
Boston University
OpenBU http://open.bu.edu
Theses & Dissertations Boston University Theses & Dissertations

2015

Communicating through motion in
dance and animal groups

https://hdl.handle.net/2144/15193
Boston University



BOSTON UNIVERSITY

COLLEGE OF ENGINEERING

Dissertation

COMMUNICATING THROUGH MOTION IN DANCE

AND ANIMAL GROUPS

by

HASAN KAYHAN ÖZCİMDER

B.S., Gazi University (Ankara), 2007,
M.S., Boston University, 2011

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2015



c© Copyright by
HASAN KAYHAN ÖZCİMDER
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ABSTRACT

This study explores principles of motion based communication in animal and hu-

man group behavior. It develops models of cooperative control that involve communi-

cation through actions aimed at a shared objective. Moreover, it aims at understand-

ing the collective motion in multi-agent models towards a desired objective which

requires interaction with the environment. In conducting a formal study of these

problems, first we investigate the leader-follower interaction in a dance performance.

Here, the prototype model is salsa. Salsa is of interest because it is a structured

interaction between a leader (usually a male dancer) and a follower (usually a fe-

male dancer). Success in a salsa performance depends on how effectively the dance

partners communicate with each other using hand, arm and body motion. We con-

struct a mathematical framework in terms of a Dance Motion Description Language

(DMDL). This provides a way to specify control protocols for dance moves and to

represent every performance as sequences of letters and corresponding motion signals.

An enhanced form of salsa (intermediate level) is discussed in which the constraints
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on the motion transitions are described by simple rules suggested by topological knot

theory. It is shown that the proficiency hierarchy in dance is effectively captured by

proposed complexity metrics.

In order to investigate the group behavior of animals that are reacting to environ-

mental features, we have analyzed a large data set derived from 3-d video recordings

of groups of Myotis velifer emerging from a cave. A detailed statistical analysis of

large numbers of trajectories indicates that within certain bounds of animal diversity,

there appear to be common characteristics of the animals’ reactions to features in a

clearly defined flight corridor near the mouth of the cave. A set of vision-based mo-

tion control primitives is proposed and shown to be effective in synthesizing bat-like

flight paths near groups of obstacles. A comparison of synthesized paths and actual

bat motions culled from our data set suggests that motions are not based purely on

reactions to environmental features. Spatial memory and reactions to the movement

of other bats may also play a role. It is argued that most bats employ a hybrid navi-

gation strategy that combines reactions to nearby obstacles and other visual features

with some combination of spatial memory and reactions to the motions of other bats.
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1

Chapter 1

Introduction

1.1 Motivation

This dissertation explores the dynamics of animal and human collective behavior in

order to understand the interactions between individuals as well as their adaptation

to the uncertainties in the environment. Emergent behavior of biological models is

an increasingly popular topic among the field of biology, robotics and control with

a broad range of applications [1, 2, 3]. In the study [1], the authors discuss the

formations generated by schools of fish to protect the group from the predators. A

colony of Bacillus subtilis bacteria is investigated in [2] and it is illustrated that the

colony forms closely packed dynamic clusters for cooperative group motion. The study

[3] discusses honey bee interactions to communicate the location of the food sources

around a hive (for this work, the Nobel Prize in Physiology or Medicine was awarded

to Karl von Frish in 1973) . These biological models have motivated researchers to

develop new techniques which efficiently reveal the rules of local member interactions

driven by a shared group objective.

The application of the rules governing biological models has also received a great

deal of attention [4, 5, 6]. Moreover, there are ongoing studies experimenting with

multi-agent systems, which cooperate with human operators [7]; a proposed improve-

ment to fully autonomous systems. For this class of problems, the main concern is

to construct an artificial intelligence that can imitate a biological model in terms
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of group members’ decision-making and their performance in execution. Even then,

measuring the quality of a performance is quite challenging since it requires the con-

struction of quantitative metrics to evaluate an execution. These challenges have

motivated us to study and resolve the issues associated with such systems.

This dissertation focuses on groups performing shared tasks in which the group

members communicate with one another by means of gestures and body motions.

One motivating example is maintaining stealthy formations in military applications,

where a group of robots must avoid direct channel communication to prevent the

enemy from decoding the teams’ mission. This phenomenon is also inherent in team

athletics such as basketball, soccer or American football. The manager generates

offensive/defensive plays in which players communicate through motions (positioning)

and gestures (team leader signals) to prevent the opponent team from discerning the

hidden strategy. This is achieved through a predefined library of motion signals which

are used by players during the game. A similar approach is taken when designing

communication protocols between underwater vehicles. The vehicles use transmitted

motion signals in lieu of radio signals that are attenuated by water resistance over

long distances [8].

In what follows, we investigate human and animal collective behavior in two in-

teresting problem settings: dance and bat cave emergence. Dance is an accessible

medium to study communication through motion within groups. There exists the

notion of a leader, who is responsible for transmitting motion signals to a follower

(his dance partner), and she is in turn responsible for executing a response based on

her perceptions and best estimate of the leader’s intentions. Besides accomplishing

these objectives, a dance pair is also required to execute an artistically appealing

performance. Hence, a dance model is perceived as a novel example to study human

group behavior in terms of the leader’s decision making and the dancers’ internal
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interactions for accomplishing the shared task. We further extend the analysis with

a second prototype, which involves Myotis velifer bats’ group interactions for naviga-

tion, and their reactions to environmental features when emerging from a cave. These

bats emerge in sequences of small groups that typically contain no more than three

or four individuals, and they thus provide ideal subjects for studying leader-follower

behaviors in nature.

1.2 Prior Work

Human Motion Analysis

In the 1920s, Rudolf van Laban created a notation system to describe and illustrate

the physical motions of the human body [9, 10]. Similar to the musical notes written

on a five-line staff, Laban introduced the Labanotation as a rich notational system for

transcribing and analyzing the moments of dance. Laban’s model describes the part of

the body that executes the motion, its direction, level, duration and quality. In order

to define the ‘quality’ of a movement, the Labanotation uses four effort parameters

that are Space, Time, Weight and Flow. For instance, Weight parameter identifies

the strength of a move and Time parameter distinguishes a sudden (quick) move from

a sustained one. His studies have become a fundamental source for designing robots

that can imitate human motion [11].

The studies [12], [13] and [14] illustrate the uses of Laban’s effort analysis as a

base to qualify the artistic merit of ballet moves. Distinct motions from a warm up

routine are extracted for representing ballet as a transition model [12]. The angles

between the dancer’s limb joints are defined as the states and the warm up moves

are represented by the state transitions. It is shown that certain ballet moves have

to be followed by a subset of allowable moves from a library based on the physical

constraints of the human body. By integrating the motion constraints as propositions
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in temporal logic formulas, the authors generated controlled dance sequences executed

by a humanoid robot and compared the results with the uncontrolled ones. As a result,

the controlled synthetic dance moves are shown to be better representations of human-

like dance moves [13]. The authors have extended the work by incorporating Laban’s

effort parameters as weight matrices for a linear quadratic optimization problem to

generate stylistic robot motions [14].

Similar to the ballet study, in Chapter 2 of this dissertation, a performance art,

salsa, is represented with a transition system in which states are defined by initial and

final poses of a dance pair and transitions are defined by the physical dance moves

between the poses. However, different from ballet, salsa involves a pair of dancers

who must interact with one another in order to perform. Hence, the transition system

must include multiple finite state machines with a communication channel through

which the leader transmits his move decisions to the follower. We adapt terminologies

from the Motion description languages in order to formally define the moves in salsa.

A salsa dance sequence is discretized into moves executed in eight musical beats

and each move is assigned a distinct letter from an alphabet. This mathematical

framework is similarly presented in the work [15] which models puppet motion control

and choreography design by using a motion description language in order to discretize

human-like motion primitives into less complex submoves. Each submove is derived

by a control law, which is a solution of an optimization problem with time and energy

scale parameter constraints. The study suggests that the concatenation of simpler

submoves generate human-like movements that can be executed by a puppet.

In [16] and [17], human flocking behavior is modeled with a graph theoretic ap-

proach. In an experimental set up, a group of dancers are asked to walk inside a

room while applying a simple set of rules (following at most two dancers and keeping

an arm distance with each other) in order to generate group cohesion and repulsion.
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The video recordings are used to compute the corresponding graph representation of

the group in each instant of time. The features of the graph are extracted in order to

study the local interactions between the dancers and the group’s emergent behavior.

One relevant observation was the emergence of natural leaderships in the group even

though there was no leader/follower assignments.

Animal Group Behavior

A part of this document discusses navigation strategies and leader-follower in-

teractions in bat cave emergence. Similar to the human individual/group motion

analysis, animals are also widely studied in the literature [1, 3, 18] . In [3], it is shown

that honey bees perform dance-like motions for communicating the location and the

distance of a food source. The Waggle Dance of honey bees includes straight and

oscillatory motions. The orientation of a straight motion carries information about

the position of a food source relative to the sun, while the duration of the oscillation

transmits information about its distance. In [1], fish school behaviors in the presence

of predators are studied. The authors explain how individual interactions between

neighbors drive group formations to protect the school from predators. Similarly

in[18], group interactions in a flock (murmuration) of starlings are studied. It is re-

vealed that reacting to six or seven neighbors is optimal for a starling to maintain

the formation while executing simultaneous individual motions.

These results have inspired biologists and control engineers to study and under-

stand how animals use sensory feedback to react to stationary environmental features

and other animals in nearby airspace. In their work [19], the authors study the be-

havior of a group of Brazillian free-tailed bats,Tadarida brasiliensis, as they emerge

from a cave. From the statistical analysis of 3D trajectories, the authors reported

the number of bats in emergence through time, bats’ average flight speed and average

distance to the neighbors. The results suggest that on average, bats typically do not
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fly directly above or below each other. In Chapter 3, we seek to answer two questions

inspired by these studies:

- What sensory information do the bats use for navigation or alignment?

- Is there any emergence of natural leadership in the group?

We have conducted experiments in order to record the 3D trajectories of Myotis velifer

bats as they emerge from a cave. This particular species flies at lower altitudes and

tends to navigate through feature rich environments such as woods and bushes. The

recorded trajectories are analyzed to determine bats’ navigation strategies and their

leader-follower interactions.

Other studies-e.g. [20, 21], focus on the navigation strategies of bees and ants

which use optical flow sensing while traveling. In [20], authors investigate the visual

control of honey bees for height and speed of flight. In an experimental study, trained

honey bees are flown through a tunnel in which the visual features are controlled. The

study has two major conclusions; 1. The bees regulate their flight speed by keeping

the velocity of the image in their visual cortex constant. 2. They use visual cues from

the ground to control their height during flight. In a similar study [21], the authors

conducted experiments in which trained ants use a wall as a landmark for navigating

to a food source. The height of the wall is manipulated through the experiment.

From the recorded ant trajectories, it is concluded that the ants tend to maintain a

desired distance to the wall by keeping the image of the top of the wall in a particular

retinal elevation.

Robotic Applications

Lessons learned from animal and human collective motion have inspired applica-

tions to build bio-inspired robotic systems [4, 12, 22, 23]. In [12], the constructed

framework (the framework is explained in the Human Motion Analysis section) for

the ballet automation is implemented on a simulated humanoid robot. During the
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robot’s ballet performance, its decision making is investigated using a given set of

predefined motions. The primary variable is whether the robot performs ballet moves

with/without previously defined physical or artistic motion constraints. The soft and

hard specifications are used to define physical and artistic dance constraints. The

constraints are then incorporated into the model by using temporal logic formulas.

Without any soft or hard specifications the authors observed that the robot executes

physically unfeasible motion sequences. Using only soft specifications results as gen-

erating feasible but not artistically appealing moves. However, the robot performs

more human-like motions when soft and hard specifications are used simultaneously.

The study [22] analyzes communication through motion in case of wheeled robots

with non-holonomic motion constraints. As individual objectives, two mobile robots

are required to navigate from an initial position to a desired location. A leader robot

transmits signals by using periodic motions. The follower robot adjusts its speed

based on the perceived signal in order to keep its distance constant to the leader. The

authors propose control laws to achieve these individual and shared group objectives.

In another application [4], multiple quadcopters perform a choreographed dance. Each

quadcopter executes a periodic trajectory from a library that is synchronized with

the musical beats. Soccer formations of robotic teams are other popular application

for studying the communication through motion in emergent behavior. In [23], the

implicit communication protocols driven by the soccer game objectives are explored.

The authors discuss the relative positioning of each robot in a formation for ball

movement.

This thesis summarizes a study of motion-based communication in the context of

dance and Myotis velifer emergence analyses. In Chapter 2, mobile and humanoid

robots are used to study the rules that drive the leader-follower behavior in salsa. To

evaluate the success of a robotic dance execution, we propose two metrics for measur-
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ing the artistic merit of the moves. These metrics evaluate the energy expenditure and

the artistic expressiveness of dance phrases. This approach is different from Laban’s

effort parameters [9] since our metrics evaluate a phrase (sequence of moves) in lieu of

a single move. By incorporating these metrics into a transition system representation

of salsa, we solve a forward and an inverse problem. The forward problem involves

generating a robotic dance that is optimal in terms of the proposed metrics. This

is similar to multi-agent robotic applications that minimize the energy consumption

when performing a mission [24]. The inverse problem is a third party robotic evalu-

ation of a group execution to determine the ‘perceived artistic merit’. By using the

results from the bat group behavior, in Chapter 3, we present generated synthetic

bat-like trajectories in a simulated feature rich environment by a robot with non-

holonomic motion constraints. The robot is driven by the rules extracted from the

bats optical flow sensing that uses the land marks (key features) in the environment

for navigation.

1.3 Contributions

This dissertation is organized into four chapters. Chapter 2 discusses the construc-

tion of the mathematical framework for studying the dance pair interactions in salsa.

One contribution of the thesis is the formal exploration of physically admissible move

transitions based on rules derived from topological knot theory. The interrelation

between dance moves and the link diagram representation of a dance pair is dis-

cussed. Moreover, the Alexander polynomial of each link diagram is computed to

describe a dance move by polynomial function manipulation. We propose two math-

ematical metrics that measure dancers’ energy expenditures and the quality of the

executed dance phrases. We generate robotic dance sequences by solving an opti-

mization problem that minimizes robots’ energy consumption subject to the artistic
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constraints. We discuss what constitutes a ‘better’ leader by mapping various skill

level leaders’ motion signals to a physical channel to compute channel capacity. We

observe that channel capacity is strongly correlated to the expertise of the leader.

The studies are extended by building an automated judge that tracks the moves of

a dance pair in order to deconstruct a dance performance into move sequences and

evaluates a score with respect to the predefined metrics. Finally, we discuss the re-

sults of an experiment in which a salsa pair performs in the view of the robotic judge.

The video recordings of the dances are also shown to human judges. A strong corre-

lation is observed between robotic and human judges’ evaluations which implies our

autonomous robot performs well in evaluating a group execution.

In Chapter 3, emergence of Myotis velifer bats from a cave is discussed in terms

of their individual and group behaviors. We explain the details of the experimental

procedure for recording the three dimensional bat trajectories in their natural habitat.

Smoothing and filtering of the raw bat trajectories are carried out using cubic spline

smoothing. The smoothed trajectories are classified into the subgroups with respect

to the bats’ reactions to obstacles in the flight path. In order to understand bats’

decision making, a mobile robot is used to navigate through a simulated environment

which is identical to the bats’ flight corridor. Robots’ trajectory is driven by an optical

flow based control law that use a new concept time-to-transit which is a quantity

computed by the animals’ visual cortex. The synthetic trajectories generated by the

robot suggest that the bats use environmental features as well as the special memory

for navigation.

For the analysis of leader-follower interactions, we define a leader as the bat which

flies at a distance in the range of follower bats’ field of view or echolocation calls.

The data shows that the flight behavior of a follower bat is influenced by the flight

behavior of a leader bat. Thus, we modify the concept time-to-transit to capture
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the geometrical configuration of the leader-follower pair and introduce virtual loom.

The mobile robot’s trajectory is driven through the simulated environment by optical

flow based control laws that incorporates time-to-transit, virtual loom and special

memory. It is concluded that the generated synthetic bat trajectories resemble to the

original bat flight paths.

In Chapter 4, we will conclude the thesis and propose future research directions.

Parts of the discussion that follow are based on our previously published work [25,

26, 27, 28, 29, 30, 31].



11

Chapter 2

Dance as a Prototype for Emergent

Group Behavior

This chapter summarizes work to understand various aspects of the communication

that occur through the movements of partners in dance. By adopting terminology

from motion description languages, we deconstruct an elementary form of the well-

known popular dance, salsa, in terms of four motion primitives (dance steps). We

introduce two metrics in order to measure the energy expenditure of dancers as well

as the artistic merit of a dance performance. The analysis is extended to an enhanced

form of salsa in which the upper body motions play a major role in the steps of the

dance. The dance move transitions are described by rules inspired by topological

knot theory. We present the solutions for a forward and an inverse problem. A

forward problem is defined as generating autonomous dance sequences by humanoid

robots based on the energy and artistic constraints. An inverse problem formalizes

the evaluation of a group execution by a third party autonomous judge. At the end of

the chapter, we present metrics that measure the proficiency level of a leader and his

‘success’ in transmitting motion signals to the other group members for accomplishing

the shared objective of artistic expression.
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2.1 Salsa and Some Definitions

Salsa is a Latin dance form which is popular around the World. Different from other

dances, which are generally the result of years of practice, two dancers without any

prior practice can perform and enjoy salsa. This is achieved by a universal set of

moves and communication signals that can be easily learned by both the leader and

the follower dancers. Hence, equipped with the prior knowledge of the moves, the

dancers can perform salsa as long as the leader as a decision maker executes the

correct gestures to communicate and the follower correctly estimates the upcoming

moves during the dance. Salsa can be seen as a particular type of collective motion

in which the collective goal is to perform an artistically appealing dance while each

individual has to fulfill his/her role as a leader or a follower.

In order to study salsa formally, we are going to build mathematical models by

using two key features of salsa. The first feature is that every distinct move in

salsa has to be performed in eight musical beats (ti, i = 1, . . . 8). This enables us

to discretize a salsa performance into moves of eight beat intervals (starting from

an initial position Fig. 2·1) and to assign a letter to each move from a finite-sized

alphabet,M := {A,B, . . .}. By this method, a salsa performance can be represented

as a concatenation of letters (one might think this as similar to a DNA sequence in

biology).

The second feature of salsa is the characteristics of leader-follower interaction.

The leader (generally a male dancer) is responsible to communicate with the follower

(generally a female dancer) by using gestures in order to signal his move decisions.

We use S := {SA, SB, SC , . . . } to represent the collection of the signals communicated

by the leader to the follower to signal the corresponding moves from the setM (Fig.

2·2).

