec [IIIN ] vec [IIIN ])
T � 0. (3.46)

Using the above results, we have

min
‖∆k‖≤ǫk

tr
[

(H̃k +∆k)W k

]

= tr
[

H̃kW k

]

− ǫk‖W k‖,

max
‖∆k‖≤ǫk

tr
[

(H̃k +∆k)W i

]

= tr
[

H̃kW i

]

+ ǫk‖W i‖.

So we may rewrite (3.30) as

tr

[

H̃k

(

W k − γk
∑

i=16=k

W i

)]

− ǫk

(

‖W k‖+ γk
∑

i=16=k

‖W i‖
)

≥ γkσ
2
n. (3.47)

3.4.2 The Whole Program

Similarly, the IP constraints may be written as:

max
‖Λℓ‖≤ξk

K
∑

k=1

tr
[

(G̃ℓ + Λℓ)W k

]

=
K
∑

k=1

(

tr
[

G̃ℓW k

]

+ ξℓ‖W k‖
)

≤ κℓ. (3.48)

Finally, the whole program is summarized as follows.

minimize
{W k}

K
k=1

K
∑

k=1

tr [W k] (3.49)

subject to tr

[

H̃k

(

W k − γk

K
∑

i=16=k

W i

)]

−

ǫk

(

‖W k‖+ γk

K
∑

i=16=k

‖W i‖
)

≥ σ2
nγk,

k = 1, · · · , K;

K
∑

k=1

(

tr
[

G̃ℓW k

]

+ ξℓ‖W k‖
)

≤ κℓ, ℓ = 1, · · · , L;

W k = W
†
k, k = 1, · · · , K

W k � 0, k = 1, · · · , K.
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Although this final problem is not an SDP, it is in fact convex, because its objective

function and constraints are sum of matrix traces and norms which are convex

themselves, and this problem can be solved using standard numerical optimization

packages, like CVX [133].

3.5 Exact Robust Solution (ExRS)

The last two sections considered the problem of minimizing the uncertain SINR

using two conservative methods. In this section the exact worst-case channel

realization is considered instead. We start again with the problem of (3.18), but

with a simple alteration. This problem is stated as:

minimize
{W k}

K
k=1

K
∑

k=1

tr [W k] (3.50)

subject to min
‖∆k‖≤ǫk

tr
[

(H̃k +∆k)W k

]

−

γk

K
∑

i=16=k

tr
[

(H̃k +∆k)W i

]

≥ σ2
nγk, k = 1, · · · , K;

max
‖Λℓ‖≤ξℓ

K
∑

k=1

tr
[

(G̃ℓ +Λℓ)W k

]

≤ κℓ, ℓ = 1, · · · , L.

In the above problem, we try to minimize the SINR directly without using con-

servative assumptions. First we have the following proposition:

Proposition 3.2. The minimizer of the first constraint of (3.50) has the form of

∆min
k = −ǫk

(

W k − γk
∑K

i=1
i 6=k

W i

)†

‖W k − γk
∑K

i=1
i 6=k

W i‖
. (3.51)

Proof. The Lagrangian multiplier is adopted again:

L(∆k, λ) = tr
[

(H̃k +∆k)W k

]

−

γk

K
∑

i=16=k

tr
[

(H̃k +∆k)W i

]

+ λ(tr
[

∆k∆
†
k

]

− ǫ2k). (3.52)

By differentiating this function and equating it with zero,

∇∆∗

k
L(∆k, λ) = W

†
k − γk

K
∑

i=1
i 6=k

W
†
i + λ∆k = 0, (3.53)
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we will come up with

∆opt
k = −1

λ






W k − γk

K
∑

i=1
i 6=k

W i







†

, (3.54)

and to eliminate the λ,

∇λL(∆k, λ) = ‖∆k‖ − ǫk = 0, (3.55)

we will get

λopt =
1

ǫk
‖W k − γk

K
∑

i=1
i 6=k

W i‖, (3.56)

∆opt
k = −ǫk

(

W k − γk
∑K

i=1
i 6=k

W i

)†

‖W k − γk
∑K

i=1
i 6=k

W i‖
. (3.57)

The second order differential test to prove that this solution belongs to a minimum,

in this case, is also straight forward and is not included here.

Finally the final and general problem is formulated:

minimize
{W k}

K
k=1

K
∑

k=1

tr [W k] (3.58)

subject to tr

[

H̃k(W k − γk

K
∑

i=16=k

W i)

]

−

ǫk ‖W k − γk

K
∑

i=16=k

W i‖ ≥ σ2
nγk, k = 1, · · · , K;

K
∑

k=1

(

tr
[

G̃ℓW k

]

+ ξℓ‖W k‖
)

≤ κℓ, ℓ = 1, · · · , L;

W k = W
†
k, k = 1, · · · , K

W k � 0, k = 1, · · · , K.

The above problem is the most general form of the original problem. It should

be noted that the beamforming weights are also the principal eigenvector of the

solutions of this problem. Also it should be mentioned that the IP part of these

two last problems, (3.49) and (3.58), are the same, i.e., these two problems have

the same performance in IPs.
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3.6 Simulation Results and Discussions

Simulations are carried out to validate the performance of the developed methods

in this chapter. It is assumed that the BS is equipped with a Uniform Linear Array

(ULA) with 8 elements with a spacing of half wave length. Three SU-Rx’s (K = 3)

are served and the CR-Net should protect two PU-Rx’s (L = 2). The SU-Rx’s

are located in the directions of θ1 = 20◦, θ2 = 35◦ and θ3 = 50◦ relative to the

antenna boreside, respectively. The PU-Rx’s are located at the directions of 80◦

and 85◦ from boresight, respectively. It is assumed that the change in Direction

of Arrival (DoA) of input waves to the SU-Tx may be up to ±5◦ arbitrarily. The

noise power is assumed to be σ2
n = 0.01, and identical for all of the users. Also,

a constant SINR level of 10dB is targeted for all the SUs, while the interference

threshold of 0.01 is used to protect the PUs. The channel for PUs and SUs are

modeled by

[hk(θk)]i = ejπ(i−1) cos(θk), i, k = 1, · · · , K, (3.59)

[gℓ(φℓ)]i = ejπ(i−1) cos(φℓ), i, ℓ = 1, · · · , L. (3.60)

The uncertainty sets are characterized with ǫk = ηℓ = 0.05. We have used the

CVX Software Package [133] to solve the proposed problems numerically. On

a personal computer each run takes about 2-3 seconds on average. For rapidly

changing environments like urban areas, this is not fast enough. However, when

implemented with optimized code in a dedicated DSP chip the computation time

can be significantly reduced.

In the subsequent figures, LBRS, SBRS and ExRS denote Loosely Bounded

Robust Solution, Strictly Bounded Robust Solution, and Exact Robust Solution,

respectively. The “Non-Robust” beamformer is a beamformer that assumes no

uncertainty in CSI. This beamformer is designed based on the nominal value of

CSI. During the testing phase of Monte Carlo simulations, these beamformers are

used to transmit over channels with some variations. These variations are bounded

by the limitations of the simulation scenario. For the non-robust case, this would

lead to a severe deficiency in the performance of the link, especially when we are

44



0 10 20 30 40 50 60 70 80 90
−40

−35

−30

−25

−20

−15

−10

−5

0

Elevation Angle, degree

Array Gain # 1 (dB)

 

 
Non−Robust
LBRS
SBRS
ExRS

(a) Array gain for SU#1

0 10 20 30 40 50 60 70 80 90
−40

−35

−30

−25

−20

−15

−10

−5

0

5

Elevation Angle, degree

Overall Array Gain

 

 
Non−Robust
LBCS
SBCS
ExCS

(b) Overall array gain

Fig. 3.3: Array gain for different users
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concerned about violation of constraints. In Fig. 3.3, the vertical solid lines show

the DoA corresponding to different SU-Rx’s, while the vertical dashed lines show

the DoA of PU-Rx’s. From the figure, it is clear that the proposed method can

transmit the desired data to the SU-Rx’s while protecting the PU-Rx’s. It is also

apparent that all three approaches produce similar results. The array pattern of

non-robust beamformers are calculated using conventional array design to form

the main lobe toward the direction of interest and preserve deep nulls toward the

known directions of other users. As can be seen, when the main lobe is toward the

user of interest, the other users are in deep nulls with at least 20 dB of attenuation.

For the first SU-Rx, the difference between the array gains is about 3 dB while

for the second and third users the array gains are almost the same for different

methods. Overally Fig. 3.3-b shows that the proposed solutions can cover the

SU-Rx’s while protecting PU-Rx’s, i.e., the beamforming gains are less than -10

dB.

In Fig. 3.4, the histogram of normalized constraints for the SU-Rx is plotted.

The x-axis shows the normalized SINR resulted from optimization of the net-

work and y-axis shows the number of occurrences of each SINR. The normalized

constraints of each SU, C
(sinr)
k , defined as SINRk/γk, is equivalent to

C
(sinr)
k =

1

σ2
nγk

w
†
kHkwk −

1

σ2
n

K
∑

i=16=k

w
†
iHkwi,

where Hk = hkh
†
k, and the normalized PU constraint, C

(ip)
k , is defined as

C
(ip)
ℓ =

1

κℓ

K
∑

k=1

g
†
ℓHkgℓ.

Unlike the normalized SINR constraints for a SU-Rx, when a normalized IP con-

straint is less than one, this constraint is considered to be satisfied. In Fig. 3.4

the normalized SINR histograms for different methods are depicted. In this fig-

ure, the uncertainty sets are chosen to be ǫk = ξℓ = 0.05. It is clear that ExRS

is outperforming the other two schemes due to its exact bounds on SINR. For

brevity, the IP diagrams are not shown here. As it can be seen, the robust design

is immune to the variation of the channels, whereas the non-robust design fails
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Fig. 3.4: Normalized SINR constraints for different methods for SU#1

in such situations. It is also apparent that for the robust case, the variation of

normalized constraints is much less than that for the non-robust case. It is also

clear that SBRS and ExRS are more efficient in terms of handling the SINR. The

ExRS method not only can satisfy all the constraints, but also requires less trans-

mit power to achieve the same SINR because it uses exact minimum of SINR.

Additionally, it should be mentioned that they are slightly better than the LBRS.

In Fig. 3.5 the normalized total transmit power versus the SINR thresholds

for different amounts of allowed normalized IP is shown. The normalized total

transmit power is the ratio of total transmit power to the noise power and the

normalized IP is defined in the same manner. Both quantities are dimension-less

and for better clarity are displayed in dBs. As expected, ExRS is better than
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the other two methods. In Fig. 3.5-a, it is clear that for a relative IP level of

κℓ = −4 dB, ExRS transmits the lowest amount of power while SBRS requires to

transmit a modest amount of power relative to LBRS, and finally LBRS requires

the largest amount of power. In this figure, it is also observed that for a relative

IP level of κℓ = 0 dB, the proposed ExRS is the best scheme to use to transmit.

In Fig. 3.5-b, we have plotted the same graph but in the higher SINR values. In

this range of SINR thresholds, all of the optimization problems with a relative IP

level of κℓ = −4 dB would be infeasible, so the graph is only provided for the

relative IP level of κℓ = 0 dB. It is clear that in such scenarios, ExRS performs

the best, although it should be noted that the performance of SBRS and ExRS

are very close to each other.

In this figure the transmit power for the non-robust case is plotted which is

smaller than the transmit power of robust cases, which is the price of robustness.

If the beamformers are designed to act robustly, they will send more power than

required to guarantee the performance. For low SINR regime, non-robust methods

transmit about 0.1 dB less power relative to robust methods, while in high SINR

regime, this gap widens, i.e., the transmit power of a non-robust method is about

1 dB less than the robust methods.

Before concluding this chapter, it is noteworthy to compare the proposed

methods in terms of the complexity and their computational burden. Since we

have found the analytical solutions for the worst channel realization with differ-

ent approximation levels, although our contribution outperforms the other first

two methods, they are performing similarly in terms of the actual problem to be

solved. All three problem formulations lead to three SDP problems with similar

linear objectives and K + L linear/normed constraints in K symmetric positive

definite matrices. All three problems lead to rank-1 solutions which waive the need

to a randomization process. The last two methods contain matrix norms in their

constraints with negligible computational effects comparing to internal iterations

used by the solvers to solve the problems numerically.
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3.7 Conclusion

The design of robust downlink beamforming in multiuser MISO cognitive radio

networks is studied. Particularly, a set up of K SU-Rx’s and L PU-Rx’s, all

equipped with a single antenna is considered, and the SU-Tx has N transmit

antennas. It is assumed that the relevant CSI is not perfectly known for both sets

of users and uncertainty in the CSI is modeled using an Euclidean ball notation.

Three different approaches, namely LBRS, SBRS and ExRS, are presented which

can be implemented efficiently. The first solution is a SDP, while the later two

solutions are the convex optimization problems. Simulation results have evaluated

the robustness of proposed methods.
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Chapter 4

Robust Transceiver Design in
MIMO Ad Hoc CR-Nets

4.1 Introduction

To incorporate the imperfect CSI and to provide robust designs, most works use

the worst case design method in which the beamformers, or precoders/decoders,

are designed under the worst possible operating circumstances of the system. For

example, narrow-band transmit beamforming in broadcast channels is the focus

of [7] and [8]. After introducing a relaxation scheme, the authors converted the

problem into a Semi-Definite Program (SDP).

The robust design for Broadcast Channels (BC) is discussed in [135] and [38].

In [135], the authors formulated the problem using different objectives and pro-

posed an iterative solution to find the precoder and decoder in a MIMO config-

uration. They formulated Linear Matrix Inequalities (LMI), which lead to SDP

problems. Additionally, they formulated the uncertainty of the channel using the

SE model as well. In [38], the authors use a similar method to solve the same

problem. It should be mentioned that this problem using nonlinear precoders, is

also considered in [136]. For a single user system with uncertain CSI in the MIMO

configuration, the Mean Square Error (MSE) performance measure is considered

in [17] and [18]. Solving the problem of robust cognitive beamforming with partial

CSI is the aim of [71]. There, a single SU-Tx—SU-Rx network interfering with

a single PU-Rx in which both receivers are equipped with a single antenna is as-

sumed. In [137] the transceivers are equipped with multiple antennas, but it is
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assumed that there is only one receiver in the CR-Net which limits the practicality

of this work. Finally, [138] aims to design a MSE based broadcast channel im-

paired by imperfect CSI using a duality result by solving the equivalent multiple

access channel network.

The MIMO ad hoc network is discussed in [82],[79]. In [82] optimal resource

allocation for MIMO ad hoc cognitive radio networks is presented. The objective

function is the weighted sum-rate capacity of the secondary users equipped with

MIMO transmitters and receivers. A semi-distributed algorithm for the optimum

design of such a system is presented as well. Targeting the same problem with

a very similar formulation, a game theoretic approach is proposed in [81]. The

authors propose a strategic non-cooperative game to optimize the MIMO CR-net.

