791 research outputs found

    Algebraic level sets for CAD/CAE integration and moving boundary problems

    Get PDF
    Boundary representation (B-rep) of CAD models obtained from solid modeling kernels are commonly used in design, and analysis applications outside the CAD systems. Boolean operations between interacting B-rep CAD models as well as analysis of such multi-body systems are fundamental operations on B-rep geometries in CAD/CAE applications. However, the boundary representation of B-rep solids is, in general, not a suitable representation for analysis operations which lead to CAD/CAE integration challenges due to the need for conversion from B-rep to volumetric approximations. The major challenges include intermediate mesh generation step, capturing CAD features and associated behavior exactly and recurring point containment queries for point classification as inside/outside the solid. Thus, an ideal analysis technique for CAD/CAE integration that can enable direct analysis operations on B-rep CAD models while overcoming the associated challenges is desirable. ^ Further, numerical surface intersection operations are typically necessary for boolean operations on B-rep geometries during the CAD and CAE phases. However, for non-linear geometries, surface intersection operations are non-trivial and face the challenge of simultaneously satisfying the three goals of accuracy, efficiency and robustness. In the class of problems involving multi-body interactions, often an implicit knowledge of the boolean operation is sufficient and explicit intersection computation may not be needed. Such implicit boolean operations can be performed by point containment queries on B-rep CAD models. However, for complex non-linear B-rep geometries, the point containment queries may involve numerical iterative point projection operations which are expensive. Thus, there is a need for inexpensive, non-iterative techniques to enable such implicit boolean operations on B-rep geometries. ^ Moreover, in analysis problems with evolving boundaries (ormoving boundary problems), interfaces or cracks, blending functions are used to enrich the underlying domain with the known behavior on the enriching entity. The blending functions are typically dependent on the distance from the evolving boundaries. For boundaries defined by free form curves or surfaces, the distance fields have to be constructed numerically. This may require either a polytope approximation to the boundary and/or an iterative solution to determine the exact distance to the boundary. ^ In this work a purely algebraic, and computationally efficient technique is described for constructing signed distance measures from Non-Uniform Rational B-Splines (NURBS) boundaries that retain the geometric exactness of the boundaries while eliminating the need for iterative and non-robust distance calculation. The proposed technique exploits the NURBS geometry and algebraic tools of implicitization. Such a signed distance measure, also referred to as the Algebraic Level Sets, gives a volumetric representation of the B-rep geometry constructed by purely non-iterative algebraic operations on the geometry. This in turn enables both the implicit boolean operations and analysis operations on B-rep geometries in CAD/CAE applications. Algebraic level sets ensure exactness of geometry while eliminating iterative numerical computations. Further, a geometry-based analysis technique that relies on hierarchical partition of unity field compositions (HPFC) theory and its extension to enriched field modeling is presented. The proposed technique enables direct analysis of complex physical problems without meshing, thus, integrating CAD and CAE. The developed techniques are demonstrated by constructing algebraic level sets for complex geometries, geometry-based analysis of B-rep CAD models and a variety of fracture examples culminating in the analysis of steady state heat conduction in a solid with arbitrary shaped three-dimensional cracks. ^ The proposed techniques are lastly applied to investigate the risk of fracture in the ultra low-k (ULK) dies due to copper (Cu) wirebonding process. Maximum damage induced in the interlayer dielectric (ILD) stack during the process steps is proposed as an indicator of the reliability risk. Numerical techniques based on enriched isogeometric approximations are adopted to model damage in the ULK stacks using a cohesive damage description. A damage analysis procedure is proposed to conduct damage accumulation studies during Cu wirebonding process. Analysis is carried out to identify weak interfaces and potential sites for crack nucleation as well as damage nucleation patterns. Further, the critical process condition is identified by analyzing the damage induced during the impact and ultrasonic excitation stages. Also, representative ILD stack designs with varying Cu percentage are compared for risk of fracture