As is always the case in performing arts, there are distinct levels of proficiency in
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Figure 2·1: On the left hand side the initial pose of a salsa pair is
illustrated. On the right hand side, leader’s (male dancer) and follower’s
(female dancer) foot prints are shown.

salsa. In order to conduct the analysis of collective behavior in dance, we begin with

investigating a simpler version of salsa, Beginner Level Salsa (BLS), that uses only

four basic dance steps.

Definition 2.1.1 The move setMBLS := {A,B,C,D} involves four distinct moves:

A-Basic Salsa Move, B-Right Turn, C-Cumbia Step and D-Cross Body Lead.

Moves inMBLS are referred to as the fundamental salsa moves that are assumed

to be the foundations of the advanced level moves. Leader and follower motion

primitives to generate the moves in MBLS are illustrated in Appendix A.

2.2 The Complexity and Artistic Merit of a Dance Perfor-

mance

The artistic content of formalized movements that occur in dance is central to what

must be expressed in the motion-based language associated with each dance vernac-

ular. It would seem natural, then, to develop a formal means of transcribing basic

motion primitives for dance, but attempts to do this have not led to widespread use
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Figure 2·2: The illustration of the leaders’ signals to communicate
move B (Right Turn) and move C (Cumbia Step) to the follower. The
leader dancer raises his left hand up (SB) in order to signal a 360o turn
for the follower. In Cumbia step, the leader releases the hands and
rotates (SC) to signal diagonal step backward.

among dance professionals. Perhaps the best known effort in this direction was the

development in the 1920’s of labanonation [9]. Rolf Von Laban attempted to develop a

scripting language that was sufficiently expressive that all human movement could be

described and recorded on paper. This has never been widely used, probably because

in its attempt to be universal, it became complex and nonintuitive (This is supported

by noting the “more than 700 symbols that indicate parts of the body, direction,

levels, and types of movement and the durations of each action”. Quoted from the

web page [32]). We avoid dealing with such expressive complexity by restricting our

attention to BLS.

In an attempt to understand how people perceive the artistic merit of a dance

performance, two dancers were asked to perform a number of short salsa segments

using the four basic dance primitives in MBLS. Digital video recordings of the salsa

segments were shown to twenty “judges” who were asked to rank the performances in
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order of artistic merit. The judges included both trained dancers as well as people with

no formal training in dance. All judges were instructed to use standard criteria in their

rankings, including artistic content, dance routine difficulty, partner synchronization,

and complexity of the choreography. Ten dance sequences, each comprised of 23 basic

dance primitives were selected to be ranked by each of the judges. Using the motion

primitives (dance steps) in MBLS, the ten performances are given in Table 1.

Table 1

The average scores of the twenty judges are given in the second row of Table 2. Dance

sequence 9 was preferred, while almost no one liked dance number 2. It is noted that

although the judges were in substantial agreement regarding dance number 2 (rated

as poor) there was comparatively high variance in the judges scores on other dances.

Having thus tabulated the judges’ rankings, we were led to the question of whether

the artistic qualities in terms of which the performances were differentiated could be

identified in a precise and even quantitative way.



16

Table 2

The late Dennis Dutton identified complexity as one of the four central characteristics

of great art [33]. To evaluate the complexity of a sequence of symbols such as those of

Table 1, we considered metrics suggested by the well-known Shannon Entropy. The

simplest possible metric may be arrived at by recording the number of occurrences of

each of the symbols in the symbol set MBLS := {A,B,C,D}. Each dance is exactly

23 symbols in length, and thus the relative frequency of occurrence of the k-th symbol

is fk = (#of occurrences of k-th symbol)/23. The metric

 symbol
frequency
complexity

 = −
4∑

k=1

fk log2 fk (2.1)

is then a measure of the variability of the component steps that make up the dance.

Because there are only four symbols involved, the maximum value this measure could

take is log2 4 = 2, which would be attained if each symbol appeared in the sequence

equally often. (Since the sequence lengths are all 23, this bound is never achieved).

On the other hand, if any single symbol were to appear in all 23 places in the se-
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quence, the complexity (2.1) would have the value 0. When the complexity metric

(2.1) is evaluated on the ten dance sequences of Table 1, the values are strictly be-

tween the two extremes, and they are given in row three of Table 2. A simple linear

regression in which the average judges’ scores were regressed on the computed symbol

frequency suggests only a modest correlation (See Fig. 2·3). Indeed, the value of the

coefficient of correlation for the sequences is only 0.48, indicating a weak correlation.

The following section describes some refined notions of complexity that may more

faithfully reflect the artistic quality of the sequences.

Figure 2·3: The linear regression plot of the average judges’ scores as a
function of the computed symbol frequency. Blue circles represent sym-
bol frequency complexity and Judges’ average ranking for each dance
sequence

2.2.1 Artistic Expressivity of Dance Phrases

It is an interesting exercise to attempt to fit four-state Markov chain models to the

symbol sequences of Table 1. While the sequences are long enough and the sets of
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transitions are rich enough in some cases to construct such models, any model of the

dance in which the next step depends only on its immediate predecessor step will

probably seem a bit aimless and not reflective of the artistic quality of the sequence

of steps that the dance actually contained. As has been noted in the computer music

literature, [34], higher order Markov chain models can be used to capture the phrasal

nature of music.

As noted above, each of the four motion primitives in MBLS is executed over a

period of eight beats of music. Each phrase is thus eight musical measures in length.

Since there are four beats to a measure, it is natural to group the letters in the

sequences into four letter phrases (Table 3).

Table 3

Several phrase centric complexity metrics can then be considered. One such metric

is based on viewing each four symbol phrase as a complete dance sequence in its own

right. In terms of the symbol set MBLS every four letter phrase has a complexity

given by equation (2.1) where now fk = (#of occurrences of k-th symbol)/4. Clearly,

there are five possible values that this phrase complexity metric can take on phrases

made up of the four letters in MBLS. They are 0, −1
4

log 1
4
− 3

4
log 3

4
= 0.811278,

− log 1
2

= 1, −1
2

log 1
4
− 1

2
log 1

2
= 1.5 and log 4 = 2 in the respective cases that all

letters in the phrase are equal, three letters in the phrase are equal, there are two

distinct pairs of equal letters, there are exactly three letters in the sequence, and
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finally in the case that there are four distinct letters in the sequence. Based on this

phrase metric, we prescribe an average phrase complexity (Wave) metric for each of

the twenty-three letter sequences. Ignoring the final three letters in each sequence,

the right hand column in Table 3 lists the number of distinct four letter phrases that

make up the dance. The fourth row of Table 2 lists the average phrase complexity of

the dance.

A further metric in terms of which to evaluate dance complexity is what we shall

call the number-of-phrases complexity. This metric is based on the number of distinct

phrases and their frequency of occurrence among the first twenty letters in each dance

sequence (a number between 1 and 5). The possible values of the number-of-phrases

complexity in terms of the appropriately restated formula (2.1) range between 0 and

log2 5 ≈ 2.344. The values taken on by this metric for our ten dances are listed in

row 5 in Table 2. Note that while dances 4 and 5 have the highest average phrase

complexities (being comprised of four distinct letters), they also have the lowest

complexity measured in terms of number-of-phrases.

Comparing the average judges’ scores with the average phrase complexity showed

a discernible correlation, with the coefficient of correlation being 0.75. On the other

hand, the number of phrases complexity had no meaningful correlation with the judges

rankings (correlation coefficient −0.099). It is interesting to note, however, that a

convex combination of these complexity metrics in which the relative weightings are

90% average-phrase complexity and 10% number-of-phrases complexity has a slightly

higher value of 0.764 coefficient of correlation with the judges rankings. This metric

slightly discounts dance routines that repeat the same four steps over and over. It is

also interesting to note that both these complexity metrics are identical on and do

not discriminate between dances 4 and 5, and yet the judges had a clear preference

for dance 5. There is clearly some aspect of artistic merit that is not captured by the
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complexity metrics.

2.2.2 Energy Expenditure to Measure Artistic Quality

A major theme in recent work of Wong and Baillieul [35, 36, 37] is understanding

the complexity of communicating through a control system in terms of the required

control energy. As dance requires physical exertion, it seems natural to compare the

dance sequences of Section 2.2 (Table 1) in terms of the amount of energy required

to perform them. While energy data was not recorded for the human dancers who

performed the ten dance routines, we have done energy calculations on wheeled robots

in our lab doing appropriately stylized versions of the same beginner salsa routines.

This is achieved by converting the motion description language (MDL) created for

the dance into a hybrid system representation for a robotic dance pair.

General MDL is defined as the sequences of control protocols (atoms) to describe

a hybrid system in the form [38],

ẋ = f(x, u), x ∈ X, u ∈ U, (2.2)

ẏ = h(x), y ∈ Y, (2.3)

where x is the state, u is the control input and y is the observation and every control

law steers the system until a switching condition occurs. MDLe is an extended version

of general MDL which provides switching constraints based on sensory feedback [38].

In an MDLe the atoms are in the form (ui, εi, ti) where the index i represents the

mode the system currently running, ui is the control to steer the system in the mode

i, εi is the interrupt function ε : Y → {0, 1} and ti is the timer.

In the rest of the analysis, we refer to the leader and the follower robot as Bob

and Alice, respectively. For a robotic dance performance, we discretize each dance

move in MBLS into finite number of submoves which are defined as follows.
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Definition 2.2.1 ηi (for Alice) and κi (for Bob) are the submoves generated by par-

titioning an eight-beat dance move into distinct motion primitives, where i = 1 . . .m,

and m is the number of sub moves.

In this particular case, the index i given in MDLe definition represents the particular

submove that the robots are currently executing. Thus, the atom for a submove

becomes,

(uAηi , ξ
A(t, η)), (2.4)

for Alice (follower robot) and,

(uBκi , ξ
B(t, κ)), (2.5)

for Bob (leader robot) where uAηi and uBκi are the inputs which may be either open loop

or feedback control commands for executing each sub move ηi and κi. The interruption

function ξi(.) is a boolean function of time and the submove being performed.

ξAi : R+ × ηi → {0, 1}, for Alice, (2.6)

ξBi : R+ × κi → {0, 1} for Bob. (2.7)

Thus, η, κ ∈ {A,B,C,D} are represented as the finite set of atoms in the form

(uAηi , ξ
A(t, η)) for Alice and (uBκi , ξ

B(t, κ)) for Bob, where i = 1, . . . ,m.

This framework is used to generate a robotic dance performance by Khepera III

robots with non-holonomic motion constraints. If one agent is assumed to be the

leader (Bob) and second agent is the follower (Alice) the equations of motion are

ẋB = vBcosθB, ẋA = vAcosθA, (2.8)

ẏB = vBsinθB, ẏA = vAsinθA, (2.9)

θ̇B = ωB, θ̇A = ωA. (2.10)

Superscripts B and A represent Bob and Alice, respectively. In the system (2.8)-
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(2.10), x and y are the positions of the robots in a 2-D plane. The input pairs

{vA, ωA} and {vB, ωB} are the linear and the angular velocities and θ is the angle

between the direction of the robot and the horizontal axis (Fig. 2·4).

Figure 2·4: The illustration of a Khepera III robot in x-y plane. θ
is the angle between the robots’ direction and horizontal axis. xB0 and
yB0 are the initial positions and superscript B represents Bob (leader
robot).

In this set up, the initial positions of the robotic pair to perform the moves

A,B,C,D are illustrated in Fig. 2·5.
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Figure 2·5: Initial position of the robotic dance pair. Red and Black
coloring are used to distinguish follower and leader robot, respectively.

It is assumed that the robots start from the same initial position with a fixed

distance. Robotic dance motion primitives that correspond to the executions of a

real dance pair are shown in Appendix A. The distance covered by the robots for

each dance move is computed and used as an energy metric to measure dancers’

energy expenditures in salsa. In the last row of Table 2, the total energy values

(as distances in cm) are illustrated for each dance sequence. A strong correlation

coefficient (R = 0.8) is observed between the energy consumption and judges rankings.

This result suggests that judges evaluate the sequences by the artistic quality of the

dance phrases as well as the energy reflected by the dancers in the execution. This

phenomenon will be used in the rest of the analysis to understand the proficiency

hierarchy in dance. The proposed energy and complexity metrics will be incorporated

into a robotic performance for generating ‘optimal’ dance phrases.
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2.3 Generating Advanced Level Dance Based on Topological

Constraints

In this section, we consider an enhanced form of salsa, which we refer to as inter-

mediate level salsa (ILS) and in which there are additional motion primitives (dance

steps) as well as a physical constraint imposed by requiring the dance partners to

maintain hand contact. The size of the alphabet is extended to capture more ad-

vanced dance performances in the analysis. In the performing arts, the body poses

as well as the arm positions have relevant influence on the artistic expressivity of an

execution. Hence, we incorporate rules from topological knot theory to investigate

the role of dancers’ body motions in leader-follower interactions and leader’s decision

making for move transitions. We begin with introducing some basic concepts from

the knot theory.

2.3.1 The Rudiments of Knot Theory

We recall that knots are simple closed curves in R3, and links are finite sets of knots

that may be entangled with one another. Although interest in knots dates to antiquity,

the formal study of knots as mathematical objects may be traced to Vandermonde’s

1771 paper “ Remarques sur les problèmes de situation”, [39]. The modern intro-

duction of polynomial invariants and other algebraic tools has significantly deepened

the theoretical foundations, while the simultaneous proliferation of applications to

statistical mechanics, molecular biology, and chemistry has secured the place of knot

theory as an important mathematical discipline. Knot theory is of interest in the en-

hanced version of salsa that we shall examine below where the dancers’ joined hands

both enable artistic expression and constrain the grammar of motion sequences in the

dance. For the purpose of our discussion, we shall provide a rudimentary conceptual

introduction to the language of knot theory.
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For any two knots, the linking number specifies how many times each curve (knot)

winds around the other. The linking number is always an integer, and since the

curves are oriented, the linking number may be positive or negative. A simple way

to determine the linking number is to “project” the curves onto the plane by an

immersion f : R3 → R2. Under this mapping a knot (or link) is in one-to-one

correspondence with its image except at double points (called crossings) where a

distinction needs to be made between the top and bottom segments of the knot (link).

(Note, that we do not allow image points of multiplicity higher than two [no triple

points, for instance], and all crossings are assumed to be transverse.) To keep track of

which segment crosses over and which crosses under, we represent the segment that is

under by means of a break, as illustrated in Fig. 2·6. The planar image (with respect

to f) of the knot (or link) together with the labeling of “over” and “under” segments

at crossings constitutes the link diagram.

Figure 2·6: Over and under pass information in 2-D regular diagrams

Two knots (or links) are equivalent if there exists an orientation preserving homeo-

morphism of a neighborhood of the first in R3 onto a neighborhood of the second

(also in R3) such that the second knot (link) is the image of the first.

Well known results of K. Reidemeister [40] have shown that equivalent links may

be transformed into one another by a finite sequence of three elementary moves—the
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Figure 2·7: Three Reidemeister moves preserving the link equivalence.

so-called Reidemeister moves. These are depicted in Fig. 2·7. A type 1 move simply

removes or adds a kink, a type 2 move is a separation and a type 3 move is preserving

the number of crossings.

Consider two links—colored, say, black and red. Assuming that each is oriented,

there are precisely four possible crossings, as depicted in Fig. 2·8.

Figure 2·8: Four possible crossings between the link edges

Let the numbers of each type of crossing be n1, n2, n3, n4 respectively. The linking
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number is then defined to be

#(L1, L2) =
n1 + n2 − n3 − n4

2
. (2.11)

If L is a link with n components L1, L2, . . . Ln then the linking number of L is [41],

∑
1≤i≤j≤n

#(Li, Lj) = #(L). (2.12)

Figure 2·9: Linking numbers for some of the 2-component links

Any two unlinked knots have linking number zero (Fig. 2·9.). However, linking num-

ber zero for two knots does not necessarily mean that the knots are unlinked. One

well known example is the Whitehead link which has linking number zero but for

which the two components are linked (Fig. 2·10). This example is important because

Figure 2·10: Whitehead link with #(L1, L2) = 0

it shows that linking numbers do not determine the topology of knots and links. The
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related concept of an unknot will be important in what follows.

Definition 2.3.1 A knot is called an unknot (trivial knot) if it bounds an embedded

disc. (That is to say, it is equivalent to a circle.)

Another knot(link) invariant Alexander polynomial is introduced by James Wad-

dell Alexander [42]. Let us assume that D is a regular diagram representation of a

knot (link) L which has v crossings. Then by Euler’s theorem [42], every arc of the

knot (link) D divides the plane into v + 2 regions including the region around the

knot (link) which are represented by σ1, σ2, . . . σv+2. By investigating one crossing cr1

locally,

Figure 2·11: Investigating one crossing to calculate Alexander poly-
nomail of a knot

the regions that lie on the left of the underpass arrow will be marked with ‘dots’

as illustrated in Fig. 2·11. Without loss of generality it can be assumed that each

crossing can be rotated to match the orientation as in Fig. 2·11 above which then

will be used to calculate the Alexander matrix of a knot L. The regions σj, σk are

called “dotted top” and “dotted bottom” regions and regions σm, σl are called “top”

and “bottom” regions respectively. In this set up, the linear equation for crossing one

(cr1),

cr1(t) = tσj − tσk + σl − σm, (2.13)

is defined by multiplying the “dotted top” and “dotted bottom” regions by t (where

t is a dummy variable without any physical meaning) and −t and top and bottom
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regions by 1 and −1 respectively. Calculating the linear equations for each crossing,

cr1(t), cr2(t), . . . , crv(t), will result as a system of v + 2 variables with v equations.

These set of v equations will then be represented by a v×(v+2) matrix M̂L (Equation

2.14) such that each row will correspond to a crossing and each column will correspond

to a region around the knot(link) L.

M̂L =


σ1 . . . σv+2

cr1 . . . . . . . . .

...
...

. . .
...

crv . . . . . . . . .

. (2.14)

By definition, the entries of the matrix M̂L are ±1, 0 and ±t. Furthermore, the

Alexander matrix ML is defined to be the v × v square matrix obtained from M̂L by

deleting two columns that correspond to any two neighboring regions σp and σq in

the link diagram [42].

Definition 2.3.2 [42] The Alexander polynomial 4(t) of a knot (link) L is defined

to be the determinant of the Alexander matrix 4(t) = det(ML) which is a function of

t and has integer coefficients.

Let us calculate the Alexander polynomial of Hopf Link with the orientations given

in Fig. 2·12, as an example.

The linear equations for the two crossings is found as, cr1(t) = tσ1 − tσ2 + σ3 − σ0

and cr2(t) = tσ1 − tσ0 + σ3 − σ2. The matrix M̂L becomes,

M̂L =

(
−1 t −t 1
−t t −1 1

)
. (2.15)

Two columns correspond to the two neighboring regions are deleted to come up with

the 2 × 2 Alexander matrix. If we delete column 2 and 3 (since σ2 and σ3 are
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Figure 2·12: The enumerated regions and crossings for the Hopf link
in order to calculate the Alexander matrix

neighboring regions) the resulting square matrix becomes

ML =

(
−1 1
−t 1

)
. (2.16)

Hence, the Alexander polynomial for the Hopf Link L, is the determinant of the

matrix ML which is found as,

4(t) = det(ML) = t− 1. (2.17)

As it is noted above that Alexander polynomial is a knot(link) invariant which is

stated in the next theorem.