Finally, weighted sum-rate scheduling for MIMO ad hoc networks is the focus

of [79]. The authors use a duality-optimization based framework to design the

network.

The major contribution of this chapter is the robust transceiver design of a

MIMO ad hoc CR-Net with uncertain CSI for all important links. To the best of

the authors’ knowledge this has not been published before. The formulated design

problem minimizes the Sum Mean Square Error (SMSE) of the interfering links

while power budget and interfering power constraints are applied to the system.

Both SE and NBE error models are considered. For the first case, the design

problem is a Second Order Cone Program (SOCP) while for the second case, the

problem is recast as a SDP [92]-[93]. The problem is difficult to solve regardless

of the choice of error model, because the objective function is not simultaneously

convex in the design variables and also there are infinitely many constraints. We

propose an iterative solution to solve the relaxed version of the original problem.

The introduced SOCP and SDP problems are solved using the standard numerical

programming package, YALMIP [139], using the general solver SDPT3 [140].

This chapter addresses the problem of joint design of optimal precoders and

decoders of a MIMO ad hoc CR-Net in which each node is equipped with multiple

antennas. An ad hoc network is depicted in Fig. 4.1. In this network a set of
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K independently interfering links coexist. It is assumed that the Tx and the Rx

sides of each link is equipped with multiple antennas. It is also assumed that the

CSI for all relevant links is not known perfectly. The imperfectness of the CSI is

modeled using two different models: the SE model, and the NBE model. In the SE

model, it is assumed that the perturbation of the CSI is a sample of a stochastic

process which is defined using its first and second moments, while in the NBE

model, which is a deterministic model of CSI uncertainty, the perturbation is also

deterministic and is appropriately norm-bounded.

The rest of this chapter is organized as follows: our system model and problem

formulation are introduced in Sections 4.2 and 4.3, respectively. A general

framework is provided to model the problem regardless of the type of uncertainty.

In Section 4.4 it is showed that using the SE model, our problem would be a

SOCP. Also in Section 4.5 our problem is tackled focusing on NBE model and it

is showed that this problem is a SDP. In Section 4.6 the simulation results are

depicted and discussed while finally the chapter is concluded in Section 4.7.

4.2 System Model

We consider a MIMO ad hoc CR-Net which consists of K independent but in-

terfering links (Fig. 4.1). This network is installed within the coverage range of

a PR-Net. It is assumed that the studied CR-Net is installed far enough from

PU-Tx to gain the spectrum opportunity. In this case, the interfering power of

PU-Tx for SU-Rxs is considered as accumulated with their receive noise. This

study only covers a single cell PR-Net. For multi-cell PR-Nets this assumption

should be valid for all the cells under consideration. In this network, in each link

both Tx and Rx sides are equipped with multiple antennas, i.e., the ith SU-Tx

and SU-Rx have Ti and Ri transmit and receive antennas, respectively. In each

link the SU-Tx should transmit a stream of ti symbols to its intended receiver,

SU-Rx (ti ≤ min(Ti, Ri)). The signal vector of ith link is denoted as si ∈ C
ti .

The transmit symbols are assumed to be complex, zero mean, independent and
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Tx1

Rx2

Tx2

Rx1

PU-Tx

PU-Rx

PU-Rx
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PU-Rx

MIMO ad hoc CR-Net

PR-Net
Direct Channel

Interfering Channel

(a) Network Configuration Perspective

CR-NetPR-Net

(b) Signal Flow Graph Perspective

Fig. 4.1: Overall diagram of an ad hoc MIMO cognitive radio network.
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identically distributed

Esi [si] = 0, (4.1)

Esi

[

sis
∗
j

]

=

{

σ2
si
I ti , i = j,

0, i 6= j.
(4.2)

At the receiver, the received signal vector is

yi = H i,ixi +

K
∑

j=16=i

Hj,ixj + ni ∈ C
Ri, (4.3)

where H i,j ∈ C
Rj×Ti is CSI from ith SU-Tx to jth SU-Rx and ni ∈ C

Ri is the

additive white Gaussian noise samples,

Eni
[ni] = 0, (4.4)

Eni
[nin

∗
i ] = σ2

nIRi
. (4.5)

This network is installed within the service range of a L-user PR-Net, for which

the CR-Net should provide some kind of protection to the PR-Net. Each PU-Rx

is equipped with R′
k receive antennas. The received signal at the kth PU-Rx is

then

wk =

K
∑

i=1

Gi,kxi, (4.6)

where Gi,k ∈ CR′

k
×Ti is the CSI from ith SU-Tx to kth PU-Rx.

The CSI for both SU-Tx–SU-Rx and SU-Tx–PU-Rx is assumed to be imper-

fectly known, i.e., there are some kind of uncertainty in CSI for both sets of links.

H i,j = H̃ i,j +∆j , (4.7)

Gi,k = G̃i,k +Λk, (4.8)

where H̃ i,j, G̃i,k, ∆i and Λk represent the nominal value of the CSI and the

perturbations, respectively. Here we model these uncertainty with the SE and

NBE models using the following parameters. In NBE model,

‖∆j‖F ≤ δj , (4.9)

‖Λk‖F ≤ λk, (4.10)
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where δi and λk represent the uncertainty bounds, respectively. The SE model is

also characterized as follows:
{

E∆j
[∆j] = 0,

E∆j
[vec [∆j] vec [∆j ]

∗] = Σ∆j
,

(4.11)

{

EΛk
[Λk] = 0,

EΛk
[vec [Λk] vec [Λk]

∗] = ΣΛk
.

(4.12)

Here we assume that all the entries of these matrices are independent, i.e., Σ∆k =

σ2
∆IRkTi

and ΣΛk = σ2
ΛIR′

k
Ti
.

In this chapter we use a MSE measure to design the transceivers. Upper limits

on both transmit power of SU-Tx’s and interfering power of PU-Rx’s are also

imposed.

4.2.1 Beamforming

For the beamforming we consider both THP and DFE schemes, as well as the

linear beamforming [15],[141]. To the best of our knowledge, these two non-linear

configurations outperform the conventional linear precoder and decoders. It is

also found in the simulation results section. Based on implementation complex-

ity, we can compare these three beamforming methods. The linear beamforming

is the simplest way of beamforming in both BS and MS while in terms of the

system performance it is usually treated as a suboptimal solution to the transmis-

sion/detection problem. The THP scheme is designed to approximate the dirty

paper coding scheme of Costa [142] which is known to be an optimum solution in

interference-limited scenarios. In this scheme, the complexity and computational

burden is on the BS side, which is assumed to have enough processing power in the

system. While the DFE performs the best among the others, it has a severe draw-

back. In the DFE scheme, the computational burden is on the receiver side, i.e.,

the MS. Usually, it is hard to assume that the MS has enough processing power

to do the interference cancellation. Unless the receivers themselves are relaying

base stations or access points with enough processing power. Firstly, we focus on

THP and DFE and then we will present the linear beamforming as a special case

of the DFE. For a general schematic view of each of them please refer to Fig. 4.2.
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CR-Net

PR-Net

(a) THP Scheme

CR-Net

PR-Net

(b) DFE Scheme

Fig. 4.2: Signal flow graph in an ad hoc MIMO cognitive radio network using
THP and DFE.
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The detail of each treatment is as follows.

The Combination of THP and the Linear Equalizer

In this scheme, we use a nonlinear transmitter with pre-cancellation involved in

terms of a linear feedback matrix. Relying on the known feedback signals from

the other transmitters, the amount of the imposed interference on the other re-

ceivers are approximated and canceled subsequently using a linear filter, which we

optimize here. The signal flow graph of this scheme is described as follows. For a

detailed treatment of this method, the interested reader should consult standard

texts like [141]. In this scheme, the transmit symbol, si is linearly combined

with the feedback signals from the other links, i.e., {vj ∈ Ctj}Kj=16=i. The resultant

signal would be the feed back to the other links.

vi = si −
K
∑

j=16=i

F i,jvj (4.13)

where F i,j ∈ C
ti×tj is the feedback matrix between the ith and jth links. It is

possible to rewrite the aforementioned equation to get a straightforward one which

states si based on all feedback signals {vj}Kj=1.

si = vi +

K
∑

j=16=i

F i,jvj (4.14)

To get the transmit symbol, i.e., xi ∈ CTi ; vi is linearly precoded by P i ∈ CTi×ti ,

i.e.,

xi = P ivi. (4.15)

Interestingly, after imposing some mild conditions on the constellation of si and

its distribution, it is possible to assume that the feedback signals as a result of

the modulo operation are also zero-mean and independent of each other over the

bounded signaling space [141], with a slightly higher energy relative to the original

symbols [141].

Evi

[

viv
∗
j

]

=

{

σ2
vi
I i = j

0 otherwise,
(4.16)
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where by assumption σ2
vi
≥ σ2

si
.

In the receiver, the received signal vector, yi, is linearly equalized using a

matrix Di ∈ Cti×Ri to get the finally estimated vector:

zi = Diyi (4.17)

The Combination of the Linear Precoding and DFE

In this scheme, the complexity comes in terms of a more sophisticated receiver.

Unlike the THP scheme, in DFE there is no attempt to pre-cancel the imposed

interference. In DFE scheme, the interference is actively canceled at the receiver

side. Receivers in this scheme, cooperate by changing their detected signals, and

each of them uses these received signals to cancel the amount of the received

interference. In this case also, interested readers should consult standard texts like

[141]. As expected from the point to point systems, the DFE scheme outperforms

the THP one. The signal flow description of this scheme is as follows. In this

scheme it is assumed that the precoder has a linear structure. The transmit

symbols for ith SU-Tx, xi, is

xi = P isi (4.18)

where P i ∈ CTi×ti is the linear precoder matrix. The received signal at the receiver

is also first linearly equalized using Di ∈ Cti×Ri and then the resultant signal is fed

to a non-linear block having a series of feed-back filters, F i = [F T
i,1, · · · ,F T

i,K ]
T ,

resulting in a temporary signal ŝi where,

ŝi = Diyi +

K
∑

j=16=i

F i,js̃j . (4.19)

where s̃i is the output signal of the equalizer. As it is clear, to have the feedback

signals for both THP and DFE cases, some sort of collaboration between users is

needed and assumed.

To characterize the system, and regardless of its configuration, the following
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performance measures for each link are required:

TxPi = Esi [x
∗
ixi] , ∀i (4.20)

MSEi =

{

Esi [‖ŝi − si‖2] for DFE

Esi [‖s̃i − si‖2] for THP
∀i (4.21)

IPk = Esi [w
∗
kwk] , ∀k (4.22)

where all the mathematical expectation are calculated considering the signal do-

main. In the following proposition, the mathematical expressions of these entities

are revealed.

Proposition 4.1. For the aforementioned system, the transmit power of ith link,

and its MSE, and the interfering power on kth PU-Rx, is represented as

TxPi = ζi‖P i‖2F , (4.23)

IPk =

K
∑

i=1

ζi‖Gi,kP i‖2F , (4.24)

MSEi = ζi‖DiH i,iP i − I‖2F +

K
∑

j=16=i

ζj‖DiHj,iP j − F ′

i,j‖2F + σ2
ni
‖Di‖2F , (4.25)

where

ζi =

{

σ2
si

for DFE and Linear Precoding/Decoding

σ2
vi

for THP
(4.26)

and

F ′

i,j =

{

0 for Linear Precoding/Decoding

F i,j for DFE and THP
(4.27)

Proof. We will study the proof for the DFE case. The proof for the THP is similar

and will not be repeated here. For the ith link, the MSE is

MSEi = Esi

[

‖ŝi − si‖2
]

(4.28)

= Esi





∥

∥

∥

∥

∥

DiH i,iP isi +
K
∑

j=16=i

(DiHj,iP j − F ′

i,j)sj +Dini − si

∥

∥

∥

∥

∥

2


 (4.29)

= Esi

[(

(DiH i,iP i − I ti)si +
K
∑

j=16=i

(DiHj,iP j − F ′

i,j)sj +Dini

)∗

×
(

(DiH i,iP i − I ti)si +

K
∑

j=16=i

(DiHj,iP j − F ′

i,j)sj +Dini

)]

.

(4.30)
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This expression has nine terms. Those six terms which contains Esi [s
∗
i sj ] , i 6= j

and Esj ,ni

[

s∗jni

]

would be zero. So it is possible to continue the aforementioned

expressions as it follows:

MSEi = Esi [s
∗
i (DiH i,iP i − I ti)

∗ (DiH i,iP i − I ti) si] + Eni
[n∗

iB
∗
iBini] +

K
∑

j=16=i

K
∑

k=16=i

Esj

[

s∗j (DiHj,iP j − F ′

i,j)
∗
(DiHk,iP k − F ′

i,k) sk
]

. (4.31)

To simplify this result, Lemma 2.5 is used. Knowing the statistics of si and

applying this lemma bearing in mind that the double summation has only a non-

zero value when k = j, we would have

MSEi = σ2
si
tr [(DiH i,iP i −Kti)

∗ (DiH i,iP i −Kti)] + σ2
ni
tr [D∗

iDi] +

K
∑

j=16=i

σ2
sj
tr
[

(DiHj,iP j − F ′

i,j)
∗
(DiHj,iP j − F ′

i,j)
]

(4.32)

, σ2
si
‖DiH i,iP i − I ti‖2F +

K
∑

j=16=i

σ2
sj
‖DiHj,iP j − F ′

i,j‖2F + σ2
ni
‖Di‖2F .

(4.33)

Using similar procedures would result the following expressions for TxPi and IPk.

TxPi = σ2
si
‖P i‖2F , (4.34)

IPk =

K
∑

i=1

σ2
si
‖Gi,kP i‖2F . (4.35)

Linear Beamforming

The linear precoding and decoding scheme is a special case of the DFE scheme

and occurs when the feedback filter at the receiver is assumed to be zero, i.e.,

F i,j = 0. So we will not present it here separately, however, since this model is a

simpler model, the simulation results are mostly relying the linear beamforming.

