18,381 research outputs found

    A SDN-based On-Demand Path Provisioning Approach across Multi-domain Optical Networks

    Get PDF
    The interconnection of remote datacentres with optical networks are emerging use cases and such orchestration of multi-domains require the design of new network control, management, and orchestration architectures. Such heterogeneity needs to adopt end-to-end services like on-demand path provisioning. It is acknowledged that such scenarios are more complexed and have fundamental limitations in terms of high performance and delay. To address these issues, and as a means to cope with the complexity growth, research in this area is considering the concept of Software-Defined Network (SDN) orchestration for multi-domain optical networks to coordinated the control of heterogeneous systems. This paper presents a SDN path provisioning approach across Multi-Domain Optical Networks. The aim is to develop an efficient on-demand path provisioning platform in a software defined optical network at the control plane to dynamically manage the network's load, especially in emergency scenarios. The proposed distributed system architecture will help to solve the longstanding problem of inter-domain path provisioning. Our proposed architecture is implemented and validated in a control plane testbed to validate the approach. The paper also evaluated the factors such Quality of Service (QoS) of the network deployment associated with delay or control overhead. Our results show that the method will reduce additional delays in a multi-domain optical network, where high capacity and low latency are requirements for data-intensive applications and cloud services. The proposed method also maintains the total number of flows as low as possible to make the algorithm fast and reduce overheads

    Cooperative Learning for Disaggregated Delay Modeling in Multidomain Networks

    Get PDF
    Accurate delay estimation is one of the enablers of future network connectivity services, as it facilitates the application layer to anticipate network performance. If such connectivity services require isolation (slicing), such delay estimation should not be limited to a maximum value defined in the Service Level Agreement, but to a finer-grained description of the expected delay in the form of, e.g., a continuous function of the load. Obtaining accurate end-to-end (e2e) delay modeling is even more challenging in a multi-operator (Multi-AS) scenario, where the provisioning of e2e connectivity services is provided across heterogeneous multi-operator (Multi-AS or just domains) networks. In this work, we propose a collaborative environment, where each domain Software Defined Networking (SDN) controller models intra-domain delay components of inter-domain paths and share those models with a broker system providing the e2e connectivity services. The broker, in turn, models the delay of inter-domain links based on e2e monitoring and the received intra-domain models. Exhaustive simulation results show that composing e2e models as the summation of intra-domain network and inter-domain link delay models provides many benefits and increasing performance over the models obtained from e2e measurements

    Control orchestration protocol:unified transport API for distributed cloud and network orchestration

    Get PDF
    In the context of the fifth generation of mobile technology (5G), multiple technologies will converge into a unified end-to-end system. For this purpose, software defined networking (SDN) is proposed, as the control paradigm will integrate all network segments and heterogeneous optical and wireless network technologies together with massive storage and computing infrastructures. The control orchestration protocol is presented as a unified transport application programming interface solution for joint cloud/network orchestration, allowing interworking of heterogeneous control planes to provide provisioning and recovery of quality of service (QoS)-aware end-to-end services. End-to-end QoS is guaranteed by provisioning and restoration schemes, which are proposed for optical circuit/packet switching restoration by means of signal monitoring and adaptive modulation and adaptive route control, respectively. The proposed solution is experimentally demonstrated in an international multi-partner test bed, which consists of a multi-domain transport network comprising optical circuit switching and optical packet switching domains controlled by SDN/OpenFlow and Generalized Multiprotocol Label Switching (GMPLS) control planes and a distributed cloud infrastructure. The results show the dynamic provisioning of IT and network resources and recovery capabilities of the architecture.Grant numbers : This work was partially supported by the Spanish MINECO project DESTELLO (TEC2015-69256-R)

    Orchestration of Network Services Across Multiple Operators: The 5G Exchange Prototype

    Get PDF
    Future 5G networks will rely on the coordinated allocation of compute, storage, and networking resources in order to meet the functional requirements of 5G services as well as guaranteeing efficient usage of the network infrastructure. However, the 5G service provisioning paradigm will also require a unified infrastructure service market that integrates multiple operators and technologies. The 5G Exchange (5GEx) project, building heavily on the Software-Defined Network (SDN) and the Network Function Virtualization (NFV) functionalities, tries to overcome this market and technology fragmentation by designing, implementing, and testing a multi-domain orchestrator (MdO) prototype for fast and automated Network Service (NS) provisioning over multiple-technologies and spanning across multiple operators. This paper presents a first implementation of the 5GEx MdO prototype obtained by extending existing open source software tools at the disposal of the 5GEx partners. The main functions of the 5GEx MdO prototype are showcased by demonstrating how it is possible to create and deploy NSs in the context of a Slice as a Service (SlaaS) use-case, based on a multi-operator scenario. The 5GEx MdO prototype performance is experimentally evaluated running validation tests within the 5GEx sandbox. The overall time required for the NS deployment has been evaluated considering NSs deployed across two operators