Theorem 2.3.3 [42] The Alexander polynomial 4(t) calculated by using the method

presented above differs only by the power of ±tk for some integer k for equivalent

knots.

We conclude this section by introducing two operations that change the topology

of a knot (link). An important operation in knot theory is that of cutting and splicing

(Fig. 2·13). This operation can be used to alter the local over and under passing at

crossings, and thus, it can be used to change the topology of a knot or link.

The final basic concept of elementary knot theory that we shall make use of is

the knot sum. Two oriented knots/links L1 and L2 can be added together to form
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Figure 2·13: Unknotting the trefoil: The cutting and splicing opera-
tion locally changes the over and under passes at a crossing.

their sum L1#L2 by placing them side by side and cutting each one once and splicing

in two line segments such that the orientation is preserved [9]. This is depicted in

Fig. 2·14.

Figure 2·14: Orientation preserving knot sum operation for the links
L1 and L2

In the following section, these topological concepts will be incorporated into salsa

dance model for formal exploration of the dance pair interactions with artistic con-

straints.
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2.3.2 Leader’s Decision Making and Admissible Move Transitions

We start our analysis by assuming that in an abstract model a dancer and his/her

arms will be represented by a two component link L. The components are an infinitely

long cylinder (or line) L1 (representing the body or torso of the dancer) and a trivial

knot L2 (representing the arms) with the orientations given as in the Fig. 2·15.

Figure 2·15: The link diagram of L with its components L1 and L2

It is assumed that the link representing the initial pose of a dance couple (Fig. 2·17.)

is a knot sum of the links representing each dancer. In Fig. 2·16, one can see the knot

sum L#F of the links L and F with the orientations preserved and its three compo-

nents, L1, L2 and L3. We retain the color coding, blue and red, of the link segments

to represent the male (leader) and female (follower) dance partners respectively.

It is easy to conclude from Fig. 2·16 that linking number of the link sun L#F is

#(L, F ) = 2 and the number of crossings cr = 4. This link diagram above is assumed

to be the starting link since it represents the link diagram for the initial pose of the

dancers when they start to dance (Fig. 2·1).

We shall address several questions: (1) How many non equivalent links are required

to represent the poses that occur in a salsa performance? (2) What are the changes of

link attributes corresponding to the physical movements that define the dance steps?
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Figure 2·16: The knot sum of the links L and F .

To answer these questions, we define the set of dance moves (motion primitives)

that will be the alphabet from which dance sequences of intermediate level salsa

(ILS) are constructed. The key distinction that will be drawn with respect to BLS

treated above is that in ILS, the dancers never break hand contact. Hence their

arms and bodies remain knotted in the sense described above such that the link

diagram always has three components. To the basic moves A,B,C,D that we have

already defined (and which are pictorially represented in Appendix A) we add seven

additional moves {J,K,M,N,O, P, T}, each of which continues to be performed over

the course of eight musical beats. Hence, MILS = {A,B,C,D, J,K,M,N,O, P, T}.

We do not describe the foot movement used to execute these, but rather identify the

distinguishing characteristic as simply the beginning and ending poses (Appendix B).

It will turn out that the knottedness of the dancers’ arms will constrain the sequencing

of dance steps (The arm positions that occur in move B are shown as an example in

Fig. 2·17). Hence, unlike the beginners’ salsa considered in Section 2.1, ILS does not

allow complete freedom in the choice of letter sequences. This will, of course, affect

the information theoretic metrics that we have used to discuss complexity of dance

routines.
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Figure 2·17: The illustration of the initial and final poses and link
diagram representations for move B in Intermediate Level Salsa

The focus here is understanding how dance movement transitions are constrained

by the arm positions. The link diagrams corresponding to the poses illustrated in

Appendix B are shown in Fig. 2·18. The dancers’ arms will cross in different patterns,

and these patterns are shown in the usual way as under- and over-crossings.

Remark 2.3.4 Let qji and qjf be the initial and final link diagrams representing

the initial and final poses pji and pjf respectively for the moves j ∈ MILS. We can

classify the links into 3 groups with respect to both the linking number (lk) and number

of crossings (cr) (Fig. 2·18.).

• lk = #(L, F ) = 2 and cr = 4 (e.g. qAi, qNf ,...) : 14 link diagrams (including

starting link),

• lk = #(L, F ) = 2 and cr = 6 (e.g. qBf , qMi,...): 4 link diagrams,

• lk = #(L, F ) = 3 and cr = 7 (e.g. qJf , qNi,...): 4 link diagrams.

Remark 2.3.5 The purpose of the discussion here is to illuminate the constraints on

motion sequences that are imposed by the topologies of the links depicted in Fig. 2·18.

These constraints are completely determined by the beginning and ending poses of the
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Figure 2·18: Initial and final link diagrams for eleven moves in Inter-
mediate Level Salsa (ILS)
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dance steps. The significance of the constraints in terms of our complexity metrics will

be discussed in the next section. We point out that for motion primitives A,B,C,D,

the foot motions of the dancers are shown in Appendix A.

We note that the crossing number (cr) is not a knot (link) invariant, but it will

be shown to usefully characterize the poses corresponding to the link diagrams of

Fig. 2·18. To understand this correspondence, we define a motion operator that

describes the movement of the dancers in the transition from their initial to final

pose in each of the eleven steps. As apparent from Fig. 2·18, the motions of the male

(blue) and female (red) partners are qualitatively different from one another. The

link crossings and uncrossings arise from the female rotating her body through angles

of π or 2π with respect to the initial pose. The dance motions from beginning to

ending poses in our eleven dance primitive can be labeled as follows in terms of a

motion operator, ∗(., .):

∗(0, 0) ∼ the female partner
begins and ends facing the
male partner in the move
(A,C,D).

∗(π,CW ) ∼ the female partner rotates
by π in the clockwise
direction(J,O).

∗(π,CCW ) ∼ the female partner rotates
by π in the counterclockwise
direction(N,T).

∗(2π,CW ) ∼ the female partner rotates
by 2π in the clockwise
direction(B,P).

∗(2π,CCW ) ∼ the female partner rotates
by 2π in the counterclockwise
direction(K,M).

Consider move B. This has the follower rotating 2π in the CW direction. The change

from the initial pose pBi to the ending pose pBf in move B is represented by the
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notation,

pBi ∗ (2π,CW )→ pBf . (2.18)

The ∗(., .) operator will be used to describe the rotations in ILS. The move descriptions

are listed in Fig. 2·19.

pAi ∗ (0, 0) → pAf ,
pCi ∗ (0, 0) → pCf ,
pDi ∗ (0, 0) → pDf ,

pBi ∗ (2π,CW ) → pBf ,
pJi ∗ (π,CW ) → pJf ,

pKi ∗ (2π,CCW ) → pKf ,
pT i ∗ (π,CCW ) → pTf ,
pMi ∗ (2π,CCW ) → pMf ,
pNi ∗ (π,CCW ) → pNf ,
pOi ∗ (π,CW ) → pOf ,
pPi ∗ (2π,CW ) → pPf .

Figure 2·19: 10 moves in which there is follower rotation.

From this figure, it is clear that the physical actions of the follower is one of the four

∗(2π,CW ), ∗(2π,CCW ), ∗(π,CW ), ∗(π,CCW ) together with the null rotation (of

move A etc.). The link transformations associated with the five motion operations

are characterized as follows.

Proposition 2.3.6 In ILS, the physical transformations ∗(2π,CW ), ∗(2π,CCW )

will result in topologically equivalent (under Reidemeister transformations) initial and

final link representations.

p`i ∗ (2π, .)→ p`f , q`i → q`f , q`i ≈ q`f , ` = B,K,M,P. (2.19)

However, the physical transformations ∗(π,CW ), ∗(π,CCW ) will have non equivalent

initial and final links.

p`i ∗ (π, .)→ p`f , q`i → q`f , q`i 6≈ q`f , ` = J,N,O, T. (2.20)
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Proof : For the proof we begin by proving the second part of our result. Links

whose linking numbers differ cannot be topologically equivalent. Hence in Fig. 2·18,

one may observe the moves J , N , O, T , which involve applications of the ∗(π, ·)

operator are such that the linking number changes by 1, proving that the links are

not equivalent. In order to make the link diagrams of the beginning and ending pose

equal, one would need to cut need to cut and splice one of the link components as

illustrated in Fig. 2·20—the black circle showing the location of the cutting operation.

Figure 2·20: The cut-and-splice operation of Proposition 1 that trans-
forms the ending to the starting link diagram (black circle in the figure
is the crossing at which the cutting operation is applied in order to
alter the over and under passes of the link segments).

In order to prove the equivalence of the links representing the poses after the

∗(2π, .) operator is applied, it is enough to show the proper elementary Reidemeister

transformation between the initial and final links. One can apply a Reidemeister

Type 1 move (Fig. 2·7.) (inverting the right or left vertical link segment L or F )

to decrease the number of crossings in the connecting link while preserving the link

invariants, and showing the equivalence with the link diagram corresponding to move

A.

Proposition 2.3.6 characterizes the change of the link topology produced by the
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corresponding motions in each dance step. These changes and the fact that ending

and beginning poses may have topologically distinct link diagrams places constraints

on assembling admissible sequences of moves in a dance. These may be understood

in terms of differences the among the moves illustrated in Fig. 2·18. Moves in the

set {A,C,D} start and end with the starting link. Moves in the set {T, J,K,B}

only start with the starting link, and {O,N, P,M} only end with the starting link.

The move transition pairs BM , JN , KP , TO also start and end with starting link.

Move M can be thought as an “inverse” move of move B—one that transforms its

final link back to the starting link (Fig. 2·21). This raises the question of finding all

possible move transitions in ILS. We shall describe this feasible set in terms of the

link diagrams of the beginning and ending poses.

Figure 2·21: Transition from moveB to the moveM with link diagram
representations

Proposition 2.3.7 Assume that qji and qjf are the initial and final link diagram

representations for the initial and final poses pji and pjf , j ∈ MILS, respectively.

Then any admissible dance sequence can be represented by a finite concatenation of

brackets [qji, qjf ] in which any pair of successive brackets has the final link diagram of

the first bracket equal to the initial link diagram of the second bracket.

Discussion: It is obvious that with respect to the physical constraints on the dance,

the final pose of a move performed and the initial pose of the next must be exactly

the same for the dancers to transition from one to another. Because of these physical
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constraints, move transitions in a dance sequence . . . [qji, qjf ][qki, qkf ] . . . are allowed

only when the corresponding final link diagram qjf of the previous move and the

initial link diagram of the next move qki where k, j ∈ {A,B,C, . . . T} are the same.

By looking at the link diagram representations of the poses given in the figure 2·18,

one may conclude that there are 3 types of moves in an admissible dance sequence.

We can summarize the allowable transitions . . . [qji, qjf ][qki, qkf ] . . . as follows.

• if j ∈ {A,C,D} then, either k ∈ {A,C, D} or k ∈ {T, J,K,B}.

• if j ∈ {T, J,K,B} then the transitions are deterministic such that, BM , JN ,

KP , TO must appear in the sequence. (This is similar to the need to have the

letter u follow the letter q in English.)

• if j ∈ {O,N, P,M} then either k ∈ {A,C,D, } or k ∈ {T, J,K,B}.

This may be summarized in the state transition diagram of Fig. 2·22.

Figure 2·22: The allowable transitions for each move in ILS based on
the physical constraints
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2.3.3 Complexity Merit of Intermediate Level Dance

The transition constraints imposed by the knotting and unknotting of the dancers’

arms will affect the complexity metrics introduced in Section 2.2. The intrinsic com-

plexity of the enhanced (ILS) dance sequences can be discussed in terms of a Markov

model of the step transitions, however, and this complexity can be compared with

the corresponding model of BLS discussed above. Assuming no particular biases in

the choice of step sequences allowed according to Fig. 2·22, we let the probabilities of

steps A,C,D,B, J,K, T following step A in a sequence be 1/7. Assigning transition

probabilities in a similar way in accordance with the given transition constraints, we

can model dance sequences as a Markov chain with transition matrix

P =



1/7 1/7 1/7 1/7 1/7 1/7 1/7 0 0 0 0
1/7 1/7 1/7 1/7 1/7 1/7 1/7 0 0 0 0
1/7 1/7 1/7 1/7 1/7 1/7 1/7 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1

1/7 1/7 1/7 1/7 1/7 1/7 1/7 0 0 0 0
1/7 1/7 1/7 1/7 1/7 1/7 1/7 0 0 0 0
1/7 1/7 1/7 1/7 1/7 1/7 1/7 0 0 0 0
1/7 1/7 1/7 1/7 1/7 1/7 1/7 0 0 0 0


. (2.21)

It is easy to see that this is a doubly stochastic matrix, and since it is aperiodic and

irreducible, the associated invariant distribution is the uniform distribution on the 11

dance steps. I.e. the invariant probabilities are µi = 1/11 for i ∈ {A,B,C,D, J,K,

M,N,O, P, T}. The entropy of this is log2 11 = 3.46, whereas the entropy of the four-

letter sequences of beginner’s salsa is log2 4 = 2. What is perhaps more revealing is to

compare the entropy rates of the unconstrained beginner’s salsa and the intermediate

level salsa. Recall [43] that given a random walk Xi on a graph described by a

Markov transition matrix P having stationary distribution µ1, . . . , µ11, the entropy
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rate is given by

−
∑
i

µi,
∑
j

Pij log2 Pij. (2.22)

For the systems described by (2.21) this is 1.7865, which is less than log2 4 = 2 for

the unconstrained four state system of beginner’s salsa.

In thinking about the complexity metrics of Section 2.2, we note that some differ-

ences can be expected with intermediate level salsa, but some metrics will be similar.

For the intermediate level case, we have

 symbol
frequency

complexity

 = −
11∑
k=1

fk log2 fk. (2.23)

Since there are eleven symbols in ILS the maximum value of this measure is

log2 11 = 3.45 which is simply performing each move equally often in a given n symbols

length dance sequence. On the other hand this value remains 0 when only one move

appears the sequence. The average phrase complexity metric can be calculated by the

equation 2.23 where

fk = (#of occurences of the k-th symbol)/4.

Thus, the complexity value for the whole sequence is calculated by taking the average

of the total number of phrases. There are four distinct possibilities of phrase com-

plexities, 0, 0.811278, 1, 1.5, 2 when all four symbols are equal, three symbols are

equal, two symbols are equal and when there are four distinct symbols in a phrase

respectively. These cases are exactly the same as in beginner’s salsa where there were

a total of four distinct symbols. The number-of-phrases complexity which takes values

that range between 0 to log2(total number of phrases) will also remain roughly the

same in ILS, although the set of possible distinct phrases is much larger.
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2.3.4 Transition from Intermediate Level Salsa to Extended Intermediate

Level Salsa

In a regular salsa performance, leader has the freedom to choose whether to break the

hand contact or keep the hands holding. Thus, in this section, we extend enhanced

level salsa analysis to the case when the hand constraint is relaxed in a structured

way: A dance pair is allowed to break hand contact only to return to the starting

dance pose (Fig. 2·1). Since there exist no arm crossings in the starting pose, it is

physically the most comfortable pose for a dance pair and it is illustrated in Fig. 2·22

that starting link has the largest set of admissible move transitions.

For the formal analysis of relaxing the hand constraint, we use algebraic represen-

tations of the link diagrams by calculating their Alexander polynomial invariants. In

Section 2.3.2, the links in ILS are classified into three groups based on their linking

and crossing numbers, Group 1: lk = #(L, F ) = 2 and cr = 4 (e.g. qAi, qNf ,...),

14 links (including starting link), Group 2: lk = #(L, F ) = 2 and cr = 6 (e.g. qBf ,

qMi,...), 4 links, Group 3: lk = #(L, F ) = 3 and cr = 7 (e.g. qJf , qNi,...), 4 links,

where starting link is the link diagram representation of the dancers’ initial pose

(starting pose) in salsa. The Alexander polynomial invariants for the groups 1 (Gr1),

2 (Gr2) and 3 (Gr3) are given in what follows.

Proposition 2.3.8 The Alexander polynomial values for the links in group 1 and 2

are calculated as,

4Gr1(t) = 4Gr2(t) = t2 − 2t+ 1, (2.24)

and for the group 3,

4Gr3(t) = −t4 + 2t3 − 2t2 + 2t− 1. (2.25)

Proof: We begin the proof for the two component link given in Fig 2·23.
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Figure 2·23: Enumerated regions to calculate Alexander matrix for
two component link diagram

Using Alexander’s Algorithm the matrix M̂L is calculated as,

M̂L =

(
−1 −t t 1
−t −1 t 1

)
. (2.26)

Two neighboring regions σ1 and σ2 are deleted which results in the Alexander matrix

such that

ML =

(
−1 1
−t 1

)
, (2.27)

and the Alexander polynomial is computed as4(t) = t−1. By definition the starting

link is the composition of two identical knots (Fig. 2·24) by the knot sum operation.

Since the Alexander polynomial of connected sum of the two links is the multipli-

cation of the polynomials computed for each link [44], 4L#F (t) = 4L(t).4F (t), the

polynomial for the starting link (group 1) is calculated as

4Gr1(t) = (t− 1).(t− 1) = t2 − 2t+ 1. (2.28)

Computation for the links in group 3 is similar. As the knot sum of the links is
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Figure 2·24: The knot sum of the links L and F .

illustrated in Fig. 2·25,

Figure 2·25: The knot sum of the links L and F in group 3.

with some tedious algebra, the Alexander polynomial for the link F (Fig. 2·25) is

calculated as,

4F (t) = −t3 + t2 − t+ 1. (2.29)

The polynomial for the sum of the links L#F in Fig. 2·25, is given by,

4L#F (t) = (t− 1).(−t3 + t2 − t+ 1) = −t4 + 2t3 − 2t2 + 2t− 1. (2.30)

In order to prove that group 1 and group 2 have the same Alexander polynomial,

we will show the part of the proof for theorem 2.3.3 which shows the Alexander

polynomial invariance for knots(links) under Reidemeister Type 1 transformation.
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We begin with introducing ε− equivalence of the matrices which will be used in the

proof.

Definition 2.3.9 [42] Two matrices M1 and M2 with entries that are integer coef-

ficients of polynomial in (t) are ε-equivalent if one can be transformed to another

by sequence of the following operations: 1. Multiplying a row or column by −1, 2.

Swapping two rows or columns, 3. Adding one row or column to another, 4. Adding

or removing a border where the corner element is 1 and the rest of the elements are

zeros, 5. Multiplying or dividing a column by t.