4.3 Problem Formulation

As mentioned earlier, a MSE measure is used in the design procedure of our

network. But depending on the type of uncertainty, the MSE of each link itself as
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well as interference power of each PU-Rx, may be a stochastic or a deterministic

process. To overcome this ambiguity, in the following formulation we will use a

functional of the MSEi and IPk for each link. For either case of SE or NBE models,

we will explicitly define this functional. For the SE model, the mathematical

expectation is a good example while for the NBE model, the identity function is

an appropriate example.
{

F [x] = Ex [x] , (SE model),

F [x] = x, (NBE model).
(4.36)

To design this network, we put the functional of MSE of the independent links in

a vector, say MSE, i.e.,

MSE = [F [MSE1] , · · · ,F [MSEK ]]
T . (4.37)

Our goal is to minimize this vector bearing in mind its uncertainty. To design the

transceiver it is formulated as

minimize
{Ai,Bi}Ki=1

max
∀ Hi,j

MSE (4.38a)

subject to TxPi ≤ Pi, ∀i, (4.38b)

F [IPk] ≤ κk, ∀ Gi,k, ∀k, (4.38c)

where Pi is the capped amount of power assigned to ith transmitter and κk is the

upper bound of interference power which allowed to be imposed on PU-Rx. It is

also possible to combine these two kinds of uncertainty for different constraints,

but here we will be consistent in choosing either of them. This vector optimization

problem can be treated by a mathematically standard technique, i.e., Scalarization

[92]. Using this technique, the objective function of (4.38) would be αT
MSE =

∑K

i=1 αiF [MSEi] where αi is the ith element of α. Here again, for the sake of

having a tractable mathematical formulation and also for simplicity, we assume

that α = 1, where 1 is vector having all its element equal to 1. So the objective

function is simply the sum MSE of all the links. This problem finally would be

minimize
{Ai,Bi}Ki=1

max
∀ Hi,j

1T
MSE (4.39a)

subject to TxPi ≤ Pi, ∀i, (4.39b)

F [IPk] ≤ κk, ∀ Gi,k, ∀k, (4.39c)
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Using epigraph form and introducing slack variables τi, (4.39) is rewritten as

minimize
{Ai,Bi}Ki=1

K
∑

i=1

τi (4.40a)

subject to TxPi ≤ Pi, ∀i, (4.40b)

F [IPk] ≤ κk, ∀ Gi,j, ∀k, (4.40c)

F [MSEi] ≤ τi, ∀ H i,k, ∀i. (4.40d)

In subsequent sections, we will deal with this problem for SE and NBE models.

4.3.1 Conventional Problem Formulation

To the best of our knowledge, there is no published work on the minimum MSE

joint design of the interfering networks, except [143]. There, a minimum MSE

joint design is presented and, although is not supposed to cover the cognitive

radio setup, it is used as a way to assess the performance of the robust methods.

This problem formulation, using our notation, is simply reviewed as (refer to (27)

in [143])

minimize
K
∑

i=1

MSEi (4.41a)

subject to TxPi ≤ Pi ∀i. (4.41b)

To cover the cognitive radio setup, the interfering power constraints, i.e., IPk ≤

κk, ∀k should be added to this problem.

4.4 Robust Iterative Solution for SE model

Using the SE model, both IPk and MSEi are stochastic quantities. To come up

with the an appropriate problem formulation and elimination of stochastic un-

certainty we choose mathematical expectation as the aforementioned functional of
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these quantities, i.e., F [·] ≡ E· [·]. So our problem for SE model would be

minimize
{Ai,Bi}Ki=1

K
∑

i=1

τi (4.42a)

subject to TxPi ≤ Pi ∀i, (4.42b)

EΛk
[IPk] ≤ κk ∀k, (4.42c)

E∆i
[MSEi] ≤ τi ∀i. (4.42d)

To start with this problem, we should find the exact expressions for EΛk
[IPk] and

E∆i
[MSEi].

Proposition 4.2. For the aforementioned system using SE model for the uncer-

tainty, and averaging over the CSI, Esi [MSEi], Esi [IPk] and have SOC structure:

EΛk
[IPk] , ‖ιk(P i)‖2 (4.43a)

E∆i
[MSEi] , ‖µi(Di,P i,F i,j)‖2 (4.43b)

where

ιk =







MAT

[

{

ζivec
[

G̃i,kP i

]}K

i=1

]

MAT
[

{

ζiσΛk
vec
[

P T
i ⊗ IR′

k

]}K

i=1

]






(4.44a)

µi =





















ζivec
[

DiH̃ i,iP i − I
]

ζi σ∆i
vec
[

P T
i ⊗Di

]

MAT

[

{

ζjvec
[

DiH̃j,iP j − F i,j

]}K

j=16=i

]

MAT
[

{

ζjσ∆j
vec
[

P T
j ⊗Di

]}K

j=16=i

]

σni
vec [Di]





















(4.44b)

Proof. Using Proposition 4.1 and Lemma 2.4 the proof is straight forward.

Proposition 4.3. The problem of (4.42) may be expressed as a SOCP.

Proof. Using Proposition 4.1 and the trick (2.29c), it is clear that all the con-

straints are in SOC structure. Having a linear objective function with SOC con-

straints would lead us to this conclusion that (4.42) is a SOCP. This problem is:
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minimize
{Ai,Bi}Ki=1

K
∑

i=1

τi (4.45a)

subject to ‖vec [P i] ‖2 ≤ Pi, ∀i, (4.45b)

‖ιk(P i)‖2 ≤ κk, ∀k, (4.45c)

‖µi(P i,Di,F
′

i,j)‖2 ≤ τi, ∀i. (4.45d)

The cost function in the epigraph form is composed of only the slack variables

and is linear in them, so it is convex. The MSE, TxP and also IP, are all the norm of

a multi-linear form composed of the filter variables, so they are also bi-convex as

well. This problem, despite its appealing structure, is not simultaneously convex

in both variables. To overcome this, an iterative procedure is proposed. This

method has a known deficiency. To update the transmit side matrices we need

the receive side information and vice versa. This deficiency is subject to both

robust and conventional methods and cannot be solved in the physical layer due

to non-causalities. This problem may be solved in higher layers and gives rise to

the concept of the cooperation in communication [143]. In the following algorithm

we will iterate on all of the variables. We will divide them into two disjoint sets,

at each iteration, one set is fixed and the resultant convex problem (in terms of

the remaining set of variables) is solved numerically as a sub-problem and in the

next sub-problem the role of the variables are changed.

Algorithm 4.1. [Iterative beamformer design for the SE model]

1. Let k ← 0.

Initialize the beamformer matrices P
[0]
i ,D

[0]
i and F ′[0]

i,j.

Compute the initial MSE, MSE[0] =
∑2

i=1 ‖µi(P
[0]
i ,D

[0]
i ,F ′

i,j)‖2.

2. Let k ← k + 1.

Update beamforming matrices using the following procedures:
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(I) For The THP Scheme:

{P [n+1]
i ,F ′[n+1]

i,j } = arg min
P i,F i

K
∑

i=1

wiτi (4.46a)

subject to σ2
vi
‖P i‖2 ≤ ρi, ∀i, (4.46b)

‖ιk(P i)‖2 ≤ κk, ∀k, (4.46c)
∥

∥

∥
µi

(

P i,F
′

i,j

∣

∣

∣
D

[n]
i

)∥

∥

∥

2

≤ τi, ∀i, (4.46d)

and

D
[n+1]
i = argmin

Di

K
∑

i=1

wiτi (4.47a)

subject to
∥

∥

∥
µi

(

Di

∣

∣

∣
P

[n]
i ,F ′[n]

i,j

)∥

∥

∥

2

≤ τi, ∀i. (4.47b)

(II) for the DFE Scheme:

P
[n+1]
i = argmin

P i

K
∑

i=1

wiτi (4.48a)

subject to σ2
si
‖P i‖2 ≤ ρi, ∀i, (4.48b)

‖ιk(P i)‖2 ≤ κk, ∀k, (4.48c)
∥

∥

∥
µi

(

P i

∣

∣

∣
D

[n]
i ,F ′[n]

i,j

)∥

∥

∥

2

≤ τi, ∀i, (4.48d)

and

{D[n+1]
i ,F ′[n+1]

i,j } = arg min
Di,F i

K
∑

i=1

wiτi (4.49a)

subject to
∥

∥

∥
µi

(

Di,F
′

i,j

∣

∣

∣
P

[n]
i

)∥

∥

∥

2

≤ τi, ∀i, (4.49b)

Update the MSE at this stage: MSE
[k] =

∑2
i=1 ‖µ̄i(P

[k]
i ,D

[k]
i ,F ′

i,j)‖2.

3. Repeat step (2) until reaching a steady MSE, i.e., |MSE[k]−MSE[k−1]| ≤

ε or until the maximum number of iterations (Kmax) is reached.

Since this algorithm is based on the ACS algorithm, it will converge, but the

convergence is not proved here.
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4.5 Robust Iterative Solution for NBE Model

For NBE model MSEi and IPk are deterministic. In this case we use the identity

function as the functional of these quantities, i.e., F [MSEi] = MSEi and F [IPk] =

IPk.

The next proposition shows that these two quantities, although uncertain, can

be expressed as the squared norm of two vectors.

Proposition 4.4. The above mentioned quantities may be represented as quanti-

ties with SOC structure having infinitely many realizations:

IPk , ‖Ik‖2 , ‖Ĩk + IΛk
vec [Λk] ‖2 (4.50a)

MSEi , ‖Mi‖2 , ‖M̃i +M∆i
vec [∆i] ‖2 (4.50b)

where

Ĩk = MAT

[

{

σsivec
[

G̃i,kP i

]}K

i=1

]

, (4.51)

IΛk
= MAT

[

{

σsi(P
T
i ⊗ IR′)

}K

i=1

]

, (4.52)

M̃i =











σsivec
[

DiH̃ i,iP i − I
]

MAT

[

{

σsjvec
[

DiH̃j,iP j − F ′

i,j

]}K

j=16=i

]

σni
vec [D]i











, (4.53)

M∆i
=







σsiP
T
i ⊗Di

MAT
[

{

σsjP
T
j ⊗Di

}K

j=16=i

]

0






. (4.54)

Proof. Using Proposition 4.1 and Lemma 2.4 the proof is straight forward.

After these preliminaries, we may formulate our design problem for NBE model

of uncertainty as

minimize
{Ai,Bi}Ki=1

K
∑

i=1

τi (4.55a)

subject to ‖πi‖2 ≤ Pi, ∀i, (4.55b)

‖Ik‖2 ≤ κk, ∀Λk : ‖Λk‖F ≤ λk, ∀k, (4.55c)

‖Mi‖2 ≤ τi, ∀∆i : ‖∆i‖F ≤ δi, ∀i. (4.55d)
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We will show that this semi-infinite problem can be recast as a SDP. To further

simplify these constraints we use the Schur Complement Lemma to express these

constraints in appropriate LMI form.

minimize
{Ai,Bi}Ki=1

K
∑

i=1

τi (4.56a)

subject to ‖πi‖2 ≤ Pi, ∀i, (4.56b)
[

κk I∗
k

Ik I

]

� 0, ∀Λk : ‖Λk‖F ≤ λk, ∀k, (4.56c)

[

τi M∗
i

Mi I

]

� 0, ∀∆i : ‖∆i‖F ≤ δi, ∀i. (4.56d)

To further simplify this problem, it is needed to relax the semi-infiniteness of the

last two constraints. After employing Lemma 2.8, it is possible to use the following

algorithm to find the best beamforming matrices.

Algorithm 4.2. [Iterative beamformer design for the NBE model]

1. Let k ← 0.

Initialize the beamformer matrices P
[0]
i ,D

[0]
i and F

[0]
i,j.

Compute the initial MSE, MSE[0] =
∑2

i=1 ‖Mi(P
[0]
i ,D

[0]
i ,F

[0]
i,j)‖2.

2. Let k ← k + 1.

Update beamforming matrices using the following procedures:

(I) For the DFE Scheme:

{D[n+1]
i ,F

[n+1]
i,j } = arg min

Di,F i,j

K
∑

i=1

wiτi (4.57a)

subject to Di � 0, ∀i, (4.57b)

τi, ηi ≥ 0, ∀i, (4.57c)
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and

P
[n+1]
i = argmin

P i

K
∑

i=1

wiτi (4.58a)

subject to ‖πi‖2 ≤ ρi, ∀i, (4.58b)

Ik � 0, ∀k, (4.58c)

Mi � 0, ∀i, (4.58d)

ζk ≥ 0, ∀k, (4.58e)

τi, ηi ≥ 0, ∀i, (4.58f)

where

Di =







τi − ηi M̃∗
i (P

[n]
i ) 0

M̃i(P
[n]
i ) I −δiM∆i

(P
[n]
i )

0 −δiM∗
∆i
(P

[n]
i ) ηiI






, (4.59a)

Ik =





κk − ζk Ĩ∗
k 0

Ĩk I −λkIΛk

0 −λkI
∗
Λk

ζkI



 , (4.59b)

Mi =





τi − ηi M̃∗
i (U i,j) 0

M̃i(U i,j) I −δiM∆i
(U i,j)

0 −δiM∗
∆i
(U i,j) ηiI



 , (4.59c)

U i,j = {D[n]
i ,F

[n]
i,j}∀i,j. (4.59d)

(II) For the THP Scheme

{P [n+1]
i ,F

[n+1]
i,j } = arg min

P i,F i,j

K
∑

i=1

wiτi (4.60a)

subject to ‖πi‖2 ≤ ρi, ∀i, (4.60b)

Ik � 0, ∀k, (4.60c)

Mi � 0, ∀i, (4.60d)

ζk ≥ 0, ∀k, (4.60e)

τi, ηi ≥ 0, ∀i, τi ≥ 0, ∀i. (4.60f)

and

D
[n+1]
i = argmin

Di

K
∑

i=1

wiτi (4.61a)

subject to Di � 0, ∀i, (4.61b)

ηi, τi ≥ 0, ∀i. (4.61c)
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where

Ik =





κk − ζk Ĩ∗
k 0

Ĩk I −λkIΛk

0 −λkI
∗
Λk

ζkI



 , (4.62)

Mi =







τi − ηi M̃∗
i (D

[n]
i ) 0

M̃i(D
[n]
i ) I −δiM∆i

(D
[n]
i )

0 −δiM∗
∆i
(D

[n]
i ) ηiI






, (4.63)

Di =





τi − ηi M̃∗
i (U i,j) 0

M̃i(U i,j) I −δiM∆i
(U i,j)

0 −δiM∗
∆i
(U i,j) ηiI



 , (4.64)

U i,j = {P [n]
i ,F

[n]
i,j}∀i,j. (4.65)

Update the MSE at this stage: MSE
[k] =

∑2
i=1 ‖µ̄i(W

[k],D
[k]
i )‖2.

3. Repeat step (2) until reaching a steady MSE, i.e., |MSE[k]−MSE[k−1]| ≤

ε or until the maximum number of iterations (Kmax) is reached.

