861 research outputs found

    Soft computing applied to optimization, computer vision and medicine

    Get PDF
    Artificial intelligence has permeated almost every area of life in modern society, and its significance continues to grow. As a result, in recent years, Soft Computing has emerged as a powerful set of methodologies that propose innovative and robust solutions to a variety of complex problems. Soft Computing methods, because of their broad range of application, have the potential to significantly improve human living conditions. The motivation for the present research emerged from this background and possibility. This research aims to accomplish two main objectives: On the one hand, it endeavors to bridge the gap between Soft Computing techniques and their application to intricate problems. On the other hand, it explores the hypothetical benefits of Soft Computing methodologies as novel effective tools for such problems. This thesis synthesizes the results of extensive research on Soft Computing methods and their applications to optimization, Computer Vision, and medicine. This work is composed of several individual projects, which employ classical and new optimization algorithms. The manuscript presented here intends to provide an overview of the different aspects of Soft Computing methods in order to enable the reader to reach a global understanding of the field. Therefore, this document is assembled as a monograph that summarizes the outcomes of these projects across 12 chapters. The chapters are structured so that they can be read independently. The key focus of this work is the application and design of Soft Computing approaches for solving problems in the following: Block Matching, Pattern Detection, Thresholding, Corner Detection, Template Matching, Circle Detection, Color Segmentation, Leukocyte Detection, and Breast Thermogram Analysis. One of the outcomes presented in this thesis involves the development of two evolutionary approaches for global optimization. These were tested over complex benchmark datasets and showed promising results, thus opening the debate for future applications. Moreover, the applications for Computer Vision and medicine presented in this work have highlighted the utility of different Soft Computing methodologies in the solution of problems in such subjects. A milestone in this area is the translation of the Computer Vision and medical issues into optimization problems. Additionally, this work also strives to provide tools for combating public health issues by expanding the concepts to automated detection and diagnosis aid for pathologies such as Leukemia and breast cancer. The application of Soft Computing techniques in this field has attracted great interest worldwide due to the exponential growth of these diseases. Lastly, the use of Fuzzy Logic, Artificial Neural Networks, and Expert Systems in many everyday domestic appliances, such as washing machines, cookers, and refrigerators is now a reality. Many other industrial and commercial applications of Soft Computing have also been integrated into everyday use, and this is expected to increase within the next decade. Therefore, the research conducted here contributes an important piece for expanding these developments. The applications presented in this work are intended to serve as technological tools that can then be used in the development of new devices

    Communicating through motion in dance and animal groups

    Get PDF
    This study explores principles of motion based communication in animal and human group behavior. It develops models of cooperative control that involve communication through actions aimed at a shared objective. Moreover, it aims at understanding the collective motion in multi-agent models towards a desired objective which requires interaction with the environment. In conducting a formal study of these problems, first we investigate the leader-follower interaction in a dance performance. Here, the prototype model is salsa. Salsa is of interest because it is a structured interaction between a leader (usually a male dancer) and a follower (usually a female dancer). Success in a salsa performance depends on how effectively the dance partners communicate with each other using hand, arm and body motion. We construct a mathematical framework in terms of a Dance Motion Description Language (DMDL). This provides a way to specify control protocols for dance moves and to represent every performance as sequences of letters and corresponding motion signals. An enhanced form of salsa (intermediate level) is discussed in which the constraints on the motion transitions are described by simple rules suggested by topological knot theory. It is shown that the proficiency hierarchy in dance is effectively captured by proposed complexity metrics. In order to investigate the group behavior of animals that are reacting to environmental features, we have analyzed a large data set derived from 3-d video recordings of groups of Myotis velifer emerging from a cave. A detailed statistical analysis of large numbers of trajectories indicates that within certain bounds of animal diversity, there appear to be common characteristics of the animals' reactions to features in a clearly defined flight corridor near the mouth of the cave. A set of vision-based motion control primitives is proposed and shown to be effective in synthesizing bat-like flight paths near groups of obstacles. A comparison of synthesized paths and actual bat motions culled from our data set suggests that motions are not based purely on reactions to environmental features. Spatial memory and reactions to the movement of other bats may also play a role. It is argued that most bats employ a hybrid navigation strategy that combines reactions to nearby obstacles and other visual features with some combination of spatial memory and reactions to the motions of other bats

    Uncertainty Minimization in Robotic 3D Mapping Systems Operating in Dynamic Large-Scale Environments

    Get PDF
    This dissertation research is motivated by the potential and promise of 3D sensing technologies in safety and security applications. With specific focus on unmanned robotic mapping to aid clean-up of hazardous environments, under-vehicle inspection, automatic runway/pavement inspection and modeling of urban environments, we develop modular, multi-sensor, multi-modality robotic 3D imaging prototypes using localization/navigation hardware, laser range scanners and video cameras. While deploying our multi-modality complementary approach to pose and structure recovery in dynamic real-world operating conditions, we observe several data fusion issues that state-of-the-art methodologies are not able to handle. Different bounds on the noise model of heterogeneous sensors, the dynamism of the operating conditions and the interaction of the sensing mechanisms with the environment introduce situations where sensors can intermittently degenerate to accuracy levels lower than their design specification. This observation necessitates the derivation of methods to integrate multi-sensor data considering sensor conflict, performance degradation and potential failure during operation. Our work in this dissertation contributes the derivation of a fault-diagnosis framework inspired by information complexity theory to the data fusion literature. We implement the framework as opportunistic sensing intelligence that is able to evolve a belief policy on the sensors within the multi-agent 3D mapping systems to survive and counter concerns of failure in challenging operating conditions. The implementation of the information-theoretic framework, in addition to eliminating failed/non-functional sensors and avoiding catastrophic fusion, is able to minimize uncertainty during autonomous operation by adaptively deciding to fuse or choose believable sensors. We demonstrate our framework through experiments in multi-sensor robot state localization in large scale dynamic environments and vision-based 3D inference. Our modular hardware and software design of robotic imaging prototypes along with the opportunistic sensing intelligence provides significant improvements towards autonomous accurate photo-realistic 3D mapping and remote visualization of scenes for the motivating applications