It is shown in [42] that the determinants of these two matrices M1, M2 differ by the

power of ±tk. The transformation of the links in group 1 to the links in group 2 is a

Reidemeister Type 1 operation that adds a crossing as shown in Fig. 2·26.

Figure 2·26: Adding a crossing to the regions associated to the original
knot

Let us assume that the link (in group 1) without the new crossing has original

matrix M̂ . The added crossing will create a new region marked as σ∗ which adds one

row and one column to the original matrix M̂ as in the following,

M∗
1 =



σ∗ σ1 σ2 . . .

cr1 1 t −(1 + t) 0

cr2
... 0 M̂

crn
...


.
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Since the regions σ1 and σ2 are adjacent they can be deleted from the new matrix

M∗ which also means deleting them from the matrix M̂ which results as the square

Alexander matrix for the original knot(link).

M∗
2 =



σ∗ . . . . . . . . .

cr1 1 0 0 . . .

cr2
... 0 M

crn
...


.

From the definition of the ε-equivalence (definition 2.3.9.) of the matrices, ap-

plying operation 4 to M∗
2 will result as M∗ = M which proves the equivalence

4Gr1 = 4Gr2 = t2 − 2t+ 1 given in the proposition.

Our goal is to investigate the physical dance motion primitives required to break

the hand contact for returning to the starting pose based on the links’ Alexander

polynomial representations. In order to represent the physical moves such as breaking

leaders’ right or left hand contact, we introduce |(.) operator. We denote |(l) and |(r),

in order to represent breaking the leader’s left and right hand contact and holding

again after altering the arm crossings, respectively. Hence, the alphabet of ILS is

extended by introducing three new moves {U, V, Z} (Appendix B).

Proposition 2.3.10 In a transition system . . . [qji, qjf ] [qki, qkf ] . . ., moves with final

link qjf that have 4Gr1 = 4Gr2 = t2−2t+1, is followed by qki where k = U such that

pui |(l) → puf , (2.31)

will transform the final link into the starting link. Moves with final link qjf that have

4Gr3(t) = −t4 + 2t3 − 2t2 + 2t− 1, is followed by either k = V or k = Z such that,

pvi ∗ (π,CW ).|(l) → pvf . (2.32)

pzi ∗ (π,CCW ).|(r) → pzf . (2.33)
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will transform the final link into the starting link where the “.” represents the compo-

sition of the two operations (first breaking the hand contact, followed by the rotation

of the follower and holding the hands again).

Proof: Moves {K,B} end with the final links classified in group 2 which correspond

to the dancers facing to each other with arms crossed (Appendix B). Hence, breaking

the hand contact from one hand of the leader (right or left) and switching under and

over passes will result as the initial pose which is defined as move U . This can be

illustrated in the link diagrams by cut-and-splice operation in topological knot theory

(Fig. 2·27).

Figure 2·27: Cut-and-splice operation in topological knot theory ap-
plied in the black circled crossing in order to switch over and under
passes on the final link diagrams of the moves K,B

However, the final link diagrams of the moves {J, T} are in group 3. Thus, breaking

the hand contact has to be concatenated with followers rotation in order to reach to

the starting pose. The reason is that the links in group three correspond to poses

with followers’ rotation of π. Hence, |(l) operation has to be followed by a ∗(π,CW )

operation and |(r) has to be followed by ∗(π,CCW ) and holding the arms again as

in the moves V and Z. Corresponding cut-and-splice operation that results with the

starting link is illustrated in Fig. 2·28.
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Figure 2·28: Cut-and-splice operation applied to the group 3 links.

Definition 2.3.11 Extended ILS is the set of 14 Salsa moves labeled {A,B,C,D, J,
K,M,N,O, P, T, U, V, Z} such that each move is achieved in eight musical beats.

A New graph illustrating admissible move transitions is given in Fig. 2·29. It is

assumed that the leaders have no bias when they execute any possible dance sequence,

so that for their n choices, the probability of choosing a move will be 1/n. The

transition matrix, when the Extended ILS is modeled as a Markov chain, is given as

the new P matrix.
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Figure 2·29: Transition graph for Extended ILS. The red arrows il-
lustrate the transitions to the three new moves

P =



1/7 1/7 1/7 1/7 1/7 1/7 1/7 0 0 0 0 0 0 0
1/7 1/7 1/7 1/7 1/7 1/7 1/7 0 0 0 0 0 0 0
1/7 1/7 1/7 1/7 1/7 1/7 1/7 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1/2 1/2 0 0 0 0 0
0 0 0 0 0 0 0 0 1/2 1/2 0 0 0 0
0 0 0 0 0 0 0 0 0 1/2 1/2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1/2 1/2 0
0 0 0 0 0 0 0 0 0 0 0 0 1/2 1/2

1/7 1/7 1/7 1/7 1/7 1/7 1/7 0 0 0 0 0 0 0
1/7 1/7 1/7 1/7 1/7 1/7 1/7 0 0 0 0 0 0 0
1/7 1/7 1/7 1/7 1/7 1/7 1/7 0 0 0 0 0 0 0
1/7 1/7 1/7 1/7 1/7 1/7 1/7 0 0 0 0 0 0 0
1/7 1/7 1/7 1/7 1/7 1/7 1/7 0 0 0 0 0 0 0
1/7 1/7 1/7 1/7 1/7 1/7 1/7 0 0 0 0 0 0 0



.

(2.34)

The associated stationary distribution of the model given with the transition ma-

trix P is given by, µ = (1/11, 1/11, 1/11, 1/11, 1/11, 1/11, 1/11, 1/22, 1/22, 1/22,

1/22, 1/22, 1/11, 1/22)T for the letters {A,C,D, T, J,K, B, Z,O, V,N, P, U,M} re-
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spectively.

The entropy rate (Equation 2.22) of the Extended ILS model (2.34) is found as

HEILS = 2.15 which is larger than the calculated values for BSP (HBSP = 2) and

ILS (HILS = 1.78). We conclude that extending the alphabet size with 3 new moves,

which extracts out the deterministic transitions in the ILS, increases the entropy rate

and the complexity of the dance.

2.4 Finite State Machine Modeling of Salsa

In Section 2.2.2, we present the hybrid system model constructed for the elementary

form of salsa performed by mobile robots with non-holonomic motion constraints.

However, it is discussed in Section 2.3.2 that the body poses and arm positions have

a major influence in artistic appeal of a performance and also in leader’s decision

making in move transitions. Hence, mobile robots with two degrees of freedom would

be an over abstraction of a real dance pair when performing complex dance moves in

Intermediate Level Salsa. Thus, in this section we describe the details of converting

the salsa dance model explained in the preceding sections to a finite state machine

by introducing humanoid robots to represent a dance pair.

2.4.1 Transition Model Representation of a Dance Pair

We begin with introducing the details of humanoid robot representation of a dancer

as a spatial stick figure with eight links (Fig. 2·30) where α, β and γ denote roll,

pitch and yaw angles (in radians) with respect to the joint’s coordinate frame. We

introduce notations a, b, l to represent arm, the body and leg of a dancer and R and

L to represent right and left arm/leg, respectively. For instance, αRa represents roll

angle (α) of the dancer’s right (R) arm (a). Using this notation we define a state in

dance in the following way.
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Figure 2·30: A representation of a humanoid robot as a spatial stick
figure with 8 links. In the right hand view, the body roll angle αb, the
leg pitch angle βl and the arm pitch angle βa are depicted.

Definition 2.4.1 A state q that represents a dancer’s pose p is defined as a 15-tuple,

q =(αb, βb, γb, αRa, βRa, γRa, αLa, βLa, γLa, αRl, βRl, γRl, αLl, βLl, γLl), (2.35)

such that each element in the vector q is the corresponding roll, pitch, yaw angles

(with respect to the coordinate frame) of the body and limbs for the initial and final

poses of the dancer.

We call the dance leader Bob and the follower Alice. The notations qAl and qBo

represent the discrete states of the leader and the follower in a pose, respectively.

This framework is similar to the work presented in [12] which shows the construc-

tion of a transition model for the poses that occur in a ballet warm up routine. Our

study differs from [12] in that we include multiple transition models which requires

a communication protocol to execute the performance. In our finite state machine

representation of paired dance salsa, there will be two finite state machines repre-

senting Bob (leader dancer) and Alice (follower dancer) with an information channel

between them. We begin with the definition of a state transition model for an abstract

representation of a leader dancer.
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Definition 2.4.2 A transition system G that represents leader dancer (Bob) is given

by

GBo = (QBo, ActBo,→Bo, q
0
Bo, !,W,E), (2.36)

where QBo is the set of all possible states (2.35) that represent the initial pi and final

pf dance poses; ActBo is the set of all possible actions (set of physical moves that are

represented by ∗(., .) operator in Section 2.3.2); q0Bo ⊆ QBo is the set of initial states; !

is the formal representation of signal transmitted by the leader to the follower, and W

and E are vectors of complexity metrics (phrase complexity and phrase energy) which

will be used to achieve structured automated dance sequences. Formal definitions

of these complexity vectors (W , E) and their integration in the transition system

will be presented in Section 2.4.2. The symbol →Bo denotes a transition relation

(based on the topological constraints given in Section2.3.2 and complexity vectors W

and E). Symbolically, →Bo⊆ QBo × (W × E) × ActBo × QBo. In this expression,

QBo × (W × E)× ActBo is considered as the input such that from an initial state in

the set QBo, leader executes an action ActBo with respect to the constraints E and

W . The execution results another state in QBo which is considered as the output.

Similarly we can represent the follower dancer (Alice) by a transition system,

GAl = (QAl, ActAl,→Al, q
0
Al, ?,W,E), (2.37)

where definitions of the components QAl, ActAl, q
0
Al, W and E in Equation (2.37)

are identical to those of the Equation (2.36) but the subscripts are replaced with Al

in order to represent Alice. ? is the formal representation of signal received by the

follower such that she has the corresponding transition based on the received signal

?, W and E. Hence, symbolically, the definition of the transition relation for Alice

can be shown as, →Al⊆ QAl × (W×? × E) × ActAl × QAl. In order to understand

leader-follower interactions, the overall system that represents salsa as a transition

model is defined as follows.

Definition 2.4.3 The product of the two transition systems given in Equations (2.36)
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and (2.37) is defined as

GAl,Bo = (Q,Act,→, q0, !, ?,W,E), (2.38)

where (i) Q ⊆ QBo ×QAl, (ii) Act ⊆ ActBo ×ActAl, (iii) q0 ⊆ q0Al × q0Bo, (iv) ! is the

message transmitted by leader, (v) ? is the message received by follower, (vi) W is

the vector of phrase complexity values and E is the vector of phrase energies that are

known by the leader and follower agents, and (vii) → is the transition relation that

obeys the following rule.

It is assumed that there exists synchronous message passing between two transition

systems over a memoryless channel c that is used to send (c!) and receive a message

(c?) such that the transition relation satisfies,

qBo
c(ActBo)!−−−−−→
ActBo

ˆqBo ∧ qAl
c(ActBo)?−−−−−→
ActAl

q̂Al

< qBo, qAl >→< ˆqBo, q̂Al >
. (2.39)

The numerator of the formula (2.39) illustrates leader’s transition based on the de-

cided action ActBo from state qBo to ˆqBo. This is transmitted as a signal through the

channel c(ActBo)! and the follower has the simultaneous transition from qAl to q̂Al

based on the received signal c(ActBo)?. The denominator represents the transition of

the overall system (2.38) from the state < qBo, qAl > to < ˆqBo, q̂Al >. Using the model

defined in Equation (2.38), we introduce the state transition diagram representation

for BSP (Fig.2·31).

In BSP all of the moves start and end with same pose. Thus, in Fig. 2·31, q0Bo

and q0Al represent the states as defined in Equation (2.35) which correspond to the

poses of Alice and Bob, respectively. Blue arrows represent the state transitions

based on the physical motions (described by the ∗(., .) operator) required to perform

each move A,B,C,D. The notation c(ActBo)! represents the communication of the

Bob’s decided transition q0Bo
c(ActBo)!−−−−−→
ActBo

q0Bo to the follower. Alice has the simultaneous
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Figure 2·31: Finite state machine representation of beginner salsa
performance (BSP)

transition q0Al
c(ActBo)?−−−−−→
ActAl

q0Al with respect to the received signal c(ActBo)? from Bob. For

instance, if the agents perform move D, the leader has a transition q0Bo
c(∗(0,0)D)!−−−−−−→
∗(0,0)D

q0Bo

that is signaled to Alice through the channel c such that Alice has the corresponding

transition q0Al
c(∗(0,0)D)?−−−−−−→
∗(0,0)D

q0Al. Hence, the state of the overall system changes such that

< q0Bo, q
0
Al >−−−−→∗(0,0)D

< q0Bo, q
0
Al >, which will be denoted as a move D.

Unless stated otherwise, we will assume that c is a noiseless and memoryless

channel so the follower is capable of decoding every signal transmitted by the leader.

Problems such as channel bandwidth and noise during the signal transmission will

be discussed in the following section. Transition graph for the ILS is much more

complex due to the topological constraints introduced in Section 2.3.2. In Fig. 2·32,

states of the leader and follower including the transitions (blue arrows) are depicted.

Moreover, the topological link diagram representations are illustrated. For instance,

in Fig. 2·17 one of the link diagram representations is shown on the bottom left of the

figure. This corresponds to the initial pose of the leader and follower. In Fig. 2·32

the same topological link occurs when the system (2.38) is in the state < q1Bo, q
1
Al >.

Using the transition model representations given for BSP and ILS, we conclude

with the following result about generated dance sequences by using the transition
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Figure 2·32: Finite state machine representation of Intermediate Level
Salsa (ILS)

model given in Equation (2.38).

Proposition 2.4.4 The allowable sequences generated by using the transition model

(2.38) for the set of moves described in BSP and ILS can be represented by the con-

catenation of the brackets as in the following,

[< qBo, qAl >ji, < qBo, qAl >jf ], [< qBo, qAl >ji, < qBo, qAl >jf ], ... (2.40)

where i and f stand for the initial and final state (pose), respectively, and j ∈MBSP

for BSP or j ∈MBLS for ILS.
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Discussion: This result is an extended version of the bracket representation given in

Proposition 2.3.7. Here, the bracket representation is extended to involve the distinct

states to represent the poses of both the leader and the follower. Each bracket [., .]

represents a move performed by the agents such that the concatenation of brackets

is used to represent dance move sequences.

The goal of constructing such framework is to create an automaton that generates

letter sequences and investigate the notion of ‘optimality’ in dance. The transition

system representation will be used to understand the underlying structure of the

leader-follower interactions in salsa by capturing the discrete states of the leader and

follower and the transitions based on the communicated signals. In Section 2.2.2,

in order to define ‘optimality’ in a dance performance, two complexity metrics are

defined: the energy consumption and the phrase complexity. Integration of these

complexity metrics to the model (2.38) will be discussed in what follows.

2.4.2 Optimized Transitions for Salsa Choreography

We focus on the problem of understanding how to structure the sequence generation

of the model (2.38) by introducing W and E as vectors of energy and average phrase

complexity constraints in order to generate ‘optimal’ dance sequences. We are also

interested in finding proper communication protocols for the agents to successfully

achieve dance phrases. In Section 2.2.1, it is discussed the that artistic appeal of a

dance sequence perceived by human judges is highly correlated to the average phrase

(4-letter phrase) complexity. Hence, we incorporate this metric in our state transition

model by a vector W . As an example, assume that the agents Alice and Bob are

required to generate 20-letter long sequences. We partition a 20-letter sequence into

4-letter phrases and assign a complexity value for each phrase as in Fig. 2·33.

For this particular case, we define the complexity vector W introduced in the
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Figure 2·33: Example deconstruction of 20 letter sequence

model (2.38), W = (w1, w2, w3, w4, w5) where wi ∈ {0, 0.811, 1, 1.5, 2} and i = 1, 2, 3,

4, 5. The possible values of wi correspond to the complexity values calculated by the

formula (2.1), e.g. phrase (AAAA) has phrase complexity w = 0 but (BACD) has

phrase complexity w = 2. We assume that Alice and Bob have access to a look-up

table that has the phrase complexity values assigned for each 4-letter phrase and

the leader makes decisions for the complexity values of the phrases generated in a

sequence. Below, we illustrate an example sequence generated by Alice and Bob with

the moves from BSP.

Seq : (ABDC)(BCAC)(CCBB)(DADD)(BBBB)

Seq is constrained by a complexity vector W = (2, 1.5, 1, 0.811, 0) so that Bob chooses

phrases to satisfy W that guarantees decreasing phrase complexities through the

sequence generation.

Another, complexity metric proposed in Section 2.2.2 is the energy expenditure.

Thus, an energy vector (E = (e1, e2, e3, . . .)) is introduced to the model (2.38) in order

to constrain the energy consumed by the agents in performing each phrase.

Case 1: Unlimited Energy

In this case it is assumed that the agents can expand an unlimited phrase energy

during sequence generation or equivalently all of the entries of vector E are infinity.

Hence, the only constraint on the automated sequence generation is the phrase com-

plexity vector W . Since Alice has information about only the phrase complexity W in
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the look up table, Bob is required to communicate the phrase he chooses for a given

phrase complexity to Alice. Thus, we are interested in finding the communication

protocols between the agents for the execution of the moves to be performed in a

phrase i which is constrained by wi. For simplicity, we assume that the channel used

by the leader to send (c!) and follower to receive (c?) a signal is noiseless (the case

with noise will be discussed in Section 2.5. Here, we use similar notation introduced

in study [37] to quantify the amount of information exchange in distributed control

systems. For an action (a ∈ ActBo) chosen by Bob, we assume that the codeword

sent by Bob to Alice is represented by, ζB = KBo(a), where KBo(.) is the coding

function that maps the possible choices onto bits. If UBo represents the range of KBo,

then the amount of bits needed for Bob to communicate his decision is calculated by

dlog2(|UBo|)e with the units in bits. For instance, if Bob is required to communicate

an action a from the set of four moves in BSP or eleven moves from ILS, he needs

to exchange dlog2(4)e = 2 or dlog2(11)e = 4 bits, respectively. A protocol Ω for

communicating the choices in a phrase is defined in the following.

Definition 2.4.5 A communication protocol Ω for a phrase i which is constrained

by wi generated by the system (2.38) is given by, Ω{K1
Bo, K

2
Bo, K

3
Bo, K

4
Bo}, where the

superscripts are ordered from 1-4 since a phrase has 4 letters.

Using the definitions presented above we introduce the notion of communication com-

plexity for our transition system.

Definition 2.4.6 For a 4-letter phrase i, the communication complexity of Ω is

calculated by

D(Ω) =
4∑

k=1

dlog2(|UBo|(k)e. (2.41)

Next result will present the communication complexity bounds with respect to the

level of the dance to be generated by the model (2.38).
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Proposition 2.4.7 The bounds on the communication complexity D(Ω) of a phrase

i constrained by wi ∈ {0, 0.811, 1, 1.5, 2} with the set of moves defined in BSP are

found as,

2 ≤ D(Ω) ≤ 8. (2.42)

Moreover, the communication complexity bounds in ILS are found as,

4 ≤ D(Ω) ≤ 16, (2.43)

where the units are in bits.