4.6 Simulation Results

To demonstrate the effectiveness of the developed methods, a simple MIMO ad

hoc cognitive radio network is simulated. The simulation setup is as follows: a set

of K = 2 interfering links each having T = 2 transmit antennas and R = 2 receive

antennas, transfer t = 2 complex valued symbols each at either time instant. This

network is installed within the service range of a primary network having a single

user, i.e., L = 1, which is also equipped with R′ = 2 receive antennas. The

transmit power budget of each SU-Tx is set to P = 1 mW and the maximum

allowed interfering power to the PU-Rx is assumed to be κ = −20 dBm. To

solve the problem the optimization package YALMIP/SDPT3 is used in which

YALMIP is our wrapper package that uses SDPT3 as its internal solver. The

tolerance of the proposed iterative algorithm is set to 10−4 and the maximum

number of iterations is set to 1001. For the NBE model simulations, it is assumed

1For the SE model, the design of the precoders and decoders for each channel realization
takes about 15-20 seconds. For the NBE model, for which the number of iterations depends on
the problem data, this time is between 20-50 seconds using a normal desktop PC. The proposed
methods and the underlying processing demand may be useful for realistic channels with only
slow variations.
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Fig. 4.3: Histogram of interfering power occurrences

that δi = λk, ∀i, k, and the uncertainty size varies from 0 to 1 taking values as

[0, 0.05, 0.25, 0.50, 1.0]T . For the SE model simulations, it is assumed that the

variances of the vector channel variations are σ2
∆ = σ2

Λ ∈ [0.0, 0.05, 0.25, 0.50]. To

be consistent during the presentation, these quantities are uniquely named as the

“Uncertainty Size.” Note that the cases with uncertainty size zero, are equal to

the results of the conventional design summarized in [143].

The results depicted in this chapter are based on an average of 500 simulation

runs using different channel realizations. In the following figures, except Fig. 4.3,

the Perfect CSI case refers to a simulation scenario when the uncertainty has zero

norm for the NBE model and zero variance for the SE model as stated in (4.41).

In this case, the nominal value of the channel is the actual channel realization

which is the only quantity describing the channel.

In Fig. 4.3 the histogram of achieved interfering powers to PU-Rx in differ-

ent cases is depicted. To obtain this figure, 1000 random channel realizations

are examined. For each realization, the precoder/equalizer filters based on un-

certainty sizes of 0.0, 0.05 and 0.25 are generated and the resultant systems are

used to transmit over channels with the appropriate uncertain CSI. This graph

demonstrates that the cases designed to be robust against the uncertainty will not

violate the interfering power constraints while the perfect-CSI-case (non-robust
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Fig. 4.4: Sum mean square error of symbol estimation in the cognitive radio
system using NBE model

case) filters will violate these constraints for most of the times. As explained be-

fore, the maximum allowable interfering power is equal to 1 mW, which is depicted

in the graph using a vertical bold solid line. As expected, the non-robust designs,

which face a larger uncertainty, will violate the constraints more often relative

to the cases facing a smaller uncertainty. It should be mentioned that the range

of achieved interfering powers for the non-robust case with an uncertainty size of

0.25 is much larger than the others, though these cases occur less frequently. The

graph is further magnified to highlight this.

In Figs. 4.4 and 4.5 the average sum MSE for different cases using NBE and

SE uncertainty models, are depicted. As expected, both graphs have an increasing

trend with noise power at the receiver, i.e., the higher the noise power, the larger

the sum-MSE. This relation is linear in nature, but here the graph shows sum-

MSE versus the 10 log10(σ
2
n) which results in a logarithmic curve. Based on this

figure, the non-robust case has the least amount of sum-MSE and the case with

the largest uncertainty size has the highest sum-MSE, although the difference is

not so large for both models which may be described based on the amount of the

transmit power. In case of perfect CSI, the transmit power is higher and it results

in a better Signal to Interference plus Noise Ratio (SINR) at the receive side,

which results in a better sum-MSE performance. The transmit power is lower
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Fig. 4.5: Sum mean square error of symbol estimation in the cognitive radio
system using SE model

in the uncertain scenarios leading to a smaller SINR and, as a result, a worse

sum-MSE performance. Interestingly, at the right most part of the graph, when

the noise power is 0 dBm, the performance of all scenarios converges and it seems

that noise dominates the received signal and the performance is independent of

the uncertainty or precoder/decoder choice. In Fig. 4.5 the sum MSE is depicted

for the SE model. Again, like in the case of the NBE model, the sum-MSE for the

non-robust case has a better performance relative to uncertain cases. As expected,

when the noise power of the users increases the sum-MSE also increases. This is

also found when the uncertainty size increases from σ2
∆ = 0, which indicates a

perfect CSI case, to σ2
∆ = 1.0, which has the highest uncertainty size studied here.

Using the SE model for uncertainty and in the perfect CSI case, the Esi [MSEi]

has fewer terms which results in a smaller sum MSE, especially relative to these

cases with large uncertainty size. This is due to the nature of Esi [MSEi]. From

now on and to be concise, as the transmit power, interfering power and required

iteration number to converge for both models have similar trends, only one figure

for each metric is included. As can be seen in Fig. 4.6, TxP varies less relative

to the sum MSE. This can be expected, because it is a quantity related to the

transmitter and should be less dependent on the receiver parameters such as the

receiver side noise variance. But because the transmit filters depend through the
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Fig. 4.6: Transmit power of a typical secondary transmitter using NBE model.

sum MSE to the noise power, there is a variation in TxP. In the larger noise power

region, the TxP does not increase monotonically, because it is limited by the IP

constraint. Interestingly, there is a large difference between the transmit power

of different scenarios. For the perfect CSI case when the noise power is equal

to 0 dBm, TxP is almost −10 dBm while for robust cases with an uncertainty

size of 0.05, 0.25, 0.50 and 1.0 it is about −12 dBm, −17 dBm, −21 dBm and

−26 dBm respectively. To have a better understanding about this phenomenon, it

may be interpreted that the design procedure does not consider the nominal value

of the channels with large variations as a fair representation of a typical channel

realization. In these cases, the designed precoder transmits less power over the

uncertain channels. This is further explained using Fig. 4.7. In this figure, H̃HH1,1

shows the vectorized representation of the nominal value of the channel between

the first set of transmitters and receivers. The circles show the uncertainty bounds

for two different cases. In this figure H
[1]
1,1 is one of the realizations of the channel

with a fairly small uncertainty, while H
[2]
1,1 belongs to a channel realization with

the same nominal value but with a larger uncertainty. Initially H2,2 and H̃1,1

are far apart and the transmit power towards them will have a small interference,

but this is not true for H2,2 and H
[2]
1,1. The transmit power in either of them will

interfere more on the other one and therefore it is not a good idea to transmit
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Fig. 4.7: Channel uncertainty concept illustration.

using high power when the uncertainty is large enough to avoid the interference

with adjacent channels. This phenomenon is automatically taken into account by

the design method and may be used to describe the behavior of IPk as well. It

should be mentioned that the contrasting behavior of the transmit power in this

chapter with the previous one is a result of the different problem formulations. In

the previous chapter we aimed to minimize the transmit power while a bounded

SINR was targeted, but in this chapter our goal is to minimize the sum MSE

while having a bounded power. The difference in the trend of the transmit power

resulted from the problem formulation of chapter 3 and subsequent chapters is

inevitable and is due to the problem structure. It is clear that in Chapter 3,

forgetting the IPℓ constraint, the problem formulation would be something like

min TxP (P1)

S.t. SINRk ≥ γk

while in Chapters 4, 5, and 6, the problem formulation is as follows:

min
∑

MSEi (P2)

S.t. TxPk ≤ Pk
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Fig. 4.8: Interference power received at a typical primary receiver.

It is clear that for perfect CSI case, (P2) will result in lower sum MSE relative to

partial CSI cases, which makes it possible for the Tx side to transmit with more

power although bounded, contributing to even better sum MSE. And because

of that (P2) will result in more transmit power for perfect CSI case which is

contradicting to the behaviour of (P1), aiming to minimize the transmit power

itself. In (P1), for perfect CSI case, the SINR is larger relative to partial CSI

cases, which makes it possible to reduce the transmit power further resulting in

lower transmit power for perfect CSI case. In Fig. 4.8 the interfering power to

PU-Rx for different scenarios is shown. As can be seen from this figure, for the

perfect CSI case, the interfering power is equal to its design limit, i.e. −20 dBm

while for robust cases, the interfering power is more or less smaller than this

non-robust case. It is observed that the interfering power for uncertain cases is

more or less constant and follows the TxP trends. For the largest uncertainty

size of δ = λ = 1.0, the amount of IPk is about 4 dBm less than the non-

robust case. In terms of satisfying the PR-Net interfering power requirements, the

designed network for the largest uncertainty size has clearly a better performance

relative to other cases. As the perfect CSI design transmits more power relative

to uncertain cases, it is expected to have more interfering power for the perfect

CSI case which is explained in Fig. 4.8. Although the interfering power to each
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Fig. 4.9: Comparison of the sum MSE of the system for linear and nonlinear
designs.

PU-Rx does not depend directly on noise power, there is a relation between them

through the precoder matrices. In the case of higher noise powers, to support

the system appropriately, the transmitters are transmitting more power resulting

in the precoder matrices with larger norms, which results in higher interfering

powers.

In Fig. 4.9 the comparison of different linear and nonlinear schemes is displayed.

As expected, the nonlinear designs outperform the linear designs, as they oppose

more complicated structure for the precoder and decoder subsystems, resulting
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in a better sum MSE. Also as expected, the DFE scheme outperforms the THP

design. It can be observed that the effective signal variance is larger in the THP

scheme, resulting in larger sum MSE. The other trends of the sum MSE which are

explained for Figs. 4.4 and 4.5 are preserved here as well.

4.7 Conclusion

The design of robust optimized precoder/decoders for MIMO ad hoc interfering

networks is studied in this chapter. It is assumed that the CSI for all important

matrix channel gains is not known perfectly, i.e., the CSI has uncertainty. This

uncertainty is described into two different ways: using the NBE model which is a

deterministic model and using the SE model which is a purely stochastic model.

Both scenarios are studied leading to the following conclusions: for the SE model,

the aforementioned problem can be recast as SOCP while for the NBE model,

the same problem can be a SDP. These two programming problems are efficiently

solved using general numerical optimization packages. Simulations are used to

demonstrate the behavior of the designed precoder/decoders.
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Chapter 5

Robust Linear Beamforming for
MIMO One-Way Relay Channel

5.1 Introduction

The problem of non-regenerative MIMO relay design with or without a direct

link is introduced in [83] where the authors optimize the capacity between the

source and the destination. Both of the optimum canonical coordinates of the

relay matrix and the upper and the lower bounds of the optimal system capacity

are discussed respectively. The problem of joint Multiple-Input Multiple-Output

(MIMO) beamforming and power adaptation at source and relay with QoS con-

straints is discussed in [85],[86]. In these papers, a broadcasting relay scheme with

a MIMO architecture in a source-to-relay link is studied. Both receive and transmit

beamforming is accomplished in the relay station. As a result, optimum beam-

forming weights and power adaptation are calculated. The linear relay beamformer

for a MIMO relay broadcast channel with limited feedback with zero forcing and

minimum mean square error measures is described in [87]. There it is concluded

that only Channel Direction Information (CDI) feedback is sufficient to determine

the beamforming vector in the proposed scheme which highly reduces the amount

of the required feedback. A similar treatment is also covered in [88] for the Single-

Input Multiple-Output (SIMO) / Multiple-Input Single-Output (MISO) case with

only one set of CSI imperfectly known. In this paper both systems are designed

iteratively. The iterative design of the linear relay precoder and the destination

equalizer is considered in [89]. The joint power and time allocation for multi-hop
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relay networks are addressed in [90],[91] based on the Second Order Cone Pro-

gram (SOCP) and Semidefinite Program (SDP) [92],[93]. In [94] the problem of

collaborative uplink transmit beamforming with robustness against channel esti-

mation errors for a DF relay is addressed. The CSI has a stochastic error model

and the proposed algorithms can be applied to both line of sight propagation and

fading channels.

In this paper a MIMO AF relay scheme with imperfect CSI is studied. It is

assumed that the CSI for both source-to-relay and relay-to-destination is not per-

fectly known. The problem formulation is based on the minimization of the Mean

Square Error (MSE) of symbol estimation with a constraint on the transmission

power of the relay station.

The aforementioned problems are efficiently solved numerically using the pack-

ages YALMIP [139] and SDPT3 [140].

Future wireless networks are expected to provide large bandwidth for high

data rate services like mobile TV or video on demand services. Unfortunately the

achievable data rate of wireless systems decreases dramatically when the distance

between the source and the destination increases. In order to increase the trans-

mission distance, relay networks are required. The relay station sits in between the

two ends of the communication link and extends the range of the wireless trans-

mission. This network, also saves the BS power by preventing it from transmitting

a fairly large amount of power to provide the required QoS for the distant mobile

users. Simultaneously exploiting the relay concept and multiple antennas in the

system will improve the reliability of the transmission. A two-hop AF relaying

scheme is considered in this chapter. In this scheme, the source first transmits

information to the relay station and then, in the subsequent time slot, this infor-

mation is sent to the destination from the relay station. Based on this definition,

a half-duplex transmission needs two time slots for any transmission of data from

source to destination. Similar to the conventional wireless communication system

design, the CSI plays an important role in the design of the system. Practically

the CSI is imperfect due to rapidly changing urban environments and channel es-
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Source Relay Destination

Fig. 5.1: Signal Flow Graph of a Point to Point MIMO Relay Channel.

timation errors, for example. In this chapter, the problem of linear beamforming

design for a two-hop AF relay station with imperfect CSI for both source-to-relay

and relay-to-destination is solved. The problem formulation is based on the min-

imization of the system wide MSE of symbol estimation, with a constraint on the

transmission power of the relay station.

The rest of the chapter is structured as follows. In Section 5.2 the model of the

MIMO relay system is defined and analyzed. The problem formulation for both

SE and NBE models are also described in this section. Section 5.3 contains the

solutions to the problems. Simulation results are shown in Section 5.4. Finally

Section 5.5 concludes the chapter.

5.2 System Model

A wireless MIMO relay system in which source, relay and destination stations are

equipped with multiple antennas is shown in Fig. 5.1. It is assumed that source

and destination are equipped with T transmit and receive antennas, respectively,

while the relay has R antennas. The input signal samples, x ∈ CT , are drawn

from a stochastic source with the following characteristics:

Ex [x] = 0, (5.1a)

Ex [xx
∗] = I. (5.1b)

This signal is sent over a channel, H ∈ C
R×T , and received by the relay station.

The received signal at the relay station is linearly precoded using W ∈ CR×R and

sent again to the destination over channel G ∈ CT×R. It is assumed that both

channels are not known perfectly at both the relay station and the destination. It

is also assumed that the CSI is constant over the time period of the transmission
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of each frame, i.e., both channels are in slow block fading mode. The uncertainty

model for both H and G is defined as

H = H̃ +Λ, (5.2a)

G = G̃+∆, (5.2b)

where H̃ and G̃ are the nominal values of the CSI andΛ and∆ are the uncertainty

matrix. Uncertainty is mainly modeled using the SE or the NBE models. In the

SE model, it is assumed that

{

EΛ [Λ] = 0,

EΛ [vec [Λ] vec [Λ]∗] = σ2
Λ,

(5.3a)

{

E∆ [∆] = 0,

E∆ [vec [∆] vec [∆]∗] = σ2
∆,

(5.3b)

while for the NBE model, the uncertainty matrix has the following property:

‖Λ‖2F ≤ δΛ, (5.4a)

‖∆‖2F ≤ δ∆. (5.4b)

The received signal is then equalized at the destination using a linear receive filter

D ∈ CT×T . The output of the equalizer is given by

x̂ = DGWHx+DGWn +Du, (5.5)

where n ∈ CR and u ∈ CT are the zero-mean white Gaussian noise in the relay sta-

tion and at the destination respectively, i.e., n ∼ N (0, σ2
nI) and u ∼ N (0, σ2

uI).