    Computational Gradient Elasticity and Gradient Plasticity with Adaptive Splines

    Get PDF
    Classical continuum mechanics theories are largely insufficient in capturing size effects observed in many engineering materials: metals, composites, rocks etc. This is attributed to the absence of a length scale that accounts for microstructural effects inherent in these materials. Enriching the classical theories with an internal length scale solves this problem. One way of doing this, in a theoretically sound manner, is introducing higher order gradient terms in the constitutive relations. In elasticity, introducing a length scale removes the singularity observed at crack tips using the classical theory. In plasticity, it eliminates the spurious mesh sensitivity observed in softening and localisation problems by defining the width of the localisation zone thereby maintaining a well-posed boundary value problem. However, this comes at the cost of more demanding solution techniques. Higher-order continuity is usually required for solving gradient-enhanced continuum theories, a requirement difficult to meet using traditional finite elements. Hermitian finite elements, mixed methods and meshless methods have been developed to meet this requirement, however these methods have their drawbacks in terms of efficiency, robustness or implementational convenience. Isogeometric analysis, which exploits spline-based shape functions, naturally incorporates higher-order continuity, in addition to capturing the exact geometry and expediting the design-through-analysis process. Despite its potentials, it is yet to be fully explored for gradient-enhanced continua. Hence, this thesis develops an isogeometric analysis framework for gradient elasticity and gradient plasticity. The linearity of the gradient elasticity formulation has enabled an operator-split approach so that instead of solving the fourth-order partial differential equation monolithically, a set of two partial differential equations is solved in a staggered manner. A detailed convergence analysis is carried out for the original system and the split set using NURBS and T-splines. Suboptimal convergence rates in the monolithic approach and the limitations of the staggered approach are substantiated. Another advantage of the spline-based approach adopted in this work is the ease with which different orders of interpolation can be achieved. This is useful for consistency, and relevant in gradient plasticity where the local (explicit formulation) or nonlocal (implicit formulation) effective plastic strain needs to be discretised in addition to the displacements. Using different orders of interpolation, both formulations are explored in the second-order and a fourth-order implicit gradient formulation is proposed. Results, corroborated by dispersion analysis, show that all considered models give good regularisation with mesh-independent results. Compared with finite element approaches that use Hermitian shape functions for the plastic multiplier or mixed finite element approaches, isogeometric analysis has the distinct advantage that no interpolation of derivatives is required. In localisation problems, numerical accuracy requires the finite element size employed in simulations to be smaller than the internal length scale. Fine meshes are also needed close to regions of geometrical singularities or high gradients. Maintaining a fine mesh globally can incur high computational cost especially when considering large structures. To achieve this efficiently, selective refinement of the mesh is therefore required. In this context, splines need to be adapted to make them analysis-suitable. Thus, an adaptive isogeometric analysis framework is also developed for gradient elasticity and gradient plasticity. The proposed scheme does not require the mesh size to be smaller than the length scale, even during analysis, until a localisation band develops upon which adaptive refinement is performed. Refinement is based on a multi-level mesh with truncated hierarchical basis functions interacting through an inter-level subdivision operator. Through Bezier extraction, truncation of the bases is simplified by way of matrix multiplication, and an element-wise standard finite element data structure is maintained. In sum, a robust computational framework for engineering analysis is established, combining the flexibility, exact geometry representation, and expedited design-through analysis of isogeometric analysis, size-effect capabilities and mesh-objective results of gradient-enhanced continua, the standard convenient data structure of finite element analysis and the improved efficiency of adaptive hierarchical refinement

    A survey of partial differential equations in geometric design

    Get PDF
    YesComputer aided geometric design is an area where the improvement of surface generation techniques is an everlasting demand since faster and more accurate geometric models are required. Traditional methods for generating surfaces were initially mainly based upon interpolation algorithms. Recently, partial differential equations (PDE) were introduced as a valuable tool for geometric modelling since they offer a number of features from which these areas can benefit. This work summarises the uses given to PDE surfaces as a surface generation technique togethe

    B-Spline based uncertainty quantification for stochastic analysis

    Get PDF
    The consideration of uncertainties has become inevitable in state-of-the-art science and technology. Research in the field of uncertainty quantification has gained much importance in the last decades. The main focus of scientists is the identification of uncertain sources, the determination and hierarchization of uncertainties, and the investigation of their influences on system responses. Polynomial chaos expansion, among others, is suitable for this purpose, and has asserted itself as a versatile and powerful tool in various applications. In the last years, its combination with any kind of dimension reduction methods has been intensively pursued, providing support for the processing of high-dimensional input variables up to now. Indeed, this is also referred to as the curse of dimensionality and its abolishment would be considered as a milestone in uncertainty quantification. At this point, the present thesis starts and investigates spline spaces, as a natural extension of polynomials, in the field of uncertainty quantification. The newly developed method 'spline chaos', aims to employ the more complex, but thereby more flexible, structure of splines to counter harder real-world applications where polynomial chaos fails. Ordinarily, the bases of polynomial chaos expansions are orthogonal polynomials, which are replaced by B-spline basis functions in this work. Convergence of the new method is proved and emphasized by numerical examples, which are extended to an accuracy analysis with multi-dimensional input. Moreover, by solving several stochastic differential equations, it is shown that the spline chaos is a generalization of multi-element Legendre chaos and superior to it. Finally, the spline chaos accounts for solving partial differential equations and results in a stochastic Galerkin isogeometric analysis that contributes to the efficient uncertainty quantification of elliptic partial differential equations. A general framework in combination with an a priori error estimation of the expected solution is provided

    Parameterization adaption for 3D shape optimization in aerodynamics

    Full text link
    When solving a PDE problem numerically, a certain mesh-refinement process is always implicit, and very classically, mesh adaptivity is a very effective means to accelerate grid convergence. Similarly, when optimizing a shape by means of an explicit geometrical representation, it is natural to seek for an analogous concept of parameterization adaptivity. We propose here an adaptive parameterization for three-dimensional optimum design in aerodynamics by using the so-called "Free-Form Deformation" approach based on 3D tensorial B\'ezier parameterization. The proposed procedure leads to efficient numerical simulations with highly reduced computational costs
    • ā€¦
    corecore