Proof: For simplicity, we begin with proving the bounds in BSP in that similar

arguments will hold for ILS. Since, the phrases with w = 0 are repetitions of a

single letter and w is known by the agents, communication complexity becomes 2 bits

which is simply signaling only the first letter from the set {A,B,C,D}. For instance,

for signaling the phrase (AAAA), the leader signals the first letter which requires

log2(4) = 2 bits of information exchange and rest of the sequence is deterministic to

both Alice and Bob with the assumption that they both know w. Using a similar

argument, it is easy to conclude that the communication complexity value reaches

maximum 8 bits which occurs for multiple phrases. This corresponds to the value

3.dlog2(4)e + dlog2(3)e = 8 which is simply signaling three letters of a phrase with

four possibilities of the moves {A,B,C,D} and the last letter with three possibilities

with respect to the wi constraint (For instance, when w = 1.5 three distinct letters

appear in a phrase such that signaling the first three letters of the phrase (ABC−)

with four choices corresponds to exchanging 3. log2(4) = 6 bits and the last letter (-)

will be either A, B or C which requires dlog2(3)e = 2 bits).

A Similar approach is used to calculate the communication complexity bounds on

ILS. We conclude that when w = 0, for signaling one letter from the 11 letters in ILS,

Bob needs to communicate dlog2(11)e = 4 bits of information. However, the upper

bound corresponds to signaling three letters of a 4-letter phrase with 11 possibilities



61

of moves and last letter with 10 possibilities such that 3.dlog2(11)e+ dlog2(10)e = 16

bits are required to exchange.

Case 2: Limited Energy

In this case, we are interested in generating automated sequences that are optimal

in terms of the phrase complexity and phrase energy metrics. By using the vectors W

and E in the model (2.38), one may construct two distinct optimization problems. In

the first problem the agents are required to perform sequences with the highest phrase

energy ei in the look-up table for a given phrase complexity wi. Here, we focus on the

second problem of which the agents’ energy consumption Ei in a phrase is assumed

to be restricted by the energy vector E for a given phrase complexity vector W . In

this problem the agents seek to perform the phrase with highest energy consumption

without exceeding their energy budget. We present the problem formulation below.

Problem Statement: For the purpose of generation of automated dance sequences the

agents will seek to solve the following optimization problem for a given phrase i,

max Ei (2.44)

Subject to Ei ≤ ei (2.45)

For a given wi (2.46)

where i is a four letter phrase, Ei is the energy consumed by the agents to generate

phrase i and ei, wi are the energy and phrase complexity constrains. For a given wi

there exist phrases that minimizes Emin and maximizes Emax energy consumption such

that Emin ≤ Emax. The energy packet ei for a phrase i is assumed to be distributed

such that Emin ≤ ei ≤ Emax, which guarantees a solution to the problem given in

Equations (2.44)-(2.46). The uniqueness of the solution will be discussed by using

the following result.
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Proposition 2.4.8 Each 4-letter phrase i constructed by the moves in MBLS and a

constraint wi, has a unique energy consumption Ei .

Proof: The proof is by brute force calculation of the phrase energies using the methods

introduced in Section 2.4.2. The energy consumption for each letter is computed and

used to calculate the energy required for performing each distinct phrase. Fig. 2·34,

illustrates the plot of the phrase complexity versus the phrase energy values.

Figure 2·34: The energy and phrase complexity values of the all of
the possible phrases in agents’ look up table. The blue circles represent
the calculated phrase complexity and energy values for each 4-letter
phrase in BSP. The red circle represents the phrase with highest energy
(CCCC) and green circle is with the highest complexity (ABCD)

The blue circles in Fig. 2·34 represent the total of 35 distinct 4-letter phrases that

can be performed for phrase complexity values 0, 0.811, 1, 1.5 and 2 which correspond

to performing one, two, three and four distinct letters in a 4-letter phrase, respectively.

For instance, for phrase complexity wi = 2, the agents perform a permutation of the

letters A, B, C and D. Another case is when wi = 0 such that the agents can perform
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one of the phrases from the set {AAAA,BBBB,CCCC,DDDD}. Using similar

arguments, unique energy consumption values of the phrases that are constrained by

wi are computed and shown in the Fig. 2·34.

Remark: The solution of the optimization problem (2.44)-(2.46) is unique in terms of

the number of distinct letters in a phrase. For instance, for wi = 2 and ei = 3000, the

solution set includes the permutations of the letters A, B, C, D. However for wi = 0

and ei = 3000 the only possible solution is the phrase (DDDD).

For the application of the proposed framework to an actual salsa performance, we

conducted a new set of experiments by using a set up similar to the study presented

in Section 2.1. The four possible moves A, B, C and D in BSP were introduced to

experienced real salsa dancers who were asked to generate sequences by using these

moves. Moreover, we asked our dancers to perform sequences that they think would

be artistically ‘high energy’, ‘low Energy’, ‘surprising’ and ‘unsurprising’ sequence.

Each performance is 20 letters long and recorded as video. Four generated sequences

by our experienced dance pair are shown below.

Seq1 :(BDCB)(DBCB)(DDBB)(CCDB)(DDBB)

Seq2 :(BBBB)(BBBA)(ACAA)(AAAD)(AAAB)

Seq3 :(AAAA)(ABAA)(BABA)(DACA)(DABC)

Seq4 :(ABDC)(DABC)(BBAB)(AABA)(BBBB)

The sequences are ordered such that ‘high energy’, ‘low energy’, ‘surprising’ and

‘unsurprising’ correspond to Seq1, Seq2, Seq3, Seq4, respectively. We would like to

generate similar sequences to those of Seq 1-4 by the model given in Equation (2.38)

and by solving the optimization problem introduced in (2.44)-(2.46), with complexity

W and energy vector E. We calculated the energy and the complexity values of the

phrases in each sequence generated by the real dancers and illustrated in Fig. 2·35.
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Figure 2·35: The table illustrating the energy and phrase complexity
values for four sequences generated by the real dancers

From the table it can be concluded that the sequences 3 and 4 are constructed

such that the phrase complexities are increasing and decreasing, respectively, dur-

ing the evolution of the sequence with WSeq3 = {0, 0.811, 1, 1.5, 2} and WSeq4 =

{2, 2, 0.811, 0.811, 0}. Also, it is observed that Seq1 has the maximum and Seq2 has

the minimum total energy. Thus, we conclude that by using W and E vectors cal-

culated for the sequences Seq 1-4, as constraints in the model (2.38), our agents can

generate similar dance sequences to those created by the real dancers with artistic

objectives such as generating a ‘surprising’ or a ‘high energy’ dance sequence.

Up to this point, the signal transmission from the leader dancer to the follower

dancer is assumed to be noiseless. However, in a real dance performance mistakes may

occur due to corrupted communication signals transmitted by the leader or to inex-

perience of the follower. Next section will investigate the leader-follower interactions

when there exists noise in the communication channel.
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2.5 Measuring the Performance of a Leader in Collective Be-

havior

In this section, the results of an experiment will be discussed in order to understand

the proficiency level in dance. In this experiment, various skill level leaders were asked

to perform unstructured dance sequences with the same follower. Both the leaders

and the follower were introduced to Beginner Level Salsa. They were given a library of

moves and the gestures which were used by the leader to signal the upcoming move to

the follower during the dance. Moreover, the dancers were asked to continue dancing

even if they make a mistake in the execution of any of the moves in BSP. The video

recordings of the dance sequences started after the subjects confirmed that they feel

comfortable executing the moves and the signals. The sequences performed by the

dancers were recorded with a video camera and are transcribed in Appendix C. The

notation m is used to distinguish the mistakes that occurred during a performance.

A mistake is defined as a motion of leader or follower that can not be classified by a

knowledgeable observer as a member of the set of the moves {A,B,C,D}. The order

of the experiment followed from Seq5 to Seq7 in which Beginner 1 (Bg1), Expert

(Ex), Beginner 2 (Bg2) level leaders performed, respectively with the same follower.

An Expert is defined as a leader who has more than three years of experience in

salsa. Since the follower was also new to salsa, the order of the leaders in recordings

is chosen as Bg1-Ex-Bg2, respectively to eliminate the effect of experience gained by

the follower during the experiment.

In order to discuss the results of this experiment, we modify the communication

channel (c) defined in the transition model (2.38). The communication between finite

state machines that represent the dancers is assumed to be achieved by a multi-input

erasure channel (MEC) with a finite channel capacity.

In Fig. 2·36, the erasure channel scheme used for the transition model is shown.
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Figure 2·36: Multi-input Erasure Channel designed for the agents in
model (2.38)

Erasure channels are widely studied in the information theory literature [43] to model

communication systems in which messages occasionally are lost. The general defini-

tion of a channel capacity is given by, C = suppX(x) I(X;Y ), where I(X;Y ) is the

mutual information between the input X and output Y , and the supremum is taken

over all possible probability distributions of x, pX(x) [43]. For further analysis we list

the assumptions for the model (2.38).

Assumptions: 1. We assume that the leader communicates 2 bits for channel use in

order to signal his decision (ActBo) of a move from the set {A,B,C,D}. In actual

human dance performances, communications are encoded as arm and body gestures,

but for the sake of our abstract model, the communications are carried out by ex-

changing packets of bits 2. The dancers were not restricted to follow any prescribed

complexity W or energy E constraint. 3. It was assumed that the mistakes would

be equally likely when performing each move in the sequences Seq5-Seq7 (Appendix

C), i.e. the error probability is independent of the move to be executed.

For the interpretation of the data presented in Appendix C, we calculate the

channel capacity for a multi-input erasure channel with four inputs that are the

moves {A,B,C,D} and five outputs {A,B,C,D, e} where e represents the erasure.

Proposition 2.5.1 The channel capacity C for a multi-input erasure channel with

four inputs and five outputs and with a probability of erasure α is computed as

C = 2(1− α). (2.47)
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Proof: We begin the proof with expanding the capacity (C) formula such that

C = max
pX(x)

(H(Y )−H(Y |X)). (2.48)

By assumption 2, the probability of erasure is α is equally likely for each input

A,B,C,D so that

C = max
pX(x)

(H(Y )−H(α)). (2.49)

Using a proof similar to that given in [43] for the binary case, we call an event E = 0

when Y = e(erasure), and E = 1 otherwise, such that

H(Y ) = H(Y,E) = H(E) +H(Y |E). (2.50)

Here, H(E) = H(α) since the probability of an erasure is assumed to be α for each

input. The conditional entropy H(Y |E) is expanded such that

H(Y |E) = p(E = 0)(H(Y |E = 0) + p(E = 1)H(Y |E = 1). (2.51)

The term H(Y |E = 0) = 0 in Equation (2.51) in that there exist no uncertainty in

Y when E = 0. So the Equation (2.50) becomes

H(Y,E) = H(α) + (1− α)H(Y |E = 1). (2.52)

By plugging Equation (2.51) into (2.49), we get the capacity formula such that,

C = max
pX(x)

(H(α) + (1− α)(H(Y |E = 1)−H(α)), (2.53)

C = max
pX(x)

((1− α)(H(Y |E = 1)). (2.54)

Let us assume that the probability distribution for each letter is given by πA, πB, πC

,πD. Then, for the case when E = 1, the probability distribution that maximizes the
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entropy of Y is the uniform distribution such that πA = πB = πC = πD = 1/4. Thus,

the channel capacity becomes C = 2(1− α).

From the empirical data given in Appendix C, we calculate erasure probabilities

ᾱ for three distinct cases. By counting the number of mistakes m and dividing it to

the total number of letters, we found that ᾱBg1 = 0.159, ᾱBg2 = 0.147, ᾱEx = 0.056,

respectively. Channel capacities for three cases are calculated by the formula (2.47)

and the relationship between the capacities are given by, CBg1 = 1.68 ≤ CBg2 =

1.70 ≤ CEx = 1.88, for three leaders. The expert dancer creates a higher capacity

communication link with the follower.

Remark: In the channel capacity calculations, ᾱ is used to distinguish an empirical

estimate with the actual probability of erasure α. Also, in assumption 2 we assume

that the errors occur equally likely in the execution of each move. In Section 2.3.2,

the moves with the follower’s rotation are introduced to define Intermediate Level

Salsa. Hence, the error probability can be expected to be higher in more complex

moves and the investigation of the channel capacities for such cases is the subject of

the future work.

2.6 A Robotic judge to Evaluate Group Motion

We seek to answer the question: How can a third party robot evaluate ‘success’ in

human or animal group behavior? In team sports, such as basketball, American

football or soccer, evaluation would be simply based on the execution of a team

strategy that results in a score on offense or prevents the opponent team from scoring

on defense. In animal group behavior, success can be defined as the protection of the

group members from predators or finding a food source. However, if one considers

performance art, such as dance, the definition of success might not be that clear,

since the overall goal in art forms is not as explicit compared with those in sports or
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animal behavior. Nevertheless, we observe that, in dance competitions, the judges’

scores consistently agree with each other, which means that they may use similar

performance metrics in judging the performances. This brings up the question of

whether there exists a formal way of evaluating a dance performance. In what follows,

this question is examined by using the transition model representation of salsa dance

introduced in Section 2.4 and by incorporating performance metrics to evaluate salsa

performances. We explain how this framework will allow a robotic judge to potentially

replace human judges and in doing so to become the most fair judge ever.

2.6.1 A Modified Transition Model for Dance Move Recognition

In order to describe the dancers’ movement as well as track their motions, we use the

humanoid robot introduced in Section 2.4.1 (Fig. 2·30) to represent different parts

of a dancer’s body as illustrated in Fig. 2·37. It is assumed that there exist critical

points (red circles in Fig. 2·37) that represent tracked points on the humanoid robot

representation. The number and locations of the critical points are chosen in order to

be able to distinguish the moves performed in BLS and ILS. We recall the notation

introduced in Section 2.4.1 such that a, b, l represent arm, the body and leg of a

dancer and R and L represent right and left arm/leg, respectively. For instance, xRa

represents x-coordinate of the critical point tracked on the dancer’s right (R) arm

(a). We define a state q to represent a pose p in salsa as a 15-tuple such that

q = (xb, yb, zb, xRa, yRa, zRa, xLa, yLa, zLa, xRl, yRl, zRl, xLl, yLl, zLl). (2.55)

Each component of the vector q is the corresponding x, y or z coordinate of each

critical point. The notations qAl and qBo represent the discrete states of the leader

and the follower in a pose, respectively.

We also recall the state transition system for a dance pair presented in Equation
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Figure 2·37: A Humanoid robot that represents an actual dancer.
The red circles represent five critical points that are named as the
Body, Left/Right arm and Left/Right Leg. The number of critical
points are chosen to distinguish the moves in Beginner Level Salsa and
Intermediate Level Salsa.

(2.1),

G = (Q,Act,→, q0, !, ?), (2.56)

where Q = QBo × QAl, Act ⊆ ActBo × ActAl, q0 ⊆ q0Al × q0Bo, !(ActBo) is the signal

transmitted by leader, ?(ActBo) is the signal received by follower,→ is the transition.

It is assumed that there exists a synchronous message passing between these two

transition systems such that follower can estimate the upcoming move without an

error. The details of the communication protocols between the dance pair is given in

Section 2.4.2. In this section, we are going to use model (2.56) for the dance move

recognition executed by a dancer pair from the recordings of the locations of the

critical points.

In Section 2.4.1, the transition models are defined for BLS (Fig. 2·31) and ILS
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(Fig. 2·32) and the allowable sequences are generated as follows:

[< qBo, qAl >ji, < qBo, qAl >jf ], [< qBo, qAl >ji, < qBo, qAl >jf ], ... (2.57)

where i and f stand for the initial and final state (pose), respectively, and j ∈MBLS

for BLS or j ∈MILS for ILS and each bracket represents a move.

We use this bracket representation to distinguish the moves (letters) performed by

the dancers. For such a purpose, the initial and final states of the leader and follower

dancers need to be observed. Moreover, observation of the transition relations are

needed in order to avoid ambiguities caused by the moves that start and end with

the same pose. The recognized sequence will be evaluated by a robotic judge, which

computes a score based on the performance metrics.

2.6.2 Measuring the Performance of the Robotic Judge

We are particularly interested in building a robotic judge that observes and evaluates

the artistic success of a dance performance. The idea is similar to the judges that

appear in the Olympic games or dance competitions. The judges in these contests

have criteria that measure artistic reflection and also the complexity of the execution.

It would be difficult for a robotic judge to evaluate the warmth of a dancer’s smile

but instead it can evaluate artistic appeal of a performance by using the energy and

complexity metrics. The overall scheme of a robotic judge evaluating performance

art is shown in Fig.2·38.

Robotic judge has two components: an observation component and an evaluation

component. We use the abstract model given in (2.38) to represent the leader and

follower dancer as humanoid robots with tracked critical points. The goal of the

observation component is then to estimate a sequence of states and the transition

(Qo,→o) that best fit the observed sequence of tracked critical points and the model.
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Figure 2·38: A robotic judge scheme to evaluate salsa. The robotic
judge involves two components: An observation component and an eval-
uation component

Here, Qo is the set of observed states including the initial and final states (poses)

of the leader and the follower in a move and →o is the observed transition between

the initial and final state such that →o: (qi, a) 7→ qf where qi, qf ∈ Q and a ∈ Acto

represents the actions that are executed by the agents between the initial pose and

final pose.

The purpose of the observation component is to deconstruct a salsa performance

into a letter (move) sequence with the bracket representation proposed in (2.57). This

is achieved by detecting the x-y-z coordinates of the critical points defined as in vector

q in (2.55) so that the sensory information can be mapped to a pose in the dance

by a function s such that qo = s(xb, yb, zb, . . . xLl, yLl, zLl) for Alice and Bob. This is

similar to the idea of template matching which is widely studied in computer vision

[45]. Simply, the tracked points’ coordinates are compared with the values that are

contained in a library of poses with an allowed deviation δ. After detecting initial

and final pose, the algorithm resets and starts to track the new move. In the previous
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sections, we have shown that there may be multiple moves with equivalent initial

and final poses. To avoid ambiguities in dance move detection, we also include the

observation of the transition→o. This transition is captured by tracking the velocities

vx, vy and vz for each critical point.

The evaluation component first decomposes the observed sequence into 4-letter

phrases. It then calculates observed phrase complexityWo and observed phrase energy

Eo as described in Section 2.5. It finally computes the score of the observed sequence

based on the following Score function,

Score = a.Etotal + b.Wave + c. (2.58)

This function is a linear combination of Etotal and Wave where Etotal is the sum of

the energy values of the phrases and Wave is the average phrase complexity that

is calculated by dividing the total phrase complexity value by the total number of

phrases that appear in a sequence.