A MSE-based design procedure is used in this chapter to design the relay

station precoder matrix.

Proposition 5.1. For the aforementioned system, the MSE of symbol estimation

is defined as follows:

MSE(W ,D) , Ex

[

‖x̂− x‖2
]

(5.6)

= ‖DGWH − I‖2F + σ2
n‖DGW ‖2F + σ2

u‖D‖2F . (5.7)
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Proof. Let

MSE(W ,D) = Ex

[

‖x̂− x‖2
]

(5.8)

= Ex

[

‖DGWHx +DGWn +Du− x‖2
]

(5.9)

= Ex {((DGWH − I)x+DGWn+Du)∗×

((DGWH − I)x+DGWn +Du)} . (5.10)

The above expression has six terms. These terms containing x & n, x & u and

n & u are zeros, due to this fact that they are mutually independent. Working

with the three remaining terms,

MSE(W ,D) = Ex [x
∗(DGWH − I)∗(DGWH − I)x] +

En [n∗(DGW )∗(DGW )n] + Eu [u
∗D∗Du] . (5.11)

Using Lemma 2.5 and using the statistics of the previously mentioned signals, the

MSE is

MSE(W ,D) = tr [(DGWH − I)∗(DGWH − I)]+

σ2
ntr [(DGW )∗(DGW )] + σ2

utr [D
∗D] . (5.12)

Finally using Lemma 2.2, the result is concluded.

MSE(W ,D) = ‖DGWH − I‖2F + σ2
n‖DGW ‖2F + σ2

u‖D‖2F . (5.13)

In the design procedure, the amount of transmit power of the relay station is

constrained and therefore this power is of great importance.

Proposition 5.2. The transmit power of the relay station is given by:

TxP(W ) , Ex

[

‖WHx+Wn‖2
]

(5.14)

= ‖WH‖2F + σ2
n‖W ‖2F . (5.15)
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Proof. Using the Lemma 2.2 and 2.5, it is clear that

TxP(W ) = Ex

[

‖WHx+Wn‖2
]

(5.16)

= Ex [(WHx+Wn)∗(WHx+Wn)] (5.17)

= Ex [x
∗(WH)∗(WH)x] + Ex [n

∗W ∗Wn] (5.18)

= tr [(WH)∗(WH)] + σ2
ntr [W

∗W ] (5.19)

= ‖WH‖2F + σ2
n‖W ‖2F . (5.20)

For a given set of (W ,D), both MSE(W ,D) and TxP(W ) depend on H , G

and consequently on Λ and ∆, and thus they are random variables. The design

formulation based on the worst-case scenario is to solve:

minimize
W,D

max
Λ,∆

MSE(W ,D) (5.21a)

subject to max
Λ

TxP(W ) ≤ P. (5.21b)

Using the epigraph form, this problem is equivalent to the following:

minimize
W,D,τ≥0

τ (5.22a)

subject to max
Λ

TxP(W ) ≤ P, (5.22b)

max
Λ,∆

MSE(W ,D) ≤ τ. (5.22c)

5.2.1 Conventional Problem Formulation

To compare the robust solutions with conventional solutions, the problem formu-

lation for a system with perfect CSI is presented. This problem formulation is

addressed in [144] as the “ZF-Based Design,” and for half-duplex relays, it is also

mentioned in [145]. It is straightforward to show that the conventional design is

a SOCP.

Proposition 5.3. Conventionally, the design of a MIMO relay channel with per-
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fect CSI is a SOCP:

minimize
W,D,τ≥0

τ (5.23a)

subject to ‖WH‖2F + σ2
n‖W ‖2F ≤ P, (5.23b)

‖DGWH − I‖2F + σ2
n‖DGW ‖2F + σ2

u‖D‖2F ≤ τ. (5.23c)

It is clear that (5.23) is not convex simultaneously in design variables W and

D, and we should resort to an iterative procedure to find the optimal values of

the filters.

5.2.2 SE Model for Uncertain CSI

In the SE model, both MSE(W ,D) and TxP(W ) are stochastic variables, we take

their expectations in the design formulation.

Proposition 5.4. For the system:

EΛ,∆ [MSE(W ,D)] = ‖DG̃WH̃ − I‖2F + σ2
∆‖(WH̃)T ⊗D‖2F + σ2

Λ‖I ⊗DG̃W ‖2F

+ σ2
n‖DG̃W ‖2F + σ2

nσ
2
∆‖W T ⊗D‖2F + σ2

u‖D‖2F ,
(5.24a)

EΛ [TxP(W )] = ‖WH̃‖2F + σ2
Λ‖I ⊗W ‖2F + σ2

n‖W ‖2F . (5.24b)

Proof. Using Lemma 2.2 and 2.3 it is possible to prove this proposition.

E∆ [MSE(W ,D)] = E∆ [vec [DGWHDGWHDGWH − III]∗ vec [DGWHDGWHDGWH − III]] +

σ2
nnnE∆ [vec [DGWDGWDGW ]∗ vec [DGWDGWDGW ]] + σ2

uuu‖D‖2F . (5.25)

It is possible to write vec [DGWH − I] as

vec [DGWH − I] = vec
[

D(G̃+∆)W (H̃ +Λ)− I
]

(5.26)

= vec
[

DG̃WH̃ − I
]

+ (I ⊗ (DG̃W ))vec [Λ] +

((WH̃)T ⊗D)vec [∆] + vec [D∆WΛ] . (5.27)

Neglecting the last term which is a bilinear function of both uncertainty matrices

(to have a mathematically tractable formulation), and conjugating the remaining
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terms, and performing the multiplication process of the first term of (5.25), a nine-

term expression remains. Applying the expectation, only three self multiplication

terms remain and the other six mutual multiplication terms become zero. The

same procedure can be applied to the second term of (5.25). Using Lemma 2.5,

will give the result. A similar but simpler procedure will prove the proposition for

EΛ [TxP(W )].

Using this proposition, it is possible to formulate the design based on the

following problem:

minimize
W,D,τ≥0

τ (5.28a)

subject to EΛ [TxP(W )] ≤ P, (5.28b)

EΛ,∆ [MSE(W ,D)] ≤ τ. (5.28c)

Again, this problem is not a convex problem. In the following section, we will

propose an iterative solution for this problem.

5.2.3 NBE Model

In the NBE model, both MSE(W ,D) and TxP(W ) are not stochastic processes, but

there are infinitely many realizations of them, because they directly depend on H

and G which have infinitely many realizations. Therefore the problem formulation

in this case is:

minimize
W,D,τ≥0

τ (5.29a)

subject to TxP(W ) ≤ P, ∀Λ : ‖Λ‖2F ≤ δΛ; (5.29b)

MSE(W ,D) ≤ τ,

{

∀∆ : ‖∆‖2F ≤ δ∆,

∀Λ : ‖Λ‖2F ≤ δΛ.
(5.29c)

5.3 Solutions for the Relay Design

The solutions of the relay beamformer design highly depend on the nature of the

uncertainty. The following proposition gives a very important property of the

design-involved entities.
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Proposition 5.5. For the MIMO relay system, TxP(W ) and MSE(W ,D) or their

expectations have a SOC structure: in particular for the SE model,

EΛ [TxP(W )] , ‖p(W )‖22, (5.30a)

EΛ,∆ [MSE(W ,D)] , ‖m(W ,D)‖22, (5.30b)

and for the NBE model,

TxP(W ) = ‖π̃(W ) + πΛ(W )vec [Λ] ‖22 (5.31a)

, ‖π(W )‖22, (5.31b)

MSE(W ,D) = ‖µ̃(W ,D) + µΛ(W ,D)vec [Λ] + µ∆(W ,D)vec [∆] ‖22 (5.31c)

, ‖µ(W ,D)‖22. (5.31d)

Proof. Using Lemma 2.2 and 2.5 and neglecting the bilinear terms:

m(W,D) =

























vec
[

DG̃WH̃ − I
]

σ∆vec
[

(WH̃)T ⊗D
]

σΛvec
[

I ⊗ (DG̃W )
]

σnvec
[

DG̃W
]

σnσ∆vec
[

W T ⊗D
]

σuvec [D]

























, (5.32a)

p(W ) =







vec
[

WH̃
]

σΛvec [I ⊗W ]
σnvec [W ]






, (5.32b)

µ̃(W,D) =









vec
[

DG̃WH̃ − I
]

σnvec
[

DG̃W
]

σuvec [D]









, (5.32c)

µ∆(W,D) =





(WH̃)T ⊗D

σnW
T ⊗D

0



 , (5.32d)

µΛ(W,D) =





I ⊗ (DG̃W )
0
0



 , (5.32e)

π̃(W ) =

[

vec
[

WH̃
]

σnvec [W ]

]

, (5.32f)

πΛ(W ) =

[

I ⊗W

0

]

. (5.32g)
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Therefor problem (5.28) for the SE model becomes

minimize
W,D,τ≥0

τ (5.33a)

subject to ‖p(W )‖2 ≤ P, (5.33b)

‖m(W ,D)‖2 ≤ τ. (5.33c)

As this problem is a biconvex problem, we should resort to an iterative method

to solve it. The solution procedure is as follows:

Algorithm 5.1. [Iterative beamformer design for SE model]

1. Let k ← 0.

Initialize the beamformer matrices W [0] and D[0].

Compute the initial MSE, MSE[0] = ‖m(W [0],D[0])‖2.

2. Let k ← k + 1.

Update beamforming matrices using the following procedures:

W [k] = arg min
W ,τ≥0

τ (5.34a)

S. t. ‖p(W )‖2 ≤ P, (5.34b)

‖m(W ,D[k−1])‖2 ≤ τ, (5.34c)

and

D[k] = arg min
D,τ≥0

τ (5.35a)

S. t. ‖m(W [k−1],D)‖2 ≤ τ. (5.35b)

Update the MSE at this stage: MSE
[k] = ‖m(W [k],D[k])‖2.

3. Repeat step (2) until a steady MSE is reached, i.e., |MSE[k]−MSE[k−1]| ≤

ε or until the maximum number of iterations (Kmax) is reached.

In this procedure, ε is a predefined tolerance level and Kmax is selected large

enough to let the procedure to converge. Since this algorithm practically converges

after few iterations, during the simulations Kmax is selected to be 100 but it is not

limited to this value. It also should be mentioned that using some standard tricks

88



[93], each of (5.34) and (5.35) may be converted to a standard SOCP and then

efficiently solved using interior-point methods. Since Algorithm 5.1 is based on

the ACS algorithm, it will converge and the proof is not mentioned here. From the

computer simulations we found on average that the SE model requires 8 iterations

to converge (with ε = 10−4) while the NBE model needs 12 iterations using a

similar scenario.

Unlike the SE model and its straightforward problem formulation, for NBE

model it is required to manipulate the problem formulation. To keep the following

equations simple, the dependency of π and µ on W and D is not mentioned

explicitly, though, it is implicitly presumed. Using the Schur Complement Lemma

(Lemma 2.6) the following problem

minimize
W,D,τ≥0

τ (5.36a)

subject to ‖π‖2 ≤ P ∀Λ : ‖Λ‖2F ≤ δΛ, (5.36b)

‖µ‖2 ≤ τ,

{

∀Λ : ‖Λ‖2F ≤ δΛ,

∀∆ : ‖∆‖2F ≤ δ∆,
(5.36c)

is rewritten as

minimize
W,D,τ≥0

τ (5.37a)

subject to

[

P π∗

π I

]

� 0, ∀Λ : ‖Λ‖2F ≤ δΛ, (5.37b)

[

τ µ∗

µ I

]

� 0,

{

∀Λ : ‖Λ‖2F ≤ δΛ,

∀∆ : ‖∆‖2F ≤ δ∆.
(5.37c)

To further simplify this problem, the relaxation of the semi-infinite constraints is

done using the Theorem 2.1.

To use this theorem (5.37c) is rewritten. The LMI of (5.37c), using the nota-

tions of (5.31) is rewritten as

[

τ µ̃∗

µ̃ I

]

+

[

0 (µ∆vec [∆])∗

µ∆vec [∆] 0

]

+

[

0 (µΛvec [Λ])∗

µΛvec [Λ] 0

]

� 0,

(5.38)
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By choosing

A =

[

τ µ̃∗

µ̃ I

]

, Q1 = Q2 = [−1 0],

P 1 =
[

0 µ∗
∆

]

, P 2 =
[

0 µ∗
Λ

]

,

X1 = vec [∆] , X2 = vec [Λ] ,

the relaxed version of (5.37c) is as follows:








τ − (ǫ1 + ǫ2) µ̃∗ 0 0
µ̃ I −δ∆µ∆ −δΛµΛ

0 −δ∆µ∆
∗ ǫ1I 0

0 −δΛµΛ
∗ 0 ǫ2I









� 0, (5.39)

τ, ǫ1, ǫ2 ≥ 0. (5.40)

Using a similar procedure, (5.37b) is recast as




P − ǫ3 π̃∗ 0
π̃ I −δΛπΛ

0 −δΛπ∗
Λ ǫ3I



 � 0, (5.41)

ǫ3 ≥ 0. (5.42)

Finally, using the previous results, the design problem becomes:

minimize
W,D,τ≥0

τ (5.43a)

subject to P(W ) � 0, (5.43b)

M(W ,D) � 0, (5.43c)

ǫ1, ǫ2, ǫ3 ≥ 0, (5.43d)

where

P(W ) =





P − ǫ3 π̃∗ 0
π̃ I −δΛπΛ

0 −δΛπ∗
Λ ǫ3I



 , (5.44a)

M(W ,D) =









τ − (ǫ1 + ǫ2) µ̃∗ 0 0
µ̃ I −δ∆µ∆ −δΛµΛ

0 −δ∆µ∆
∗ ǫ1I 0

0 −δΛµΛ
∗ 0 ǫ2I









. (5.44b)

This problem also is not convex, due to the biconvex structure of µ̃, µ∆ and µΛ.

Here, again, an iterative procedure is proposed to find the optimal value of the

beamformer matrices.
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Algorithm 5.2. [Iterative beamformer design for NBE model]

1. Let k ← 0.

Initialize the beamformer matrices, W [0] and D[0].