    Deliverable JRA1.1: Evaluation of current network control and management planes for multi-domain network infrastructure

    Get PDF
    This deliverable includes a compilation and evaluation of available control and management architectures and protocols applicable to a multilayer infrastructure in a multi-domain Virtual Network environment.The scope of this deliverable is mainly focused on the virtualisation of the resources within a network and at processing nodes. The virtualization of the FEDERICA infrastructure allows the provisioning of its available resources to users by means of FEDERICA slices. A slice is seen by the user as a real physical network under his/her domain, however it maps to a logical partition (a virtual instance) of the physical FEDERICA resources. A slice is built to exhibit to the highest degree all the principles applicable to a physical network (isolation, reproducibility, manageability, ...). Currently, there are no standard definitions available for network virtualization or its associated architectures. Therefore, this deliverable proposes the Virtual Network layer architecture and evaluates a set of Management- and Control Planes that can be used for the partitioning and virtualization of the FEDERICA network resources. This evaluation has been performed taking into account an initial set of FEDERICA requirements; a possible extension of the selected tools will be evaluated in future deliverables. The studies described in this deliverable define the virtual architecture of the FEDERICA infrastructure. During this activity, the need has been recognised to establish a new set of basic definitions (taxonomy) for the building blocks that compose the so-called slice, i.e. the virtual network instantiation (which is virtual with regard to the abstracted view made of the building blocks of the FEDERICA infrastructure) and its architectural plane representation. These definitions will be established as a common nomenclature for the FEDERICA project. Other important aspects when defining a new architecture are the user requirements. It is crucial that the resulting architecture fits the demands that users may have. Since this deliverable has been produced at the same time as the contact process with users, made by the project activities related to the Use Case definitions, JRA1 has proposed a set of basic Use Cases to be considered as starting point for its internal studies. When researchers want to experiment with their developments, they need not only network resources on their slices, but also a slice of the processing resources. These processing slice resources are understood as virtual machine instances that users can use to make them behave as software routers or end nodes, on which to download the software protocols or applications they have produced and want to assess in a realistic environment. Hence, this deliverable also studies the APIs of several virtual machine management software products in order to identify which best suits FEDERICA’s needs.Postprint (published version

    A Survey on the Contributions of Software-Defined Networking to Traffic Engineering

    Get PDF
    Since the appearance of OpenFlow back in 2008, software-defined networking (SDN) has gained momentum. Although there are some discrepancies between the standards developing organizations working with SDN about what SDN is and how it is defined, they all outline traffic engineering (TE) as a key application. One of the most common objectives of TE is the congestion minimization, where techniques such as traffic splitting among multiple paths or advanced reservation systems are used. In such a scenario, this manuscript surveys the role of a comprehensive list of SDN protocols in TE solutions, in order to assess how these protocols can benefit TE. The SDN protocols have been categorized using the SDN architecture proposed by the open networking foundation, which differentiates among data-controller plane interfaces, application-controller plane interfaces, and management interfaces, in order to state how the interface type in which they operate influences TE. In addition, the impact of the SDN protocols on TE has been evaluated by comparing them with the path computation element (PCE)-based architecture. The PCE-based architecture has been selected to measure the impact of SDN on TE because it is the most novel TE architecture until the date, and because it already defines a set of metrics to measure the performance of TE solutions. We conclude that using the three types of interfaces simultaneously will result in more powerful and enhanced TE solutions, since they benefit TE in complementary ways.European Commission through the Horizon 2020 Research and Innovation Programme (GN4) under Grant 691567 Spanish Ministry of Economy and Competitiveness under the Secure Deployment of Services Over SDN and NFV-based Networks Project S&NSEC under Grant TEC2013-47960-C4-3-

    Leveraging Semantic Web Technologies for Managing Resources in a Multi-Domain Infrastructure-as-a-Service Environment

    Full text link
    This paper reports on experience with using semantically-enabled network resource models to construct an operational multi-domain networked infrastructure-as-a-service (NIaaS) testbed called ExoGENI, recently funded through NSF's GENI project. A defining property of NIaaS is the deep integration of network provisioning functions alongside the more common storage and computation provisioning functions. Resource provider topologies and user requests can be described using network resource models with common base classes for fundamental cyber-resources (links, nodes, interfaces) specialized via virtualization and adaptations between networking layers to specific technologies. This problem space gives rise to a number of application areas where semantic web technologies become highly useful - common information models and resource class hierarchies simplify resource descriptions from multiple providers, pathfinding and topology embedding algorithms rely on query abstractions as building blocks. The paper describes how the semantic resource description models enable ExoGENI to autonomously instantiate on-demand virtual topologies of virtual machines provisioned from cloud providers and are linked by on-demand virtual connections acquired from multiple autonomous network providers to serve a variety of applications ranging from distributed system experiments to high-performance computing
    corecore