The Score function is constructed as a linear function in that it fits the data

collected from a previous experiment which is reported in Section 2.2. Thus, in this

study we use the previous data as a training set to estimate the coefficients a, b and c

in Score function (Fig. 2·39). The Score function learned from the data has the form

Score = −17.94 + 16.Etotal + 0.833.Wave. (2.59)

In order to validate our robotic judge, we asked our experienced salsa dancers

to perform four new sequences (each of them having 20 letters) by using the moves

in BLS. All of the sequences are performed by the same two dancers in order to

exclude the effect of artistic reflection of a dancer’s personal demeanor. The sequences
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Figure 2·39: The least squares regression plane with coefficients es-
timated from the previous data (Section 2.2). The x-coordinate is the
average phrase complexity of a dance sequence (bits), the y-coordinate
is the total energy consumed by the dancers (hectometers) and the
z-coordinate is the associated score assigned by the human judges.

constructed by the dancers are given below.

V 1 :(BDCB)(DBCB)(DDBB)(CCDB)(DDBB)

V 2 :(BBBB)(BBBA)(ACAA)(AAAD)(AAAB)

V 3 :(AAAA)(ABAA)(BABA)(DACA)(DABC)

V 4 :(ABDC)(DABC)(BBAB)(AABA)(BBBB)

The video recordings of the dance sequences are shown to human subjects (subjects

without dance experience) with a random order. Average scores in 1-to-10 scale that

are collected from 15 judges are, ScoreV 1 = 9.1, ScoreV 2 = 3.09, ScoreV 3 = 3.7 and

ScoreV 4 = 5.79.

The same video recordings are fed into the robotic judge. For the observation



75

component, we use a Microsoft Kinect sensor in order to track the x-y-z coordinates

of the critical points that are defined in the vector q in (2.55). Microsoft’s open source

C++ algorithm is modified for the purpose of our experiment such that two distinct

libraries are contained in a movement library and transition library. The q vectors

that represent the poses of the leader and the follower are integrated to the Kinect

algorithm as a library so that the algorithm seeks to match the tracked coordinates

of the critical points to one of the possible poses from the library with the maximum

deviation δ. Moreover, a library of move transitions is incorporated into the C++

code which includes the deviations of the coordinates with respect to time for distinct

physical moves described by the ∗(., .) operator. The initial pose shown in the upper-

left corner of the Fig. 2·17 is incorporated into the algorithm as a trigger to start

tracking critical points of the dancers (Fig. 2·40).

Figure 2·40: A snapshot of the User Interface of the robotic judge
that uses Kinect C++ algorithm to track the critical points on the
stick figure representations of the dancers. Recognized dance move is
shown on the right bottom corner to the user.

The timer starts and stops with the recognition of initial pose and final pose respec-

tively. In Fig. 2·40, a snapshot of the algorithm is shown including the stick figure

representation of a dancer and the detected letter which is illustrated in the right
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bottom corner. Finally, the algorithm computes the Etotal and Wave values for a rec-

ognized sequence which are then supplied to the Score function given in Equation

(2.59).

The dancers performed the sequences given as V 1, V 2, V 3 and V 4 in the view of

the Microsoft Kinect sensor. Four sequences are deconstructed by the robotic judge

and average phrase complexity and energy values are computed for each sequence

which are then fed to the Score function. The score values are calculated as 5.29,

2.88, 4.28, 3.69 for the sequences V 1, V 2, V 3 and V 4 respectively. The correlation

coefficient between the subjects’ scores and the scores assigned by the robotic judge

is calculated as R = 0.81. The strong correlation implies that our judge performs

well enough in matching human’s perceived artistic appeal of a dance performance.



Chapter 3

Collective Group Motion in Bat Cave

Emergence

In this chapter, we discuss collective behavior of bats through the analysis of their

three dimensional trajectories recorded during a cave emergence. The trajectories

are computed with stereoscopic methods using data from synchronous thermal videos

that were recorded with high temporal and spatial resolution from three viewpoints.

The analysis targets to understand the flight behavior of bats when they react to

other group members as well as their navigation strategies in feature rich environ-

ments. The first part of the chapter discusses the statistical analysis of 405 bat

trajectories. We examine the possibility that bat trajectories are governed by opti-

cal flow sensing that interpolates periodic distance measurements from echolocation.

Using an idealized geometry of bat eyes, we introduce the concept of time-to-transit.

Earlier studies [46, 47, 48] suggest that this quantity is computed by the animals’

visual cortex. We propose several optical flow based control laws in order to gener-

ate synthetic bat-like trajectories in a simulated environment. Examination of the

generated trajectories suggests that bat motions are governed by reaction to the key

features in the environment as well as by spacial memory.

In the second part of the chapter, leader-follower interactions are examined in

order to understand how a leader bat’s flight behavior differs from a follower bat

in emergence. A new concept virtual loom is introduced and incorporated into the

77
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proposed model to generate motions that fuse reactions to the environmental features,

spacial memory and the other bats in close proximity during flight. Parts of the

analysis discussed in what follows are presented in [30] and [31].

3.1 The Flight Behavior of Myotis velifer Bats

The bat flight behavior analysis is based on data recovered from a large collection of 3-

dimensional video records of Myotis velifer, emerging from a cave on the Bamberger

Ranch Preserve in Johnson City, Texas. These are cave-roosting bats that live in

southern North America and Central America and are a large bodied species of the

Myotis genus, weighing about 14 grams and having a wingspan of 30 cm [49, 50].

Figure 3·1: Myotis velifer Bat, Credit: photo by Roger W. Barbour

Bats perceive features within their environment using complex combinations of

sensory organs. Many species, including the M. velfer studied in the present docu-

ment, are able to perceive distances to objects by means of echolocation. It is likely,

however, that vision also plays a role in guiding these animals as they fly. Similar

to other Yangochiroptera (microbats), M. velifer have relatively small eyes that are

principally directed sidewards from opposite sides of the head (Fig. 3·1). Their reti-

nas are rod-dominated, making them well suited to their nocturnal niche. In addition,
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their retinas contain dense horizontal connections but few vertical connections, which

suggests that they are specialized to detect motions and contours under nocturnal

illumination at the expense of high feature discrimination acuity [51]. However, con-

trary to traditional belief that bats possess a simplistic visual system, recent evidence

suggests that several bat species, including M. velifer, have functional S opsin genes

[52]. It is unclear whether these genes are expressed in M. velifer retinae, but the

presence of functional genes suggests that M. velifer may be able to see UV light and

thus possess mesopic vision that is effective at dusk and dawn and on brightly moonlit

nights [53]. The optic nerves of M. velifer ’s left and right eyes remain separate. Each

optic nerve crosses over completely to the contralateral side of the brain [51]. This

anatomical characteristic suggests that, at least at the lower level, information from

each eye is processed separately by the brain.

In what follows, we present the details of the experimental procedure for recording

the trajectories of M. velifer bats in their natural habitat.

3.1.1 Experimental Procedure for Recording Bat Trajectories

Raw bat flight data were collected shortly after sunset on 30 May, 2011. The bat

colony resides in an artificial cave located approximately 50 meters from the point

of observation. Upon exiting the roost, individuals immediately begin to disperse

over the landscape by following the margin of a forest fragment toward an open flight

corridor over a paved ranch road. We collected thermal infrared video of bats with

three thermal cameras (FLIR ThermoVision SC8000, FLIR Systems, Inc.) placed

along the flight corridor. Our camera system operated at 131.5 Hz with 1024× 1024

resolution and used 25 mm lenses. We chose this location because there was an

abundance of natural obstacles in the flight corridor and because it was sufficiently

far from the roost that bats presumably had accreted into flight groups but were not
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sufficiently far from the roost to have split from each other to forage separately.

Cameras were placed linearly and perpendicular to the flight direction of the bats.

Camera viewing angles were selected so as to optimize reconstruction accuracy at

points of direct interaction between bats and a natural obstacle (a hanging vine), and

to maximize flight track duration.

On average, each bat was recorded for approximate 300 frames. This was accom-

plished by localizing the vine (see Fig. 3·2) at a central focal point in each of the three

camera views. The 3D geometry of the scene was calibrated by waving an object of

known dimension through the shared view volume of the three cameras, in this case a

1.56m PVC wand, and direct linear transformation (DLT) coefficients were calculated

from pairs of wand points (for more information refer to [54]). A technician gathered

2D coordinates of each bat in each of the three views using custom annotation soft-

ware developed by our research group. Flight trajectories were then reconstructed in

3D as described in [55]. For hand annotated positions, some human-generated noise

was introduced to the flight trajectories. This uncertainty was smoothed as described

in the following section.

3.2 Analysis of the 3D Myotis velifer Trajectories

Using three dimensional video recordings of Myotis velifer bats, numerical reconstruc-

tions of 405 different trajectories were created (Fig. 3·2). Errors inevitably appear

in these reconstructions due to uncertainties arising from bats flying outside the 3D

calibration region, from occasional occlusions, and from misidentifying homologous

points on the bats body in the three views, especially when its size in at least one

view is small. Smoothing and filtering were carried out along the lines discussed in

[56] but in this case using cubic spline smoothing µ̂ with a smoothing factor λ = 0.85.

(See [57]).
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Figure 3·2: Trajectories of 405 bats along with the the positions of
the three cameras, vine and the pole. Black triangles represent the key
features in the environment such as the trees and the big tree branches

min
µ̂
{λ

n∑
i=1

(Yi − µ̂(xi))
2 + (1− λ)

xn∫
x1

µ̂′′(x)2dx}. (3.1)

Over the range of the parameter, 0 ≤ λ ≤ 1, λ = 0 corresponds to a linear least

squares fit to the data and λ = 1 corresponds a cubic spline interpolation passing

through every data point. The parameter λ is chosen such that the smoothing is

good enough for noise cancellation without loosing too much information. Our goal

is to understand the behavior of the bats in the average sense. Hence, in order to



82

investigate features such as mean trajectory and variance along the trajectories, the

smoothed trajectories are parameterized by arc length. The data is filtered such that

the trajectories that appear in the field of view less than 1 second are excluded which

result i total 254 bat trajectories. The filtered trajectories are shown in Fig. 3·3.

Figure 3·3: Smoothed bat trajectories illustrated by the color coding
to represent their distinct reactions to the vine and the pole

Finally, over the 254 trajectory segments that were retained for study, it was noted

that the bats descended at a fairly steady rate so as to follow the descending slope

of a hill. These trajectories appeared to be largely confined to a plane, with only

small deviations above or below. Hence our initial attempt to understand how the

bats’ sensory perceptions were guiding their movement has been focused on models
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of motion control in this plane. The cameras that recorded the flights were located

just outside and to the left of the rectangular region displayed in the Fig. 3·3. The

bats entered the field of view of the three video cameras from the left. At the top of

the figure, the small triangles correspond to trees in a wooded area, and at the center

of the figure there are two significant features labeled vine and pole. The vine is a

natural feature that runs from the ground up to a fairly high tree branch so that the

bats must fly either to the left or the right of it. The pole was placed as a vertical

marker to calibrate the cameras, and its height was such that bats could either fly

over or around it.

The data is initially classified into six groups with respect to the bats’ reaction

to the obstacles (Pole and Vine). Along -x direction the letters L and R are used to

denote whether the bats fly from the left of the obstacles or the right respectively.

Also, it is known that the vine is naturally attached to the ground on one end and a

tree branch on the other so bats have to fly either left or the right of it. The pole is

artificially placed in a vertical position such that bats can either fly over or around

it. Hence, the letters U and O is used to denote the classes which fly under or over

the pole respectively. By using the definitions above, six groups of bats are named

as, Group 1: LLU (39 bats) (Red), Group 2: LRU (3 bats) (Black), Group 3: RRU

(14 bats) (Blue), Group 4: RLU (27 bats) (Green), Group 5: LO (73 bats) (Yellow),

Group 6: RO (98 bats) (Pink). For instance, Group 1 represents the bats flying left

of the vine, left of the pole and under the pole which is symbolized as “LLU”.

In Fig. 3·4 mean trajectories of the six sub classes of bats are shown with the

associated color coding. The upper half of the graph shows groups 1,2 and 3 from left

to right and lower half are the mean trajectories of the groups 4,5 and 6. The triangles

in the plots represent the key points marked during the experiments including the

trees in the area, vine and the pole. The mean paths are calculated using the step
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Figure 3·4: Mean trajectories for six subgroups of bats

sizes of 0.1 meter intervals along the arclength and the mean points are connected to

each other. The variances in the x, y, z directions of sample points at each arclength

position are illustrated by drawing the variance ellipsoid by calculating the 3-by-3

covariance matrix, its eigenvalues and eigenvectors respectively. For the subgroups,

along the mean path of the trajectories the evolution of the variance ellipsoid is

plotted by using a MATLAB algorithm. In order to keep statistical significance,

a threshold is set to the algorithm such that it runs the simulation for at least 20

trajectories which is illustrated in Fig. 3·5. The simulations are shown only for the

four subgroups (LLU, RLU, LO and RO) since the number of trajectories in Group

2 and Group 3 is not sufficient to achieve a positive semi-definite covariance matrix.

Hence, the results would be statistically insignificant for variance analysis.
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Figure 3·5: The simulation of the variance ellipsoid for four subgroups
of bats

Visual inspection of Fig. 3·5 suggested that the differences among the trajectories

with respect to the pole were insignificant. Thus we divided the set of trajectories

into two major classes: the first comprised of 115 bats who flew to the left of the vine

and the second being the 139 bats who flew to the right. Having parameterized all

trajectories by arc length, we adapted the viewpoint that we could recreate the flight

path of a typical bat by computing mean trajectories within each class. The mean

path of the 115 bats who flew to the left of the vine, and the mean path of the 139

bats who flew to the right of the vine (Fig. 3·10) will be used in the following section

for the comparison with the generated synthetic trajectories.
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3.2.1 Motion Control Using Optical Sensor Feedback

Sebesta and Baillieul [58] showed how the well-known optical parameter τ (time-to-

contact) could be used to guide the motion of a moving optical sensor. It is worth

redoing this analysis with a special emphasis on the eye geometry of the M. velifer. In

[47] and [58], τ was described in terms of a geometric picture that is most appropriate

for animals (like humans) that have a forward facing field of view. However, the eye

geometry of the M. velifer is explained in Section 3.1 and it is illustrated that their

eyes are shifted toward the sides of the head giving them a wider angle of view and,

at the same time, giving them higher acuity in resolving objects that are off to one

side or the other [51]. Because of the placement of their eyes and due to neural

connectivity patterns of their photoreceptors, these bats have enhanced ability to

orient themselves with respect to features in the lateral visual field. We conjecture

that the bats may use optical flow sensing of features in the lateral field to guide their

motions. In order to explore this, we introduce the concept of time-to-transit and

discuss how time-to-transit is easily determined from the movement of feature images

on an animal’s retina or on the image plane of a camera. Consider the idealized planar

Figure 3·6: Optical flow of feature images for a sideward-looking imag-
ing system
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vehicle depicted in Fig. 3·6. The direction of motion is aligned with the vehicle body

frame x-axis, and the feature O is observed with a pinhole camera system whose

camera axis is aligned with the negative body frame y-axis. The image of the point

feature O is at di, a negative quantity as it is depicted in the Fig. 3·6. We suppose

the vehicle moves in the direction of its body frame x-axis at a constant speed v. If

the motion is initiated at a point x0 along the line of flight at time t = 0, it will cross

a line that is perpendicular to the line of flight and passes through the feature point

O at time t = x0
v

. This quantity is called the time-to-transit, and we denote it by τ .

We note that as the figure is drawn, the image point corresponding to the feature in

our idealized camera lies at di in the body frame x-axis, and the focal point lies at f

on the body frame y-axis (f is the camera focal length). It is clear that the similarity

of triangles implies the relationship

d

x(t)− di(t)
= − f

di(t)
, (3.2)

and from this it follows that,

di

ḋi
=
x0
v
− t. (3.3)

This is zero when t = x0/v (the time at which the vehicle crosses the line perpen-

dicular to its path and passing through O). At t = 0, we see that di/ḋi = x0/v = τ is

the time- to-transit. The general conclusion is that di(t) is the location of an image

feature, τ(t) = di/ḋi is the time remaining until the camera is directly abeam of the

actual feature, provided that the speed and heading are held constant.

Referring to Fig. 3·6., we adapt a simple kinematic model of planar motion ẋ
ẏ

θ̇

 =

 vcos(θ)
vsin(θ)

u

 , (3.4)

where v is the forward speed in the direction of the body-frame x-axis, and u is the
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turning rate. The time-to-transit a feature located at (xw, yw) is found as,

τ =
cos(θ)(xw − x) + sin(θ)(yw − y)

v
. (3.5)

Figure 3·7: Maximizing time-to-transit when flying trough two key
features

If we consider the case when there exist two distinct features O1 and O2 located at

(x1, y1) and (x2, y2) respectively (Fig. 3·7.), the heading that maximizes the difference

time-to-transits τ2(θ) − τ1(θ) is aligned with the direction (x2 − x1, y2 − y1) and at

this heading we have τ ′2(θ)− τ ′1(θ) = 0.

Theorem 3.2.1 Consider point features O1, O2 located respectively at (x1, y1) and

(x2, y2). Let τj(t) be the time-to-transit associated with the feature Oj, j = 1, 2.

Suppose the initial orientation, θ0 of the vehicle is such that τ2 > τ1 (which implies

that cos(θ)(x2 − x1) + sin(θ)(y2 − y1) > 0). Further assume that the vehicle travels

at constant speed v = 1, then for any k the steering control law,

u = u(t) = k[τ ′2(θ(t))− τ ′1(θ(t))], (3.6)

where τ ′ = δτ/δθ will asymptotically align the vehicle in parallel with the line segment

from O1 to O2.
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Proof: Let (vx, vy) designate the planar direction from feature O1 to O2:(
vx
vy

)
=

(
x2 − x1
y2 − y1

)
1√

(x2 − x1)2 − (y2 − y1)2
. (3.7)

The function V (θ) = 1− cos θvx − sin θvy will serve as a Lyapunov function with

Lie derivative

Lu(θ(t)) =
∂V

∂θ
.θ̇, (3.8)

= −kρ(− sin θvx + cos θvy)
2, (3.9)

where ρ = (x2 − x1)2 − (y2 − y1)2. The set V (θ) ≤ 1 is compact and invariant under

the motion, and by LaSalle’s theorem the motion evolves asymptotically toward the

set

{θ : V (θ) ≤ 1} ∩ {θ : LuV (θ) = 0}.

The unique value of θ, 0 ≤ θ ≤ 2π, lying in this set is such that (cos θ, sin θ) =

(vx, vy). This specifies that the asymptotic direction of the motion is aligned with the

line from O1 to O2 as stated in the theorem.

Remark 1.2.1: The theorem is conservative in the sense that the hypotheses are in-

tended to restrict the initial conditions to configurations in which the moving vehicle

has a non-zero component of its motion in the direction of the line from O1 to O2.