Compute the initial MSE, MSE[0] = ‖µ(W [0],D[0])‖2.

2. Let k ← k + 1.

Update beamforming matrices using the following procedures:

W [k] = arg min
W ,τ≥0

τ (5.45a)

S. t. P(W ) � 0, (5.45b)

M(W ,D[k−1]) � 0, (5.45c)

ǫ1, ǫ2, ǫ3 ≥ 0, (5.45d)

and

D[k] = arg min
D,τ≥0

τ (5.46a)

S. t. M(W [k−1],D) � 0, (5.46b)

ǫ1, ǫ2 ≥ 0, (5.46c)

Update the MSE at this stage: MSE
[k] = ‖µ(W [k],D[k])‖2.

3. Repeat step (2) until a steady MSE is reached, i.e., |MSE[k]−MSE[k−1]| ≤

ε or until the maximum number of iterations (Kmax) is reached.

The convergence of this algorithm is inherent from the convergence of the ACS

algorithm.

One of most important aspects of both Algorithm 5.1 and Algorithm 5.2 is that

it is possible to show that the these problem formulations cover the conventional

problem formulation, as conventional design procedure is a special case of these

algorithms. This fact is stated and proved in the following proposition.

Proposition 5.6. The robust problem formulation with uncertainty size of zero,

would be equal to the conventional problem formulation.
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Table 5.1: Percentage of the Power Constraint Violations

Perfect CSI CSI with δ∆ = 0.05 CSI with δ∆ = 0.25
Conventional Design 0% 32.5% 36.5%

Robust Design (δ∆ = 0.05) 0% 0% 19.1%
Robust Design (δ∆ = 0.25) 0% 0% 0%

Proof. To prove this proposition, we will focus on each individual iteration. At

each iteration, for the SE model, it is clear that with no uncertainty, the mathemat-

ical expectation of both TxP and MSE are equal to their conventional counterparts.

For the NBE model it is not that straightforward and it is formally proven here.

In this case, with the uncertainty size equal to zero, i.e., δ∆ = δΛ = 0, both P and

M become block diagonal matrices. To be positive semi-definite, these block di-

agonal matrices should have a positive semi-definite diagonal element. The lower

right elements of these matrices are composed of identity matrices that are positive

semi-definite for any positive slack variables, even when ǫi → 0+. Interestingly,

the upper left elements of these matrices, using Schur’s complement lemma, are

equal to the constraints of (5.23) with any arbitrary precision, which completes

the proof.

In the following section the simulation results, based the numerical solution of

this problem, are presented.

5.4 Simulation Results

It is assumed that the source and the destination are equipped with T = 2 anten-

nas. It is also assumed that the relay station has R = 3 antennas. The transmit

power of the relay station is limited to P = 10 Watts. The uncertainty size is

varied from 0 (perfect CSI case, which is equivalent to the conventional case) to

1. The resulting graphs are the average of 100 simulation runs. In each run, the

CSI (for nominal value of the channel) is generated randomly according to a zero-

mean complex normal distribution with a variance equal to 1. In the following,

the perfect CSI case is the conventional design procedure based on (5.23).
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Fig. 5.2: Transmit power constraint histogram.

In Fig. 5.2, the histogram of the transmit power for different scenarios using

the NBE model of uncertainty is depicted. To better quantify these graphs, the

data is summarized in Table 5.1 as well. To get these results, a 10,000-time Monte

Carlo simulation is executed. At each run, the beamforming matrices for three

different cases, i.e., perfect CSI case and the cases designed to be robust against

the uncertainty size of δ∆ = 0.05 and 0.25 are generated. The resulting system

is faced with a channel realization with the aforementioned uncertainties. This

means that all three designed systems are used against the CSI with uncertainties

equal to 0.0, 0.05 and 0.25 to test the robustness of the design procedure. This is

in line with our previous robustness test in previous chapters. This test shows that

the robustly designed systems, are actually not violating the constraints in real

systems based on a Monte Carlo simulation. It is clear that the systems that were

designed to be robust against CSI variations, do not violate the transmit power

constraint at all. The systems which were designed to rely on the perfect CSI only,

may violate this constraint when faced with uncertain CSI. And as expected, the

larger the uncertainty size, the more the transmit power constraint is violated with

prefect CSI.

In Fig. 5.3 the MSE of the system for both models is displayed. As can be

seen, both SE and NBE model-based MSE’s exhibit an increasing trend with the
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Fig. 5.3: MSE of the symbol detection.

increasing noise power, because MSE is proportional to the noise power. With

increasing the noise power, the MSE increases as well. It is clear that the curves

referring to scenarios with larger uncertainties have larger MSE. Since the MSE is

also proportional to the uncertainty size, with increasing the uncertainty size, the

MSE also increases.

In Fig. 5.4 the transmit power of the relay station for both models is shown.

As can be observed, by increasing the noise power the transmit power of the relay

station decreases slightly for both models. The amount of the transmit power is

dependent on the uncertainty size. For the perfect CSI case, the required transmit

power is larger than in the cases with larger variations in the CSI. It is because in

perfect CSI case the resultant MSE is smaller than cases with larger uncertainty

size resulting in this opportunity to transmit more power to get better signals at

the destination. Also as can be seen from Fig. 5.2, the larger the uncertainty size,

the smaller the transmit power.

In Fig. 5.5 the Bit Error Rate (BER) of the system under the different uncer-

tainty models is depicted. For each channel realizations, a frame of 2 × 100, 000

symbols is sent over the channel (a frame of 100, 000 symbols over each individ-

ual antenna). The symbols of the frame are modulated and demodulated using

a standard 4-QAM modulator/demodulator and finally the BER graphs are pro-
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Fig. 5.4: Transmit power of the relay station.

duced. As can be seen, the BER of both models shows an increasing trend with

the decrease of the SNR, i.e., −10 log(σ2
n). The amount of the change in BER for

the perfect-CSI case is much larger relative to cases with a large uncertainty size.

Also, as can be seen, the BER for both models is less sensitive to the change of

the SNR in the cases with large uncertainty size.

5.5 Conclusion

The problem of robust linear beamforming design in the relay station is described.

In this problem a MIMO point to point relay station with uncertain CSI for

both links is studied. The MSE is used as the performance measure in the design

problem and this problem is constrained to fulfill the transmit power requirements

of the relay station. It is concluded that both MSE and the transmit power are

subject to the SOC structure. It is also concluded that for the SE model of

uncertainty, the problem is an iterative SOCP and in case of the NBE model, it

is an iterative SDP. These two problems are solved numerically and simulation

results are provided.
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Chapter 6

Robust Linear Beamforming for
MIMO Two-Way Relay Channel

6.1 Introduction

Multiuser two-way AF relay processing and power control methods for the beam-

forming systems is studied in [100]. The relay processing is optimized based on

both zero-forcing (ZF) and minimum mean-square-error (MMSE) criteria under

relay power constraints. The authors have examined various transmit and receive

beamforming methods, for example, eigen beamforming, antenna selection, ran-

dom beamforming, and modified equal gain beamforming. Performance bounds for

two-way amplify-and-forward relaying system is discussed in [95]. In this paper,

the average sum rate of an AF half-duplex TWRC system is analyzed. Opti-

mal beamforming for two-way multi-antenna relay channel with analogue network

coding is addressed in [96]. In this study only the relay station is equipped with

multiple antennas. The optimal relay beamforming structure as well as an efficient

algorithm to compute the optimal beamforming matrix are the main results of the

aforementioned study. In [101, 103], the optimal resource allocation for a two-way

relay-assisted OFDMA is explained. Here, A new transmission protocol, named

hierarchical OFDMA, is proposed to support two-way communications between

the base station (BS) and each mobile user (MU) with or without an assisting

relay station (RS). An iterative receiver for a multi-input multi-output (MIMO)

two-way wireless relay system is presented in [104]. A minimum mean square error

(MMSE)-based iterative soft interference cancellation (SIC) unit and an Expec-
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tation Conditional Maximization (ECM)-based estimation algorithm is used to

build the receiver. The training-based channel estimation under the amplify-and-

forward (AF) relay scheme is studied in [105]. A two-phase training protocol for

channel estimation is proposed.

In this chapter the robust linear beamforming of a TWRC with imperfect CSI

is considered. The imperfection of CSI is modeled using Stochastic Error (SE)

and Norm-Bounded Error (NBE) models.

Relay systems have been used to enhance the coverage range and the QoS

of communication systems. The information theoretic aspects of the capacity of

the relay channels were studied in the 1970’s and early 1980’s [146, 147]. But

interestingly some features of these systems only recently received considerable

interest, including e.g., the capacity of and coding for the MIMO configurations in

setups like the OWRC and the TWRC. In general, the relay station can operate

using one of the following methods: AF, DF, and CF. In the design of MIMO

relay channels the knowledge of the CSI is of great importance. Here, an AF

based MIMO TWRC is studied for which our objective is to design the linear

beamforming matrices of the relay station and the detectors and self cancellation

filters of the destinations, particularly when the CSI is not perfectly known. In

this chapter the robust linear beamforming of a MIMO TWRC with imperfect CSI

is considered. The CSI is modeled using SE or NBE models. It is assumed that all

the uncertainties either in the SE or the NBE model are of the same nature. The

remainder is structured as follows: in Section 6.2 the model of the relay system is

defined and analyzed. The problem formulation for both the SE model and the

NBE model are described in Section 6.3. Section 6.4 contains the solutions to the

aforementioned problems. Simulation results are shown in Section 6.5. Finally

Section 6.6 concludes the chapter.

6.2 System Model

The signal flow graph of a MIMO TWRC is depicted in Fig. 6.1. It is assumed that

both terminals and the relay station are equipped with N antennas. At each time
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Fig. 6.1: Signal Flow Graph of a MIMO Two-Way Relay System

instant, s1, s2 ∈ CN are sent toward the relay station. It is assumed that these

symbols are mutually independent and are drawn randomly from two independent

sources with the energy of σ2
s1

and σ2
s2

respectively. These symbols are sent over

two imperfectly known channels, i.e., H1,H2 ∈ CN×N .

The received signal at the relay station is:

x = H1s1 +H2s2 + n, (6.1)

where n ∈ CN is the zero-mean white Gaussian noise term in the relay station,

i.e., n ∼ CN (0, σ2
nI). It is assumed that its elements are mutually independent

of each other and are also independent of the signals.

At the relay station, this signal is beamformed using a weight matrix, W ∈

CN×N . The resultant signal, y, is as follows:

y = Wx (6.2a)

= W (H1s1 +H2s2 + n) . (6.2b)

This signal is sent back to both terminals over the two different channels, i.e.,

G1,G2 ∈ CN×N . The received signal first goes through a self interference canceler

followed by a linear equalizer. The outputs of the equalizers at both ends are:

ŝi = Di(Giy − F is−i + ei) (6.3a)

= Di(GiWH isi + (GiWH−i − F i)s−i) +Di(GiWn+ ei), (6.3b)

where e1 and e2 are the received noise at each terminal and are assumed to be

mutually independent having Ee1 [‖e1‖2] = σ2
e1

and Ee2
[‖e2‖2] = σ2

e2
respectively.
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Although mentioned in the notations, it worth to mention that

s−i =

{

s1 i = 2

s2 i = 1.
(6.4)

F 1 ∈ CN×N and F 2 ∈ CN×N are the self-cancellation filters that will be discussed

in more detail in the following subsection.

The model of uncertainty for these channels is as follows:

H i = H̃ i +∆i, ∀i, (6.5a)

Gi = G̃i +Λi, ∀i, (6.5b)

where H̃ i and G̃i are the nominal values of the channels and ∆i and Λi are the

uncertainty matrices. The uncertainty is defined using both SE model and NBE

model. In the SE model, it is assumed that











E∆i
[∆i] = EΛi

[Λi] = 0,

EΛi
[vec [Λi] vec [Λi]

∗] = σ2
Λi
I,

E∆i
[vec [∆i] vec [∆i]

∗] = σ2
∆i
I.

(6.6)

In this model it is also assumed that the variances of the uncertainty matrices,

i.e., σ2
∆i

and σ2
Λi
, are a priori known and fixed. In the NBE model, it is assumed

that

{

‖∆i‖ ≤ δi,

‖Λi‖ ≤ λi,
(6.7)

where δi and λi are the known and fixed uncertainty sizes for the ith link’s CSI.

6.2.1 Self Cancellation Filter

To avoid the corruption of the intended received signal by self-received signals in

TWRC, two self cancellation filters are placed at the receiver of each terminal.

Usually it is assumed that due to the perfect knowledge of the self input signals

and the CSI, it is possible to cancel out the harmful effects of the self interference.

However, in this chapter, with imperfect CSI knowledge it is not possible to im-

plement ideal self cancellation filters. In the following, two possible mechanisms

are addressed to mitigate the self interference effects.
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Conventional Self Cancellation (CSC)

Because of the incomplete knowledge of the CSI, the self cancellation filters are

not able to cancel the self signals in each receiver. It is assumed that the self

cancellation filters can only cancel the nominal values of the self interference, i.e.,

we choose

F i , G̃iWH̃−i, i = 1, 2, (6.8)

Strict Self Cancellation (SSC)

Unlike CSC, in SSC the self cancellation filters remain in the problem formulation

as two matrices to be designed. It is possible to have a convex problem formulation

to design both self cancellation filters and the beamforming filter of the relay

station simultaneously.

6.2.2 MSE and Transmit Power

In the design procedure, a robust minimax MSE approach is employed with a

constraint on the transmit power of the relay station. In this formulation, the

sum of the MSE of both links, i.e., from the transmit (Tx) side of either links to

the receive (Rx) side of the other link, is minimized while the transmit power of

the relay system is upper bounded. The first link is the link between the Tx side

of terminal 1 to the Rx side of the terminal 2 while the second link is vice versa.

In the following, the structure of these quantities is discussed in detail.

Proposition 6.1. MSE1 for the fist link and MSE2 for the second link as well as the

transmit power TxP of the relay station, have SOC structures, i.e.

MSEi(W ,Di,F i) , Es1,s2

[

‖ŝi − si‖2
]

= ‖µi(W ,Di,F i)‖22, i = 1, 2; (6.9a)

TxP(W ) , Es1,s2,n

[

‖y‖2
]

= ‖π(W )‖22. (6.9b)
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Proof. The MSE of each link and the TxP of the relay station, can be calculated

as follows:

MSEi(W ,Di,F i) = Esi,−i

[

‖ŝi − si‖2
]

, ‖µi(W ,Di,F i)‖22, i = 1, 2,

= σ2
si
‖DiGiWH i − I‖2F + σ2

s−i
‖Di(GiWH−i − F i)‖2F+

σ2
n‖DiGiW ‖2F + σ2

ei
‖Di‖2F

TxP(W ) = Es1,s2,n

[

‖y‖2
]

, ‖π(W )‖22

= Es1,s2,n

[

‖WH1s1 +WH2s2 +Wn‖2
]

= σ2
s1
‖WH1‖2F + σ2

s2
‖WH2‖2F + σ2

n‖W ‖2F

Each expectation for MSEs has 16 terms, that due to orthogonality only four

self multiplication terms remain leading to aforementioned expressions. A similar

procedure may be undergone for the TxP.