    LFP beta amplitude is predictive of mesoscopic spatio-temporal phase patterns

    Full text link
    Beta oscillations observed in motor cortical local field potentials (LFPs) recorded on separate electrodes of a multi-electrode array have been shown to exhibit non-zero phase shifts that organize into a planar wave propagation. Here, we generalize this concept by introducing additional classes of patterns that fully describe the spatial organization of beta oscillations. During a delayed reach-to-grasp task in monkey primary motor and dorsal premotor cortices we distinguish planar, synchronized, random, circular, and radial phase patterns. We observe that specific patterns correlate with the beta amplitude (envelope). In particular, wave propagation accelerates with growing amplitude, and culminates at maximum amplitude in a synchronized pattern. Furthermore, the occurrence probability of a particular pattern is modulated with behavioral epochs: Planar waves and synchronized patterns are more present during movement preparation where beta amplitudes are large, whereas random phase patterns are dominant during movement execution where beta amplitudes are small

    An Efficient Multiple-Place Foraging Algorithm for Scalable Robot Swarms

    Get PDF
    Searching and collecting multiple resources from large unmapped environments is an important challenge. It is particularly difficult given limited time, a large search area and incomplete data about the environment. This search task is an abstraction of many real-world applications such as search and rescue, hazardous material clean-up, and space exploration. The collective foraging behavior of robot swarms is an effective approach for this task. In our work, individual robots have limited sensing and communication range (like ants), but they are organized and work together to complete foraging tasks collectively. An efficient foraging algorithm coordinates robots to search and collect as many resources as possible in the least amount of time. In the foraging algorithms we study, robots act independently with little or no central control. As the swarm size and arena size increase (e.g., thousands of robots searching over the surface of Mars or ocean), the foraging performance per robot decreases. Generally, larger robot swarms produce more inter-robot collisions, and in swarm robot foraging, larger search arenas result in larger travel distances causing the phenomenon of diminishing returns. The foraging performance per robot (measured as a number of collected resources per unit time) is sublinear with the arena size and the swarm size. Our goal is to design a scale-invariant foraging robot swarm. In other words, the foraging performance per robot should be nearly constant as the arena size and the swarm size increase. We address these problems with the Multiple-Place Foraging Algorithm (MPFA), which uses multiple collection zones distributed throughout the search area. Robots start from randomly assigned home collection zones but always return to the closest collection zones with found resources. We simulate the foraging behavior of robot swarms in the robot simulator ARGoS and employ a Genetic Algorithm (GA) to discover different optimized foraging strategies as swarm sizes and the number of resources is scaled up. In our experiments, the MPFA always produces higher foraging rates, fewer collisions, and lower travel and search time than the Central-Place Foraging Algorithm (CPFA). To make the MPFA more adaptable, we introduce dynamic depots that move to the centroid of recently collected resources, minimizing transport times when resources are clustered in heterogeneous distributions. Finally, we extend the MPFA with a bio-inspired hierarchical branching transportation network. We demonstrate a scale-invariant swarm foraging algorithm that ensures that each robot finds and delivers resources to a central collection zone at the same rate, regardless of the size of the swarm or the search area. Dispersed mobile depots aggregate locally foraged resources and transport them to a central place via a hierarchical branching transportation network. This approach is inspired by ubiquitous fractal branching networks such as animal cardiovascular networks that deliver resources to cells and determine the scale and pace of life. The transportation of resources through the cardiovascular system from the heart to dispersed cells is the inverse problem of transportation of dispersed resources to a central collection zone through the hierarchical branching transportation network in robot swarms. We demonstrate that biological scaling laws predict how quickly robots forage in simulations of up to thousands of robots searching over thousands of square meters. We then use biological scaling predictions to determine the capacity of depot robots in order to overcome scaling constraints and produce scale-invariant robot swarms. We verify the predictions using ARGoS simulations. While simulations are useful for initial evaluations of the viability of algorithms, our ultimate goal is predicting how algorithms will perform when physical robots interact in the unpredictable conditions of environments they are placed in. The CPFA and the Distributed Deterministic Spiral Algorithm (DDSA) are compared in physical robots in a large outdoor arena. The physical experiments change our conclusion about which algorithm has the best performance, emphasizing the importance of systematically comparing the performance of swarm robotic algorithms in the real world. We illustrate the feasibility of implementing the MPFA with transportation networks in physical robot swarms. Full implementation of the MPFA in an outdoor environment is the next step to demonstrate truly scalable and robust foraging robot swarms

    Bridging the gap between emotion and joint action

    Get PDF
    Our daily human life is filled with a myriad of joint action moments, be it children playing, adults working together (i.e., team sports), or strangers navigating through a crowd. Joint action brings individuals (and embodiment of their emotions) together, in space and in time. Yet little is known about how individual emotions propagate through embodied presence in a group, and how joint action changes individual emotion. In fact, the multi-agent component is largely missing from neuroscience-based approaches to emotion, and reversely joint action research has not found a way yet to include emotion as one of the key parameters to model socio-motor interaction. In this review, we first identify the gap and then stockpile evidence showing strong entanglement between emotion and acting together from various branches of sciences. We propose an integrative approach to bridge the gap, highlight five research avenues to do so in behavioral neuroscience and digital sciences, and address some of the key challenges in the area faced by modern societies
    • …
    corecore