If the vehicle had access to its orientation θ in space and to the world-frame coor-

dinates of the features (x1, y1), (x2, y2), then the control law (3.6) could be written

u(k) = k[− sin θ(x2−x1) + cos θ(y2− y1). Assuming the system has access this global

configuration information, the control law will steer the vehicle to alignment with

the feature from every initial configuration except those in which the initial θ0 has

the vehicle aligned with the direction ((x1 − x2), (y1 − y2)) (i.e. aligned in exactly
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the opposite direction from the goal alignment of the theorem). The existence of

this singular direction is a familiar characteristic of kinematic control laws for vehicle

models of the form (3.4) [73].

Remark 1.2.2: We note that the value of τ that is associated with a visible feature

as specified in (3.5) is a purely geometric quantity. It will be negative in the case

that the feature lies behind the vehicle on its current line of flight. For side looking

eyes, it could still be visible, and would be perceived as being both negative and

becoming increasingly negative as the motion continues. The important point is that

the control law (3.6) does not assume that either feature lies ahead of the vehicle on

its current heading.

Remark 1.2.3: The theorem states what is achieved by keeping the difference τ2 −

τ1 at its maximum value. How flying animals might detect this maximum is not

understood, but we speculate that small magnitude saccadic eye movements might

be used as an energy efficient means of detecting what corrections to the vehicle’s

heading are needed to keep τ2 − τ1 at its maximum value.

Remark 1.2.4: (Model validity) Field observations together with the unsmoothed

reconstructed flight data make clear that the relatively smooth trajectories that are

produced by the model (3.4) do not capture the continual rapid, short distance lateral,

pitching, and rolling motions that make the animal flight movements anything but

smooth. It is our working assumption that these high-frequency deviations from

smoothness can be thought of as noise that can be ignored in our initial attempt to

synthesize vision-based bat-like trajectories.

To study the curvature of trajectories prescribed by (3.4), we normalize the prob-

lem (in Fig. 3·7) such that (x1, y1) = (0, 0), (x2, y2) = (1, 0) and v = 1. The steering

control is then written u(t) = −k sin θ(t). Note that this is just the curvature. It fol-

lows as a corollary of Theorem 3.2.1 and Remark 1.2.1 that for θ0 6= π, the absolute
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value |u(t)| is a monotonically decreasing function that asymptotically approaches

zero. The rate of decrease is determined by the gain parameter k, and for any thresh-

old α > 0, we can explicitly compute the time Tα(k) at which |u(t)| becomes less than

α. This is made precise in the following way.

Theorem 3.2.2 Consider the system 3.4 with constant speed v = 1 and the steering

law,

u = −ksin(θ(t)). (3.10)

Let k > α and 0 < α < k|sin(θ0)|. Then u(t) is a monotonically decreasing that takes

on value α at time t = Tα(k) where

Tα(k) =
1

k
[log(

θ0
2

)− log(tan(
1

2
sin−1(

α

k
)))]. (3.11)

Proof: First we note that the steering equation

θ̇ = −k sin θ, θ(0) = θ0, (3.12)

can be integrated explicitly in closed form to give

θ(t) = 2 tan−1
(

tan(
θ0
2

)e−kt
)
. (3.13)

The signed curvature of the trajectory generated by 3.4 is given by

κ(k, t) = u(t) = −k sin

[
2 tan−1

(
tan(

θ0
2

)e−kt
)]

. (3.14)

For each k, as noted above κ(k, t) is a monotonically decreasing function of t so

that for each α with 0 ≤ α ≤ k| sin(θ0)|, we have a unique solution t > 0 to the

equation α = κ(k, t). Elementary but slightly tedious algebra yields this solution as

tα = Tα(k) =
1

k

[
log

(
θ0
2

)
− log

(
tan

(
1

2
sin−1

(α
k

)))]
, (3.15)

proving the theorem.
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The theorem is useful in understanding the time required for the control law 3.6

to align the flight path with a given straight line direction. Another potentially useful

control law that can be based on sensed optical flow is one that keeps the time-to-

transit fixed at zero. Consider three features forming the vertices of a triangle as

depicted in Fig. 3·8. The vehicle (3.4) can be steered around the three features

Figure 3·8: Optical flow sensing can be used to guide the idealized
vehicle to maintain a constant distance (dashed line) from three non-
colinear obstacles A,B, and C.

by using the following control protocol. First, assuming the vehicle starts at or

below the dashed line segment through feature A, apply control law (3.6) (more

precisely, the control u(t) = k[τ ′B(θ(t)) − τ ′A(θ(t))] so that it aligns itself with the

segment AB. As soon as the condition τB = 0 is met (i.e. when the vehicle transits

the dashed line through B that is perpendicular to its line of travel), the vehicle

switches to a control to keep τB ≡ 0. This will cause the vehicle to execute a circular

arc that maintains a constant distance from feature B. This control continues to be

applied until the difference τC(t)− τB(t) attains a maximum value, at which time the

vehicle switches to the control law u(t) = k[τ ′C(θ(t)) − τ ′B(θ(t))]. It will continue in
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this way in a direction parallel to the segment BC at the same distance to the side

of the segment. In terms of the notation, the path segmentation is prescribed by

ud[A,B : t]→ uc[B : t]→ ud[B,C : t], which will be explained in what follows..

It is important to emphasize that we have not attempted to incorporate neuro-

logically based models of how bats might sense that transit time differences are at a

maximum value or how they might fly so as to keep a transit time constant. Opti-

mum seeking control laws and control laws that steer vehicles so as to keep sensed

quantities constant are well known [59], but the details of how such control can be

carried out using vision and other sensing by the animals remains an open question.

In what follows, we consider a number of vision-based control strategies that give rise

to flight paths resembling the bat trajectories described in Section3.2.

These control laws will be used based on a certain strategy to generate synthetic

trajectories for the model 3.4 for comparison with the bat trajectories illustrated in

the preceding section. It is of interest to discover what can be learned from trying to

reproduce animal-like trajectories with suitably tuned versions of the simple control

laws and protocols that have been discussed in the preceding sections. At the out-

set, there are two related but fundamentally different questions. First, how closely

can we come to producing a “typical” bat trajectory using an idealized flight vehi-

cle with various vision-based control laws of the form we have described. Here the

term “typical’ trajectory” refers to the mean trajectories described in the previous

section. The second question, which may be more difficult, is can we produce simple

models and protocols that predict and replicate the variability among the bats in this

simple setting. This is to say, can we find control laws and protocols such that all

254 trajectory reconstructions can be reproduced by simple variations of the model

parameters. We consider whether an appropriately sequenced set of single feature

and paired feature vision based control laws to produce animal-like trajectories. The
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Figure 3·9: The control laws used to produce animal like trajectories.

table presented in Fig. 3·9 introduces the notation for the control laws used to navi-

gate through the environment. Note that control law up[O1, O2; t] is integrated from

the study [58] which is navigating between two features instead of aligning itself with

the line between them. The control law ud[O1, O2; t] is for aligning the vehicle flight

path to the desired straight line direction and uc[O; t] is the control law to keep the

time-to-transit at zero. Using these control laws, we seek to synthesize trajectories

under two different hypotheses 1. Cue-directed Strategy : It assumes that the Bats

generate their control strategy purely based on the sensory feedback about the en-

vironmental features 2. Integrated Strategy : It assumes that the bats use landmarks

based on their spatial memory to select features from the environment and generate

control strategies based on this filtered features.

The four trajectories (See Fig. 3·10) are generated by the following sequences of

controlled motion segments:

• Red curve with squares: up[A, vine] → ud[A,B] → ud[B,C] → uc[pole] →

ud[E,F ] → ud[., .] for the remaining features.
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Figure 3·10: Mean bat trajectories (solid curves), synthesized trajec-
tories based on Hypothesis 1 (curves with circles) and synthesized tra-
jectories based on Hypothesis 2 (curves connecting squares). Features
used for navigation under Hypothesis 1 are marked by black circles.
The subset of features used under Hypothesis 2 are marked by circles
with green interior. Red and blue curves correspond to groups of bats
passing the vine and the left and the right, respectively.

• Blue curve with squares: uc[vine]→ ud[B,C]→ uc[pole]→ ud[E,F ]

→ ud[., .] for the remaining features.

• Red curve with circles: up[A, vine]→ ud[A,B]→ ud[B,C]→ uc[C]→ ud[C,D]

→ d[., .] for the remaining features.

• Blue curve with circles: uc[vine] → ud[B,C] → uc[C] → ud[C,D] → −ud[., .]

for the remaining features.

As shown by the relatively high rise of the circle-interpolated curves in Fig. 3·10.,

if a cue-directed strategy is adapted by the bats, after passing point C, both of

these two groups would keep following the edge of the woods. On the other hand,
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if an integrated strategy is adapted by the bats, after passing point C, the bats can

use their spatial memory or the memorized sensory features of significant landmarks

(such as the trees marked as E and F) for navigation and then use these features

to generate their control. Using the integrated strategy, instead of continuing to

follow the border of the woods, the bats would take a short cut. By comparing the

synthesized trajectories based on these two hypotheses and the mean bat trajectories,

it can be found that the trajectories based on the integrated view fit the observed

mean trajectories better. Such an observation suggests that the bats indeed adapt

an integrated strategy for their navigation. (A pure spatial memory strategy can be

rejected by the observation that none of the bats collided with the pole, which was

placed there by the researchers during the experiment and unlikely memorized by

the bats). An advantage of the integrated strategy over the cue-directed strategy is

its time and energy efficiency. By taking the short cut (optimized route) instead of

strictly following the forest edge, the bats can save flight time.

The analysis so far investigates bats’ decision making based on the environmental

features as well as their spacial memory. However, observation of the data suggests

that these bats typically fly as a group. Hence, in what follows, we will study the

leader-follower behavior of bats which is similar to the analysis of a dance pair dis-

cussed in Chapter 2.

3.3 Leader Follower Interactions of a Paired Bat Flight

For a group of animals navigating through a cluttered environment, each individual

must utilize sensory cues from both the environment and its neighbors in order to

coordinate its motion with the neighbors and achieve effective navigation. A superb

example of group navigation is bats emerging from their roost in groups shortly after

sunset and flying through a wooded flight corridor to reach their forage ground. In
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Section 3.2, we have analyzed the data recovered from a large collection of video

records of a group of Myotis velifer emerging from a cave on the Bamberger Ranch

Preserve near Johnson City, Texas, focusing on their sensorimotor behavior with

respect to environmental features. In this section, we continue to investigate the

same data set by considering the interactions between pairs of bats with the aim of

establishing a more unified view of bat navigation behavior.

Based on the species involved and the nature of the flight, paired-animal flight

interactions have been mainly studied in the context of two situations: chasing and

following. Chasing refers to the case in which a predator tries to catch a prey. The

studies [60] and [61] show that bats and dragonflies use a motion camouflage flight

strategy, which minimizes motion parallax cues that the prey can extract from its

optical flow. Following is less aggressive than chasing and is generally conspecific. In

[62] the authors show that a follower bat displays such a behavior to conceal itself

from the leader bat in order to increase its prey-capture performance.

Figure 3·11: Flight path statistics for 39 M. velifer are depicted. The
red curve is the mean trajectory, and the blue ellipses (centered on the
mean trajectory) represent a dispersion of one standard deviation. Two
obstacles, a vine and a pole, are denoted as circles. The triangles are
visual features in a wooded area (mostly tree branches) and the dotted
lines define the edges of the wooded area.
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In Section 3.2.1, we discussed the concept of time-to-transit and used it as the

basis for a collection of vision-based steering control laws. It is argued that time-to-

transit is a biologically meaningful parameter that could probably be calculated in

an animal’s visual cortex, and steering control laws based on time-to-transit relative

to single and pairs of environmental features were proposed. It was observed that

along those portions of the flight corridor where environmental clutter was relatively

dense, each of the motion segments needed to be focused on closely spaced features

and was of short duration. Along these portions of the motion, switching between

control laws (and features) was frequent. Using our control primitives, we were able

to develop a motion strategy that would closely approximate the mean flight path of

the bats (the red curve in Fig. 3·11). The question remained as to why many animals

deviated significantly from this mean path. In this section, we propose that large

excursions toward the boundary of the woods could be the result of a trailing bat

following a leader according to a certain leader-follower protocol. Using the concept

of virtual loom, we formulate a new steering law that produces simulated flight paths

consistent with those of pairs of bats observed in the field.

3.3.1 Virtual Loom

We begin the analysis with introducing the flight kinematics of the leader and follower

by following the model introduced in [63]. The dynamics of the leader are given as:


ṙl = vlxl
ẋl = vlylul
ẏl = −vlxlul,

(3.16)

where vl is the speed of the leader, rl is the position of the leader, xl is the unit

tangent vector to the trajectory of the leader, yl is the corresponding unit normal

vector, and the plane curvature ul is the steering control for the leader. Similarly, the
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dynamics of the follower are given as:
ṙf = vfxf
ẋf = vfyfuf
ẏf = −vfxfuf .

(3.17)

We assume that the leader and the follower have the same speed. This assumption

is consistent with field data.

fx

fy

lx

ly

d f

r

L

'L

F

fx

fy
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ly
α

xr

yr

pin hole lens

Figure 3·12: Frenet frame representations of the leader and the fol-
lower together with the follower’s side-looking eye. L and F are the
center axis points of the eyes of the leader and the follower, respectively.
|f | is the focal length distance from the lens to the focal plane (retina).
L′ is the image point corresponding to L. α is the angle between xl
and xf .

Fig. 3·12 illustrates the geometry of an idealized leader-follower pair moving in

a horizontal plane. As noted in Section 3.2 the bat motions in our data set are

approximately planar. The directions of motion are aligned with the vehicle body

frame x-axes, i.e., xl and xf . The leader is observed by the follower with a pinhole

camera system whose camera axis is aligned with the follower’s negative body frame

y-axis, i.e., yf . The relative position of the leader in the frame of the follower is
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r = rl − rf . The projections of r onto the xf and yf directions are written as:

rx := r · xf and ry := r · yf , (3.18)

respectively.

In terms of these kinematic models and the follower’s imaging system model that

is depicted in Fig. 3·12, we recall the definitions of optical flow parameters from [58]

and Section 3.2.1. Suppose the follower’s initial position is rf (0) = (r1(0), r2(0)) at

time t = 0 and it is flying in xf direction with a constant speed vf . In such a case, if

the leader is stationary, the follower will cross the line of transit at time τ = rx/vf .

Here line of transit is the line that is perpendicular to the line of flight and passes

through the origin of the leader frame, and rx is the distance between rf (0) and this

same line of transit. This quantity τ is the time-to-transit. At the initial time (t = 0),

d is the distance in the follower’s image plane (bat retina) between the leader’s image

(L′ in Fig. 3·12) and the principal camera axis point F (Fig. 3·12), then τ = d/ḋ.

If the leader is not stationary, the definition still makes sense and is related to the

relative velocities of the leader-follower pair. Of course if the leader and the follower

are traveling in the same direction at the same speed, the image distance d does not

change over time (ḋ = 0), which reflects the fact that τ must be infinite. Since we shall

be interested largely in the case where the leader and the follower fly at essentially

identical speeds, we find it more convenient to work with the reciprocal of τ , which is

called the loom. Since we shall be dealing in particular with situations in which the

follower never reaches the point of transit, we define the virtual loom as follows:

Definition 3.3.1 For a leader-follower pair (Eqs. (3.16) and (3.17)), the virtual

loom λ(t) at time t is

λ(t) =
[1− xf (t) · xl(t)]vf

r(t) · xf (t)
. (3.19)

Notice that λ(t) has a unit that is inverse of time. For brevity, we use λ to represent
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λ(t).

From Fig. 3·12, we have the following relationship:

d =
f

ry − f
rx, (3.20)

so the follower bat can estimate rx by sensing d.

In addition, we define an equilibrium state for a pair as follows.

Definition 3.3.2 A leader-follower pair (Eqs. (3.16) and (3.17)) is said to be in a

state of λ equilibrium if λ is zero.

Remark 1.3.1: If, as shown in Fig. 3·12, α is the angle between the headings of

the two bats, then cosα = xf · xl. Further, define transiting as the instant when the

image of the leader on the follower’s retina L′ coincides with F , the focal point of the

follower’s retina, which corresponds to rx = r · xf = 0. For two bats flying with the

same constant speed vf = vl = v, a state of λ equilibrium means that the relative

velocity of the two bats is zero and L′ stays at the same position on the follower’s

retina. In this case, the follower bat can estimate α by sensing ḋ, the optical flow.

A zero ḋ corresponds to a zero α. On the other hand, a non-zero ḋ implies that α is

not zero and a transiting is going to happen if no adjustment is made by the follower.

Finally, it is worth pointing out that, although in this dissertation we focus on vision-

based control, bats can also use other sensory modalities, such as echolocation [64],

to estimate time-to-transit τ or virtual loom λ.

Parallel (or near parallel) flight alignment (with α ∼= 0) has been observed in

the mating activity of dragonflies [65], competitive prey capturing in bats [62] and

tandem flight of swallows (unpublished results from the Hedrick Lab at UNC Chapel

Hill). Benefits of such a flight pattern include aerodynamic efficiency (the follower can

utilize the vortex of the leader’s wingtip to save energy, known as ‘vortex surfing’),

stealth (the follower can conceal itself from the leader to increase its prey capturing
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probability) and echolocation efficiency (the follower bat can turn off its sonar or

adopt a low duty cycle).

3.3.2 Statistical Analysis of the Bat Emergence

Previous studies of bat emergence times have been largely focused on how factors,

such as sunset time, weather, and the existence of predators, affect the onset of the

emergence and the mean emergence time [66], [67]. To our knowledge, there has been

no study to model the fine details of emergence rates. However, there exists a rich

set of literature on the modeling of human activity emergence, such as sending emails

and initiating financial transactions [68].

We define the first time a bat appears in the video as its emergence time. By this,

we get an ordered time sequence, S := {ti, i = 1, ..., N}, where ti is the emergence

time of the ith bat and N = 254 is the total number of recorded bats. Notice that

Fig. 3·11 only shows a fraction of the trajectories presented in Section 3.2. The

Kolmogorov-Smirnov test is used to determine whether the sequence (or a subset of

it) fits a Poisson model.

Fig. 3·13 shows the sampled rate parameter θ̄(t) of the subset of emergence times

that fall within the window [t, t + T ]. It can be seen that θ̄(t) is relatively constant

before 200th second and its value is high; it falls rather sharply after 200th second; it

becomes relatively constant again after 300th second. Our analysis has shown that the

entire emergence time sequence S does not fit a Poisson model. However, the analysis

also has shown that the truncated emergence time sequence S1 := {ti ∈ [0, 200]} is

able to pass the Kolmogorov-Smirnov test for a Poisson arrival process with a constant

rate parameter θ̄ of 0.961(Another truncated sequence S2 := {ti ∈ [300, 450]} was also

tested. But it did not pass the test due to the the lack of enough data points for

statistical significance). Further, it has been found that bats emerging within the
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Figure 3·13: The sampled rate parameter θ̄(t) of the subset {ti ∈ [t, t+
T ]} with t ∈ [0, 450] and T = 120 seconds. The time axis corresponds
to the whole duration of the recording period with 0 corresponding to
the time the recording started.

duration [0, 200] account for 80 percent of the bats.