6.3 Problem formulation

Since SE and NBE models of uncertainty impose completely different conditions

on MSEi(W ,Di,F i), i = 1, 2; and TxP(W ), the details of the problem formulation

for these two uncertainty models are summarized distinctly. Using the SE model,

both the sum MSE of the system and the transmit power of the relay station

are stochastic variables. In this case, the average performance measures are op-

timized. In the NBE model, unlike the SE model, the aforementioned quantities

are deterministic, having infinitely many realizations. In this case, the worst case

performance measures are optimized. In the following subsections, the problem

formulation is summarized for the two models. It is possible to have the power-

minimization based formulations as well as the sum MSE based formulation. Both

cases are addressed for each of the uncertainty models.

6.3.1 Non-robust Design

Conventionally the beamforming design is based on the perfect CSI which is called

non-robust design. This problem formulation is in line with [100]. Using Proposi-
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tion 6.1, it is found that the conventional design is a SOCP:

minimize
W ,Di,F i

2
∑

i=1

τi (6.11a)

subject to ‖π(W )‖22 ≤ P, (6.11b)

‖µi(W ,Di,F i)‖22 ≤ τi, i = 1, 2. (6.11c)

This problem can be solved numerically and the results can be used to compare

with the performance of the robust system.

6.3.2 NBE-Based Problem Formulation

The problem formulation based on power minimization in the epigraph form, is

minimize
V

τ (6.12a)

subject to max
∆1,2

TxP(W ) ≤ τ, (6.12b)

max
∆1,2,Λi

MSEi(W ,Di,F i) ≤ ǫi, i = 1, 2, (6.12c)

where ǫ1 and ǫ2 are constants and V is a set that contains the optimization vari-

ables, i.e.,

V =

{

{W ,F 1,F 2,D1,D2, τ}, in SSC mode,

{W ,D1,D2, τ}, in CSC mode.
(6.13)

Also the problem formulation based on the sum MSE minimization is

minimize
X

τ1 + τ2 (6.14a)

subject to max
∆1,2

TxP(W ) ≤ P, (6.14b)

max
∆1,2,Λi

MSEi(W ,Di,F i) ≤ τi, i = 1, 2, (6.14c)

where P is a constant and X is defined as follows:

X =

{

{W ,F 1,F 2,D1,D2, τ1, τ2}, in SSC mode

{W ,D1,D2, τ1, τ2}, in CSC mode.
(6.15)

These two problems have almost the same structure and therefore we consider

without loss of generality, the second formulation only. By changing the role of

the slack variables and the constants of these two problems, either of them can be

cast as the other one.
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6.3.3 SE-Based Problem Formulation

In the presence of the SE model, the expected values of the transmit power of the

relay station and the sum MSE of the whole system are optimized. The power

minimization problem formulation for the SE model of uncertainty is

minimize
V

τ (6.16a)

subject to E∆1,2
[TxP(W )] ≤ τ, (6.16b)

E∆1,2,Λi
[MSEi(W ,Di,F i)] ≤ ǫi, i = 1, 2, (6.16c)

where ǫ1 and ǫ2 are the constants and V is the set defined before for the NBE

model. Similarly, the sum MSE formulation is

minimize
X

τ1 + τ2 (6.17a)

subject to E∆1,2
[TxP(W )] ≤ P, (6.17b)

E∆1,2,Λi
[MSEi(W ,Di,F i)] ≤ τi, i = 1, 2, (6.17c)

where the constant P and X are as defined previously. As stated before, the sum

MSE based formulation is treated in this chapter.

6.4 Solutions

In this section, the solution of the linear beamforming design is presented for both

models of uncertainty.

6.4.1 SE-Based Solutions

To proceed with the SE-based solutions, simplification of the mathematical ex-

pectations of the constituent TxP(W ), MSE1(W ,D1,F 1) and MSE2(W ,D2,F 2) is

required, which is done in the following proposition.

Proposition 6.2. For the SE model of uncertainty, E∆1,2,Λi
[MSEi(W ,Di,F i)],and

E∆1,2
[TxP(W )], all have the following SOC structure:

E∆1,2
[TxP(W )] =

2
∑

i=1

σ2
si

(

‖WH̃i‖2F + σ2
∆i
‖I ⊗W ‖2F

)

+ σ2
n‖W ‖2F (6.18a)

, ‖π̄(W )‖22 (6.18b)
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E∆1,2,Λi
[MSEi(W ,Di,F i)] =

σ2
si

(

‖DiG̃iWH̃ i − I‖2F + σ2
∆i
‖I ⊗DiG̃iW ‖2F + σ2

Λi
‖(WH̃i)

T ⊗Di‖2F
)

+

σ2
s−i

(

‖Di(G̃iWH̃−i − F i)‖2F + σ2
∆−i
‖I ⊗DiG̃iW ‖2F + σ2

Λi
‖(WH̃−i)

T ⊗Di‖2F
)

+

σ2
n

(

‖DiG̃iW ‖2F + σ2
Λi
‖W T ⊗Di‖2F

)

+ σ2
ei
‖Di‖2F (6.19a)

, ‖µ̄i(W ,Di,F i)‖22, i = 1, 2. (6.19b)

Proof. The proof is similar to the proof of Proposition 6.1 and is not repeated

here. Again to have a tractable formulation, we have neglected the second order

uncertain terms. It is so for the remaining analysis.

Interestingly, because the minimum value of

‖Di(G̃iWH̃−i − F i)‖2F (6.20)

is equal to zero, both self cancellation procedures lead to similar self cancellation

filters:

F i = G̃iWH̃−i. (6.21)

Using this result, the expectation of individual MSE’s are independent of the self

cancellation filters. By using an appropriate vector notation, the SE problem

formulation is a SOCP as follows:

minimize
X

τ1 + τ2 (6.22a)

subject to ‖π̄(W )‖2 ≤ P, (6.22b)

‖µ̄i(W ,Di)‖2 ≤ τi, i = 1, 2. (6.22c)

This problem can be solved numerically using interior point methods. Unfortu-

nately, despite the appealing structure of this problem, due to the biconvexity of

µ̄1 and µ̄2 this problem should be solved iteratively. The procedure is as follows:

Algorithm 6.1. [Iterative beamformer design for the SE model]

1. Let k ← 0. Initialize the beamformer matrices W [0],D
[0]
1 and D

[0]
2 .

Compute the initial MSE, MSE[0] =
∑2

i=1 ‖µ̄i(W
[0],D

[0]
i )‖2.
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2. Let k ← k + 1.

Update beamforming matrices using the following procedures:

W [k] = arg min
WWW,τi≥0

τ1 + τ2 (6.23a)

S. t. ‖π̄(W )‖2 ≤ P, (6.23b)

‖µ̄i(W ,D
[k−1]
i )‖2 ≤ τi, (6.23c)

and

D
[k]
i = arg min

D,τi≥0
τ1 + τ2 (6.24a)

S. t. ‖µ̄i(W
[k−1],Di)‖2 ≤ τi. (6.24b)

Update the MSE at this stage: MSE
[k] =

∑2
i=1 ‖µ̄i(W

[k],D
[k]
i )‖2.

3. Repeat step (2) until reaching a steady MSE, i.e., |MSE[k]−MSE[k−1]| ≤

ε or until the maximum number of iterations (Kmax) is reached.

In this procedure ε and Kmax are a constant predefined tolerance and the

maximum iteration number, respectively. It should be mentioned that using some

standard tricks [93], each of (6.23) and (6.24) may be converted to a standard

SOCP and then efficiently solved using interior-point methods. As this algorithm

is also based on the ACS algorithm, the convergence of it is not proved here.

6.4.2 NBE-Based Solutions

The design problem, after substituting the appropriate terms for which to facilitate

the simplified notations, in which the dependency to design variables is presumed

but not mentioned explicitly, becomes ∀i = 1, 2,

minimize
X

τ1 + τ2 (6.25a)

subject to max
∆1,2

‖π‖2 ≤ P, ∀∆i : ‖∆i‖ ≤ δi, (6.25b)

max
∆1,2,Λi

‖µi‖2 ≤ τi ∀∆i : ‖∆i‖ ≤ δi,

∀Λi : ‖Λi‖ ≤ λi. (6.25c)
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and using Schur’s Complement Lemma, it is possible to recast the above problem

to a semi-infinite LMI-based problem. The aforementioned problem is recast as

minimize
X

τ1 + τ2 (6.26a)

subject to

[

P π∗

π I

]

� 0 ∀∆i : ‖∆i‖ ≤ δi, (6.26b)

[

τi µ∗
i

µi I

]

� 0 ∀∆i : ‖∆i‖ ≤ δi,

∀Λi : ‖Λi‖ ≤ λi, . (6.26c)

This problem is a semi-infinite optimization problem. To further simplify the

problem, the Theorem 2.1 is used. The key idea in applying this theorem to our

problem is to use the underlying structure of MSE and the transmit power which

is summarized in the following proposition.

Proposition 6.3. For the NBE model of uncertainty and regardless of the type

of self cancellation filter, µ1 and µ2 have a multi-linear structure in terms of the

uncertainty matrices, i.e.,

π , π̃ +

2
∑

i=1

π∆i
vec [∆i] , (6.27a)

µi , µ̃i +

2
∑

j=1

µi,∆j
vec [∆j] + µi,Λi

vec [Λi] , (6.27b)

where

π̃ =









σs1vec
[

WH̃1

]

σs2vec
[

WH̃2

]

σnvec [W ]









, (6.28a)

π∆1
=

[

σs1I ⊗W

0

]

, (6.28b)

π∆2
=





0
σs2I ⊗W

0



 , (6.28c)
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and

µ̃i =













σsivec
[

DiG̃iWH̃ i − I
]

µ̃i,SC

σnvec
[

DiG̃iW
]

σe1vec [Di]













, (6.28d)

µ̃i,SC =

{

0, for CSC,

σs−i
vec
[

Di(G̃iWH̃−i − F i)
]

, for SSC,
(6.28e)

µi,∆1
=

[

σsiI ⊗ (DiG̃iW )
0

]

, (6.28f)

µi,∆2
=





0

σs−i
I ⊗ (DiG̃iW )

0



 , (6.28g)

µi,Λi
=









σsi(WH̃ i)
T ⊗Di

σs−i
(WH̃−i)

T ⊗Di

σnW
T ⊗Di

0









.

Proof. For MSEi it is known that

MSEi(W ,Di,F i) = σ2
si
‖DiGiWH i − I‖2F + σ2

s−i
‖Di(GiWH−i − F i)‖2F+

σ2
n‖DiGiW ‖2F + σ2

ei
‖Di‖2F

, ‖µi(W ,Di,F i)‖2.

This expression is valid, if

µi(W ,Di,F i) =









σsivec [DiGiWH i − I]
σs−i

vec [Di(GiWH−i − F i)]
σnvec [DiGiW ]

σei
vec [Di]









(6.29)

The above expression is gained using the following mathematical procedures: the

Frobenius norm of each term may be written in terms of the second norm of

the vectorized version of its matrix argument (Lemma 2.2). By applying the

Lemma 2.4 to the resultant series of the second norms, µ1 is resulted. In the

following subsections, the different self cancellation treatments are dealt to further

simplify the resultant µ1.

Without loss if generality, the first constraint is dealt with in detail and a
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similar procedure can be applied to the next two constraints. As it is known,
[

P π∗

π I

]

� 0. (6.30)

By appropriate selection of

A =

[

P π̃∗

π̃ I

]

(6.31)

P 1 = [0 π∗
∆1

], P 2 = [0 π∗
∆2

] (6.32)

X1 = vec [∆1] , X2 = vec [∆2] (6.33)

Q1 = Q2 = [−1 0] (6.34)

the first constraint is equal to the following LMI:








P − (ǫ1 + ǫ2) π̃∗ 0 0
π̃ I −δ1π∆1

−δ2π∆2

0 −δ1π∗
∆1

ǫ1I 0
0 −δ2π∗

∆2
0 ǫ2I









� 0, (6.35)

ǫ1, ǫ2 ≥ 0, (6.36)

Applying a similar procedure to the other two constraints of the design problem,

the design problem is the following LMI:

minimize
X ′

τ1 + τ2 (6.37a)

subject to (6.37b)

P(W ) � 0, (6.37c)

Mi(W ,F i,Di) � 0, i = 1, 2, (6.37d)

εi, εµi,j
, εΛi

, τi,≥ 0, i, j = 1, 2, (6.37e)

where P and Mi are defined as

P =









P − (ε1 + ε2) π̃∗ 0 0
π̃ I −δ1π∆1

−δ2π∆2

0 −δ1π∗
∆1

ǫ1I 0
0 −δ2π∗

∆2
0 ǫ2I









, (6.38a)

Mi =

















τi −
∑

j=1,2,k

εµi,j
µ̃∗

i 0 0 0

µ̃i I − δ1 µi,∆1
− δ2 µi,∆2

−λiµi,Λi

0 − δ1 µ
∗
i,∆1

εµi,1 I 0 0
0 − δ2 µ

∗
i,∆2

0 εµi,2 I 0
0 −λi µ

∗
i,Λi

0 0 εΛi
I

















,

(6.38b)
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and

X ′ = X ∪
{

εi, εµi,j
, εΛi

}

i,j=1,2
. (6.39)

To be able to solve this biconvex problem we use the following procedure:

Algorithm 6.2. [Iterative beamformer design for the NBE model]

1. Let k ← 0. Initialize the beamformer matrices W [0],D
[0]
1 ,D

[0]
2 ,F

[0]
1

and F
[0]
2 . Compute the initial MSE, MSE[0] =

∑2
i=1 ‖µi(W

[0],D
[0]
i ,F

[0]
i )‖2.

2. Let k ← k + 1. Update beamforming matrices using the following

procedures:

(I) For CSC scheme: ∀i, j = 1, 2,

W [k] = arg min
WWWτi≥0

τ1 + τ2 (6.40a)

S. t. P(W ) � 0, (6.40b)

Mi(W ,D
[k−1]
i ) � 0, (6.40c)

εi, εµi,j
, εΛi

, τi,≥ 0, (6.40d)

and

D
[k]
i = arg min

D,τi≥0
τ1 + τ2 (6.41a)

S. t. Mi(W
[k−1],Di) � 0, (6.41b)

εµi,j
, εΛi

, τi,≥ 0. (6.41c)

Update the MSE at this stage:

MSE
[k] =

∑2
i=1 ‖µi(W

[k],D
[k]
i )‖2.