If we look at an interval of one second, a Poisson arrival process with a rate

parameter 0.961 means that there is a 0.3825 probability that there is no bat within

the interval, a 0.3676 probability that there is one bat within the interval, a 0.2499

probability (approximately 64 bats for the sample of 254) that there are two or more

bats within the interval. Due to the high probability of having neighboring bats, in

the next subsection, we will study whether the behavior of a leader bat affects the

behavior of a follower bat and if it does, in what way.

3.4 Generating Synthetic Bat Trajectories

The 39 trajectories that are shown in Fig. 3·11 will be analyzed in this subsection

that correspond to the group of bats passing the vine from the left and passing the
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Figure 3·14: Example trajectories of a leader-follower pair. The black
lines connect the paired bats’ corresonding locations at different time
slices.

pole from the left while flying lower than the upper end of the pole (Group 1,[LLU],

as described in Section 3.2).

For the group of 39 trajectories shown in Fig. 3·11, we further select data segments

of paired bats for analysis based on the following criteria: the paired bats need to

be present simultaneously in the video for longer than 20 frames and the spatial

separation between the paired bats must be shorter than 10 meters. A bat can

perceive items within 10 meters with a good resolution via its eyes [69]. Given that

the average speed of the observed bats is 10.17 m/s, this threshold corresponds to

approximately one second difference between the two bats’ emergence times) . We say

that the bat emerging earlier is the leader and the one emerging later is the follower.

The trajectories of one such pair are shown in Fig. 3·14.

There is a correlation of R = 0.8894 (Pearson correlation coefficient) between the

mean y coordinate of bats emerging within a fixed time window and the number of

bats in the window. The result is shown in Fig. 3·15. As shown in Fig. 3·14, a higher

y coordinate implies a smaller distance to the woods. Further, the larger the number
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Figure 3·15: Mean y coordinates of bats emerging within a 40 second
time window versus the number of bats in the window.

of bats emerging within a fixed time window, the shorter the average interval between

the successive emergence of two bats, and the higher the probability of having a leader

in front of a bat.

These correlations mean that a bat (a follower) behaves differently if there is

another bat (a leader) in front of it. In order to further illustrate the behavior

difference, we classify the 39 trajectories shown in Fig. 3·11 into four classes. They

are

• C1: the bat is a single bat, which is neither a leader nor a follower (7 bats);

• C2: the bat is a single-role leader bat, which is a leader but not a follower

(14 bats);

• C3: the bat is a dual-role bat, which is both a leader and a follower (4 bats);

• C4: the bat is a single-role follower bat, which is follower but not a leader

(14 bats).
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Figure 3·16: Flight path statistics of G1 and G2 are depicted. The
red (green) curve is the mean trajectory of G1 (G2). The blue (black)
ellipses (centered on the mean trajectory) represent a dispesion of one
standard deviation of G1 (G2).

We then combine the four classes into two groups: the leader group G1 = {C1, C2}

and the follower group G2 = {C3, C4}. The statistics of the two groups are shown in

Fig. 3·16. It is quite obvious that the follower group curves more toward the wooded

area than the leader group.

To conclude, as the number of bats emerging within an interval becomes larger or

equivalently the initial distance (the emergence interval) between the leader-follower

pair becomes smaller, the follower bat tends to stay closer to the wooded area and

take a longer route than the leader bat. One possible interpretation of the observed

effects is that the trailing bat is trying to align itself with the leader while staying a

safe distance away from the obstacles, e.g. the pole. For the specific environment as

shown in Fig. 3·16, a side effect of such a behavior is a larger excursion towards the
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woods for the follower bat.

3.4.1 Are Bats Pursuing?
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Figure 3·17: Analysis results for the pair shown in Fig. 3·14: the base-
line direction r/|r| (blue) and the angle between the baseline direction
r/|r| and the follower’s heading xf (black). Both are represented as
angles. For instance, the blue curve is computed by tan−1(p2/p1) with
p1 and p2 being the first and second component of r/|r|.

In this subsection, we analyze paired bats’ behavior by checking the data against

existing pursuit laws: classical pursuit, constant bearing, and motion camouflage [70].

In classical pursuit, the follower aligns its direction of motion xf with the baseline

direction r/|r|, where the baseline r is defined as rl−rf in Section 3.3.1; in constant

bearing, the follower keeps the angle between its heading xf and the baseline direction

r/|r| constant; in motion camouflage, the follower keeps the baseline direction r/|r|

constant.

Fig. 3·17 illustrates that none of these pursuit laws explains the behavior observed

in Fig. 3·14. The baseline direction r/|r| (blue curve) does not stay constant, which

violates motion camouflage pursuit; the angle between the baseline direction r/|r| and
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the follower’s heading xf (black curve) is neither zero nor constant, which violates

classical and constant bearing pursuits. The result implies that the follower bats are

not pursuing the leader bats (by pursuing we mean that there is a moment when

the follower intercepts the leader). The reasons may be as stated in Remark 1.3.1.

Nevertheless an alternative interpretation is needed to explain the observed behavior.

In the next section, we will propose a steering law and a navigation strategy the

follower bat might use.

3.4.2 Steering Law For Following

In Section 3.2, we proposed an integrated strategy to explain the navigation behavior

of M. velifer in a data set of 254 individuals (the same data set from which we are se-

lecting the bat pairs studied here). We hypothesized that these bats used landmarks

recalled from their spatial memory to select features from the environment and then

generated control strategies based on these remembered features. Synthesized trajec-

tories generated by using sequences of feature-based control primitives approximately

fit the mean behavior of the bats. However, as noted in Section 3.3.2, bats following

leaders behave differently form those that do not. The interaction between the bats

is a factor that we have not considered in Section 3.2. In this section, we first pro-

pose a steering law that a follower bat may use to follow a leader. We then discuss

a strategy that takes the leader-follower behavior into consideration and show that

now the statistics, both the mean and the variance, of the synthesized trajectories fit

with those of the data on bat pairs.

The planar steering law we study next is based on minimizing the virtual loom in

a follower’s perception of the leader’s motion.

Theorem 3.4.1 Consider leader-follower pair (Eqs. (3.16) and (3.17)) with the fol-

lowing assumptions:

1. the control of the leader ul is zero (the leader flies in a straight line);
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2. rx is positive (the leader is in front of the follower).

Then for k > 0, the follower with control

uf = kxl · yf = −k sinα, (3.21)

will asymptotically align itself with the leader, i.e., α→ 0 (and λ→ 0).

Proof: We take the unnormalized virtual loom as a Lyapunov function V := 1−xl ·xf .

This is 0 if xl ·xf = 1 (α = 0) and positive otherwise. Its derivative along trajectories

is

V̇ = −ẋl · xf − xl · ẋf = −uf (xl · yf ) = −k(xl · yf )2. (3.22)

which is zero when xl · yf = 0 or equivalently xl · xf = 1 (α = 0).

Theorem 3.4.1 implies that if the leader is flying in a straight line, then the follower

can utilize the virtual loom to achieve parallel flight with the leader. See Remark

1.3.1 for the explanation of how bats might estimate the virtual loom.

3.4.3 Simulation Results

Fig. 8 shows a pair of synthesized trajectories with the follower using control law

(3.21) and leader with the steering control ul = 0. It can be seen that with control

law (3.21), the follower is approaching a parallel flight with the leader as described

by Theorem 3.4.1. In the case that ul 6= 0, the leader’s trajectory is similar to the

one depicted in Fig.3·14, and the synthesized follower’s trajectory with control law

(3.21) is qualitatively similar to the actual follower bat’s trajectory as shown in Fig.

3·14. (Details will be elaborated in Section 3.4.4)

3.4.4 Is Pure Following Strategy Sufficient?

Fig. 3·19 shows the actual trajectories of a leader-follower pair and a synthesized

follower trajectory (purple) by using control law (3.21) with the assumption that the
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law (3.21). Dots indicate starting locations. The black lines connect
the pair’s corresponding locations at different time slices.

follower only reacts to the leader without utilizing either its spatial memory or cues

from the environment. The purple synthesized trajectory fits with the actual follower

bat’s trajectory (green) well for the segment that has x coordinates smaller than 9

meters. This implies that the follower bat synchronizes its motion with the leader

inside the open space between the pole and the wooded area. However, after passing

9 meters, the discrepancy between the synthesized and actual trajectories becomes

larger. The synthesized trajectory has the danger of colliding with the obstacles or

losing track of the leader due to occlusion. Here, we need to consider a navigation

strategy that integrates a rapid refocus of attention on the looming tree obstacles.

3.4.5 Integrated Strategy: Spatial Memory Fused with Reactions to En-

vironment and Other Bats

The integrated strategy proposed in Section 3.2.1 is now extended so as to incorporate

the leader-follower behavior. The navigation strategy is synthesized from three vision-

based control primitives: a distance maintenance law ud[O1,O2], a circling control
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law uc[O1] and a leader-follower control law uf [O1], where O1 and O2 are visually

perceived features used in a particular control law and can be either static (for ud

and uc) or moving (for uf ). The primitives ud and uc can be found in Section 3.2.1,

while the primitive uf is given in Eq. (3.21).

Fig. 3·20 shows the statistics of 100 synthesized trajectories based on the new

integrated strategy. The vehicles are assumed to move according to Eqs. (3.16) and

(3.17) with a constant speed. The vehicles appear in the field in accordance with

a Poisson process. Their arrival locations and velocities are generated randomly by

a Gaussian model with its mean and variance the same as those of the collected

bat data. (We only simulate the bats’ behavior after they pass feature ‘a’ as shown

in Fig. 3·20.) The intersubjective distance between a pair of vehicles determines

whether there exists a leader for the trailing vehicle to follow. If there exists a leader,
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Figure 3·20: 100 synthesized trajectories based on the new integrated
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rized by the bats.

the follower vehicle relies on the leader and the control uf for navigation. It switches

to environment-cue-directed control ud or uc when it is on a collision course. On the

other hand, if there does not exist a leader, the follower vehicle relies on its spatial

memory and cues from the environment for navigation and the controls they can use

are ud and uc. For Fig. 3·21, each trajectory is generated by a sequence of controlled

motion segments as follows:

• If there does not exist a leader, the trajectory is generated by uc[pole] →

ud[b, c]→ ud[c, d]→ ud[., .] for the remaining features;

• If there exits a leader, the trajectory is generated by uf [leader] → ud[b, c] →

ud[c, d]→ ud[., .] for the remaining features.

For Fig. 3·19, the follower trajectory (blue) is generated by the second strategy

since it has a leader (red). We prescribe the switching between the primitives based on

the nearest feature(s) in the follower’s body xf direction. For instance, the switching



113

Figure 3·21: The plot of the mean path and variance ellipse of 100
synthesized trajectories

from uf [leader] to ud[b, c] is triggered if feature b is closer to the follower than the

leader in the xf direction. Similarly, the switching from ud[b, c] to ud[c, d] is triggered

if feature d is closer to the follower than feature b in the xf direction.

A comparison between Fig. 3·21 and Fig. 3·11 shows that the synthesized trajec-

tories accurately capture both the mean and the variance of the actual bat trajectories

with the only difference being that the ellipses in Fig. 3·11 are slightly fatter. One

possible explanation of the difference is that the sensors are assumed to be noiseless

for the synthesized trajectories while this is not the case for actual bats. Similarity can

also be observed between the actual follower’s trajectory (green) and the synthesized

trajectory based on the integrated strategy (blue) in Fig. 3·19. Such resemblances

support our integrated strategy hypothesis.

By following another bat, in the context of navigation, a follower bat can save en-

ergy by adopting a low duty cycle echolocation or even turning off its sonar completely
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[71]. It can also be used by an inexperienced individual to follow an experienced one.

In such a case, the leader (e.g. a female bat) is more familiar with the environment

than the follower (e.g. a juvenile).
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Chapter 4

Conclusions and Future Work

The contributions of this dissertation can be summarized as follows. In Chapter 2, we

used salsa as a prototype to study dance pair interactions by means of gesture-based

communication between the leader and the follower dancer. This was achieved by

decomposing a dance move into distinct motion primitives and their corresponding

motion signals. We defined a Beginner Level Salsa (BLS) as a dance performed by

using the four fundamental salsa moves. We introduced a new motion description

language by assigning a letter from an alphabet to each distinct eight beat salsa

move. The constructed framework was used to search for “perceived artistic merit”

of a dance performance by introducing two mathematical metrics that measure the

energy expenditure of the dancers as well as the artistic expressivity of the dance

phrases. We investigated a robotic dance pair to determine the energy consumed

by the dancers during the execution of the moves. Moreover, we have proposed an

entropy metric to capture the artistic expressivity in the performed four letter dance

phrases. We conducted an experiment in which various dance performances were

evaluated by judges and observed strong correlations between the judges’ scores and

the proposed mathematical metrics.

The framework was extended to Intermediate Level Salsa (ILS) by introducing

seven new moves that involve the follower dancer’s π or 2π degrees rotation in clock-

wise and counter clockwise direction. We constrained the dancers’ movements by

restricting them to keep hand contact throughout the performance. Under this con-
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straint, we investigated the syntax of dance move transitions using the language of

topological knot theory. Each dance move was decomposed into an initial and a final

pose. The link diagram representations of the moves were extracted and the link

invariants were computed. We concluded that the allowable dance move transitions

decided by the leader are based on the syntactic requirement of matching the topol-

ogy of the initial pose of a move with the topology of the final pose of the preceding

move.

We introduced three new moves that allow the leader to break the hand contact

in order to return to the most basic dance pose. The new alphabet was referred to

as Extended Intermediate Level Salsa (EILS). We calculated a new link invariant,

Alexander Polynomial, for each pose in EILS so that distinct physical dance motion

primitives were represented by polynomial function manipulations.

We discussed the finite state machine representation (FSM) of a dance pair. Ini-

tial and final poses were defined as states that involve the roll, pitch and yaw angles

of the eight links in stick figure representations of the dancers. We constructed a

communication channel between the FSMs in order to represent the transmitted mo-

tion signals by the leader to the follower. In the case when there exists no noise, we

showed the bounds of the cost for communicating the dance phrases. Moreover, we

incorporated energy and entropy metrics into an optimization problem, which we refer

to as a forward problem, in order to generate optimal dance performed by a robotic

dance pair. We extended the analysis to the case when the communication channel

is noisy. The communication channel was represented by a multi-input, multi-output

erasure channel and we discussed how the model representing the pair with an expert

level leader has a higher capacity channel in transmitting signals.

We described the solution of an inverse problem which involves the construction of

a robotic judge to evaluate group execution. The robotic judge has an observation and
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an evaluation component. Observation was achieved by using a finite state machine

representation of the dance pair. Dancers’ body poses were tracked by using critical

points in their stick figure representations. We showed that a dance performance

can be deconstructed by the recognition of the initial and final dance poses and the

motion signals. The evaluation component is based on a Score function that assigns

a score to a deconstructed performance based on the energy and entropy metrics

defined earlier. The performance of the robotic judge was validated by comparing

its score values assigned on a new set of dance performances with the actual judges’

evaluations.

One interesting future work direction is to extend the human collective behavior

analysis to a group of dancers with multiple pairs. Rueda Salsa is a motivating ex-

ample. By observing a rueda salsa performance, one may conclude that the dance

involves two distinct group behaviors. In one case, each dance pair performs indepen-

dently which can be perceived as local pairs generating move sequences by following

the rules explained in Chapter 2. In the second case, the pairs separate to form a

dance circle. The group behavior can be understood by adapting terminologies from

graph theory. The circle formation is generated such that no two leaders or two fol-

lowers are adjacent. This artistic constraint can be understood by a bipartite cyclic

graph representation of a rueda circle. This reveals the interrelationship between the

phsyical dance motion primitives and the change in the topology of the graph.

In Chapter 3 of this dissertation, we extended the analysis to the case when a group

of bats emerge from a cave. We described the details of the experimental procedure to

record Myotis velifer trajectories in their natural habitat. The recorded trajectories

were smoothed and filtered by using cubic spline smoothing. The smoothed trajecto-

ries were used to classify the bats based on their decision making to avoid obstacles in

their flight corridor. We introduced a new concept time-to-transit which is a quantity
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that can be computed by animals’ visual cortex. We incorporated this concept to

generate bat-like trajectories in a simulated environment that is identical to the bats’

natural flight corridor. We concluded that the bats react to the key features in the

environment and use spacial memory for navigation.

We also investigated the leader-follower interactions using the same data set. A

leader bat was defined as the bat which flies in the range of the follower bats’ vision

or echolocation calls. We modified the concept time-to-transit to capture the config-

uration of a leader follower pair and introduced virtual loom. We generated a new set

of synthetic trajectories driven by time-to-transit and virtual loom for individual or

group flight. We concluded that the bats use beacons and spacial memory to navigate

while reacting neighbors in close proximity.

The proposed control laws for imitating bats’ navigation strategies during cave

emergence were based on their optical flow sensing capabilities. However, it is a well

known fact that bats predominantly use echolocation calls to perceive features during

flight. Hence, we conducted a new set of experiments to study the learning behavior as

well as the navigation strategies of bats. The experimental set up involved equipment

to record bat trajectories as well as their echolocation calls during an emergence from

the same cave in Johnson City, Texas. During the first day of the second experiment

data was acquired as bats navigated through the same flight corridor as in the first set

of experiment. The second day a new obstacle was introduced to observe behavioral

changes by means of their call rates and trajectories. The experiment continued for six

consecutive days to reveal their learning behavior. The preliminary results suggest

that bats’ call rates increased significantly when the new obstacle was introduced.

Additionally, their reaction distance with respect to the obstacle was significantly

closer. However, we observed a decrease in their call rate and an increase in their

reaction distance on the consecutive days. The preliminary results suggest that they
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register the location of the pole to their spacial memory. The results of this experiment

along with the leader follower analysis will be reported in future publications.

Bat cave emergence analysis has features in common with the analysis of dance

since it involves bats reacting to the environmental features in addition to the internal

group member interactions and leader-follower behavior. Lessons learned from both

prototypes can be applied to real world applications including team athletics and

military applications. The unifying element is constraining the agents to communicate

by using the gestures and motions so that messages can not be detected decoded by

the enemy.
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Appendix A

Figure ·1: The Foot Work of the Dancers and Performance of the
Non-Holonomic Robots
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Figure ·2: The Foot Work of the Dancers and Performance of the
Non-Holonomic Robots
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Appendix B

Figure ·3: Initial and final poses for eleven moves in Intermediate
Level Salsa (ILS)
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Figure ·4: Initial and final poses for eleven moves in Intermediate
Level Salsa (ILS)
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Appendix C

Figure ·5: Dance sequences performed by beginner and expert level
dancers
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