(II) For SSC scheme: ∀i, j = 1, 2,

{W [k],F
[k]
i } = arg min

WWW,F i,τi≥0
τ1 + τ2 (6.42a)

S. t. P(W ) � 0, (6.42b)

Mi(W ,F i,D
[k−1]
i ) � 0, (6.42c)

εi, εµi,j
, εΛi

, τi,≥ 0, (6.42d)
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and

D
[k]
i = arg min

D,τi≥0
τ1 + τ2 (6.43a)

S. t. Mi(W
[k−1],F

[k−1]
i ,Di) � 0, (6.43b)

εµi,j
, εΛi

, τi,≥ 0. (6.43c)

Update the MSE at this stage: MSE
[k] =

∑2
i=1 ‖µi(W

[k],D
[k]
i ,F

[k]
i )‖2.

3. Repeat step (2) until reaching a steady MSE, i.e., |MSE[k]−MSE[k−1]| ≤

ε or until the maximum number of iterations (Kmax) is reached.

This problem is a convex optimization problem and can be solved numerically

using a standard numerical package bundle such as YALMIP/SDPT3. It is pos-

sible to show that the non-robust problem formulation is a special case of these

problem formulations.

Proposition 6.4. The robust problem formulation with an uncertainty size of

zero, would be equal to the conventional problem formulation.

Proof. This proof applies to each iteration. For the SE model, it is clear that with

no uncertainty, the mathematical expectation of both TxP(W ) and MSEi(W ,Di,F i)

are equal to their conventional counterpart. For the NBE model it is not that

straightforward and it is formally proven here. In this case, with the uncertainty

size equal to zero, i.e., δi = 0, both P and Mi become block diagonal matrices.

To be positive semi-definite, these block diagonal matrices should have positive

semi-definite diagonal elements. The lower right elements of these matrices are

composed of identity matrices that are positive semi-definite for any positive slack

variables, even when ǫi → 0+. Interestingly, the upper left elements of these ma-

trices, using Schur’s complement lemma, are equal to the constraints of (6.11)

with any arbitrary precision, which completes the proof.

6.5 Simulation Results

In this section simulation results are presented. The simulation setup is as follows:

both terminals are equipped with N1 = N2 = 2 antennas. The relay station is also
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Fig. 6.2: Histogram of transmit power violations for different system setups

equipped with Nr = 2 transmit and receive antennas. The transmit power of the

relay station is limited to P = 10 Watts. It is assumed that the uncertainty size of

the CSI is equal for all channels for both SE and NBE models, i.e., σ2
∆i

= σ2
∆j

, ∀i, j

. The transmit signal power for both terminals is assumed to be equal to σ2
s1

=

σ2
s2

= 1 Watt. Also, a similar assumption is made about the noise power of both

terminals, i.e., σ2
e1

= σ2
e2

= 10−3 Watt. The nominal CSI matrices are generated

randomly according to a complex valued, zero-mean, unit variance normal random

variable. The following results, except for Fig. 6.2, are the average of 300 Monte

Carlo simulation runs. In each figure, the five cases are compared: the conventional

linear precoder design with perfect CSI, and four cases with different uncertainty

sizes from fairly small to rather large uncertainty.

In Fig. 6.2 the histogram of the transmit power realizations is depicted. This

graph depicts the advantages of the robust design best. To obtain these results, a

500-run Monte Carlo simulation is performed. For the simulation, the beamform-

ing matrices for three different cases are generated, i.e., the perfect CSI scenario

and two scenarios relative to the uncertainty sizes of δi = 0.05 and δi = 0.25. The

resulting systems use channel realizations which are subject to aforementioned

uncertainty sizes. The graph shows that the systems that were designed to be

robust against uncertainties are not violating the TxP constraint at all, while the

112



Table 6.1: Percentage of the Power Constraint Violations

Perfect CSI CSI with δi = 0.05 CSI with δi = 0.25
Non-robust Design 0% 25.4% 32.6%

Robust Design (δi = 0.05) 0% 0% 11.4%
Robust Design (δi = 0.25) 0% 0% 0%
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Fig. 6.3: Sum MSE for the system with NBE model of uncertainty having CSC
vs. a system with SE model of uncertainty.

conventional system will violate it. And, as expected, the larger the size of the un-

certainty, the more violations occur. These results are quantitatively summarized

in Table 6.1.

In Figs. 6.3–6.5, the Sum MSE of the system with both SE and NBE models

of uncertainty are shown. In Fig. 6.3, the sum MSE performance measure of a

system having CSC with the NBE model is compared with the performance of

a system with the SE model of uncertainty. As can be seen, using each model,

the non-robust design with perfect CSI scenario will result in a better sum MSE

performance relative to the robust cases, and with the increase of the uncertainty

size this performance measure gets worse. This trend is irrespective of the type

of the self cancellation filter (Fig. 6.5). As was expected, the system which uses

SSC is outperforming the system with CSC, because in SSC mode, not only the

nominal value of the self induced signals is canceled, but also, by dynamically
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Fig. 6.4: Sum MSE for the system with NBE model of uncertainty having SSC
vs. a system with NBE model of uncertainty having CSC.

designing the self cancellation filter, it is possible to further reduce the amount of

self induced signals (Fig. 6.4).

In Fig. 6.6 the transmit power of the relay station is depicted. As can be seen,

the amount of the transmit power for the non-robust design (uncertainty size equal

to 0) is the highest among all, which results in a better sum MSE performance

as seen in previous figures. As expected with the increase in uncertainty size, the

amount of the transmit power decreases to prevent a larger sum MSE in these

cases. Because in the uncertain case, it is highly possible to transmit in a wrong

direction leading to increase of the interfering power to other users. Also to limit

the sum MSE, with the increase of the noise power, the transmit power decreases.

In Fig. 6.7 the BER performance of a MIMO TWRC is displayed. In this

figure, the BER performance of a system with NBE model of uncertainty having

SSC is compared with the performance of a system with SE model of uncertainty.

As expected the BER performance of these two systems, when the uncertainty

size is equal to zero leading to a non-robust design, is similar. Also as expected,

by increasing the uncertainty size, the BER increases because the sum MSE of the

system degrades.
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Fig. 6.5: Sum MSE for the system with NBE model of uncertainty having SSC
vs. a system with SE model of uncertainty.

6.6 Conclusion

Robust linear beamforming for a MIMO TWRC is studied. The uncertainty is

modeled using SE and NBE uncertainty models. Two different cancellation filters,

namely, conventional self cancellation and strict self cancellation, are presented.

It is shown that for the SE model, these two filters are the same. But for the NBE

model, these filters perform differently. It is also shown that the MSE of each link

and the transmit power of the relay station exhibit a SOC structure. For the SE

uncertainty model the average performance measures are optimized and for the

NBE model, the worst case performance measures are optimized. The SE model

would lead to a SOCP while the NBE model leads to a SDP. Finally, simulation

results are included to assess the performance of the system.
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Fig. 6.6: Transmit power of the relay station for the system with NBE model of
uncertainty.
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Chapter 7

Conclusions and
Recommendations

This thesis studied four problems in the area of robust beamforming for cogni-

tive and cooperative wireless networks. We have examined the robust downlink

beamforming in MU-MISO CR-Nets, robust linear and nonlinear transceiver op-

timization in MU-MIMO ad hoc CR-Nets, and finally robust linear beamforming

for both MIMO OWRC and TWRC. In these studies, it is assumed that the CSI

is imperfectly known and is impaired by an ambient uncertainty. We have used

two well-known models to describe the uncertainty of CSI, i.e., both SE and NBE

models are used to characterize the uncertainty. It should be mentioned that

although the presented works share a lot in terms of the structure and under-

lying math, the complexity of the network and the number of decision variables

and also uncertainty sources are increasing gradually. We started with a single

variable Nemirovski lemma, and proved a more general version with two or any

arbitrary number of uncertainties in each constraint. The former case appears

in single-hop networks like the interfering adhoc networks, while in multi-hop

networks like relaying scenarios, multiple uncertainties appear on the scene. In

full-duplex multi-hop networks like the TWRC the number of decision variables

are much more than the half-duplex case of OWRC. In TWRC we should deal

with self-cancellation which never appears in single-hop and half-duplex cases. It

is noteworthy that we have dealt with both conventional and strict self cancellation

filters in previous chapter.
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In the study of the robust downlink beamforming in a MU-MISO CR-Net, a

BC model is central to our study. The multi-antenna BS serves K single antenna

SUs while protecting L single antenna PU-Rxs. The problem formulation is based

on the maximization of the received SINR at the SUs while maintaining proper IP

constraints for the PUs. It is assumed that a ball-shaped uncertainty set describes

the CSI imperfections. Since this problem formulation leads to a separable homo-

geneous quadratically constrained quadratic problem which is a NP-Hard problem,

the current research usually employs loose approximate solutions. This ill-posed

problem is recast as a nonconvex SDP. After relaxing the rank constraints of this

SDP, we provide an exact solution for the beamforming problem. It is possible to

find the actual beamforming weights using the Eigen decomposition of this SDP-

relaxed version of original problem. This study provides an exact solution that

maximizes the SINR of the SU-Rxs and, as expected, is less conservative than

the approximate methods. It should be noted that this study does not take into

account that the PUs and the SUs are equipped with multiple antennas which lead

to MU-MIMO CR-Nets. It is so because generally, mobile devices in the currently

operational networks are equipped with only one antenna. Additionally in MISO

case, it is possible to find a closed form expression for the worst channel realiza-

tion while it is not possible to find such a nice property using the MIMO case.

It should be mentioned that as the MIMO case is studied by different authors

in non-cognitive radio setups however, the extension of current work to cover the

CR-Net is trivial. It is also of vital importance to find a mathematically appealing

expression which describes the worst-channel realization in MIMO case in which

S-Procedure based methods fail to do so.

In Chapter 4, robust linear and nonlinear transceiver optimization is studied

in a MU-MIMO ad hoc CR-Net. In this network a set of I interfering links

coexists with K PU-Rxs. The design procedure is to find the optimum precoder

and equalizer filters of each SU-Tx-SU-Rx link. The problem formulation is to

minimize the system-wide sum MSE while imposing two power constraints: the

transmit power constraint for each SU-Tx and the interfering power constraint on
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each PU-Rx. This problem, regardless of the uncertainty model, is a bi-convex

problem and is hard to solve. A widely known solution for such problems is to

resort to iterative procedures. The channel uncertainty is modeled using either SE

or the NBE models. In case of the SE model, the mathematical expectation of the

MSE of each link and the interfering power on each PU-Rx are considered in the

design process. It is shown that both MSE and IP have SOC structures and the

robust problem would be an iterative SOCP. For the NBE model of uncertainty,

the worst case analysis reveals that both MSE and IP have SOC structure and are

linear and affine in terms of the problem data and design variables. Employing this

structure, and using Nemirovski lemma, it is possible to show that the worst-case

problem formulation would lead to an iterative SDP. This study, to the best of our

knowledge, is the only documented work that aims to jointly design the precoder

and equalizer filters of a MU-MIMO ad hoc network. In this work we not only

aim to have a linear design, but also consider the problem with nonlinear designs

as well; namely, we study both THP and DFE schemes. It should be mentioned

that since the network structure is complicated and the problem formulation is ill-

posed, the proposed algorithms need collaboration of either parties of the network

to pass the updated matrices to other users in the network. This fact reduces

the applicability of the proposed schemes, especially for nonlinear designs which

lead to non-causality in these communications. It is recommended to explore

more on distributed algorithms which are more practical algorithms and need less

inter-communication.

In robust linear beamforming for MIMO OWRC and TWRC, half- and full-

duplex cooperative communications, a.k.a. relaying, are studied. In both networks

a multi-antenna relay station sits in between the multi-antenna source and desti-

nation. It is assumed that there exists no direct link between the source and the

destination. Both problems target to jointly design the relay beamformer and the

destination equalizer. A problem formulation to minimize the system-wide MSE

is given for both networks. These problems are constrained to limit the amount

of the transmitted power of the relay station. As these problems are also biconvex
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and then hard to solve, two iterative algorithms to design the beamformer and

equalizer are proposed. For both networks, it is assumed that the relevant CSI is

imperfectly known and is modeled using either SE or the NBE models. As before,

In case of the SE model of uncertainty, the average performance measures are opti-

mized resulting in an iterative SOCP and in case of the NBE model of uncertainty,

the worst-case performance measures are optimized resulting in an iterative SDP.

For MIMO TWRC, two different self cancellation filters are proposed. It is also

shown that these two different mechanisms would lead to similar filters in case

of SE model of uncertainty. It is noteworthy that we did not consider the direct

link between the source and the destination. But it should be mentioned that the

extension of current work to this case is a trivial task. Additionally, it should be

mentioned that in our treatment we assumed that the relay is about to provide

the connection between a source and a destination, located out of the coverage

range of the source. In the literature there exists a model called GIFRC which

covers both OWRC and TWRC with/without direct link. It is recommended to

study this problem because the solution of this problem covers the solution of both

OWRC and TWRC beamformer design.

7.1 Future Works

Amended to the abovementioned recommendations, it is possible to extend the

scope of current study in the following directions:

• The current studies use the MSE and sum MSE as the performance measure

of the systems. It is because of the appealing mathematical structure of the

problem formulated using MSE. Although this measure is helpful from the

signal processing viewpoint, it is more important to study the beamforming

problems from pure communication system viewpoint. To do so, it is rec-

ommended to solve similar problems when the performance measure is the

sum rate capacity of the mentioned systems. Unfortunately for the robust

designs, to the best of our knowledge, no one has considered the problems
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using capacity based formulations.

• In current treatment of the robust beamforming, we usually start from a

semi-infinite SOCP problem formulation, and using S-procedure based meth-

ods, we encounter with a SDP. But there is another way of treating the

semi-infinite problems proposed by Bertsimas & Sim (2006). In this treat-

ment, the robust counterpart of any problem exhibits the same structure,

i.e., the robust counterpart of SOCP based beamforming problems are also

SOCPs with more constraints and variables. It is recommended to assess

the performance of this new treatment as well.

• In current studies it is always assumed that there is no correlation between

the input signals. It may be helpful to consider the spatio-temporal proper-

ties of the input signals in the beamformer design.

• It is usually assumed that the system is designed to act in a flat fading

environment. In rapidly changing environments it is not a practical assump-

tion. It is recommended that the beamformer be designed for non-flat fading

channels.

• In the proposed algorithms, SOCP and SDP problems are central. The

performance of these algorithms in real-time implementations is of great im-

portance. It is recommended that a dedicated hardware module or software

routines be designed to facilitate the implementation of real time beamform-

ing techniques.

• Robust design gets its roots from the control theories. It is recommended

that a new look be taken at the robust beamformer design from the nonlinear

or the robust control theories like H∞ control [148, 149], and employing

nonlinear optimizations, like Penalty/Barrier methods.
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